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Abstract

Double-valued representations of the space group C4
6v (wurtzite lattice) have

been constructed. A variant of perturbation theory is presented, allowing the
investigation of the dispersion law in the vicinity of symmetry elements taking
into consideration the spin-orbit interaction. The formulae obtained here differ
from those available in the literature and lead to a qualitatively different dispersion
law for a number of points. A group theoretical analysis of the structure of energy
bands in a wurtzite type lattice was carried out taking the spin-orbit interaction
into consideration. The possibility of energy surfaces E(k), where (in a proper
approximation) the extremum is reached along an entire curve rather than in
isolated points of k space, is demonstrated.

Introduction

A previous paper by one of the authors [1] provided a group theoretical analysis of the
structure of the energy bands in crystals with a wurtzite lattice (space group C4

6v) with-
out taking the spin-orbit interaction into account. In particular, the possible positions
of the zero-slope points were determined and the dispersion law near the symmetry
elements was found. A similar analysis is carried out in the present study but with the
spin-orbit interaction taken into account. Particular attention is paid to deriving the
dispersion law in the vicinity of the symmetry elements where extrema can be located
in the absence of spin-orbit interaction.

1 Construction of double-valued irreducible repre-
sentations

A description of the wurtzite-type lattice with the indication of the symmetry operations
may be found in [1] (Fig. 1). The scheme of the first Brillouin zone with the definition of
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the symmetry points may also be found there (Fig. 2). We adhere below to all notations
of Ref. [1].

The factor group of the double space group over the translation subgroup comprises
24 elements. It is easy to obtain the multiplication table for the double space group, once
the multiplication table has been constructed for the double point group, by multiplying
the 2 × 2 matrices of the representation D1/2 [2]. For all symmetry points, the tables
of the characters of the double-valued representations of the wave vector groups can be
obtained directly from the tables of the characters of the corresponding point groups in
a manner similar to that employed in [1] for single-valued representations. Characters
of the irreducible double-valued representations for all symmetry points are presented
in Tables 1 – 5.

It is easy to see that the characters of the representations Δ9, F3, F4, U5, and P6

are periodic in k-space with the period of the reciprocal lattice. The characters of Δ7,
Δ8, B3, B4, P4, and P5 have a doubled period in the direction of the axis kz, and a
shift along it by 2π/t0 results in a pair-wise transformation of the representations one
into another. We note that a similar situation is realized in a number of single-valued
representations [1].

Using the characters of the irreducible representations (Tables 1 – 5) we derive, in
the usual manner, the compatibility conditions for the representations at the various
symmetry elements

Δ7, Δ8, Δ9 → F3 + F4; Δ7, Δ8, Δ9 → B3 + B4;

U5 → F3 + F4; U5 → B′
3 + B′

4;

P4 → B3, B
′
3; P5 → B4, B

′
4; P6 → B3 + B4, B

′
3 + B′

4.

By calculating the characters of the direct products of particular single-valued rep-
resentations D of the wave vector group and the representation D1/2, it is easy to obtain
the following relations which indicate (i) into how many sublevels the original energy
level splits due to the spin-orbit interaction and (ii) according to which double-valued
irreducible representation the wave functions belonging to the specific sublevels trans-
form:

Δi × D1/2 = Δ7 (i = 1, 2); Δi × D1/2 = Δ8 (i = 3, 4);

Δ5 × D1/2 = Δ8 + Δ9; Δ6 × D1/2 = Δ7 + Δ9;

Fi × D1/2 = F3 + F4; Bi × D1/2 = B3 + B4; B′
i × D1/2 = B′

3 + B′
4 (i = 1, 2);

Ui × D1/2 = U5 (i = 1, 2, 3, 4);

Pi × D1/2 = P6 (i = 1, 2); P3 × D1/2 = P4 + P5 + P6.

When applied to the irreducible double-valued representations, time reversal symme-
try results in additional degeneracies either if the representation can be brought to a real
form (case a), or if it is not equivalent to the complex conjugate representation (case b).
If a complex representation is equivalent to its complex conjugate (case c), no additional
degeneracy arises [3]. Using Herring’s criterion [4], one can check that double-valued
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Table 1: Characters of the irreducible double-valued representations for the point Δ,
where ηk = exp (ikzt0/2). The representation corresponding to the Cayley-Klein matri-
ces is D1/2 = Δ7.
24 Δ7 Δ8 Δ9

1 {ε | 0} 2 2 2
1 {ε̄ | 0} −2 −2 −2
2 {δ6 | t0

2 }, {δ̄5
6 | t0

2 }
√

3 ηk −
√

3 ηk 0
2 {δ2

6 | 0}, {δ̄4
6 | 0} 1 1 −2

2 {δ4
6 | 0}, {δ̄2

6 | 0} −1 −1 2
2 {δ5

6 | t0
2 }, {δ̄6 | t0

2 } −
√

3 ηk

√
3 ηk 0

2 {δ3
6 | t0

2 }, {δ̄3
6 | t0

2 } 0 0 0
6 {σ1 | 0}, {σ2 | 0}, {σ3 | 0}, {σ̄1 | 0}, {σ̄2 | 0}, {σ̄3 | 0} 0 0 0
6 {σ′

1 | t0
2 }, {σ′

2 | t0
2 }, {σ′

3 | t0
2 }, {σ̄′

1 | t0
2 }, {σ̄′

2 | t0
2 }, {σ̄′

3 | t0
2 } 0 0 0

Table 2: Characters of the
irreducible double-valued rep-
resentations U5. D1/2 = U5.

8 U5

1 {ε | 0} 2
1 {ε̄ | 0} −2
2 {σ1 | 0}, {σ̄1 | 0} 0
2 {σ′

1 | t0
2 }, {σ̄′

1 | t0
2 } 0

2 {δ3
6 | t0

2 }, {δ̄3
6 | t0

2 } 0

Table 3: Characters of the irreducible double-valued
representations for the point P . D1/2 = P6.
12 P4 P5 P6

1 {ε | 0} 1 1 2
1 {ε̄ | 0} −1 −1 −2
2 {δ2

6 | 0}, {δ̄4
6 | 0} −1 −1 1

2 {δ4
6 | 0}, {δ̄2

6 | 0} 1 1 −1
3 {σ′

1 | t0
2 }, {σ′

2 | t0
2 }, {σ′

3 | t0
2 } iηk −iηk 0

3 {σ̄′
1 | t0

2 }, {σ̄′
2 | t0

2 }, {σ̄′
3 | t0

2 } −iηk iηk 0
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Table 4: Characters of the
irreducible double-valued rep-
resentations for the point F .
D1/2 = F3 + F4.

4 F3 F4

1 {ε | 0} 1 1
1 {ε̄ | 0} −1 −1
1 {σ1 | 0} i −i

1 {σ̄1 | 0} −i i

Table 5: Characters of the
irreducible double-valued rep-
resentations for the point B.
D1/2 = B3 + B4.

4 B3 B4

1 {ε | 0} −1 −1
1 {ε̄ | 0} −1 −1
1 {σ′

1 | t0
2 } iηk −iηk

1 {σ̄′
1 | t0

2 } −iηk iηk

representations show the following behavior with respect to time reversal.

Case a: A9, L5, R3, R4, G.

Case b with common star: A7, A8, H4, H5, S3, S4 (S ′
3, S ′

4).

Case b with different stars: Δ7 – Δ9, U5, P4 – P6, F3, F4, B3, B4 (B′
3, B′

4).

Case c: Γ7 – Γ9, M5, K4 – K6, Σ3, Σ4, T3, T4 (T ′
3, T ′

4), N , H6.

It follows directly from these observations that time reversal results in additional
degeneracies in the whole kz = π/t0 plane, similarly to the problem of spinless electrons.
The only exception is the point H6. We note that for spinless electrons the point H3 was
a similar exception. There is no additional “sticking together” of bands in any other
point of the Brillouin zone.

2 Derivation of the dispersion law with spin-orbit
interaction included

Recently, it has been established in a number of studies [5, 6] that a proper account for
the relativistic terms is highly important in the investigation of the energy spectrum of
electrons in solids, in particular in the study of the structure of energy bands. This is
related to the fact that the spin-orbit interaction usually gives rise to splittings of the
energy levels and a displacement of the zero-slope points from the symmetry elements,
hence, to a significant change in the dispersion law in the vicinity of extrema. At the
same time, the spin-orbit interaction is comparatively small in its absolute value and
spin-orbit splitting in semiconductors is usually of the order of 10−2 − 10−1 eV, while
the separation between the consecutive electron levels in the spinless problem is of the
order of an electron-volt. For this reason, instead of the Dirac equation, one usually
considers the equation

Hψ =
[

p2

2m
− eΦ − e�

4m2c2 (σ[∇Φ × p]) − e�2

8m2c2 ΔΦ − p4

8m3c2

]
ψ = Eψ, (1)

which is derived from the Dirac equation by expanding in the small parameter c−1 and
keeping the terms up to the order c−2 [7]. In Eq. (1) ψ is a two-component spinor, Φ is
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the electrostatic potential, σ = σx i + σy j + σz k. The third term on the left-hand side
of Eq. (1) describes the spin-orbit interaction, the fourth is the Darwin term, and the
fifth is a relativistic correction to the effective mass.

When the condition of smallness of the relativistic terms is fulfilled, the change from
the Dirac equation to an approximate Eq. (1) appears expedient. Indeed, a group-
theoretical analysis of the energy bands performed on the basis of the Dirac equation
would indicate, for example, a non-zero slope at the points at which the slope is of higher
order in the small parameter c−1. However, in view of the extreme smallness of the
higher relativistic corrections the changes introduced by them into the band structure
will actually be negligibly small and such an approach would only result in unwarranted
complications of the problem. For this reason, in the analysis of the dispersion law it is
expedient to obtain results in the form of an expansion in the small parameter c−1 to
evaluate the relative importance of individual terms.

Since Eq. (1) is an approximate one, its eigenvalues must also be sought approxi-
mately, retaining only the first non-vanishing relativistic terms (∼ c−2). An analysis of
the dispersion law in this approximation is presented below.1

Let ψk = uk exp(ikr) and Ek be the eigenfunctions and eigenvalues of Eq. (1)
belonging to a wave vector k. It is easy to show in the usual way that the eigenvalues
Ek+K of Eq. (1) are, at the same time, eigenvalues of the equation

H(K)ϕk,K = [H0 + VK ] ϕk,K = Ek+K ϕk,K , (2)

corresponding to the eigenfunctions ϕk,K = uk+K exp(ikr), belonging to the wave vec-
tor k. Here

H0 =
p2

2m
− eΦ, VK =

5∑
i=1

Vi,

V1 = V ′
1 + V ′′

1 = − e�

4m2c2 (σ[∇Φ × p]) −
[

e�2

8m2c2 ΔΦ +
p4

8m3c2

]
,

V2 =
�

m
(Kp), V3 =

�
2K2

2m
,

V4 = V ′
4 + V ′′

4 =
e�2

4m2c2 (K[∇Φ × σ]) − �p2 (Kp)
2m3c2 ,

V5 = V ′
5 + V ′′

5 = −�
2 (Kp)2

2m3c2 − �
2 p2 K2

4m3c2 . (3)

From comparison of Eqs. (2) and (3) with Eq. (1) it follows that Ek+K may be
considered as an eigenvalue of the perturbed equation corresponding to the same value
of the quasimomentum k as the eigenvalue Ek of the unperturbed equation. The per-
turbation operator

∑5
i=2 Vi is invariant with respect to all translations. For this reason,

Ek+K can be found by standard perturbation theory. Eigenfunctions of the Hamiltonian
1In principle it is an interesting question under what conditions the dispersion law, thus defined,

coincides qualitatively with the exact dispersion law obtained from the Dirac equation. From the
standpoint of choosing the most technically useful approach, it is also important under what conditions
the approximate and exact solutions of Eq. (1) give rise to qualitatively the same results.
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H̃ = H0 + V1, belonging to the quasimomentum k, must be chosen as the unperturbed
eigenfunctions.

However, as was indicated above, our task is not finding the exact solutions of
Eq. (1), but finding its eigenvalues approximately including the terms of the order ∼ c−2.
For this reason it is more expedient to consider H0 as the unperturbed Hamiltonian
and VK =

∑5
i=1 Vi as a perturbation. The operator VK includes two independent

small parameters (K = |K| and c−2), in the powers of which the expansion should be
performed. Accordingly, the terms of zeroth and first order in the small parameter c−2

must be retained. Regarding the expansion in the powers of K, we will retain the terms
up to and including K2.

Before deriving the secular equation, we note that not all the terms in the pertur-
bation operator are equally important. The term V ′′

1 does not depend on K and does
not include spin matrices. For this reason it may be included in H0, which leads only to
a minor modification to the eigenfunctions of H0 and does not change their symmetry.
The term V3 provides only a global energy shift proportional to K2. The term V ′′

5 , after
calculating its matrix elements between the eigenfunctions of H0 belonging to the same
irreducible representation of the single group, results in a matrix that is proportional
to the identity matrix. For this reason the effect of V ′′

5 can be fully accounted for by
introducing a relativistic mass correction in the term V3. We will not consider the term
V ′′

5 any further. Similarly, it is easy to see that V ′′
4 only results in a relativistic correction

to the electron mass in V2. Finally, evaluation of V ′
5 in first-order perturbation theory

results only in a minor adjustment of the second-order correction from the operator V2.
After omitting unessential terms in Eq. (3), all significant perturbation terms may be
written as

V1 = − e�

4m2c2 (σ[∇Φ × p]), V2 =
�

m
(Kp),

V3 =
�

2K2

2m
, V4 =

e�2

4m2c2 (K [∇Φ × σ]). (4)

A version of perturbation theory proposed by Löwdin [8] is the most technically
convenient to proceed with. Let a contact of several bands of a problem of spinless
electrons with a Hamiltonian H0 take place at some point k. Let us denote the wave
functions corresponding to this level by fnl and its energy by En; the index l designates
mutually degenerate functions. Let us denote by ψ0

ns the spinors
(

fnl

0

)
≡ fnl α and( 0

fnl

)
≡ fnl β constructed with all functions fnl, or some of their linear combinations.

Let the set of spinors ψ0
ns make up the class (A) of basis functions in the sense of Ref. [8].2

Then, retaining in the expansion of the matrix elements the lowest-order terms including
the terms of the order ∼ K2 and ∼ c−2K2,3 we obtain:

2Formulae defining the dispersion law for a different choice of the class (A) are given in the Appendix.
3We note that, in general, this approximation does not allow us to achieve an equally small absolute

inaccuracy in the expansion coefficients of the eigenvalues in the powers of K. For example, at a
point of contact where the slope does not vanish for spinless electrons but vanishes when the spin-orbit
interaction is included, the expansion of E in powers of K, in the immediate vicinity of the point K = 0,
begins with the terms ∼ c2K2, and the coefficient of the term ∼ c−2K2 cannot be obtained from the
approximate Eq. (1). However, the relative inaccuracy originating from such terms is small and the
approximation remains sufficient.
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Det ‖Uns,nt − Eδst‖ = 0, (5)

Uns,nt =
( 4∑

i=1

Vi

)
ns,nt

+ (V12)ns,nt + (V22)ns,nt + (V24)ns,nt + (V122)ns,nt , (6)

(Vij)ns,nt =
∑
mr

m�=n

(Vi)ns,mr (Vj)mr,nt + (Vj)ns,mr (Vi)mr,nt

E − Em

, (ij = 12, 22, 24), (7)

(V122)ns,nt =
∑

lq
l�=n

∑
mr

m�=n

(V1)ns,lq (V2)lq,mr (V2)mr,nt + (V2)ns,lq (V2)lq,mr (V1)mr,nt +

+ (V2)ns,lq (V1)lq,mr (V2)mr,nt

(E − El)(E − Em)
. (8)

Formulae (5)–(8) determine the dispersion law in the vicinity of the symmetry el-
ements. It is easy to see that they differ from those used in the literature (see, for
instance, Ref. [9]) by a number of terms. First of all, Eq. (6) includes two terms propor-
tional to K/c2: (V4)ns,nt usually considered in the literature and (V12)ns,nt. Estimates
show that the second term is of the same order of magnitude as the first one, or even
exceeds it by an order of magnitude. However, because in practice the calculation of
the coefficients in the dispersion law is not actually performed on the basis of Eqs. (6)–
(8), the fundamental role in the evaluation of the importance of these two terms for
the study of the E(k) surfaces depends on the fact whether they result in qualitatively
identical or different dispersion laws rather than on their relative magnitude.

To answer this question we note that the system of spinors ψ0
ns forms the basis of

a representation not only with respect to simultaneous rotations in the coordinate and
spin spaces (corresponding to all operations of the double group), but also with respect
to rotations in the coordinate space corresponding to the operations of the single group.
The operators V4 and V12 behave identically with respect to rotations of the first type,
but in general they behave differently with respect to rotations of the second type. It is
therefore quite natural to expect that the matrices of the operators V4 and V12 will be
different. Actually, an analysis of the band structure near the various symmetry points
described in the next section shows that at some symmetry points the term V12 changes
the dispersion law qualitatively, leading, for example, to the change in the position of
the zero-slope points.4

As far as the terms ∼ K2/c2 are concerned, they are defined by the matrix elements
of the operators V24 and V122. Additional terms of the same order of magnitude come
from expanding the denominators of the operators V22 and V12. When evaluating the

4The origin of the additional terms becomes particularly clear if one performs the perturbation
theory expansion in two steps. First, considering only the operator V1 and using the spinors ψ0

ns,
one finds the spinors ψns defining the wave functions, corresponding to the wave vector k, in a first
approximation in c−2. Then, to find corrections to the energy of the order ∼ K and ∼ K/c2, it is
necessary to calculate the matrix elements of V2 + V4 using the spinors ψns. Calculating the matrix
elements of V4 (having the order K/c2) using the unperturbed spinors ψ0

ns results in the (V4)ns,nl terms,
and calculating the matrix elements of V2 (having the order K) using the unperturbed spinors ψ0

ns and
the first-order corrections to them results in the terms (V12)ns,nt.
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energy E in the denominators of these terms, in the first of them the terms ∼ c−2 must
be retained and in the second one the terms ∼ K.

3 Dispersion law in the vicinity of various symmetry
elements

Let us go on to deriving the dispersion law in the vicinity of the symmetry elements.
Let us designate by Xj

i a point X in which the spinors ψ0
ns transform according to

the representation Xi and the wave functions fnl, through which the spinors ψ0
ns were

constructed, transform according to the representation Xj.
Among the six single-valued irreducible representations for the axis Δ, four (Δ1−Δ4)

are one-dimensional and two (Δ5, Δ6) are two-dimensional. All the points on the axis Δ,
with the exclusion of the point A, are potential zero-slope points for all representations
Δ1 − Δ6, and the slope always vanishes at the points Γ1 − Γ6.

Let fi be a wave function transforming according to an irreducible representation
Δi (i = 1, 2, 3, 4). If ψ0

i1 = fiα and ψ0
i2 = fiβ are chosen as the basis spinors, and the

representation σx =
∥∥0

1
1
0

∥∥, σy =
∥∥0

i
−i
0

∥∥, σz =
∥∥1

0
0

−1

∥∥ is chosen for the Pauli matrices,
then the secular equation (5), with the terms of the order ∼ K3 and ∼ K2/c2 included,
takes the form:∣∣∣∣∣

(a + dKz)K2
⊥ + (b + gKz)K2

z + hKz − E iαK− + iβK−Kz

−iαK+ − iβK+Kz (a + dKz)K2
⊥ + (b + gKz)K2

z + hKz − E

∣∣∣∣∣ = 0,

(9)
where K± = Kx ± iKy. Here and below the lower-case Latin letters designate the
coefficients of zeroth order in the small parameter c−2 and the Greek letters designate
the coefficients of the order c−2. We will not write out the cumbersome expressions for
these coefficients in terms of the matrix elements of the operators appearing in Eq. (4).
Expanding Eq. (9), we arrive at the dispersion law for the points Δ1

7, Δ2
7, Δ3

8, and Δ4
8,

E = (a + dKz)K2
⊥ + (b + gKz)K2

z + hKz ± (α + βKz)K⊥,

K⊥ =
√

K2
x + K2

y . (10)

If an extremum is reached in a point k0
z on the axis Δ, for α = β = 0, then h = 0 in

it.5 Then, with the spin-orbit interaction taken into account, it follows from Eq. (9)
that the extremum is reached at a circle with a radius � | α

2a
|. Its center is located

at the axis Δ in the plane kz = k0
z + α

4ab

(
β − αd

2a

)
. Near the extremum, the surfaces

of constant energy form toroids. They are figures of revolution around the axis kz of
ellipses; one of the axes of which is almost parallel to the axis kz and makes up the angle
ϕ0 = 1

2 arctan
∣∣ α
a−b

(
d
a

− β
α

)∣∣ with it.
It follows from time reversal symmetry that d = g = h = β = 0 in the point Γ. The

extremum is realized on a circle lying in the plane kz = 0 with ϕ0 = 0.
5The constant h in Eq. (10), side by side with a non-relativistic term, contains a small relativistic

correction which leads to a small displacement of the extremum along the kz axis as compared with
its position when the spin-orbit interaction is disregarded. We designate this displaced position of the
extremum as k0

z .
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Thus in the approximation in which the terms up to K3 and K2/c2 are included,
the extremum is reached at a circle (loop) centered around the kz axis rather than in
isolated points of the Brillouin zone as was the case in all the cases studied to date. In
higher approximations of perturbation theory the extrema will be located in a set of
isolated points. However the saddle points between them, for weak spin-orbit coupling,
should be low. Hence, the approximation based on the loop of extrema must be more
useful than an approximation based on isolated extremal points.

Semiconductors with a loop of extrema must possess a number of characteristic prop-
erties related, in part, with a change in the density of states and vanishing semiclassical
cyclotron frequency for a field H parallel to the axis kz.

Let fil be wave functions transforming according to an irreducible representation
Δi (i = 5, 6). Let us choose them in such a way that f51 and f52 transform into one
another as (x − iy)2 exp(ikzz) and (x + iy)2 exp(ikzz), and f61 and f62 transform as
(x + iy) exp(ikzz) and (x − iy) exp(ikzz). Then ψ0

51 = f52α and ψ0
52 = f51β transform

according to the representation Δ5
8, ψ0

61 = f62α and ψ0
62 = f61β transform according to

Δ6
7, and ψ0

53 = f51α and ψ0
54 = f52β, and ψ0

63 = f61α and ψ0
64 = f62β transform according

to Δ5
9 and Δ6

9, respectively. In this basis, the secular equation takes the form:∣∣∣∣∣∣∣∣∣

θ − λ i(α + βKz)K+ (a1 + iρ + a2Kz)K2
+ i(γ + δKz)K−

−i(α + βKz)K− θ − λ −i(γ + δKz)K+ (a1 + iρ + a2Kz)K2
−

(a1 − iρ + a2Kz)K2
− i(γ̄ + δ̄Kz)K− −θ − λ 0

−i(γ̄ + δ̄Kz)K+ (a1 − iρ + a2Kz)K2
+ 0 −θ − λ

∣∣∣∣∣∣∣∣∣
= 0,

(11)
where E = λ+(a+dKz)K2

⊥+(b+gKz)K2
z +hKz, θ = ε+κKz +τK2

⊥+ηK2
z . Expanding

(11), we find

λ4 − (2θ2 + A1)λ2 + (2θA2 + A3)λ + θ4 + θ2A4 + θA3 + A5 = 0, (12)

where

A1 = (α + βKz)2K2
⊥ + 2|γ + δKz|2K2

⊥ + 2[(a1 + a2Kz)2 + ρ2]K4
⊥,

A2 = −(α + βKz)2K2
⊥,

A3 = −4(α + βKz) Re[(a1 + a2Kz − iρ)(γ + δKz)]K4
⊥,

A4 = −(α + βKz)2K2
⊥ + 2|γ + δKz|2K2

⊥ + 2[(a1 + a2Kz)2 + ρ2]K4
⊥, (13)

A5 = |γ + δKz|4K4
⊥ − 2 Re[(a1 + a2Kz − iρ)2(γ + δKz)2]K6

⊥ + [(a1 + a2Kz)2 + ρ2]2K8
⊥.

At K = 0 it has two doubly degenerate roots E = ±ε. The root E = ε corresponds
to the representation Δ6

7 (Δ5
8). The dispersion law for it with an accuracy up to the

terms ∼ K2 and ∼ K/c2 is

E1,2 = aK2
⊥ + bK2

z + hKz + ε + κKz ± (α + βKz)K⊥. (14a)

The dispersion law for the root E = −ε, corresponding to the representation Δ6
9 (Δ5

9),
with an accuracy up to the terms ∼ K3 and ∼ K2/c2 is

E3 = E4 = (a + dKz)K2
⊥ + (b + gKz)K2

z + hKz −
[
ε + κKz +

(
τ +

|γ|2
2ε

)
K2

⊥ + ηK2
z

]
.

(14b)
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At the points Γ6
7 (Γ5

8), Γ6
9 (Γ5

9), h = d = g = a2 = κ = ρ = β = 0, γ = γ̄, δ = −δ̄ due to
time reversal symmetry, and the dispersion law simplifies into

E1,2 = aK2
⊥ + bK2

z + ε ± αK⊥, (15a)

E3 = E4 = aK2
⊥ + bK2

z −
[
ε +

(
τ +

γ2

2ε

)
K2

⊥ + ηK2
z

]
. (15b)

As is seen from Eq. (15a), if ab > 0 the extremum for Γ6
7 (Γ5

8) is realized on a circle
with the center at the origin of the coordinate system and the radius of � | α

2a
|. Since Kx

and Ky appear in Eq. (12) only in the combination K⊥, the loop of extrema does not
disintegrate into separate extrema even when this equation is solved exactly. A similar
situation occurs at the points Δ6

7 (Δ5
8) in the vicinity of the extrema at the points Δ6

(Δ5).
We note that the displacement of the extremum from the kz axis [Eqs. (14a), (14b)]

is caused exclusively by the matrix elements of the operator V12. For this reason it
is absent if, as is usually done, only the operator V4 is taken into account. Thus, we
encounter here one of the cases when introducing the operator V12 changes the dispersion
law qualitatively.

In all cases, the slope at the point A differs from zero in the absence of spin-orbit
interaction [1], and for this reason an extremum cannot be reached in it. In view of this
the investigation of the dispersion law in its vicinity is of minor interest and one can
keep in the expansion less terms than at Δ and Γ.

For the levels A1
7 − A3

8 (A2
7 − A4

8) the dispersion law is

E = aK2
⊥ + bK2

z ± hKz ± αK⊥; (16)

in Eq. (16) the non-relativistic terms up to the quadratic and the relativistic terms up
to the linear terms in K are taken into account.

For the levels originating from A5 and A6, the dispersion law takes the form

E = ±ε ± hKz. (17)

This takes into account only nonrelativistic terms proportional to K and K-independent
nonrelativistic terms; each of the levels is doubly degenerate in this approximation.
Thus, from two mutually degenerate levels A5 and A6 two fourfold degenerate levels (A6

7
– A5

8 and A6
9 – A5

9) arise.
Let us pass to the consideration of the dispersion law in the vicinity of the vertical

edges of the Brillouin zone. In the absence of spin-orbit interaction, the points P1 and
P2 are potential zero-slope points. If we choose the basis spinors as ψi1 = fiα and
ψi2 = fiβ (i = 1, 2), the secular equation (including the terms ∼ K3 and K2/c2) takes
the form ∣∣∣∣ −λ i(α + βKz)K− + iγK2

+

−i(α + βKz)K+ − iγK2
− −λ

∣∣∣∣ = 0, (18a)

E = λ + (a + dKz)K2
⊥ + (b + gKz)K2

z + hKz + l(K3
+ + K3

−).

Solving it, we arrive at

E = (a + dKz)K2
⊥ + (b + gKz)K2

z + hKz + l(K3
+ + K3

−) ± |(α + βKz)K− + γK2
+|. (18b)

10



Let an extremum be located at the point P1 (P2) in the absence of spin-orbit inter-
action; at this point h = 0. If we restrict ourselves to the terms ∼ K2 and ∼ K/c2

in (18b), we arrive at a loop of extrema—a circle with a radius of |α/2a|. Introducing
the terms ∼ K3 and ∼ K2/c2 leads to the disintegration of the loop of extrema. Six
zero-slope points of E(K) are positioned on rays which make up the angles ϕn = πn/3
with the axis kx. Three of these points are extremal points, and the other three are sad-
dle points. These two groups of points are displaced to the opposite sides with respect
to the circle with a radius of |α/2a| by a distance ∼ c−4. The height of the barriers
separating them is of the order of ∼ c−6

At the points K1
6 and K2

6 , d = g = h = β = 0.
At P3 the slope always differs from zero [1] and for this reason an extremum cannot

be reached at this point. In the presence of spin-orbit interaction, the secular equation
takes the form ∣∣∣∣∣∣∣∣

ε − λ 0 pK− 0
0 ε − λ 0 pK+

pK+ 0 −ε − λ iα
0 pK− −iα −ε − λ

∣∣∣∣∣∣∣∣
= 0, (19)

with E = λ + (aK2
⊥ + bK2

z + dKz). In Eq. (19) the non-relativistic terms proportional
to K and K-independent relativistic terms are taken into account. The basis is chosen
as in the secular equation (11). Expanding Eq. (19) and restricting in the solutions to
a quadratic expansion in powers of K, we obtain

E1 = E2 = aK2
⊥ + bK2

z + dKz + ε +
p2K2

⊥
2ε − α

,

E3,4 = aK2
⊥ + bK2

z + dKz − ε ± α − p2K2
⊥

2ε ∓ α
. (20)

We note that, according to Eq. (20), the curvature of the parabolas E(K⊥) is of the
order ∼ c2.

At the point K3, d = 0.
The functions f1 and f2, which transform according the representations H1 and H2,

are mutually degenerate and can be chosen as f2 = {δ2| t0
2 }f̄1 because they belong to

the case b with respect to time reversal symmetry. Let us choose functions f31 and f32

transforming according to H3 in such a way that they transform as (x+ iy) exp (πiz/t0)
and (x − iy) exp (πiz/t0) under the operations of the wave vector group. Since H3

pertains to the case c, the phase can be chosen in such a way that ψ2 = {δ2| t0
2 }ψ̄1.

At H1 and H2 the slope differs from zero. For the corresponding states, let us select
ψ0

11 = f1α, ψ0
12 = f1β, ψ0

21 = f2α, and ψ0
22 = f2β as the basis spinors. Then we arrive at

the following secular equation, including the terms ∼ K2 and ∼ K/c2

∣∣∣∣∣∣∣∣
dKz − λ iαK+ ε 0
−iαK− dKz − λ 0 −ε

ε 0 −dKz − λ iαK+

0 −ε̄ −iαK− −dKz − λ

∣∣∣∣∣∣∣∣
= 0; (21)

here E = λ + (aK2
⊥ + bK2

z ). It reduces to a biquadratic equation. At K = 0 the roots
E = ±|ε| of Eq. (21) are doubly degenerate and belong to the representation H6. The
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dispersion law is

E = aK2
⊥ + bK2

z ± (d2K2
z + |ε|2 + α2K2

⊥ ± 2αdK⊥Kz)1/2. (22)

As is seen from Eq. (22), and in accordance with the general requirements of symmetry,
the double degeneracy persists at the edge P (K⊥ = 0) and in the plane kz = π/t0
(Kz = 0) and is lifted in all other directions.

The point H3 is a point of zero slope. Let us select the spinors ψ0
31 = f32α, ψ0

32 = f31β,
ψ0

33 = f31α, ψ0
34 = f32β as the basis spinors for the levels arising from H3. Then we

arrive at the following secular equation, including the terms of ∼ K2/c2:∣∣∣∣∣∣∣∣
θ − λ iβKzK+ fKzK− + iμK− + iρK2

+ iγK− + δKzK− + iνK2
+

−iβKzK− θ − λ −iγK+ − δKzK+ − iνK2
− fKzK+ + iμK+ + iρK2

−
fKzK+ − iμK+ − iρK2

− iγK− − δKzK− + iνK2
+ −θ − λ iαKz

−iγK+ + δKzK+ − iνK2
− fKzK− − iμK− − iρK2

+ −iαKz −θ − λ

∣∣∣∣∣∣∣∣
= 0,

(23)
here E = λ + aK2

⊥ + bK2
z , θ = ε + τK2

⊥ + ηK2
z . Expanding Eq. (23), we find:

λ4 − (2θ + A1)λ2 + (2θA2 + A3)λ + θ4 + θ2A4 + θA5 + A6 = 0, (24)

where

A1 = (α2 + β2K2
⊥)K2

z + 2f 2K2
zK

2
⊥

+2[(μ2 + γ2)K2
⊥ + (ρ2 + ν2)K4

⊥ + (ρμ + νγ)(K3
+ + K3

−) + δ2K2
zK

2
⊥],

A2 = (α2 − β2K2
⊥)K2

z ,

A3 = −2αK2
z [2(γf − δμ)K2

⊥ + (νf − δρ)(K3
+ + K3

−)]
−2βK2

z [(γf − δμ)(K3
+ + K3

−) + 2(νf − δρ)K4
⊥],

A4 = 2f 2K2
zK

2
⊥ − (α2 + β2K2

⊥)K2
z

+2[(μ2 + γ2)K2
⊥ + (μρ + γν)(K3

+ + K3
−) + (ρ2 + ν2)K4

⊥ + δ2K2
zK

2
⊥],

A5 = 2αK2
z [2(γf − δμ)K2

⊥ + (νf − δρ)(K3
+ + K3

−)
−2βK2

z (γf − δμ)(K3
+ + K3

−) + 2(νf − δρ)K4
⊥],

A6 = −αβKz[(γ2 + ν2K2
⊥ + δ2K2

z )(K3
+ + K3

−) + 4γνK4
⊥]

−αβK2
z [(μ2 + ρ2K2

⊥ + f 2K2
z )(K3

+ + K3
−) + 4μρK4

⊥]
+α2β2K4

zK
2
⊥ + |(μK− + ρK2

+)2 + f 2K2
zK

2
⊥|2 + |(γK− + νK2

+)2 + δ2K2
zK

2
⊥|2

+2 Re{(fKzK− + iμK− + iρK2
+)(fKzK+ + iμK+ + iρK2

−)
×(δKzK− − iγK− − iνK2

+)(δKzK+ − iγK+ − iνK2
−)}. (25)

Solving Eq. (24) approximately, we arrive at

E1,2 = aK2
⊥ + bK2

z − ε ± αKz, (26a)

E3,4 = aK2
⊥ + bK2

z + ε +
(

τ +
γ2 + μ2

2ε

)
K2

⊥ + ηK2
z ± βKzK⊥. (26b)

In Eq. (26a) the terms of the order ∼ K2 and ∼ K/c2 are taken into account, and in
Eq. (26b) the terms of the order ∼ K2 and ∼ K2/c2 are accounted for.

The roots E1 and E2 belong to the representations H4 and H5, whereas E3 and E4

belong to the representation H6. Let the extremum be reached at H3 in the nonrel-
ativistic approximation. Then, within the accuracy of Eq. (26), the constant energy
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surfaces for E1 and E2 of Eq. (26a) are ellipsoids of revolution around the kz axis; they
are displaced along the axis kz in the opposite directions by |α/2b|. The constant energy
surfaces for E3 and E4 are fourth-order self-intersecting surfaces. Each of them is ob-
tained by rotating an ellipse around the kz axis, where one of the ellipse’s axes is almost
parallel to kz and makes a small angle ϕ0 � 1

2 arctan |β/(a− b)| with it. In a reasonable
approximation this angle can be neglected and one can assume E3 � E4. Hence, in
this case the spin-orbit interaction simplifies the dispersion law in close vicinity of the
extrema. If the spin-orbit splitting is of the order of 0.01 − 0.1 eV, then the angular
dependencies of various effects will be comparatively simple at low temperatures and
may be interpreted in terms of elliptical constant energy surfaces. On the other hand,
at high temperatures the angular dependencies are expected to show more complexities
and must be interpreted in the framework of the dispersion law of Eq. (26) of Ref. [1].

With spin-orbit interaction disregarded, time reversal symmetry results in a double
degeneracy in all points of the general position G in the kz = π/t0 plane, while the
eigenfunctions f1 and f2 can always be chosen in such a way that f2 = {δ2| t0

2 }f̄1. The
secular equation has the form∣∣∣∣∣∣∣∣

γ + dKz − λ α − iβ δ + gKz 0
α + iβ −γ + dKz − λ 0 −δ + gKz

δ̄ + ḡKz 0 −γ − dKz − λ α − iβ
0 −δ̄ + ḡKz α + iβ γ − dKz − λ

∣∣∣∣∣∣∣∣
= 0, (27)

where E = λ + aKx + bKy. Eq. (27) accounts for K-independent relativistic terms
and non-relativistic terms proportional to K; the basis is chosen in the same way as in
Eq. (21). Expanding Eq. (27), we arrive at a biquadratic equation with the roots

λ2 = [α2 +β2 +γ2 + |δ|2]+(d2 + |g|)2)K2
z ∓Kz

√
[2γd + δḡ + δ̄g]2 + 4(α2 + β2)(d2 + |g|2).

(28)
The dispersion law in the vicinity of the points R, S (S ′), and L can be obtained

from Eq. (28) by setting some parameters equal to zero, namely:

Point R: a = β = γ = δ = 0, (29a)
Point S (S ′): b = g = α = 0, (29b)

Point L: a = b = g = α = β = γ = δ = 0. (29c)

As is seen from Eqs. (28) and (29), a zero slope in the points G, R, S (S ′), and L is
“vanishingly improbable”.

At a point of the general position N in the kz = 0 plane, it is possible to choose
f̄ = {δ2| t0

2 }f , and the roots of the secular equation are

E = aK2
x + bK2

y + dKxKy + fK2
z + gKx + hKy ±

√
α2K2

z + |ε + βKx + γKy|2; (30)

generally, the coefficients ε, β and γ are complex numbers. If in the absence of spin-orbit
interaction the extremum is reached in the kz = 0 plane, it will stay in this plane for
both roots of Eq. (30).
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The dispersion law in the vicinity of the points Σ, T (T ′), and M can be obtained
from Eq. (30) by setting a number of parameters equal to zero

Point Σ: d = g = α = 0, ε = ε̄, β = −β̄, γ = γ̄, (31a)
Point T (T ′): d = h = α = 0, ε = −ε̄, β = −β̄, γ = γ̄, (31b)

Point M : d = g = h = α = ε = 0, β = −β̄, γ = γ̄. (31c)

According to Eqs. (30), (31a), and (31b), if disregarding the spin-orbit interaction
the extremum is reached on the axis Σ or T (T ′), then the extrema of both surfaces of
Eq. (30) will stay on this very axis. If the extremum is reached at the point M , which
becomes non-analytical when spin-orbit interaction is taken into account, the extremum
is displaced from this point. Then, a pair of zero-slope points arises at each of the axes
Σ and T , one pair being extrema and the second saddle points.

Near the points F and B, respectively, we arrive at the following dispersion laws

E = aK2
x + bK2

y + dKyKz + fK2
z + gKy + hKz ±

√
|α|2K2

x + (ε + βKy + γKz)2, (32)

E = aK2
x + bK2

y + dKxKz + fK2
z + gKx + hKz ±

√
|α|2K2

y + (ε + βKx + γKz)2. (33)

In both these cases, the extrema stay in the symmetry planes.
The dispersion law at the point U reads

E = aK2
x + bK2

y + fK2
z + hKz ±

√
α2K2

x + β2K2
y . (34)

If h = 0, Eq. (34) turns into the dispersion law for the point M .

Appendix

The formulae of Sec. 2 allow finding the expansion of E in powers of K which is valid in a
relatively wide range of energies, broadly similar to the expansion range in the problem
without spin-orbit interaction. This range may significantly exceed the magnitude of
the spin-orbit interaction.

In a number of cases, for strong spin-orbit interaction, it is sufficient to obtain an
expansion that is valid in close vicinity of the extremum. In this case the equations can
be simplified.

Let us expand a reducible representation spanned by spinors ψ0
ns into irreducible

representations which we presume to be nonequivalent. Let ψ0
nλr be spinors forming a

basis of an irreducible representation. Let us choose this set of spinors for the class (A)
of functions in the sense of Ref. [8]. Then the secular equation takes the form

Det ‖Unλr,nλs − Eδrs‖ = 0, (A.1)

where

Unλr,nλs =

(
4∑

i=1

Vi

)
nλr,nλs

+ (V12)nλr,nλs + (V22)nλr,nλs + (V24)nλr,nλs + (V122)nλr,nλs + . . .

(A.2)
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Matrix elements of the operators Vij (ij = 12, 22, 24) and V122 are defined by formulae
similar to Eqs. (7) and (8). However, in the current case the summation over interme-
diate states is performed over all eigenfunctions of the unperturbed Hamiltonian except
the spinors ψ0

nλs with the same value of λ, in particular, over the spinors ψ0
nμs with

μ 
= λ. Thus the terms of the order ∼ c−2 may appear in the denominators. When
deriving Eq. (A.2) the contributions of the order c0 and c−2 were included in the terms
linear in K and the contributions of the order c2 and c0 in the terms quadratic in K.
Formulae for higher-order terms of the expansion can easily be written out.

The significant difference between Eq. (A.2) and Eq. (6) must be emphasized. In
Eq. (A.2) the matrix elements V24 and V122 are generally of zeroth order in the pa-
rameter c−2 as a consequence of the appearance of small denominators (∼ c−2). In
the terms of higher orders in K the large parameter c2 appears in increasing powers
which significantly affects the convergence of the expansion. Furthermore, the formulae
for the coefficients at higher powers of K become cumbersome. For this reason, in the
cases when the representation formed by the spinors ψ0

ns is reducible, using the formulae
(A.1)–(A.2) is expedient and makes the calculation significantly easier (due to the lower
order of the secular equation) if it is possible to keep only a small number of terms of
the expansion. For example, this is the case when analyzing the displacement of the
extremum from an element of symmetry due to the spin-orbit interaction, by taking into
account the non-relativistic quadratic terms and relativistic K-linear terms. In other
cases using the formulae of Sec. 2 is more convenient.

Note added in proof. We have become aware that Kane (E. O. Kane, J. Phys. Chem.
Solids, 1, 249, 1957; 8, 38, 1959), when calculating the shape of the valence band of
InSb, took into account the perturbation operator corresponding to our V12. However,
because Kane considered only one specific case in which V12 results only in a numerical
change in the parameters, he has not established that the term V12 can change the
dispersion law qualitatively.
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