
Trace Theory for
Automatic Hierarchical Verification of

Speed-Independent Circuits

David L. Dill

February 1988
CMU-CS-88-119

Submitted to Carnigie Mellon University in partial fulfullment of the
requirements for the degree of Doctor of Philosophy in Computer Science.

Copyright© 1988 David L. Dill

This research was partially supported by NSF Grant MCS-82-16706 and by the defense Advanced Research Projects
Agency, ARPA Order Number 4976, Amendment 20, under contract F33615-87-C-1499.

The views and conslusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projets Agency or
the U.S. Government.

Table of Contents

1. Introduction 9

1.1. Introduction 9

1.1.1. Asynchronous Circuits 9
1.1.2. The Correcmess Problem 10

1.1.3. Scope of the Thesis 11
1.2. Verification Issues. . . 13

1.3. Background and Related Work . . 15

1.3.1. Asynchronous Circuit Synthesis 15

1.3.2. Models of Concurrency 17

1.3.3. Temporal Logic 18
1.3.4. Modular Verification 21

1.3.5. Trace Theory 22
1.3.6. Petri Nets 24

1.3.7. Reachability Analysis 25

1.3.8. Summary 25
1.4. Results of the Thesis 26

1.5. Overview of the Thesis 27

2. Circuit Structure 30

2.1. Introduction 30

2.2. Notation and Other Mathematical Preliminaries 32

2.3. Circuit Algebra 33

2.4. A Representation of Circuit Structures 36

2.5. A Circuit Algebra of Circuit Structures 39

2.6. Structural Completeness 42
3. Prefix-closed Trace Structures 48

3.1. Introduction 48

3.2. Mathematical Preliminaries: Finite Sequences 50
3.3. Prefix-Closed Trace Structures 52

3.4. Examples 58
3.4.1. Boolean Gates 58

3.4.2. Ring Oscillator 61
3.4.3. Set-Reset Latch 61

3.4.4. Mutual-Exclusion Element 64

3.4.5. C Elemem 65

3.4.6. Vending Machine 67
4. Verification 69

4.1. Introduction 69

4.2. Conformation 71

4.3. Conformation Equivalence and Simplifications 74
4.4. Environments and Mirrors 81

4.5. Examples 85

4.5.1. Merge Element 85

4.5.2. Arbitrary Selector 86
4.5.3. Set-Reset Latch 87

4.5.4. Fork/Join 87

4.5.5. Universal Do-Nothing Module 90

4.6. Delay-Insensitivity 90

4.7. Lattice Properties 91
5. An Automatic Verifier 95

5.1. Introduction 95

5.2. Descriptions and Specifications 96

5.2.1. Representation of Prefix-Closed Trace Structures 97

5.2.2. Defining Boolean Gates 98

5.2.3. Defining State Machines 99

5.2.4. Expressions 102

5.3. Conformation Checking 103

5.4. Example 1: Tree Arbiter 106

5.4.1. Specification of an Arbiter Cell 107

5.4.2. High-level Verification 109
5.4.3. Low-level Verification 112

5.5. Example 2: Martin's Distributed Mutual Exclusion Circuit 113

5.5.1. Specification of the DME cell 115

5.5.2. High-level Verification 117
5.5.3. Low-level Verification 118

5.6. A Trace Theory Calculator 122

6. Infinite Sequences and Infinite Games 125
6.1. Introduction 125

6.2. Mathematical Preliminaries: ,_,-sequences 126

6.3. _'-regular Sets and Finite Automata 128
6.4. Infinite Games 133

6.5. Decidability of Regular Games 135

7. Complete Trace Structures 143
7.1. Introduction 143

7.2. Complete Trace Structures and Receptiveness . . . 145

7.3. Complete Trace Structures are a Circuit Algebra . . 147
7.4. Conformation 151

7.5. Examples of Complete Trace Structures 156
7.5.1. Boolean Gates 156

7.5.2. Ring Oscillator 157
7.5.3. Mutual Exclusion Element 158

7.5.4. Fork/Join 160

7.6. Complete Trace Structures as a Lattice 163
7.7. Practical Considerations 167

8. Conclusion 170

8.1. Summary 170
8.2. Future Work 171

8.2.1. Efficiency 171
8.2.2. Extending the Class of Circuits 172
8.2.3. Application to Other Types of Concurrent Systems 173

References 174

Figures
2.1. Composition of Circuits 34
2.2. Wires c and e Hidden 36

2.3. Illegal Circuit Structures 38

2.4. Equivalent, but not Equal, Circuit Structures 39
3.1. NOR Gate and Automata 60

3.2. Ring Oscillator 61

3.3. Set-Reset Latch Implementation 62
3.4. Mutual-Exclusion Element 66

3.5. C Element 66

3.6. "Vending Machines" 67
4.1. Two-inverter Chain 75

4.2. Two-inverter Chain After Simplification 76

4.3. Merge Element and Alternating Merge 86

4.4. Specification and Implementation of Set-Reset Latch 88

4.5. Fork/Join and Sequence Elements 89

5.1. Four-phase Signaling 100
5.2. LISP Macro to Define Mutual-Exclusion Elements . _ 101

5.3. Tree Arbiters 107

5.4. LISP Specification for a Tree Arbiter Cell 109

5.6. Three-way Tree Arbiter 110

5.5. LISP Specification for 3-Way Mutual Exclusion . . . 111

5.7. Implementations of Tree Arbiter Cell 114
5.8. Distributed Mutual Exclusion Cell 115

5.9. LISP Specification for DME Cell 116

5.10. One- and Two-Way Distributed Mutual Exclusion 119

5.11. Published Implementation of DME Cell 120

5.12. LISP Specification for SR Latch 121
5.13. LISP Macro for Mutual Exclusion Element with Inhibit 122

5.14. A Correct Implementation of the DME Cell 123
7.1. Live NOR Gate 157

7.2. Live Buffer or Inverter and Ring Oscillator 158
7.3. Live Mutual Exclusion Element 160

7.4. Fair Mutual Exclusion Element 161

7.5. A Circuit that Distinguishes Fork/Join and Sequence 162
7.6. Live Fork/Join 163

7.7. Live Sequence 164
7.8. Fork/Join with Live Environment 165

7.9. Sequence with Live Environment 166

Abstract

A theory of automatic hierarchical verification of speed-independent circuits is developed

and implemented. The theory models circuits as trace structures. Trace structures represent

the behaviors of circuits as sets of traces, which are sequences of transitions on the circuit's

input and output wires. Trace structures form a compositional semantics for circuits: two trace

structures can be composed to model connecting the corresponding circuits and transitions can

be hidden to model unobservable internal wires. Trace structures express requirements on the

behavior of the environment in addition to describing the behavior of a circuit. It is noted

that, for composition to work properly, a trace structure must model all possible actions of the

environment. This property, called receptiveness, is precisely characterized.

Trace structures can also be used as specifications. If one trace structure can be safely sub-

stituted for another in all contexts, the first is an implementation of the second. This relationship

can be tested by using a decision procedure based on finding the most demanding environment

with which a trace structure can be composed. The use of a single formalism for descriptions and

specifications greatly simplifies the theory. More importantly, the resulting verification method-

ology is naturally hierarchical, because specifications at one level of abstraction can be used as

descriptions at higher levels of abstraction.

Two distinct theories are proposed: prefix-closed trace structures, which can model and

specify safety properties, and complete trace structures, which can also deal with liveness and

fairness properties. The theory of prefix-closed trace structures has been implemented in an

interactive program which has verified and detected bugs in published circuit designs.

Complete trace structures are based on regular languages of infinite sequences. The defini-

tions and results pertaining to complete trace structures are very similar to those for prefix-closed

trace structures. It is relatively difficult to define and test receptiveness for complete trace struc-

tures. The definition of this property is presented in terms of infinite two-player games. The

problem of receptiveness is proved to be decidable, by reduction to Church's solvability problem.

Acknowledgements

As always, this work would not have been possible without the help of many other people.

First among these is my graduate and thesis advisor, Ed Clarke. Ed adopted me after I was

orphaned (so to speak) by the departure from CMU of my previous advisor. I learned what I know

about conducting research primarily from him. I first looked into the verification of asynchronous

circuits on Ed's suggestion, and my first published results were achieved by analyzing a circuit

that he suggested as an example. He encouraged, listened, and occasionally prodded throughout

the entire duration of my thesis work.

The other members of my committee, Randy Bryant, Bob SprouU, and Chuck Seitz, were

unusually helpful, without exception. Each of them contributed knowledge of the subject area

in addition to insights about the thesis itself. They also read drafts quickly and carefully.

I would especially like to thank Bob Sproull, whose enthusiasm for the program of Chapter

5 lifted my morale greatly -- not only did he run the program on many of his own designs, he

extended it and re-implemented parts of it (his changes are not reported here).

Alain Martin challenged me to verifier his distributed mutual-exclusion circuit in 1985 and

several times thereafter. I finally did, two years later, with the resuks reported in Chapter 5.

Alain also sent me a revised version of the circuit and clarified the assumptions under which it

was to be verified.

A crucial step in the evolution of this work, including the decision to use trace theory, was

Sproull and Sutherland's asynchronous circuits seminar, held in the Fall semester of 1985. All of

the participants, especially Ivan Sutherland, Charles Molnar, Bob Sproull, and Ed Frank, taught

me a great deal about the theory and practice of asynchronous circuit design at an ideal time.

During the seminar, I had several discussions with Charles Molnar; an insight during one

of these led to the key idea of explicit failure traces in trace structures.

David Black was another participant in the seminar who, like me, was interested in extending

trace theory to capture liveness and fairness properties. David and I worked on various problems

which were, in essence, a decision procedure for the receptiveness of complete trace structures.

It was in a discussion of this question with David that I came up with the intuition behind the

characterization in terms of infinite games that is given in Chapter 7. David also saved me a

great deal of time and effort by tutoring me in existing results in trace theory.

Allen Emerson referred me to a discussion of infinite games in Trakhtenbrot and Barzdin's

book; this allowed me to prove the decidability result in Chapter 6.

Previous investigators of trace theory for asynchronous circuits, namely Jan van de Snep-

scheut, Jan Tijman Udding, Jo Ebergen, Huub Schols, Martin Rem, and Tom Verhoof, have all

been helpful in explaining their results and viewpoints to me. Martin Rem asked a question

which eventually led to the inclusion of the sections on lattice properties of trace structures.

Steven Brookes contributed by explaining CCS and related topics on several different oc-

casions, and by reading some partial drafts of the thesis. Steve also helped me to clarify the

idea of "substitution in a context" in Section 4.2.

Pare Gage drew early versions of many of the diagrams in the thesis. She also reminded

me to use topic sentences in my paragraphs. At least some of the paragraphs now have topic

sentences.

I know also that I have had many discussions with others, too numerous to fist, that even-

tually helped to clarify the presentation of the ideas in this dissertation. A generic "thanks" to

you all.

Finally, I would like to thank the various support people at CMU, facilities, operations,

and administration, for providing me with the resources to complete this work while insulating

me from the accompanying hassles. Along these fines, I would especially like to thank Alfred

Spector, who loaned me a workstation during the writing and formatting of the thesis, speeding

my progress substantially.

To my parents

Chapter 1

Introduction

Section 1.1. Introduction

VLSI and concurrency are two of the most active areas of computer science research.

In VLSI, the technological trend is towards more complex and faster circuits. There is also a

continuing challenge to reduce the time and expense of producing correct designs. The challenge

in concurrent systems is correctness: because they are inherently nondeterministic, they are much

trickier than sequential circuits.

1.1.1. Asynchronous Circuits

This dissertation explores a topic at the convergence of VLSI and concurrency: the se-

mantics and automatic verification of asynchronous circuits. Asynchronous circuit design, after

many years of neglect by all but a few engineers and researchers, has recently attracted renewed

interest within the VLSI community because it offers a way to cope with problems that ac-

company the increasing complexity of VLSI circuits. Asynchronous circuits are also interesting

to study because they are pure concurrent systems. Unlike concurrent programming languages,

which present various distractions such as complicated data domains, variable binding constructs,

and recursion, an asynchronous circuit consists of a fixed set of modules communicating over

a fixed set of unbuffered channels (wires) with no hidden handshaking or other implicit proto-

cols. The complexity of asynchronous circuit operation stems entirely from communication and

synchronization.

10 Chapter 1 Introduction

Timing is a central problem in sequential circuits. The circuit design must ensure that

the computation of values has completed before the values are stored. In synchronous circuits,

storage elements latch their inputs when a tick of a global clock occurs. Some upper bound

on the delays involved in computing values must be estimated, measured, or guessed, then the

clock ticks are spaced to allow at least this amount of time.

An asynchronous circuit is a sequential digital circuit with no clock. Timing problems in

asynchronous circuits must be avoided by carefully coordinating the various delays in the circuit,

or by using of synchronization signals between circuits. Much of the work in formal models

and synthesis of asynchronous circuits was done between the late 1950's to the middle 1960's.

Since then, synchronous design methods have been overwhelmingly favored, primarily because

of the comparative difficulty of asynchronous circuit design.

The advent of VLSI has stimulated renewed interest in speed-independent design. As

circuits become more complex, the cost of communications become increasingly important.

Broadcasting a global signal, such as a clock, becomes particularly troublesome. Events which

are supposed to be simultaneous can occur at significantly different times because of transmission

delays. When the events are clock ticks, this phenomenon is called clock skew; it can be a

serious problem in the design of large systems. One solution to these problems is to use speed-

independent components -- asynchronous circuits that do not depend on the relative speeds of

components to which they are connected.

Speed-independent circuits can also expedite circuit design. Since their correct operation is

not sensitive to variations in timing due to process variation, layout, and other aspects of lower-

level implementation, they are more likely to work properly when fabricated. They can also

reduce design time by simplifying the overall process. For example, a change in the fabrication

process or a modification in the layout would not necessitate re-timing the clock.

Finally, VLSI has made it easier to design asynchronous circuits. One of the difficulties in

asynchronous design has been the unavailability of appropriate components in mass-produced

small- and medium-scale integrated circuits. VLSI design tools have expanded the menu of

components that a designer can use -- new primitives can be custom-designed, if necessary.

Section 1.1 Introduction 11

1.1.2. The Correctness Problem

Unfortunately, asynchronous circuits are difficult to design because they are concurrent

systems. When trying to understand a synchronous circuit, it is possible to pretend that events

occur in lock-step. Variations in the speeds of functional elements can be ignored, since the

clock is timed to allow for the worst-case delays. The lock-step model does not work for speed-

independent designs m a correct design must exhibit proper behavior no matter what the speeds

of its components. When several components are operating concurrently, there may be a very

large number of possible execution paths, each corresponding to a different set of delays in the

components. Nondeterminism resulting from unknown or varying delays is the essential problem

in all concurrent systems. For a property to hold for a concurrent system, it must hold for every

possible execution.

The usual practice in conventional programming is to implement a prototype, then run

it on test cases and debug it until it seems to be correct. This is a hazardous approach for

conventional programs if it is important that they be bug-free. It is even more dangerous for

concurrent systems, because only a small fraction of the potential executions can be tested.

Simulation has the same deficiency; irreproducible errors will likely occur in the system at a

later stage in development or use. This is particularly troublesome in VLSI, because the costs

of repairing an error at a later stage in the design or processing of the circuit can be exceedingly

expensive, particularly if the chip has already been manufactured and sold.

One solution to the problem is to verify that a circuit design is correct. Unlike testing or

simulation, verification provides an assurance that a design is correct. Manual verification is

often quite tedious, so it is desirable to automate the process.

1.1.3. Scope of the Thesis

The thesis develops and implements a theory for practical automatic verification of speed-

independent control circuits. This requires developing a formal model of circuit operation,

defining the proper relationship between and implementation and its specification, and construct-

ing a computer program that can check this relationship. The boundaries of this investigation

have been chosen to focus on a set of closely related issues and to limit the scope of the project.

12 Chapter 1 Introduction

First, only speed-independent circuits are considered. Not all asynchronous circuits are

speed-independent -- some depend on assumptions about the relative timing of components.

However, speed-independent circuits are the most interesting as a potential solution to the tim-

ing problems of VLSI. Furthermore, speed-independence is a special case of timing-dependent

circuits; we have chosen to solve the simpler speed-independent verification problem before

attacking even more difficult problems.

Another restriction is that the thesis is primarily concerned with control circuits. The

appropriate formalisms and methods for the design and analysis of, say, a cache controller are

markedly different from those for a combinational multiplier circuit. The important aspect of

the former is the sequencing of its input and output signals, but the primary interest in the latter

is its effect on data; this is the major distinction between a control circuit and a data circuit.

The verification problems for these two types of circuits are also different. Control circuits

require reasoning about sequencing; data circuits require reasoning about values. The problem

of verifying asynchronous data circuits is not substantially different from verifying synchronous

circuits, a problem that has been extensively studied [3,5,18,36]. Verifying control circuits is

more closely related to the interesting and currently less tractable problem of verifying concurrent

systems. The idea that hardware designs should be separated into control and data parts 1179]is

gaining acceptance, so it is reasonable to hope that the control parts will be separately verifiable,

tOO.

We consider circuits at the gate and element level of abstraction. At this level, it is reason-

able to distinguish between inputs and outputs, and to consider data transmitted on individual

wires. A somewhat lower level of abstraction would be the switch level, which models MOS

transistors as bilateral devices (but still manipulating digital, not analog, signals). At a somewhat

higher level, it would be appropriate to consider data in units of bytes or words, and to consider

the encodings of higher-level data-types (such as integers).

Finally, there are two levels of formalism that should be distinguished in hardware specifi-

cation or description languages: the user-languages and the underlying models of behavior upon

which they are founded. This research concentrates on a single formalism (trace theory) which

can act as the foundation for a variety of different user languages. Although we make use of

Section 1.2 Verification Issues 13

an ad hoc user language in Chapter 5 in order to present examples, an in-depth exploration of

alternative user languages and their merits and deficiencies is beyond the scope of the thesis.

Section 1.2. Verification Issues

There are a number of important questions which should be addressed in any theory of

verification.

An obviously crucial issue is the meaning of verification. It is generally only meaningful

to consider correctness relative to a specification. The relationship between a specification and

verification should allow an implementation to exceed the minimum requirements stated in a

specification. This is a familiar idea in other domains, also: if "regular" gasoline is specified for

an automobile, "premium" gasoline may be used instead; if an analog circuit design specifies a

10% resistor, a 5% resistor may be substituted.

Another question is: what type of properties are to be modeled and verified? In concurrent

program verification, a distinction is usually made between safety properties and liveness prop-

erties. A safety property asserts that "nothing bad happens", while a liveness property asserts

"something good happens." An example of a safety property is "no more than one user accesses

the resource at any time." An example of a liveness property is "if the customer waits in line

long enough, he will eventually be served." Generally, safety properties can be expressed as

conditions on finite computations while liveness properties are conditions on the indefinite future.

It is important to be able to verify both safety and liveness properties of asynchronous circuits. A

useful safety property is "an input never changes unless the circuit is ready for it." An example

of a liveness property is "if an input changes, a particular output will eventually change." If

liveness properties are not verified, circuit designs may deadlock when they should not. Models

of processes must capture both liveness and safety aspects of behavior, and specifications must

be able to state safety and liveness requirements. Many existing models either do not capture

liveness properties, or do so in only a limited way.

An important factor in any model of concurrency is the model of inter-process commu-

nication. For example, shared variables and message passing through buffered or unbuffered

14 Chapter 1 Introduction

channels are widely-used models. In asynchronous circuits, communication occurs over individ-

ual wires. A wire can connect at most one output together with any number of inputs. Wires

cannot store more than one value at a time. At this level, we do not want to require that any

particular communication protocol be used -- anything should be allowed as long as it ensures

the correct operation of the circuit. Hence, message-passing is an inappropriate model because

it necessarily involves lower-level communication for synchronization (either between the pro-

cesses themselves or between the processes and the channel). Wires can be regarded as shared

variables, but with the restriction that at most one process (circuit) can write to the variable.

A formal model of circuit behavior needs some way to express restrictions on inputs. We

would like to be able to model the signals on wires as logical values, not continuous quantities.

However, the digital model is sound only if restrictions on the use of a circuit are accepted.

If the circuit inputs change at an awkward time, there can be behavior that violates the digital

abstraction (for example, pulses or voltages at voltages between logic thresholds).

The central practical issue is computational feasibility. We are lucky that the systems

we consider are finite-state n perhaps the problem is decidable. Nevertheless, it seems to be

inherently difficult. Non-trivial questions about digital circuit properties are almost always NP-

hard, and many problems involving finite-state automata are PSPACE-complete. Therefore, it

is imperative that a verification methodology support modular and hierarchical verification. A

system is modular when it can be described as a collection of modules with limited, well-defined

interfaces. The description of the interface should be sufficient to assure that the module will

function correctly in the system, without further reference to the internals. In this way, the

complexity of the system can be controlled. In considering any part of the system, irrelevant

details about the other parts can be suppressed by hiding them behind the interfaces. Hierarchical

verification means that specifications at a low level of abstraction can be used as descriptions of

primitives at the next level. Hierarchical verification allows the task to be broken into smaller

parts.

Finally, when does verification happen? Usually, verification is regarded as something

that happens after a system has been completely designed (a posteriori verification). However,

Section 1.3 Background and Related Work 15

modular and hierarchical verification can allow verification to proceed in conjunction with system

design. For example, in a top-down design each refinement can be verified as it is developed.

Section 1.3. Background and Related Work

The topic of this thesis touches directly or indirectly on a large number of topics. This

section surveys some of the most relevant work: correct synthesis as an alternative to verification

and methods of modeling and verification of concurrent systems which could possibly be adapted

to asynchronous circuit verification.

1.3.1. Asynchronous Circuit Synthesis

Verification is not the only way to assure correctness. One possible alternative is to design a

correct circuit in the first place. More precisely, a specification could potentially be transformed

into an implementation using rules or procedures which guarantee that correctness is preserved.

Before developing an extensive theory of verification, we should first examine whether sound

synthesis could be used instead.

It is sometimes best if large circuits are implemented in a distributed way using standard

components. A distributed implementation is explicitly subdivided into small communicating

processes which communicate over well-defined interfaces, with a layout reflecting this structure.

In any large circuit, there will be non-trivial communication costs between physically distant

components. A distributed implementation takes these costs into account in the design, so that

any ill effects on correctness or performance can be minimized.

Standard components are subcircuits which can be used in many different designs and in

many places in the same design. By using standard components instead of custom-designing,

the investment in finding an especially good design can be amortized over all its uses. This

usually saves design time and results in better circuits (because they use faster primitives). We

leave open the questions of the extent to which a standard design will be used, and what design

decisions are bound in the design (for example, transistor sizing or layout may not be specified).

Almost all of the work (particularly early work) in asynchronous circuit synthesis is state

machine synthesis: a state machine specification is implemented as a combinational network

16 Chapter 1 Introduction

with delayed feedback. This includes Huffman circuits [46], almost all of Ungar's book [75],

most textbooks in logic design that discuss asynchronous circuits [34,38], and more recent work

[37,56,69,70]. These methods either are restricted in the class of circuits they can implement, or

they do not always lead to an efficient implementation. The general methods require arbitration

inside the circuits to prevent hazards, but arbitration is expensive and it is not known how to

optimize its use.

Another problem is that state machines are not modular, so state machine synthesis does

not help with finding a distributed implementation of a specification (there are some methods for

state machine decomposition, but they are not practical even for synchronous circuits). A better

idea is to implement the processes of a distributed specification as state machines; however, this

method does not say how to incorporate standard circuits into the design. In general, finding a

good design using state-machine synthesis is very difficult, so the use of standard components

is important.

In one of the original papers on asynchronous circuit design, Muller defined speed-

independent circuits and identified a subclass called semi-modular circuits [52,57]. (The intuition

behind semi-modular circuits is that an input change cannot disable an enabled output in any

component of the circuit.) By adhering to certain rules, it is possible to generate circuit designs

that are guaranteed to be semi-modular. There are two reasons that these results do not lead

directly to an adequate synthesis procedure. First, Muller's definition of speed-independence

does not include circuits that make nondeterministic output choices, such as mutual-exclusion

elements. This is a serious problem, since mutual exclusion is arguably the central issue in con-

current systems. Second, although the generating rules ensure that a circuit will be well-formed

in some ways, there is no concept of deriving a circuit that meets a particular specification.

Patil has proposed implementing a Petri net specification (see below) of an asynchronous

circuit directly in a asynchronous logic array, which simulates the places and transitions of the

net, in a standard layout analogous to a PLA. His implementations are not speed-independent.

Furthermore, they are quite inefficient, since they have distinct modules for every place and

transition in the Petri net.

Section 1.3 Background and Related Work 17

Clark, Molnar and others have implemented macromodules, which are delay-insensitive

data and control elements [29]. Macromodules are modular, speed-independent, and general

(general-purpose computers have been implemented using them). However, macromodules are

higher-level than the circuits we would like to consider: using them has more in common with

writing a program than designing a circuit. This precludes lower-level circuit optimization. The

correctness problem is addressed by providing a set of components that are easy to work with;

there is no inherent notion of specification and implementation.

Martin has proposed a way of refining CSP-like programs to self-timed circuits, using

correct transformations. He has derived a distributed implementation of the mutual-exclusion

problem using this method [49]. He has also published an implementation of a fair mutual-

exclusion element that uses an unfair mutual-exclusion element internally [50]. Martin's method

is manual, however there are several efforts under way to automate the translation from CSP-like

languages to self-timed circuits [17,76].

Only the last technique meets the requirements of producing a distributed implementation

using standard components. It has not been established that circuits resulting from these methods

are as good as those designed at least partially by hand. Currently, it seems that the most

attractive possibility would be a hybrid system: a transformational synthesis technique which

allows a designer to try creative refinements (which are not necessarily allowed by pre-defined

transformation rules), then verify that the results are correct. In essence, this would allow a

designer to invent new transformations on the fly and still be assured of the correctness of the

design.

Even if a transformational synthesis technique could produce optimal circuits, there remain

three verification problems: showing that the specification is correct (by comparing with other

specifications), showing that the transformations are correct, and showing the the standard circuits

are correct. Automatic verification could apply to these problems, also.

1.3.2. Models of Concurrency

A theory of verification requires a formal model of the objects being verified. For modular-

ity, such a semantics should be syntax directed: the meaning of a construct should be defined in

18 Chapter 1 Introduction

terms of the meanings of its parts. Here we consider some of the existing models of concurrency

with these properties.

Trace Models

Hoare [40] has proposed modeling the behaviors of concurrent processes as sets of se-

quences, called traces. The elements of the sequences are possible communications with other

processes. Trace semantics is appealing because it is simple. Furthermore, if the trace sets of

processes are regular, they can be represented as finite automata, which are very well understood

and easy to analyze. Unfortunately, trace models are inadequate for representing some common

features of programming languages involving certain types of nondeterministic behavior.

CCS ("Calculus of Communicating Systems") is a well-known model of concurrency due to

Milner [53], which models behaviors as trees. CCS has a nice set of operations for composing

behaviors and hiding events in them, with accompanying algebraic laws. Milner defines a

relation on computation trees called observational equivalence, which holds when they cannot

be distinguished by external observation. Observational equivalence has been proposed as a

basis for verification [13], but it does not satisfy our criterion that an implementation should be

allowed to exceed the minimum requirements of a specification. A disadvantage of CCS is that

trees are much more difficult to deal with than sequences. This is illustrated by the complexity

of the definition of observational equivalence.

Hoare, Brookes, and Roscoe have proposed a formal semantics for CSP in which behaviors

are finite sequences terminating with a set of sets of communications which can be refused, called

failures [14,41,42]. If two processes have the same sets, they are said to be failure equivalent.

Failure equivalence is less strict than Milner's observational equivalence, but more strict than

trace equivalence. Similarly, it is intermediate in mathematical complexity.

Communication in CSP and CCS is by synchronization: a communication occurs when the

two processes involved both decide to do it (unbuffered message passing). It is not clear how

to adapt these models for wire communication in low-level asynchronous circuits.

Section 1.3 Background and Related Work 19

1.3.3. Temporal Logic

Temporal logic [48,60] is a modal logic tailored for reasoning about situations that change

over time. Temporal logic augments propositional or first order logic with a number of modal

operators. For example, if f and g are formulas in the logic, the formula 7qf says that f holds

at all future times, Of says that f holds at some future time, and fZ4g says that f is true

until g becomes true. Many other modal operators and variations on these operations have been

proposed [4,80]. Temporal logic can express both safety and liveness properties. For example,

[] (P V Q) ("P or Q is always true") is a safety property, and [] (P -_ _Q) ("If P, eventually Q")

is a liveness property.

For low-level hardware verification, there is a close correspondence between logical signals

on wires and truth values of propositions, so propositional temporal logic is very appropriate. An

added advantage is that propositional temporal logic is decidable. The most promising decision

procedure is the tableau method [27,80], which (in essence) translates a temporal logic formula

into a finite automaton on infinite sequences.

Axiomatic Approach.

One approach to hardware (and program) verification is to write axioms for the behaviors

of the primitives (for example, gates, flip-flops, and C-elements), then show that these axioms

imply the specification. We call this the axiomatic approach. The implication can be proved

by applying an appropriate set of axioms and inference rules. For low-level reasoning about

digital circuits, it is reasonable to consider all variables to be binary, so it is possible to use

propositional temporal logic. A number of individuals have applied linear temporal logic to

asynchronous circuits, using an axiomatic approach to verification.

Using first-order linear temporal logic, Malachi and Owicki have characterized and extended

correctness conditions, originally stated by Seitz [47,66], for a class of speed-independent circuits.

This work does not address the same problem as this thesis (verifying particular designs) because

it only specifies the properties without proving them, and because the properties are design rules

for a class of circuits, not correctness conditions for a single design.

20 Chapter 1 Introduction

Bochmann applied propositional temporal logic to the verification of a particular self-timed

circuit [11]. He demonstrated a bug in a published arbiter design [67], and showed that a

modified design was correct. The axioms for the circuit elements did not model gate delays.

This simplification made his proof easier (it was done manually); however, it caused a bug in

his "corrected" design to be overlooked [30].

Mark Bennett has also applied linear temporal logic to asynchronous circuit verification, in

his PhD Thesis [6]. Generally, he uses an axiomatic approach with linear propositional temporal

logic, although he pre-processes formulas into a kind of state graph, called an execution graph.

His examples illustrate the deficiencies of axiomatic, manual verification. Much of the thesis is

devoted to developing helpful notation and theorems for carrying out proofs, yet the proofs of

even the simple circuits he considers occupy several pages.

It is clear from this work that manual verification of asynchronous circuits under speed-

independent assumptions using temporal logic is limited to relatively small circuits. One alterna-

tive which needs to be explored further is the degree to which its applicability can be extended

by using automated decision procedures (Bennett has used a decision procedure in constructing

his execution graphs, but appears not to have applied it directly to the problem).

Model Checking Approach

An alternative to the axiomatic approach is to use satisfaction instead of implication as the

basis for verification. The general method is to check whether a model of the behavior of the

circuit satisfies a specification written as logical formulas.

Most of the work in this section is based on CTL (computation tree logic), which is a

branching-time temporal logic [28]. (In branching-time temporal logic, models of formulas

are trees instead of sequences.) CTL has the advantage that model checking is possible in

polynomial time in the sizes of both the logic formula and the state graph (and, in fact, is very

fast in practice). This procedure is embodied in the CTL model checker, a program which takes

a finite state graph representing the program (called a Kripke structure) and a formula in CTL,

and reports whether the Kripke structure satisfies the formula. It is possible to represent live and

Section 1.3 Background and Related Work 21

fair behavior in the Kripke structure by stating properties which must be true infinitely often in

any path through the state graph.

Bugs have been discovered in a number of previously-published, non-trivial asynchronous

circuits using model-checking, and modified designs have been shown correct. Examples include

a self-timed queue cell [15,54]; the arbiter verified by Bochmann (a bug was discovered in his

verified design [30]; and a patented queue element [16].

Finally, there are a few cases in which a model-checking approach is applied using linear

temporal logic instead of CTL. First, Bennett's execution graphs (see above) are something like

Kripke structures, so perhaps that approach could be called model checking. Also, Fujita et

al. have implemented a verifier for synchronous circuits in Prolog [35]. They have a program

which translates a variety of representations, including program and gate-level descriptions, into

a state graph. This state graph can be compared with linear temporal logic formulas using

a Prolog program. They have verified at least one circuit of substantial complexity. Fujita's

program incorporates so many tricks that it is difficult to tell which are the most helpful, or get

an impression of its overall efficiency given the examples that are provided.

Compositional operations have not been completely worked out for Kripke structures (par-

ticularly when there are fairness constraints). Mishra has defined a hiding operation on Kripke

structures, called restriction [54]. The operation was quite complicated, primarily because of the

tree semantics of CTL.

The model checking approach has the advantage of being automatic. One current limitation

in dealing with large circuits is that the Kripke structure for the whole circuit must be completely

constructed before it can be checked. Sometimes these state graphs are very large, but only small

portions of them need to be examined to detect an error.

1.3.4. Modular Verification

Because verification is inherently computationally expensive, it is important that it be mod-

ular. If processes P1 and P2 satisfy specifications $1 and $2, it should be possible to combine $1

and $2, without referring to the texts of P1 and P9, to obtain a specification that is satisfied by the

composition of P1 and P2 and the combination of $1 and $2. This would permit irrelevant details

22 Chapter 1 Introduction

of the processes to be suppressed by excluding them from the specifications. Hoare logic (in

sequential programming) is modular: pre- and post-conditions can be verified without referring

to the context, and can be used to verify properties of the larger program. Preconditions allow

assumptions about the environment of a program fragment to be included in a specification,

without knowing all about the environment.

Misra and Chandy have proposed a modular method for verifying safety properties [55].

Their model of process communication is based on CSP. Assertions are of the form r[hls, meaning

that if s holds initially in h and if r holds for any trace up to step i, s will hold in that trace up

to step i + 1. This method is applicable only to safety properties. This work has been extended

to handle additional language features by Zwiers et al. [82].

Barringer, Kuiper, and Pnueli have proposed a modular way of using temporal logic to verify

processes with shared variables [4]. They introduce edge propositions in logical formulas in order

to distinguish between process actions and environment actions. This system, particularly the

crucial rule for parallel composition, is very complicated and would probably not be practical

even if partially automated. It is not clear how to separate the implicit assumptions about the

environment from the assumptions about the process itself.

Pnueli has proposed a simpler way to distinguish between process actions and environment

actions, by restricting process composition: a collection of processes communicate using dis-

tributed variables if each variable can be written by no more than one process. Pnueli proposes

two different schemes. In the first, a notation is used similar to Hoare's and Misra and Chandy's,

which has separate assertions for the environment and process [61]. Unfortunately, his parallel

composition rule is sound only for specifications of safety properties. Pnueli also proposes a

notation in which a single assertion is used for each process (also assuming distributed variables),

which is sound.

The distributed variables is reminiscent of low-level communication among asynchronous

circuits (outputs of circuits cannot be connected together). Assumptions about the environment

are a nice feature; perhaps specifications could be simplified by restricting the contexts in which

a process can be used. Also, we have already noted the need for restrictions on environments

in models, in order to maintain the validity of the digital abstraction.

Section 1.3 Background and Related Work 23

1.3.5. Trace Theory

Although trace models of CSP were discussed earlier in this section, trace theory is discussed

separately here because it is a distinct body of work. Trace theory for speed-independent VLSI

circuits was proposed by Rem, Snepscheut, and Udding in 1983 [64,70]. Circuit behaviors are

represented as sets of traces, which are sequences of transitions. In their model, a shared action

occurs in a composition of two processes when both processes executed it simultaneously (as in

CSP).

Snepscheut [69,70] considered trace structures with inputs and outputs (so-called directed

trace structures). Whenever an output is connected to an input, Snepscheut's agglutination (also

ca_ed r-composition) places an implicit delay on the wire between the two. The delays could

store any number of input transitions before producing output transitions. Physical wires cannot

store an unbounded number of symbols, so agglutination gives a realistic model only when

circuits send no more than one signal on a wire at a time (when several transitions are sent

through a wire before any emerge from the other end, it is called transmission interference).

These delays resulted in trace sets which were not regular. Snepscheut proposed that trace

specifications be implemented using state machine synthesis.

Udding [73,74] has investigated delay-insensitive circuits, which retain the same behavior

when delays are added to their input and output wires. He states several sets of conditions which

are sufficient for delay-insensitivity. His composition operator does not place delays on wires,

but there are severe restrictions on its applicability.

Neither Snepscheut nor Udding could capture liveness properties in their models. Black

[9] extends trace theory to sets of infinite traces (represented as Muller automata) in order to

capture liveness and fairness properties. He defines a composition operator for complete traces

which is similar to Snepscheut's and Udding's, in that it places delays on all wires.

Of the work on trace theory, Ebergen's comes the closest to being suitable for verification

[31,32]. Ebergen defines a composition operation on directed trace structures which does not

add delays between inputs and outputs, and which produces reasonable results without harsh

composability restrictions. He also gives a test for whether a composition of two trace structures

24 Chapter 1 Introduction

meets a specification given by a third trace structure. Like Snepscheut and Udding, he considers

only prefix-closed sets of finite traces, so he cannot model liveness and fairness properties.

Trace theory is appealing because regular sets are so well understood, and because there

are potentially nice compositional properties. Except for Ebergen, who provides a test without a

rationale, none of this work defines what it means for an implementation to meet a specification.

Even in Ebergen's case, there are no suggestions for how to demonstrate the property. Only

Ebergen gives a realistic and general composition operation (but not for infinite traces), and no

one has proposed an operation for hiding signals in a directed trace structure. Also, although it

would appear that some of this work could be automated, no one has proposed doing so.

1.3.6. Petri Nets

Petri nets are a widely used model of concurrent systems [59]. Structurally, a Petri net is

a directed graph with two types of nodes: places and transitions. At any time a Petri net has a

marking, which is an assignment of some number of tokens to its places. The marking changes

when transitions fire. A transition is enabled to fire when all of its input places have one or

more tokens in them; when it fires it removes these tokens and adds new tokens to all its output

places. In general, the "state" of the system at any time is represented by the marking.

There is a dauntingly large body of literature about Petri nets, identifying properties of

markings, subclasses of nets, decision procedures for properties, definitional variations and ex-

tensions of every kind, and applications in system specification, modeling, and performance

analysis. Petri nets of different types have been used as specifications for asynchronous circuits

[25,56,58,65]. They have also been used extensively in protocol verification [8,12].

Empirically, Petri nets provide a very clear and succinct way to specify or describe some

circuits. If a Petri net has an upper bound on the number of tokens that can appear in a marking

(in which case it is said to be bounded), it can be regarded as a regular sequence of transition

firings. So bounded Petri nets can be used as a notation for trace structures.

A potential of advantage of Petri nets as a model is that some properties can be determined

in sub-exponential time. For example, a place invariant is a linear relation among the number of

tokens in a subset of the places of a system. It has been suggested that this information can be

Section 1.3 Background and Related Work 25

used to prove the presence or absence of anomalies in a system. These ideas have been used in

at least one example of protocol verification [7]. However, the relationship between invariants

and more interesting anomalies is not clear in the general case; most analysis programs work by

building a tree of all reachable markings.

1.3.7. Reachability Analysis

Reachability analysis involves constructing a global state graph representing the combined

behavior of a set of concurrent processes modeled as cooperating finite-state machines, then

inspecting this graph for anomalies. In much of this work, verification is interpreted to mean

checking for some standard property: absence of deadlock, liveness, stability, and so on. The

meaningfulness of these properties generally depends on the interpretation of the formal model

being used and on the application, in contrast with the view we have taken that correctness is

meaningful only with respect to some specification. Although reachability analysis can demon-

strate some failures of some standard liveness properties under a some computational models, it

cannot handle arbitrary liveness properties, because it does not consider infinite behaviors.

Reachability analysis is a commonly-used technique for protocol verification [10,81] (it is

sometimes called perturbation analysis). Holzmann [43,44] discusses ways to control the state

explosion inherent in these techniques, including the use of heuristic search in the global state

graph to find problems without having to explore the entire state graph.

Kurshan et al. [1,2] have explored automata on infinite sequences for protocol verification.

They have defined a selectionresolution model, which represents processes as generalized finite-

state automata. The method allows all safety properties and many liveness properties to be

checked. Several realistic and quite complex examples have been verified using this system.

Judging from results on real examples, no method appears to deal with significantly harder

problems than those of Holzmann and Kurshan, both of which basically search in global state

graphs.

1.3.8. Summary

There are some general observations to be made about the applicability of existing work to

our problem.

26 Chapter 1 Introduction

First, the models of inter-process communication implicit in many formalisms are inappro-

priate for low-level speed-independent circuits.

Second, there is a need for computer assistance in carrying out proofs, particularly when

complicated execution paths are present (as in asynchronous control circuits).

Third, almost all methods for automatically verifying concurrent systems ultimately use state

graph techniques. This includes methods of analyzing communicating finite-state machines, the

tableau method for temporal logic, methods based on regular languages, and the reachability

construction for Petri nets.

Section 1.4. Results of the Thesis

In short, this thesis presents a version of trace theory which is a uniform basis for formal

semantics and verification of speed-independent circuits. Specifically:

A compositional and modular trace semantics for speed-independent circuits. Circuit be-

haviors are represented as trace structures, which can be composed. Additionally, output wires

can be hidden and wires can be renamed. The semantics correctly models wire communication

in low-level asynchronous circuits, and properly expresses restrictions on circuit inputs. There

are two types of theories: one captures safety properties (prefix-closed trace structures), and

the other expresses both safety and liveness properties (complete trace structures). All trace

structures are finitely representable, and all operations are effective.

A definition of verification based on safe substitution. An implementation meets a specifi-

cation if it can safely be substituted for it in any context. This can be formalized as a binary

relation between trace structures which we call conformation. This concept is highly advanta-

geous: it allows the same formalism to be used both for program semantics and for specification.

The same compositional operations and algebraic laws apply to specification as to models, so the

ability to do modular and hierarchical verification is inherited from the semantics. Also inherited

is the ability to express restrictions on environments. The system is automatically sound and

complete, and conformation is decidable for both prefix-closed and complete trace structures.

Section 1.5 Overview of the Thesis 27

A practical automatic verifier. A program is described which implements the operations on

prefix-closed trace structures and tests the conformation relation. It has discovered a bug in a

recently published design, and verified the correctness of an amended design. This example is

larger than any that has previously been verified in the published literature (or any unpublished

example known to the author). The program has also been applied successfully to a number of

other published and unpublished circuit designs. The program also allows interactive application

of all operations on trace structures.

Conformation equivalence. If two trace structures are conformation equivalent, they cannot

be distinguished in any context by verification. This is a weaker equivalence relation than

semantic equivalence. The concept of conformation equivalence is probably applicable to other

models of concurrency, also.

A simple definition of and test for delay-insensitivity. The theory is shown to allow a

simple definition of delay-insensitivity, including the definition for complete trace structures.

The property is decidable, and can be tested by the verifier.

An application of infinite games. The property of receptiveness, which holds when a trace

structure does not control its inputs, is defined for complete trace structures in terms of infinite

games. The property is shown to be decidable by reduction to Church's solvability problem.

Section 1.5. Overview of the Thesis

An attempt has been made to organize this document so that a reader who is not interested

in the details of the many proofs can skip them and still understand the important points. Some

sections are completely informal, and others consist entirely of lemmas. The remaining sections

have some informal discussion of the important issues and results followed by formal statements

and proofs of the same results. It is usually not hard to tell where the transition is.

Chapter 2 introduces the basic operations used to construct composite circuits from com-

ponents. These include the operation compose, which connects circuits together by identifying

wires with the same name, hide which makes some wires unobservable to the external world,

and rename, which changes wire names. Besides explaining the basic operations, this chapter

28 Chapter 1 Introduction

defines a set of laws of circuit algebra. It is proved that any semantic interpretation of the

operations must satisfy these laws, or else assign different meanings to two identical circuits.

This is proved by showing that there is an algebra of circuit structures which satisfies the laws.

Chapter 3 defines a behavioral interpretation of the operations of circuit algebra which

captures the safety properties of circuits. In this interpretation, a circuit is represented by a

prefix-closed trace structure, in which all the trace sets are prefix-closed sets of finite traces.

The property of receptiveness, which requires that the set of possible traces model all possible

inputs, is identified and characterized. A number of typical building-block components for

asynchronous circuits are described as examples. Prefix-closed trace structures are shown to be

a circuit algebra.

In Chapter 4, the concept of a safe substitution of one trace structure for another is formally

defined. When a trace structure T can be safely substituted for T', T is said to conform to T r.

Conformation also induces an interesting equivalence relation between trace structures called

conformation equivalence, which means intuitively that the structures cannot be distinguished by

verification. There are a set of simplifications which can be used to reduce prefix-closed trace

structures to a canonical form with respect to conformation equivalence. In the canonical form,

the set of failures is redundant m it can be derived from the set of successes. There is a very

simple and elegant procedure for deciding whether one canonical prefix-closed trace structure

conforms to another. Using the definitions of this chapter, a simple definition of and test for

delay-insensitivity is presented. Finally, it is shown that canonical prefix-closed trace structures

form a bounded distributive lattice. The meet and join operations in this lattice can be used to

decompose specifications and to reason explicitly about environments.

Chapter 5 describes an implementation of the theory presented in Chapters 3 and 4. It is an

interactive LISP program which can perform the operations of circuit algebra on prefix-closed

trace structures and check conformation. Two example circuits implementing a solution to the

mutual exclusion problem are verified, each at two levels of abstraction. The program detected

a bug in one of the circuits (published in a 1985 VLSI conference). The problem is explained,

and a revised version of the circuit is shown to be correct.

Section 1.5 Overview of the Thesis 29

Chapter 6 presents mathematical notation and background on infinite sequences and infinite

games, for use in the next chapter. There is a discussion of regular languages of infinite strings

(called ,.'-regular languages) and the finite automata that accept them. A form of infinite two-

player game is defined. It is shown that for a subclass of these games which is important for the

theory of complete traces, the problem of whether the second player can always win is decidable,

by reduction to Church's solvability problem.

In Chapter 7, trace structures can be extended to capture liveness and fairness properties,

using non-prefix-closed sets of finite and infinite traces. The extended structures are called

complete trace structures. The theory of complete trace structures parallels that of prefix-

closed trace structures, with some variations. The receptiveness property for complete traces

is much more subtle than for prefix-closed traces; it is characterized using infinite games. The

definition of conformation and conformation equivalence is the same as for prefix-closed trace

structures. However, the simplifications to a canonical form for conformation equivalence are

more complicated (one of them uses infinite games, also). Unlike prefix-closed trace structures,

the set of failure traces is not redundant in the canonical form of complete trace structures. There

is a decision procedure for conformation on complete trace structures which is a generalization

of the procedure for canonical prefix-closed trace structures. However, it is more complicated

and computationally more difficult.

Finally, Chapter 8 has a summary of the thesis and some discussion of remaining problems

in this area.

Chapter 2

Circuit Structure

Section 2.1. Introduction

In hardware description languages, a distinction is often made between structural descrip-

tions and behavioral descriptions. A structural description tells what the parts of a circuit are

and how they are connected -- it gives the topology of the circuit. A behavioral description

tells what the circuit does. The purpose of this chapter is to understand circuit structures and

how to describe them. In essence, we give a syntax for circuits. In later chapters, we will

define behavioral models that are based on the structures of circuits, in the the same way that

denotational semantics is based on the syntax of programming languages.

A circuit structure can reasonably be regarded as a kind of graph, essentially a schematic

diagram without geometric information. However, this is a fiat representation which fails to show

regularities and similarities within the structure. In reality, circuits are designed and analyzed

hierarchically: the circuits are composed of subcircuits which are themselves composed of

subcircuits, and so on. Hierarchical designs allow one to focus on individual concerns separately

instead of having to grasp the entire operation of the circuit at once. Perhaps more importantly,

hierarchical structures give the circuit designer, analyzer, or manufacturer a great deal of leverage;

a one-time investment in designing or understanding a subcircuit pays off every time the circuit

is replicated. A hierarchical description shows how the system is organized.

One way to convert a fiat representation into a hierarchical one is to define operations

that build large circuits out of smaller ones. A circuit can then be described by an expression

Section 2.1 Introduction 31

using these operations. The structure of the expression shows the hierarchical organization of

the circuit. We define the operations compose, hide, and rename, which operate on circuit

structures, compose connects circuits together; hide makes wires internal, so they cannot be

connected to wires of other circuits; and rename changes the names of wires. In some cases,

different expressions give the same circuit. There is a set of nine algebraic laws that describe

exactly when this can happen; two expressions are equivalent according to the laws if and only

if they describe the same circuit.

There are other interpretations of the operations besides the structural one given in this chap-

ter. Any interpretation that satisfies the laws is called a circuit algebra. In subsequent chapters,

various behavioral interpretations will be considered. Any reasonable behavioral interpretation

must obey the laws of circuit algebra; otherwise, it can assign different behaviors to the same

circuit structure.

The operations of circuit algebra are similar to operations in CCS and other models of

concurrency. The idea that the algebraic laws might apply to circuit structures as well came

from the realization that many identities could be justified simply by drawing block diagrams.

Cardelli's thesis [22] also relied heavily on the idea that a single algebra could have a variety

of useful interpretations, including a structural one. However, the algebra here is specifically

tailored for the description of gate- and element-level circuits, so it is much less ambitious and

less general than Cardelli's, and correspondingly less complex. In particular, we do not use

many-sorted algebra.

The remaining sections present these results in detail. The second section covers math-

ematical notation and background for this and subsequent chapters. The third section defines

circuit algebra in the abstract: the operations and the nine laws they must satisfy. The fourth

section defines a circuit structure as a kind of labeled directed graph. This is a fiat representation

of circuits. This section defines formally what it means for two circuits to be "the same"; the

relation is called structural equivalence.

The fifth section gives the structural interpretation: the operations are used to build circuit

graphs. This interpretation is shown to be a circuit algebra, which has two important implications.

First, since it requires that the set of circuit structures be closed under the operations, every result

32 Chapter 2 Circuit Structure

of the operations is a legitimate circuit structure. Second, if the two expressions are equivalent

according to the algebraic laws, they have the same structure. The final section proves the

converse: if two circuit expressions are algebraically equivalent, the structures they describe

are also equivalent. This result implies that every circuit structure can be described by an

expression, and if two circuit structures are equivalent, the expressions describing them are

equivalent according to the algebraic laws. The last two results are particularly important for

behavioral interpretations: if a behavioral interpretation is not a circuit algebra, it either fails

to describe some circuits or it assigns different behaviors to circuits having the same structure.

Hence, any behavioral interpretation should be a circuit algebra. One of the intermediate results

in the last section is that every expression in circuit algebra can be reduced to a simple normal

form; this result is used repeatedly in subsequent chapters.

For the reader who is prepared to believe the claims made here without detailed proof,

Section 2.3 and the first two paragraphs of Section 2.6 are the most important for understanding

the rest of the thesis.

Section 2.2. Notation and Other Mathematical Preliminaries

The purpose of this section is to explain some of the notational conventions used in this

and subsequent chapters.

Sets are generally written as capital letters. X C Y means that X is a proper subset of Y; if

it is a subset but not necessarily a proper subset, the notation X C Y is used. The power set of

X is written "P(X). A few sets are special: the set of real numbers is written 7_ and the set of

non-negative integers is written _'. The disjoint union of two sets A and B is written AUB and

is defined to beA× {0}UB× {1}.

Functions are total, unless otherwise indicated. If a functionf has domain A and codomain

B, this fact is written f: A -_ B; the set of such functions is [A --, B]. Occasionally, we use the

convention that a natural number is the set of all its predecessors, so f: i -_ A is a function that

maps the set {j 0 _ j < i} to A. The identity function on A is written 1_. Given a function

f: A --_ B and X C A, the notation f(X) is used to represent the image of X under f, unless f(X)

Section 2.3 Circuit Algebra 33

has already been defined in some other way. To avoid confusion in some cases, this notation is

explicitly introduced by saying that ,)e is naturally extended to sets." If Y :-_-B, f-l(y) is the

inverse image of Y under f. If f is a bijection and a E A, f-1 is the inverse of f. Otherwise,

f- 1(a) = f({a}). It is useful to know certain properties of image functions. If f is a function

from A to B and X, Y C A, then the following properties hold:

(2.1) f(X U Y) = f(X) Uf(Y).

(2.2) f(X n Y) C_f(X) Nf(Y)_

(2.3) f-l(x) Uf-I(Y) =f-l(x U Y) and,

(2.4) f-I(X) nf-l(Y) = f-l(X N Y).

If A' C A, the restriction off to A' is written f a'; this function is the mapping from A' to

B havingf A,(a) =f(a) for all a E A'. Sometimes, both the domain and the codomain off need

to be restricted. If A' C A and B' C_C_f(B), f A'--B' denotes the mapping from A' to B' which has

f t, --.B,(a) = f (a) whenever a E A' and f(a) E B'. Iff(a) _ B',f A,--B,(a)=f(a) is undefined

(however, this construct is only used when B' =f(A')).

There are a number of mathematical objects in this document which consist of sub-parts,

with some associated abbreviations of the subparts. In order to reduce the tedium inherent in

introducing these names over and over again, we define the general structure and give "standard

names" for it, its parts, and the related abbreviations. The standard names for the parts generally

inherit subscripts and superscripts. For example, we could define a university M to be a triple

(A. F. S), representing the set of administrators, faculty, and students. The set E of university

employees could be defined to be A u F. Then, if H' is a university, A', F', S', and E' are

automatically assumed to be the administrators, faculty, students, and employees of M'.

Section 2.3. Circuit Algebra

A circuit algebra is defined on a set of circuit descriptions (more briefly, circuits). We

assume the existence of an infinite universal set of wire names, denoted by Wires. Every circuit

description C has associated with it a finite set I C Wires of input wires and a finite set O C Wires

34 Chapter 2 Circuit Structure

of output wires. I and 0 must be disjoint. For brevity, we define A to be I u O; it is not always

necessary to say whether a member of A is an input or an output, in which case it is just called

a wire. A circuit algebra also has three operations: compose (abbreviated [), rename, and hide.

Composition combines two circuits into a single circuit by identifying wires which have the

same name. The composition C" = C IC' is defined when O N O' = _. "Wired-ORs" and tri-state

outputs cannot be modeled directly; however, most circuits containing them can be translated to

equivalent circuits which can be modeled. The wires of C" are defined so that O" = O U O _ and

I" = (I U I') - 0". This definition ensures that even after many successive compositions, no two

outputs will be connected together (although many inputs may be connected). Figure 2.1 is a

before-and-after depiction of the composition of two circuits.

C

(a) d

(b)

Figure 2.1. Composition of Circuits

In a circuit algebra, composition is associative and commutative:

C1 (clC')lc"=cl(c'lc")=clc'lc"

c2 clc'=c'tc

The operation rename changes wire names. This operation takes a renaming function, r,

which is a mapping from "old" wire names to a set of "new" names. C' = rename(r)(C) is

defined when r C [A --_ A'] is a bijection. The resulting circuit has O' = r(O) and I' = r(/)

Section 2.3 Circuit Algebra 35

The rename operation has several more algebraic laws.

C3 rename(r)[rename(r')(C)] = rename(r o r')(C).

Also,

C4 rename(r)(C C')= rename(r A--r(A))(C) rename(r A'--r(A'))(C'), and

C5 rename(1m)(C) = C

In property C4, both the domains and ranges of the renaming functions must be restricted so

that the results are bijections. Note that in C4, the right-hand-side may be defined in some cases

when the left-hand-side is not; in particular, r may have a domain that is a proper superset of

A u A'. However, whenever both sides are defined, they must have the same value.

rename could be extended to use surjective renaming functions, so it could be used to

identify wires in the same circuit. For example, the inputs of a NAND-gate could be tied

together to make an inverter, or an output could be wired to an input to build a feedback loop

using only one component (feedback loops through several components are no problem even

without the extension). However, this extension would cause serious problems in our behavioral

semantics. It does not impose significant restrictions on the types of circuits that can be described:

a NAND with inputs tied together can be represented directly as an inverter, and a non-inverting

buffer (identity gate) can be used to carry a feedback signal from an output to an input.

The third operation, hide, makes wires "internal" to the circuit, so they can no longer be

connected to other wires. Formally, C' = hide(D)(C) is defined when D C O. The effect is that

I' = I and O' = O - D. Figure 2.2 shows the result of hiding the wires c and e in Figure 2. lb.

There are several laws relating hide to itself and the previous operations. When D A D' = 0,

C6 hide(O)[hide(D')(C)] = hide(D u D')(C).

Also,

C7 hide(0)(C) = ¢.

36 Chapter 2 Circuit Structure

and ifDNA'=0 andD'NA=0,

C8 hide(D)(C)[hide(D')(C') = hide(D U D')(C It').

Finally, if r = r'I(A_D)_r,(A_D) and r(A - D) N r'(D) = 0,

C9 rename(r) [hide(D)(C)] = hide[r' (D)] [rename(r')(C)].

Note that in C9, the left-hand-side can be defined when the right-hand-side is not, for example

when the domain of r' is a strict superset of A. When both sides are defined, they must have

the same value.

Figure 2.2. Wires c and e Hidden

Section 2.4. A Representation of Circuit Structures

A circuit structure is a collection of primitives, which are called basic circuits and two

types of wires: internal wires, called nodes, and external wires, which are just called wires.

Every basic circuit has a set of pins which are connected to the wires and nodes by a connection

function. A basic circuit can appear more than once in a circuit, so they have to be distinguished

by a set of basic circuit names. The nodes have names, too.

In considering whether circuits have the same structure, this representation has certain

irrelevant details: it should not matter what the basic circuit names are, nor what the names

of the nodes are. Hence, simple equality of circuit structures is too fine a relation. A coarser

Section 2.4 A Representation of Circuit Structures 37

relation, called structural equivalence, is defined which holds if a one-for-one renaming of the

basic circuits and nodes can make the structures equal.

The primitives from which a circuit is constructed are the basic circuits, the set of which

is called Basic. A basic circuit b E Basic has finite, disjoint sets of input and output wires, i(b)

and o(b) (both subsets of Wires). For brevity, we define a(b) = i(b) u o(b).

A circuit structure, S, consists of a set of basic circuits connected with wires. Formally, it

is a six-tuple, (I, O, C, e. N, n), where I and O are finite, disjoint sets of wire names. As before,

A _ I U O. C is a finite set of basic circuit instances. This set is necessary because a circuit

may have several instances of the same basic circuit. C is a subset of a universe of potential

basic circuit names, BCNames, which has the property that BCNames x _0, 1} C_ BCNames

(because disjoint union is used in composition). The function e: C --+ Basic gives the basic

circuit corresponding to each basic circuit instance.

Hidden wires in the circuit are represented by a set N of nodes. N is a subset of some infinite

universe of nodes, written Nodes. For technical reasons, we require that Nodes N Wires = _ and

that Nodes x {O. 1} C_Nodes.

A wire of a basic circuit instance is called a pin. Formally, a pin is a pair (c, a), where

c E C (a basic circuit instance) and a E ale(c)] (the name of a wire in the basic circuit of which c

is an instance), a is an input pin if a E i[c(c)] and an output pin if a E o[c(c)]. The connections

between the pins are represented by the wiring function n: {(c,a) I c E C Aa E a[e(c)]) ---+A UN.

If two pins map to the same wire or node, they are connected together. A pin that maps to a

wire can be connected to pins in other circuits; a pin connected to a node cannot.

It is forbidden for two output pins to be connected, or for a member of I to be connected

to an output pin, so we require every member of n -1 (n) to be an input pin when n E I, and

require n-l(n) to contain exactly one output pin when n _ I. We also require that no two wires

of the same basic circuit be tied together; formally, for every c E C, we require that nl_[c(c)] be

an injection. This restriction is a consequence of the requirement that renaming functions be

bijections (see above).

Figure 2.3 shows some schematics that are not circuit structures. 2.3a violates the re-

quirement I N O = (0; 2.3b violates the restriction that members of I (i.e. a) cannot be tied to

38 Chapter 2 Circuit Structure

output pins; 2.3c has two pins from the same component connected; and 2.3d has two outputs

connected.

a b a _ b

(a)
(b)

<>(c) b

(d)

Figure 2.3. Illegal Circuit Structures

Roughly speaking, two circuits are structurally equivalent if it is evident from a schematic

that they have the same behavior. Also, substituting one circuit for another structurally equivalent

circuit in an algebraic expression should give structurally equivalent results.

According to the first criterion, the names of nodes and basic circuit instances do not affect

structural equivalence, so long as the connections are the same. More specifically, a one-for-

one replacement of the basic circuit instance names or node names should not be considered to

change the structure. For example, the circuits in Figure 2.4a and 2.4b obviously have the same

structure, but are not equal because their component and node names are different. This militates

for a more liberal notion of equivalence than simple equality of structures (which would require

C=C I andN=N tifS=SI).

On the other hand, the second criterion (substitutability in expressions) requires that the

inputs and outputs of the two circuits match. Otherwise, composition with other circuits could

yield markedly different structures.

Section 2.5 A Circuit Algebra of Circuit Structures 39

Figure 2.4. Equivalent, but not Equal, Circuit Structures

Formally, circuit structures S and S' are structurally equivalent (S ._ S') if I = I', O = O',

and there exist bijections f: C --+ C' and g: N _ N r such that for every c __ C, c(c) = c'(f(c))

(i.e., they have corresponding basic components) and for every c C C and every a E a[c(c)],

either n(c, a) E A and n(c, a) = n'(f(c), a), or n(c. a) C N and g(n(c, a)) = n'(f(c)_ a) (i.e., they

are connected in the same way).

The correspondence between the two circuits of Figure 2.4 can be established by having f

map cl to c5 and c2 to cl, and g map nl to n2 and n2 to nT.

Section 2.5. A Circuit Algebra of Circuit Structures

This section describes an interpretation of the operations compose, rename, and hide in

which they build and modify circuit structures. The first definitions do not form a circuit

algebra, because the representation of circuit structures has irrelevant details that cause problems.

However, the operations preserve structural equivalence; that is, if the operands are structurally

equivalent, the results will be, also. The interpretation of the operations in which they act

on classes of structurally equivalent circuits (the quotient algebra with respect to structural

equivalence) is a circuit algebra.

This result is important because it implies that the results of the operations are always circuit

structures and that if two expressions are algebraically equivalent, the structures they describe

are equivalent, too.

40 Chapter 2 Circuit Structure

When the composition connects two wires, the pins in each structure that were connected

to those wires end up being connected to the same wire in the composite. Let S" be the

composition S IS'. The set, C", of basic circuit names of S", is simply the names from C and

C'. Unfortunately, we cannot define C" = C U C', because C and C' may have members in

common. Instead, we use disjoint union: C" _= C_C'. c" is defined so that c"(c. 0) = c(c) for

every c E C and c" (c. 1) = c'(c) for every c' E C r. N" is defined to be NUN', and n" is defined

so that n"[(c_ 0).a] = [n(c. a)_ 0] when n(c. a) C N, n"[(c. 1).a] = [n'(c, a); 1] when n'(c. a) E N',

n"[(c, 0).a] = n(c, a) when n(c. a) E A, and n"[(c. 1).a] = n'(c, a) when n'(c. a) E A'. In the first

two cases, the original mappings of pins to nodes is preserved (no new connections are formed).

In the second two cases, new connections can be formed, because pins from both components

may map to a common wire.

If $' = rename(r)(S), we define n' (c_a) to be r[n(c, a)] if n(c, a) C A; otherwise n'(c. a) =

n(c. a). All other aspects of the structure remain unchanged.

The hiding operation on circuit structures removes the hidden wires from the circuit outputs.

The hidden wires must be converted into nodes. The same pins remain connected together,

except are connected via nodes instead of wires. We assume the existence of an injection

wn: Wires _ Nodes to convert wires to nodes (there are many ways to define such a function

u any one of them will do). If S' = hide(D)(S), then C' = C, c' = c, N' = N_wn(D) (there

is no guarantee that N and wn(D) are disjoint), n'(c. a) = [n(c. a). 0] if n(c.a) E N U A', and

n'(c. a) = (wn[n(c, a)]_ 1) if n(c. a) E D.

The following condition is necessary (but not sufficient) for a circuit algebra:

Lemma 2.1. The set of circuit structures is closed under compose, rename, and hide.

proof. Routine. []

Unfortunately, the set of circuit structures is not a circuit algebra. In every case, the problem

is that disjoint union is neither associative nor commutative. However, if we take the quotient

of the circuit structures and structural equivalence (i.e., consider the algebra to be equivalence

classes of circuit structures instead of individual circuits), the result does indeed obey the laws

of circuit algebra. The remainder of this section is devoted to proving these claims.

Section 2.5 A Circuit Algebra of Circuit Structures 41

Lemma 2.2. _ is a congruence with respect to compose, rename, and hide, as defined above.

proof. The proof considers the individual operations. In the following, let $1, S_, $2, S_

be any circuit structures such that Sa _ ${ and $2 _ S_.

SalS _ _ $2 I,_q_. Obviously, each composition is defined iff the other is, since the input

and output wires are the same. Since $1 _ S_, there exist bijections f and g as in the defirfition

of _. Similarly, there exist bijections f' and g' establishing the correspondence between $2 and

,__. Definef" so that f" (c. O) = _(c), O) for all c E C1 andf"(c, 1)=(f'(c),l) for all c E C2.

Define g" similarly. It is easy to see thatf" and g" are the the required correspondences between

q.r$1 $_ andS2 ,-2.

rename(r)(S1) _ rename(r)(S_). The bijections f and g establish a correspondence be-

tween rename(r)(S1) and rename(r)(S_) (as well as between S1 and S_).

hide(D)(S1) _ hide(D)(S_). There exist bijections f and g establishing the correspondence

between $1 and $2. Let g" (n. 0) = g(n) for all n E N1, and let g" (n. 1) = (n. 1) = (wn(a), 1) for all

a E D. The bijections f and g" give a correspondence between hide(D)(S1) and hide(D)(S_).

E]

We denote by [S] the set of all circuit structures that are structurally equivalent to S. The

fact that _ is a congruence makes it easy to define the operations on equivalence classes of

circuit structures:

[s] [s'] is s']

rename(r)([S]) z_= [rename(r)(S)]

hide(D)([S]) _ [mae(D)(S)]

We define the algebra of circuit structures to be the set of all equivalence classes of circuit

structures under these operations.

Theorem 2.1. The algebra of circuit structures is a circuit algebra.

proof. It must be shown that the quotient algebra obeys each of the laws of circuit algebra.

In general the proofs are straightforward but tedious, so we give the proof for C8, only. The

remaining laws are simpler.

42 Chapter 2 Circuit Structure

(C8) Let S and S' be any structures for which composition is defined and for which AriD' =

A' _ D = _, and let SL = hide(D)(S) hide(D')(S') and ,-qR= hide(D U D')(S S'). We are to

prove S/. -,_ ,-qR.Note that AlL= [Nt_wn(D)]U[N'®wn(D')] and NR = (N_N')U[wn(D) u wn(D')].

Since hide(D)(S) does not alter C, CL = CR = CWC'; let f be the identity function on this set.

Let g: NL --+NR be defined so that g[(n, 0)I 0] = [(n; 0)I 0] when n E N, g[(n, 1)_0] = (n_ 1) when

n C wn(D), g[(n. 0). 1] = [(n, 1),0] when n E N', and g[(n, 1), 1] = (n, 1) when n E wn(D').

Obviously, f and g are bijections (note that D A D' = _ by hypothesis).

It is straightforward but tedious to show that for all n E N, g[nL(n)] = nR(n), by enumerating

the kinds of pins of ,-qt.and SR. [2]

Section 2.6. Structural Completeness

This section proves that if two expressions describe structurally equivalent circuits, the

expressions are algebraically equivalent. This implies that any behavioral interpretation must be

a circuit algebra. Otherwise, the interpretation will either fail to describe all circuits, or it will

assign different behaviors to structurally equivalent circuits.

One of the important lemmas in the proof of this result is that every circuit algebra expres-

sion is equivalent to a normal-form expression by the laws of circuit algebra. A normal-form

expression consists of a set of innermost rename operations composed together, with a hide

operation applied to them:

hide(D)((... (rename(rl)(Sa) Irename(r2)(S2))I.., rename(rn)(Sn)...)).

An abstract circuit expression is a sequence of objects: (,), I, rename, hide, members of

Basic, bijections from finite subsets of Wires to finite subsets of Wires, and finite subsets of Wires,

satisfying the definition below. We follow the usual notation for circuit wires: if E is a basic

circuit expression, I is the set of input wires, O the outputs, and A _ 1 u O. As before, the input

and output wires of the expressions resulting from the operations are completely determined by

the definition of circuit algebra, and will not be repeated here.

If E E Basic, E is an abstract circuit expression, I _ i(E), and 0 A o(E)... ..._ •

Section 2.6 Structural Completeness 43

If E and E' are abstract circuit expressions such that O A O' = _, the expression of the form

(E E') is also an abstract circuit expression.

If E is an abstract circuit expression and r is a bijection from A to some finite subset of

Wires, rename(r)(E) is also an abstract circuit expression.

If E is an abstract circuit expression and D C_ o(E), hide(D)(E) is also an abstract circuit

expression.

The free circuit algebra is constructed by first defining each operation on abstract circuit

expressions: the composition of E1 and E2 is simply the expression (El E2), and so on. Ob-

viously, the laws of circuit algebra define a congruence relation on abstract circuit expressions;

this relation is called algebraic equivalence. Hence, it is possible to redefine the operations to

act on equivalence classes of circuit expressions. This quotient algebra, which is by definition a

circuit algebra, is the free circuit algebra.

A homomorphism on circuit algebras is a mapping from one algebra to another that preserves

the three operations. Two circuit algebras are isomorphic if there exists a homomorphism from

one to the other which is a bijection.

Theorem 2.2. The free circuit algebra is isomorphic to the algebra of circuit structures.

To prove the theorem, we first define the mapping from the free circuit algebra to the algebra

of circuit structures. The mapping is defined inductively: If E is a basic circuit b, let 0(E) be the

set of circuits structurally equivalent to (i(b)_ o(b), c. c; _. _), where c is any member of BCNames

and c is the function that maps c to b. In the remaining cases, define _(E1 E2) = o(E1) o(E2),

6[rename(r)(E1)] = rename(r)[0(E1)], and (5[hide(D)(E1)] = hide(D)[0(E1)].

We extend o to equivalence classes of expressions in the obvious way: Let [E] be the set

of expressions algebraically equivalent to E. Then 6([E]) =_ o(E). o is total by Lemma 2.1 and

well-defined by Theorem 2.1. c) is a homomorphism by definition. It remains to be proved that

it is a bijection.

Lemma 2.3. 0 is a surjection.

proof. Given any circuit structure S, an expression E can be constructed such that S E

o(E).

44 Chapter 2 Circuit Structure

The general strategy is to construct the expression bottom-up in three steps. First, for each

basic circuit instance, there is an expression: the corresponding basic circuit. Then rename and

compose are used to arrange the connections in the circuit (no wires are hidden, so at this stage

the circuit has no nodes). Finally, hide is used to convert the hidden wires into nodes. After

this step, the expression describes a circuit structure which is structurally equivalent to S.

The first step is: for every c E C, let the expression Ec = e(c).

For the second step, it is necessary to invent new wire names to represent all the nodes

in S. Let nw be any function which maps every n C N to a unique wire a _ A, and let the

codomain of nw be D _ nw(N) (so that nw is a bijection). We define renaming functions that

encode n: for each basic circuit instance, c E C, let rc be the function that maps its pins (c, a)

to nw[n(c, a)] if n(c, a) E N, or to n(c, a) if n(c; a) is a wire (in A).

Let the expression Etc be rename(rc)(Ec). Let E' be the composition of all the Erc (there are

any number of ways to do this, which are all equivalent by C1 and C2, as long as each E'c is

represented in the composite exactly once).

For the final step, the invented wire names (nw(N) = D) must be converted into nodes by

hiding. Let E = hide[nw(N)](E'). E is the desired expression.

To see that S E 0(E), we construct a structure S' that is definitely in 6(E), and show that

it is structurally equivalent to S.

First, note that for every basic circuit instance c C C, the structure consisting only of that

basic circuit, (i(b), o(b), {c}, c/c}, _ _), is in 6(Ec). The structure S' defined by this interpretation

of the Ec's is in o(E) by the definitions of the operations on circuit structures.

To show S E 0(E), we need only show that S' _ S.

There is clearly a one-to-one correspondence f between C and C' -- the members of C'

are the members of C, except they have been paired with many 0's and 1's by disjoint unions

in composition.

Let g:N _ N' be defined so that g(n) = nw-l[wn-l(n)] for every n E N (the construction

uses nw to map nodes in S to wires in E I, and wn to map these wires to nodes in the hiding step

that converts E' to E). f and g establish the desired correspondence between $_ and $. Vq

Section 2.6 Structural Completeness 45

We define the set of normal form expressions, <N_, to be the least set of abstract circuit

expressions satisfying:
<N> C_hide(D)(<C_)

<C> c_ <R> u (<C> <R>)

<R> C_rename(r)(Basic)

where each of the operations on expressions has been extended to sets of expressions.

Lemma 2.4. If E E < C >, the expression E' = rename(r)(E) is equivalent to an expression in

<C>.

proof. By structural induction on expressions. If E E <R>, U can be converted to an

equivalent E" E <C_ by C3.

If E is of the form (<C> I<R>), E' can be converted to an equivalent E" E <C> by

applying C4, then applying the lemma inductively to the left component and applying C3 to the

right component. ["]

Lemma 2.5. If E = hide(D)(E1) is a normal form expression and D' is any subset of Wires

such that D' = D and D' NA = _, then there exists a normal form expression E' = hide(D')(Ua)

which is equivalent to E.

proof. Let r be any of the many bijections from A U D to A U D r such that r A---.A-" 1A.

Then hide(D')[rename(r)(E1)] is equivalent to E by C5 and C9. By Lemma 2.4, this is in turn

equivalent to some normal-form expression hide(D')(E_). ['q

Lemma 2.6. Every expression is algebraically equivalent to an expression in normal form.

proof. Given any abstract circuit expression (regarded as a tree), equivalence-preserving

transformations based on the identities can be used to move the rename operations towards the

leaves and the hide operations towards the root.

We prove by structural induction on expressions.

If E E Basic, hide(0)[rename(1)(E)] C <N> is equivalent by C7 and C5.

If E = hide(D)(E1), there is a normal form E] for E1 by induction. Otherwise, E

hide(D)(E_), which can be normalized by applying C6.

46 Chapter 2 Circuit Structure

If E = (El E2), there exist normal forms E'1 and E_ for E1 and E2 such that E'1 =

hide(D1)(E3) and E_ = hide(D2)(E4). E_ and E_ can be converted to equivalent normal forms

Ei' = hide(Oi)(E'3)and E'2'= hide(D'2)(E'4),where D_ A A_ = D_ N A_' = _ (this is possible by

Lemma 2.5). E_' E_' is equivalent to E, and can be converted to the form hide(D UD;)(e; Ie;)
form by applying C8. This expression can be reduced to normal form by repeated applications

of C1 and C2 (to put the compositions in left associative form).

If E = rename(r)(E1), there is a normal form E_ _ E1 such that E_ = hide(D)(E2). By

Lemma 2.5, E_ has an equivalent normal form E_' = hide(D')(E;) such that r(A - D) N D' = _.

Define r' so that r' A-O = r and r' o is the identity function. E' = hide(D')[rename(r')(E_)] is

then equivalent to E by C9, and by Lemma 2.4 there is an normal form E" equivalent to E'.

D

Lemma 2.7. 6 is an injection.

proof. Let E and E' be any normal form expressions such that o(E) = O(E'). We construct

a circuit structure S E o(E). Let 6" be the set of integers 1.2 k, where k is the number of

basic circuit sub-expressions in E. Since E is in normal form, we can unambiguously index the

subexpressions Ei E Basic with these numbers by the order in which they appear (left-to-fight)

in E. We can index the expressions rename(ri)(Ei) in the same way. Define ¢: so that _(i) = Ei,

define/V to be D, and define fi to map pairs (i,a), where 1 < i < k is an integer and a E a[a(i)],

to ri(a).

To define S, we first define C by choosing a unique member of Wires for each member of

C; let pc be the appropriate bijection from C to C. Define c so that c[pc(i)] =/:(i) for every

i E C'. Define N = wn(/V) and n so that n(c, a) = fi(i, a) when fi(i, a) E A and n(c, a) = wn[fi(i, a)]

when fi(i, a) E D. Of course, the inputs and outputs of the circuit structure are the same as those

of E. Construct S' E Q(E') similarly.

S ,-_ $' by the assumption that o(E) = ¢(E'), so there exist bijections f and g per the

definition of _. Define the bijections f' = pc of o pc'- 1 and g' = (wn D--iv) o g o (wn D'--N')- 1.

These functions can be used to convert E to E' by equivalence-preserving transformations.

Obviously, f' is a permutation of the basic circuit subexpressions, and all such rearrangements

Section 2.6 Structural Completeness 47

are equivalent by laws C 1 and C2. g' is a one-for-one substitution of the wire names in D' for

those in D which can be done while preserving equivalence by Lemma 2.5. So E and E' are

algebraically equivalent.

This result can be generalized to arbitrary abstract circuit expressions by two applications

of Lemma 2.6. D

This completes the proof of Theorem 2.2.

Chapter 3

Prefix-closed Trace Structures

Section 3.1. Introduction

To verify properties of circuit behaviors, we must model them. This chapter models be-

haviors by defining a behavioral interpretation for the operations of circuit algebra. Given an

expression describing the structure of a circuit and behavioral descriptions of the basic circuits

in it, this interpretation can be used to find a behavior for the whole circuit.

The model is a variant of the trace theory of Rem, Snepscheut, Udding, and others

[31,32,64,69,70,73,74]. An execution of a circuit over time is represented as a sequence of

events, called a trace. The events are transitions, which axe changes of voltage levels from

logical 1 to logical 0 or vice-versa. A transition is represented by the name of the wire on

which it occurs. A circuit may exhibit a variety of traces, depending on the sequences of inputs

it receives, differences in timing of independent transitions, and arbitrary choices the circuit

may make among internal states and output transitions. These alternatives are represented by

associating trace sets with the circuit. An entire description of a circuit is called a trace structure.

In the introduction, it was noted that there is a fundamental difference between communica-

tion in many concurrent programming languages (such as CSP) and communication over wires

in low-level circuits. In CSP, a message is not received by another process until that process

asks to read it -- communication is by synchronization, requiring the consent of both parties. In

contrast, a circuit cannot control the arrivals of transitions on its inputs so unwanted inputs can

Section 3.1 Introduction 49

occur. To cope with this, we define a novel property called receptiveness which ensures that a

trace structure models all possible inputs, even the unwanted ones.

Another problem in modeling asynchronous circuits is that the validity of the digital model

depends on restrictions on the inputs. Trace structures model such restrictions by having a set of

traces called failures. An unwanted input is possible but is flagged as a bad event by including

it in the set of failures.

The trace structures of this chapter are called prefix-closed trace structures. The traces rep-

resent partial executions of a circuit. This representation can express all safety properties, but

not liveness properties. We consider prefix-closed trace structures separately from the more gen-

eral complete trace structures of Chapter 7 for two reasons. First, prefix-closed trace structures

are much easier to understand. Since the theory of complete trace structures closely parallels

the theory of prefix-closed trace structures, it simplifies the presentation to do the simple theory

first, then extend on it. Second, the operations and decision procedures for prefix-closed trace

structures can be efficiently implemented. This is not (yet) true of complete trace structures.

The program described in Chapter 5 is an implementation of the theory of prefix-closed trace

structures. Therefore, it can only check safety properties; however, this is very useful since most

of the design errors in speed-independent circuits cause violations of safety properties.

The trace theory here is more general and more elegant (in the author's opinion) than the

versions of trace theory on which it builds. Additionally, this theory provides a superior basis

for verification. Unlike earlier work in trace theory, our theory is not limited to (or particularly

concerned with) delay-insensitive circuits. A circuit description is delay-insensitive if it remains

the same when arbitrary wire delays are placed on its inputs and outputs. This is a very nice

property for a circuit to have. However, delay-insensitivity is not essential _ small-scale circuits

can often safely assume that wire delays are negligible. Such circuits are often designed under

the weaker speed-independence assumption, that circuit elements may have arbitrary delays but

wires have no delays. In other words, a wire is a single equipotential region [66]. It is thus

important to be able to model circuits that are not delay-insensitive.

50 Chapter 3 Prefix-closed Trace Structures

Although our theory is not limited to delay-insensitive circuits, they can be characterized

very simply using it (see Section 4.6). Moreover, specifications can be checked automatically

for delay-insensitivity using the program of Chapter 5.

In the sections that follow, the second covers mathematical notation and background, relating

to sequences and automata. The third section defines prefix-closed trace structures and the

operations of circuit algebra on them. The fourth section gives a number examples of trace

structures for common circuits, such as Boolean gates; among other things, these show how

input restrictions can be used to exclude hazards and unanticipated metastable states.

Section 3.2. Mathematical Preliminaries: Finite Sequences

This section covers mathematical notation and background relating to finite sequences and

regular languages, for this and subsequent chapters.

A finite sequence x of length n C a,, over some set A is a function {i 0 < i < n} ---+A. The

length of x is written x, the ith element of x is written x(t). If A does not contain sequences,

the set of all finite-length sequences over A is written A*. The sequence of length 0 is the

empty sequence and is written e. The concatenation of two sequences x and y is the sequence

written x.y or xy if no confusion should result. It is defined so that (xy)(i) = x(i) if i < x and

(xy)(i) = y(i- x) if i > x. Concatenation is naturally extended to sets of finite sequences. The

concatenation of sets X and Y is written XY.

If X is a set of sequences and i E _', X i is defined recursively: X ° is {e} and X i+1 = X. X i =

X / •X. X* is defined to be the union of all xi: X* = Ui_: Xi. X. is defined to be X. X*.

For sets of sequences X and Y, the quotient of X and Y, written X/Y, is defined to be

{x I 3y E Y:xy C X}. If X, X', and Y are any sets of sequences, quotient has the following

properties:

(3.1) (X U X')/Y = X/YU X'/Y

(3.2) (X _ X')/Y C_X/Y C_X' /Y

(3.3) X C_(X/Y)Y

(3.4) (X/Y)/Z = X/(ZY).

Section 3.2 Mathematical Preliminaries: Finite Sequences 51

Quotient preserves set inclusion in its first argument: if X c_ X', then X/Y C_X'/Y.

The natural extension of a function f: A _ A' to sequences on A is also written f and is

defined recursively so that f(c) = c and for any a E A and x E A*, f(ax) = f(a)f(x). Note that

any function extended in this way distributes over sequence concatenation: f(xy) = f(x)fO').

A sequence x is a prefix of a sequence y (written x < y) if x _< y and x(i) = y(t') for

i < x. It is easy to see that _< is a partial order. A further property is that if x ___z and y < z,

then either x < y or y < x. If x is a sequence, pref(x) is the set of all prefxes of x. Clearly,

pref(x) is totally ordered by <. A set X is said to be prefix-closed when pref(X) C_X.

We define del(D)(a) for any a C A and D C A so that del(D)(a) = e if a E D and

del(D)(a) = a if a _ D. This function is extended naturally to sequences and sets. We will

make use of the inverse image of del(D), written del(D)-l(X). By the definition inverse image

functions, del(D)-l(X) is the set {x t del(D)(x') C X}; this is the set of all sequences will be in

X if all D symbols are deleted from them.

There are some simple and useful properties involving these operations on sets of sequences.

(3.5) del(D)[del(D')(X)] = del(D u D')(X) = del(D')[del(D)(X)]

(3.6) del(D)-l[del(D')-l(X)] = del(D u D')-I(X) = del(D')-I [del(D)-l(X)]

(3.7) del(D)[del(D')-a (X)]= dd(D') -1 [dd(D)(X)]

(3.8) del(D)[pref(X)] = pref[del(D)(X)]

(3.9) del(D)-1 [pref(X)] = pref[del(D)- 1(X)]

(3.10) pref(X N X') C_pref(X) N pref(X')

We assume familiarity with regular sets and finite automata (as explained in [45]), but

reiterate some of the definitions to introduce our particular notation. A nondeterministic finite

automaton, ,_4, is a five-tuple (A, Q. QF. n. Q0), where A is a finite set of symbols (the alphabet),

Q is a finite set of states, n: Q x A --+ 2Q is the transition function, Qo c__Q is the set of initial

states, and QI_ c_ Q is the set of final states. A deterministic finite automaton is a modified form

52 Chapter 3 Prefix-closed Trace Structures

of nondeterministic automaton: n is defined to be a partial function in Q × A _ Q, and there is

a single initial state q0 E Q instead of the set Q0.

A run, p, of a nondeterministic automaton on a sequence x E A* is a sequence on Q, such

that p(0) E Q0 and for all 0 _ i < n, p(i + 1) E n[p(i).x(i)] (for a deterministic automaton,

p(O) = qo and p(i + 1) = n_(i)_x(i)]). The run is accepting if p(x) E QF. If there exists an

accepting run on x, A4 accepts x. The language of an automaton A4, written E(._), is the set

of all sequences accepted by ._4.

Regular expressions over an alphabet A are defined recursively: every member of A is a

regular expression; if _ and ,3 are regular expressions, so are (_ +/__)(union), (c_.,3) (concatenation,

abbreviated c_,3), and (o*) (Kleene closure). The usual liberties are taken with syntax: + has

weaker precedence than • which is weaker than *, and parenthesis are omitted when the results

are unambiguous. [_] is the regular set corresponding to the regular expression _.

Regular sets are closed under the union, concatenation, Kleene closure, union, intersection,

complement, quotient with other regular sets, homomorphisms (such as del(D)) and inverse

homomorphisms (such as del(D) -_) [45]. It is also easy to see that pref preserves regular sets.

Section 3.3. Prefix-Closed Trace Structures

This section defines the operations of circuit algebra for trace structures. As usual, the

conditions on I and O for definedness and the effects of operations on these sets are completely

determined by the earlier description of circuit algebra, and will not be repeated here.

A prefix-closed trace structure T is defined to be a four-tuple (L O. S. F). I C Wires is a

finite set of input symbols (the input alphabet), 0 C Wires is a finite set of output symbols (the

output alphabet). We define the abbreviation A = I U O, the alphabet of the structure. Traces in

S are said to be successful traces (or successes); F is the set of failure traces (or failures). S and

F are not necessarily disjoint. We define the set P to be S u F, the set of possible traces. S and

F (and hence P) are regular subsets of A*. (The regularity condition is justified, because circuits

have a finite number of intemal states.) The sets S and P are also prefix-closed (they represent

Section 3.3 Prefix-Closed Trace Structures 53

partial executions). P cannot be empty, since even the circuit that does nothing has the empty

sequence (_) as a behavior.

We require trace structures to be receptive, meaning that PI C_ P. Intuitively, a trace

structure represents a constraint on the traces that can appear in any composition containing the

circuit -- the trace xa is possible in a composition if and only if it is in the intersection of the

P sets of all the circuits in the composition. If x E P and a is an input of 7- (a E/), we must

have xa E P; otherwise the circuit could constrain the input a not to be sent.

In essence, the composition of two trace structures has the set of all traces that are consistent

with both structures. The alphabet of the composition is the union of the alphabets of its

components. Each component constrains the symbols in its alphabet and ignores the others.

Composition is defined in two steps. The first step makes the alphabets of all the trace structures

the same by adding ignored inputs as necessary to each structure. This definition sirnplifies some

of the proofs that follow.

The inverse of the del operation is used in the first step. Intuitively, if x is a trace not

containing symbols from D C Wires, del(D)-l(x) is the set of all traces that can be generated

by inserting members of D* between consecutive symbols in x. Inverse deletion is extended to

structures:

del(D)-I (7-) _ (I U D. O. del(D)-I (S), del(D)-l(F)).

The wires in D are the additional inputs. This is defined only when D N A = (D.

For the second step, we want the sets of traces which are consistent with the component

trace structures. Set intersection is extended to trace structures:

7 N 7"' _= [I N l'; O U O', S AS'. (F N P') U (P N F')],

which is defined when A = A' and 0 n 0 r = _. According to this definition, a trace is a success in

the composite if and only if it is a success in both components. A composite trace is a failure if

and only if it is failure in either component. Note that the set of possible traces for the composite

is P n P_.

54 Chapter 3 Prefix-closed Trace Structures

Composition is defined using these two operations:

7- 7-' = del(A' - A)-I(T) N dei(A - A')-l(7-').

It is illuminating to consider the effect of composition in two boundary cases: when the alphabets

of the two traces are disjoint, and when they are the equal. In the first case, the trace set of the

composition is the set of shuffles (interleavings) of traces from each component trace set. In the

second, the trace set of the composite is the intersection of the trace sets of the components.

Composition finds the set of traces that match at their common symbols and have arbitrary

interleavings of the other symbols. Although the definition is somewhat unusual, this composition

operation is similar in its essence to most other composition operations. The variations among

them are primarily in the treatments of alphabets.

The definition of rename(r) is simply the natural extension of r to sequences and then sets.

Hence, rename(r)(/, O, S, F) = [r(/), r(O). r(S), r(F)].

We define hide(D)(/. O,S,F) to be (I. O-D_ del(D)(S), del(D)(F)). Note that even if SNF =

_, hiding some outputs may cause them to "overlap" (formally, it may be that del(D)(S)n

del(D)(F) 5__). For example, if ab E S and ba E F, a E del({b))(S) N del({b))(F). In practical

terms, this models a situation where both success and failure are possible, depending unknown

factors (or chance).

We say that two circuits are behaviorally equivalent when they have the same trace struc-

tures. It follows from the results of the previous chapter that for structural equivalence to imply

behavioral equivalence (as it obviously should) it is necessary and sufficient that the operations

on trace structures obey the laws of circuit algebra. The remainder of this section is devoted to

proving the following theorem:

Theorem 3.1. Prefix-closed trace structures are a circuit algebra.

The following series of lemmas show prefix-closed trace structures are closed under the

operations.

Section 3.3 Prefix-Closed Trace Structures 55

Lemma 3.1. Prefix-closed trace structures are closed under hiding.

proof. Let 7- be any prefix-closed trace structure, D any subset of O, and let 7-t =

hide(D)(7-), del(D) preserves the regularity of S' and F'. It is an immediate consequence of

identity 3.8 that S' and P' are prefix-closed, as well. P' is non-empty, since _ E P and del(D)(e) =

e. Receptiveness is preserved by hiding, since none of the input symbols may be deleted (1 = I');

Since P1 C_ P, it is easy to see from the definition of del that del(D)(P/) C del(D)(P), so

P'I' C_P', also. D

Lemma 3.2. Prefix-closed trace structures are closed under inverse deletion.

proof. Let 7- be any prefix-closed trace structure, D any finite subset of Wires disjoint from

A, and let T' = dei(D)-l(7-). As shown in Section 3.2, inverse deletion preserves regularity, so

S' and F' are regular. It follows immediately from identity 3.9, above, that P' and S' are prefix-

closed. P' is also non-empty, because e E del(D)-l(e). Inverse deletion preserves receptiveness:

Let x' be any trace in P'. By definition, there exists an x E P such that x = del(D)(x'). For every

a' E I', either a' E 1 or a' E D. If a' E I then del(D)(x'a') = xa' (since a' (D) and xa' E P

(since 7- is receptive), so x'a' C P'. Otherwise, a' E D, so del(D)(x'a') = x E P, so x/a' E pi.

Hence, in either case, 7-1 is receptive. ["1

Lemma 3.3. Prefix-closed trace structures are closed under intersection.

proof. Let 7- and 7-/be any prefix-closed trace structures with appropriate alphabets, and

let T" = 7- c_7-'. Regular sets are closed under intersection, so S" and F" are regular. It follows

immediately from inclusion property 3.10 that P" and S" are prefix-closed. To see that 7-" is

receptive, let x be any member of P" = P n P', and let a be any member of I" = I N 11. Both P

and P_ must include xa, since both 7- and 7-1 are receptive. So P'I" C_P". [-1

Corollary. Prefix-closed trace structures are closed under composition.

Lemma 3.4. Prefix-closed trace structures are closed under renaming.

proof. Obvious. []

The remainder of this section shows that prefix-closed trace structures obey the laws of

circuit algebra. Associativity and commutativity of composition (C1 and C2) follow immediately

56 Chapter 3 Prefix-closed Trace Structures

from the properties of N. C3 is easily proved by induction on sequences. The following lemma

is helpful in proving C4 and C9:

Lemma 3.5. For any sequence x in (A UD)* and bijection r with domain A UD that is naturally

extended to sequences, r[del(D)(x)] = del[r(D)][r(x)].

proof. By induction on sequences. Clearly, this is tree when x = 4. For the induction

step, suppose that r[del(D)(x)] = dei[r(D)][r(x)]; since a E D iff r(a) E r(D), r[del(D)(a)] =

del[r(D)][r(a)], del(D) and r both distribute over concatenation of sequences, so r[del(D)(ax)] =

del[r(D)][r(ax)], r'l

The next two lemmas show that C4 holds.

Lemma 3.6. rename(r)[del(D)-1 (7-)] _.. del[r(D)]-I [rename(r A__r(a))(_r')].

proof. Let 7-z and 'JR be the left- and right-hand sides of the equality to be proved. To see

that SL = SR, let x be any member of SL. This is the case iff del(D)(x') E S, where x t = r-l(x).

This is true, in turn, iff r[del(D)(x')] E r(S). By the previous lemma, this is true exactly when

del[r(D)][r(x')] = del[r(D)](x) _ r(S), which is true iff x C del[r(D)]-l[r(S)]. Because S C__A*,

this is equivalent to x E SR, so SL = SR.

Similarly, EL = FR. ['7

Lemma 3.7. rename(r)(T N T') = rename(r)(T) n rename(r)(T').

proof, r is a bijection, so r(S NS') = r(S) n r(S') and r(F NF') = r(F) n r(F') V1

Corollary. Prefix-closed trace structures obey C4.

C5 is obvious from the definition of rename. C6 is easily proved by induction on sequences,

using the recursive definition of del. C7 is obvious from the definition of del. C8, however,

requires several lemmas.

Lemma 3.8. If E, D, and A are disjoint subsets of Wires, then

del(E)- 1[hide(D)(7-)] = hide(D)[del(E)-1 (7-)]

proof. This is an immediate consequence of property 3.7. ["1

Section 3.3 Prefix-Closed Trace Structures 57

Lemma 3.9. If X C_ A* and X' C_ (A U D')* where D' N A = _, then XNdeI(D')(X') =

del(D')[del(D')-I (X) n X'].

proof. By the properties of inverse image functions, X = del(D')[del(D')-l(X)]. From this

and property 3.7, we can conclude that del(D')[del(D')-I (X) NX'] is a subset of X n dei(D')(X').

To see inclusion in the other direction, suppose x is any sequence in X N del(D')(X'). Then

x E X and there is a y _ X' such thatx = del(D')(y). But theny E del(D')-l(X), sox E

del(D')[del(D')-l(x) N X']. V1

Lemma 3.10. /f A N D' = A' N D = _, then hide(D)(T) N hide(D')(T') = hide(D u D')(7 T').

proof. Let 7-L and 7-R be the left- and right-hand sides of the equation to be proved.

First, we show that SL - SR. SL = del(D)(S) N del(D')(S') and, since A' - A = D' and A -

A' = D, SR - del(D u D')[deI(D')-I(S) n del(D)-_(S')]. By the previous lemma, del(D)(S) N

del(D')(S') = dei(D)(S N del(D)-l[del(D')(S')]); by property 3.7, this is equivalent to del(D)(S n

del(D')[del(D)-l(S')]). Applying the previous lemma a second time to the inner expression, we

find this to be equivalent to del(D)(del(D')[del(D')-l(S)N dei(D)-l(S')]) which is equal to SR

by identity 3.5.

To see that FL = FR, let

X = del(D)(F) N del(D')(P'),

X' = del(D)(P) N del(D')(F')_

Y = del(D')-l(F) N del(D)-l(P'), and

Y' = del(D')-l(P) N del(D)-l(F'),

so FL = XUX' and FR = del(DuD')(YuYt). Then by reasoning similar to above, X = del(DuD')(Y)

and X' = del(D u D')(Y'). Hence X U X' = del(D u D')(Y U Y') = FR, because deletion distributes

over union, so FL = FR. Vq

Lemma 3.11. Prefix-closed trace structures obey C8.

proof. Let T" = hide(D)(T) hide(D')(T'), where D' N A = D N A' = _. By definition,

7-" is equal to

del[A' - (A - D)]-I[deI(D)(T)] N dei[A - (A' - D')]-I[deI(D')(T')].

58 Chapter 3 Prefix-closed Trace Structures

Since A' cqD = (_,A' - (A - D) = A' - A, so by Lemma 3.8, this is equal to

del(D)[del(A' - A)-1(7-)] _ del(D')[del(A - A')-1(7-')].

Hence, by the previous lemma and the definition of compose, 7-" = del(D u D')(TIT'). D

Finally, C9 is easily proved by induction on sequences.

Section 3.4. Examples

In this section we present several examples to illustrate the use of prefix-closed trace struc-

tures. However, before doing so, there is a general issue that needs to be addressed. In all

interesting cases, the trace structure of a device depends on its initial state (the logical values

on its inputs and outputs, and possibly unobservable internal state). We assume that the circuits

have hidden initialization circuitry which reliably leads to a well-defined initial state (or set of

initial states), and that circuit descriptions include a description of the initial conditions.

3.4.1. Boolean Gates

Consider an NOR gate with inputs a and b and an output c. If a = b = 0, c = 1, and there is

a transition on a, c (the output) will remain high for some period of time. If a stays high, c will

eventually go low. During this time, b can change several times without altering the outcome,

since the output is completely determined by the value of a. However, if the circuit is in the

state a = c = 1, b = 0, and if there is a second transition on a, the circuit could exhibit a hazard:

the output voltage could fall part of the way to c = 0 and then reverse direction, or it could go

to 0 for an arbitrarily brief time and then return to 1. Hazards can cause severe problems in

asynchronous circuits; in some cases, they can render digital models invalid.

A formal model of gate behavior should classify hazardous input transitions as failures.

A gate has a set of inputs, I, and a single output. It can be thought of as an element that

instantaneously computes the value of a Boolean function and then sets the output to this value

after an arbitrary delay. A gate is stable if the value of the Boolean function is the same as the

current output of the gate; otherwise, it is unstable. If a gate is stable, the output cannot change

unless the input changes. If a gate is unstable, the output can change. After the output changes,

Section 3.4 Examples 59

the gate will be stable again (until the next input change). An input change that makes the gate

stable before the output change occurs should be a failure (it may cause a hazard). However, an

input may change successfully if the gate is unstable before and after the input change.

Formally, the logical values of the wires at any time can be represented as a function b

that maps each wire to a logical value: b: A _ {0. 1}. This function is called a wire valuation.

The set of all possible wire valuations is B = [A --_ {0.1 }]. Each gate is characterized by a

Boolean function (call it f), which says what the output of the gate will eventually be, given a

particular set of logical values for the inputs. Since this Boolean function depends only on the

input values, but the functions in B give values for the input and the output, the wire valuations

in the domain off are restricted to the inputs of the gate, I. Formally, the type off is

{blz b E B} --+ {0,1).

The trace structure for a gate depends on the initial logical values of the inputs and the

output (call the valuation b0). The most direct way to define the trace structure is to describe the

finite state automata that accept its trace sets. Let the trace structure be T. We define a single

state graph, :Vt, which accepts either S or F depending on the choice of final states.

The alphabet A of ,_ is the same as that of 7- (which is also called A). The set Q of states

of ._ is B u {qfail), where qf_il is a special state not in B. A trace whose run ends in a B state

is successful, and a trace ending in qfail is a failure. The initial state q0 is b0.

Trace sets are sequences of transitions, not logical values. However, given a logical valua-

tion and a transition, it is easy to determine the logical valuation after the transition m the value

of the wire on which the transition occurred is complemented. We define a function that does

this. bitcomp: B × A --+ B is defined so that bitcomp(b, a)(a) = b(a) (the Boolean complement

of b(a)) and bitcomp(b, a)(b) = b(b) if b 5_a.

Call the output of the gate c (O = {c)). A state b is stable if the value of its Boolean

function is equal to the value of c: f(bli) = b(c). The next-state function n of .L4 is defined to

allow any input transition from a stable state: if b is stable and a E I, n(b, a) = bitcomp(b, a);

an output transition is impossible in a stable state, so if b is stable and a E O, n(b, a) is not

defined. If a state is unstable and an input transition would take it to a stable state, the transition

60 Chapter 3 Prefix-closed Trace Structures

should go to the failure state, instead: if b is unstable and biteomp(b, a) is stable, n(b. a) = qe_u.

Otherwise, n(b. a) = bitcomp(b, a) (including when a E O, because an output is possible in an

unstable state). Finally, n(qf_u, a) = qf_ for all a E A m if a trace has a failure prefix, it is a

failure.

The set of traces accepted by ,'_ depends on its set final states, Qr. To make ._ accept the

set of successful traces, S, set Qp to B (so qf_u is the only state that is not final). Since the only

successor state of qfail is qf_ itself, S is prefix-closed. To make ._ accept the set of failures,

define QF = {qf_u}. The set of failures are those traces where an input takes the gate from an

unstable state to a stable one m in other words, the illegal transitions. An automaton for P can

be had by making all of the states in Q final. P is also prefix-closed. It is easy to see that in

the resulting machine n(b, a) is defined for every b E B a E I, so P is receptive, too.

A state diagram for a NOR gate appears in Figure 3.1. The inputs are a and b and the

output is c. The successful states are labeled with the values of a, b, and c, in that order. The

initial state is 000, and qf_u is labelled with F.

start_ a (_

1

Figure 3.1. NOR Gate and Automata

Section 3.4 Examples 61

3.4.2. Ring Oscillator

Figure 3.2a depicts a ring oscillator. It can be constructed by composing an inverter 'TIthat

has input a and output b with a non-inverting buffer 7-B that has input b and output a.

a b b b

(a)
(b)

Figure 3.2. Ring Oscillator

If a = b = 0 initially in each case, the inverter, buffer, and their composition, the ring

oscillator, have the same success sets. The state diagram in Figure 3.2b accepts this set if all

four states are made final. The inverter, buffer, and ring oscillator have different failure sets,

however. To accept F1, states 00 and 11 would have transitions to a failure state on a. To accept

FB, failing transitions on b should be added to 01 and 10. Since AI = AB, _I']-B = 7-1A 7-B.

The trace structure for the composite circuit has 1 = _, O = {a, b }, S = pref[(ba)*], and F = _.

Note that there are no inputs or failure traces, and that the ring oscillator generates an endless

sequence of alternating b and a transitions. This faithfully represents the behavior of physical

ring oscillators.

If the b wire is hidden, the resulting structure is (_, {a), [a*]. _), representing an endless

stream of a transitions.

3.4.3. Set-Reset Latch

Figure 3.3a is a circuit diagram of a set-reset latch, implemented as a cross-wired NOR.

The circuit should meet the following informal specification (a formal specification appears in

62 Chapter 3 Prefix-closed Trace Structures

the next chapter): the circuit has two modes*: 'set', in which c = 1 and d = 0, and 'reset', in

which c = 0 and d = 1. If the circuit is in either of these modes, and both inputs are 0, the circuit

stays in that mode. If it is in the 'reset' mode and the a input rises, it should eventually change

to the 'set' mode; a can return to 0 only after the circuit is set. Similarly, b resets the latch if it

is set, and is not allowed to return to zero until it is reset. The desired behavior is undefined if

both inputs are 1, if both outputs are 1, or if an input which would change the state of the latch

returns to 0 before the circuit settles into the appropriate mode.

a

a

d d c
m m

a

c

b

fail

(a) start

fail

(b)

Figure 3.3. Set-Reset Latch Implementation

The trace structures for the actual behavior of the two gates can be obtained by composing

the trace structures of two individual NOR gates. Note that the initial state for gate G1 is 001

and gate G2 is 010. These two trace structures must be renamed in the obvious way and then

composed. In the result, I = {a, b} and O = {c, d}. The resulting trace sets (S, F, and P) are

* The word "states" has already been taken.

Section 3.4 Examples 63

described by the automaton depicted in Figure 3.3b. The successful states are labeled with the

values for a, b, c, and d, in that order.

The initial state is 0001, in which the latch is reset and both inputs are 0. Failing transitions

on input symbols are not shown; however, failing transitions on output transitions are drawn as

arrows leading to "fail". This part of the machine is not shown because it is both difficult to

draw and irrelevant to the discussion below.

As a typical example of a trace in the composite trace structure consider the state 1001, in

which G1 is unstable and G2 is stable. From this state, a d output is possible (and successful)

because of the instability of G1, a b transition is successful because G2 is stable, but an a

transition is a failure because it would otherwise take G1 from an unstable state to the stable

state 0001.

The resulting behavior appears to meet our informal specification of a latch, but is much

more detailed. Specific failure modes appear in Figure 3.3b in cases with which the informal

specification is not concerned. Also, perhaps the implementation could produce useful results

in situations not required by the specification. For example, the trace adcba is not allowed by

the specifications, but in the implementation has the same result as adcab, with no possibility of

failure along the way. Thus, the latch could be used in a circuit in which a and b are (sometimes)

concurrent, an application that was not foreseen in the specifications.

To see an example of a trace that is both a success and a failure, consider the result of

hiding the output c. The trace adcb is a success, but adb is a failure. Hence, in the new circuit,

adb = del({c})(adcb) = del({c))(adb) is both a success and a failure. There is a meaningful

practical interpretation of this result. If d is hidden and if an input b occurs after ac, it is

impossible to tell if the restriction "b stays high until reset" is met. If the sender is lucky, the

b will arrive after the invisible d transition and all will be well m but it is also possible that

the b will arrive before d and there will be a failure. In essence, the circuit appears to choose

nondeterministically between success and failure, so both possibilities are represented in the trace

structure.

A classic anomaly in circuits of this kind is the metastable state [23]. In general, metastable

states can occur when a circuit is expected to choose between mutuaUy-exclusive states. An

64 Chapter 3 Prefix-closed Trace Structures

effective way to put this circuit in a metastable state is to raise one of the inputs to flip the state

(say, from reset to set), but remove the input while the circuit is in the unstable c = 0, d = 0

state. If this occurs when the circuit is in the reset or set mode (0001 or 0010) this input takes

it to state 0000. The circuit is neither set nor reset and cannot decide between them based on

its inputs, because everything is completely symmetric; furthermore, if it decides to raise either

c or d, it goes into a state where both gates are stable, disabling the other output (so the choice

is mutually-exclusive). In this sort of dilemma, the circuit may take an arbitrarily long time to

decide between the two states, but worse, it may "split the difference" by outputting voltages

between the thresholds for logical 0 or 1 or oscillating between them. This sort of behavior is

disastrous in an asynchronous circuit.

The phrase "disabling the other output" is the key to preventing metastable states in circuits

of Boolean gates. To disable a pending gate output, the inputs to the gate must change from

an unstable to a stable state before the output occurs -- but this a failure in the trace structures

for gates and consequently in any composition containing them. In the diagram there are two

output transitions from 0000; both lead to the failure state.

It is not always possible in practice to avoid metastable states. However, it is possible by

using analog circuit techniques to design components which handle metastable states gracefully

m so that outputs behave consistently with a digital model. (However, arbitrary delays in

resolving the metastable state cannot be avoided.) Such devices are called mutual-exclusion

circuits or arbiters; there are many different types. Digitally well-behaved circuits can be

designed if an arbiter is used whenever a choice is to be made between two mutually-exclusive

states.

As we shall see in the next example, it is possible to describe an arbiter with trace structures,

but it is impossible to construct this behavior by composition of gate behaviors. The result is

that metastable states in a composite circuit are flagged as failures unless they are handled by

special devices.

Section 3.4 Examples 65

3.4.4. Mutual-Exclusion Element

A mutual-exclusion element is a type of arbiter which raises at most one of two outputs in

response to transitions on two inputs. If the inputs are independent and if they can arrive at any

time, such a device has an inherent metastable state. The element must be a basic circuit, since

the implementation requires analog circuit design techniques [66,67] which cannot be modeled

using trace theory (or any other theory based on logical values of signals).

Figure 3.4a shows a mutual-exclusion element, with inputs rl and r2 and outputs al and a2.

If all signals are initially low, and rl but not r2 is raised, the element should raise al; similarly, if

r2 but not rl is raised it should raise a2. If both inputs go high, the element nondeterministically

chooses exactly one of the two outputs to raise. It is never the case that both outputs are high.

If one of the outputs returns to zero and the other input is high, the element should raise the

output for the other input. Each input must remain high until the appropriate output goes high,

at which point the input can return to zero. The corresponding output should then return to zero.

The input cannot go high again until the corresponding output returns to zero.

A state diagram for a mutual-exclusion element is shown in Figure 3.4b. As usual, the

failures on input transitions are not shown. The mutually exclusive choice between outputs

occurs at state 1100 (requests from both inputs are outstanding, but neither output has been

raised). Note that none of the four states having c = d = 1 appear in the state graph.

3.4.5. C Element

The C element is an important primitive in speed-independent circuit design (Figure 3.5a).

This circuit holds its output until both inputs have the logical value that is the complement of

the output; it then changes the output to be the same as the inputs. C elements are generally

used when some part of a circuit wants to wait for two concurrent computations to complete. In

each case, completion is signaled by a transition on some wire, which is connected to the inputs

of the C element. The output of the C element changes when transitions have occurred on both

inputs.

An automaton is shown in Figure 3.5b. The failures are those cases where the output of

the C element has been enabled (both inputs have gone to the opposite value of the output), but

66 Chapter 3 Prefix-closed Trace Structures

start a 1

rl _ al _ i r r2

r2 a2 _

-[._____j - ae

(a)

Figure 3.4. Mutual-Exclusion Element

start

C
C

b

(a)

Figure 3.5. C Element

an input changes (again) before the output changes. This is a potential hazard, because the C

Section 3.4 Examples 67

element may change the output part of the way before the input change disables it.

3.4.6. Vending Machine

This example is not a practical circuit, but answers an objection that may occur to readers

familiar with CCS. We consider two "vending machines": one inputs money (a) and lets the

customer select one of two items by taking inputs b and c (and for simplicity in the example,

never works again); the other takes money, then makes an internal decision about which product

it will allow the customer to choose (without telling him). The customer selects item b or c, and

either gets it or not, depending on the decision made by the machine.

These two behaviors can be represented using the CCS-like trees of Figures 3.6a and 3.6b

(these are not automata). Figure 3.6a accepts an a input and then either b or a c, depending on

what the environment chooses. In Figure 3.6b, when the machine accepts the a, it nondetermin-

istically chooses whether to respond to a b or c input. It seems that these behaviors should be

distinguished, and indeed they are distinguished by CCS's concept of observational equivalence.

However, the traces (ab and ac) of the two trees are identical. Does this mean that the trace

representation of the behaviors is insufficient?

b

(a)

Figure 3.6. "Vending Machines"

Our notion of behavioral equivalence distinguishes the two trees, also, because equivalence

depends on both the success and failure sets. The successful traces of the two trees are the same.

However, the failure sets are not. In Figure 3.6a, the failure traces are [(b + c)(a + b+ c)* + a(b+

68 Chapter 3 Prefix-closed Trace Structures

c)(a + b+c)+]. Figure 3.6b, the failures include the failures for the other tree, and also ab and ac

(ab is a failure if the vending machine chooses the right branch, and ac is a failure if it chooses

the left branch). So, the behaviors of the two machines have different trace structures. In 3.6b,

ab may be a success or a failure; the customer who inputs a b has no control over the result.

Chapter 4

Verification

Section 4.1. Introduction

To verify a circuit is to demonstrate that the actual behavior satisfies some specification.

Chapter 3 has solved the problem of describing actual behaviors. This chapter shows how to

specify the desired behavior and how to verify automatically whether the actual behavior is

consistent with the specification.

Instead of inventing a second formalism for specifications, we use the one we already have:

trace structures. A specification is regarded as an idealized component, which can can be used

(perhaps conceptually) in a design. Another trace structure represents an implementation of the

specification if it can be substituted for the idealized component while preserving the important

properties of the larger design. Using the idea of safe substitution, the same formalism can be

employed both for semantics and specification.

The concept of safe substitution makes hierarchical verification very easy and natural. A

specification of a circuit at one level of abstraction can be a description of a primitive at the

next higher level. For example, consider a flip-flop implemented as a collection of gates and

used in a larger circuit. The verification of the larger circuit can be split into a low-level phase

and a high-level phase. At the low level, it is verified that the gates properly implement the

flip-flop specification. At the high level, it is verified that the flip-flop specification and other

components properly implement the larger circuit. At this level, the gate implementation of the

flip-flop is hidden m only the flip-flop specification is used. Verifying the circuit in this way has

70 Chapter 4 Verification

important advantages. If the flip-flop is used more than once or in several circuits, the low-level

verification does not need to be repeated. Moreover, if a different implementation of the flip-flop

is adopted, the designs that use flip-flops as primitives do not need to be re-verified.

Trace structure specifications are highly compositional. Two implementations can be shown

to satisfy less detailed interface specifications; it is then immediately true that the composition

of the implementations satisfies the composition of the specifications m this does not need to

be checked separately. Also, if symbols are hidden in the implementation, the result is sure to

satisfy the specification with the same symbols hidden (likewise with renaming).

Also, trace structures can have restrictions on their allowed inputs. These restrictions are

assumptions about the environments with which the circuit will be composed. Consequently,

specifications are relative to assumptions about the environment. This is a very useful property:

known constraints on the environments in which a circuit will be used may increase the range

of implementation alternatives.

In the following sections, the second formally defines safe substitution. A relation called

conformation is defined which holds when one trace structure can be substituted safely for

another. In this situation, the first structure is said to conform to the second.

Sometimes two different trace structures cannot be distinguished by conformation. This

defines an equivalence relation between trace structures called conformation equivalence. In the

fourth section, two transformations are described which can be used to simplify a trace structure

while maintaining conformation equivalence to the original. The fourth section also explains

how a trace structure represents assumptioi_s about its environment, and how to characterize the

most general environment that satisfies that assumption. This is a very important result because

it leads to a decision procedure for conformation. It is also a powerful tool for proving other

properties of trace structures, for example that the simplifications yield a canonical form for

conformation equivalence. The fifth section gives examples to illustrate conformation.

A specification is delay-insensitive if it does not change when delays are attached to its

inputs and outputs. Delay-insensitivity has received a great deal of attention in previous work

on trace theory. In the sixth section, a simple definition of delay-insensitivity is given, using

Section 4.2 Conformation 71

the results of the previous sections. Delay-insensitivity of a trace structure can be checked

automatically.

The seventh (and final) section shows that the set of all trace structures with particular inputs

and outputs is a distributive lattice. The lattice operations of meet and join provide additional

interesting ways to combine trace structures.

Section 4.2. Conformation

To formalize the definition of safe substitution, we first define an expression context: it is a

circuit algebra expression with a free variable (the variable is written _). When a trace structure

is substituted for the free variable, the expression can be evaluated to give a trace structure

for the expression. _ has inputs Ia and outputs 0o; any trace structure T that is substituted

for c_ must have 1 = Io and 0 = 0o,. Because of this, it is possible to determine whether the

alphabets of its subexpressions meet the requirements of the operations and to find the inputs

and outputs of the entire context. An example of an expression context is hide({a})(T c_). A

generic expression context is written as g[], and the expression resulting when 7- is substituted

for c_ is written S [T].

What is a "safe" substitution? We say that a trace structure is failure-free when its failure

set is empty. A safe substitution is a substitution that preserves failure-freedom. Formally, a

trace structure 7- conforms to T' (7- -< 7-') ill = I', 0 = 0', and for all expression contexts g[],

if g[7-'] is failure-free, so is $[7-]. Intuitively, if a system using T' cannot fail, neither can a

system using 7-. The relation is called conformation. (We use the term "conforms to" instead

of "meets" or "satisfies" to avoid confusion the terminology of logic and lattice theory.)

Only a small subclass of context expressions actually needs to be considered to prove

conformation. The context expression can be reduced to a composition with a single trace

structure, called an environment, which has inputs and outputs which are complementary to the

free variable: T _ T' if and only if for every 7" having I" = 0 and 0" = I, if T' N T" is

failure-free, so is 7- N T".

72 Chapter 4 Verification

The rest of this section proves these results. It is useful to define another equivalence

relation between trace structures: T and T' are FF-equivalent if and only if they are either both

failure-free or both not failure free. Unlike behavioral equivalence, FF-equivalence does not

imply matching alphabets. Obviously, behavioral equivalence implies FF-equivalence.

Two contexts S[] and S'[] are behaviorally equivalent if for every trace structure 7- we

have S[T] = S'[T]. S[] and S'[] are FF-equivalent if for every trace structure 7-, S[7-] is

FF-equivalent to S' [7-]. In either case, the free variables of the two contexts must have the same

inputs and outputs.

Lemma 4.1. If S[] is an expression context, it is FF-equivalent to the expression contexts

hide(D)(S[]), rename(S[]), and del(D)-l(s[]), when they are defined.

proof. Obvious. []

Lemma 4.2. 7- _ 7-' iff I = I', 0 = 0', and for every T" such that I = 0" and 0 = I", if

T' _ 7-" is failure-free, so is 7- _ T".

proof. Let S[] be any expression context. By Lemma 2.6, every expression can be reduced

to a structurally equivalent (and consequently FF-equivalent) normal-form expression using the

laws of circuit algebra. Trace structures are a circuit algebra, so there is an FF-equivalent

expression $1[] in normal form.

Let $2[] be the subexpression of Sl[] such that SI[] = hide(D)(g2[]); then by Lemma

4.1, $1 and $2 are FF-equivalent. $2[] consists of a composition of renamed trace structures.

compose is associative and commutative, so the n-way composition of $2[] can be grouped into

two parts: a rename expression with the free variable, and the others. The expression for the

others can be evaluated to yield a single trace structure '/-1, so there is an expression $3[] of the

form rename(r)(a) 17-1which is behaviorally equivalent to $2[]. If we let T2 = rename(r-I)(7-1),

and $4[] = c_ 7-2, $3[] is FF-equivalent to E4[] by Lemma 4.1.

At this point, we have reduced the context to ce 7-2, but the alphabet of 7-2 does not fulfill

the requirements of the desired context. However, we do know that Oo N 02 = _. The rest of

the proof massages the alphabet of the trace structure with which o is composed.

Section 4.2 Conformation 73

Let Ao = Io U Oo. We find an FF-equivalent context Es[] = o 7-3 such that A,_ C_A3. Set

"7-3= del(Ao- A2)-1(7-2), so that A3 = Ao u A2. By Lemma 4.1, Es[] = o 7-3 is FF-equivalent

to E4[].

Next, we find S6[] = c_ '7-4where A4 = A3 and I4 = 00 (some of T3 's inputs are converted

to outputs). This is done by composing 7-3 with a "generator" circuit that produces all possible

outputs in 13- Oct. Let ']-c be the trace structure having Oc = 13- O,, Ic = A3 - 03 (so Ac = A3),

S = A_, and F = _. Let ']-4= "]-3N To. Clearly, $4 = $3 _ SG = $3. Since Pc = A_ and Fc = _,

F4 = (F3 N PG) LJ(P3 N FG) = F3. Also, P4 = P3 N Pc = P3. Any composition of the form o 7-4

has exactly the same F, S, and P sets as o 7-3; only the alphabets are different. Hence E6[] is

FF-equivalent to Es[].

We now have Oo = 14 and Io C_04. All that remains to complete the lemma is to remove

the extra outputs of 7-4,which is easily done by setting 7-" to hide(O4-1o)(T4), o 7-" = _ AT-"

is FF-equivalent to S6[] by Lemma 4.1, completing the proof. [Z]

If implementations are to be freely substituted for specifications, it is important that if

7- _ 7-', then $[7-] -< El7-'] (if E[7-] is defined). This is shown in the next theorem.

Theorem 4.1. compose, rename, and hide are monotonic with respect to conformation.

This is proved in the next three lemmas.

Lemma 4.3. If 7- -< 7-' and 7-" is any trace structure, then 7- t']'" 7-' 7-".

proof. Let 7-"' be any environment such that (7-' T")n 7-"' = (T' 7-") 7-"' is failure-

free. Then, by associativity of compose (C1), T' (T" T"') is failure-free. Then, by the

definition of conformation and by C1, (7-1"]'")n 7-"' is failure-free. Hence, by Lemma 4.2,

"TIT" ___7-' 7-". [3

Lemma 4.4. If 7- _ 7-', then hide(D)(T) ___hide(D)(7-').

proof. Let T" be any environment such that hide(D)(T') 7-" is failure-free. Since A" =

A- D, A" N D = _, so by C7 and C8, hide(D)('].') 7-" = hide(D)('].' 7-"). By Lemma 4.1, this

is FF iff T' 7-" is. But, since 7- --<T', 7- 7-" is failure-free, and so is hide(D)(7- 7-"). This

is equal to hide(D)(T) 7-", by C7and C8, so hide(D)(7-) _ hide(D)(7-'). [Z]

74 Chapter 4 Verification

Lemma 4.5. If 7- <_ T', then rename(r)(7-) _ rename(r)(7-').

proof. Obvious. [-3

Section 4.3. Conformation Equivalence and Simplifications

The _ relation is reflexive and transitive, as is clear from the use of implication in the

definition. However, it is not a partial order because it is not antisymmetric. To put it another way,

conformation induces a nontrivial equivalence relation on trace structures. ,fir-is conformation

equivalent to 7-' ('7- -,_ 7-') when 7- ___7-' and 7-' ___7-. T --_7-' does not necessarily imply that

7-' = 7-. Intuitively, trace structures have more information in them than is really necessary to

determine conformance. For example, one may be able to tell by looking at a trace structure

that after it receives an illegal input, it produces no more than five output signals. But all we

need to know to determine conformance is the exact circumstances under which the first failure

occurs -- the details of the circuit behavior after this failure are completely irrelevant. The topic

of this section is how to remove irrelevant information from a trace structure.

There are two transformations to reduce a prefix-closed trace structure to a canonical form

for conformation equivalence. Two trace structures in canonical form are equal exactly when

they are conformation equivalent (this is proved in the next section).

The transformations are best introduced through an example. The example circuit is a pair

of inverters in series, as in Figure 4. l a. The state graph for a single inverter, starting in a stable

state, appears in Figure 4.lb. This automaton accepts the same trace sets as the automaton for

an identity gate, as defined in Section 3.4 (it has been reduced from five states to three). An

automaton for the composite circuit appears in Figure 4.1c. In the initial state, both inverters

are stable (e.g. a = 0, b = 1, and c = 0). Every state in the composite has two labels: the names

of the states in the original two automata. A trace reaches one of the states in the automaton if

the trace is possible in both inverters. The successful traces in the composite are those ending

in states labeled qiq_ (where i,j C {0, 1}); the failures are those ending in states labeled with F

or F'.

Section 4.3 Conformation Equivalence and Simplifications 75

stanza

b

a,b a

(b) (c)

Figure 4.1. Two-inverter Chain

The first and most interesting simplification is called autofailure manifestation. In Figure

4.1c, the trace aba reaches the state (ql. q_), which is successful. However, from this state the

machine can output a b, which causes a failure (specifically, in the second inverter). Once this

state has been reached, there is no way for the environment to prevent the b output and the failure.

The trace aba is called an autofailure because the circuit causes its own failure. Autofailure

manifestation adds all autofailures to the failure set m it makes them explicit. Autofailure

manifestation also adds any trace that has a failure as a prefix to the failure set.

More precisely, an autofailure is any trace x such that there is a trace y E O* such that

xy C F. The set of all such traces is F/O* (note that since e E O*, this set includes F). All

suffixes can be added to a set by concatenating with A*. Hence, the simplification is to redefine

the set of failures to be (F/O*)A* (this set includes F/O*). The inputs, outputs, and success set

remain unchanged.

Unless S = (D,every failure trace has a prefix that is a success. After autofailure manifesta-

tion, the symbol which converts the success to a failure is always an input m the environment

76 Chapter 4 Verification

has sent a transition to the circuit that the circuit could not handle. We call this choking. If x is

a success, a is an input symbol, and xa is a failure, we call xa a choke.

The second and more obvious transformation is to make the success and failure sets of a

trace structure disjoint. Recall that if x E S n F in a trace structure 7-, x can be either a success

or a failure; in essence, the circuit chooses nondeterministically between them. For verification,

a circuit that "might fail" on a particular trace is just as bad as a circuit that always fails

in either case, if x is allowed to appear in a particular composite circuit containing T, that

composite is not failure-free.

The transformation is called failure exclusion; it sets the success set to S- F. Failure

exclusion is only valid when the trace structure to which it is applied satisfies the additional

property: FA* C_ F; otherwise, there is a chance that the success set of the result will not be

prefix-closed. One way to make sure this condition is satisfied is to do autofailure manifestation

first. Note that neither the F set nor the P set changes.

Figure 4.2 shows the automaton for the two inverters of Figure 4.1 after all of the transfor-

mations have been applied. More than half of the states have been eliminated.

start_

c b

q_o _a,b,c

Figure 4.2. Two-inverter Chain After Simplification

Section 4.3 Conformation Equivalence and Simplifications 77

The result of these transformations is a trace structure in canonical form, which can be

characterized directly: a canonical prefix-closed trace structure, T, is a prefix-closed trace

structure satisfying the additional requirements F/O C_F, FA C_ F and S N F = _. F/O C F

implies (F/O)/O C_F/O and so on, so the first condition is equivalent to F/O* C_F. Similarly,

FA C_F if and only if FA* C F.

A nice property of canonical prefix-closed trace structures is that the set of failures is

completely determined by the set of successes. If 7- is in canonical form, the set of failures is

[($1 U {_}) - S]A *. Intuitively, the set (SI U {e}) - S is the set of minimal failures (members of

F that do not have failures as prefixes). If S is empty, there is exactly one minimal failure: e.

Otherwise, the minimal failures are exactly the chokes: SI- S.

Since the presence of the failure set does not contribute any information to a canonical trace

structure, a reduced representation can be defined: the simple prefix-closed trace structures. A

simple prefix-closed trace structure is a triple '7 = (L O. S). We define abbreviations A = 1 u O

(as before), F = [(SI U {_}) - S]A*, and P = S u F. The conversion between simple and canonical

trace structures works both ways: any simple trace structure can be converted to a canonical trace

structure simply by making the implicit failure set an explicit fourth element of the structure. To

avoid confusion, we sometimes call trace structures that are not necessarily canonical or simple

general trace structures.

For most applications, it is not useful to distinguish trace structures that are conformation-

equivalent. Hence, an interpretation of the operations of circuit algebra that always maintains

trace structures in canonical form would be useful. To define such a thing, apply the operations

as defined for general trace structures, then simplify the results to canonical form. The program

described in Chapter 5 uses this representation. The proof that these definitions obey the laws

of circuit algebra is deferred until the next section.

The rest of this section is devoted to proving these claims. The following extremely useful

lemma gives a simple sufficient (but not necessary) condition for conformation between general

prefix-closed trace structures. The condition F C F t assures that if the environment does not

cause a failure in T t, it will not cause a failure in 7-, either. The condition P C_pr assures that

if T' does not cause a failure in the environment, T will not cause one, either.

78 Chapter 4 Verification

Lemma4.6. T _ T' if l = I', O = O', F C_F', and P _- P'.

proof. Suppose the conditions are all met. Let T" be any trace structure such that I" = O

and O" = I, and suppose 7-' n T" is failure-free. Then (F' n P") U(P' NF") = _; but F C_F' and

P C_P', so (F n P") U (P _ F") = _, also. This is the failure set for 7- N 7-". Hence, by Lemma

4.2,7- -<T'. ff]

We make heavy use of the following results relating quotient and concatenation.

Lemma 4.7. If X, Y C_A*, X/Y C_X iff (A* - X)Y c_ (A* - X).

proof. X/Y C_Xifffor everyx E A* and y E Y, xy C Ximpliesx E X. (A*-X)Y C (A*-X)

iff for every x E A* and y _ Y, x _ X implies xy _ X. But these statements are equivalent. V]

Lemma 4.8. For any X, Y C_A*, XY C_X iff XY* C_X.

proof. It is easy to show by induction thatXI A C_X for all i C _.,, so XY* = x(Ui_c,, lei) _cx.

[]

Lemma 4.9. X/Y c_X iff X/Y* c_X

proof. Let X' = (A* - X). Then, X/Y C_X iff X'Y C_X' (Lemma 4.7) iff X'Y* C_X' (by

Lemma 4.8) iff XY* C X. ["1

Lemma 4.1tl. X C_A* is prefix-closed if and only if X/A C X.

proof. It is obvious from the definition of prefix-closure that it is equivalent to X/A* c_C_X.

This is equivalent to X/A C_X by Lemma 4.9. V1

The following theorem is the major result of this section:

Theorem 4.2. If 7- is any prefix-closed trace structure, performing autofailure manifestation

followed by failure exclusion yields a canonical prefix-closed trace structure that is conformation

equivalent to 7-.

The theorem is proved through several lemmas. First, we show that the results of the sim-

plification are prefix-closed trace structures which are conformation equivalent to the originals:

Lemma 4.11. Autofailure manifestation preserves prefix-closed trace structures.

proof. We prove only the less obvious properties. F' is regular because regular sets are

closed under quotient and concatenation with regular sets. To see that P is prefix-closed, let

Section 4.3 Conformation Equivalence and Simplifications 79

xbe any member ofP'. Ifx C P, every prefix ofxis in P C_ P'. Ifx E pl_p, we know

x E (F/O*)A*. Then there is a prefix y of x in F/O* and some z C O* such that yz E F. So

yz C P, so every prefix of yz, including every prefix of y is in P C p,. Also, since y E F,

yA* C_F' C_P'. But this set includes every sequence w in y < w _< x, so every prefix of x is in

p,. [Z]

Lemma 4.12. Autofailure manifestation preserves conformation equivalence.

proof. Let T be any prefix-closed trace structure, and let '2-' be the result of autofailure

manifestation. By definition F' = (F/O*)A* and P' = S u F'; all other aspects of T and 7-' are

the same.

Clearly, F C F' and P C_ P', so, by Lemma 4.6, 7- -< 7-'. To see that 7-' _ T, let T" be

any trace structure such that 1/I = O and 011 = I. We show that if there is a failure in 7-' N 7-1f,

there is a failure in T N 7-,1. Suppose that there is a failure x in 7-/N 7TM. Either x C F I N P" or

x E P' NF". Ifx E F I NP/I, we know x E (F/O*)A*, so there is some prefix z ofxinF/O* (zis

an autofailure), and there is a y E O* such that zy C F. Since x is in p,,, which is prefix-closed,

z E P", also. 7-11 is receptive andy E O* =1"*, so zy C P'I* C_ P'. Hence, zy C FNP';

whenever x is in F I N p,, zy C F N p,,, which is a subset of the failures of 7- N 7TM.

Otherwise x ff P' N F 'I and x _ F I N P". Since F" C_P", this implies x E (P' - F/) n F".

But, clearly, p/ _ F / = p _ F, so x E (P - F) n F', which is a subset of the failures of 7- N T".

Hence, whenever there is a failure in 7-' N 7TM there is a failure in 7- N T"; equivalently, whenever

T N T 'I is failure-free, 7-' n T" is, too. So, by Lemma 4.2, T' _ 7-. Hence, 7-' _ T. []

Lemma 4.13. If 7- is any prefix-closed trace structure such that FA = F, failure exclusion

yields a prefix-closed trace structure.

proof. Let 7-I be the result of applying the transformation to 7-. The transformation

changes nothing except the successes; we need only prove that S I = S - F is regular and prefix-

closed. It is regular since regular sets are closed under set complement and intersection. S is

prefix-closed, so by Lemma 4.10, (A* - S)A C A* - S. By the definition of S I and de Morgan's

law, A* - S' = (A* - S') u F. By hypothesis, FA C F. so

[(A* - S') u F]A = (A* - S)A u FA C_ [(A* - S) u F)] = A* - S.

80 Chapter 4 Verification

Hence, by Lemma 4.10again, S' is prefix-closed. V1

Lemma 4.14. If 7- is any prefix-closed trace structure and T' is the result of applying auto-

failure manifestation, 7-' satisfies F'/0 C_F' and F'A C_F'.

proof. By definition, F' = (F/O*)A*. Let F1 = F/O*. By property 3.4, (F/O*)/O* =

F/(O*O*) = (F/O*), so El/O* C El. Hence Fa/O C_El, by Lemma 4.9.

Let F2 = FIA*. Obviously, (F1A*)A C FIA*, so F2A* C_ F2. We still need to show that

appending A* to F1 does not destroy the first property. Let x be any member of F2/O. Then

there is some a E O such that xa E Fz. If xa E F1, we know x E F1, also, since F1/O C F1.

Suppose, xa E FIA+; since a E A, also, this implies x E F1A* = F2. [-I

Lemma 4.15. Failure exclusion preserves conformation equivalence.

proof. Let T be the any prefix-closed trace structure, and let T' be the result of excluding

failures in it. P = P' and F = F', so by two applications of Lemma 4.6, T _ 7-'. Vq

Failure exclusion does not change F, so it preserves the properties F/O C F and FA C F

established by autofailure manifestation. Obviously, after failure exclusion, S A F = _. This

concludes the proof of the theorem.

The next lemma proves that the set of failures is a function of the successes in a canonical

prefix-closed trace structure. Given a trace structure 7-,

Lemma 4.16. For any canonical prefix-closed trace structure 7-, F = [(SI U {e})- S]A*.

proof. Define F0 to be the minimal sequences in F; in other words,

F0 = {x x has no proper prefixes in F}.

If S = _, c __F because e E P = S u F. Since e is a prefix of everything, it must be the only

minimal element of F, so F0 = {e) = (SI u {e} - S) in this case.

Otherwise, S 5_ _. Let x be any member of F0. Since S is non-empty, it has prefixes in

common with x (e, if nothing else) so x has a maximum prefix in S, which we call y. Hence,

x=yz where z E A*. We prove that z = 1. If z = 0, (z= e), we would havex=y E S,

which is a contradiction because x E F and S N F = _. If z > 1, then z = az' where z' :g e;

then ya E F, since y is the maximum prefix of x in S. But ya would a proper prefix of x in

Section 4.4 Environments and Mirrors 81

F, which contradicts x E Fo. Hence, the only remaining possibility is z = 1, or equivalently,

zEA. Hence, xESA-S.

Now x f{ SO, because otherwise it would have a proper prefix that was an autofailure and

would not be in F0. Hence, x C SI- S, so Fo C_SI- S. Furthermore, SI c_ P by receptiveness,

so SI- S C_ P- S = F. Since every proper prefix of every member of SI- S is a success,

SI - S C_Fo. Hence, F0 = $1 - S, and since e E S, ($1 u _e}) - S = SI - S.

Hence, in either case, F0 = (SI U {e) - S). By the definition of F0, F _C:FoA*. But 7- is

canonical, so FA* C_F, so FoA* C_FA* C_F. Hence F = FoA* = [(SI U {_} - S)]A*. []

Although it is obvious that every canonical trace structure can be converted to a simple one

(by discarding the F set), it is not as clear that every simple prefix-closed trace structure can be

converted to a canonical one. It could be that there are prefix-closed S sets which appear in no

canonical trace structures. The next lemma shows that this is not a problem.

Lemma 4.17. If I and 0 are disjoint finite sets of wires, A = I u O, and S is any regular

prefix-closed subset of A*, then (I, O, S. [(SI u {_}) - S]A *) is a prefix-closed trace structure.

proof. The inputs, outputs, and successes satisfy all the necessary conditions by hypoth-

esis. P is obviously regular. To see that it is prefix-closed, let x be any member of P. If x E S,

all its prefixes are in S, also, so they are all in P. Otherwise, x E [(SI u {e}) - S]A*, so there is

a y C [(SI u {e}) - S] and z E A* such that x = yz. Every prefix of y is in P because it is either y

itself, or in S, orit is e. Clearly, if w is a prefix of z, yw E [(SIU {e})- S]A*, too. This accounts

for all prefixes of x. For receptiveness, let x be any member of P and a be any member of I. If

x E S, either xa E S or xa E SI- S C F. If x E [(SI u {_}) - S]A*, so is xa, obviously. So in

any case xa E P, hence PI C P. D

Section 4.4. Environments and Mirrors

The primary result of this section is that for almost every 7- there is a unique maximum

environment that can be composed with T failure-free. This result gives an exact characterization

of the environments allowed by a trace structure T: they are the environments that conform to

the maximum one. This result has several important implications: it gives a simple a decision

82 Chapter 4 Verification

procedure for conformation. It is an important tool for proving further results; for example, this

result makes it easy to prove that two canonical prefix-closed trace structures are equal if and

only if they are conformation-equivalent.

To find the maximum environment of a trace structure T, 7- must first be reduced to

canonical form using the simplifications of the previous section. The maximum environment is

called the mirror of IT, (written TM). If T is canonical, T M has I M = O, 0 M = I, S M = S, and

FM = A* - P. It follows that pM = A* - F. The mirror is also a canonical prefix-closed trace

structure. We said above "almost every T." The exceptions are the structures that have S = _.

Since P = A*, the mirror would have pM = S U (A* - P) = _, which is not a trace structure (P is

empty). There is exactly one such trace structure for each pair of input and output sets.

It follows immediately from the result of the previous paragraph that is surprisingly easy to

define the mirror for simple prefix-closed trace structures: just exchange the inputs and outputs.

Once again, the mirror is not defined in case S = (_m the inputs and outputs can be exchanged,

but the result is not helpful.

Mirrors can be used in a simple test for conformation. Instead of checking the compositions

of 7- and T' with all other trace structures (an imposing task), it is only necessary to compose

with one: the mirror of T'. If T T TM is failure-free, ,jr- _ 7-'. Intuitively, T 'M is the worst

possible environment that the specification can be composed with; it accepts everything that 7-'

can produce as output and nothing more, and produces everything that 7-' can accept as input

and nothing less. In a sense, 7-,M is a conceptual implementation-tester. Deciding whether the

composition of two trace structures is failure-free requires a few straightforward operations on

finite automata, so this gives a convenient decision procedure for 7- --<7-'. This test fails in

case 7-' has an empty success set, because T 'm is not defined. However, this special case can

be checked separately.

The results of this section allow two claims of the previous section to be proved: first, two

canonical prefix-closed trace structures are equal if they are conformation-equivalent; second,

canonical prefix-closed trace structures are a circuit algebra.

Section 4.4 Environments and Mirrors 83

The idea of composing the mirror of a specification with the implementation has been

published by Ebergen ([31,32]). However, the justification in terms of failures, substitutions,

and conformation are new.

We now prove the claims of this section.

Lemma 4.18. If T is a canonical prefix-closed trace structure and S _ _ then T M is a canonical

prefix-closed trace structure.

proof. The only non-obvious conditions for T M to be a trace structure are those on pM:

non-emptyness, prefix-closure, and receptiveness. Non-emptyness is immediate, because S is

non-empty by hypothesis. Since T is canonical, FA C F, so by Lemma 4.7,

pM/A C (A* -F)/A C_(A* -F)= pM

so pM is prefix-closed by Lemma 4.10.

F/O C_ F because T is canonical, and by Lemma 4.7, (A* - F)O C_ (A* - F). Since

pM = A* - F, and I M = O, this proves pMIM C_pM _ T M is receptive.

To prove T M is canonical, simply reverse these arguments. Since 7- is receptive, PI C_P,

which implies FM/o M C FM. P is prefix-closed, so P/A C_P, so FMA C F M. [-]

Theorem 4.3. For any simple prefix-closed trace structures T and T' T _ T' iff I = I',

0 = 0', and either S' = _ or T N T 'M is failure-free.

This theorem is proved in the next few lemmas.

Lemma 4.19. If 7- and T' are simple trace structures such that I = I', 0 = 0', and S' = O,

then T -< 7-'.

proof. The composition of 7-' with any trace structure is never failure-free, so the an-

tecedent of Lemma 4.2 is trivially satisfied. []

Lemma 4.20. For any simple prefix-closed trace structures 7- and 7-' such that I = I', 0 = 0',

and S' =/_, if '1- N 7-,M is failure-free, 7- _ 7-'.

proof. Suppose 7- N 7-,M is failure-free. Then P N F 'M = 0 and F n p,M = _. Substituting

the definition of p,M, we have P N (A* - P') = (D,so P C_ P'; similarly, F C_F'. So by Lemma

4.6, T _7-'. F']
,-

84 Chapter 4 Verification

Lemma 4.21. If S :_ O, T N T M is failure-free.

proof. LetT' =TNT M, soF' =(FNpM) u(PNFM). ButFNpM=FN(A*-F)=0

andPNFM=pN(A * -e)= 0. [']

Lemma 4.22. If T _ T' and S' =/0, T n T TMis failure-free.

proof. By Lemma 4.21, 7-' n T TMis failure-free, so by Lemma 4.2, 7- N7-,M is failure-free,

also. Vl

Lemmas 4.19, 4.20, and 4.22 prove Theorem 4.3.

Lemma 4.6 says that it is sufficient for 7- -J 7-' that P C P' and F c F'. For simple

prefix-closed trace structures, this condition is also necessary.

Lemma 4.23. If 7- and 7-' are any canonical prefix-closed trace structures and T _ T", then

I =I', 0 = 0', P C__P', and F C F'.

proof. A r = A by hypothesis. If S' = 0, every trace structure 7- with the same inputs and

outputs conforms to 7-" c C P, so e E F'. Since 7-' is canonical, FA* c__F', so eA* = A* C_

F' C__P'. By the definition of trace structures, F' C P' C A*, so F' = P' = A*. Therefore,

PCA* =P' andFCA*=F'.-- m

If S' 5/0, T 'M is defined. In this case, by Lemma 4.22, T _ 7-,M is failure-free. The set of

failures is (F N p,M) U (P N F'M), so F N (A* - F') = 0 and P N (A* - P') = 0. But then F C_F'

andP C P'. []

We now prove the two results from the previous section that were deferred until now.

First, canonical prefix-closed trace structures are a canonical form with respect to conformation

equivalence.

Lemma 4.24. If'7- and 7-' are any canonical prefix-closed trace structures, T _ 7-' iff 7 = 7-'.

proof. Trivially, ,jr = 7-' implies '2" _ 7-'. Also, if 1 5_I' or O _ O', neither 7- _ 7-' nor

'7-=7-'.

Now suppose '7- _ 7-'. By Lemma 4.23, P C_P' and P' C_P so P = P'. Similarly, F = F'.

SinceP=SUFandSNF=0, S=P-S=P'-S'=S'. V']

The second deferred proof was that canonical prefix-closed trace structures are a circuit

algebra. Recall that the operations on general trace structures were modified to simplify their

Section 4.5 Examples 85

results to canonical form. Note that, by Lemma 4.24, canonical trace structures are isomorphic

to the equivalence classes of trace structures under conformation equivalence. We prove that

conformation is a congruence for circuit algebra; hence, the quotient of the circuit algebra of

trace structures with respect to conformation equivalence is also a circuit algebra, and so are the

canonical trace structures.

Lemma 4.25. Conformation equivalence is a congruence for circuit algebra.

proof. Weneed to show that if T/_ T/for i C {1.2}, (T1 72) _ ('_' 7-_), hide(D)(7"1)

hide(D)(Ty), and rename(r)('_) --_rename(r)(T(). These results follow immediately by apply-

ing Theorem 4.1 in two directions. V1

Section 4.5. Examples

This section has several examples to illustrate the -< relation.

4.5.1. Merge Element

A merge element is a standard building block used in self-timed systems. It has two inputs

and an output (Figure 4.3a). If there is a transition on either input, a transition is signaled on the

output. No input transitions (on either input) are allowed between the input and output transition.

An automaton for a merge element is shown in Figure 4.3b. An XOR gate is a merge element.

Consider a merge that requires its inputs to be of the form "acbcacbc " We call this

an alternating merge (it is not particularly useful except as an example). An automaton for a

alternating merge element is shown in Figure 4.3c. Let the trace structure for the first merge be

'J-aM(for "general merge") and let the second be 7-AM.

FCM, the set of failures of the general merge, consists of traces where two or more inputs

occur without an intervening output. FAM includes F_M and has additional traces of the form

"acbc... acacA*" and "acbc... bcbcA*", so F_M C FAM. Similarly, P_M C PAM: if a trace x in

P6M is a failure, x is in PAM, also, because FGM C FAM. If X is a success, it is either in SAM, or

X is of the form "acbc... acac..." or of the form "acbc... bcbc...", in which case it is in FAM.

So by Lemma 4.6, TOM _--<7-AM.

86 Chapter 4 Verification

baI
C a,b_c

MERGE =

(a) (b)

o a _ql _,,c -_
b

_a,b,c

(c)

Figure 4.3. Merge Element and Altemating Merge

Returning to intuition, a general merge can be safely substituted for an alternating merge in

any context because a general merge can handle any input that an alternating merge can handle

(and some more), and produces exactly the same outputs when given those inputs.

However, TAM does not conform to T_M: substituting an alternating merge for a general

merge can introduce failures into previously failure-free contexts. This occurs when the envi-

ronment sends inputs in non-alternating order m the general merge can handle them, but the

alternating merge cannot.

4.5.2. Arbitrary Selector

A selector is the mirror of a merge element. Whenever it receives a transition on its only

input, a transition is signaled on one of two outputs. A general selector can signal either of the

two outputs arbitrarily, while an alternating selector must signal them in alternating order. The

success sets for these two circuits are exactly the same as for the corresponding merge elements,

Section 4.5 Examples 87

but the input and output alphabets are interchanged. Let "J-asbe the trace structure for a general

selector and 7-as be the altemating selector.

In this case, 'J-AS ___7-as. This is exactly the opposite of the situation with the merge

elements. Fas consists of the traces in which two or more inputs occur without an output, as

does Fas. However, Fcs has traces of the form "... acac.., acbcc..." that FAS does not (because

the successful prefixes of Fits have alternating outputs), so Fas C FGs; PAS C PGS for the same

reason.

Intuitively, TAS can be safely substituted for 7-as because it is less likely to break the

environment -- if the environment can handle the outputs of 7-cs, it can certainly handle the

outputs of 7-as. Also, 7-as can handle the same inputs as 'J-GS,given the outputs it produces.

However, "T6s cannot be safely substituted for TAS because it may produce outputs that cause

failures in the environment, when 7-as would not have done so. Hence, 'J-Gs_ TAS.

4.5.3. Set-Reset Latch

A latch was informally specified in Section 3.4; here, we give a trace structure as an

equivalent formal specification. An automaton for the success set of the specification is shown

in Figure 4.4a. This is a simple trace structure, so failures can be computed from the success

set (the failures are not shown in the diagram). The specification assumes that a and b axe never

simultaneously high. It also allows the outputs to change between the set and reset states in

either order (cd or dc). This is one of several possible specifications; another appears in Chapter

5.

The automaton for the success set of the simple trace structure for the cross-wired NOR

of the previous chapter is shown in Figure 4.4b. The state 0000 was removed from the success

set because it was an autofailure. This example has a mixture of the properties of the merge

and selector examples. For example, in state 0101, the implementation accepts a superset of

the inputs that the specification requires because it can accept an a. The implementation also

produces a subset of the outputs allowed by the specification because it is allowed to generate a

c in state 1001 but it does not. The implementation conforms to the specification but the reverse

is not true.

88 Chapter 4 Verification

a c a

_
b c c

start

(a)

(b)

Figure 4.4. Specification and Implementation of Set-Reset Latch

4.5.4. Fork/Join

A forkjoin module is used to spawn two parallel processes. When the fork/join receives

a transition on r, it sends transitions on lr and rr to start two sub-computations. When these

computations complete, they send signals la and ra, respectively, back to the fork/join. When

both of these transitions have been received by the fork/join, it signals the completion of the

entire computation by a transition on a.

Figure 4.5b is a state diagram for a fork/join. The two subprocesses are signaled in any

order, and run concurrently, so the 'finished' signal from one process can occur in any order

relative to the 'start' signal for the other.

Figure 4.5c shows a state diagram for a 'sequence' element, which starts one process

and waits for it to complete before starting the other. The sequence module conforms to the

specification of the fork/join. Intuitively, it produces a subset of the allowed outputs after the

Section 4.5 Examples 89

r a l

It"

r

Ir
la

S rr

ra

(b) (c)

Figure 4.5. Fork/Join and Sequence Elements

traces r and r; Ir; rr, and accepts all the specified inputs after the prefix r; ra, the prefix r; Ir; la; rr,

and the prefix r; Ir; la; rr; ra.

This result illustrates a limitation of the expressive power of prefix-closed trace structures:

there is no way to specify a concurrent implementation of the fork/join. There are good reasons

to require concurrent implementations of circuits. The most obvious is speed; the combined

completion time of two concurrent processes is the maximum of the completion times of the two

90 Chapter 4 Verification

processes, while the completion time of two sequential processes is the sum of their individual

times. But real-time performance requirements cannot be expressed using trace structures.

Another reason for concurrent implementations is liveness. Intuitively, an environment

could distinguish the fork/join and sequence by withholding the d signal after the trace ab. If

the fork/join were live, it would eventually produce a c, anyway. However, the sequence module

would wait forever in this scenario. But prefix-closed trace structures cannot specify liveness

properties, either. We will see in Chapter 7 that a concurrent implementation can be specified

using complete trace structures because they can express liveness properties.

4.5.5. Universal Do-Nothing Module

Molnar has proposed a 'Universal Do-Nothing Module', a circuit that accepts all inputs

and produces no outputs. This device can be manufactured out of wood. The trace structure for

a universal do-nothing module with inputs I and outputs O is (I. 0.I*). This module satisfies

any specification having the same alphabet, which illustrates graphically that prefix-closed trace

structures specifications cannot require a circuit to do anything.

Section 4.6. Delay-Insensitivity

Delay-insensitivity has been a central concern of previous work in trace theory. A trace

structure is delay-insensitive if adding delays to its inputs and outputs does not change it. An

implementation of a delay-insensitive specification is guaranteed to work properly no matter

what wire delays are introduced in realizing the circuit.

Unlike Snepscheut [69,70] and Black [9], we do not require that circuits be delay-insensitive

in order for our composition operator to be valid. However, delay-insensitivity is a desirable

property, which we would like to be able to check automatically. This section characterizes delay-

insensitivity using the results of this chapter. This approach allows a very simple definition of

delay-insensitivity, and provides a simple decision procedure to test it, too.

We define an operator on trace structures called DI, which finds the least delay-insensitive

specification that the original specification conforms to. A delay is equivalent to a non-inverting

buffer (identity gate). DI attaches non-inverting buffers on all the inputs and outputs of a trace

Section 4.7 Lattice Properties 91

structure, then hides the original wires and renames the new inputs and outputs to the original

names. The overall effect of DI is to remove some ordering relations between signals. For

example, if T outputs ab but not ba, 7-' = DI(7-) outputs both ab and ba, because signals may

emerge from delays in a different order than they entered. Thus, DI can enlarge the P and F

sets. In fact, P C P' and F C F', since signals may also emerge from delays in exactly the same

order they entered. Hence, for all trace structures, 7- _ DI(7-).

DI can be defined formally as follows: given a trace structure .jr-, choose alphabets I' and

O' disjoint from each other and from I and O, and a renaming function r: (I' U O') ---+A. For

each a E I, let 7-a be the trace structure resulting from renaming the input of a non-inverting

buffer to be r -1 (a) and the output to be a; similarly, for each b C O, let 7-b be a buffer renamed

so the input is b and the output is r-l(b). Then define

DI(7-) = rename(r)[hide(A)(7-a ... 17-b ... 7-)].

Delay-insensitivity can be defined very easily using the DI operator: a trace structure 7- is

delay-insensitive if and only if DI(7-) -< 7-. Since the effect of DI can be computed using the

operations of circuit algebra and conformation is decidable, delay-insensitivity is decidable.

Composing two delays and hiding the connection between them yields a trace structure that

is conformation-equivalent to the original. Hence, DI is idempotent: for every T, DI[DI(7-)] =

DI(7-). Adding more delays to the inputs and outputs of a delay-insensitive circuit has no effect

on its operation.

Section 4.7. Lattice Properties

One of the advantages of logical formulas is that specifications can be combined using

conjunction, disjunction, and negation. For example, to verify that a system satisfies the logical

formulas o A _,, it may be possible to show that it satisfies 6 and _, separately, then infer from

this that it satisfies both simultaneously.

Trace structures can be combined using operators similar to v and A. There is no operation

equivalent to 9, because safety properties are not closed under negation. If 7- and 7-' are two

92 Chapter 4 Verification

trace structures with matching alphabets, the meet of 7- and 7-' (written 7- M7-') is the "most

general" trace structure that conforms to both 7- and T'. Similarly, the join of T and 7-' (written

T u 7-') is the "least general" trace structure such that both 7- and T' conform to it. More

formally, the set of canonical prefix-closed trace structures having input and output alphabets I

and O form a bounded distributive lattice under the ___ordering.

The maximum element of the lattice is (I, O. _). This is the universal specification --- ev-

erything conforms to it, and it conforms to nothing but itself. The minimum element is (I, O, I*).

This is the universal implementation (also known as the "universal do-nothing module"), which

conforms to everything.

The meet and join operations may be helpful in breaking up a verification task into smaller

parts. For example, if 7- _ 7-' and 7- _ 7-", then 7- --<(7-' MT") -- if a circuit can be shown

to satisfy two partial specifications, it satisfies both of them simultaneously.

There is a simple way to compute these operations on canonical prefix-closed trace struc-

tures, based on Lemmas 4.6 and 4.23. If T and 7-' have matching alphabets, 7-" = 7- FI7-' is

the canonical trace structure having P" = P N P', F" = F N F, and S" = P" - F'. Similarly

7" = 7- U 7-' is the canonical trace structure having P" = P U P', F" = F U F', and S" = P" - F".

The mirror operation behaves somewhat like a complementation operation, although it is

not a complementation in the lattice because it changes the inputs and outputs of its operand.

There are some interesting interactions between the lattice operations and mirroring, which are

reminiscent of de Morgan's laws:

(,-i- _ 7-,)M _. TM _ 7-,M and

(7-U 7-,)M ._ 7-M _ 7-,M.

There is a possibility that (7- _ T') M is defined when T or 7-' is the universal specification (for

which the mirror is not defined). However, (7- U 7-') can be the universal specification only if

7" or 7-' is (because e E F u F' only if e E F or e E F'), so the two sides of the second identity

are either both defined or both undefined.

Meet and join can be used to add explicit environmental assumptions to a specification.

Suppose we are interested in composing a trace structure 7- only with environments that conform

Section 4.7 Lattice Properties 93

to T'. By itself, T, has an implicit restriction that its environment must conform to T M. The

additional requirement says that any environment must also conform to T'; so it must conform to

TMrq T'. The desired trace structure is the maximum that can be composed with 7-M_ Tr failure-

free; in other words, the maximum environment of the environment, (T M rq T') M = 7- LJT 'M

Adding environmental assumptions can simplify a trace structure: aspects of its behavior that

were relevant in the larger environment can be suppressed if they are irrelevant in the restricted

environment.

The rest of this section is devoted to proofs of these claims. Formally, we define 7-" = Trq'T'

when I = I' and O = O' so that 7-" ___7- and '2-" ___T' and for every '2-"' satisfying the same

conditions, 7-"' _ 7-". Similarly, if 7-" = 7- U T r, then 7- --<7-" and 7-' ___T" and for every

7-''r satisfying the same conditions, 7-" ___7-"'.

Theorem 4.4. Given disjoint finite alphabets I and O, the set of all canonical prefix-closed

trace structures having I and 0 as their input and output alphabets is a bounded distributive

lattice under the conformation ordering.

In the remainder of this section, let 7- and T r be any canonical prefix-closed trace structures

such that I = I' and O = Or. There are dual versions of each result, with meet and join

interchanged. Since the proofs are generally quite similar, we prove only one of the cases. We

prove that 7- _ T _ and 7- LJ7-' are well-defined by showing how to compute them.

Lemma 4.26. T" = (I. O. (P NP')-(F N F').F NF') is a canonical prefix-closed trace structure.

proof. Note that P" = P rq U. It is easy to confirm that 7-" is a prefix-closed trace

structure. That it is canonical remains to be proved.

Since 7- and 7-' are canonical, F/O C_F and F'/O C__F', so by property 3.2,

F" /O = (F N F')/O C_F/O A F' /O C__F A F' = F".

Also, FA C_ F and F'A c_=F', so F"A = (F A F')A c__FA N F'A C F N F' = F". Obviously,

S" n F 'r = _, so 7-" is canonical. []

94 Chapter 4 Verification

Lemma 4.27. T _ T' = (I, O. (P n P') - (F n F'). F N F').

proof. Let T" = (I.O.(PNP')-(FNF'),FNF'). So by Lemma4.6, T" _ T and

T" -< 7-'. Now suppose that T"' ___'27-and T"' _ T'. Then by 4.23, P"' C P N P' and

F"' C F _ F'. By Lemma 4.6, again, "7"' ___T". V'I

The next lemma shows that the lattice is distributive.

Lemma 4.28. Meet and join distribute over each other.

proof. Follows from the distributive laws of union and intersection. V]

Theorem 4.4 follows from Lemmas 4.26 through 4.28; the bounds of the lattice are the

universal specification and the universal implementation.

Finally, we prove that mirroring interchanges meet and join.

Lemma 4.29. For any canonical prefix-closed trace structures T and T', (T_T') M = TMuT 'g

proof. Let 7-1 = (T_T') M and 7-2= 7-MI IT'M. P1 = A*-(FNF') = (A*-F)U(A*-F') = P2

andF1 = A* --(PAP') = (A* - P)U (A* -P') = F2 by de Morgan's laws. So T1 -_ '7-2,by Lemma

4.6. Hence, by Lemma 4.24, 'Ta = 7-2. ["'1

Chapter 5

An Automatic Verifier

Section 5.1. Introduction

This research was motivated by a practical problem: the difficulty of designing correct

speed-independent circuits. The purpose of this chapter is to demonstrate that automatic verifi-

cation is not only possible in theory, but practical as well. The ideas of the previous chapters

have been implemented in a program that can quickly verify or find bugs in speed-independent

circuits of nontrivial size. It has discovered errors in published designs.

The program is a "quick-and-dirty" prototype, which was written to demonstrate the feasi-

bility of the method with as little programming effort as possible; the entire program consists

of about 1,500 lines of LISP code. Although program could be made faster and easier to use,

it works well despite its simplicity which is evidence of the merits of the trace theory of the

previous chapters as a basis for practical verification.

The program was written in Spice LISP (called LISP henceforth), a dialect of Common LISP

[71]. LISP was chosen because it is well-suited for writing prototypes rapidly. It is particularly

easy to embed ad hoc description languages in LISP. This feature was used in the program to

facilitate the definition of state machines and circuit algebra expressions. One particular benefit

is that the full power of LISP is available within the description language. For example, trace

structures and circuit algebra expressions can be stored in variables (using the SETQ function)

and abbreviations can be defined using functions and macros. The program was implemented

and the examples run on a PERQ workstation.

96 Chapter 5 An Automatic Verifier

Incidentally, LISP code appears in several places below. A knowledge of LISP is not nec-

essary to understand this material m everything is explained in English. The LISP descriptions

are included for concreteness; they are exactly what were used to verify the examples.

The next two of the following sections describe the verifier. The second section covers

representational issues: the data structures representing trace structures and circuit algebra ex-

pressions, and the facilities to help the user construct them. The third section describes the

algorithm for checking conformation. Through the use of some simple tricks, the verifier can

avoid building a complete trace structure describing the implementation m a savings that is

crucial in many cases.

The fourth and fifth sections describe examples, and show how the verifier can be applied to

them. Both examples are schemes for building arbiters of any size by connecting a collection of

standard cells in a regular way. In each case, the circuits are verified at two levels of abstraction:

a high level, at which it is verified that larger arbiters can be built from the cells; and a low

level, at which it is verified that a circuit composed of more primitive components implements

a single cell. The trace structure for an individual cell is used as a description of a primitive at

the high level and as a specification of the desired behavior at the lower level.

The final section describes some additional capabilities of the program. Besides checking

conformation, the program can interactively perform the operations of circuit algebra and reduce

the results to canonical form. For example, the program can examine the results of applying the

DI operator (of Section 4.6) to an arbitrary trace structure.

Section 5.2. Descriptions and Specifications

To verify a circuit, a user supplies a description of the implementation and a specification

and asks the program to check whether the former conforms to the latter. The description of

the implementation has two parts: a trace structures for the primitive components, and a circuit

algebra expression describing how they are connected. The specification is also a trace structure.

It greatly simplifies the implementation of the program, especially the decision procedure for

conformation, to keep trace structures in canonical form. Of course, some details of the behavior

Section 5.2 Descriptions and Specifications 97

of circuits are lost in the reduction to canonical form; for example, the difference between a

circuit that might fail on a particular input, and a circuit that will fail on that input. In general, the

distinctions in behavior represented by general trace structures are not very interesting to circuit

designers, who are interested in designing correct circuits. In this case, the canonical form keeps

exactly the fight amount of detail; any more would be confusing as well as computationally

inefficient.

5.2.1. Representation of Prefix-Closed Trace Structures

An important result of the previous chapter is that canonical prefix-closed trace structures

are completely determined by a single trace set: the set of successes. The reduced representation,

which has only a set of inputs, a set of outputs, and a set of successes, is called a simple prefix-

closed trace structure. This is essentially the representation used in the program. The structure

representing them is called a SPCTS (an acronym that is admittedly unpleasant to pronounce).

The fields are:

names, a vector of wire names, representing the set A. No wire names are repeated, so

this establishes a one-to-one correspondence between the wire names and the numbers

0...k- 1, where IAI = k.

I, a bit vector representing the set of input wires. The ith bit is 1 iff the wire in the ith

position in names is an input wire.

O, a bit vector of output wires, with the same interpretation as I.

S, an array representing a deterministic state graph.

start, a number representing the start state of S.

The state graph is an n × k array, where n is the number of states and k is the size of

the alphabet. The states are numbered 0 to n - 1. S represents the transition function of a

deterministic finite-state automaton: S[i,j] is the successor when a transition is taken from state

i on symbol j (the jth wire in names).

To define a full-fledged finite automaton, the initial state and the accepting states need to

be designated. The start state is given by the start field of the SPCTS. Every state in the state

graph is an accepting state, since the set of successes is prefix-closed. As was noted in the

98 Chapter 5 An Automatic Verifier

previous section, the set of failures is a function of the set of successes, so it does not need to

be represented explicitly.

It is clear from the complexity of the diagrams for the relatively simple examples in Sections

3.4 and 4.5 that there needs to be some more abbreviated way to define sets of traces. This

raises the issue of description languages, which has been declared to be beyond the scope of the

thesis. In the following, some simple functions and macros are used to facilitate the definition

of trace structures. The result is probably not a generally useful or desirable notation, but it

suffices for our purposes.

5.2.2. Defining Boolean Gates

Boolean gates appear frequently in circuit designs. The Boolean function that defines a gate

is a much more readable and succinct description than the automaton accepting the traces of

the gate. Because of this, there is a macro called GATE that constructs the trace structure for a

gate. GATE takes as inputs a list of input wire names, an output wire name, a LISP expression

for the Boolean function (LISP has built-in Boolean operations on bitvectors), a list of initial

logical values for the inputs and output (to describe the initial state), and returns a trace structure

(a SPCTS) for the gate. The construction of the trace structure follows the definition of trace

structures for gates in Section 3.4 almost exactly.

For example, let us describe the gate that has inputs a, b, and c, output d, starts in the state

in which a = 0, b = 0, c = 1, and d = 1, and computes the Boolean function d = (a A _b) V _c:

(GATE (a b c) d

(logior (logand a (lognot b)) (lognot c))

((a 0) (b 0) (c i) (d i)))

Sincesome particulargatesareheavilyused,theprogram alsoprovidesspecificfunctions

to definethem. For example,thereisa macro to definea two-inputAND gate,calledAND2.

The AND2 macro takestwo inputnames, an outputname, and a descriptionof theinitialwire

values,and returnstheappropriateSPCTS. To describetheAND gatewithinputsa and b and

outputsc with initialvaluesa = 0,b = 1,and c = 0,we write:

(AND2 a b c ((a 0) (b i) (c 0)) .

Section 5.2 Descriptions and Specifications 99

Of course, users can write their own lisp functions for abbreviations, as well.

5.2.3. Defining State Machines

There is a another macro, called SM, to help define more general circuit elements and higher-

level specifications. The SM macro takes arguments to define the input and output alphabets of

the trace structure, a state graph, and the initial state of the state graph, and returns a SPCTS.

The most interesting part of the macro is the declarative description of a state machine. The

states of the state graph are decomposed into a collection of named state variables. Each state

variable has a declared range of values, from 0 to some (usually very small) positive integer.

The transition function is defined symbolically by a set of clauses. Each clause has a predicate

that is satisfied by a set of pairs of states and wires. Following the predicate, the clause has any

number of actions that define the target state when the predicate is satisfied, by assigning new

values to the state variables. The new values are in general a function of the old values of the

variables. If no predicate is satisfied by a particular state/wire pair, there is no corresponding

transition. A transition array is constructed from the clause by the brute-force method of iterating

over all possible combinations of state variable values and wire names. When a predicate is

satisfied by a state/wire pair, (i,j), the next state is computed and placed in the (i,j)th entry of

the array.

The examples of this section (and speed-independent designs, in general) make use of

hand-shaking protocols. The one used here is four-phase signaling. This protocol uses two

wires for each interface, a request wire and an acknowledge. One cycle of four-phase signaling

consists of a request (transition), an acknowledge, another request, and another acknowledge.

The initial request and acknowledge transition are usually interpreted as requesting a service and

acknowledging that it wiU be or has been performed. Sometimes meanings are associated with

the second request and acknowledge, also; other times, they exist solely to return the wires to

logical 0 values for convenience in the implementation. A sequence diagram for this protocol is

shown in Figure 5.1.

As an example, consider the mutual exclusion element of Section 3.4 (Figure 3.4). It can

be considered to use four-phase signaling. Their are two users. The request and acknowledge

100 Chapter 5 An Automatic Verifier

req
acknowledge I

Figure 5.1. Four-phase Signaling

wires for the first user are url and ual, and for the second are ur2 and ua2. The user asks for the

resource by raising the request wire. The arbiter cell grants the resource to the user by raising

the acknowledge. The user then does whatever it wants with the resource, fully confident that

none of the other users will be granted access. When the user is done, it releases the resource

by lowering the request fine. This is acknowledged by the arbiter by lowering the acknowledge

fine, so that the interface is ready for another user request.

Each interface of the ME element has four states, which are numbered 0 through 3. State

number 0 is the quiescent state; state 1 is represents an pending request -- the first request

transition has occurred but has not been acknowledged; state 2 represents a request which has

been granted by a transition on the acknowledge line (but no further request transitions have

occurred); in state 3, the resource has been released by a second transition on the request line,

but this has not yet been acknowledged. Four-phase interfaces march through these states in this

order, or stop forever in one of them. In the even-numbered states, a request transition is the

next to occur; in odd states, acknowledges are next. Finally, a user is said to be in the critical

region if its interface is in state 2 or 3; the user has the resource and no other request should be

granted.

LISP functions can be defined to add some syntactic sugaring for four-phase signaling:

(defun quiescentp (u) (= u 0)) ; in quiescent state.

(defun pendingp (u) (= u i)) ; in pending state.

(defun grantedp (u) (= u 2)) ; user has the resource.

(defun releasedp (u) (= u 3)) ; in released state.

Section 5.2 Descriptions and Specifications 101

(defun ackokp (u) (oddp u)) ; acknowledges are allowed.

(defun reqokp (u) (evenp u)) ; requests are allowed.

(defun criticalp (u) (> u i)) ; user is in the critical region.

It is a LISP convention that the names of predicates (functions that return true or false) should

end with "P".

It is now possible to write a somewhat readable specification for a mutual exclusion element,

as is shown in Figure 5.2.

(setq ME

(SM (url ur2) (ual ua2) ((ul 4) (u2 4)) ()

; ; now, the clauses:

((or (and (wire-is url) (reqokp ul))

(and (wire-is ual)

(or (and (pendingp ul) (not (criticalp u2)))

(releasedp ul))))

; ; action for first clause.

(advance ul))

;; second clause

((or (and (wire-is ur2) (reqokp u2))

(and (wire-is ua2)

(or (and (pendingp u2) (not (criticalp ul)))

(releasedp u2))))

; ; action for second clause.

(advance u2))))

Figure 5.2. LISP Macro to Define Mutual-Exclusion Elements

The setq at the beginning of Figure 5.2 stores the resulting trace structure in the LISP

variable ME, for future use. The first list argument to SM, (url ur2), gives the input symbols;

the second gives the outputs; the third declares two state variables, ul and u2 which represent

the states of the four-phase interfaces (url. ual) and (ur2, ua2). If a variable is omitted from the

102 Chapter 5 An Automatic Verifier

initial values list, it is initialized to 0 by default, so the fourth argument says that both interfaces

start out in the quiescent state (0).

The remaining arguments are two clauses that define the next-state function. The actions

of the clauses compute the next state as a function of the values of the state variables; in this

case, the action is a call to the macro advance, which increments the named state variable,

modulo its declared range (in this case, 4). This represents a four-phase interface moving to its

next state. The predicate in the first clause says that the interface should be advanced whenever

the current wire is url (the request line for ul) and a request is allowed by the interface. The

interface can also be advanced if the wire is ual (the acknowledge for ul) and there is either a

pending request and no one else is in the critical region, or the resource has been released but

this has not yet been acknowledged. The clause for the u2 interface is similar, except some of

the names have been changed.

As an example, consider the state in which ul = u2 = 1. The first predicate is false when the

wire is a because (reqokp ul) is false -- the first transition on the request line has not been

acknowledged, so four-phase signaling forbids another request. The first predicate is satisfied

when the wire is ual, because a request from ul is pending and the other interface does not

have the resource. This allows the ME element to grant the resource to ul. On the other hand,

in the state in which ul = 1 and u2 = 2, the ul interface cannot be advanced when the wire is c

because the condition (not (criticalp u2)) fails. This is the part of the specification that

ensures mutual-exclusion.

5.2.4. Expressions

Once a set of primitive SPCTS has been defined, they can be used to construct large circuit

descriptions using the operations of circuit algebra, called COMPOSE, HIDE, and RENAME in

the LISP implementation. For convenience, COMPOSE takes one or more trace structures; this

is the usual extension of an associative binary operation to any number of arguments. HIDE

takes a list of wire names to be hidden and a subexpression. RENAME takes a list of ordered

pairs representing the renaming function and a subexpression.

Section 5.3 Conformation Checking 103

As we shall see below, it is not necessary to construct a composite state graph in order to

check whether a composite circuit conforms to a specification. This is fortunate, since composite

state graphs are often quite large. Instead, these operations construct expression trees. There is a

node type for each operation except RENAME. The leaves of the trees are always SPCTS nodes

and the intemal nodes are of types COMPOSE or HIDE. A COMPOSE node has subexpression

list, which is a list of nodes representing the subexpressions that are composed. A HIDE node

has a field containing the list of symbols that are hidden and and a subexpression field with

another node in it. Each internal node has its own names, I, and O fields. The RENAME

operation does not need an explicit internal node - it simply changes the contents of the names

field of its operand.

The expressions are in a normal form similar to that defined in Section 2.6. A normal-form

expression is either a SPCTS, a COMPOSE node with two or more subexpressions which are

SPCTS, or a HIDE node which hides at least one symbol in a subexpression which is a normal-

form tree having a COMPOSE or a SPCTS node at its root. The operations maintain the trees in

normal form by applying the laws of circuit algebra: for example, if two trees with HIDE nodes

at their roots are composed, the COMPOSE function renames the hidden nodes as necessary

(say, to D and D'), then recursively composes the subexpressions under the HIDE nodes, then

hides D u D _. Thus, the HIDE node is moved to the top of the expression.

Section 5.3. Conformation Checking

The LISP function CONFORMS-TO-P checks conformation CONFORMS-TO-P takes two

arguments: an expression tree representing a circuit implementation and a SPCTS representing

a specification. If the first conforms to the second, the function returns normally; otherwise, it

reports an error and prints a list of wire names representing the failing trace, to help the user

diagnose the error.

CONFORMS-TO-P does not need to build a composite state graph in order to discover a

problem; it can check for failures as the state graph is being built, and report them immediately.

This is very important, because the state graph for an incorrect circuit often has orders of

104 Chapter 5 An Automatic Verifier

magnitude more states than the state graph for a correct circuit; the additional states represent

random actions by the circuit after a failure has already occurred. Reporting failures before the

entire state graph has been constructed greatly enhances the practicality of automatic verification.

Our implementation of CONFORMS-TO-P reduces the problem of testing conformation to

the problem of checking whether the composition of the implementation with the mirror of the

specification is failure-free, as discussed in the Chapter 4. The verifier searches the product

graph representing the composite traces of the composition. The search is depth-first; states are

created only as they are needed.

In more detail, alphabets of the expression tree and the specification are compared to see if

they match m an error is reported if they do not. The expression describing the implementation

is then converted into a components list, which is a list of SPCTS. If the expression is a single

SPCTS node, the list consisting of the node is used. If the expression has a COMPOSE node

on top, the subexpression list (a list of SPCTS) is used. Finally, if the tree is a HIDE node, the

hidden symbols are ignored and its subexpression (a COMPOSE or SPCTS) is converted to the

list via one of the previous two steps. This processing is reminiscent of the steps in the proof of

Lemma 4.2. The mirror of the specification is computed by exchanging the I and O bitvectors.

The mirror of the specification is then placed on the front of the components list.

Each state in the product graph (called a global state) is a vector of states from the SPCTS

on the components list; the ith element of this vector is a state from the ith SPCTS on the list.

The initial global state is the vector of the start states of the individual SPCTS. The graph is

recursively constructed and searched depth-first. When the search routines is called on a global

state, it first checks a hash table to see if the global state has already been visited. If it has,

the routine returns immediately. Otherwise, the routine enters the global state in the hash table,

constructs vectors for the successors in the global state graph, and recursively processes the

Successors.

Given a current global state, the global successor states are computed by inspecting the

outputs of each component. The components list has the property that there is exactly one

component (the driver) which has any particular wire (call it a) as an output, so there is a global

successor state if and only if the driver has a successor on a. In case there is a global successor,

Section 5.3 Conformation Checking 105

it is computed from the alphabets and transition functions of the elements of the component list,

as follows. Let us consider the ith member of the component list, ci. If ci does not have a in its

alphabet, the ith member of the global state does not change. If ci has a as an input and there is a

transition defined on a, the ith element of the global successor is the component successor. If ci

has a as an input, but no transition on a, there is a failure state in the global successor; the search

routine reports the problem and stops. The routine maintains a list of transitions representing the

path it has followed from the initial global state to the current state. In the event that a failure is

discovered, this path is a failure trace, which is printed the help the user diagnose the problem.

This trace may be quite long -- depth-first search usually does not find the shortest path

to a problem. Consequently, after reporting the error, the verifier offers to do a breadth-first

search to find the shortest failure trace; it is often much easier to understand the failure from

the shorter example. Of course, the implementation could have employed breadth-first search

from the beginning; depth-first search was chosen initially because it requires less space to keep

track of the remaining global states to be searched -- in addition to the table of states it has

visited, all it needs to remember is the path by which it reached its current state. On the average,

breadth-first search needs to keep all the global states at a particular distance from the root; if the

global states have more than one child on the average, the number of these grows exponentially

with the depth of the tree. Moreover, in the the examples that have been tried, breadth-first

search seems to examine a greater number of states to find an error.

If the implementation does not meet the specification, the problem is usually detected after

exploring a small fraction of the global states that would have appeared in the composite graph.

If the circuit meets the specification, all of the states will be explored. However, even in this

case there are savings compared with constructing a SPCTS for the implementation, because the

transitions between the states do not need to be explicitly represented.

This algorithm is linear in the number of states examined, which is at most the product of

the number of states in the individual components. In practice, the critical resource is the space

used by the state table. When verifying a difficult circuit, performance begins to suffer because

of conflicts in the state table and paging from secondary storage when the state table becomes

too large for primary memory. Some time after this performance degradation, the program runs

106 Chapter 5 An Automatic Verifier

out of paging space and halts. To some extent, these problems can be addressed by using

more compact data structures or a bigger computer. However, if a design inherently requires

inspecting an exponentially large state graph, constant-factor improvements in space usage will

not substantially increase the size of the circuits that can be verified.

Section 5.4. Example 1: Tree Arbiter

Mutual exclusion is a universal problem in concurrent programming. This is no less true of

asynchronous circuits than of operating systems. In asynchronous hardware, the shared resource

might be a communications bus or a storage element (e.g. a multi-port memory). This example

and the next are ways of implementing mutual exclusion with standard cells, so a family of

circuits to handle various numbers of users can be generated by composing the cells in some

regular way.

The approach of this section is to handle many users by building a tree of cells. The designs

and the errors in them are by the author. However, the idea and the correct design are borrowed

directly from Seitz [67]. Figure 5.3a is a block diagram of a single cell; Figure 5.3b shows how

several cells can be connected to handle more than two users. Each cell has three four-phase

interfaces: s with signals (sr, sa), ul with (url, ual), and u2 with (ur2, ua2).

The tree of arbiters is like an elimination tournament, n users are arbitrated two at a time

by the individual cells. The n/2 winners at each level are arbitrated by the next level, until

there is one winner for the entire tree. The requests propagate up to the top of the tree, then the

acknowledge signals propagate down the tree (but only to one child at each level) until a user

who is the winner of the tournament is acknowledged.

Four-phase signaling is used on all of the request/acknowledge interfaces. When one of

the users of an arbiter cell requests the resource, that cell asks its parent for the resource by

signaling on the s interface. The transitions on sr and sa have the same meanings as they do at

the ul and u2 interfaces. If the parent is not at the top of the tree, it will ask its parent for the

resource, and so on. If the parent grants the resource to the cell, the cell then grants the resource

to no more than one of its children. When this child releases the resource to the cell, the cell

Section 5.4 Example 1" Tree Arbiter 107

sr sa

tt

url ual ur2 ua2

_Isal
I

t l,,rI
xrlx_ I1"

url ua l ur2 ua2 ur3 ua3 ur4 ua4

(b)

Figure 5.3. Tree Arbiters

then releases it to the parent, waits to be acknowledged by the parent, then acknowledges the

child.

The arbiter will be verified at two levels of abstraction. At the high level, the cell specifica-

tion is a description of a primitive in a larger circuit that is a tree of cells. At the low level, the

cell specification is a specification to be met by an implementation that uses C-elements, AND

gates, and so forth.

108 Chapter 5 An Automatic Verifier

5.4.1. Specification of an Arbiter Cell

This subsection gives the specification of a single cell in the tree arbiter. The sequence

of transitions for one of the u interfaces (say, ul) and the s interface should follow the strict

sequence

url ; sr; sa; ual ; url ; sr; sa; ual.

During this process, the other user may request the resource at any time, but should not be

granted the resource if the first user has it or if the parent does not have it.

The tree arbiter cell is specified using the SM macro. The specification has much in common

with the specification of the ME element. There are three state variables called ul, u2, and s,

one for each of the interfaces of the cell. Each variable cycles through the values (0, 1,2.3),

representing the request and acknowledge wire values cycling through (00.01.11.10), just as in

the ME description. The state machine is specified by controlling the conditions under which

each interface can advance to the next phase.

The SPCTS for the specification is defined using the SM macro, as shown in Figure 5.4.

The inputs to the specification are url, ur2, and sa and the outputs are ual, ua2, and sr.

There are three state variables, ul, u2, and s in the range [0... 3]. By convention, if a state

variable is not mentioned in the initial values list (the third argument), it is 0; in this case, that

list is empty, so all of the state variables are 0, initially.

The transition function described by the clauses is somewhat similar to the ME element. The

first two clauses are the same as in the ME element, except that there are some extra conditions

imposed when the current wire is ual or ua2 to make sure transitions are properly ordered with

respect to the s interface. In the predicate of the first clause, the cell is allowed to acknowledge

ul if there is a request pending, if u2 does not already have the resource, and if the resource

has been granted to the cell by the parent -- the user should not get the resource unless the cell

has it to give. There can also be an acknowledge if the user has released the resource, and the

s interface has returned to quiescence (by releasing the resource to the parent and having that

release acknowledged) -- so the user release is not acknowledged until the parent acknowledges

the cell. The u2 interface is symmetric with this.

Section 5.4 Example 1: Tree Arbiter 109

(setq TREECELL

(SM (url ur2 sa) (ual ua2 sr) ((ul 4) (u2 4) (s 4)) ()

;; clause for ul interface.

((or (and (wire-is url) (reqokp ul))

(and (wire-is ual)

(or (and (pendingp ul)

(not (criticalp u2))

(grantedp s))

(and (releasedp ul) (quiescentp s)))))

(advance ul))

;; clause for u2 interface.

((or (and (wire-is ur2) (reqokp u2))

(and (wire-is ua2)

(or (and (pendingp u2)

(not (criticalp ul))

(grantedp s))

(and (releasedp u2) (quiescentp s)))))

(advance u2))

;; clause for s interface.

((or (and (wire-is sr)

(or (and (quiescentp s)

(or (pendingp ul) (pendingp u2)))

(and (grantedp s)

(or (releasedp ul) (releasedp u2)))))

(and (wire-is sa) (ackokp s)))

(advance s))))

Figure 5.4. LISP Specification for a Tree Arbiter Cell

The third clause controls the s interface. When the current wire is sr, the s interface should

be advanced if it is quiescent and if ul or u2 has requested the resource; this asks the cell's

parent for the resource. There should also be a transition on sr if the cell has the resource

[(grantedp s)], and the user who wanted it has released it. The last part of the predicate says

that the interface can receive an acknowledge on sa whenever the four-phase protocol allows it.

110 Chapter 5 An Automatic Verifier

5.4.2. High-level Verification

The tree arbiter cell is used to build bigger arbiters. In this subsection, we use the specifica-

tion of the cell as a description of a primitive in two small trees of cells, which should conform

to a specification of the bigger arbiter. This is a good way to make sure that the idea behind the

tree arbiter is sound, and more pragmatically, to debug the specification just described.

The first example is a single cell used to implement a two-way ME element (which was

specified in the previous section). For example, a single cell with a non-inverting buffer con-

necting sr to sa should conform to the specification for the ME element given in Figure 5.2

above. CONFORMS-TO-P confirms that this is the case, examining 28 states in the process.

What about three-way mutual-exclusion? The definition of the two-way ME-element can

be extended to a three-way element by adding a state variable u3, adding an additional clause

to check it, and modifying the predicates to check whether either of the other two interfaces has

is in the critical section before granting to the current user. A definition using SM is shown in

Figure 5.5.

sisal
I Cell2

t
ur3 ua3

xr _a

Cell 1

url ual ur2 ua2

Figure 5.6. Three-way Tree Arbiter

Section 5.4 Example 1: Tree Arbiter 111

(setq ME3

(SM (url ur2 ur3) (ual ua2 ua3) ((ul 4) (u2 4) (u3 4)) ()

; ; now, the clauses:

((or (and (wire-is url) (reqokp ul))

(and (wire-is ual)

(or (and (pendingp ul)

(not (criticalp u2))

(not (criticalp u3)))

(releasedp ul))))

(advance ul))

; ; second clause

((or (and (wire-is ur2) (reqokp u2))

(and (wire-is ua2)

(or (and (pendinglo u2)

(not (criticalp ul))

(not (criticalp u3)))

(releasedp u2))))

(advance u2))

; ; third clause

((or (and (wire-is ur3) (reqokp u3))

(and (wire-is ua3)

(or (and (pendingp u3)

(not (criticalp ul))

(not (criticalp u2)))

(releasedp u3))))

(advance u3))))

Figure 5.5. LISP Specification for 3-Way Mutual Exclusion

The program was used to check whether the circuit depicted in Figure 5.6 conforms to the

three-way ME specification. Surprisingly, CONFORMS-TO-P reported an error. The counterex-

ample trace from the initial depth-first search is 73 transitions long. However, the counterexample

from breadth-first search has 15 transitions:

url ; ur3 ;xr; sr; sa; xa; ual ; url ;xr; sr; sa; xa; sr; sa; ua3.

112 Chapter 5 An Automatic Verifier

Here is what happened: ul requested the resource, and so did u3 (url; ur3); the sequence

xr; sr; sa; xa is cell1 asking for the resource and getting it; then ul releases, and so do both cells

(url;xr; sr;sa;xa); then cell2, which still has a pending request from u3, asks for the resource

again and gets it (sr; sa); and then it grants to u3 (ua3). This is seems reasonable, except that ual

is still in the critical section when the resource was granted to u3, which violates the specification

of the three-way ME element.

The specification of the cell could perhaps be modified to conform to the specification.

However, a better solution is to change the specification of a three-way ME element (in this case

the bug is in the specification, not the implementation). The current specifications are based on

the idea that the critical section consists of phases 2 and 3. However, mutual exclusion in phase

3 is neither necessary nor useful. Once a resource has been released, the user should be through

with it; at that point, it should be available to other users. The critical section should consist

only of phase 2. The specification should only say that no two users can be in phase 2 at the

same time. This is repaired easily by redefining criticalp to be the same as grantedp. (In

the experiments here, only the definition of the three-way ME element was changed, although

the definition of criticalp in the other specifications could be changed also without ill effect.)

The tree of two cells conforms to this specification (CONFORMS-TO-P examines 169 states

to check this). Although there were no bugs in the implementation at this level, we have better

grounds for believing that the specification is correct, and we have corrected an misconception

about critical sections in the specifications of mutual-exclusion elements.

5.4.3. Low-level Verification

Figure 5.7a represents a first, rather naive, attempt to implement the arbiter cell. The OR

is used to raise sr whenever either user has requested the resource, and the AND gates are

used to steer the acknowledge from the parent (sa) to the user whose request was granted.

CONFORMS-TO-P complains about the trace

url ; ur2; gl ; sr; sa; ual ; url ; gl ; g2

Section 5.5 Example 2: Martin's Distributed Mutual Exclusion Circuit 113

in the depth-first phase. The problem is that when gl falls, the mutual-exclusion element can

immediately raise g2 in response to the request from ur2 _ but this causes a hazard in the OR

gate, which has not had a time to respond to the change in gl. The breadth-first phase finds a

different problem:

url ;gl ; sr; sa; ual ; url ;gl ; ual.

When gl falls, the upper AND gate may respond by lowering ual; but this is premature, since

the specification requires that the s interface return to 0 first. The pitfall in this design was not

thinking about the falling transitions.

An improved circuit appears in Figure 5.7b. The additional ANDs with one inverted input

are used to prevent the rest of the circuit from seeing changes in gl and g2 until the acknowledge

for the other interface has returned to zero. The two ANDs driving the user-acknowledge wires

have been changed to C elements (Section 3.4), so that the acknowledges will not return to zero

until both sa and gl (or g2) have returned to zero.

CONFORMS-TO-P complains about the trace

url ; ur2; gl ;xl ; sr; sa; ual ; url ; gl ; g2; ua2

(in the breadth-first phase). An acknowledge on ual can occur before the s interface has returned

to zero. The problem is that after gl goes low, g2 can go high before sa goes low, causing the

lower C element to raise ua2 before it should.

The design can be fixed by using the x signals instead of the g signals as inputs to the

C elements. The x signals follow the g signals, but they are delayed until the s interface has

returned to zero. Figure 5.7c shows the amended circuit. CONFORMS-TO-P reports that this

circuit meets the specification; 52 states are examined in discovering this.

Section 5.5. Example 2: Martin's Distributed Mutual Exclusion Circuit

Martin has proposed a different solution to the n-way mutual exclusion problem [49]. In

his solution, the arbiter cells are arranged in a ring. Each is connected to a user and to identical

ceils on the left and right. There is a single token that inhabits no more than one cell in the

114 Chapter 5 An Automatic Verifier

$a

ua 1 $agl u_a_-.._url

sr ur2]ME I gl x2

ur2 ME sr=

ua2 sa

(a) sa

(b)

$a

ME sr=

-1____1

Figure 5.7. Implementations of Tree Arbiter Cell

ring at any time. A cell may receive requests for the token from its user or from the cell on its

Section 5.5 Example 2: Martin's Distributed Mutual Exclusion Circuit 115

left. If the cell has the token, it gives it to whomever requested it (if both request the token,

the cell arbitrarily decides between them). If the cell does not have the token but has a request

for it, it requests the token from the cell to the right. When the user releases the resource, the

token reappears in the corresponding cell. Hence, in a typical case, a user requests the resource,

causing requests for the token to propagate around the ring to the right until they reach the cell

that has the token; then the token propagates to the left until it reaches the cell whose user made

the request. The token then disappears until the user has released the resource, at which point

another cycle begins. Unlike the tree arbiter, this arbiter is completely symmetric.

This example is interesting for several reasons. First, it is one of the larger fully speed-

independent circuits published. Second, the verifier discovered a problem in the circuit even

though the circuit was derived by transformations from a correct program, demonstrating that

automatic verification is useful even when a circuit has been designed carefully.

5.5.1. Specification of the DME cell

As before, we begin by specifying the trace structure for the cell. A block diagram of the

cell appears in Figure 5.8. There are three four-phase interfaces: u with wires (ur, ua), r with

(rr, ra), and l with (lr. la). The u interface receives requests for the resource from a user, the I

interface makes requests from a ceil to the left, and the r interface receives requests from a cell

on the right.

ur ua

Ir = =rr

DME

la _ = ra

Figure 5.8. Distributed Mutual Exclusion Cell

116 Chapter 5 An Automatic Verifier

The circuit was specified in the original paper using a CSP-like language. Unfortunately,

the CSP specification cannot be translated directly into a trace structure because it does not

completely specify the implementations of the communication protocols at the various interfaces.

Instead, the SM macro is used. The specification appears in Figure 5.9.

(setq DMECELL-TOK

(SM (ir ur ra) (la ua rr) ((i 4) (u 4) (r 4) (b 2)) ((b i))

((and (wire-is ir) (reqokp i))

(advance i))

((and (wire-is la) (pendingp i) (= b i))

(advance i)

(setq b 0))

((and (wire-is la) (releasedp i))

(advance !))

((and (wire-is ur) (reqokp u))

(advance u))

((and (wire-is ua) (pendingp u) (= b i))

(advance u)

(setq b 0))

((and (wire-is ua) (releasedp u))

(advance u)

(setq b I))

((and (wire-is rr)

(or (and (quiescentp r)

(or (pendingp i) (pendingp u)) (= b 0))

(grantedp r)))

(advance r))

((and (wire-is ra) (pendingp r))

(setq b I)

(advance r))

((and (wire-is ra) (releasedp r))

(advance r))))

Figure 5.9. LISP Specification for DME Cell

Section 5.5 Example 2: Martin's Distributed Mutual Exclusion Circuit 117

The inputs are Ir, ur, and ra, and the outputs are la, ua, and rr. There are four state

variables: one for each of the four-phase interfaces (I, u, and r), and one representing whether

the cell has the token: b = 1 if it has the token, and b = 0 if it does not. The initial values of

all the state variables are 0 except for b = 1.

There are three clauses to control each four-phase interface. In addition to cycling through

the four-phase protocols, these clauses sometimes change the b variable. For the l interface,

the rules say that an lr transition can occur whenever a request is allowed by the four-phase

protocol. An outstanding request on l is acknowledged only if the cell has the token (b = 1); in

this case, the l interface advances to the next phase, and the value of b is set to 0 to reflect the

fact that the cell has given the token to its left neighbor. The la wire is also allowed to change

to acknowledge a release on the I interface (without changing the status of the token).

The description of the u interface is similar. The only difference is that b is set to 1 (instead

of 0) when the user acknowledge returns to zero; in essence, the user returns the token to the

cell when it is done.

For the r interface, a request is sent out on rr whenever the interface is quiescent (r = 0)

and the cell wants the token because there is an outstanding request from the left neighbor or

the user, and the cell does not already have the token, rr may also change when the cell has

received the token and stored it. If there is a pending request on r, the request is acknowledged

only if the cell's right neighbor has given it the token. In this case, the next state has b = 1 in

addition to advancing the r interface, the cell has acquired the token. Finally, ra may return to

zero when r has been released.

The state machine may start in one of two states, depending on whether it has the token

(b = 0) or not (b = 1). The specification above shows the second case. In either case, all of

the other variables start at 0. There is only one change that needs to be made in the description

to describe a cell starting in the state in which it does not have the token: b is initialized to 0

instead of 1.

118 Chapter 5 An Automatic Verifier

5.5.2. High-level Verification

Given the complexity of this specification, it would be wise to check it by verifying that

small multi-way arbiters built from the cells meet their specifications. Several typographical

errors in earlier versions of the specification were uncovered in the specification by this method.

Once again, the specification of the cell is used as a description of a primitive at this level of

abstraction.

The first test is to see whether a single cell in which the l interface has been connected to the r

interface via two non-inverting buffers (Figure 5.10a) conforms to a "one-way mutual-exclusion

element", i.e., a buffer. CONFORMS-TO-P confirms that this is the case by examining four

states. The specification of the cell must start in the state in which it has the token; otherwise,

the cell meets the specification by deadlocking.

The next test is to see if two cells, connected as in Figure 5.10b, conform to to a two-way

mutual exclusion element. Initially, the left cell has the token and the right does not. The

specification passes the test; 208 states are inspected in checking this.

The test with three ceils also passes (after checking 2,496 states). Interestingly, this system

conforms to the original specification of a three-way mutual exclusion element (with the critical

section defined as phases 2 and 3), which the tree arbiter failed to implement.

5.5.3. Low-level Verification

Martin's published implementation of the DME cell appears in Figure 5.11. Several of

the components are somewhat different from previous descriptions of the same components in

Section 4.5. One of these is the SR latch. The SM description for the version of the latch used

in this chapter is shown in Figure 5.12.

In English, the inputs s and r are allowed to change whenever both are low, or when one

is high and the corresponding output (b for s and notb for r) is also high. The output b can

change when r = 1 and when b = 1 (it goes low because the latch is being reset) or when s = 1

and notb = 0 (it is being set and the other output has already gone low). The conditions for

notb are similar. The difference between this description and the description of Section 4.5 is

that when the latch changes state, the outputs are guaranteed to change in a fixed order because

Section 5.5 Example 2: Martin's Distributed Mutual Exclusion Circuit 119

ull

r1DME cell

la (w/token)

(a)

DME cell DME cell

(w/token) (w/o token)

(b)

Figure 5.10. One- and Two-Way Distributed Mutual Exclusion

both must be 0 at some time. This restriction makes the circuit more convenient to use in

speed-independent circuits: the environment can tell that the latch has definitely settled in the

"set" state when b = 1, and that it is in the "reset" state when b = 0.

The mutual-exclusion element in this circuit is slightly different from the previous one

because it has an additional signal, inh. If inh is high, the ME element waits for it to go low

120 Chapter 5 An Automatic Verifier

Figure 5.11. Published Implementation of DME Cell

before it grants to one of the users. The description of the mutual-exclusion element is modified

by adding this input, that is allowed to change at any time. The description is similar to that of

the ME element except that there is an additional condition: inh = 1 must be true for either user

to enter the critical region. The modified description appears in Figure 5.13.

To specify the initial conditions for the circuit, we assume that neither the implementation

nor the specification has the token, initially. In the implementation, this means that the SR latch

has b = 0 and notb = 1. All other signals are initially 0. When CONFORMS-TO-P is asked

whether the implementation conforms to the specification, it examines 12 states, then reports the

error

lr; ur; u; qi; rr; ra; qo; yl ; ua; ur; u; l.

Section 5.5 Example 2" Martin's Distributed Mutual Exclusion Circuit 121

(setq SR-FF

(SM (s r) (b notb) ((s 2) (r 2) (b 2) (notb 2)) ((notb I))

((and (wire-is s)

(or (and (= s 0) (not (= r i)))

(and (= s I) (= b I))))

(advance s))

((and (wire-is r)

(or (and (= r 0) (not (= s i)))

(and (= r I) (= notb I))))

(advance r))

((and (wire-is b)

(or (and (= r i) (= b i))

(and (= s I) (= notb 0) (= b 0))))

(advance b))

((and (wire-is notb)

(or (and (= s i) (= notb I))

(and (= r I) (= b 0) (= notb 0))))

(advance notb))))

Figure 5.12. LISP Specification for SR Latch

This path is produced by both depth- and breadth-first search. The immediate problem is that

there is a hazard in the OR gate which has l and u as inputs. When u goes low, there is an

outstanding request on lr which the ME element can grant immediately m the inhibit signal

which was supposed to prevent this can be delayed in various OR gates, and may not arrived at

the ME element in time. The more general problem is that the delays in the inhibit logic were

not taken into account in the design of the circuit. The transformations that were used to derive

the rest of the circuit were not used for this part of it, resulting in the introduction of a bug.

Martin also discovered this problem after publishing the circuit, and redesigned the cir-

cuit. The modified circuit appears in Figure 5.14. An ordinary ME element is used in this

circuit; external circuitry is used to delay the processing of one request until the processing of

the other has been completed. Interestingly, the left part of the circuit is almost identical to

122 Chapter 5 An Automatic Verifier

(setq ME-inh

(SM (url ur2 inh) (ual ua2) ((ul 4) (u2 4) (inh 2)) ()

((or (and (wire-is url) (evenp ul))

(and (wire-is ual)

(or (and (pendingp ul)

(not (criticalp u2))

(not (= inh i)))

(releasedp ul))))

(advance ul))

((or (and (wire-is ur2) (reqokp u2))

(and (wire-is ua2)

(or (and (pendingp u2)

(not (criticalp ul))

(not (= inh i)))

(releasedp u2))))

(advance u2))

((wire-is inh)

(advance inh))))

Figure 5.13. LISP Macro for Mutual Exclusion Element with Inhibit

the final implementation of the tree arbiter. This implementation does meet the specification;

CONFORMS-TO-P examines 154 states to discover this.

Section 5.6. A Trace Theory Calculator

To do the examples of the previous two sections, it is not necessary to evaluate expres-

sions of circuit algebra, that is, to translate the expression into a single simple prefix-closed

trace structure. However, in some circumstances evaluating the expression may be appropriate,

anyway. First, it may be important for efficiency. If a particular sub-circuit appears a number

of times in an implementation, evaluating and then simplifying may reduce the size of the state

graph that needs to be explored. Second, determining some interesting properties of circuits

requires evaluation of expressions. For example: what is the least delay-insensitive specification

Section 5.6 A Trace Theory Calculator 123

ua S R

IT

ra

()
la

Figure 5.14. A Correct Implementation of the DME Cell

to which a composite circuit conforms? To find out, the DI operator (written in LISP) can be

applied the resulting expression evaluated. Also, determining whether two composite circuits are

conformation-equivalent requires that both be evaluated, CONFORMS-TO requires the specifi-

cation to be a SPCTS. Finally, inspecting the state graph for a composite circuit can sometimes

yield insights into the operation of the circuit.

The program has a function called TEVAL which evaluates a circuit algebra expression. If

the expression is already a SPCTS, TEVAL returns it. There are no RENAME expressions, since

RENAME applied to an expression changes the names directly. The evaluation of the remaining

expression types, COMPOSE and HIDE, is more involved.

If the expression is of type COMPOSE, TEVAL constructs a global state graph using an

algorithm similar to CONFORMS-TO-P. However, the algorithm is somewhat more complicated

because it must keep track of the transitions between the states, as well as the states themselves.

The resulting state graph contains autofailure states which must be removed. This is done by

a depth-first traversal of the reverse of the state graph, starting from the states in the list of

124 Chapter 5 An Automatic Verifier

autofailures. Any predecessor of an autofailure state which reaches the autofailure via an output

symbol is recursively marked as an autofailure. When this procedure terminates, all of the states

which have been marked as autofailures are removed from the state graph. This procedure takes

care of all the simplifications of the previous chapter: the recursive marking procedure is an

implementation of autofailure manifestation, and removing the states from the state graph takes

care of failure exclusion.

TEVAL of a HIDE node builds a non-deterministic finite state automaton by converting

all transitions on hidden symbols to transitions on e [45]. This automaton is then converted to

a deterministic automaton using the power set construction, which is slightly modified to keep

track of failure states. If a set of states in the power set construction contains a failure, the

state is removed. This takes care of the failure-exclusion transformation the previous chapter.

Autofailures are not introduced by hiding, so they do not need to be removed.

Chapter 6

Infinite Sequences and Infinite Games

Section 6.1. Introduction

Liveness properties are assertions about the behavior of a system into the indefinite future.

Consequently, Chapter 7, which develops a trace theory for liveness properties, makes heavy use

of infinite sequences. This chapter lays a foundation for the next by presenting mathematical

background on infinite sequences and some results on infinite games.

Many of the definitions and results for finite sequences apply also to infinite sequences; for

example, there are regular languages of infinite sequences and finite automata that accept them.

The second and third sections cover definitions and basic results for infinite sequences and finite

automata on infinite sequences.

The definitions of receptiveness and autofailure for the trace theory of Chapter 7 are most

naturally defined using infinite games, which are two-player games that are played forever. This

material is likely to be unfamiliar. The fourth section defines infinite games and presents some

basic results. The fifth section proves a new result: for a particular class of infinite games, the

problem of whether the second player has a winning strategy is decidable. This is a crucial result,

because it is the basis for a decision procedure for receptiveness and for autofailure manifestation

for the trace structures of Chapter 7.

126 Chapter 6 Infinite Sequences and Infinite Games

Section 6.2. Mathematical Preliminaries: :-sequences

This section presents definitions and basic results relating to infinite sequences.

An _:-sequence over X (or an infinite sequence) is a function from _, to X. The set of all

_:-sequences of type _' --+ A is written A _'. The length of an 4, sequence x (x) is w. i < _.'

means either i E _-' or i = _'. Without modification, the definition of concatenation of Section 3.2

specifies x-y when x is a finite sequence and y is an w-sequence. This concatenation is not defined

when x is infinite. The concatenation of sets XY is defined when all of the sequences in X are

finite. The definition of a prefix is also the same as in Section 3.2. When z is an _.,-sequence,

we define pref(z) to be the set of all finite prefixes of z. pref is extended to sets of sequences

as in Section 3.2. The set of all finite and infinite sequences over A is written A _ (= A* U A_).

A set X is a prefix chain if it is totally ordered by the prefix ordering. The limit of a prefix

chain X, written lim(X), is the least sequence such that for every x _ X, x < tim(X) (note that

the definition of < for sequences from Section 3.2 applies to infinite sequences). If X has a

maximum element, that element is lim(X) and if lim(x) is finite, then lim(X) C X. If Y is a set of

sequences and X C_Y, then X is a maximal chain (in Y) if for every prefix chain X', X C X' C Y

implies X' = X. lim(Y) is defined to be the set {lim(x) X is a maximal chain in Y}. For every

z E A _, pref(z) is a prefix chain. It is easy to show that

6.1 lim[pref(z)] = z.

The following two lemmas are very useful in proving the equivalence of infinite sequences:

Lemma 6.1. Given two prefix chains X and Y, if for every x E X there is a sequence y E Y

such that x < y, then lim(x) < lim(Y).

proof. If y E Y then y < lim(Y). Since for every x E X there is a y such that x <_y, then

Vx" x < lim(I0. But then by the definition of lim, lim(X) _<tim(Y). [2]

Lemma 6.2. If X and Y are prefix chains of finite sequences and lira(X) _<'-lim(I0, then for

every x E X there is a y E Y such that x <_ y.

proofi Since lim(X) < lim(Y), for every x E X and y E Y, x < lira(X) _< lim(I0 and

y _< lim(Y), so x and y are in pref[lim(I0], a chain, so they are totally ordered: either x _< y

Section 6.2 Mathematical Preliminaries." _:-sequences 127

or y _%<x. Suppose that for some x E X there is no y E Y such that x _ y. Then for every

y C Y, y < x, so then y < lim(X), so tim(Y) < lim(X). By hypothesis, x is finite so lim(Y) is

finite, so lim(Y) C Y. But then tim(Y) < x, also. Hence lim(Y) < lim(X), which contradicts the

assumption that lim(X) _ lim(Y). So for every x E X there is a y C Y such that x __<y. V]

Concatenation can be generalized to sequences of sequences. First, it is extended to finite

sequences. Let cr be a finite sequence of sequences (or • i --+A*, where i C _') The concatenation

of (z is defined recursively on i: if i = 1, it is or(0); otherwise, it is the concatenation of or(0)

with the concatenation of the sequence or(i)...., cr(i- 1). The concatenation of an _'-sequence

cr is defined to be the limit of the concatenations of its prefixes.

Concatenation can also be extended to sequences of sets of finite sequences (of type i ---+

Y'-(A*)). A sequence of sequences _r is elementwise contained in a sequence of sets of sequences

S if for all i _ _.,, or(i) E S(i). The concatenation of S is defined to be the set of the

concatenations of the sequences that are elementwise contained in _.

Some notational devices are needed to distinguish sequences from sequences of sequences.

If A is a set not containing sequences and xi E A* for all i ff _', we write sequences of the xi with

commas separating the individual sequence elements: e.g. x0, Xl,..., xi-1 for a finite sequence

of length i and xo, xl for an _'-sequence. The concatenations of these sequences (members

of A _) are written XOXl ... xi and xoxl The same convention is used to distinguish sets of

sequences from sequences of sets: if Xi C A* for all i E _.,, then X0, X1.... is the sequence of

Xi's, while XoX1 ... is the concatenation of this sequence, a set of sequences.

If X is a subset of A*, the set of finite sequences having elements in X is written X _:*),the

set of _:-sequences is X (_), and the union of these sets is X (_). Note that X(*), and so on, are

sets of sequences of sequences. The sets of sequences X*, X _, and X _' can be defined as the

concatenations of X (*), X (-°), and X (_), respectively.

A function f from finite sequences to finite sequences respects prefixes if whenever x < y,

f(x) < f(y). If X is a prefix chain and f respects prefixes, f(X) is also a prefix chain. Such a

function can be extended to infinite sequences by setting f(z)= lim(f[pref(z)]).

128 Chapter 6 Infinite Sequences and Infinite Games

Lemma 6.3. If f E [A_ --+ A TM] and f(z) = lim(f[pref(z)])for all z E A s, then f respects

prefixes.

proof. Let x and y be any members of A _. If x _< y, then pref(x) _C pref(y), so

f[pref(x)] C_ f[pref(y)]. But then by Lemma 6.1, lim(f[pref(x)]) _< lim(f[pref(y)]), so

f(x) < f(y). D

The next lemma is a useful fact about such functions.

Lemma 6.4. If f is a function from A _ to n '_ such that for all x E f(x) = lim(f[pref(x)]),

and if X is a prefix chain in A*, then f[lim(X)] = lim[f(X)].

proof. Let x = lira(X). Since x = lim[pref(x)], x = lim(f[pref(x)]). By Lemma 6.2, for

every y E prefix) there is a y' C X such that y _< y', and for every y' E X there is y E prefiX)

such that y' _< y. Since f respects prefixes by the previous lemma, the same relationship

holds between f[pref(x)] and f(X); so by Lemma 6.1, lim(f[pref(x)]) = lim[f(X)]. Hence

/[lira(X)] = limbe(X)]. E]

Any function that has been naturally extended to sequences respects prefixes, including

del(D) (for any D) and renaming functions r. A further interesting property of del(D) is that

even if z is an infinite sequence, del(D)(z) may be finite: for example, if z = a _', del({a})(z) = e.

Section 6.3. ..,-regular Sets and Finite Automata

There is a theory of regular languages on infinite sequences, and there are finite-state

automata that accept these languages. Most of the results for regular languages of finite sequences

carry over to infinite sequences, as well, although the theory is somewhat more complicated.

Regular sets of infinite sequences are called ,:-regular sets [24,33]. x-regular sets are closed

under union, intersection, and complementation; furthermore, if X is regular and Y is _,-regular,

XY is _:-regular, too.

The .:-regular sets are defined as the sets described by _,-regular expressions, which are

generated by adding an _., operator to regular expressions. If _ is a regular expression and f7 is

regular expression whose set does not contain e, (_.(3 _) is an a:-regular expression; if ._1 and _;2

are both _.,-regular expressions, so is (._l + "r2). The set of ..'-sequences [c_.(3"_)] is defined to

Section 6.3 _.'-regular Sets and Finite Automata 129

be [c_][J] _', and ['/a + _2] is [')'1] U ["),'2]- A set is _:-regular if and only if it can be written as an

_,-regular expression.

Like regular sets, there is a form of finite automaton that accepts _'-regular sets. A determin-

istic or nondeterministic Biichi automaton has exactly the same structure as a finite automaton,

except that we call the set of "final states" Q_ instead of QF. The difference between a Biichi

automaton and a finite automaton is the way it accepts a sequence. If p is a run of a nondeter-

ministic Biichi automaton on an _:-sequence x, it is a sequence in Q_ such that p(0) E Q0 and

for all i C _:, p(i + 1) E n[p(i).x(i)] (for deterministic Btichi automata, p(i + 1) = n[p(z').x(i)]).

For any infinite sequence x, we define In(x) to be the set of elements that appear infinitely often

in x; formally, In(x) = {a i x-a(a) is infinite}, p is an accepting run if In(p) rq Q_ :_ _ (at least

one state in QB is repeated infinitely often). An automaton accepts x if there is some accepting

run of the automaton on x.

We are concerned almost exclusively with nondeterministic Btichi automata. Given two

nondeterministic Biichi automata that have the same alphabet A and that accept _:-regular sets X

and Y, there are effective procedures for finding automata that accept XU Y, XN Y [62], and A_ -X

(the complement of X) [68]. If the automata have m and n states, the resulting automata have

no more than m + n, 3mn, and 16"2 states, respectively. Complementation of nondeterministic

Biichi automata is PSPACE-complete, so it is unlikely that a subexponential algorithm will be

found in the near future.

Given a Btichi automaton .k4 accepting the set X, an automaton _' can be constructed that

accepts del(D)-l(X) (where D N A = _). The alphabet A' of J_' is A UD. For each state qi in

QB, we choose a new state g/i _ Q; call the set of all the new states Q. We set Q' = Q u Q and

Qj_ = Q_. n' : Q' x A' _ _(Q') is defined so that

n'(qi, a) = n(qi, a) when qi E Q u O. and a C A,

n'(qi, a) = {qi } when qi E (Q u 0_) - Q8 and a E D, and

n'(qi, a) = {g/i} when qi C QB and a C D.

In a diagram of the machine, this construction would introduce a self-loop on D all non-

accepting states. This cannot be done for the accepting states, because it can incorrectly introduce

130 Chapter 6 Infinite Sequences and Infinite Games

strings ending in D -' into the language. So for the accepting states, D symbols go to a non-

accepting copy of the state. Any symbol from A will take the machine back from one of the

copied states to one of the original states. Note that ._4' has Q + QB states.

There is one way in which the theory of _:-regular sets is markedly different from the

theory of regular sets: deterministic Btichi automata are strictly less powerful that nondeter-

ministic Biichi automata. For example, the set (a + b)*b _ is not accepted by any deterministic

Btichi automaton, but it is accepted by a nondeterministic automaton with two states. The sets

accepted by deterministic Btichi automata are closed under union and intersection, but not under

complementation or deletion.

Most of the sets of sequences discussed in this chapter contain both finite and infinite

sequences. Given a set X C_ A _, the set of all finite sequences in X is X N A*, and the set of

all _,-sequences is X N A _'. X C_A_ is a mixed regular set (or just regular when no confusion

should result) when X N A* is regular and X n A "_'is _-regular. Mixed regular sets are closed

under union, intersection, complementation, deletion, and inverse deletion. Additionally, if X is

regular and Y is mixed-regular, XY is mixed-regular.

Regular expressions can be extended to describe mixed regular sets by allowing a+/3 to

be an expression if ca is a regular expression and /_ is an _,-regular expression (but, in this

case, ca+ i_ may not be embedded in another regular or _,-regular expression). These are called

mixed-regular expressions.

Mixed finite automata, which accept mixed regular languages, can be defined. A mixed

automaton is a finite automaton .t4 with two sets of accepting states: QF and QB. The states

of QF are the finitely accepting states and those of QB are the infinitely accepting states. The

language of a mixed automaton is the union of the language accepted by the finite automaton

with accepting set Qe and the language accepted by the Biichi automaton with accepting set

QB. Union, intersection, complementation, deletion, and inverse deletion can all be performed

on mixed automata at no greater expense than on Btichi automata.

To prove that mixed regular languages are closed under deletion, it is helpful to extend

nondeterministic mixed automata to allow transitions on e in addition to transitions on members

of A. Informally, a run of the automaton can make any finite number of e moves between

Section 6.3 _.'-regular Sets and Finite Automata 131

reading symbols from the input, but it must eventually read the entire input. Note that in such

an automaton, there can be infinite runs on finite inputs, in case the run has an infinite number of e

transitions after the entire input has been read. Formally, a runp on x E A _ is a sequence of states

such that there is a monotonically increasing sequence of indices j0 = 0 < jl < ... < ji < ...

of length exactly x such that p(0) E Q0 and for all 0 < k < p either k + 1 = ji + 1 for some

0 < i < x and p(k + 1) c=n[p(k), x(i)], or k + 1 :/ji + 1 for any i and p(k + 1) E n[p(k), c]. The

requirement that the sequence ofji's be the same length as x ensures that every element of x is

read. A run is accepting if it is finite and p(p) E QF or if it is infinite and In(p) N QB 5_ _. Note

that a finite sequence can be accepted via an infinite run.

A nondeterministic mixed automaton with c transitions can be converted to a mixed au-

tomaton with no c transitions by using the e-closure construction of Hopcroft and Ullman [45]

although special attention must be paid to the sets of accepting states in the resulting automa-

ton. Given an automaton :_, we define a function e+: Q ---, "p(Q), which maps each qi _EQ to

the set of all states that can be reached from qi via one or more e transitions. Another func-

tion e*'Q _ 79(Q) is defined so that c*(qi) = e+(qi) u {qi}. We define an automaton M' with

Q' = {e*(qi) qi E Q} and Qto = {e*(qi) qi E Qo}.

We define n'" Q' × A _ "-]:'(Q') so that

n'(c*(qi),a) = {c*(qj) 3qt E c*(qi):qj E n(q_,a)}.

The finitely accepting states of the automaton must include not only the finitely accepting states

of the original, but also the infinitely accepting states in the original that can be reached from

themselves via one or more epsilon transitions:

Q'F = _{e*(qi) 3qj E e*(qi):qj E QF V (qj C QB N e+(qj)).

Note that this construction does not increase the number of states in the automaton. It may

increase the number of transitions, but the total number of transitions is bounded by Q 2. A.

Given a mixed automaton accepting a language X c A _, there is a procedure to construct

the automaton for del(D)(X), where D C_ X: replace all of the transitions on D-symbols by

transitions on e, then convert to an e-free mixed automaton.

132 Chapter 6 Infinite Sequences and Infinite Games

In order to describe several related mixed regular sets with a single state diagram, each state

is labeled with the names of the sets for which it is an accepting state. There is a second label

to say whether the state is finitely or infinitely accepting. The second character in the state label

is "." if it is a final state in a finite automaton, "_," if it is a final state in a Biichi automaton,

or "_c" if it is both. Hence, if a state is labeled "S*F_,", any finite input having a run ending in

that state is in S, while any infinite input having a rn in which the state appears infinitely often

is in F.

When x is a member of A* and X is a subset of A _, we define the function suf(x, X) to be

the set {y Ixy E X}. The following properties of suf(x,X) are easy to prove:

6.2 suf(x, X) U suf(x, Y) = suf(x, X U Y)

6.3 suf(x, X) N suf(x, Y) = suf(x_ X n Y)

6.4 dei(D)[suf(x, X)] c_ suf[del(D)(x)_ del(D)(X)]

6.5 A -_ - suf(x. X) = suf(x, A_ - X)

6.6 X C_Y implies suf(x,X) C_suf(x. Y)

If X C__A _, two finite sequences x and y (in A*) are suff_-equivalent in X if suf(x, X) =

suf(y.X). The following two technical lemmas are used in the final section of this chapter (an

equivalence relation of finite index has a finite number of equivalence classes):

Lemma 6.5. Suffix-equivalence in a regular set X is an equivalence relation of finite index.

proof. Suffix-equivalence is obviously an equivalence relation. To see that it is of finite

index, consider first the case where X C_A* or X C A _:. There is a nondeterministic finite (or

Biichi) automaton ._4 accepting X. We say that a finite sequence x of length i reaches a set of

states R if R = {p(i) p is a run of A4 on x). Clearly, if x and y reach the same sets of states

in ._4, x and y are suffix-equivalent in X: for any sequence z, xz is accepted if and only yz is

accepted (the suffixes of the runs on xz and yz are identical). But there are only a finite number

of distinct state sets, so the index of the equivalence relation is finite.

Section 6.4 Infinite Games 133

When X contains both finite and infinite sequences, suf(x. X) = suf(x. X n A*) Usuf(x. X NA _').

It is clear that the index of suffix equivalence in X is no greater than the product of the indices

of suffix equivalence in X n A* and X n A _'. V]

Lemma 6.6. Suff_-equivalence is right-invariant with respect to concatenation.

proof. An equivalence relation, _, on finite sequences is right invariant if for every a E A,

x _ y implies xa -_ ya. This is obviously true from the definition of suf. I-]

It should be clear from this proof that the deterministic automaton resulting from the usual

power set construction has the property that two finite sequences reach the same state if and only

if they are suffix-equivalent. So an effective representation of the suffix-equivalent sequences

can be found in time exponential in the size of Q.

Section 6.4. Infinite Games

As we shall see below, infinite games are a central concept in the study of complete trace

structures. This section defines infinite games and presents basic results relating to them.

We define an infinite game to be a triple (X, Y_ Z), where X and Y are any sets and Z is

a set of sequences in (X × Y)_-'. There are two players of the game, which we call white and

black. X is the set of white moves, Y is the set of black moves, and Z is the set of black wins.

Each play of the game consists of a white move followed by a black move, formally, a pair in

X × Y. A history of a game is a sequence in (X × Y)_' (so Z is a set of histories).

A history is a win for black if it is in Z, and a win for white otherwise. A strategy for

black is a mapping from X (*) to Y. The sets of moves X and Y and a strategyf for black defines

the histories that can result if black plays according to f. If for every sequence x0. xl in X (_)

it is true that

(xo_f(xo)), (xl,f(xo,xl)) , (xi,f(xo ,xi))... C -_,

then f is a winning strategy for black. If there exists a winning strategy for black in a particular

game _7= (X. Y, Z), we say that _7is winnable by black (or black-winnable).

There are two obvious but useful observations to be made about black winnability:

134 Chapter 6 Infinite Sequences and Infinite Games

(G1) If (X, Y. Z) is winnable by black and Z C Z', then (X, Y. Z') is winnable by black

also.

(G2) (X. Y, (X x I0 W) is winnable by black.

A game projection, o, on an infinite game _ = (X, Y. Z) is a pair of functions (Ow, 6B),

where ow is any surjection from X to some set X', and 5B is a surjection from Y to Y_. o is

extended to pairs (x, y) in X x Y so that 6(x. y) = (ow(x). 0B(Y)). It is naturally extended to

finite sequences (members of (X x Y)*) and is further extended to infinite sequences by defining

O(z) = lim(o[pref(z)]) for every z E (X x Y)_' (so o[(x0,y0)(xl.yl)] = xoyoxlyl...). Q is

© " =further extended to sets. Finally , (9) is defined to be the game _G_ (Ow(X), oB(Y), o(Z)).

Given a projection o, the game (q)w-l(X), Q-l(y), 0_I(Z)) is the inverse projection, written

Q-I(_G). If G' = 0-1(_7), it is the game having the largest set of black wins such that 0(G _) = G.

Intuitively, if a projection is not injective, it may map two histories in the original game to

the same history in the image game. In case both black-wins and white-wins map to the same

history, the image history is classified as a black-win, so projection is "biased" toward black.

Inverse projection may split each player's moves into interchangeable copies, which would seem

not to affect the winnability of the game by either player. It is not very surprising, then, that

black-winnable games are closed under projection and inverse projection. These results are used

to prove that complete trace structures are closed under rename, hide, and inverse deletion in

Chapter 7.

Lemma 6.7. If _7 is winnable by black and 0 is a projection of G, then 0(_7) is winnable by

black.

proof. Let _' = 0(_). We construct a winning strategy for black in _7'. Since _7is winnable

by black, there is a winning strategy f. For each x' E X' = ow(X), we choose a distinguished

' ' , ' .. x_) torepresentative in Owl(X'). For every sequence X'o,X1. ...,x i C X '(*) we set f'(_.xl,. ,

QB[f(x0,xl.xi)], where xi is the representative of 0wl(_).

Section 6.5 Decidability of Regular Games 135

Let x0. Xl be any sequence in X (_'). Since f is a winning strategy for black, the sequence

(xo.f(xo))(xl,f(xo,xl))... is a member of Z, so

(_, f' (xlo))(x] ,f '(x'O,Xll))... = O[(xo,f(xo))(xl .f (xo, xl)) . . .]

o(z) = z'

Hence, 3° is a winning strategy for black in G', so G' is winnable by black. ["1

Lemma 6.8. If o a game projection, and _ is winnable by black, then 0--1(_7) is winnable by

black.

proof. Let {,7' = o-1(_). Since G is winnable by black, there is some winning strategy

! !f. For each y E Y we choose a representative y' E o_l(y). For any xo.xl, ...,_ E X !(*) let

= _ _ ' x_) = y} where y} is the representative ofxj 0w(_) for all 0 < j < i. We set f'(x'0, x 1,

' ..x})] =f(xo,xl xi). So0BI(f[x0.xl ,xi]). Note that oB[f'(xto,Xl,.

t X t ! ...6 [(x_,f' (xD)(x11 ,f (0, Xl)).-.] = (xo,f(xo))(Xl ,f(xo, Xl))

EZ.

/ / / !X_ ... -1Hence (X'o,f (Xo))(xl, f (1)) E 0 (Z) = 2,'. Hence f! is a winning strategy for black in G'.

[2

Section 6.5. Decidability of Regular Games

A necessary but not sufficient condition for fully automatic verification is that all the prob-

lems involved be decidable. This section proves the decidability of the particular class of games

of interest in Chapter 7.

We are interested in games in which the moves of each player are sequences. Formally, X

and Y are subsets of A*. For trace structures, we need to transform a set of traces, Z C_(XY) _'

into a set of histories, _ C_(X × Y)_'. flat(X, Y) : (X × Y)* --_ (XY)* is defined to map every

finite sequence (xo. Yo)(xl , Yl)... (xi, Yi) to the sequence xoYoxlYl ...xiYi. (The (X, Y) arguments

are usually omitted below, since X and Y are apparent from the context.) fiat respects prefixes,

so it can be extended to infinite sequences z E (X × Y)_' by fiat(z) = lim(flat[pref(z)]). We

136 Chapter 6 Infinite Sequences and Infinite Games

further naturally extend flat to sets (subsets of (X x Y)_'). flat is used to convert a set of histories

Z to a set of traces Z.

The inverse image of fiat converts sets of traces to sets of histories: if Z C (XY) _' is a set

of traces, ltat(X, y)-i (Z) is the set of all histories that can be flattened into members of Z.

For complete trace structures, we are interested in games g7in which the move sets X and Y

are regular sets and Z = flat-l(Z) for some D-regular set Z (which must be a subset of (XY)_-').

The problem of whether d is winnable by black is decidable for this class of games, if X, Y, and

Z are represented in some effective form, such as mixed finite automata. The rest of this section

is devoted to a proof of this claim. This is the most difficult result of the thesis. The reader who

is prepared to believe it without proof should consider moving on to the next chapter.

Theorem 6.1. It is decidable whether the infinite game _7= (X. Y, Z) is winnable by black, if

X and Y are regular sets and and Z = flat-l(Z) for some _.'-regular set Z.

The approach is to reduce this problem to the Church's solvability problem [26], which has

been shown to be decidable by Btichi and Landweber [21,72]. Rabin has also given a decision

procedure for this problem, based on tree automata [63].

An instance of the finite-state solvability problem is a game _7 = (X, Y, Z), where X and

Y are finite sets and Z is an _,-regular subset of (X x Y)_". We assume that Z is given as a

Muller automaton (there are procedures for converting _,-regular expressions or Biichi automata

to equivalent Muller automata [24,33]). The solvability problem is to determine whether g is

winnable by black, g7is not necessarily a solvability problem because X and Y can be infinite

(and usually are in our application). We provide a procedure for reducing such game to an

equivalent finite-state solvability problem.

The theorem is proved in the following lemmas. Throughout the rest of this section, let

A be a finite set which contains no sequences, let X and Y be regular subsets of A*, let Z be a

mixed-regular subset of (X × Yy, and let S' = fiat(X, y)-a (Z).

The central idea in the proof is to transform X and Y to finite sets X' and IT' by grouping

their members into a finite set of equivalence classes.

Section 6.5 Decidability of Regular Games 137

Sistla, Vardi, and Wolper [68], proved that for every _-regular language, W, there is a finite

partition F of A . such that

w=U{PQ_' P, QE_FAPQ_'NWs_}.

This implies that for every P. Q E F, either PQ_ N W = _ or PQ_' c_ W. Also, for every

P. Q c F, there exists R _ _F such that PQ c__R. There is a procedure to compute F, given a

Btichi automaton that accepts W. Every member of F is a regular set. The procedure yields a

family finite automata accepting the individual members of/-'.

We extend this result to mixed regular languages.

Lemma 6.9. There is a partition F of Z such that

z=U{PQ_' P, QEFAPQ _'NZ40}.

proof. Let Zan = Z N A* and Z_ = Z n A _', and let F' be the partition of Zinf as above.

LetF1 be{P'NZan P' E F'},Fzbe {P'N(A +-Zan) P' EF'},andletF=F_uFzU{{e}}.

First, we show that for every P. Q c F, either PQ'_ c_ z or PQ_" n Z = (0. This is clearly

true for P. Q E F1 u F2, since there are P', Q' c 1"' such that P _c p' and Q 2 Q,, and (by the

properties of F') either P'Q'_ c Z or P'Q'_' n Z = _0. There are three remaining cases. First,

suppose P = Q = {e}. Then PQ_" = {e}, which is a subset of Z if e E Z or disjoint from Z

otherwise. If P = {e} =/Q, PQ_ = Q'_ = QQ_" which has already been considered in the first

case. Finally, if P 5/{e} = Q, then PQ_" = P. If P E F1, PQ_" c_ z and if P E F2, PQ_ n Z = O.

Restating this, if PQ_" N Z :/(0, then PQ_ C_Z. This implies that

U{PQ _ P, QE FAPQ _'NZe(3} _CZ.

To prove inclusion in the other direction, first, note/'1 u]'z is a partition of A +. It is obvious

that U(_/-'l u F2) = A + from the definitions of ffl and 1-2 and the fact that U F' = A+. Members

of F1 u/'2 are pairwise disjoint: consider any P. Q in/-'1 u F2. If P and Q are both in 1"1 or both

in F2, they are disjoint because the members of F' are disjoint; if P E F1 and Q c 1"2, they are

disjoint because Zan is disjoint from A . - Zan.

138 Chapter 6 Infinite Sequences and Infinite Games

According to Lemma 2.3 of Sistla, Vardi, and Wolper's paper [68], if F is a partition of

A +, then U fPQ" P. Q c 1-} = A _'. This implies that

Zinf _C_U{PQ _' (P, Q E F1U Fz) A (PQ" NZinf=/(3}).

Also, it is clear that Zfin _CU {P({_ })_' P E 1-'1u {{e] }}, so

zc_U{PQ_" P, QCFAPQ"NZ4(3}. []

For the remainder of the section, let F be a partition of Z, as in Lemma 6.9. We now prove

that there is an instance of the solvability problem, gT', such that G' is winnable by black if and

only if g7is. We define a game projection o: for any x C X, we set Ow(x) = P, where P is the

unique member of F such that x E P. Similarly, for each y E Y, we set 0e(Y) = Q, where Q E/_

0 d X' = =and y C Q. The reduced game _' is , (_) (so = o(X), Y' O(Y), and Z' o(Z)).

It is immediate from Lemma 6.7 that if _7 is winnable by black, so is G'. To prove the

converse, we show that _ = o-I(_7'); this requires proving several lemmas.

Lemma 6.10. If Po, P1 and Qo; Q1 are infinite sequences of subsets of A* and there is an

infinite strictly increasing sequence of numbers 0 = io < il < ... such that PijPi_+i ...Pij+l-1 C_Qj

for all j 6 _.', then POP1... c QoQa

proof. Let x be any sequence in PoP1 By definition, x is the concatenation of some

sequence x0.xl.., elementwise contained in P0. P1 Let yoyl.., be the sequence such that

Yj = xijxii+a ...xii+_-i for all j E _,. Then for all j C _.,, yj E Qj, so yoya ... is in QoQ1 But

obviously, yoyl ...= x, so PoP1 ... c_ QoQ1 [-I

Lemma 6.11. For every infinite sequence (Po, Q0)(Pa, Q1)... in (x' x Y_)_', there is an infinite

increasing sequence of indices io = 0 < il < i2 < ... such that there is a P C _F such that

PoQo ...Pi_-lQi,-a c_ p and there is a Q E I" such that PijQi_ ...Pi;._-lQi_._-i c_ Q for all

j>_l.

proof. The proof of this theorem closely resembles the proof of Lemma 1 in a paper

of Btichi's [20] and of Lemma 2.3 of Sistla, Vardi, and Wolper's paper (used in the proof of

Lemma 6.9). The proof uses an infinite version of Ramsey's Theorem, which states that any

Section 6.5 Decidability of Regular Games 139

finite partition of the unordered pairs of members of _.,contains all the unordered pairs of some

infinite subset of _'.

Any _.,-sequence z = (P0. Q0)(P1, Q1)... defines such a partition: every unordered pair of

numbers {re.n) (m < n) uniquely delimits a subsequence (Pro, Qm)..... (Pn--1, Qn-1). ff defines

a finite partition of the unordered pairs, because for every pair (re, n), PmQm ...Pn-IQ,-I c_ R

for exactly one R C/-'. By Ramsey's Theorem, one member of this partition includes the set of

all unordered pairs of some infinite subset of _.,. We call the elements of this set il, i2, and so

on, in ascending order (il < i2 < ...). There exists some Q E/-" such that each subsequence has

Pk_ak_...Pi;.l-lOij.l-1 C Q.

As a special case, PoQo...Pi,-1Qil-1 is in some P E /" (unless il = 0, in which case

we set P = Q, and rename ij to ij-a for all j C _'). Hence, there exist P, Q E F such that

PoQoPaQ1 ... c_ pQ_-. D

Lemma 6.12. For every sequence (Po, Qo)(Pa; Q1)... c Z', PoQoP1Q1... c_z.

proof. By Lemma 6.11, there exist P_Q E F such that PoQoPIQI c pQ-_. By the

definition of Z', there is some (x0,y0)(xa. Yx)... E Z such that xi E Pi and Yi _-Qi for all i E _.',

so xoyoxlyl ... E PQ_. By the definition of Z, xoYoxlya ... E Z, so PQ'_ N Z _ _. But by the

properties of/" (Lemma 6.9), PQ_" c_Z. Hence, PoQoP1Q1... c_pQ_ c__z. []

Lemma 6.13. __= c)-1(_7').

proof. The only non-obvious requirement is that Z = o--l(Z'). By the properties of

inverse images, Z C_ _-l(z'), so we need only prove inclusion in the opposite direction.

Let (xo,Yo)(xl.yl)... be any member of o-I(z'). By the definition of o, there exists some

(Po. Qo)(P1. Q1)... E Z' such that xi E Pi and Yi C Oi for all i E _.'. By Lemma 6.12,

PoQoPIQ1 ... c_ Z, so xoyoxaya ... E Z. Hence, (xo.Yo)(xl,Yl) E flat-l(Z) = Z, so 9-1(Z ') C Z.

By this lemma, Z is an inverse game projection of Z'. By Lemma 6.8, if Z' is winnable

by black, Z is too. Hence, we have proved that gT' is equivalent to g7 with respect to black-

winnability. To complete the proof of the theorem, we must show that G' is an instance of

140 Chapter 6 Infinite Sequences and Infinite Games

the solvability problem. Specifically, it must be proved that Z' is regular and that there is an

effective method to find an automaton accepting it, given a Biichi automaton accepting Z.

We proved in Lemma 6.12 that the concatenation of every sequence of sets in 2' is a subset

of Z. Here we prove that Z is equal to the union of concatenations of these sets.

Lemma 6.14. For every (Po. Qo) c_ (x × Y)" such that PoQo... c_ z, (Po. Qo)... E z'

proof. If PoQoP1Q1 ... c z, then there is some xoYoxlyl ... C Z such that xi E Pi and

yi _ Qi for all i E _-'. So, by definition, (xo.Yo)(xa,yl)... E Z and so (P0. Qo)(P1, Q1)... E "z',

also by definition. []

Together, Lemmas 6.12 and 6.14 give a direct characterization of 2' in terms of Z: Z _ is

exactly the set of sequences (P0. Q0)(P1, Ol)... such that Pi_ Oi c f', Pi _X :_ _, Qi A Y 5t _, and

PoQoP1Q1... _ Z=/ _.

To show that 2' is _'-regular, we define a factorization of P C _F to be a finite sequence

P0, P1 ...Pi E f'(+) such that PoP1 ... Pi C P.

Lemma 6.15. If P is any member of F, the set of all factorizations of P is regular.

proof. Let the members of F be Ri, and let the set of all factorizations of Ri be Yi. Clearly

the sequence Ri (of length 1) is in Yi. If Rj, R_ is a factorization of length 2, every sequence

in RjYk is a factorization of Ri, also, because the concatenation is a subset of RjRI¢ C_ Ri.

Furthermore, if Rj, Rkl, R_2..... Rk, is a factorization of Ri, then RklRk2 ... Rk, is a subset of some

Rk _ /" (by the properties of/'), so Rkl, R_2..... Rkt is a member of some Yk. Hence, every

factorization of Ri is either Ri itself or a member of some RjYk where Rj, Rk is a factorization

of Ri.

Consequently the Fi for all Ri E F can be described as a right-linear grammar, where the Ri

are terminals and the Yi are non-terminals. The set of strings generated from Yi as the sentence

symbol is the set of factorizations of Ri. The language of a right-linear grammar is always a

regular set, so the lemma holds. V]

Lemma 6.15 gives an effective procedure for finding an automaton accepting each Y/, since

there is a procedure to find a finite automaton accepting the language of a fight-linear grammar

(Theorem 9.1 of Hopcroft and Ullman).

Section 6.5 Decidability of Regular Games 141

The actual sets of interest are more constrained than arbitrary factorizations: we want the

F[of finite sequences of the form (e0; Q0)... (Pj, Qj) in (x' × Y_)+, where Po. Qo Pj, Qj is

a factorization of Ri.

Lemma 6.16. The .Y_[are regular and effectively computable.

proof. First, we find the set of factorizations Si" of Ri that are also of the form

e0, Oo.... Pi. Qi, where Pj C X' and Qj E Y' for 0 < j < i. F[' is the intersection of 5_i

with (X'Y) + (altemating sequences of members of X' and Y_). A finite automaton for 5r'[' can

be constructed by intersecting the automaton for .;ri with an automaton accepting (X'Y') + (it has

two states). Hence, F_' is regular and effectively computable by intersecting finite automata.

Let h be the homomorphism that maps symbols (Pi._Qi) to the sequences Pi, Qi. Then

5r[= h-l(F_'). Since regular sets are closed under inverse homomorphism, F[is regular.

Theorem 3.5 of Hopcroft and Ullman gives a construction for finding an automaton accepting

the inverse homomorphic image of the language of any finite automaton. V1

Lemma6.17. _" { ' "_-_, = P]cF_ R1¢,Rt E _1-'A RkR_[A Z :4 (D}

proof. Let (P0. Q0) (P1, Q1), be any member of _" _-'_" where Rk and RI are members..... k._l

of _F and RkR{ _ Z =/(3. Then PoQoPIQ1... c RkR_" C_ Z by the definition of the F[and the

properties of _F. But then by Lemma 6.14, (P0 Qo)(P_ Q1) c Z' Hence, J_'v"_ Rk, Rl C_ "'" -- " (_' k "_ l

1-"ARkR[NZ40} C Z'

Now let (P0. Qo)(P1. Q1)... be any member of Z'. By Lemma 6.11, the sequence can be

segmented into finite subsequences (Pii. Qi_)...(Pi_._-l. Qi_+_-l) such that PoQo...Pi_Qi, c_ Rk

for some Rj, E F, and PiiQij ...Pi_._-lQi_._-i c_ Rl for some RI C F, for all j C _.'. Hence,

(Po. Qo)(P_Q1) E .T_,Fl . Therefore, ,._z'C_ t-" J,-"k_ "r"_'_" Rk,RI E 1_ A Rk(Rz) _: _ Z _ _}. i-I

This completes the proof of Theorem 6.1.

Although the problem is decidable, the decision procedure falls short of practicality. First,

the automaton for Z' may be have exponentially more states than the original automaton, because

the alphabet of Z' can be exponentially larger than the number of states in the automaton

accepting Z. Second, the decision procedure for the solvability problem operates on deterministic

Muller automata, and the known procedures for transforming a nondeterminisfic Biichi automaton

142 Chapter 6 Infinite Sequences and Infinite Games

to an equivalent a deterministic Muller automaton [24,78] are at least doubly exponential in the

worst case. Finally, Landweber and Btichi's decision procedure for the solvability problem adds

at least another exponential to this.

There is potential room for improvement in the procedure. The solvability problem is

PSPACE hard, since it can be reduced to the universality problem for nondeterministic Btichi

automata, so it is unlikely that a subexponential algorithm can be found. However, this is the only

lower bound on the complexity of the problem that is known to the author. If a singly exponential

algorithm can be found for problem, the decision procedure would be comparable with other

potentially exponential constructions that are necessary anyway, such as complementation of

nondeterministic Btichi automata.

Chapter 7

Complete Trace Structures

Section 7.1. Introduction

The theory of the previous chapters is very good at saying what circuits must not do (violate

safety properties), but it has nothing to say about what they must do (liveness properties). This

chapter presents an extended trace theory that captures general liveness properties as well as

safety properties.

The most blatant example of the limited expressive and modeling power of prefix-closed

trace structures is the universal do-nothing module of Section 3.4, which implements everything

by the conservative approach of doing nothing at all. It should be possible to forbid this type

of implementation. As another example, consider two types of non-inverting buffer. The first is

the practical kind: if it is quiescent and it receives an input transition, it eventually produces an

output transition, after an arbitrary time. The second is an unreliable buffer: when it receives an

input, it may produce an output after a fmite delay, or it may not. The sets of partial executions

of these circuits are identical -- prefix-closed trace structures cannot distinguish them.

The representations developed in this chapter are called complete trace structures.* Prefix-

closed traces represent partial executions; to represent liveness properties, traces should represent

complete executions. When a trace ends, no more transitions occur in the system. Sets of

complete traces are not necessarily prefix-closed. To see how this enhances expressive power,

suppose that when a circuit receives an a input, it eventually produces a b output (a liveness

* This term was borrowed from Kevin Van Horn [77], who called complete executions complete traces.

144 Chapter 7 Complete Trace Structures

property). This can be represented by making the trace ab possible, but making the trace a

impossible. In this case, the P set is not prefix-closed. To say that the environment must send

an a when the circuit outputs a b, a trace structure can have the trace b as a failure and ba as a

success. In this case, S is not prefix-closed.

One of the consequences of the complete execution interpretation is that infinite traces are

needed to represent non-terminating executions. For example, one would like to say that if a

buffer receives an infinite number of inputs, it produces an infinite number of outputs. Moreover,

some circuits have no finite behaviors (for example, a ring oscillator). To model these infinite

executions, trace sets are extended to include infinite traces. The properties of complete trace

structures closely parallel the the properties of prefix-closed trace structures. However, some

of the definitions and decision procedures become more difficult, particularly those relating to

receptiveness and the canonical form for conformation equivalence.

The second section defines a semantics for asynchronous circuits based on complete trace

structures. Various functions are extended to infinite sequences, the requirement of prefix-

closure is eliminated, and a new definition of receptiveness is introduced which is based on

infinite games. The third section shows that complete trace structures form a circuit algebra.

The fourth section discusses conformation in the context of complete traces. Most of the section

is devoted to the canonical form for conformation equivalence and simplifications to achieve

it. The primary surprises in this section are that autofailure manifestation can be defined using

infinite games, and that even in the canonical form the set of failures is not a function of

the set of successes. Based on all of this, the mirror operation for complete trace structures

is defined. The fifth section illustrates complete trace structures and conformation through

examples. The sixth section considers complete trace structures as a lattice; another way in

which the theory of complete trace structures diverges from prefix-closed trace structures is

that the simple relationship between meet and join and union and intersection of the P and F

sets does not hold. Finally, the last section discusses some of the problems that might arise in

implementing the theory.

Section 7.2 Complete Trace Structures and Receptiveness 145

Section 7.2. Complete Trace Structures and Receptiveness

The definition of complete trace structures is quite similar to prefix-closed trace structures.

A complete trace structure 7- is a quadruple (1, O. S, F), where I and O are finite disjoint subsets

of Wires, S and F are mixed regular subsets of A _' (where A = I u O). P is defined to be S u F,

and must be non-empty. S and P need not be prefix-closed; the intuitive meaning of these traces

is that they are complete, not partial, executions of a circuit.

The final property of complete trace structures, receptiveness, is much more difficult for

complete trace structures than for prefix-closed trace structures. As with prefix-closed trace

structures, receptiveness means intuitively that a circuit cannot control its inputs. The set of

possible traces must include all of the inputs that can be sent by another device, whether they

are allowed or not. The definition is developed in the rest of this section.

Recall the definition of receptiveness for prefix-closed trace structures: PI C P. Without

this requirement, a trace structure could constrain its input by having a trace x E P but not

xa __P for some a E I, which would prevent any circuit from sending it an a after the trace x.

A prefix-closed trace structure can fail to be receptive only by refusing to receive inputs.

Without the prefix-closure requirement, there are other ways for inputs to be controlled. As

a simple example, if x _ P but xa E P for some a C I, some circuit is required to send an a after

the trace x. For receptiveness in complete trace structures, it must both be possible to receive

additional inputs and not receive more inputs. As another example, suppose that pref[(ab)*] is

subset of P, but (ab) _: is not. Then the trace structure can receive any finite number of inputs,

but not an infinite number. From this example, it is clear that a definition of receptiveness cannot

be phrased solely in terms of the finite traces in P -- the infinite traces must also be taken into

account.

The circuit and its environment can be regarded as two entities that build up a trace by

adding input and output symbols to it. This goes on forever (a finite trace is built if the

circuit and environment only add e to the trace after some finite time). There is another way

to phrase receptiveness: no matter what input signals arrive there must be something that the

output can do to cause the resulting trace to be in the possible set. If this is not true for some

146 Chapter 7 Complete Trace Structures

sequence of appended inputs, the trace structure will implicitly prevent those inputs, which

violates receptiveness.

The previous paragraph describes an infinite two-player game: if the circuit tries to cause

the trace to be in the P set and the environment tries to cause it not to be in P, the circuit is

receptive only if there is a winning strategy for the circuit. Several details need to be fleshed

out to formalize this idea.

First, what should each player's moves be? Since no assumptions are made about the

relative speeds of components, we should assume that environment can be arbitrarily fast. An

arbitrarily fast environment is a worst-case adversary, since a fast environment can always act

like a slow one, but a slow environment cannot act like a fast one. Hence, the environment

should be allowed to add any number of inputs to the trace in a single turn. However, the

environment cannot be infinitely faster than the circuit, so it should only be allowed to add a

finite number of inputs in a move. This argument suggests that the set of input moves should

be I X. When the output gets a turn, it should be able to add at least one symbol to the trace. In

fact, it should only be able to add one output since an arbitrarily fast environment might be able

to slip an input between two successive outputs, no matter how close together the two outputs

are. Of course, the output should be able to add c to the trace, so the output moves should be

O u {e}. The environment should get the first move; if it is arbitrarily fast, it can produce inputs

before the circuit gets around to producing its first output. Hence, the environment plays white

and the circuit plays black.

All that remains to complete the definition of an infinite game is to define the set of black

wins. For receptiveness, the circuit (black) should win when the trace that is built is in P, so

the set of black wins should be flat-l(P). So the entire game is G = (I X. Ou {e}, flat-l(P)), and

the circuit is receptive if _d is black-winnable.

This is not quite the definition of receptiveness, however. There is one remaining subtlety,

which can be illustrated by an example. Consider a (peculiar) selector with finite traces [(a(b +

c))*] and infinite traces [(ab)"_']. If this selector receives a finite number of inputs, it can produce

b's and c's arbitrarily, but if it receives an infinite number if inputs, it must produce only b's.

This trace structure is either absurd or useless. In reality, the circuit has no way of knowing

Section 7.3 Complete Trace Structures are a Circuit Algebra 147

whether, after receiving the first a, it is going to get an infinite number of inputs. If it outputs

a c, it constrains the input to be finite, in which case it is not receptive; if it only outputs b's,

even for finite inputs, there is no point in including c's in the trace set. The finite traces [(ab)*]

are the only ones that can really occur. The definition of receptiveness should require that the

remainder of the P set after any finite prefix of P generate a black-winnable game.

It is now possible to give the full definition of receptiveness for complete trace struc-

tures: a complete trace structure "1- is receptive if and only if, for all x E pref(P), (I*. O u

{_). flat -1 [suf(x. P)]) is winnable by black.

To decide the receptiveness of a trace structure, it is necessary to discover whether the game

corresponding to every prefix is black-winnable. Fortunately, two prefixes generate the same

games if they are suffix-equivalent, so by Lemma 6.5, there are only a finite number of games

that must be checked for black-winnability.

This problem appears to have been identified in only one other place in the literature. In

a Masters thesis at Caltech, Van Horn proposed complete traces for a general semantics of

concurrency [77]. Van Horn also encountered the problem of receptiveness, which he solved by,

in essence, requiring that there be a program with appropriate input and output variables that can

exhibit a subset of the specified trace set. Such a process bears some resemblance to a strategy.

The question of decidability for finite-state systems was neither raised nor solved.

Section 7.3. Complete Trace Structures are a Circuit Algebra

The definitions of the operations compose, hide, and rename are exactly as for prefix-closed

trace structures (see Section 3.3). However, both deletion and renaming functions are extended

to infinite sequences as in Chapter 6. To illustrate the effect of the extended composition

operation, consider the trace structures (0. {a),a _, 0) and (0, {b}.b "_'.0). The composition of

these structures is (0. {a.b). (a+b + +b+a+) _' , 0) (the traces in (a+b) _"that have an infinite number

of both a's and b's). This models the reality that both circuits run at a finite speed.

The remainder of this section is devoted to proving the following result:

148 Chapter 7 Complete Trace Structures

Theorem 7.1. Complete trace structures are a circu# algebra.

The reader who is prepared to accept this claim without further discussion may want to skip to

the next section.

First, we prove that complete trace structures are closed under the circuit algebra operations.

Like regular sets, mixed regular sets are closed under deletion, inverse deletion, intersection, and

bijective renaming, so the only question with respect to closure is whether the result of any

operation is receptive.

Lemma 7.1. Complete trace structures are closed under inverse deletion.

proof. Let T be any complete trace structure, let T' = del(D)-l(T), let x' be any prefix

of P', let x = del(D)(x'), and let Z = flat-l[suf(x.P)]. T is receptive and x E pref(P), so there

is a winning strategy f for black. Let _ be the game projection such that 0w = tel(D) and oB

is the identity function. Since T is receptive, the game (I*. O u {e}. Z) is winnable by black,

so by Lemma 6.8, the game

(I'*.O U {:},O-I(z))=(Ow-I(I*),@B-I[OU {_}]. O-l(Z))

is wirmable by black, also.

Obviously, Q-I(£) C flat-_(del(D)-l[suf(x.p)]). Furthermore, we claim that

del(D)-l [suf(x, P)] C suf(x', P').

If y' is any sequence in del(D)-l[suf(x.P)], there is a y = del(D)(y') such that xy E P. But

del(D)(x'y') = xy E P so x'y' E P' = del(D)-l(P), so, y' C suf(x'. P').

fiat -1 preserves set inclusion, so o-l(Z) C_ flat-l[suf(x';p')]. By property G1, (I'*, O U

{e}.flat-l[suf(x'.P')] is winnable by black. Hence, 7-' is receptive. V1

Lemma 7.2. Complete trace structures are closed under intersection.

proof. Let 7- and 7-' be any complete traces such that A = A' and O f_ O' = 0, and let

T" = 7- _ 7-'. Let x be any member of pref(P"), and let the games

= (I*, 0 U {e}_flat-l[suf(x,P))]

G'= (I'*, O' U (c}, flat-1 [suf(x.P'))], and

_7" = (/"*, 0" U {e}, flat-l[suf(x, P"))].

Section 7.3 Complete Trace Structures are a Circuit Algebra 149

Since T and 7-' are receptive and x E pref(P) n pref(P') by property 3.10, there are winning

strategies for black in _Gand _G',which we call f and f'.

The main idea is to combine f and f' by altemating back and forth between them. If the

resulting history is flattened, it can be segmented in different ways so that it appears to be a

tl tl II

black win in either game. We define a strategy f" for any finite sequence Xo,X 1 x). The

definition is by induction on the length of the sequence; it constructs two auxiliary sequences:

tt
go = X 0 •

f" (X'o'...... xt2ti) = f(xo xi),

I Z_ II t-tl,, tt II It x l!

Xi -- X2i T I,Xo , X 1 , ..., X2i)X2i+ l ,

,, A f, x' ..ftt(x_',... ,x2i+l) "- (0._ . ,x_). and

/_ It tqt tt t! , xtl \ l!Xi+l -" X2i+l f (X0,Xl-.. , 2i+1)X2i+2.

To see that f" is a winning strategy for black in gT", let x'_, x 1'', ... be any infinite sequence

in X ''(_). Then

, fl l/ fit It ,tt-,l. I1\ lit-l! l! 11flat[(x .f (x0))(Xl, (x0 .., = Xo$ tXo)Xa$ (Xo,Xl).

= xof(xo)xvf(xo,xl)....

-" x" " "where Xo = xJ_ and xi+l = Jc2i+lJ , 1 X2i+1)X2i+2. Since f is a winning strategy for black

in _G, (xo,f(xo))(Xl.f(xo.x_))... C Z = flat-l[suf(x.P)], so x_(xo)xlf(xo.xa)... E suf(x,P).

Similarly,
l/ I'll It', lit'l/," 1! I! ! I I I I I

Xof (Xo)Xlf _,XorX 1)... = x'of (Xo)Xtlft (Xo,Xl) . . .

E suf(x. P'),

so suf(x.e)n suf(x,e'). By property 6.3,

suf(x, P) N suf(x, P') = suf(x,P").

so flat[(x_,f(x_))(x'l'.f(x'o',_'))...] E suf(x.e"). Hence,

(xJ_.f (X'o'))(x'a'.f (x'o'. X'_')) . . . E flat-a[suf(x, P")],

which is the set of black wins for gT". Thus, gT" is winnable by black, so 7-" is receptive. []

150 Chapter 7 Complete Trace Structures

Corollary. Complete trace structures are closed under composition.

Lemma 7.3. Complete trace structures are closed under hiding.

proof. Let T be any complete trace structure, let 7-' be hide(D)(7-) where D is any subset

of O, and let x' be any member of P'. For every x' E del(D)(P), there is an x E P such that

del(D)(x) = x'. T is receptive, so the game _G= (I*,0 U {e},Z), where Z = flat-l[suf(x.P)],

is winnable by black. Let o be the game projection such that Ow is the identity function and

0B = del(D). By Lemma 6.7, the game o(_7) = (I*. O-DU {¢}, Q(Z)) is winnable by black. It is

obvious that o(£) C_flat-l(dei(D)[suf(x.P)]); by property 6.4, del(D)[suf(x,P)] C_suf(x', P'), so

0(2) C_flat-1 [suf(x', P')]. Hence, by property G1, the game (I*. O- D u {¢}. flat-1 [suf(x'. P')]

is winnable by black, so 7- is receptive. []

Lemma 7.4. Complete trace structures are closed under renaming.

proof. Let 7- be any trace structure and let r be an appropriate renaming function. We

define rw = rlz and rs = rio. If these functions are extended to sequences, we can define a game

projection 6 such that 6w = rw and 0B = rs. The rest of the proof is obvious. [2]

The proofs of circuit algebra laws C 1 through C9 are all slight modifications of the proofs

of the corresponding properties in Chapter 3. In a number of places, A _ should be substituted

for A*. The only other changes occur when induction on sequences is used: once a property has

been proved by induction on finite sequences, it must then be proved for infinite sequences. In

general, these proofs are not sufficiently interesting to repeat. As a representative example, we

extend Lemma 3.5 so that it applies to complete traces:

Lemma 7.5. For any sequence x in (A u D) _ and renaming function r with domain A u D,

r[del(D)(x)] = del[r(D)][r(x)].

proof. Let x be any member of (A u D) _. By property 6.1, x = lim[pref(x)], and by two

applications of Lemma 6.4, r[del(D)(lim[pref(x)])] = lim[r(del(D)[pref(x)])]. By 3.5, this is

equal to lim[del[r(D)](r[pref(x)])] (since pref(x) consists of finite traces only). By Lemma 6.4,

this is equal to del[r(D)][r(lim[pref(x)])]. Finally, by property 6.1, this is del[r(D)][r(x)]. [-q

Section 7.4 Conformation 151

Section 7.4. Conformation

The definitions of failure-free and conformation (___)for complete trace structures are exactly

as in Chapter 4. As with prefix-closed trace structures, complete trace structures can be reduced

to a canonical form for conformation equivalence. However, some of the results are more

complicated than the corresponding results from Chapter 4, and some do not hold at all. For

example, the definition of autofailure is much more difficult (it uses infinite games). Furthermore,

even when a complete trace structure has been reduced to canonical form, the F set is not

determined by the S set. Finally, the mirror of a complete trace structure is more difficult both

to define and to compute.

Intuitively, if the environment of the circuit cannot guarantee failure-free execution of a

circuit after a particular partial trace x, x is an autofailure (even if x itself is a success). With

prefix-closed trace structures, the environment could intervene to prevent a possible failure only if

the circuit stopped and waited for inputs before proceeding to the failure. The environment could

avert the failure by not sending an input that eventually leads to failure. Thus, an autofailure

was any failure that could be reached by appending only outputs to x.

As one would expect, the increased expressiveness of complete trace structures introduces

new kinds of failures. For example, if a trace x is a failure but also a prefix to a success, the

environment might be able to avert failure by sending inputs to the circuit. This situation does

not arise in prefix-closed trace structures because S is prefix-closed.

Autofailures can be defined by considering a game in which the circuit tries to fail and the

environment tries to force the circuit to succeed. In this game, the environment cannot control the

speed at which the circuit runs, so the circuit moves can be any finite sequence of output symbols

(members of O*), and the environment moves can be members of I U {e}. The environment

loses this game if the circuit fails (the concatenation of the infinite history is a member of F).

Equivalently, the environment wins if the history is a success (in S) or if the circuit "cheats"

by playing a history that is not possible according to its specification (in A _ - P). Formally, a

finite trace x in pref(P) is an autofailure if the infinite game (O*_lU {e).flat-l[A _ -suf(x.F)])

is not black-winnable.

152 Chapter 7 Complete Trace Structures

We define af(T) to be the set of autofailures of T, according to the definition above. Call the

result of applying autofailure manifestion 7-'; then I' = I, O' = O, S' = S, and F' = FUaf(T).A _.

This transformation is effective: as with receptiveness, the prefixes of P can be grouped into a

finite number of classes by suffix-equivalence, using the power set construction. Each one of

these classes can be checked to see if it is an autofailure using the decision procedure of Chapter

6.

Autofailure manifestation can convert infinite failures into finite failures. For example,

consider a complete trace structure 7- which has inputs a and b, outputs c and d, and successful

traces

S = ([(a + b)(c + d)]* ([(a + b)c]+[(a + b)d]+) _

(inputs and outputs alternate, there must be an infinite number of inputs, and the circuit must

produce an infinite number of both c's and d's). Suppose the failures include all possible

sequences with only a finite number of inputs (so it is a failure for the environment to stop

sending inputs), and also include the infinite traces in [(a + b)(c + d)]* bd[(a + b)d]" (the outputs

of the circuit must be fair). The finite prefixes in [(a + b)(c + d)]*b are autofailures.

Intuitively, if the environment ever sends a b to the trace structure, the trace structure could

send only d's infinitely often, and fail as a consequence. Autofailure manifestation will make

these finite prefixes into failure traces. In essence, part of the environmental assumption will be

"the environment shall not send a b", which is a safety condition.

The second transformation, failure exclusion, is the same as in Chapter 4: the successes

of the transformed structure are set to S - F; none of the other parts of the trace structure are

changed. The simplifications produce complete trace structures that are conformation-equivalent

to the originals.

We define a canonical complete trace structure 7- = (I, O. S. F) to be a complete trace

structure with the additional properties (1) S A F = 0, and (2) af(7-). A _' C_ F. As with

prefix-closed trace structures, two canonical trace structures are equal if and only if they are

conformation equivalent.

Section 7.4 Conformation 153

Unfortunately, unlike prefix-closed trace structures, the S set does not completely determine

the F and P sets in a canonical complete trace structure. As a simple example of this, consider

a trace structure in which a E 1, b E O, xa. xb E pref(S), but x _ S. In this case, we may have

either x C P (hence x C F) or x _ P. If x E F, there is a requirement on the environment: it

must eventually send an a; if x _ P, it is a requirement on the circuit: if an a does not arrive,

the circuit eventually sends a b. Note, however, that since S N F = _ in a canonical complete

trace structure, the sets S and P completely determine F (which is P - S).

The mirror of a canonical trace structure is almost exactly the same as for prefix-closed

trace structures: 7-M is defined to be (O_ I. S. A s' - F). As with prefix-closed trace structures, the

mirror of a complete trace structure is the maximum circuit (under the conformation ordering)

that can be composed with the original to yield a failure-free result.

This gives a procedure for testing whether 7- --<7-': first reduce T' to canonical form, then

check whether 7- T 'M is failure-free. There is an algorithm to do this based on procedures to

complement Btichi automata and test them for emptiness.

The rest of this section proves these claims. All of the results about conformation from

Section 4.2, namely Lemmas 4.1 through 4.5, apply to complete trace structures as well as

prefix-closed trace structures (the proofs do not need to be changed).

There is a counterpart to theorem 4.2 that applies to complete trace structures:

Theorem 7.2. If 7- is any complete trace structure, performing autofailure manifestation fol-

lowed by failure exclusion yields a canonical complete trace structure that is conformation

equivalent to 7-.

The rest of this section proves this theorem.

Lemma 7.6. Autofailure manifestation preserves complete trace structures.

proof. Let 7-' be the result of applying autofailure manifestation to a complete trace

structure 7-. It is obvious that 7-' is a complete trace structure, except perhaps for regularity of

S and F and receptiveness. First, we prove that the set of autofailures of any complete trace

structure is regular. If x and y are in P and suf(x, F) = suf(y. F) they are either both autofailures

or both not (because they have the same games). Hence, by Lemmas 6.5 and 6.6, the set of

154 Chapter 7 Complete Trace Structures

autofailures is a union of classes of a right-invariant equivalence relation, and so by the MyhiU-

Nerode theorem, it is regular. F' is the union of the regular sets F and af(T), so it is regular.

S' = S is, of course, regular by hypothesis.

To see receptiveness, let x be any prefix of P'. If x E pref(P), the game

(I*. O U {e}, fat- 1[suf(x, P)])

is winnable by black (by the assumed receptiveness of 7-). We know suf(x,P) C_suf(x,P') (by

property 6.6), so by property G1, the game (I*. O U {e }, flat-l[suf(x. P')I) is black-winnable.

Otherwise, x is in pref(P') - pref(P). But then it is easy to see that suf(x,P') = A _.

(I*. O U {e}, flat -I(A_)) is black-winnable by property G2. Hence, 7-' is receptive. V'I

Lemma 4.6 from Section 4.3, which says that P C P' and F C_ F' implies that T _ 7-',

applies equally as well to complete trace structures.

Lemma 7.7. Autofailure manifestation preserves conformation equivalence.

proof. Let T be any complete trace structure and let T' be the result of applying autofailure

manifestation to T. P C P' and F C F', so by Lemma 4.6, 7- -<_T'. To prove 7-' _ 7-, let

7-" be any complete trace structure such that I" = O and O" = I, and suppose that 7- n T" is

failure-free.

We claim that no prefix of P" can be an autofailure in 7-" let x be any prefix of P'.

Since 7- N 7-" is failure-free, the set F N P" is empty, so P" Q-_-A _ - F. Furthermore, by

property 6.5, suf(x.A _ -- F) = A _- suf(x, F), so, since suf and flat -1 respect set inclusion,

flat-l[suf(x, P")] C_flat-l[A _ - suf(x, F)]. By the receptiveness of T", the game

(I"*. O"U {e}. flat-l[suf(x,P"))] = (O*.IU {e}, flat-l[suf(x. P"))]

is winnable by Mack. Hence, by property G1, (0",I u {e}, flat-1 [A _'- suf(x. F))] is winnable

by black for all x E pref(P"). But then, by definition, x cannot be a member of af(7-). Hence,

pref(P") N af(T) = _, or, equivalently, P" n af(T). A_= _.

By definition, F' = F U af(7-). A _, so F' N P" = F n P" = (_ (as noted above). Also, it is

clear that P' = P u af(T) • A _, so P' N F" = (P N F") U [af(7-) • A _ N F"]. Since 7- n 7-" was

Section 7.4 Conformation 155

assumed to be failure-free, PNF" = (b, and since F" C_P", af(T). A % NF" = _, so P' NF" = _,

also.

Hence, the set of failures of T' N 7-", which is (F' N P") U (P' N F"), is empty. So "T' -< T.

D

Lemma 7.8. Failure exclusion preserves complete trace structures.

proof. Obvious. D

Lemma 7.9. Failure exclusion preserves conformation equivalence.

proof. The P and F sets do not change, so this can be proved by two applications of

Lemma 4.6. Vq

Lemma 7.10. Simplification reduces any complete trace structure to canonical form.

proof. Obvious. 7q

The next lemma parallels Lemma 4.18 of Section 4.4.

Lemma 7.11. If 7- is any canonical complete trace structure and S _ _, then T M is also a

canonical complete trace structure.

proof. Let T be any complete trace structure. The only real question about 7-M is whether

it is receptive. Let x be any prefix of pm. If X E pref(P), we know it cannot be an autofailure in

7-, since in such a case xA _' C_F, so xA_ N (A_ - F) - xA_ N pM = (_. Hence, by the definition

of autofailure, if x E pref(P), (0".1 u {e} ,A _- suf(x. F)) = (I'*, O'U {_}. flat-l[suf(x, pM)]) is

winnable by black.

Now suppose x 9(pref(P), so xA _: c_ A _ - P = FM C_ pM. But then suf(x_F) = A:_;

(I*, OU {e}, flat-l(A_:)) is certainly winnable by black, by property G2. Hence, T m is receptive.

D

The proofs of Lemmas 4.19 through 4.22 carry over to complete trace structures if A _' is

substituted for occurrences of A* (for example, FM = A _ - P instead of Fm = A* - P). These

lemmas constitute the proof of Theorem 4.3, which gave the mirror method for determining

conformance.

Finally, Lemma 4.23, which proves P C_P' and F C_F' is a necessary condition for 7- _ T t,

when 'T and "T' are canonical complete trace structures, carries over from Section 4.4. It is used

156 Chapter 7 Complete Trace Structures

to prove Lemma 4.24, which asserts that if 7- and 7-, are canonical. 7- _ '1-: impfies T = T'.

The proof of Lemma 4.24 carries over, also. As with prefix-closed trace structures, operations

can be defined which restore canonical forms using the simplifications. With such operators,

canonical complete trace structures are a circuit algebra by the same argument as in Section 4.4,

since the proof of Lemma 4.25 carries over without modification.

Section 7.5. Examples of Complete Trace Structures

7.5.1. Boolean Gates

When a NOR gate has both inputs 0 and output 0, the output will eventually go to 1. This

is a liveness property that prefix-closed trace structures cannot model. Recall from Section 3.4

that a gate is stable when the value of the associated Boolean function is equal to its current

output; otherwise, the gate is unstable. The additional property is that if a gate is continuously

unstable, an output transition will eventually occur. It is easy to extend the general definition of

trace structures for gates in Section 3.4 to include liveness.

A mixed automaton accepting the set of successes for a gate with Boolean function b has

exactly the same set of states (B) and transitions as the automaton in Section 3.4. However, the

set of finite accepting states QF and the set of infinite accepting states QB are the stable states

(not every state in B, as in Section 3.4). In the automaton for the success set, the failure state

qfa_ is in neither QF nor QB.

A mixed automaton accepting the failures of the gate can be constructed by using the same

states and transitions, but choosing QF = QB = {qfail}. The requirements of this trace structure

on the environment are essentially safety conditions (all of the failures are chokes).

Using this definition, the trace structure for any gate is receptive. For receptiveness, the

circuit must have a strategy that keeps every infinite trace in P, no matter what inputs the

environment sends. From any state b, a winning strategy for the circuit is to change the output

whenever b is unstable, and to do nothing (play c) when b is stable. If the current state is qfaa,

any output move will suffice. This is a winning strategy, because each time black gets a turn, it

Section 7.5 Examples of Complete Trace Structures 157

can force the automaton into a finitely and infinitely accepting state (for the P set). If the trace

is finite, the strategy makes sure that it ends up in a stable state, which is finitely accepting.

These trace structures are also canonical. In this case, the environment must have a strategy

that keeps every trace in A _ - F, no matter what the circuit does. A winning strategy for the

environment is to make e moves whenever the moves reach an unstable state (essentially, waiting

for the output to respond before sending another input). No history of a game played according

to this strategy can reach qfai].

Figure 7.1 shows an automaton that accepts the success or failure sets of a NOR gate. Note

that this has exactly the same states and transitions as the corresponding automaton for the NOR

in Section 3.4.

stan°_)° _c a _,_c

Figure 7.1. Live NOR Gate

158 Chapter 7 Complete Trace Structures

7.5.2. Ring Oscillator

Figure 7.2 shows an automaton for a live buffer or inverter. The initial state of the automaton

depends on the initial wire values. For a buffer or inverter starting in a stable state, the set of

successful traces is (ab)* +(ab) _'. The failure traces are (ab)*aaA _ (the gate receives two inputs

without an intervening output). Traces of the form (ab)*a are impossible, even though they are

prefixes of possible traces. This models the inevitability of a b transition once an a has been

received.

Figure 7.2. Live Buffer or Inverter and Ring Oscillator

The trace structure for a ring oscillator can be constructed by composing this structure with

an inverter with input b and output a. The success set for such an inverter is (ab)*a + (ab) _',

and the failure set is (ab)*abbA _ . Since the alphabets match, the success set of the composition

of these two trace structures is the intersection of the two success sets, which is (aby. The

two components have no finite traces in common, because all the buffer traces end with b and

all the inverter traces end with a. The only remaining trace is (ab) "_, which represents infinite

oscillation. This correctly models the non-terminating behavior of a ring oscillator. Intuitively,

none of the finite traces is possible because one of the components always insists on adding

another output.

As in the example with prefix-closed trace structures, the composition has no failures. It is

easy to see that the failures in each component are not possible in the other component.

Section 7.5 Examples of Complete Trace Structures 159

7.5.3. Mutual Exclusion Element

There are at least two different interesting descriptions of mutual exclusion elements using

complete traces, both of which have the same prefixes as the example in Section 3.4. First, the

element should at least be live w it should eventually grant the resource to some client, and the

release of the resource should eventually be acknowledged. Starting with the state graph for the

mutual exclusion element of Section 3.4, we can require liveness by making it impossible for

the automaton to wait forever in a state in which there are one or more outstanding requests,

but none have been acknowledged. Similarly, it can be made impossible to wait forever in a

state in which a release has been received but not acknowledged. Call these states unstable. If

all but the unstable states are made finitely and infinitely accepting, the trace structure will have

the desired properties. A state diagram is shown in Figure 7.3. The failures are not shown, to

reduce clutter. The reader should imagine a single additional state marked "F_:" with a self-loop

transition on all symbols, as in the previous examples. Whenever there is no transition out of

one of the states in the diagram for an input symbol, there must be a transition on that symbol

to the failure state. The arguments for why this structure is receptive and canonical are similar

to those for Boolean gates.

The first description of the mutual exclusion element allows starvation: If there are infinitely

many requests on one input, it is possible that requests on the other input will never be granted.

It is also possible by using complete trace structures to specify unbounded fairness, so that a

request pending on one of the inputs is eventually granted. An automaton accepting appropriate

trace sets is shown in Figure 7.4. It is similar to the automaton of Figure 7.3, except it has

been "unwound" somewhat, and the sets of accepting states are somewhat different. The failure

state has been omitted, as in Figure 7.3, and it can be added in the same way. As with all the

previous examples, there are no liveness requirements on the environment -- any state that has

no output transitions is finitely accepting for successes (it is permissible for the input to stop at

that state).

To see why this mutual exclusion element is fair, consider a trace of the form

r2 (rl al rl al) _'.

160 Chapter 7 Complete Trace Structures

start a 1

Figure 7.3. Live Mutual Exclusion Element

which represents unfair behavior because the r2 request is ignored forever. Tracing the run

through the automaton, we see that none of the four states that are repeated infinitely often is

marked with S_: or S_c. The only way such a state can be reached is for the symbol a2 to

appear in the trace at some point. In general, whenever an r2 request occurs, the only way that

an infinitely accepting state can be reached is for an a2 to occur. The situation with rl and al

is similar.

This trace structure is also both receptive and canonical. A receptiveness strategy would

be for the output always to grant to the the earliest request that has not already been granted. A

failure-avoidance strategy would be not to send inputs that lead directly to the failure state, as

before.

7.5.4. Fork/Join

This example illustrates the differences between prefixed-closed and complete trace struc-

tures with respect to concurrency. It also gives a non-trivial example of an liveness requirement

Section 7.5 Examples of Complete Trace Structures 161

start a 1

rl

al

r2

r

t

a2 a2 a2 a2

r2

r2

rl

a2 rl

r2

Figure 7.4. Fair Mutual Exclusion Element

on a circuit environment. In Section 4.5, the discussion of the fork/join module concluded that

it is impossible to specify, using prefix-closed trace structures, that an implementation must be

concurrent _ in particular, the sequence module conforms to the fork/join. Consider, however,

the circuit of Figure 7.5, in which rr and lr are inputs to a C element, the output of which is

connected to both ra and la. Using a fork/join, the circuit is live u if a transition r occurs,

a transition on a eventually follows. However, if a sequence module is used instead of the

fork/join, the circuit deadlocks after sending lr.

Given this example, it is not totally surprising that complete trace structures can be used to

require a concurrent implementation of the fork/join. If the same state graph is used as for the

162 Chapter 7 Complete Trace Structures

rl a

>N/-<

Figure 7.5. A Circuit that Distinguishes Fork/Join and Sequence

prefix-closed specification, but the accepting states are chosen to represent the obvious liveness

properties of the fork/join (that it eventually produces certain outputs in response to certain

inputs), the automata of Figures 7.6 and 7.7 are obtained for the fork/join and sequence. Using

these trace structures, the sequence does not conform to the fork/join: the trace r; lr is possible

in the sequence, but impossible in the fork/join. This accounts for the difference in deadlock

behavior in the example of the previous paragraph.

Intuitively, it would seem that there are some contexts in which a sequence could legitimately

be substituted for a concurrent fork/join. For example, if each of the request/acknowledge pairs

for the left and right halves of the environment were required to be live even in the absence of a

request on the other pair, it would be impossible for the sequence module to deadlock. The trace

structure of Figure 7.7 can be modified to include this assumption, as in Figure 7.8 (in which

the newly forbidden environmental traces have been made into failures). The trace structure for

the sequence module is similarly modified in Figure 7.9.

It is easy to see that the modified sequence module conforms to the modified fork/join,

since the sets of failures and possible traces of the first are included in the sets of failures and

possible traces of the second.

Section 7.6 Complete Trace Structures as a Lattice 163

r r

$

Figure 7.6. Live Fork/Join

Section 7.6. Complete Trace Structures as a Lattice

Interestingly, complete trace structures as defined are not a lattice. The problem is that, given

complete trace structures '7- and 7-', there is not always a complete trace structure that conforms to

both. As a simple example of this, consider 7- = (_. {a.b}, [a_]. _) and T' = (_. {a.b}, Ibm'], _).

The sets of possible traces (a _' and b _) are disjoint, so there is no way that a canonical trace

structure with a non-empty P set can conform to both. For complete trace structures, the trace

structure (I. 0_I _=. (D)is not a universal implementation, because it may fail to meet liveness

requirements.

The meet operation was well-defined for prefix-closed trace structures because a circuit

which was allowed to output neither a nor b would still have e as a possible trace. With the

added expressive power of liveness conditions, it is possible to add constraints until there is no

trace structure that satisfies them.

164 Chapter 7 Complete Trace Structures

Figure 7.7. Live Sequence

In the case of the join operation, there is a universal implementation for any input and output

sets: (I. O, A_,A _) (we call this -T-for convenience in on of the proofs below). However, the

identity of Section 4.7, that '2/-u T' has P u P' as its set of possibilities and F L]F r as its failures,

fails to hold for complete trace structures. The reason for this is that 7- U 7-' is defined to be

a canonical trace structure, but taking the unions of the possibilities and failures may yield a

non-canonical trace structure by introducing autofailures.

For each I and O set, it would be possible to add an artificial universal implementation,

written A_, to the set of complete trace structures with those inputs and outputs. With this

addition, the canonical complete trace structures are a lattice. The join can be computed by

taking the unions of the possibility and failure sets (as before), then reducing to canonical form.

To compute the meet, we first define a variant of the mirror operation which is defined even for

Section 7.6 Complete Trace Structures as a Lattice 165

T r

$

Figure 7.8. Fork/Join with Live Environment

the universal specification (which has S = _). For any canonical complete trace structure, 7-,

let _A_x = Y Yx = _1_T x = T M when 7- is neither -7 nor _1_.With these definitions, the identity

7- _ 7-' = (7-x _ 7-,x)x holds, so the meet can be computed by using the join and mirroring.

Theorem 7.3. The set of canonical complete trace structures having inputs I and outputs 0

and augmented with ± is a bounded lattice.

This theorem is proved through the following lemmas, which also show that an effective

procedure exists for computing the meet and join.

Lemma 7.12. Let 7- and T' be complete trace structures such that A = A' and 7-s and 7-s' are

the canonical complete trace structures that result from applying the simplifications to 7- and

7-'. Then P C_P' and F !2_F' implies Ps C Pts and Fs C__Fts.

proof. By 4.6, 7- _ 7-'. The transformations preserve conformation, so 7-s -< 7-_. But 7-s

and 7-s' are in canonical form, so by 4.23, Ps C Pts and Fs C_F s. Vq

166 Chapter 7 Complete Trace Structures

Figure 7.9. Sequence with Live Environment

Another way to look at Lemma 7.12 is that the simplifications find the trace structure with

the largest P and F sets that is conformation-equivalent to the original. Note that Lemma 7.12

also applies to prefix-closed trace structures.

Lemma 7.13. If T and T' are any complete trace structures, and if T" = (I, O, (PUP')-(FU

F').F u F'), then 7- -< 7-" and T' -4 7-".

proof,. Let T" = (I. O. (P U P') - (F U F'),F u F'). We claim that 7-" is a (not neces-

sarily canonical) complete trace structure. Everything is obvious except receptiveness. Let

x be any member of pref(P"). Then, by property 6.2, prel,(P") = prel,(P)U prel,(P'), so

x _ prel,(P) or x E pref(P'). Assume without loss of generality that x E prel,(P). Since 7-

is receptive, the game (I*. O u {e},flat-l[sul,(x.P)]) is winnable by black. But then by prop-

erty 6.6, sul,(x.P) C_ sul,(x. P"), so by the properties of inverse images and property G1, the

Section 7.7 Practical Considerations 167

game (I*. O u {e},flat-l[suf(x.P")]) is black-winnable, also. Hence, T" is receptive, so it is a

complete trace structure. V]

Lemma 7.14. Let T, 7-', and T" be any canonical complete trace structures such that 7- -<

7-"' and 7-' -< T'", and let 7-" = (I, O. (P u P') - (F U F'),F u F'). Then 7-" -< 7-"'.

proof. Since 7-, 7-', and 7-"' are canonical, P C P"' and P' C_p'", by 4.23, so PUP' C_P"'

and F u F' C_F"'. Hence, by 4.6, 7-" -'<7-"'. [3

Lemma 7.15. The result of simplifying (I, O, (P U P') - (F U F'), F u F') to canonical form is

7-U7-'

proof. The simplifications preserve conformation equivalence, so the canonical form will

satisfy the definition of 7- u 7-', by the previous two lemmas. F']

Lemma 7.16. If 7-and 7-' are any canonical complete trace structures and 7- -4 T', then

T,x _< 7-x.

proof. In case 7- or 7-' is the universal specification or the universal implementation,

the result is immediate. Otherwise, 7-x = 7-M and 7-,x = 7-,M. Hence, ptct = A s _ F and

p,M = A s - F' (by definition), and F C F' (by Lemma 4.23), so p,M C- pM. Similarly,

F 'M C F M. Therefore, by Lemma 4.6, 7-,M __<7-M. [3

Lemma 7.17. For any complete canonical trace structures 7- and 7-' such that A = A', 7-M 7-' =

(7-x u 7-,x)x.

proof. The X operation reverses the sense of the conformation relations in the properties

of join, yielding the properties of meet, directly. [3

The meet and join can be effectively computed because the all of the operations involved

(union, intersection, and complementation of mixed-regular sets and simplification to canonical

form) are effective.

Section 7.7. Practical Considerations

It would be nice to have a program just like the one of Chapter 5 for complete traces. Such a

program has not been implemented. This section discusses a possible implementation approach
.,,

.-

168 Chapter 7 Complete Trace Structures

and points out some of the problems. Most of the computations involved are analogous to

the those for prefix-closed trace structures, but slower (but not exponentially slower) and more

difficult to implement because the operations and decision procedures for finite automata on

infinite sequences are more complicated. However, the decision procedure for infinite games,

which is used in checking receptiveness and in the simplifications, is substantially worse (by
0

several exponentials) than the corresponding computations for prefix-closed trace structures.

Mixed regular trace sets can be represented using finite automata and nondeterministic Biichi

automata. There are a variety of other automata that could be used, but nondeterministic Biichi

automata are relatively succinct, and operations on them are within a polynomial factor of being

as fast as possible (in the absence of a subexponential solution to PSPACE-hard problems). In

comparing the computations for prefix-closed and complete trace structures, it is not unreasonable

for the latter to be exponentially more expensive (in the worst case) because deterministic

automata were used in the implementation of prefix-closed trace structures. Even for finite

sequences, deterministic automata are exponentially larger in the worst case than nondeterministic

automata.

It is not difficult to implement the operations compose, hide, and rename for complete

trace structures. They require doing deletion, inverse deletion, and intersection on finite and

Biichi automata, which are all polynomial-time operations. Conformation can be tested by

computing the mirror of the specification, composing it with the implementation, and testing

for emptiness. To compute the mirror, the P set needs to be complemented. The best known

algorithm for complementing Biichi automata, that of Sistla, Vardi, and Wolper, is exponential

(the problem is PSPACE-hard). It may seem that the need to complement the P set of the

specification makes this procedure exponentially more costly in the size of the specification

than the procedure for prefix-closed trace structures. However, the reachability construction in

Chapter 5 is simple only because the specification is represented by a deterministic automaton.

If a nondeterministic automaton were used, it would have to be converted to a deterministic

automaton or complemented in some other way, incurring an exponential time cost in the worst

case.

Section 7.7 Practical Considerations 169

The sticking point is the decision procedure for black-winnability of infinite games. One

problem is that it is difficult to check that a complete trace structure is well-formed; as the

definitions are formulated, testing for receptiveness requires deciding whether a set of infinite

games are winnable by black. Also, the simplification to canonical form is very expensive since

autofailure manifestation requires testing black-winnability of infinite games, also.

The decision procedure on infinite games can perhaps be avoided by limiting the capabilities

of the program. Instead of checking for receptiveness, the system could trust the user to supply

well-formed trace structures. The user would have to show that the trace structures are well-

formed by other means (perhaps manually). This was not difficult to do for the examples of

Section 7.5. Or perhaps a restricted class of complete trace structures that is easier to check

could be identified and used. For straightforward verification, in which a circuit expression is

compared with a specification, autofailure manifestation is not required. However, implementing

the features of Section 5.6 requires being able to do autofailure manifestation, so this would be

an unfortunate limitation.

Counting exponentials is a very crude measure of performance. Some of the algorithms

on BiJchi automata are less efficient than the corresponding procedures on finite automata by

polynomial factors or large constants. There are additional questions about expected behavior of

the algorithms on "typical" circuits. For example, the program of Chapter 5 was often able to

discover bugs after examining a small fraction of the global state graph for a circuit. Whether

this is possible for complete traces, even disregarding the problems with infinite games, remains

to be seen.

In summary, the major stumbling block to implementing this chapter is the decision proce-

dure for infinite games. For a practical implementation, either the capabilities of the program

will have to be limited, or a better decision procedure for black-winnability of infinite games

will have to be found.

Chapter 8

Conclusion

Section 8.1. Summary

We have built, from the ground up, a theory and practice for automatic verification of speed-

independent circuits. The first task was the definition of a small set of operations for making

circuits out of less complicated circuits, and an exploration of the identities that should hold

for the operations. This gave us the concept of a circuit algebra. The next step was a formal

model for the behavior of speed-independent circuits, based on prefix-closed trace structures. We

then derived from the idea of safe substitution a way of specifying circuits using trace structures

(the same formalism that was used for modeling). The theory was put to the test in the form

of a program that could verify (and find bugs in) circuits published by other authors. Finally,

the trace theory was extended to handle liveness properties in addition to safety properties, by

considering non-prefix-closed sets of finite and infinite traces.

Another way to survey the ground covered by this thesis is to consider the different inter-

pretations of circuit algebra and their associated equivalence relations. For example, the first

interpretation was the algebra of circuit structures; the operations were applied to graph repre-

sentations of circuit topologies. The equivalence relation was structural equivalence, which is

a type of graph isomorphism. There were two behavioral interpretations: prefix-closed trace

structures, and complete trace structures. These interpretations were used to model circuit oper-

ation. In each case, the relevant equivalence relation was behavioral equivalence _ two circuits

were considered equivalent if their trace sets were equal. Behavioral equivalence for complete

Section 8.2 Future Work 171

trace structures is a finer equivalence relation than behavioral equivalence for prefix-closed trace

structures. The two remaining interpretations were the algebras of canonical prefix-closed trace

structures and canonical complete trace structures. In these cases, the relevant equivalence was

conformation equivalence. Two circuits are conformation-equivalent if they are equally useful

for correct circuits. Within the class of prefix-closed or complete trace structures, behavioral

equivalence is a finer equivalence relation than conformation equivalence, since (for example)

conformation equivalence does not distinguish between a circuit that must fail for a particular

input and a circuit that might fail. Also, conformation equivalence is a finer equivalence relation

for complete trace structures than for prefix-closed trace structure.

Section 8.2. Future Work

As with all research, this thesis raises more questions than it answers. This section surveys

a few areas for further study.

8.2.1. Efficiency

First, there are a number of of improvements that should be made to the program in order to

make it a more useful and efficient tool. An area which obviously needs to be investigated is that

of description languages for specifying trace sets, and regular languages in general. Fortunately,

it should be straightforward to connect different syntactic front-ends onto the program. Perhaps

the best choice would be to support a variety of description languages, in the likely event that

no language is universally superior for all applications.

Many more examples of speed-independent circuits should be tried, in order characterize

the typical characteristics of circuits. It would be interesting and useful to characterize the

differences between circuits that are easy to verify and circuits that are difficult.

It is likely that some circuits are difficult because their behavior is inherently complex.

However, there are circuits that will cause the program of Chapter 5 to explore exponentially

many states, even though the actual behavior of the circuit seems to be quite simple. For

example, a composition of n completely independent ring oscillators requires a state graph with

2n states. The problem is that the program explicitly represents and stores all global states. A

172 Chapter 8 Conclusion

promising alternative is symbolic state representations, in which a small data structure (such as

a logical expression) can represent a large number of states. It is not hard to invent symbolic

representations that compactly represent compositions of independent circuits. However, it is

much less clear what would constitute a good representation for systems that have even a small

amount interaction among processes.

It is important to be able to handle liveness properties. The theory of Chapter 7 is a good

start on this, but there are problems that must be solved before it can be implemented. First

among these is the decision procedure for infinite games, which is impractical. If this problem

can be solved or circumvented, it is likely, but not certain, that a practical verifier can be

implemented. While the algorithms and decision procedures for automata on infinite sequences

are not exponentially worse than the corresponding procedures for automata on finite strings, they

are often significantly more expensive: for example, complementation of a nondeterministic fmite

automaton on fmite sequences is an 0(2 n) operation, as compared with the O(16 n_) operation

for nondeterministic Btichi automata. When n = 10, this is the difference between 21° and 2*°°.

Also, a major feature of the approach used in Chapter 5 is that it can check for failures as

it constructs the states; this is easy to do this during depth-first search. Finding failures in a

finite automaton on infinite sequences requires searching for cycles of certain types in the graph.

Consequently, the algorithm for automata on infinite sequences has a much more complicated

control structure, which may make it more difficult to find failures without constructing many

states.

8.2.2. Extending the Class of Circuits

Not all asynchronous circuits are speed-independent. Many actual designs depend on real-

valued timing constraints of various kinds. For example, Seitz [66] and Brzozowski and Yoeli

[19] propose that circuits be designed with an assumption that the ratio of the speeds of the fastest

and slowest components in the circuit is not greater than m/n for some integers m > n (such as

3/2 or 2/1). Also, it may be reasonable to assume that the delays in components have constant

upper and lower bounds. Such assumptions restrict the traces that occur in a composition, so that

the circuit appears to satisfy more properties than it would under a speed-independent model. It

Section 8.2 Future Work 173

would be very beneficial in practice to be able to take such assumptions into account in verifying

a circuit.

Another useful extension would be the ability to handle circuits designed at levels below

the gate and element level. In particular, many VLSI designers work directly at the switch level,

exploiting the bilateral properties of MOS transistors to achieve much more efficient designs. It

would also be important in practice to be able to verify circuits designed at the switch-level.

8.2.3. Application to Other Types of Concurrent Systems

Modularity in verifying other types of concurrent systems is just as important as for speed-

independent circuits. For example, the theory developed in this thesis should apply almost

directly to systems that communicate via shared distributed variables (i.e., no variable can be

written by more than one process); this model is very similar to our model of wire communication

in asynchronous circuits. Also, the idea of safe substitution as a basis for hierarchical verification

would seem to apply to many other types of models of concurrency, including tree-based models

such as CCS.

174 References

References

[1] S. Aggarwal, R.P. Kurshan, K. Sabnani. A Calculus for Protocol Specification and Vali-

dation. In H. Rudin and C.H. West (eds), Protocol Specification, Testing, and Verification,

IIl. pp. 19-34, Elsevier Science Publishers B.V. (North-Holland), 1983.

[2] S. Aggarwal, R.E Kurshan, D. Sharma. A Language for the Specification and Analysis of

Protocols. In H. Rudin and C.H. West (eds), Protocol Specification, Testing, and Verifica-

tion, III. pp. 35-50, Elsevier Science Publishers B.V. (North-Holland), 1983.

[3] Geoff Barrett. Formal Methods Applied to a Floating Point Number System. Technical

Monograph PRG-58, Oxford University Computing Laboratory, Programming Research

Group, January, 1987.

[4] Howard Barringer, Ruurd Kuiper, and Amir Pnueli. Now You May Compose Temporal

Logic Specifications. In Proceedings of the 16th ACM Symposium on Theory of Comput-

ing. pp. 51-63, Association for Computing Machinery, 1984.

[5] Harry G. Barrow. VERIFY: A Program for Proving Correctness of Digital Hardware De-

signs. Artificial Intelligence 24, 1984.

[6] Mark Joseph Bennett. Proving Correctness of Asynchronous Circuits Using Temporal

Logic. PhD Thesis, University of California, Los Angeles, 1986.

[7] Gerard Berthelot and Richard Terrat. Petri Nets Theory for the Correctness of Protocols.

In Carl Sunshine (ed), Protocol Specification, Testing, and Verification, II. pp. 325-342,

Elsevier Science Publishers B.V. (North-Holland), 1982.

[8] J. Billington and M.C. Wilbur-Ham. Automated Protocol Verification. In M. Diaz (ed),

Protocol Specification, Testing, and Verification, II. pp. 77-100, Elsevier Science PubLish-

ers B.V. (North-Holland), 1982.

[9] David L. Black. On the existence of delay-insensitive fair arbiters: Trace theory and its

limitations. Distributed Computing 1(4):205-225, 1986.

[10] Gregor V. Bochmann. Finite State Description of Communication Protocols. Computer

Networks 2(4,5):361-372, October, 1978.

References 175

[11] Gregor V. Bochmann. Hardware Specification with Temporal Logic: An Example. IEEE

Transactions on Computers C-31 (3):223-231, March, 1982.

[12] A. Bourguet. A Petri Net Tool for Service Validation in Protocol. In B. Sarikaya (ed),

Protocol Specification, Testing, and Verification, VI. pp. 231-292, Elsevier Science Pub-

lishers B.V. (North-Holland), 1987.

[13] Ed Brinksma. A Tutorial on LOTOS. In M. Diaz (ed), Protocol Specification, Testing,

and Verification, V. pp. 171-194, Elsevier Science Publishers B.V. (North-Holland), 1986.

[14] Stephen D. Brookes. A Model for Communicating Sequential Processes. Technical Re-

port CMU-CS-83-149, Department of Computer Science, Carnegie-Mellon University,

1983.

[15] Michael C. Brown, Edmund M. Clarke, David L. Dill, and Bud Mishra. Automatic Ver-

ification of Sequential Circuits Using Temporal Logic. IEEE Transactions on Computers

C-35(12):1035-1044, December, 1986.

[16] Michael C. Browne, Edmund M. Clarke, and David L. Dill. Automatic Circuit Verifi-

cation Using Temporal Logic: Two New Examples. In George J. Milne and P.A. Sub-

rahmanyam (eds), Formal Aspects of VLSI Design, Proceedings of the 1985 Edinburgh

Workshop on VLSI. pp. 113-124, North-Holland, 1986.

[17] Erik Brunvand. PhD Thesis Proposal. July, 1987.

[18] Randal E. Bryant. Symbolic Verification of MOS Circuits. In Henry Fuchs (ed), 1985

Chapel Hill Conference on Very Large Scale Integration. pp. 419-438, Computer Sci-

ence Press, Inc., 1985.

[19] Janusz A. Brzozowski and Micheal Yoeli. Digital Networks. Prentice-Hall, Inc., 1976.

[20] J. Richard Biichi. On a Decision Method in Restricted Second Order Arithmetic. In Pro-

ceedings of the 1960 International Congress on Logic, Methodology, and Philosophy of

Science. pp. 1-11, Stanford University Press, 1962.

[21] J. Richard Biichiand Lawrence H. Landweber. Solving Sequential Conditions by Finite-

State Strategies. Transactions of the American Mathematical Society 138:295-311, April,

1969.

176 References

[22] Luca CardeUi. An Algebraic Approach to Hardware Description and Verification. PhD

Thesis, University of Edinburgh, 1982.

[23] T.J. Chaney and C.E. Molnar. Anomalous Behavior of Synchronizer and Arbiter Circuits.

IEEE Transactions on Computers C-22(4):421-422, April, 1973.

[24] Yaacov Choueka. Theories of Automata on _'-Tapes: A Simplified Approach. Journal of

Computer and System Sciences 8(2):117-141, April, 1974.

[25] Tam-Anh Chu. On the Models for Designing VLSI Asyncronous Digital Systems. INTE-

GRATION, the VLSl journal(4):99-113, 1986.

[26] Alonzo Church. Logic, Arithmetic, and Automata. In Proceedings of the International

Congress of Mathematicians, 1962. pp. 23-35, Institut Mittag-Leffler, 1963.

[27] E.M. Clarke, and E.A. Emerson. Using Branching Time Temporal Logic to Synthesize

Synchronization Skeletons. Science of Computing 2(3):241-266, December, 1982.

[28] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite-State Con-

current Systems Using Temporal Logic. ACM Transactions on Programming Languages

and Systems 8(2):244-263, April, 1986.

[29] Wesley A. Clark and Charles E. Molnar. Macromodular System Design. Technical Report

23, Computer Systems Laboratory, Washington University, April, 1973.

[30] D.L. Dill and E.M. Clarke. Automatic Verification of Asynchronous Circuits Using Tem-

poral Logic. lEE Proceedings, Pt. E 133(5):276-282, September, 1986.

[31] Jo C. Ebergen. Private Communication.. 1984.

[32] J.C. Ebergen. A Technique to Design Delay-Insensitive VLSI Circuits. Report CS-R8622,

Centrum voor Wiskunde en Informatica, June, 1986.

[33] Samuel Eilenberg. Automata, Languages, and Machines, Vol. A. Academic Press, 1974.

[34] William I. Fletcher. An Engineering Approach to Digital Design. Prentice-Hall, Inc.,

1980.

[35] Masahiro Fujita, Hedehiko Tanaka, Tohru Moto-oka. Verification with Prolog and Tempo-

ral Logic. In T. Uehara and M. Barbacci (eds), IFIP Sixth Computer Hardware Descrip-

tion Languages and their Applications. pp. 103-114, North-Holland Publishing Com-

pany, 1983.

References 177

[36] M.J.C. Gordon and J. Herbert. Formal Hardware Verification Methodology and its Appli-

cation to a Network Interface Chip. lEE Proceedings, Pt. E 133(5):255-270, September,

1986.

[37] Alan B. Hayes. Stored State Asynchronous Sequential Circuits. IEEE Transactions on

Computers C-30(8):596-600, August, 1981.

[38] Frederick J. Hill and Gerald R. Peterson. Introduction to Switching Theory and Logical

Design. John Wiley and Sons, 1981.

[39] C.A.R. Hoare. Communicating Sequential Processes. Communications of the Association

for Computing Machinery 21(8):666--677, August, 1978.

[40] C.A.R. Hoare. A Model for Communicating Sequential Processes. PRG-22, Programming

Research Group, Oxford University Computing Laboratory, 1981.

[41] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.

[42] C.A.R. Hoare, S.D. Brookes, and A.W. Roscoe. A Theory of Communicating Sequential

Processes. Technical Monograph PRG-16, Oxford University Computing Laboratory,

Programming Research Group, May, 1981.

[43] Gerard J. Holzmann. Automated Protocol Validation in Argos, Assertion Proving and

Scatter Searching. In Yechiam Yemini (ed), Current Advances in Distributed Computing

and Communications. pp. 163-188, Computer Science Press, Inc., 1987.

[44] Gerard J. Holzmann. Tracing Protocols. In Yechiam Yemini (ed), Current Advances in

Distributed Computing and Communications. pp. 189-207, Computer Science Press, Inc.,

1987.

[45] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley Publising Company, 1979.

[46] David A. Huffman. The Design and Use of Hazard-Free Switching Networks. Journal of

the Association for Computing Machinery 4(41):47-62, January, 1957.

[47] Yonatan Malachi and Susan S. Owicki. Temporal Specifications of Self-Timed Systems.

In H.T. Kung, Bob Sproull, and Guy Steele (eds), CMU Conference on VLSI Systems and

Computations. pp. 203-212, Computer Science Press, Inc., 1981.

178 References

[48] Z. Manna and A. Pnueli. Temporal Verification of Concurrent Programs: The Temporal

Framework for Concurent Programs. In Robert S. Boyer and J. Strother Moore (eds), The

Correctness Problem in Computer Science. pp. 215-273, Academic Press, 1981.

[49] Alain J. Martin. The Design of a Self-timed Circuit for Distributed Mutual Exclusion.

In Henry Fuchs (ed), 1985 Chapel Hill Conference on Very Large Scale Integration. pp.

245-260, Computer Science Press, Inc., 1985.

[50] Alain J. Martin. A Delay-lnsesitive Fair Arbiter. Technical Report 5193:TR:85, Computer

Science Department, California Institute of Technology, 1985.

[51] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley Publish-

ing Company, 1980.

[52] Raymond E. Miller. Switching Theory. Volume II: Sequential Circuits and Machines.

John Wiley and Sons, 1965.

[53] Robin Milner. Lecture Notes in Computer Science. Volume 92: A Calculus of Communi-

cating Systems. Springer-Verlag, 1980.

[54] B. Mishra and E.M. Clarke. Hierarchical Verification of Asynchronous Circuits Using

Temporal Logic. Theoretical Computer Science 38:269-291, 1985.

[55] Jayadev Misra and K. Mani Chandy. Proofs of Networks of Processes. IEEE Transac-

tions on Software Engineering SE-7(4), July, 1981.

[56] Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of Delay-

Insensitive Modules. In Henry Fuchs (ed), 1985 Chapel Hill Conference on Very Large

Scale Integration. pp. 67-86, Computer Science Press, Inc., 1985.

[57] David E. Muller and W.S. Bartky. A Theory of Asynchronous Circuits. In The Annals

of the Computation Laboratory of Harvard University. Volume XXIX: Proceedings of an

International Symposium on the Theory of Switching, Part I. pp. 204-243, Harvard Uni-

versity Press, 1959.

[58] Suhas S. Patil. An Asynchronous Logic Array. Technical Memorandom 62, Massachusetts

Institute of Technology, Project MAC, 1975.

[59] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc.,

1981.

References 179

[60] A. Pnueli. The Temporal Logic of Programs. In 18th IEEE Symposium on Foundations

of Computer Science. pp. 46-57, IEEE, 1977.

[61] Amir Pnueli. In Transition from Global to Modular Temporal Reasoning about Programs.

In Kzysztof Apt (ed), NATO AS1 Series F: Computer and System Sciences. Volume 13:

Logics and Models of Concurrent Systems. pp. 123-144, Springer-Verlag, 1985.

[62] Michael O. Rabin. Weakly Definable Relations and Special Automata. In Yehoshua Bar-

Hillel (ed), Mathematical Logic and Foundations of Set Theory. pp. 1-23, North-Holland

Publishing Company, 1970.

[63] Michael O. Rabin. Regional Conference Series in Mathematics. Volume 13: Automata on

Infinite Objects and Church's Problem. American Mathematical Society, 1972.

[64] Martin Rem, Jan L.A. van de Snepscheut, and Jan Tijmen Udding. Trace Theory and the

Definition of Hierarchical Components. In Randal Bryant (ed), Third CalTech Conference

on Very Large Scale Integration. pp. 225-239, Computer Science Press, Inc., 1983.

[65] Charles L. Seitz. Asynchronous Machines Exhibiting Concurrency. In Project MAC Con-

ference on Concurrent Systems and Parallel Computation. pp. 93-106, Association for

Computing Machinery, June, 1970.

[66] Charles L. Seitz. Chapter 7: System Timing. In C. Mead and L. Conway (eds), Introduc-

tion to VLSI Systems. pp. 218-262, Addison-Wesley, 1980.

[67] Charles L. Seitz. Ideas About Arbiters. Lambda:lO-14, First Quarter, 1980.

[68] A.R Sistla, M.Y. Vardi, and R Wolper. The Complementation Problem for BtichiAtomata

with Applications to Temporal Logic. In W. Brauer (ed), Lecture Notes in Computer Sci-

ence. Volume 194: Automata, Languages, and Programming. pp. 465-474, Springer-

Verlag, 1985.

[69] Jan L.A. van de Snepscheut. Deriving Circuits from Programs. In Randal Bryant (ed),

Third CalTech Conference on Very Large Scale Integration. pp. 241-256, Computer Sci-

ence Press, Inc., 1983.

[70] Jan L.A. van de Snepscheut. Trace Theory and VLSI Design. PhD Thesis, Department of

Computing Science, Eindhoven University of Technology, October, 1983.

[71] Guy L. Steele, Jr. Common LISP: The Language. Digital Press, 1984.

180 References

[72] B.A. Trakhtenbrot and Y.A. Barzdin. Fundamental Studies in Computer Science. Volume

1: Finite Automata: Behavior and Synthesis. North-Holland Publishing Company, 1973.

[73] Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive circuits

and systems. Distributed Computing 1(4):197-204, 1986.

[74] Jan Tijmen Udding. Classification and Composition of Delay-Insensitive Circuits. PhD

Thesis, Department of Computing Science, Eindhoven University of Technology, Septem-

ber, 1984.

[75] Stephen H. Unger. Asynchronous Sequential Switching Circuits. Robert E. Kreiger Pub-

lishing Company, Inc., 1969.

[76] Kaes van Birkel. Lecture at the Workshop on Design and Implementation of Concurrent

Programs, Groningen, The Netherlands, 17-21 November, 1986.

[77] Kevin S. Van Horn. An Approach to Concurrent Semantics Using Complete Traces.

Technical Report 5236:TR:86, Computer Science Department, California Institute of

Technology, 1986.

[78] Moshe Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State Pro-

grams. In 26th IEEE Symposium on Foundations of Computer Science. pp. 327-338,

IEEE, 1985.

[79] David Winkel and Franklin Prosser. The Art of Digital Design. Prentice-Hall, Inc., 1980.

[80] Pierre Wolper. Temporal Logic Can be More Expressive. In 22nd IEEE Symposium on

Foundations of Computer Science. pp. 340-348, IEEE, 1981.

[81] Pitro Zafiropulo, Colin H. West, Harry Rudin, D.D. Cowan, Daniel Brand. Towards An-

alyzing and Synthesizing Protocols. IEEE Transactions on Communications COM-28(4),

April, 1980.

[82] Job Zwiers, Willem Paul De Roever, and Peter van Emde Boas. Compositionality and

Concurrent Networks: Soundness and Completeness of a Proofsystem. In W. Brauer (ed),

Lecture Notes in Computer Science. Volume 194: Automata, Languages, and Program-

ming. pp. 509-519, Springer-Verlag, 1985.

