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Designing Self=Timed 
Devices Using the Finite 

Automaton Model 

&YNCHRONOUS SYSTEMS of- 
fer many advantages in terms of 
performance and power. Design- 
ing them, however, is essentially 
an art (see the Designers as artists 
box), and the quality of the final 
circuit implementation depends 
greatly on the designer’s skill. Our 
research, therefore, defines a pro- 
cedure that reliably accomplishes 
the routine work associated with 
designing one class of asynchro- 
nous systems, self-timed devices. 
We do not intend to take the de- 
signer out of the design process; 
rather, our procedure frees a de- 
signer to review more possibilities. 

Our procedure synthesizes a self- 
timed device with external inputs 
from a finite Mealy automaton 
specification. We chose to use that 
specification and a two-register 
structure with master-slave flip- 
flops for two reasons: 

Representing behavior specifica- 
tions in finite automata language 
is widespread and supported by 
many CAD systems. It also has a 
good theoretical and practical 
basis. 
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The authors suggest a procedure 
for designing a self-timed device 
defined by the finite automaton 
model. This procedure proves 
useful when designing these 
devices using the available 

synchronous behavior 
specifications. They illustrate the 

effectiveness of their procedure by 
applying it to the design of a stack 

memory and constant 
acknowledgement delay counter. 

w As we will show, the Mealy au- 
tomaton’s self-timed realization 
with a two-register structure has a 
simple and evident solution. For 
the given examples, it possesses a 
complexity close to that of the syn- 
chronous realizations. 

One reason preventing wide use 
of the conventional asynchronous 
approach is the necessity of anti- 
race coding, which causes major 
complications in an implementa- 
tion. In this sense, self-timed real- 
izations take the middle position 
between synchronous and asyn- 
chronous ones. The inputs and out- 
puts of self-timed circuits usually 
have a two-phase behavior (code- 
spacercode, . . .)’ and a four-phase 
interface with the environment 
(requestcode-acknowledgement- 
spacer-request, . . .). These charac- 
teristics of the inputs and outputs, 
in fact, organize synchronous b e  
havior and therefore allow specifi- 
cation in synchronous finite 
automata language. However, the 
problem of obtaining correct cir- 
cuit behavior (eliminating races, 
for example) stays outside the 
specification. Proper transitioning 

of the specification to the realization 
structure guarantees gatedelay insen- 
sitive behavior and provides the correct 
circuit behavior. 

Such an approach is not a method- 
ological novelty. This article illustrates 
its particular application to a situation 
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that often arises when designing self- 
timed devices using the available 
synchronousprototype behavior spec- 
ification. For asummary of the research 
supporting this approach, see the 
Bac“kground box (next page). 

Specification problems 
We must first derive the device be- 

havior specification. This process is in- 
formal and produces varying results. In 
addition, a specification of minimal 
complexity doesn’t guarantee minimal 
implementation complexity. Changing 
input specifications, however, achieves 
a more significant improvement in cir- 
cuit solution quality than perfecting for- 
mal synthesis procedures. (Of course, 
this doesn’t mean that these procedures 
need not be perfected.) 

We chose to present input speeifi- 
cations for formal methods as change 
diagrams that are extensions of signal 
graphs. Only a c m c t  change diagram 
has a self-timed implementation. To 
achieve correctness, we might change 
the initial specification, for example, 
by inserting extra intermediate signals. 
Then we proceed from the correct 
change diagram to Muller’s diagram, a 
special state graph. From the set of 
states in this graph, we obtain truth ta- 
bles for signal functions and derive 
Muller’s circuit. Reasonable insertion 
of intermediate signals into the initial 
specification often leads to a significant 
simplification of Muller’s circuit. Re- 
searchers have studied inserting such 
signals automatically, but we do not 
consider their algorithms satisfactory. 

To construct a change diagram spec- 
ification of a device, we must at least 
know its input and output signals. For 
example, in the case of a control unit co 
ordinating the interaction between asyn- 
chronous, concurrent processes, we 
know beforehand the signals initiating 
processes and the Acknowledge signals. 
For this case we can rather easily derive 
a change diagram description of the au- 
tonomous system (consisting of the con- 

trol unit and the controlled processes) 

Designers as artists 

Despite successes of theory and CAD developments, logic design is still an art 
and will apparently remain so for a long time. Many designers and researchers 
understand this fact perfectly, as confirmed by the frequent appearance of bril- 
liant, new circuit solutions in various articles and patents. The authors of one 
book state 

Different fypes of support are needed during each step or phase. For exam- 
ple, during formulation and generation, designers tend to be “artist,” while 
during evaluation and selection, designers are “analyst.” The artist versus an- 
alyst distinction has clear and important implications for how the structure and 
flexibility of the support should vary across design phases.’ 

Designers usually display their skills in a fortuitous choice of a basic struc- 
ture within which thy derive the device behavior specification, It is difficult, 
however, to optimize a specification, and vague optimization criteria often com- 
pound the difficulties, 

Unfortunately, no regular way exists to connect the initial structure (within 
which designers seek a solution) directly to the expectd result. Experience shows 
that different devices are easier to design using certain structures. Currently, 
designers merely search among the various structures and specifications. Our 
god is to develop a design procedure that starts with Mealy’s finite-avtomaton 
specification. 

Design procedure 
functioning where these signals repre 
sent asynchronous processes. In such a 
system, inserting intermediate signals to 
simplify realization of the control unit is 
the problem. 

More difficult specification problems 
arise if 1) device input and output signals 
are not defined beforehand, and 2) a 
deterministic model cannot describe en- 
vironmental behavior. In the first case, 
the designer can design a preliminary 
device structure as a basis for choosing 
signals necessary for the specification. 
The second case requires either insert- 
ing a vertex of free choice into the mod- 
el and modernizing the formal method, 
or “unwinding” the specification 
(linearization). 

Our procedure, then, intends to ob- 
tain a correct change diagram specifi- 
cation from a finite automaton model. 
Although self-timed devices are asyn- 
chronous automata, we will not use 
asynchronous automaton models to d e  
fine them. This is because these mod- 
elssolve problems like antirace coding 
of internal states and hazard-free im- 
plementation of logic functions. A self- 
timed device’s main design problem is 
fixation of transient process completion 
moments in its circuit. The circuit cer- 
tainly must be free of races and hazards, 
too, but fighting them is an attendant 
problem. Global methods handle races 
and hazards. They also often lead to bet- 
ter circuit solutions than that of special 
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Background 

A nonautonomous automaton must 
ir;teradwithanenvironmentw+lichforms 
admissible input sequences for it and 
senses its processing results. For a sys- 
tem comprising a finite automaton and 
its environment, three structural models 
reflect various approaches to timing or- 
ganization: synchronous, asynchronous, 
and matched. We are interested in the 
matched model in which environment 
forms an automaton work step, and the 
automaton forms o step of the environ- 
ment work. 

The matched model uses a handshake 
method as its basic mechanism. In gen- 
eral, a request denotes change of the in- 
put state, and an acknowledgement 
denotes change of the output state. Since 
we use code for automaton inputs and 
outputs, it would be more correct to say 
"change of a class of input or output 
States." 

We define a self-timed automaton as 
a matched automaton in which a change 
in an output-state class finishes the tran- 
sition caused by a change in an input- 
state class. This occurs irrespective of 
delays in the elements constructing the 
automaton. 

This definition is  not formal and 
emphasizes only that a self-timed au- 
tomaton must correctly perform the au- 
tomaton conversion under any ratio of 
delays of its dements. This requirement 
is  feasible when using special coding 
systems and restrictions on the charac- 
teristic of delays in elements and wires. 

The following Muller's hypothesis of 
delay characteristics conforms well to 
practice: 1 ) delays can be both inertial 
and pure; 2) delays in elements and 
Dieces of wires from an element oubut 
Lp to a fork can be of any finite vahe; 

and 3) wires after a fork have a skew in 
delay values not more k n  the minimum 
delay of an element. In general, design- 
ers use self-synchronized code systems 
to code the input, output, and internal 
states of on automaton. 

Our earlier work proved the possibil- 
ity of designing a self-timed implemen- 
tation of an arbitrary finite automaton 
consisting of a combinational circuit and 
memory elements. We also developed 
methods to synthesize self-timed au- 
tomata from electric-potential elements. 
To do this, we use methods and p m -  
dures designing self-timed realizations 
of Boolean function systems, m r y  el- 
ements, and the circuits signaling transi- 
tion processes completion in those 
elements. 

To create formal methods of self-timed 
circuit synthesis, we need formal mod- 
els. These models must reflect possible 
work concurrency and interaction asyn- 
chronism between different parts of the 
device. In this case, unfortunately, a fi- 
nite automaton model representing a se- 
quential machine is  useless. 

Known formal methods of self-timed 
device synthesis use dynamic models for 
specifying parallel asynchronous pro- 
cesses in circuits. These models include 
Muller's diagrams,' signal graphs, and 
change diagrams.2 Synthesis methods 
based on such models work well for de- 
signing autonomous devices. When syn- 
thesizing devices with external inputs 
and outputs, the specification-simulating 
environment behavior must complement 
the general device behavior specifica- 
tion. This insertion usually requires "spec- 
ification linearization,"2 a multiple 
unwinding of the general specification 
that significantly complicates both the 

methods developed within the theory 
of asynchronous automata. 

We use the classic finite Mealy au- 

tomaton model for designing a self-timed 
device. The transition graph, shown in 
Figure 1, presents such an automaton. 

specification procedure and synthesis. 
Also, some research derives the general 
specification ofthe "&ce-envimment" 
system using vertices of free choice3 
rather than linearization. 

ontheolherhad,thew$l-deveioped 
and widely used language of finite au- 
twnato dlaws simple determinution ofthe 
required device-environment interaction 
behavior. The idea of joining the odvan- 
iuges of cardully d i e d  finiie-autmaton 
models with methods of dktimed struc- 
ture specification and synthesis, while 
desirable, is  not original. We began in- 
vestigating self-timed structures ex& 
frwn such models. Several studies using 
finite automaton models to design self- 
timed devices eXist.3A 
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In this graph, S, and S, belong to the 
set of internal states;X,and yi belong to 
the sets of input and output characters. 
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The pair XJY ,  marks each arc leading 
from one state to another. The automa- 
ton passes from state Si to state S, under 
the influence of input X, producing out- 

Let us consider only those automata 
in which each internal state is attain- 
able from any other state, that is, those 
with connected transition graphs. This 
restriction is not excessive, because, 
first, connected automata are of the 
greatest interest. Second, any uncon- 
nected graph can always be converted 
to a connected one by using dummy in- 
put and output characters. 

Our procedure for designing a self- 
timed device consists of the following 
steps: 

put 6. 

1. choice of a standard self-timed re- 
alization for a finite automaton 

2. reduction of an automaton transi- 
tion graph to a simple cycle graph 

3. construction of a change diagram 
device specification 

4. application of formal methods to 
the change diagram to obtain 
Muller’s circuit for output and 
memory element excitation 
signals 

Standard automaton realization. 
Step 1 defines the automaton structural 
scheme; the rules governing its interac- 
tion with the environment; coding input, 
output, and internal-state characters; 
and the memory element structure. 
Only logic functions of the allotted sig- 
nal stay undefined. Now we can define 
the partial order of signal change for the 
signal sets representing the automaton’s 
inputs and outputs as well as the mem- 
ory element signals. However, the envi- 
ronment’s nondeterministic behavior (it 
chooses the next input set in an un- 
known way) is a problem. 

Two studies’J propose canonical ap- 
proaches that allow us to simplify the 
synthesis procedure. Using them, we 
obtain standard realization circuits. The 
memory element determines the type 

of standard realization. Standard real- 
izations use irredundant coding of 
automaton internal states, unlike asyn- 
chronous automata, which use antirace 
coding. A standard realization contains 
a combinational circuit, parallel regis- 
ter, and perhaps, an indicator of tran- 
sient process completion moments. D 
flip-flops with two-rail inputs or T flip- 
flops form the register. In this article, we 
use a memory element of two master- 
slave RS flip-flops. 

Special design methods, as well as 
proper information coding, provide in- 
variability of circuit behavior from 
element time parameters. Such code 
systems are selfsynchronized. For self- 
synchronized codes, set B appearing at 
the output indicates the completion of a 
transition from set A to set B. Self- 
synchronized codes are a universal and 
unique tool for fighting functional 
hazards. 

Asynchronous automata theory usu- 
ally uses neighbor or quasi-neighbor 
coding methods. Such coding systems 
can be treated as single-phase self- 
synchronized codes that are overly re- 
dundant. They allow direct transition 
from one character to another. 

Those self-synchronized codes 
where every working character alter- 
nates with an empty one (spacer) are 
more convenient. Note that using such 
sequences removes the restriction pe- 
culiar to asynchronous automata that 
no character can follow itself. A work- 
ing input character initiates the active 
phase of the device work; the spacer ini- 
tiates the passive phase. The self- 
synchronized code of such sequences 
are twophase. 

The most commonly used twophase, 
selfsynchronized codes are equal- 
weight codes and codes having an iden- 
tifier (Berger’s codes). These are the 
basis of all other selfsynchronized code 
systems. We prefer equal-weight codes 
consisting of sets with a fixed number of 
ones. An example is two-rail code that 
represents each information bit by two 

Figure 1. Mealy automaton transition 
graph. 

binary variables representing the active 
phase contrary values. Spacers are sets 
consisting either of all zeroes or all ones. 
Optimum equal-weight code (Spemer‘s 
code) has the least redundancy. Its sets 
of length m contain ml2 ones. 

In standard realizations, we usually 
use two-phase self-synchronized code 
systems for input and output states. 
That system defines the automaton- 
environment interaction. The automa- 
ton replies to a working set with a work- 
ing set and to a spacer with a spacer; 
the environment replies to a spacer 
with a working set and to a working set 
with a spacer. It is also important to 
choose rules governing the interaction 
between different parts of the automa- 
ton structural diagram. We discuss this 
problem later. 

Reducing the automaton graph. In 
step 2, we unwind the automaton transi- 
tion graph into a simple cycle to change 
free choice of the next input characterto 
a deterministic choice. The unwound 
graph defines a sequence of input char- 
acters that causes all the possible transi- 
tions in the automaton and is a loop that 
must pass every arc at least once. This 
guarantees the definition of all possible 
transitions. In such an unwinding, some 
states can meet repeatedly. 

We can reduce a connected, orient- 
ed graph to a simple cycle in more than 
one way. We may wish to find its opti- 
mal unwinding; that is, the one con- 
taining a minimum number of vertices. 
The following is a possible algorithm for 
doing so: 

1. compile the set of possible simple 
cycles from the automata graph 
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.::::::;::_' 
Figure 2. Memory element based on two 
flip-flops. 

2. find all possible subsets of this set 
that cover all the arcs of the graph 

3. choose the subset with the mini- 
mum number of cycle vertices 

Any coverage of the graph is ade- 
quate for our purposes because all cov- 
erages define the same automaton; the 
optimal coverage simply reduces the 
subsequent work of the designer. 

A designer next reduces the automa- 
ton graph to a simple cycle graph by 

1. removing any two cycles contain- 
ing at least one common vertex 
from the coverage 

2. breaking both cycles by discon- 
necting the arc between the cho- 
sen common vertex and the 
destination, then connecting the 
broken cycles to form a new cycle 
and returning it to the coverage 

3. repeating this process until one cy- 
cle remains in the coverage 

This algorithm converges if the initial 
automaton graph is connected. 

Constructing change diagram 
specifications. After unwinding the 
transition graph, we construct a lin- 
earized change diagram specification 

tx, - ty, - 4 1  - -Y2 

txp - ty3 - -x, - -Y3 

(b) 

> c > c > c  @=.a 
(a) 

txl + -i?+ t r ,  --c ty, +-xl + ts, - 2, + -y2 

txq+  -r3 - t r  3-+ t y 3  + -xp - t s 3  - -s3 + -y3 
>C A > C  >c > c V  >c 

(e) 

Figure 3. Possible transitions in the unwound automaton graph and heir 
representation by signal graphs: no state change (a), partial order of signal change 
[b), state change (c), successive subtransitions {ti), and a signal change order (e). 

of the device on the allotted signal set. 
The standard realization type deter- 
mines the way we construct it. 

Two flipflops with heteropolar con- 
trol represent every variable coding in- 
ternal state of the automaton. Figure 2 
shows a possible circuit of such a mem- 
ory element. It contains four AND-NOR 
gates with output signalss,$ and r,!. The 
same characters indicate both the gate 
outputs and signals. The gates form two 
simple RS (s,$) and i?x (r,!) flip-flops 
working as masterslave. A RS flip-flop 
changes its state through transit state 
(0,O) and a flipflop changes its state 
through (1,l). The signs * and " mark 
the inverted outputs of the flip-flops. 

Set signals S and R are the external 
inputs of both flipflops. Figure 2 shows 
the memory element initial state that 
corresponds to keeping the value of 
zero. The value one is written into a 
memory element in two phases. In the 
first phase, signal S = 1 switches the left 
flip-flop; in the second phase, when S = 
0, information moves from the left flip 
flop to the right. Double change of sig- 
nal R writes zero in the same way. 

To construct the standard realization 
of an automaton we must code input, 
output, and intemalstate characters. Let 
two-phase, equal-weight, selfsynchro- 
nizing codes represent input and output 
characters. This establishes the rules of 

interaction between the automaton and 
the environment. We use binary code 
to represent the internal states. 

After coding, we must define the 
rules of interaction between different 
parts of the automaton structural 
scheme. After that we can derive the 
change diagram specification. Let us ac- 
cept the following rules: 

1. Every transition executes in two 
phases. The first phase starts with a 
set of self-synchronizing code at 
the automaton input and finishes 
when a set of code appears at the 
output. The second phase starts 
with a spacer at the input and fin- 
ishes when a spacer appears at the 
output. 

2. If  the transition does not cause a 
change of state, then the input sig- 
nals are the immediate cause of 
output signal changes. Figure 3a 
shows such a transition. 

3. We break an automaton transition 
from one state to another (Figure 
3c) into two successive subtransi- 
tions. 

Figure 3d shows the subtransitions. 
Automaton states Si and S, correspond 
to states MSi and Msj of its memory ele 
ment master flip-flop. MS, changes to 
M q  through intermediate state Ssj rep 
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resented by the memory element slave 
flipflop. A selfsynchronizing code set 
at the automaton input initiates the first 
transition phase and causes switching 
of the necessary number of slave flip- 
flops. This leads to the appearance of a 
self-synchronizing code set at the out- 
put indicating phase completion. In the 
second phase, when the spacer appears 
at the input, the spacer writes the slave 
flipflop states into the master flipflops. 
After this, the spacer appears at the out- 
puts of the automaton, indicating sec- 
ond phase completion. 

Let us code the input and output 
characterj of the automaton so that vari- 
ablesx, andx, of setX,, andvariablesy, 
and y3 of set V,  have the value one, and 
the spacers include only zeroes. Then 
a transition like the one shown in Figure 
3a corresponds to the partial order of 
signal change in Figure 3b. 

Assume the codes of states Si and Si 
differ in variables s, and s3 and in state Si 
(s, = 0 and s, = 1). Then by coding char- 
actersX, and F in  the same way we can 
easily represent the transition of Figure 
3c by the signal change order in Figure 
3e. Note that this graph has no flipflop 
excitement signals. During synthesis, we 
will build excitement functions into the 
flipflop gates. Such an approach allows 
the synthesis system to derive the nec- 
essary types of flip-flops (RS, D, or 13. 

We thus construct the signal change 
orders for every transition of the au- 
tomaton graph unwound to asimple cy- 
cle. After defining the initial marking, 
we obtain the signal graph specification 
for the device. 

We emphasize that the specifications 
obtained from different unwindings of 
an automaton graph, when processed 
by the synthesis procedure, must lead 
to the same result. We can strictly prove 
this statement. 

Self-timed stack memory 
As an example, we first applied our 

procedure to the design of a self-timed 
stack memory. Several approaches ex- 

st for designing this kind of memory; 
ye divide them into two basic classes: 
egister structures and memory-based 
,tack. Studies of self-timed stack design 
isually consider register structures? We 
vi11 consider the second approach. 

In a usual CMOS static-memory array 
with two-rail representation of the data 
lath, sufficiently simple tools indicate 
,cad-operation completion. The main 
lroblem is indicating write-operation 
:ompletion. We solved this problem4 
y breaking the write process into two 
lhases: reading information and rewrit- 
ng it. Memory detects rewrite comple- 
ion by checking whether the code 
ieing written coincides with the code 
n the data path of the read. The details 
If self-timed memory organization and 
jesigning the control circuits are out- 
;ide this article’s scope. 

Figure 4 presents the stack structure. 
t contains a self-timed memory array, 
;tack pointer, and control unit. Signals 
i and W initiate read and write opera- 
ions. They first enter the self-timed 
memory array and control unit to de- 
.ermine the stack pointer work mode. 
4ck is the signal that acknowledges op- 
?ration completion to the environment. 
4dr is the set of address signals coming 
io the memory array from the stack 
pointer. Adr initiates the memory work, 
while R and W choose the mode. C is 
the set of control signals coming to the 
stack pointer from the control unit. 

The signal graph in Figure 5 de- 
scribes the rules governing stack block 
interactions. We indicate active and 
passive signal states by + and -. Extra 
signal 0 unites W and R making them 
indistinguishable. 

Our goal is to design the control unit. 
To d o  this, we must consider the stack 
pointer circuit, which produces mem- 
ory block addresses. 

Stack pointer. The stack pointer log- 
ic circuit should be simple because its 
complexity grows linearly with in- 
creasing stack size. We achieve thissim- 

1 Stack 11 Self-timed 
pointer Adr I memory 

arrav 
i tTclT m 

Data bus - 

W R Ack 

Figure 4. Stack structure. 

- t C -  tAdr  - tAck rto -Ack- -Adr- -C- - O J  

Figure 5. Rules governing stack block 
interactions. 

plicity by increasing the number of ex- 
ternal control signals and, hence, com- 
plicating the control circuit. 

Figure 6, next page, shows such a 
stack pointer circuit. It is based on a 
multistable flip-flop with multiphase 
control. Such a flipflop can come to sta- 
ble states with violations of strict alter- 
nation of low and high levels at the gate 
outputs. 

For example, in the sequence, ..., 
010100101 ..., neighborstate pair00 is 
a pointer. Compulsorily drawing the left 
gate of the pair 00 into state 1 (00- 10) 
shifts the pointer to the left. To shift the 
pointer to the right, we draw the right 
gate of the pair 00 into the state 1 
(00-01). Thus, there are two control 
signals necessary for shift control, for 
example, D and U. However, if we 
change any of these signals once, the 
pointer will move to one of the sides 
without stopping. 

To prevent a through shift of the 
pointer, we double the number of the 
control signals and divide them into 
even (De, U,) and odd (Dn, UJ, as in the 
circuit of Figure 6. The circuit keeps the 
pointer when all the control signals 
equal 1. If the pointer is on an even po- 
sition (corresponding to the two mid- 
dle gates of the circuit) then De = 0 shifts 
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fjgure 6. Stack pointer. 

w/u, 

Figure 7. Control unit automaton graph. 

it to the left odd position and U, = 0 to 
the right. The odd pointer positions in 
Figure 6 correspond to the two left and 
the two right gates. From these posi- 
tions, D,=Oshifts the pointer to the left, 
and U, = 0 shifts it to the right. 

The pointer position corresponds to 
the memory array address line. Signal 
A, = 1 chooses the ith address line. The 
stack pointer determines values of A, ac- 
cording to the pointer position and con- 
trol signal values. 

Control unit. This unit produces the 
stack pointer control signals using input 
signals Wand R. The definition of this 
automaton behavior should describe, 

in particular, the interaction between 
the stack and the environment. Stack 
pointer behavior determines stack be- 
havior. We represent it as follows: 

If a write operation precedesa write, 
U,= 0 shifts the pointer one position 
up from an even position. U, = 0 
shifts it one position up from an odd 
position. After this, the stack pointer 
produces the address signal. 
If a write operation precedes a 
read, pointer position does not 
change, and U, = 0 or Do = 0 pro- 
duces the address for an even po- 
sition; U, = 0 or De = 0 for an odd 
position. 
If a read operation precedes a 
read, De = 0 shifts the pointer one 
position down from an even posi- 
tion. Do = 0 shifts it  one position 
down from an odd position. The 
stack pointer then produces the 
address signal. 
If a read operation precedes a 
write, the pointer’s position does 
not change, and U, = 0 or Do = 0 
produces the address for an even 
position; U, = 0 or De = 0 for an odd 
position. 
U, = U, = D, = Do = 1 will reset the 
address signal. 

Using this description, we can easily 
represent the control unit by a Mealy 
automaton with the transition graph of 
Figure 7. The automaton states corre- 
spond to the following situations: 

WE-occurrence of a write by an 
even address 
WO-occurrence of a write by an 
odd address 
RE-occurrence of a read by an 
even address 
RO-occurrence of a read by an 
odd address 

To code four states, coding variables 
S, and S, suffice. Let variables, take val- 
ues from set (e,o} and variable S, take 
values from set {r,w}. Then, clearly, the 
coding of the automaton states is neigh- 
bor since only one variable value 
changes in every transition. Such 
coding simplifies the automaton 
realization. 

We set the output signals, shown at 
the arcs of the graph in Figure 7, so that 
every variable that codes internal states 
breaks its set into two nonoverlapping 
subsets. Choosing such output signals 
must simplify its logic functions. 

For synchronous automaton realiza- 
tion, the universal antirace method 
uses a two-register memory that divides 
the registers’ work in time. We find a 
similar approach useful for self-timed 
realization. For example, a pattern of 
self-synchronizing code appearing at 
the inputs triggers a write to the first reg- 
ister. A spacer at the input causes in- 
formation to move from the first register 
to the second. In some cases, the sec- 
ond register can contain a smaller num- 
ber of simple flip-flops than the first. 
When the information moves, it must 
be compressed. We use this case in our 
example. 

Let variable S, correspond to RS flip- 
flop Ye, Yo and variable S, to RS flipflop c, Y,. These two flip-flops form the first 
register. Since in every transition only 
one of these flip-flops changes its state, 
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the second register can consist of one 
flip-flop. Let it be flip-flop (Z,, 2,). 

Such automaton memory organiza- 
tion, together with coding input and 
output characters using two-phase self- 
synchronizing codes, provides rnonot- 
onic representations for all signal logic 
functions. In our case, the inputs and 
outputs are already coded, and we can 
easily check that these codes are two- 
phase and self-timed. We have thus de- 
signed the standard realization of the 
automaton defined by the transition 
graph of Figure 7. 

This graph reduces to a simple cycle 
graph rather easily. Two simple cycles, 
obtained by passing all the graph ver- 
tices clockwise and counterclockwise, 
cover all the graph arcs. We construct 
an unwinding of the graph from these 
two cycles. 

We derive the linearized specifica- 
tion, represented by the signal graph in 
Figure 8, by unwinding the graph of the 
automaton standard realization. Using 
this specification and formal synthesis 
methods, we obtain the following 
Muller’s circuit: 

Ye = Yo v wz, v Rz, 
Y, = Y, v w 
Yo = Ye v WZ, v RZ, 
Y, = Y, v R 
Z, = Z,R v Z,W v Z2UeD, 
Z, = Z,R v Z,W v Z,D,U, 

~ 

U, = Y,Z,Y, 
U. = Y,Z,Y, 

De = YoZ,Y, 
Do = YeZ2Y, 

Considering these derivations as logic 
functions of AND-NOR gates, we can 
draw the logic circuit of the control 
automaton. 

Modulo-2” counter with a 
constant response time 

Our second application example has 
many ~olutions.~.’ Each solution uses 
two basic elements of structural 
scheme realization: 

- -z2 - +De+ -zl + tz2 + -R + -De- -y4- -y3+ t R  

t R  + -y2 ty l  -Do + -R + tzl + -z2 + +Do 

w tw  - -y1 + ty2 4 -U, - -w + tz, 

tu,+ -zl - tz2 - -w - -U,- ty3 - -y4 - tw J L 

L t w  - -y4 4 +ys 4 -U, - -w + tz, - -z2 + +U, - 

L t R  - -y3 + ty4 + -Do -R + tz, 4 -z2 +Do- 

+De+ -Z1 + t Z 2 +  -R + -De- t Y 2 -  -YI+ +R* 

- +U,- -21 - tz2 - -w - -Uo- ty1- -y2- +w+ 

Figure 8. Control automaton signal graph. 

Ai -1 1- A, 

Figure 9. Modulo-2” counter stage. 

An arrangement of counter stages 
in a pipeline guaranteeing that the 
response time is independent of 
the number of stages 
A counter contains two intercon- 
nected asynchronous pipelines. 
Counting signals propagate in one; 
carry and overflow signals propa- 
gate in the other, but move in o p  
posite directions. 

Let us construct such a counter using 
these principles and our automaton ap- 
proach. In a modulo-2” counter, n is the 
number of stages. Let the ith counter 
stage be the black box shown in Figure 
9. It receives counting signals from the 
(i-1)th stage at input Ai and replies to 
them at output Q, if there is no over- 
flow, or at output Po if overflow occurs. 
The ith stage passes the counting signals 
to the (i+l)th stage through output A,; 
Acknowledge signals respond to these 
signals at inputs Qi or Pi, depending on 
the presence of overflow. The modulo- 
2“ counter consists of n such stages con- 
nected in series. The least significant 
stage interacts with the environment. 

~ 

(b) 

Figure 10. Transition graph of the 
modulo-T counter stuge (a) and unwind- 
ing of the graph (6j. 

Free inputs of the most significant stage 
meet the following boundary condi- 
tions: input Pi connects to output A, and 
constant zero feeds input QP 

A finite automaton with the graph 
shown in Figure 10a represents a 
counter stage. The automaton has in- 
ternal states So and SI that correspond 
to keeping the information bit values 0 
and 1. Signal Ai= 1, which is the analog 
of clock signal for the automaton, initi- 
ates every transition. Therefore, this sig- 
nal does not appear in the transition 
graph. The automaton passes from state 
So to state S, on any condition; on the 
corresponding transition arc the con- 
dition is marked 1 and the output sig- 
nals are Q, = 1 and A, = 1. The 
automaton allows the transition from& 
to So only when it receives input signal 
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+A, + -Yo + tY1- 4,- -A, ++Si + -So+ 4 -  +A, + -Y1 ++Yo 

.t \ +A, --t +Q, ,i-*i0 
-A, / 1  -A, 

-? /;”” -Q, - 1 

1 1  
-Q, +so 

t 

‘s“ -!I (il 1 
+p, e---- 

t 
+Yo+ -Yl+ +A, + -Q,+ -So+ +Si + -A,- tQ,+ tY1 -Yo+ t A ,  

Figure 1 1. Signal graph specification of the counter stage. 

Qi 

Pi 

-t. 

Figure 12. logic circuit of the counter stage. 

Qi= 1 or Pi=  1. Two arcsdepict this tran- 
sition since different output signals can 
be produced during it: Qo= 1 when Qi= 

1, and Po= 1 when Pi= 1. 
One coding variable S suffices to 

code two internal states. Let two simple 
flip-flops correspond to it. They are a 
slave flip-flop (Yo, Y,) with transit state 

00 and a master flip-flop (So, S,) with 
transit state 11. The inputs and the out- 
puts of the automaton are already cod- 
ed. We can easily check that for all 
transitions coming from any internal 
state the codes of the inputs and out- 
puts are self-timed and twephase. Thus, 
we have constructed a standard au- 

tomaton realization. 
Let us unwind the automaton graph 

to a simple cycle (Figure lob). Using 
this unwinding and the accepted stan- 
dard automaton realization, we derive 
the signal graph specification, shown in 
Figure 11. 

From this specification, formal meth- 
ods produce the following Muller‘s 
circuit: 

Note that in this circuit the functions 
of signals Q,, Po, and A, are self- 
depending, that is, they must be imple- 
mented as flip-flops madefrom a gate 
and an inverter. Signals Q, and E in 
function A, come from the gate outputs 
of the corresponding flip-flops. 

We can improve this solution by in- 
serting changes into the signal graph 
specification. For example, the modi- 
fied specification derived by removing 
two arrows, shown as dashed lines in 
Figure 11, provides simpler functions 
for Yl and A, 

Y, = Yo v Aisl 
A, =Po v YoSo v YoQo 

Other signal functions do not change. 
In this way, we can easily draw the 
counter stage logic circuit (Figure 12) 
from the Muller‘s circuit. 

We analyzed the performance of 
the counter circuit, measuring re- 
sponse time by the number of gates 
switched. That number equaled four 
for every change of the counting sig- 
nal and did not depend on the num- 
ber of stages. Our solution, then, does 
not exceed those already known in 
c~mplexity.~-’ 
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kKE ANY DESIGN PROCEDURE, O u r s  
contains both formal and informal 
steps. Choosing the specification lan- 
guage, behavior specification, and ba- 
sic structure is informal. Designers use 
theirexperience to make these choic- 
es. These choices, in turn, determine 
the quality of the solution. 

Transitioning the specification with- 
in a basic structure to a change diagram 
is a formal step. It allows us to obtain an 
self-timed implementation using well- 
known formal methods? The facilities 
used for formal synthesis determine s o  
lution quality. 

It is important to introduce the be- 
havior of the basicstructure gates into 
the change diagram. Starting our design 
procedure at the gate level increases 
the quality of the solution. This article's 
limited length does not allow us to de- 
scribe the details of this process. @ 
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