
Proofs of Space

Stefan Dziembowski1?, Sebastian Faust2, Vladimir Kolmogorov3??, and Krzysztof Pietrzak3? ? ?

1 University of Warsaw
2 Ruhr-University Bochum

3 IST Austria

Abstract. Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto’92) as protection to a shared
resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work
to every request. The original applications included prevention of spam and protection against denial of service
attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system.
In this work, we put forward an alternative concept for PoWs – so-called proofs of space (PoS), where a service
requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS
schemes in the random oracle model (with one additional mild assumption required for the proof to go through),
using graphs with high “pebbling complexity” and Merkle hash-trees. We discuss some applications, including
follow-up work where a decentralized digital currency scheme called Spacecoin is constructed that uses PoS (instead
of wasteful PoW like in Bitcoin) to prevent double spending.
The main technical contribution of this work is the construction of (directed, loop-free) graphs on N vertices with
in-degree O(log logN) such that even if one places Θ(N) pebbles on the nodes of the graph, there’s a constant
fraction of nodes that needs Θ(N) steps to be pebbled (where in every step one can put a pebble on a node if all its
parents have a pebble).

1 Introduction

Proofs of Work (PoW). Dwork and Naor [20] suggested ”proofs of work” (PoW) to address the
problem of junk emails (aka. Spam). The basic idea is to require that an email be accompanied
with some value related to that email that is moderately hard to compute but which can be verified
very efficiently. Such a proof could for example be a value σ such that the hash valueH(Email, σ)
starts with t zeros. If we model the hash functionH as a random oracle [12], then the sender must
compute an expected 2t hashes until she finds such a σ.4 A useful property of this PoW is that there
is no speedup when one has to find many proofs, i.e., finding s proofs requires s2t evaluations. The
value t should be chosen such that it is not much of a burden for a party sending out a few emails per
day (say, it takes 10 seconds to compute), but is expensive for a Spammer trying to send millions
of messages. Verification on the other hand is extremely efficient, the receiver will accept σ as a
PoW for Email, if the hash H(Email, σ) starts with t zeros, i.e., it requires only one evaluation
of the hash funciton. PoWs have many applications, and are in particular used to prevent double
spending in the Bitcoin digital currency system [42] which has become widely popular by now.

Despite many great applications, PoWs suffer from certain drawbacks. Firstly, running PoW
costs energy – especially if they are used on a massive scale, like in the Bitcoin system. For this

? Supported by the Foundation for Polish Science WELCOME/2010-4/2 grant founded within the framework of the EU Innovative
Economy (National Cohesion Strategy) Operational Programme.

?? VK is supported by European Research Council under the European Unions Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement no 616160.

? ? ? Research supported by ERC starting grant (259668-PSPC).
4 The hashed Email should also contain the receiver of the email, and maybe also a timestamp, so that the sender has to search for

a fresh σ for each receiver, and also when resending the email at a later point in time.

reason Bitcoin has even been labelled an “environmental disaster” [5]. Secondly, by using dedi-
cated hardware instead of a general purpose processor, one can solve a PoW at a tiny fraction of
the hardware and energy costs, thus choosing “appropriate” parameters is tricky.

Proofs of Space (PoS). From a more abstract point of view, a proof of work is simply a means
of showing that one invested a non-trivial amount of effort related to some statement. This general
principle also works with resources other than computation like real money in micropayment sys-
tems [41] or human attention in CAPTCHAs [54, 16]. In this paper we put forward the concept of
proofs of space where the resource in question is disk space.

PoS are partially motivated by the observation that users often have significant amounts of free
disk anyway, and in this case using a PoS is essentially for free. This is in contrast to a PoW,
as computing will always require energy consumption even if one contributes only CPU time of
processors that would otherwise be idle.

A PoS is a protocol between a prover P and a verifier V which has two distinct phases. After
an initialisation phase P is supposed to store some data F of size N , whereas V only holds some
small piece of information. At any later time point V can initialise a proof execution phase, and at
the end V outputs reject or accept. We require that V is highly efficient in both phases, whereas P
is highly efficient in the execution phase providing he stored and has random access to the data F .

As an illustrative application for a PoS, suppose that the verifier V is an organization that
offers a free email service (we outline another example related to online polls in Appendix B.) To
prevent that someone registers a huge number of fake-addresses for spamming, V might require
users to dedicate some nontrivial amount of disk space, say 100GB, for every address registered.
Occasionally, V will run a PoS to verify that the user really dedicates this space.

The simplest solution would be for the verifier V to generate a pseudorandom 100GB file F
and send it to the prover P during an initialization phase. Later, V can ask P to send back some bits
of F at random positions, making sure V stores (at least a large fraction of) F . Unfortunately, with
this solution, V still has to send a huge 100GB file to P, which makes this approach pretty much
useless in practice.

We want a PoS where the computation, storage requirement and communication complexity
of the verifier V during initialization and execution of the PoS is very small, in particular, at most
polylogarithmic in the storage requirement N of the prover P and polynomial in some security pa-
rameter γ. In order to achieve small communication complexity, we must let the prover P generate
a large file F locally during an initialization phase, which takes some time I . Note that I must be
at least linear in N , our constructions will basically5 achieve this lower bound. Later, P and V can
run executions of the PoS which will be very cheap for V, and also for P, assuming the latter has
stored F .

Unfortunately, unlike in the trivial solution (where P sends F to V), now there is no way we
can force a potentially cheating prover P̃ to store F in-between the initialization and the execution
of the PoS: P̃ can delete F after initialization, and instead only store the (short) communication
with V during the initialization phase. Later, before an execution of the PoS, P reconstructs F (in
time I), runs the PoS, and deletes F once it is done.

5 One of our constructions will achieve the optimal I = Θ(N) bound, our second construction achieves I = O(N log logN).

2

We will thus consider a security definition where one requires that a cheating prover P̃ can
only make V accept with non-negligible probability if P̃ either uses N0 bits of storage in-between
executions of the PoS or if P̃ invests time T for every execution. Here N0 ≤ N and T ≤ I are
parameters, and ideally we want them to be not much smaller than N and I , respectively. Our
actual security definition in Sect. 2 is more fine-grained, and besides the storage N0 that P̃ uses
in-between initialization and execution, we also consider a bound N1 on the total storage used by
P̃ during execution (including N0, so N1 ≥ N0).

High Level Description of our Scheme. We described above why the simple idea of having V
sending a large (pseudorandom) file F to P does not give a PoS as the communication complexity
is too large. Another simple idea that comes to mind is to have the V send the P a short description
of a “randomly behaving” permutation π : {0, 1}n → {0, 1}n. P then stores a table of N = n2n

bits where the entry at position i is π−1(i). During the execution phase, V asks for the preimage of
a random value y, which P can efficiently answer by returning the value π−1(y) at position y in the
table. Unfortunately this scheme is no a good PoS because of time-memory trade-offs for inverting
random functions [31] which allow to invert a random permutation over N values using only

√
N

time and space. For random functions (as opposed to permutations), it’s still possible to invert in
time and space N2/3. We provide a more detailed discussion on this issue in Appendix A.

The actual PoS scheme we propose is based on hard to pebble graphs. During the initalisation
phase, V sends the description of a hash function to P, who then labels the nodes of a hard to
pebble graph using this function. Here the label of a node is computed as the hash of the labels
of its children. V then computes a Merkle hash of all the labels, and sends this value to P. In the
proof execution phase, V simply asks the P to open labels corresponding to some randomly chosen
nodes.

Outline and our contribution. In this paper we introduce the concept of a PoS, which we formally
define in Sect. 2. In Sect. 3 we discuss and motivate the model in which we prove our constructions
secure (It is basically the random oracle model, but with an additional assumption). In Sect. 4 we
explain how to reduce the security of a simple PoS (with an inefficient verifier) to a graph pebbling
game. In Sect. 5 we show how to use hash-trees to make the verifier in the PoS from Sect. 4
efficient. In Sect. 6 we define our final construction and prove its security in Sect. 6.1 and Sect. 6.4.

Our proof uses a standard technique for proving lower bounds on the space complexity of
computational problems, called pebbling. Typically, the lower bounds shown using this method are
obtained via the pebbling games played on a directed graph. During the game a player can place
pebbles on some vertices. The game starts with some pebbles already on the graph. Informally,
placing a pebble on a vertex v corresponds to the fact that an algorithm keeps the label of a vertex
v in his memory. Removing a pebble from a vertex corresponds therefore to deleting the vertex
label from the memory. A pebble can be placed on a vertex v only if the vertices in-going to v have
pebbles, which corresponds to the fact that computing v’s label is possible only if the algorithm
keeps in his memory the labels of the in-going vertices (in our case this will be achieved by defining
the label of v to be a hash of the labels of its in-going vertices). The goal of the player is to pebble
a certain vertex of the graph. This technique was used in cryptography already before [21–23]. For
an introduction to the graph pebbling see, e.g., [48].

3

In Sect. 6.1 we consider two different (infinite families of) graphs with different (and incompa-
rable) pebbling complexities. These graphs then also give PoS schemes with different parameters
(cf. Theorem 3). Informally, the construction given in Theorem 1 proves a Ω(N/ logN) bound on
the storage required by a malicious prover. Moreover, no matter how much time he is willing to
spend during the execution of the protocol, he is forced to use at least Ω(N/ logN) storage when
executing the protocol. Our second construction from Theorem 2 gives a stronger bound on the
storage. In particular, a successful malicious prover either has to dedicate Θ(N) storage (i.e., al-
most as much as theN stored by the honest prover) or otherwise it has to useΘ(N) time with every
execution of the PoS (after the initialization is completed). The second construction, whose proof
appears in Appendix C and is based on superconcentrators, random bipartite expander graphs and
on the graphs of Erdös, Graham and Szemerédi [24] is quite involved and is the main technical
contribution of our paper.

We also note that a simple PoS can be constructed by storing the outputs of a random function
in a sorted list. Unfortunately, this PoS achieves very weak security due to time-memory trade-offs
as we will explain in Appendix A.

More related work and applications. Dwork and Naor [20] pioneered the concept of proofs of
work as easy-to-check proofs of computational efforts. More concretely, they proposed to use the
CPU running time that is required to carry out the proof as a measure of computational effort.
In [1] Abadi, Burrows, Manasse and Wobber observed that CPU speeds may differ significantly
between different devices and proposed as an alternative measure the number of times the memory
is accessed (i.e., the number of cache misses) in order to compute the proof. This approach was
formalized and further improved in [19, 55, 21, 4], which use pebbling based techniques. Such
memory-hard functions cannot be used as PoS as the memory required to compute and verify the
function is the same for provers and verifiers. This is not a problem for memory-hard functions as
the here the memory just has to be larger than the cache of a potential prover, whereas in a PoS the
storage is the main resource, and will typically be in the range of terabytes.

Originally put forward to counteract spamming, PoWs have a vast number of different applica-
tions such as metering web-site access [25], countering denial-of-service attacks [34, 9] and many
more [33]. An important application for PoWs are digital currencies, like the recent Bitcoin system
[42], or earlier schemes like the Micromint system of Rivest and Shamir [46]. The concept of using
bounded resources such as computing power or storage to counteract the so-called “Sybil Attack”,
i.e., misuse of services by fake identities, has already mentioned in the work of Douceur [18].

PoW are used in Bitcoin to prevent double spending: honest miners must constantly devote
more computational power towards solving PoWs than a potential adversary who tries to double
spend. This results in a gigantic waste of energy [5] devoted towards keeping Bitcoin secure, and
thus also requires some strong form of incentive for the miners to provide this computational
power.6 Recently a decentralized cryptocurrency called Spacecoin [43] was proposed which uses
PoS instead of PoW to prevent double spending. In particular, a miner in Spacecoin who wants to
dedicate N bits of disk space towards mining must just run the PoS initialisation phase once, and

6 There are two mechanisms to incentivise mining: miners who solve a PoW get some fixed reward, this is currently the main
incentive, but Bitcoin specifies that this reward will decrease over time. A second mechanism are transactions fees.

4

after that mining is extremely cheap: the miner just runs the PoS execution phase, which means
accessing the stored space at a few positions, every few minutes.

A large body of work investigates the concepts of proofs of storage and proofs of retrievability
(cf. [28, 29, 13, 8, 35, 17] and many more). These are proof systems where a verifier sends a file F
to a prover, and later the prover can convince the verifier that it really stored or received the file. As
discussed above, proving that one stores a (random) file certainly shows that one dedicates space,
but these proof systems are not good PoS because the verifier has to send at least |F| bits to the
verifier, and hence does not satisfy our polylogarithmic bound on the communication complexity.

Proof of Secure Erasure (PoSE) are related to PoS. Informally, a PoSE allows a space restricted
prover to convince a verifier that he has erased its memory of size N . PoSE were suggested by Per-
ito and Tsudik [45], who also proposed a scheme where the verifier sends a random file of sizeN to
the prover, who then answers with a hash of this file. Dziembowski, Kazana and Wichs used graph
pebbling to give a scheme with small communication complexity (which moreover is independent
of N), but large Ω(N2) computation complexity (for prover and verifier). Concurrently, and inde-
pendently of our work, Karvelas and Kiayias [36], and also Ateniese et al [7] construct PoSE using
graphs with high pebbling complexity. Interestingly, their schemes are basically the scheme one
gets when running the initialisation and execution phase of our PoS (as in eq.(7) in Theorem 3).7

[36] and [7] give a security proof of their construction in the random oracle model, and do not
make any additional assumptions as we do. The reason is that to prove that our ”collapsed PoS”
(as described above) is a PoSE it is sufficient to prove that a prover uses much space either during
initialisation or during execution. This follows from a (by now fairly standard) “ex post facto”
argument as originally used in [21]. We have to prove something much stronger, namely, that the
prover needs much space (or at least time) in the execution phase, even if he makes an unbounded
amount of queries in the initialisation phase (we will discuss this in more detail in Section 3.1).
As described above, a PoS (to be precise, a PoS where the execution phase requires large space,
not just time) implies a PoSE, but a PoSE does not imply a PoS, nor can it be used for any of
the applications mentioned in this paper. The main use-case for PoSE we know of is the one put
forward by Perito and Tsudik [45], namely, to verify that some device has erased its memory. A bit
unfortunately, Ateniese et al. [7] chose to call the type of protocols they construct also “proofs of
space” which led to some confusion in the past.

Finally, let us mention a recent beautiful paper [14] which introduces the concept of “catalytic
space”. They prove a surprising result showing that using and erasing space is not the same relative
to some additional space that is filled with random bits and must be in its original state at the end of
the computation (i.e., it’s only used as a “catalyst”). Thus, relative to such catalytic space, proving
that one has access to some space as in a PoS, and proving that one has erased it, like in PoSE,
really can be different things.

7 There are some differences, the bounds in [7] are somewhat worse as they use hard-to-pebble graphs with worse parameters,
and [36] do not use a Merkle hash-tree to make the computation of the verifier independent of N .

5

2 Defining Proofs of Space

We denote with (outV, outP) ← 〈V(inV),P(inP)〉(in) the execution of an interactive protocol be-
tween two parties P and V on shared input in, local inputs8 inP and inV, and with local outputs
outV and outP, respectively. A proof of space (PoS) is given by a pair of interactive random access
machines,9 a prover P and a verifier V. These parties run the PoS protocol in two phases: a PoS
initialization and a PoS execution as defined below. The protocols are executed with respect to
some statement id, given as common input (e.g., an email address in the example from the previ-
ous section). The identifier id is only required to make sure that P cannot reuse the same space to
execute PoS for different statements.

Initialization is an interactive protocol with shared inputs an identifier id, storage bound N ∈ N
and potentially some other parameters, which we denote with prm = (id, N, . . .). The execution
of the initialization is denoted by (Φ, S) ← 〈V,P〉(prm), where Φ is short and S is of size N .
V can output the special symbol Φ = ⊥, which means that it aborts (this can only be the case if
V interacts with a cheating prover).

Execution is an interactive protocol during which P and V have access to the values stored during
the initialization phase. The prover P has no output, the verifier V either accepts or rejects.

({accept, reject}, ∅)← 〈V(Φ),P(S)〉(prm)

In an honest execution the initialization is done once at the setup of the system, e.g., when the user
registers with the email service, while the execution can be repeated very efficiently many times
without requiring a large amount of computation.

To formally define a proof of space, we introduce the notion of a (N0, N1, T) (dishonest) prover
P̃. P̃’s storage after the initiation phase is bounded by at mostN0, while during the execution phase
its storage is bounded to N1 and its running time is at most T (here N1 ≥ N0 as the storage during
execution contains at least the storage after initialization). We remark that P̃’s storage and running
time is unbounded during the the initialization phase (but, as just mentioned, only N0 storage is
available in-between the initialization and execution phase).

A protocol (P,V) as defined above is a (N0, N1, T)-proof of space, if it satisfies the properties
of completeness, soundness and efficiency defined below.

Completeness: We will require that for any honest prover P:

Pr[out = accept : (Φ, S)← 〈V,P〉(prm) , (out, ∅)← 〈V(Φ),P(S)〉(prm)] = 1.

Note that the probability above is exactly 1, and hence the completeness is perfect.

8 We use the expression “local input/output” instead the usual “private input/output”, because in our protocols no values will
actually be secret. The reason to distinguish between the parties’ inputs is only due to the fact that P’s input will be very large,
whereas we want V to use only small storage.

9 In a PoS, we want the prover P to run in time much less than its storage size. For this reason, we must model our parties as
random access machines (and not, say Turing machines), where accessing a storage location is assumed to take constant (or at
most polylogarithmic) time.

6

Soundness: For any (N0, N1, T)-adversarial prover P̃ the probability that V accepts is negligible
in some statistical security parameter γ. More precisely, we have

Pr[out = accept : (Φ, S)← 〈V, P̃〉(prm), (out, ∅)← 〈V(Φ), P̃(S)〉(prm)] ≤ 2−Θ(γ) (1)

The probability above is taken over the random choice of the public parameters prm and the
coins of P̃ and V.10

Efficiency: We require the verifier V to be efficient, by which (here and below) we mean at most
polylogarithmic in N and polynomial in some security parameter γ. Prover P must be efficient
during execution, but can run in time poly(N) during initialization.11

In the soundness definition above, we only consider the case where the PoS is executed only once.
This is without loss of generality for PoS where V is stateless (apart from Φ) and holds no secret
values, and moreover the honest prover P uses only read access to the storage of size N holding S.
The protocols in this paper are of this form. We will sometimes say that a PoS is (N0, N1, T)-secure
if it is a (N0, N1, T)-proof of space.

It is instructive to observe what level of security trivially cannot be achieved by a PoS. Below
we use small letters n, t, c to denote values that are small, i.e., polylogarithmic inN and polynomial
in a security parameter γ. If the honest prover P is an (N,N + n, t) prover, where t, n denote the
time and storage requirements of P during execution, then there exists no

1. (N,N + n, t)-PoS, as the honest prover “breaks” the scheme by definition, and
2. (c, I+t+c, I+t)-PoS, where c is the number of bits sent by V to P during initialization. To see

this, consider a malicious prover P̃ that runs the initialization like the honest P, but then only
stores the messages sent by V during initialization instead of the entire large S. Later, during
execution, P̃ can simply emulate the initialization process (in time I) to get back S, and run the
normal execution protocol (in time t).

3 The model

We analyze the security and efficiency of our PoS in the random oracle (RO) model [12], making
an additional assumption on the behavior of adversaries, which we define and motivate below.
Recall that in the RO model, we assume that all parties (including adversaries) have access to the
same random function H : {0, 1}∗ → {0, 1}L. In practice, one must instantiate H with a real
hash function like SHA3. Although security proofs in the RO model are just a heuristic argument
for real-world security, and there exist artificial schemes where this heuristic fails [15, 27, 38], the
model has proven surprisingly robust in practice.

Throughout, we fix the output length of our random oracle H : {0, 1}∗ → {0, 1}L to some
L ∈ N, which should be chosen large enough, so it is infeasible to find collisions. As finding a

10 Our construction is based on a hash-functionH, which will be part of prm and we require to be collision resistant. As assuming
collision resistance for a fixed function is not meaningful [47], we must either assume that the probability of Eq. (1) is over some
distribution of identities id (which can then be used as a hash key), or, if we modelH as a random oracle, over the choice of the
random oracle.

11 As explained in the introduction, P’s running time I during initialization must be at least linear in the size N of the storage. Our
construction basically match this I = Ω(N) lower bound as mentioned in Footnote 5.

7

collision requires roughly 2L/2 queries, setting L = 512 and assuming that the total number of
oracle queries during the entire experiment is upper bounded by, say 2L/3, would be a conservative
choice.

3.1 Modeling the malicious prover

In this paper, we want to make statements about adversaries (malicious provers) P̃ with access to
a random oracle H : {0, 1}∗ → {0, 1}L and bounded by three parameters N0, N1, T . They run in
two phases:

1. In a first (initialization) phase, P̃ makes queries12 A = (a1, . . . , aq) toH (adaptively, i.e., ai can
be a function of H(a1), . . . ,H(ai−1)). At the end of this phase, P̃ stores a file S of size N0L
bits, and moreover he must commit to a subset of the queries B ⊆ A of size N (technically,
we’ll do this by a Merkle hash-tree).

2. In a second phase, P̃(S) is asked to outputH(b) for some random b ∈ B. The malicious prover
P̃(S) is allowed a total number T of oracle queries in this phase, and can use up to N1L bits of
storage (including the N0L bits for S).

AsH is a random oracle, one cannot compress its uniformly random outputs. In particular, as S is
of sizeN0L, it cannot encode more thanN0 outputs ofH. We will make the simplifying assumption
that we can explicitly state which outputs these are by letting SH ⊂ {0, 1}L, |SH| ≤ N0 denote the
set of all possible outputsH(a), a ∈ A that P̃(S) can write down during the second phase without
explicitly querying H on input a in the 2nd phase.13 Similarly, the storage bound N1L during
execution implies that P̃ cannot store more than N1 outputs of H at any particular time point, and
we assume that this set of ≤ N1 inputs is well defined at any time-point. The above assumption
will allow us to bound the advantage of a malicious prover in terms of a pebbling game.

The fact that we need the additional assumption outlined above and cannot reduce the security
of our scheme to the plain random oracle model is a bit unsatisfactory, but unfortunately the stan-
dard tools (in particular, the elegant “ex post facto” argument from [21]), typically used to reduce
pebbling complexity to the number of random oracle queries, cannot be applied in our setting due
to the auxiliary information about the random oracle the adversary can store. We believe that a
proof exploiting the fact that random oracles are incompressible using techniques developed in
[50, 30] can be used to avoid this additional assumption, and we leave this question as interesting
future work.

12 The number q of queries in this phase is unbounded, except for the huge exponential 2L/3 bound on the total number of oracle
queries made during the entire experiment by all parties mentioned above.

13 Let us stress that we do not claim that such an SH exists for every P̃, one can easily come up with a prover where this is not the
case (as we will show below). All we need is that for every (N0, N1, T) prover P̃, there exists another prover P̃′ with (almost)
the same parameters and advantage, that obeys our assumption.

An adversary with N0 = N1 = T = 1 not obeying our assumption is, e.g., a P̃ that makes queries 0 and 1 and stores
S = H(0) ⊕H(1) in the first phase. In the second phase, P̃(S) picks a random b ← {0, 1}, makes the query b, and can write
downH(b),H(1− b) = S ⊕H(b). Thus, P̃(S) can write 2 > N0 = 1 valuesH(0) orH(1) without quering them in the 2nd
phase.

8

3.2 Storage and time complexity

Time complexity. Throughout, we let the running time of honest and adversarial parties be the
number of oracle queries they make. We also take into account that hashing long messages is more
expensive by ”charging” k queries for a single query on an input of bit-length L(k − 1) + 1 to
Lk. Just counting oracle queries is justified by the fact that almost all computation done by honest
parties consists of invocations of the random-oracle, thus we do not ignore any computation here.
Moreover, ignoring any computation done by adversaries only makes the security proof stronger.

Storage complexity. Unless mentioned otherwise, the storage of honest and adversarial parties
is measured by the number of outputs y = H(x) stored. The honest prover P will only store such
values by construction; for malicious provers P̃ this number is well defined under the assumption
from Sect. 3.1.

4 PoS from graphs with high pebbling complexity

The first ingredient of our proof uses graph pebbling. We consider a directed, acyclic graph G =
(V,E). The graph has |V | = N vertices, which we label with numbers from the set [N] =
{1, . . . , N}. With every vertex v ∈ V we associate a value w(v) ∈ {0, 1}L, and extend the domain
of w to include also ordered tuples of elements from V in the following way: for V ′ = (v1, . . . , vn)
(where vi ∈ V) we define w(V ′) = (w(v1), . . . , w(vn)). Let π(v) = {v′ : (v′, v) ∈ E} denote v’s
predecessors (in some arbitrary, but fixed order). The value w(v) of v is computed by applying the
random oracle to the index v and the values of its predecessors

w(v) = H(v, w(π(v))) . (2)

Note that if v is a source, i.e., π(v) = ∅, then w(v) is simply H(v). Our PoS will be an extension
of the simple basic PoS (P0,V0)[G,Λ] from Figure 1, where Λ is an efficiently samplable distri-
bution that outputs a subset of the vertices V of G = (V,E). This PoS does not yet satisfy the
efficiency requirement from Sect. 2, as the complexity of the verifier needs to be as high as the one
of the prover. This is because, in order to perform the check in Step 3 of the execution phase, the
verifier needs to compute w(C) himself. In our model, as discussed in Sect. 3.1, the only way a

Parameters prm = (id, N,G = (V,E), Λ), where G is a graph on |V | = N vertices and Λ is an efficiently samplable
distribution over V β (we postpone specifying β as well as the function of id to Sect. 6).

Initialization (S, ∅)← 〈P0,V0〉(prm) where S = w(V).
Execution (accept/reject, ∅)← 〈V(∅),P(S)〉(prm)

1. V0(∅) samples C ← Λ and sends C to P0.
2. P0(S) answers with A = w(C) ⊂ S.
3. V0(∅) outputs accept if A = w(C) and reject otherwise.

Fig. 1. The basic PoS (P0,V0)[G,Λ] (with inefficient verifier V0).

malicious prover P̃0(S) can determine w(v) is if w(v) ∈ SH is in the encoded set of size at most

9

N0, or otherwise by explicitly making the oracle queryH(v, w(π(v))) during execution. Note that
if w(i) 6∈ SH for some i ∈ π(v), then P̃0(S) will have to make even more queries recursively to
learn w(v). Hence, in order to prove (N0, N1, T)-security of the PoS (P0,V0)[G,Λ] in our ideal-
ized model, it suffices to upper bound the advantage of Player 1 in the following pebbling game on
G = (V,E):

1. Player 1 puts up to N0 initial pebbles on the vertices of V .
2. Player 2 samples a subset C ← Λ of size α of challenge vertices.
3. Player 1 applies a sequence of up to T steps according to the following rules:

(i) it can place a pebble on a vertex v if (1) all its predecessors u ∈ π(v) are pebbled and (2)
there are currently less than N1 vertices pebbled.

(ii) it can remove a pebble from any vertex.
4. Player 1 wins if it places pebbles on all vertices of C.

In the pebbling game above, Step 1 corresponds to a malicious prover P̃0 choosing the set SH.
Step 3 corresponds to P̃0 computing values according to the rules in Eq. (2), while obeying the N1

total storage bound. Putting a pebble corresponds to invoking y = H(x) and storing the value y.
Removing a pebble corresponds to deleting some previously computed y.

5 Efficient verifiers using hash trees

The PoS described in the previous section does not yet meet our Definition from Sect. 2 as V0 is not
efficient. In this section we describe how to make the verifier efficient, using hash-trees, a standard
cryptographic technique introduced by Ralph Merkle [39]

Using hash trees for committing. A hash-tree allows a party P to compute a commitment φ ∈
{0, 1}L to N data items x1, . . . , xN ∈ {0, 1}L using N − 1 invocations of a hash function H :
{0, 1}∗ → {0, 1}L. Later, P can prove to a party holding φ what the value of any xi is, by sending
only L logN bits. For example, for N = 8, P commits to x1, . . . , xN by hashing the xi’s in a tree
like structure as

φ = H(H(H(x1, x2),H(x3, x4)),H(H(x5, x6),H(x7, x8)))

We will denote with T H(x1, . . . , xN) the 2N − 1 values of all the nodes (including the N leaves
xi and the root φ) of the hash-tree, e.g., for N = 8, where we define xab = H(xa, xb)

T H(x1, . . . , x8) = {x1, . . . , x8, x12, x34, x56, x78, x1234, x5678, φ = x12345678}

The prover P, in order to later efficiently open any xi, will store all 2N−1 values T = T H(x1, . . . , xN),
but only send the single root element φ to a verifier V. Later P can ”open” any value xi to V by
sending xi and the logN values, which correspond to the siblings of the nodes that lie on the path
from xi to φ, e.g., to open x3 P sends x3 and open(T , 3) = (x12, x4, x5678) and the prover checks if

vrfy(φ, 3, x3, (x12, x4, x5678)) =
(
H(x12,H(x3, x4)), x56789)

?
= φ

)
10

As indicated above, we denote with open(T , i) ⊂ T the logN values P must send to V in order to
open xi, and denote with vrfy(φ, i, xi, o)→ {accept, reject} the above verification procedure. This
scheme is correct, i.e., for φ, T computed as above and any i ∈ [N], vrfy(φ, i, xi, open(T , i)) =
accept.

The security property provided by a hash-tree states that it is hard to open any committed value
in more than one possible way. This ”binding” property can be reduced to the collision resistance
of H: from any φ, i, (x, o), (x′, o′), x 6= x′ where vrfy(φ, i, x, o) = vrfy(φ, i, x′, o′) = accept, one
can efficiently extract a collision z 6= z′,H(z) = H(z′) forH.

to the graph based PoS from Figure 1, where the prover P(prm) commits to x1 = w(v1), . . . , xN =
w(vN) by computing a hash tree T = T H(x1, . . . , xN) and sending its root φ to V. In the execution
phase, the prover must then answer a challenge c not only with the value xc = w(c), but also open
c by sending (xc, open(T , c)) which P can do without any queries toH as it stored T .

If a cheating prover P̃(prm) sends a correctly computed φ during the initialization phase, then
during execution P̃(prm, S) can only make V(prm, φ) accept by either answering each challenge
c with the correct value w(c), or by breaking the binding property of the hash-tree (and thus the
collision resistance of the underlying hash-function).

We are left with the challenge to deal with a prover who might cheat and send a wrongly
computed Φ̃ 6= φ during initialization. Some simple solutions are

– Have V compute φ herself. This is not possible as we want V’s complexity to be only polylog
in N .

– Let P prove, using a proof system like computationally sound (CS) proofs [40] or universal
arguments [10], that φ was computed correctly. Although these proof systems do have polylog-
arithmic complexity for the verifier, and thus formally would meet our efficiency requirement,
they rely on the PCP theorem and thus are not really practical.

Dealing with wrong commitments. Unless P̃ breaks the collision resistance ofH, no matter what
commitment Φ̃ the prover P sends to V, he can later only open it to some fixed N values which we
will denote x̃1, . . . , x̃N .14 We say that x̃i is consistent if

x̃i = H(i, x̃i1 , . . . , x̃id) where π(i) = {i1, . . . , id} (3)

Note that if all x̃i are consistent, then Φ̃ = φ. We add a second initialization phase to the PoS,
where V will check the consistency of α random x̃i’s. This can be done by having P̃ open x̃i and
x̃j for all j ∈ π(i). If P̃ passes this check, we can be sure that with high probability a large fraction
of the x̃i’s is consistent. More concretely, if the number of challenge vertices is α = εt for some
ε > 0, then P̃ will fail the check with probability 1 − 2−Θ(t) if more than an ε-fraction of the x̃i’s
are inconsistent.

A cheating P̃ might still pass this phase with high probability with an Φ̃ where only 1 − ε
fraction of the x̃i are consistent for some sufficiently small ε > 0. As the inconsistent x̃i are not
outputs of H, P̃ can chose their value arbitrarily, e.g., all being 0L. Now P̃ does not have to store
this εN inconsistent values x̃j while still knowing them.

14 Potentially, P̃ cannot open some values at all, but wlog. we assume that it can open every value in exactly one way.

11

In our idealized model as discussed in Sect. 3.1, one can show that this is already all the
advantage P̃ gets. We can model an εN fraction of inconsistent x̃i’s by slightly augmenting the
pebbling game from Sect. 4. Let the pebbles from the original game be white pebbles. We now
additionally allow player 1 to put εN red pebbles (apart from the N0 white pebbles) on V during
step 1. These red pebbles correspond to inconsistent values. The remaining game remains the same,
except that player 1 is never allowed to remove red pebbles.

We observe that being allowed to initially put an additional εN red pebbles is no more use-
ful than getting an additional εN white pebbles (as white pebbles are strictly more useful be-
cause, unlike red pebbles, they later can be removed.) Translated back to our PoS, in order prove
(N0, N1, T)-security of our PoS allowing up to εN inconsistent values, it suffices to prove (N0 −
εN,N1 − εN, T)-security of the PoS, assuming that the initial commitment is computed honestly,
and there are no inconsistent values (and thus no red pebbles in the corresponding game).

6 Our Main Construction

Below we formally define our PoS (P,V). The common input to P,V are the parameters prm =
(id, 2N, γ, G,Λ), which contain the identifier id ∈ {0, 1}∗, a storage bound 2N ∈ N (i.e., 2NL
bits),15 a statistical security parameter γ, the description of a graph G(V,E) on |V | = N vertices
and an efficiently samplable distribution Λ which outputs some ”challenge” set C ⊂ V of size
α = α(γ,N).

Below H denotes a hash function, that depends on id: given a hash function H′(.) (which we
will model as a random oracle in the security proof), throughout we let H(.) denote H′(id, .). The
reason for this is simply so we can assume that the random oracles H′(id, .) and H′(id′, .) used in
PoS with different identifiers id 6= id′ are independent, and thus anything stored for the PoS with
identifier id is useless to answer challenges in a PoS with different identifier id′.

Initialization (Φ, S)← 〈V,P〉(prm):
1. P sends V a commitment φ to w(V)

– P computes the values xi = w(i) for all i ∈ V as in Eq. (2).
– P’s output is a hash-tree S = T H(x1, . . . , xN), which requires |S| = (2N − 1)L

bits) as described in Sect. 5.
– P sends the root φ ∈ S to V.

2. P proves consistency of φ for α = α(γ,N) random values
– V picks a set of challenges C ← Λ where the size of C is α and sends C to P.
– For all c ∈ C, P opens the value corresponding to c and all its predecessors to V by

sending, for all c ∈ C

{(xi, open(S, i)) : i ∈ {c, π(c)}}

15 We set the bound to 2N , so if we let N denote the number of vertices in the underlying graph, we must store 2N − 1 values of
the hash-tree.

12

– V verifies that P sends all the required openings, and they are consistent, i.e., for
all c ∈ C the opened values x̃c and x̃i, i ∈ π(c) = (i1, . . . , id) must satisfy x̃c =
H(c, x̃i1 , . . . , x̃id), and the verification of the opened commitments passes. If either
check fails, V outputs Φ = ⊥ and aborts. Otherwise, V outputs Φ = φ, and the
initialization phase is over.

Execution (accept/reject, ∅)← 〈V(Φ),P(S)〉(prm):
P proves it stores the committed values by opening a random β = Θ(γ) subset of them
– V picks a challenge set C ⊂ V of size |C| = β at random, and sends C to P.
– P answers with {oc = (xc, open(S, c)) : c ∈ C}.
– V checks for every c ∈ C if vrfy(Φ, c, oc)

?
= accept. V outputs accept if this is the case

and reject otherwise.

6.1 Constructions of the graphs

We consider the following pebbling game, between a player and a challenger, for a directed acyclic
graph G = (V,E) and a distribution λ over V .

1. Player puts initial pebbles on some subset U ⊆ V of vertices.
2. Challenger samples a “challenge vertex” c ∈ V according to λ.
3. Player applies a sequence of steps according to the following rules:

(i) it can place a pebble on a vertex v if all its predecessors u ∈ π(v) are pebbled.
(ii) it can remove a pebble from any vertex.

4. Player wins if it places a pebble on c.

Let S0 = |U | be the number of initial pebbles, S1 be the total number of used pebbles (or equiva-
lently, the maximum number of pebbles that are present in the graph at any time instance, including
initialization), and let T be the number of pebbling steps given in 3i). The definition implies that
S1 ≥ S0 and T ≥ S1−S0. Note, with S0 = |V | pebbles the player can always achieve time T = 0:
it can just place initial pebbles on V .

Definition 1. Consider functions f = f(N,S0) and g = g(N,S0, S1). A family of graphs {GN =
(VN , EN) | |VN | = N ∈ N} is said to have pebbling complexity Ω(f, g) if there exist constants
c1, c2, δ > 0 and distributions λN over VN such that for any player that wins the pebbling game on
(GN , λN) (as described above) with probability 1 it holds that

Pr[S1 ≥ c1f(N,S0) ∧ T ≥ c2g(N,S0, S1)] ≥ δ (4)

Let G(N, d) be the set of directed acyclic graphs G = (V,E) with |V | = N vertices and the
maximum in-degree at most d. We now state our two main pebbling theorems:

Theorem 1. There exists an explicit family of graphs GN ∈ G(N, 2) with pebbling complexity

Ω(N/ logN, 0) (5)

13

In the next theorem we use the Iverson bracket notation: [φ] = 1 if statement φ is true, and
[φ] = 0 otherwise.

Theorem 2. There exists a family of graphs GN ∈ G(N,O(log logN)) with pebbling complexity

Ω(0, [S0 < τN] ·max{N,N2/S1}) (6)

for some constant τ ∈ (0, 1). It can be constructed by a randomized algorithm with a polynomial
expected running time that produces the desired graph with probability at least 1− 2−Θ(N/ logN).

Remark 1. As shown in [32], any graphG ∈ G(N,O(1)) can be entirely pebbled using S1 = O(N/
logN) pebbles (without any initial pebbles). This implies that expression N/ logN in Theorem 1
cannot be improved upon. Note, this still leaves the possibility of a graph that can be pebbled using
O(N/ logN) pebbles only with a large time T (e.g. superpolynomial in N). Examples of such
graph for a non-interactive version of the pebble game can be found in [37]. Results stated in [37],
however, do not immediately imply a similar bound for our interactive game.

6.2 Proof of Theorem 1

Paul, Tarjan and Celoni [44] presented a family of graphs G(i) for i = 8, 9, 10, . . . with mi sources,
mi sinks and ni nodes where mi = 2i and ni = Θ(i2i). The following claim is a special case of
their Lemma 2.

Lemma 1. For any initial configuration of no more than cmi pebbled vertices (with c = 1/256)
there exists a sink whose pebbling requires a time instance at which at least cmi pebbles are on
the graph.

We can show the following.

Corollary 1. For a subset U ⊆ V let XU be the set of sinks whose pebbling requires at least 1
2
cmi

pebbles starting with U as the initial set of pebbles. If |U | ≤ 1
2
cmi then |XU | ≥ 1

2
cmi.

Proof. Assume that |U | ≤ 1
2
cmi and |XU | < 1

2
cmi for some U ⊆ V . Consider the following

pebbling algorithm. First, place initial pebbles at vertices in U ∪ XU . To pebble remaining sinks
v /∈ XU , go through them in some order and do the following:

1. Remove all pebbles except those in U .
2. By definition of XU , vertex v can be pebbled using fewer than 1

2
cmi pebbles. Run a modifica-

tion of the corresponding algorithm where pebbles in U are never removed.

This algorithm pebbles all sinks in some order, starts with |U | + |XU | < cmi initial pebbles,
and uses fewer than |U | + 1

2
cmi ≤ cmi pebbles at each time instance. By Lemma 1, this is a

contradiction.
ut

We can now prove Theorem 1. Consider N ≥ n1, and let i be the largest integer such that
ni ≤ N . Let GN be the graph obtained from G(i) by adding N − ni “dummy” vertices. It can be
checked that mi = Θ(N/ logN).

14

Let Ṽ be the set of outputs of GN excluding dummy vertices, with |Ṽ | = mi. We define λ to
be the uniform probability distribution over vertices c ∈ Ṽ .

Let us show that S1 ≥ 1
2
cmi = Θ(N/ logN) with probability at least δ = 1

2
c. Assume that

|U | = S0 ≤ 1
2
cmi, otherwise the claim is trivial. By Corollary 1 we have |XU | ≥ 1

2
c|Ṽ |. Using the

definition of set XU , we get

Pr[S1 ≥ 1
2
cmi] ≥ Pr[c ∈ XU] = |XU |/|Ṽ | ≥ 1

2
c = δ.

6.3 Sketch of the proof of Theorem 2
The complete proof of this theorem is given in Appendix C; here we give a brief summary of our
techniques. We use a new construction which relies on three building blocks: (i) random bipartite
graphs Rd

(m) ∈ G(2m, d) with m inputs and m outputs; (ii) superconcentrator graphs C(m) with m
inputs and m outputs; (iii) graphs Dt = ([t], Et) of Erdös, Graham and Szemerédi [24] with dense
long paths. These are directed acyclic graphs with t vertices andΘ(t log t) edges (of the form (i, j)
with i < j) that satisfy the following for some constant η ∈ (0, 1) and a sufficiently large t: for
any subset X ⊆ [t] of size at most ηt graph Dt contains a path of length at least ηt that avoids
X . We show that family Dt can be chosen so that the maximum in-degree is Θ(log t). The main
component of our construction is graph G̃d

(m,t) defined as follows:

– Add mt nodes Ṽ = V1 ∪ . . . ∪ Vt where |V1| = . . . = |Vt| = m. This will be the set of
challenges.

– For each edge (i, j) of graph Dt add a copy of graph Rd
(m) from Vi to Vj , i.e. identify the inputs

of Rd
(m) with nodes in Vi (using an arbitrary permutation) and the outputs of Rd

(m) with nodes
in Vj (again, using an arbitrary permutation).

We set d=Θ(1), t=Θ(logN) andm=Θ(N/t) (with specific constants), then G̃d
(m,t)∈G(mt,O(log logN)).

Note that a somewhat similar graph was used by Dwork, Naor and Wee [21]. They connect
bipartite graphs Rd

(m) consecutively, i.e. instead of graph Dt they use a chain graph with t nodes.
Dwork et al. give an intuitive argument that removing at most τm nodes from each layer V1, . . . , Vt
(for some constant τ < 1) always leaves a graph which is “well-connected”: informally speaking,
many nodes of V1 are still connected to many nodes of Vt. (We formalize their argument in Ap-
pendix C.) However, this does not hold if more than m = Θ(N/ logN) nodes are allowed to be
removed: by placing initial pebbles on, say, the middle layer Vt/2 one can completely disconnect
V1 from Vt.

In contrast, in our construction removing any τ ′N nodes still leaves a graph which is “well-
connected”. Our argument is as follows. If constant τ ′ is sufficiently small then there can be at
most ηt layers with more than τm initial pebbles (for a given constant τ < 1). By the property
of Dt, there exists a sufficiently long path P in Dt that avoids those layers. We can thus use the
argument above for the subgraph corresponding to P . We split P into three parts of equal size, and
show that many nodes in the first part are connected to many nodes in the third part.

In this way we prove that graphs G̃d
(m,t) have pebbling complexity Ω(0, [S0 < τN] · N). To

get complexity Ω(0, [S0 < τN] · max{N,N2/S1}), we add mt extra nodes V0 and a copy of
superconcentrator C(mt) from V0 to Ṽ . We then use a standard “basic lower bound argument” for
superconcentrators [37].

15

6.4 Putting things together

Combining the results and definitions from the previous sections, we can now state our main theo-
rem.

Theorem 3. In the model from Sect. 3.1, for constants ci > 0, the PoS from Sect. 6 instantiated
with the graphs from Theorem 1 is a

(c1(N/ logN), c2(N/ logN),∞) -secure PoS . (7)

Instantiated with the graphs from Theorem 2 it is a

(c3N,∞, c4N)-secure PoS . (8)

Efficiency, measured as outlined in Sect. 3.2, is summarized in the table below where γ is the
statistical security parameter

communication computation P computation V
PoS Eq. (7) Initialization O(γ log2N) 4N O(γ log2N)
PoS Eq. (7) Execution O(γ logN) 0 O(γ logN)
PoS Eq. (8) Initialization O(γ logN log logN) O(N log logN) O(γ logN log logN)
PoS Eq. (8) Execution O(γ logN) 0 O(γ logN)

Eq. (8) means that a successful cheating prover must either store a file of size Ω(N) (in L bit
blocks) after initialization, or makeΩ(N) invocations to the RO. Eq. (7) gives a weakerΩ(N/ logN)
bound, but forces a potential adversary not storing that much after initialization, to use at least
Ω(N/ logN) storage during the execution phase, no matter how much time he is willing to invest.
This PoS could be interesting in contexts where one wants to be sure that one talks with a prover
who has access to significant memory during execution.

Below we explain how security and efficiency claims in the theorem were derived. We start by
analyzing the basic (inefficient verifier) PoS (P0,V0)[G,Λ] from Figure 1 if instantiated with the
graphs from Theorem 1 and 2.

Proposition 1. For some constants ci > 0, if GN has pebbling complexity Ω(f(N), 0) according
to Definition 1, then the basic PoS (P0,V0)[GN , ΛN] as illustrated in Figure 1, where the distribu-
tion ΛN samplesΘ(γ) (for a statistical security parameter γ) vertices according to the distribution
λN from Def. 1, is

(S0, c1f(N),∞)-secure (for any S0 ≤ c1f(N)) (9)

If GN has pebbling complexity (0, g(N,S0, S1)), then for any S0, S1 the PoS
(P0,V0)[GN , ΛN] is

(S0, S1, c2g(N,S0, S1))-secure. (10)

Above, secure means secure in the model from Sect. 3.1.

(The proof of appears in Appendix D.) Instantiating the above proposition with the graphs GN

from Theorem 1 and 2, we can conclude that the simple (inefficient verifier) PoS (P0,V0)[GN , ΛN]
is

(c1N/ logN, c2N/ logN,∞) and (S0, S1, c3 · [S0 ≤ τN] ·max{N,N2/S1}) (11)

16

secure, respectively (for constants ci > 0, 0 < τ < 1 and [S0 < τN] = 1 if S0 ≤ τN and
0 otherwise). If we set S0 = bτNc = c4N , the right side of Eq. (11) becomes (c4N,S1, c3 ·
max{N,N2/S1}) and further setting S1 = ∞ (c4N,∞, c3N) As explained in Sect. 5, we can
make the verifier V0 efficient during initialization, by giving up on εN in the storage bound. We
can choose ε ourselves, but must check Θ(γ/ε) values for consistency during initialization (for a
statistical security parameter γ). For our first PoS, we set ε = c1

2 logN
and get with c5 = c1/2 using

c2 ≥ c1

(c1 ·N/ logN − ε ·N︸ ︷︷ ︸
=c5N/ logN

, c2 ·N/ logN − ε ·N︸ ︷︷ ︸
≥c5N/ logN

,∞)

security as claimed in Eq. (7). For the second PoS, we set ε = c4
2

which gives with c6 = c4/2

(c4N − εN︸ ︷︷ ︸
≥c6N

,∞− εN, c3N)

security, as claimed in Eq. (8). Also, note that the PoS described above are PoS as defined in Sect. 6
if instantiated with the graphs from Theorem 1 and 2, respectively.

Efficiency of the PoS Eq. (7). We analyze the efficiency of our PoS, measuring time and storage
complexity as outlined in Sect. 3.2. Consider the (c1N/ logN, c2N/ logN,∞)-secure construction
from Eq. (7). In the first phase of the initialization, P needs roughly 4N = Θ(N) computation:
using that the underlying graph has max in-degree 2, computingw(V) according to Eq. (2) requires
N hashes on inputs of length at most 2L + logN ≤ 3L, and P makes an additional N − 1 hashes
on inputs of length 2L to compute the hash-tree. The communication and V’s computation in the
first phase of initialization is Θ(1) (as V just receives the root φ ∈ {0, 1}L).

During the 2nd phase of the initialization, V will challenge P on α (to be determined) vertices
to make sure that with probability 1 − 2−Θ(γ), at most an ε = Θ(1/ logN) fraction of the x̂i
are inconsistent. As discussed above, for this we have to set α = Θ(γ logN). Because this PoS
is based on a graph with degree 2 (cf. Theorem 1), to check consistency of a x̂i one just has to
open 3 values. Opening the values requires to send logN values (and the verifier to compute that
many hashes). This adds up to an O(γ log2N) communication complexity during initialization,
V’s computation is of the same order.

During execution, P opens φ onΘ(γ) positions, which requiresΘ(γ logN) communication (in
L bit blocks), and Θ(γ logN) computation by V.

Efficiency of the PoS Eq. (8). Analyzing the efficiency of the second PoS is analogous to the first.
The main difference is that now the underlying graph has larger degree O(log logN) (cf. Thm. 2),
and we only need to set ε = Θ(1).

References
1. Martı́n Abadi, Michael Burrows, and Ted Wobber. Moderately hard and memory-bound functions. In NDSS 2003. The Internet

Society, February 2003.
2. N. Alon and M. Capalbo. Smaller explicit superconcentrators. Internet Mathematics, 1(2):151–163, 2003.
3. N. Alon and F. Chung. Explicit construction of linear sized tolerant networks. Discrete Math., 72:15–19, 1988.

17

4. Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard functions. In Symposium on Theory
of Computing, STOC 2015, 2015.

5. Nate Anderson. Mining Bitcoins takes power, but is it an “environmental disaster”?, April 2013. http://tinyurl.com/
cdh95at.

6. R. Arratia and L. Gordon. Tutorial on large deviations for the binomial distribution. Bulletin of Mathematical Biology,
51(1):125–131, 1989.

7. Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of space: When space is of the essence.
In Security and Cryptography for Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014.
Proceedings, pages 538–557, 2014.

8. Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary N. J. Peterson, and Dawn Song.
Provable data possession at untrusted stores. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors,
ACM CCS 07, pages 598–609. ACM Press, October 2007.

9. Adam Back. Hashcash. popular proof-of-work system., 1997. http://bitcoin.org/bitcoin.pdf.
10. Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM J. Comput., 38(5):1661–1694, 2008.
11. L. A. Bassalygo. Asymptotically optimal switching circuits. Problems of Information Transmission, 17(3):206–211, 1981.
12. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In V. Ashby,

editor, ACM CCS 93, pages 62–73. ACM Press, November 1993.
13. Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: theory and implementation. In CCSW, pages 43–54,

2009.
14. Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman. Computing with a full memory: catalytic

space. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 857–866,
2014.

15. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (preliminary version). In 30th ACM
STOC, pages 209–218. ACM Press, May 1998.

16. Ran Canetti, Shai Halevi, and Michael Steiner. Mitigating dictionary attacks on password-protected local storage. In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 160–179. Springer, August 2006.

17. R. Di Pietro, L.V. Mancini, Yee Wei Law, S. Etalle, and P. Havinga. Lkhw: a directed diffusion-based secure multicast scheme
for wireless sensor networks. In Parallel Processing Workshops, 2003. Proceedings. 2003 International Conference on, pages
397–406, 2003.

18. John R. Douceur. The sybil attack. In IPTPS, pages 251–260, 2002.
19. Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound functions for fighting spam. In Dan Boneh, editor,

CRYPTO 2003, volume 2729 of LNCS, pages 426–444. Springer, August 2003.
20. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F. Brickell, editor, CRYPTO’92,

volume 740 of LNCS, pages 139–147. Springer, August 1993.
21. Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In Victor Shoup, editor, CRYPTO 2005, volume

3621 of LNCS, pages 37–54. Springer, August 2005.
22. Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-evolution schemes resilient to space-bounded leakage. In

CRYPTO 2011, LNCS, pages 335–353. Springer, August 2011.
23. Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-erasing functions. In TCC 2011, LNCS,

pages 125–143. Springer, 2011.
24. Paul Erdös, Ronald L. Graham, and Endre Szemerédi. On sparse graphs with dense long paths. Technical Report STAN-CS-

75-504, Stanford University, Computer Science Dept., 1975.
25. Matthew K. Franklin and Dahlia Malkhi. Auditable metering with lightweight security. In Rafael Hirschfeld, editor, FC’97,

volume 1318 of LNCS, pages 151–160. Springer, February 1997.
26. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm. In 44th FOCS, pages 102–115.

IEEE Computer Society Press, October 2003.
27. Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic primitives enforcing communication and storage complex-

ity. In Matt Blaze, editor, FC 2002, volume 2357 of LNCS, pages 120–135. Springer, March 2002.
28. Vanessa Gratzer and David Naccache. Alien vs. quine. IEEE Security & Privacy, 5(2):26–31, 2007.
29. Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions in interactive protocols - a tight lower

bound on the round complexity of statistically-hiding commitments. In 48th FOCS, pages 669–679. IEEE Computer Society
Press, October 2007.

30. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information Theory, 26(4):401–406, 1980.
31. John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of the ACM, 24(2):332–337, 1977.
32. Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. In Bart Preneel, editor, Communications and

Multimedia Security, volume 152 of IFIP Conference Proceedings, pages 258–272. Kluwer, 1999.

18

33. Ari Juels and John G. Brainard. Client puzzles: A cryptographic countermeasure against connection depletion attacks. In
NDSS’99. The Internet Society, February 1999.

34. Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large files. In Peng Ning, Sabrina De Capitani di Vimercati,
and Paul F. Syverson, editors, ACM CCS 07, pages 584–597. ACM Press, October 2007.

35. Nikolaos P. Karvelas and Aggelos Kiayias. Efficient proofs of secure erasure. In Security and Cryptography for Networks -
9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, pages 520–537, 2014.

36. Vladimir Kolmogorov and Michal Rolı́nek. Superconcentrators of density 25.3. arXiv Report 1405.7828, 2014. http:
//arxiv.org/abs/1405.7828.

37. Thomas Lengauer and Robert E. Tarjan. Asymptotically tight bounds on time-space trade-offs in a pebble game. Journal of
the ACM, 29(4):1087–1130, 1982.

38. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on reductions, and appli-
cations to the random oracle methodology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer,
February 2004.

39. R.C. Merkle. Method of providing digital signatures, January 5 1982. US Patent 4,309,569.
40. Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.
41. Silvio Micali and Ronald L. Rivest. Micropayments revisited. In Bart Preneel, editor, CT-RSA 2002, volume 2271 of LNCS,

pages 149–163. Springer, February 2002.
42. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http://bitcoin.org/bitcoin.pdf.
43. Sunoo Park, Krzysztof Pietrzak, Joël Alwen, Georg Fuchsbauer, and Peter Gazi. Spacecoin: A cryptocurrency based on proofs

of space. Cryptology ePrint Archive, Report 2015/528, 2015. http://eprint.iacr.org/528.
44. Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on graphs. Mathematical systems

theory, 10(1):239–251, 1976–1977.
45. Daniele Perito and Gene Tsudik. Secure code update for embedded devices via proofs of secure erasure. In Dimitris Gritzalis,

Bart Preneel, and Marianthi Theoharidou, editors, ESORICS 2010, volume 6345 of LNCS, pages 643–662. Springer, 2010.
46. Ronald L. Rivest and Adi Shamir. Payword and micromint: two simple micropayment schemes. In CryptoBytes, pages 69–87,

1996.
47. Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor, Progress in Cryptology - VIETCRYPT 06,

volume 4341 of LNCS, pages 211–228. Springer, September 2006.
48. John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1st edition, 1997.
49. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions be based on general assumptions? In

Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 334–345. Springer, May / June 1998.
50. E. Upfal. Tolerating a linear number of faults in networks of bounded degree. In Proc. 11th PODC, pages 83–89, 1992.
51. S. P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science, 7(1-3):1–336, 2012.
52. L. G. Valiant. Graph-theoretic properties in computational complexity. Journal of Computer and System Sciences, 13(3):278–

285, 1976.
53. Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. CAPTCHA: Using hard AI problems for security. In

Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 294–311. Springer, May 2003.
54. Brent Waters, Ari Juels, J. Alex Halderman, and Edward W. Felten. New client puzzle outsourcing techniques for dos resis-

tance. In Proceedings of the 11th ACM conference on Computer and communications security, CCS ’04, pages 246–256, New
York, NY, USA, 2004. ACM.

A Time-Memory Tradeoffs

In this section we will explain why the probably most simple and intuitive construction of a PoS,
where the prover simply stores a table of outputs of a random function, only achieves very weak
security due to time-memory tradeoffs for inverting random functions [31]. Consider the following
simple PoS (P,V):

Initialization: P computes and stores a list L of tuples (H(i), i) for i ∈ [N] = {1, . . . , N}, sorted
by the first item.

Execution: During execution
– V picks a random value i← [N] and sends the challenge c = H(i) to P(L).

19

– On input c, P(L) checks if some tuple (c, j) is in L (which can be done in log(N) time as
L is sorted), and sends back j in this case.

– V accepts if j = i.

Intuitively, in order to make the verifier accept with constant probability, a cheating prover P̃ must
either store a large fraction of the outputs H(i) (and thus use N0 = Θ(N) storage), or search for
the i satisfyingH(i) = c by brute force (and thus use T = Θ(N) time). One thus might be tempted
to conjecture that this is indeed an (c1N,∞, c2N)-secure PoS for some constants c1, c2 > 0.

Unfortunately, this is not the case due to existing time-memory trade-offs for inverting random
functions. Hellman [31] showed that one can invert any function X → Y with input domain of size
|X | = N with constant probability in time Θ(N2/3) using Θ(N2/3) storage. This means that this
PoS is not even (c1N

2/3,∞, c2N
2/3)-secure16 for some c1, c2 > 0. Moreover, the Θ(N2/3) storage

required to break the function in Θ(N2/3) time can be initialized in time linear in N with small
hidden constants, thus this attack is very much practical.

B Online-Polls.

As another illustrative example for an (interactive, single-prover) PoS, consider on-line polling
systems, like the one that is used by Wikipedia to reach consensus amongst the editors of an
article. Currently, such systems do not offer sufficient protection against malicious users creating
many fake identities in order to vote multiple times. A natural remedy to this problem is to link
voting with a proof of work. This however is problematic, since honest users would typically not
be willing to devote significant amount of their processor times to such a vote, whereas a party
having a strong interest in obstructing the vote might well do so.

To give an numerical example, if the PoW requires 5 min to compute, then a dishonest player
can cast almost 2000 “fake” votes in a week. If one uses PoS instead, then the situation (while
still not perfect) is much better, as to achieve a similar result an adversary would need to buy a
significant amount of storage. For example, if we require a user to dedicate 100 GB of disk-space
in order to participate in votes, then in order to be able to cast 2000 votes, an adversary would need
to invest in 200 TB of disk space, which may be prohibitive for a typical internet vandal.

C Proof of Theorem 2

For a graph G = (V,E) and a subset X ⊆ V we denote

– G[X] to be the subgraph of G induced by X;
– G \X = G[V −X] to be the graph obtained by removing vertices in X;
– ΠG(X) to be the set of ancestors of nodes in X , i.e. the set of vertices v ∈ V from which set
X is reachable in G.

16 Recall that setting N1 = ∞ just means we put no bound no the storage used during execution, but of course N1 is upper
bounded by the running time during execution plus the initial storage, so we could replace∞ with c3N2/3 (for some c3 > 0)
here without affecting the statement.

20

Some of the graphs considered in this section will implicitly come with the sets of inputs and
outputs, which will be denoted as V + ⊆ V and V − ⊆ V respectively. In such cases subgraph
G[X] will have inputs V + ∩ X and outputs V − ∩ X (and similarly for G \ X). We also denote
Π+
G (X) = ΠG(X) ∩ V + to be the set of input vertices from which set X is reachable in G. If

X = {v} then we write the sets as ΠG(v) and Π+
G (v). We generally use the following convention:

a subscript without parentheses denotes the number of nodes of a directed acyclic graph (e.g. GN),
while a subscript in parentheses denotes the number of inputs and outputs (e.g. graphs Rd

(m) and
C(m) below).

C.1 Building blocks

Our construction will rely on three building blocks. The first one is a bipartite random graphRd
(m) ∈

G(2m, d) with |V +| = m inputs and |V −| = m outputs generated as follows: for each output vertex
v ∈ V − select vertices u1, . . . , ud ∈ V + uniformly at random and add edges (u1, v), . . . , (ud, v) to
Rd

(m). Note, we allow repetitions among u1, . . . , ud. Graph Rd
(m) is known to be a good expander

graph with a high probability [52]; we refer to Section C.3 for a definition of expanders.
Our next building block is superconcentrator graphs.

Definition 2. A directed acyclic graph C(m) = (V,E) with inputs V + and outputs V − of size
|V +| = |V −| = m is called a superconcentrator if for every k ∈ [m] and every pair of subsets
A ⊆ V +, B ⊆ V − of size |A| = |B| = k there exist k vertex disjoint paths in C(m) from A to B.

A family of superconcentrators C(m) is called linear if it has Θ(m) nodes and edges and its
maximum in-degree is bounded by a constant. The existence of such superconcentrators was first
shown by Valiant [53]; they used (270 + o(1))m edges. The constant was successively improved
in a long series of works. Currently, the smallest construction is claimed by Kolmogorov and
Rolı́nek [?]; it uses (25.3 + o(1))m edges, and relies on a probabilistic argument. There are also
explicit constructions of linear superconcentrators, e.g. by Alon and Capalbo [2] with (44+o(1))m
edges.

Our third tool is graphs of Erdös, Graham and Szemerédi [24] with dense long paths.

Theorem 4 ([24]). There exists a family of directed acyclic graphs Dt = ([t], Et) with t vertices
and Θ(t log t) edges (of the form (i, j) with i < j) that satisfy the following for some constant
η ∈ (0, 1) and a sufficiently large t:

– For any subset X ⊆ [t] of size at most ηt graph Dt \X contains a path of length at least ηt.

Note that the construction in [24] is randomized. In this paper we use this graph for t = O(logN),
therefore the property above can be checked explicitly in time polynomial in N . This gives a Las
Vegas algorithm for constructing graphs Dt with a polynomial expected running time17.

We can also show the following.
17 More precisely, the construction in [24] uses graphs with certain properties (see their first lemma, conditions (i)-(iii)). They

show that certain random graphs satisfy (i)-(iii) with probability Θ(1). Properties (i)-(iii) can be checked in time 2Θ(t) which is
polynomial in N . We can thus first compute graphs satisfying (i)-(iii) with a Las Vegas algorithm, and then use them to build
Dt.

21

Proposition 2. Family Dt in Theorem 4 can be chosen so that the maximum in-degree is Θ(log t).

Proof. Consider graph Dt = (V,E) from Theorem 4, with V = [t] and |E| ≤ ct log t. For a node
v ∈ V let Tv be the subgraph of Dt containing node v, its predecessors π(v) and all edges from
π(v) to v. Note, Dt is an edge-disjoint union of graphs Tv over v ∈ V .

Let d∗ be the smallest even integer satisfying 2d
∗ ≥ t. Transform tree Tv to a tree T ′v as follows:

if dv = |π(v)| ≤ d∗ then T ′v = Tv, otherwise make T ′v a tree with the root v and the leaves π(v)
such that the degree of all non-leaf nodes belongs to [d∗/2, d∗]. (Such tree can be obtained from
Tv by repeatedly “splitting” nodes with more than d∗ children.) Nodes of Tv will be called “old”
and other nodes of T ′v will be called “new”; the new nodes are unique to T ′v. Let D′t be the union of
graphs T ′v over v ∈ V .

Let nv be the number of new nodes in T ′v. If dv ≤ d∗ then nv = 0, otherwise

nv ≤
∞∑
i=1

dv
(d∗/2)i

= αdv , α =
2

d∗(1− 2/d∗)
=

2

log t+ o(log t)

The total number of new nodes is

n =
∑
v∈V

nv ≤ α
∑
v∈V

dv = α|E| ≤ αct log t = (2c+ o(1))t

Therefore, graph D′t has Θ(t) nodes and maximum in-degree d∗ = Θ(log t).
Let us show that for any subset X ′ ⊆ V ′ with |X ′| ≤ ηt graph D′t contains a path of length

at least ηt that does not intersect X ′; this will imply the main claim of the proposition. Define set
X ⊆ V via X = {φ(v) | v ∈ X} where mapping φ : V ′ → V is the identity for old nodes, and
maps new nodes in T ′v to v. Clearly, |X| ≤ ηt. By Theorem 4, graphDt contains a path P of length
at least ηt. This path can be naturally mapped to path P ′ in D′t (P ′ passes through the vertices of P
and possibly through some new nodes). It can be seen that P ′ does not intersect X ′ and the length
of P ′ is the same or larger than the length of P .

ut

C.2 Construction of GN

We are now ready to present our construction for Theorem 2. For integers m, t, d > 0 define graph
Gd

(m,t) as follows:

– Add 2mt nodes V0 ∪ V1 ∪ . . . ∪ Vt where |V0| = mt and |V1| = . . . = |Vt| = m. Denote
Ṽ = V1 ∪ . . . ∪ Vt (this will be the set of challenges).

– Add a copy of superconcentrator C(mt) from V0 to Ṽ , i.e. identify the inputs of C(mt) with nodes
in V0 (using an arbitrary permutation) and the outputs of C(mt) with nodes in Ṽ (again, using
an arbitrary permutation).

– For each edge (i, j) of graph Dt add a copy of graph Rd
(m) from Vi to Vj .

22

It can be seen that Gd
(m,t) ∈ G(2mt,O(d log t)) (we assume that graph Dt has been chosen as in

Proposition 2).
GraphGN = (V,E) for a sufficiently largeN will be defined asGd

(m,t) for certain valuesm, t, d
(plus “dummy” vertices to make the number of nodes in GN to equal N). We set t = bµ logNc
and m = bN/(2t)c where µ > 0 is a certain constant. The family of graphs GN is now completely
defined (except for the value of constants µ, d). Note that GN ∈ G(N,O(log logN)) since d is
constant.

Remark 2 There are certain similarities between our construction and the construction of Dwork,
Naor and Wee [21]. They connect bipartite expander graphs consecutively, i.e. instead of graph
Dt they use a chain graph with t nodes. Set V0 in their construction has size m, and instead of
C(mt) an extra graph is added from V0 to V1 (which is either a stack of superconcentrators or a
graph from [44]). Dwork et al. give an intuitive argument that removing at most τm nodes from
each layer V1, . . . , Vt (for some constant τ < 1) always leaves a graph which is “well-connected”:
informally speaking, many nodes of V1 are still connected to many nodes of Vt. However, this
does not hold if more than m = Θ(N/ logN) nodes are allowed to be removed: by placing initial
pebbles on, say, the middle layer Vt/2 player 1 can completely disconnect V1 from Vt.

In contrast, in our construction removing any τ ′N nodes still leaves a graph which is “well-
connected”. Our argument is as follows. If constant τ ′ is sufficiently small then there can be at
most ηt layers with more than τm initial pebbles (for a given constant τ < 1). By the property
of Dt, there exists a sufficiently long path P in Dt that avoids those layers. We can thus use the
argument above for the subgraph corresponding to P . We split P into three parts of equal size, and
show that many nodes in the first part are connected to many nodes in the third part.

Remark 3 As an alternative, we could have omitted superconcentrator C(mt) in the construction
above. As will become clear from the next two sections, the resulting family of graphs would have
a pebbling complexity

Ω(0, [S0 < τN] ·N) (12)

for some constant τ ∈ (0, 1) (with probability at least 1 − 2−Θ(N/ logN), for appropriate values of
d, µ). However, we currently do not have any bounds on the number of pebbles S1 for such graphs;
the purpose of adding C(mt) was to get such bounds.

Graphs without C(mt) could be used if the amount of additional storage in the execution stage
does not matter for a particular application.

C.3 Robust expanders

In order to analyze the construction above, we define the notion of a robust expander.

Definition 3. Consider graph G = (V,E) with inputs V + and outputs V −, values a, b, c > 0 and
an interval K = [kmin, kmax].
(a) G is called a (K, c)-expander if for every set of outputs X ⊆ V − of size |X| ∈ K there holds
|Π+

G (X)| ≥ c|X|.
(b) G is called a robust (a, b,K, c)-expander if for every set of non-output vertices A ⊆ V − V −

23

of size |A| ≤ a there exists a set of outputs B ⊆ V − of size |B| ≤ b such that graph G \ (A ∪ B)
is a (K, c)-expander.

By (k, c)-expanders and robust (a, b, k, c)-expanders we will mean expanders with the interval
K = [1, k]. Intuitively, robust expansion means that the expansion property of the graph is fault-
tolerant: it survives (for a large subgraph) when a constant fraction of nodes is removed.

It is known [52] that for a sufficiently large d graph Rd
(m) is an expander (for appropriate

parameters) with a high probability. We show that it is also a robust expander; a proof is given
in Section C.5. 18

Theorem 5. There exist constants α, κ, γ ∈ (0, 1) and integer d > 0 with γd > 1 such that graph
Rd

(m) is a robust (αm, 1
2
αm, κm

d
, γd)-expander with probability at least 1− 2−Θ(m).

From now on we fix values α, κ, γ, d from Theorem 5. We can now specify value µ used in the
construction of GN : we require that

µ ≥ 3

η log(γd)
(13)

Consider graph GN = (V,E) that was obtained from graph Gd
(m,t). Let G be the subgraph of GN

induced by the set Ṽ = V1 ∪ . . . ∪ Vt of size |Ṽ | = mt. From now on we assume that graph Rd
(m)

used in the construction of GN is a robust (αm, 1
2
αm, κm

d
, γd)-expander; by Theorem 5 this holds

with probability at least 1− 2−Θ(m) = 1− 2−Θ(N/ logN).

Theorem 6. For any subset U ⊆ Ṽ of size |U | ≤ 1
2
ηα·mt there exist at least 1

3
η(1−α)·mt−O(m)

vertices v ∈ Ṽ − U satisfying |ΠG\U(v)| ≥ 1
3
ηκγ ·mt−O(m).

Proof. Let Q ⊆ [t] be the set of indices i satisfying |Vi ∩ U | ≥ 1
2
αm. We have

1
2
ηαmt ≥ |U | ≥ |Q| · 1

2
αm ⇒ |Q| ≤ ηt

By the property of Theorem 4 graph Dt contains directed path P of length at least ηt that does not
intersect Q. Thus, for each node i of P we have |Vi ∩ U | ≤ 1

2
αm.

For each node i of P we define set Ui with Vi ∩ U ⊆ Ui ⊆ Vi and |Ui| ≤ αm using the
following recursion:

– If i is the first node of P then set Ui = Vi ∩ U .
– Consider edge (i, j) of P for which set Ui has been defined. Denote Rij = G[Vi ∪ Vj]; it is a

copy of Rd
(m). By the robust expansion property there exists subset Bj ⊆ Vj with |Bj| ≤ 1

2
αm

such that graph Rij \ (Ui ∪Bj) is a (κm
d
, γd)-expander.

We define Uj = (Vj ∩ U) ∪Bj , then |Uj| ≤ |Vj ∩ U |+ |Bj| ≤ 1
2
αm+ 1

2
αm = αm.

18 Note that the robust expansion property has been formulated in [21, Section 4]. Namely, they say that “in any good enough
expander if up to some constant (related to the expansion) fraction of nodes are deleted, then one can still find a smaller
expander (of linear size) in the surviving graph”. To support this claim, they cite [3, 51]. However, we were unable to find such
statement in these references.

We believe that inferring the robust expansion property ofRd(m) just from the ordinary expansion is indeed possible, but with
a worse bound on the probability and with worse constants compared to what we have in Theorem 5 and its proof.

24

Note that graph Rij \ (Ui ∪Uj) is also a (κm
d
, γd)-expander: it is obtained from Rij \ (Ui ∪Bj) by

removing a subset of outputs, and such operation preserves the expansion property.
Let I ⊆ [t] be the first b1

3
ηtc nodes of P and J ⊆ [t] be the last b1

3
ηtc nodes. Consider vertex

v◦ ∈ Vj − Uj for index j◦ ∈ J . We will show |ΠG\U(v◦)| ≥ 1
3
ηκγ ·mt − O(m). This will imply

the theorem since the number of such vertices is at least |J | · (m−αm) ≥ 1
3
ηt · (1−α)m−O(m).

For nodes i of path P denote

Xi = ΠG\U(v◦) ∩ (Vi − Ui) (14)

For a node i ≤ j◦ of P let `(i) be the distance from i to j◦ along P (with `(j◦) = 0). We use
induction on `(i) to show that

|Xi| ≥ min{(γd)`(i), bκm
d
c · γd} (15)

For `(i) = 0 the claim is trivial (since Xj◦ = {v◦}). Suppose it holds for j, and consider edge (i, j)
of path P . Note that `(i) = `(j)+1. By construction, graphRij \(Ui∪Uj) is a (κm

d
, γd)-expander.

Furthermore,Π+
Rij\(Ui∪Uj)(Xj) ⊆ Xi. Together with the induction hypothesis this implies the claim

of the induction step:

|Xi| ≥ |Π+
Rij\(Ui∪Uj)(Xj)| ≥ γd ·min{|Xj|, bκmd c}

≥ γd ·min{(γd)`(j), bκm
d
c · γd, bκm

d
c} = min{(γd)`(j)+1, bκm

d
c · γd}

We have proved eq. (15) for all nodes i of P . Now consider node i ∈ I . We have `(i) ≥ 1
3
ηt

and also t = bµ logNc ≥ µ logm ≥ 3
η log(γd)

logm. Therefore,

(γd)`(i) ≥ (γd)
1
3
η· 3
η log(γd)

logm = m

and so the minimum in (15) is achieved by the second expression bκm
d
c ·γd = κγm−O(1). (Note,

we must have κγ ≤ 1, otherwise we would get |Xi| > m - a contradiction). We obtain the desired
claim:

|ΠG\U(v◦)| ≥
∑

i∈I |Xi| ≥ (1
3
ηt−O(1)) · (κγm−O(1)) = 1

3
ηκγ ·mt−O(m)

ut

C.4 Proof of Theorem 2: a wrap-up

Using Theorem 6 and a result from [37], we can now show that graphs GN have a pebbling com-
plexity Ω(0, [S0 < τN] ·max{N,N2/S1}) where τ = 1

2
ηα ·minN

mt
N
∈ (0, 1). We define λN as

the uniform probability distribution over vertices c ∈ Ṽ .
Assume that the set initial pebbles U ⊆ V chosen by player 1 has size |U | = S0 < τN ,

otherwise the claim is trivial. Fix a constant ρ ∈ (0, 1
3
ηκγ). We say that a sample c← λN is good

if |ΠG\U(c)| > ρ·mt. Theorem 6 implies that c is good with probability at least δ for some constant
δ > 0 (assuming that N is sufficiently large).

Let us assume that c is good. To pebble c, one must pebble at least ρ · mt nodes of Ṽ ; this
requires time T = Ω(N). Next, we use the following standard result about superconcentrators; it
is a special case of Lemma 3.2.1 in [37].

25

Lemma 2. In order to pebble 2S1 + 1 outputs of superconcentrator C(mt), starting and finishing
with a configuration of at most S1 pebbles, at least mt− 2S1 different inputs of the graph have to
be pebbled and unpebbled.

By applying this lemma bρ · mt/(2S1 + 1)c times we conclude that pebbling c with at most S1

pebbles requires time T = Ω(N2/S1). The theorem is proved.

C.5 Proof of Theorem 5 (robust expansion of Rd
(m))

In this section we denote graph Rd
(m) as G = (V,E) (with inputs V + and outputs V −). For a set of

output nodes X ⊆ V − let π(X) = Π+
G (X) =

⋃
v∈X π(v) be the set of predecessors of nodes in X .

We will use the following fact about the binomial distribution (see [6]).

Theorem 7. Suppose that X1, . . . , XN are independent {0, 1}-valued variables with p = p(Xi =
1) ∈ (0, 1). If p < M

N
< 1 then

F≥(M ;N, p)
def
= Pr[

∑N
i=1 Xi ≥M] ≤ exp

(
−N ·H

(
M
N
, p
))

where
H(a, p) = a ln

a

p
+ (1− a) ln

1− a
1− p

Let us fix values α, β, κ, γ, δ ∈ (0, 1) and integer d > 0 satisfying

β < 1
2
α (16a)

α < δ − γ (16b)
q < β where q = exp(−d ·H(δ − γ, α)) (16c)
H(β, q)− ln e

α
> 0 (16d)

κ < δ̄ where δ̄ = 1− δ (16e)
δ̄d > 1 (16f)
− ln(de) + d · [δ̄ ln δ̄ + δ ln δ] + (δ̄d− 1) · ln 1

κ
> 0 (16g)

Examples of feasible parameters are given in Table 1. We will show that Theorem 5 holds for any
values satisfying (16). 19

Throughout this section we denote

kmax = κm
d

(17a)
kmin = bmin{(1

2
α− β)m, 1

2
kmax}c (17b)

K = [kmin, kmax] (17c)

We also introduce the following definition.
19 We conjecture that the constants could be improved if instead of Rd(m) we used a random bipartite graph (with multi-edges

allowed) in which degrees of nodes in both V + in V − equal d (i.e. a union of d random permutation graphs). Expansion
properties of such graphs were analyzed in [11].

26

α κ γ δ d

0.12 1/8 1/4 0.676 ≥ 190
0.19 1/16 1/8 0.757 ≥ 67
0.22 1/32 1/16 0.800 ≥ 43
0.24 1/64 1/32 0.827 ≥ 34

Table 1. Feasible parameters satisfying (16). We always use β = 1
2
α− ε for a sufficiently small ε > 0.

Definition 4. For a set of inputs A ⊆ V + define set of outputs BA via

BA = {v ∈ V − | |π(v) ∩ A| ≥ (δ − γ)d} (18)

Graph G is a backward (a, b)-expander if |BA| ≤ b for any set A ⊆ V + of size |A| ≤ a.

Theorem 5 will follow from the following three facts.

Lemma 3. Suppose that G is a backward (αm, βm)-expander and also a (K, δd)-expander.
(a) It is a robust (αm, βm,K, γd)-expander.
(b) It is a robust (αm, βm+ kmin, kmax, γd)-expander.

Lemma 4. There exists constant c1 > 0 such that

Pr[G is not a backward (αm, βm)-expander] ≤ 2−c1m

Lemma 5. There exists constant c2 > 0 such that

Pr[G is not a (K, δd)-expander] ≤ 2 · 2−c2kmin

As a corollary, we obtain that G is a robust (αm, βm+ kmin, κ
m
d
, γd)-expander with probability at

least 1 − 2−c1m − 2 · 2−c2kmin . Therefore, it is also a robust (αm, 1
2
α, κm

d
, γd)-expander with this

probability, since 1
2
α ≥ βm + kmin. By observing that c1m = Θ(m) and c2kmin = Θ(m) we get

Theorem 5.
The remainder of this section is devoted to the proof of Lemmas 3-5.

Proof of Lemma 3(a) Given set A ⊆ V + of size |A| ≤ αm, we construct set B via B = BA;
the backward expansion property implies that |B| ≤ βm. Let us show that graph G \ (A ∪ B) is
a (K, γd)-expander. Consider set X ⊆ V − − B with |X| = k ∈ K. We can partition π(X) into
disjoint sets Y = π(X) ∩ A and Z = π(X) − A. For each v ∈ X denote Yv = π(v) ∩ A, then
|Yv| ≤ (δ − γ)d (since v /∈ BA). The desired inequality can now be derived as follows:

|Z| = |Y ∪ Z| − |Y | = |π(X)| − |
⋃
v∈X

Yv| ≥ δkd−
∑
v∈X

|Yv| ≥ δkd− |X| · (δ − γ)d = γkd

Proof of Lemma 3(b) Consider set A ⊆ V + of size |A| ≤ αm. By Lemma 3(a) there exists set
B ⊆ V − of size B ≤ βm such that graph G \ (A ∪ B) is a (K, γd)-expander. We will denote this
graph as Ĝ, and its inputs and outputs as V̂ + = V +−A and V̂ − = V −−B respectively. For a set
X ⊂ X̂− let π̂(X) ⊆ V̂ + be the set of predecessors of X in Ĝ.

We will show that there exists set B̂ ⊆ V̂ − of size |B̂| ≤ kmin − 1 such that graph Ĝ \ B̂ is a
(kmax, γd)-expander; this will imply the claim of the lemma. In fact, it suffices to show that it is a
(kmin− 1, γd)-expander, since we already know that Ĝ \ B̂ is a ([kmin, kmax], γd)-expander for any
B̂ ⊆ V̂ −.

We construct set B̂ using the following greedy algorithm:

27

– set B̂ := ∅;
– while there exists subset X ⊆ V̂ − − B̂ such that |X| ≤ kmin − 1 and |π̂(X)| < γd|X|, update
B̂ := B̂ ∪X .

By construction, upon termination we get set B̂ such that graph Ĝ \ B̂ is a (kmin − 1, c)-expander.
To prove the lemma, it thus suffices to show that |B̂| ≤ kmin − 1. Suppose that this is not the case.
Let B̂′ ⊆ B̂ be the first subset during the execution of the algorithm whose size exceeds kmin − 1,
then kmin ≤ |B̂′| ≤ 2kmin ≤ kmax. We have |B̂′| ∈ K, so the (K, γd)-expansion property of
Ĝ implies that |π̂(B̂′)| ≥ γd|B̂′|. However, by inspecting the algorithm above we conclude that
|π̂(B̂′)| < γd|B̂′| - a contradiction.
Proof of Lemma 4 Denote α′ = bαmc/m ≤ α. Clearly, it suffices to prove the backward
expansion property only for sets of inputs A ⊆ V + of size |A| = bαmc = α′m. Let us fix
such set A. For an output vertex v ∈ V − denote q′ = Pr[v ∈ BA]. It is the probability that
|π(v) ∩ A| ≥ (δ − γ)d. Each node u ∈ π(v) falls in A with probability α′ = |A|/m, therefore

q′ = F≥((δ − γ)d; d, α′) ≤ F≥((δ − γ)d; d, α) ≤ exp(−d ·H(δ − γ, α)) = q

(We used the fact that δ − γ > α by (16b).) From the inequalities above and from (16c) we get
q′ ≤ q < β, therefore

Pr[|BA| ≥ βm] = F≥(βm;m, q′) ≤ F≥(βm;m, q) ≤ exp (−m ·H(β, q))

We now use a union bound:

Pr[G is not a backward (αm, βm)-expander] ≤
∑

A⊆V +:|A|=α′m

Pr[|BA| ≥ βm]

≤
(
m

α′m

)
exp (−m ·H(β, q)) ≤

(me
αm

)αm
exp (−m ·H(β, q))

= exp
(
−m · (H(β, q)− ln e

α
)
)

Combined with condition (16d), this implies the claim.
Proof of Lemma 5 We follow the argument from [52], only with different constants. Consider
integer k ∈ K = [kmin, κ

m
d

], and let pk be the probability that there exists set X ⊆ V − of size
exactly k with |π(X)| < δd · k. We prove below that pk ≤ 2−ck for some constant c > 0. This will
imply Lemma 5 since then

Pr[G is not a (K, δd)-expander] ≤
bκm

d
c∑

k=kmin

2−ck < 2−ckmin

∞∑
i=0

2−i = 2 · 2−ckmin

Recall that we denoted δ̄ = 1− δ. Let us also denote λ = kd
m

. Note, condition k ≤ κm
d

implies
that λ ≤ κ.

Consider a fixed set X ⊆ V − of size k. Let us estimate the probability that |π(X)| < γ̄kd.
Set π(X) contains a union of kd independent random variables J1, . . . , Jkd where each Ji is a

28

node in V + chosen uniformly at random. We can imagine these nodes J1, . . . , Jkd being chosen
in sequence. Call Ji a repeat if Ji ∈ {J1, . . . , Ji−1}. Then the probability that Ji is a repeat, even
conditioned on J1, . . . , Ji − 1, is at most i−1

m
≤ kd

m
= λ.

Let Ĵ1, . . . , Ĵkd be independent random variables that take values “repeat” and “no repeat”,
with Pr[Ĵi = repeat] = λ. Then

Pr[|π(X)| < δkd]≤ Pr[there are at least bδ̄kd+ 1c repeats among J1, . . . , Jkd]

≤ Pr[there are at least bδ̄kd+ 1c repeats among Ĵ1, . . . , Ĵkd]

= F≥(bδ̄kd+ 1c; kd, λ) ≤ F≥(δ̄kd; kd, λ) ≤ exp
(
−kd ·H(δ̄, λ)

)
The number of subsets X ⊆ V − of size k is

(
m
k

)
≤
(
me
k

)k
=
(
de
λ

)k. Therefore,

pk ≤
∑

X⊆V −:|X|=k

Pr[|π(X)| < δkd] ≤
(
de
λ

)k
exp

(
−kd ·H(δ̄, λ)

)
= exp

(
−k · [− ln de

λ
+ d · δ̄ ln δ̄

λ
+ d · δ ln δ

1−λ]
)

= exp
(
−k · [σ + (δ̄d− 1) · ln 1

λ
+ δd · ln 1

1−λ]
)

(19)

where in σ we collected terms that do not depend on λ:

σ = − ln(de) + d · [δ̄ ln δ̄ + δ ln δ]

Note that δ̄d− 1 > 0 by (16f). Plugging inequalities ln 1
λ
≥ ln 1

κ
and ln 1

1−λ ≥ 0 into (19) gives

pk ≤ exp
(
−k · [σ + (δ̄d− 1) · ln 1

κ
]
)

The coefficient after k in the last expression is a positive constant according to (16g). The claim
pk ≤ 2−ck for a constant c > 0 is proved.

C.6 Superconcentrators are robust expanders

For completeness, in this section we show that superconcentrators are also robust expanders (for
appropriate parameters). This suggests that in the construction of GN one could replace bipartite
random graph Rd

(m) with superconcentrator C(m); the argument of Theorem 6 would still apply.
More precisely, we have two options:

– When adding a copy of C(m) for edge (i, j) ∈ Dt, create unique copies of internal nodes of
C(m) (i.e. those nodes that are neither inputs nor outputs; there are Θ(m) such nodes). Graph
G(m,t) would then have Θ(mt log t) nodes instead of Θ(mt) nodes. We could thus obtain a
family of graphs GN with a constant average degree and pebbling complexity

Ω(0, [S0 < τ N
log logN

] · (N
log logN

)2/S1) (20)

for some constant τ > 0.

29

– Share internal nodes of superconcentrators for edges (i, j) that are going to the same node
j ∈ [t]. Graph G(m,t) would then have Θ(mt) nodes. This would give a family of graphs
GN ∈ G(N,O(log logN)) with the same pebbling complexity as in Theorem 2.

We omit formal derivations of these claims (thus leaving them as conjectures); instead, we only
prove the following result.

Theorem 8. Suppose that valuesm,α, k, c satisfy c(αm+k) ≤ (1−α)m. Then superconcentrator
G = (V,E) with |V +| = m inputs and |V −| = m outputs is a robust (αm,αm, k, c)-expander.

We will need the following well-known property of a superconcentrator.

Lemma 6 ([44]). IfA ⊆ V −V −,B ⊆ V − are subsets with |A| < |B| then |Π+
G\A(B)| ≥ m−|A|.

Proof. If |Π+
G\A(B)| < m − |A| then |V + − Π+

G\A(B)| ≥ |A| + 1, so there must exist |A| + 1

vertex-disjoint paths between V + − Π+
G\A(B) and B. At least one of them does not intersect A,

and thus its source node belongs to Π+
G\A(B) - a contradiction.

ut
We now proceed with the proof of Theorem 8. Consider subset A ⊆ V − V − with |A| ≤ αm.

We construct set B ⊆ V − using the following greedy algorithm:

– set B := ∅;
– while there exists subset X ⊆ V − − B such that |X| ≤ k and |Π+

G\A(X)| < c|X|, update
B := B ∪X .

By construction, upon termination we get set B such that graph G \ (A ∪ B) is a (k, c)-expander.
To prove the theorem, it thus suffices to show that |B| ≤ αm. Suppose that |B| > αm. Let
B′ ⊆ B be the first subset during the execution of the algorithm whose size exceeds αm, then
αm < |B′| ≤ αm + k. We have |B′| > |A|, so by Lemma 6 |Π+

G\A(B′)| ≥ m − |A| ≥ (1 −
α)m. By inspecting the algorithm above we conclude that |Π+

G\A(B′)| < c|B′|. We obtained that
c(αm+ k) ≥ c|B′| > (1− α)m - a contradiction.

D Proof of Proposition 1

We start explaining the security as claimed in Eq. (9). GN having pebbling complexity (f(N), 0)
means, that any player 1 who is allowed to put at most c1f(N) (for some constant c1 > 0) pebbles
on the graph simultaneously must fail in pebbling a challenge vertex c ← λN with probability
at least δ for some constant δ > 0 (even with no bound on the number of pebbling steps). If we
now pick Θ(γ) challenge vertices C ← ΛN independently, then with probability 1 − (1 − δ)γ =
1 − 2−Θ(γ) we will hit a vertex that cannot be pebbled with c1f(N) pebbles. As discussed in
Section 4, this means the scheme is (0, c1f(N),∞)-secure. Observing that (0, S1,∞)-security
implies (S0, S1,∞)-security for any S0 ≤ S1 proves Eq. (9).

We will now show Eq. (10). GN having pebbling complexity (0, g(N,S0, S1)) means that any
player 1 who is allowed to put S0 pebbles on the graph initially, and then use at most S1 pebbles

30

simultaneously making at most c2g(N,S0, S1) pebbling steps, must fail in pebbling a challenge
vertex c ← λN with probability at least δ > 0. As above, if we pick Θ(γ) challenges C ←
ΛN independently, then with probability 1 − (1 − δ)γ = 1 − 2−Θ(γ) we will hit a vertex that
cannot be pebbled with c2g(N,S0, S1) steps. As discussed in Section 4, this means the scheme
(S0, S1, c2g(S0, S1, N))-secure.

31

