
S E L F - T I M E D D E V I C E S

Designing Self=Timed
Devices Using the Finite

Automaton Model

&YNCHRONOUS SYSTEMS of-
fer many advantages in terms of
performance and power. Design-
ing them, however, is essentially
an art (see the Designers as artists
box), and the quality of the final
circuit implementation depends
greatly on the designer’s skill. Our
research, therefore, defines a pro-
cedure that reliably accomplishes
the routine work associated with
designing one class of asynchro-
nous systems, self-timed devices.
We do not intend to take the de-
signer out of the design process;
rather, our procedure frees a de-
signer to review more possibilities.

Our procedure synthesizes a self-
timed device with external inputs
from a finite Mealy automaton
specification. We chose to use that
specification and a two-register
structure with master-slave flip-
flops for two reasons:

Representing behavior specifica-
tions in finite automata language
is widespread and supported by
many CAD systems. It also has a
good theoretical and practical
basis.

VICTOR I. VARSHAVSKY

VYACHESIAV B.

MARAKHOVSKY

VADlM V. SMOLENSKY

University of Aim

The authors suggest a procedure
for designing a self-timed device
defined by the finite automaton
model. This procedure proves
useful when designing these
devices using the available

synchronous behavior
specifications. They illustrate the

effectiveness of their procedure by
applying it to the design of a stack

memory and constant
acknowledgement delay counter.

w As we will show, the Mealy au-
tomaton’s self-timed realization
with a two-register structure has a
simple and evident solution. For
the given examples, it possesses a
complexity close to that of the syn-
chronous realizations.

One reason preventing wide use
of the conventional asynchronous
approach is the necessity of anti-
race coding, which causes major
complications in an implementa-
tion. In this sense, self-timed real-
izations take the middle position
between synchronous and asyn-
chronous ones. The inputs and out-
puts of self-timed circuits usually
have a two-phase behavior (code-
spacercode, . . .)’ and a four-phase
interface with the environment
(requestcode-acknowledgement-
spacer-request, . . .). These charac-
teristics of the inputs and outputs,
in fact, organize synchronous b e
havior and therefore allow specifi-
cation in synchronous finite
automata language. However, the
problem of obtaining correct cir-
cuit behavior (eliminating races,
for example) stays outside the
specification. Proper transitioning

of the specification to the realization
structure guarantees gatedelay insen-
sitive behavior and provides the correct
circuit behavior.

Such an approach is not a method-
ological novelty. This article illustrates
its particular application to a situation

14 0740-7475/95/$04.00 0 1995 IEEE IRE€ DRSION & TEST OF COMPUTERS

that often arises when designing self-
timed devices using the available
synchronousprototype behavior spec-
ification. For asummary of the research
supporting this approach, see the
Bac“kground box (next page).

Specification problems
We must first derive the device be-

havior specification. This process is in-
formal and produces varying results. In
addition, a specification of minimal
complexity doesn’t guarantee minimal
implementation complexity. Changing
input specifications, however, achieves
a more significant improvement in cir-
cuit solution quality than perfecting for-
mal synthesis procedures. (Of course,
this doesn’t mean that these procedures
need not be perfected.)

We chose to present input speeifi-
cations for formal methods as change
diagrams that are extensions of signal
graphs. Only a c m c t change diagram
has a self-timed implementation. To
achieve correctness, we might change
the initial specification, for example,
by inserting extra intermediate signals.
Then we proceed from the correct
change diagram to Muller’s diagram, a
special state graph. From the set of
states in this graph, we obtain truth ta-
bles for signal functions and derive
Muller’s circuit. Reasonable insertion
of intermediate signals into the initial
specification often leads to a significant
simplification of Muller’s circuit. Re-
searchers have studied inserting such
signals automatically, but we do not
consider their algorithms satisfactory.

To construct a change diagram spec-
ification of a device, we must at least
know its input and output signals. For
example, in the case of a control unit co
ordinating the interaction between asyn-
chronous, concurrent processes, we
know beforehand the signals initiating
processes and the Acknowledge signals.
For this case we can rather easily derive
a change diagram description of the au-
tonomous system (consisting of the con-

trol unit and the controlled processes)

Designers as artists

Despite successes of theory and CAD developments, logic design is still an art
and will apparently remain so for a long time. Many designers and researchers
understand this fact perfectly, as confirmed by the frequent appearance of bril-
liant, new circuit solutions in various articles and patents. The authors of one
book state

Different fypes of support are needed during each step or phase. For exam-
ple, during formulation and generation, designers tend to be “artist,” while
during evaluation and selection, designers are “analyst.” The artist versus an-
alyst distinction has clear and important implications for how the structure and
flexibility of the support should vary across design phases.’

Designers usually display their skills in a fortuitous choice of a basic struc-
ture within which thy derive the device behavior specification, It is difficult,
however, to optimize a specification, and vague optimization criteria often com-
pound the difficulties,

Unfortunately, no regular way exists to connect the initial structure (within
which designers seek a solution) directly to the expectd result. Experience shows
that different devices are easier to design using certain structures. Currently,
designers merely search among the various structures and specifications. Our
god is to develop a design procedure that starts with Mealy’s finite-avtomaton
specification.

Design procedure
functioning where these signals repre
sent asynchronous processes. In such a
system, inserting intermediate signals to
simplify realization of the control unit is
the problem.

More difficult specification problems
arise if 1) device input and output signals
are not defined beforehand, and 2) a
deterministic model cannot describe en-
vironmental behavior. In the first case,
the designer can design a preliminary
device structure as a basis for choosing
signals necessary for the specification.
The second case requires either insert-
ing a vertex of free choice into the mod-
el and modernizing the formal method,
or “unwinding” the specification
(linearization).

Our procedure, then, intends to ob-
tain a correct change diagram specifi-
cation from a finite automaton model.
Although self-timed devices are asyn-
chronous automata, we will not use
asynchronous automaton models to d e
fine them. This is because these mod-
elssolve problems like antirace coding
of internal states and hazard-free im-
plementation of logic functions. A self-
timed device’s main design problem is
fixation of transient process completion
moments in its circuit. The circuit cer-
tainly must be free of races and hazards,
too, but fighting them is an attendant
problem. Global methods handle races
and hazards. They also often lead to bet-
ter circuit solutions than that of special

S E L F - T I M E D D E V I C E S

Background

A nonautonomous automaton must
ir;teradwithanenvironmentw+lichforms
admissible input sequences for it and
senses its processing results. For a sys-
tem comprising a finite automaton and
its environment, three structural models
reflect various approaches to timing or-
ganization: synchronous, asynchronous,
and matched. We are interested in the
matched model in which environment
forms an automaton work step, and the
automaton forms o step of the environ-
ment work.

The matched model uses a handshake
method as its basic mechanism. In gen-
eral, a request denotes change of the in-
put state, and an acknowledgement
denotes change of the output state. Since
we use code for automaton inputs and
outputs, it would be more correct to say
"change of a class of input or output
States."

We define a self-timed automaton as
a matched automaton in which a change
in an output-state class finishes the tran-
sition caused by a change in an input-
state class. This occurs irrespective of
delays in the elements constructing the
automaton.

This definition is not formal and
emphasizes only that a self-timed au-
tomaton must correctly perform the au-
tomaton conversion under any ratio of
delays of its dements. This requirement
is feasible when using special coding
systems and restrictions on the charac-
teristic of delays in elements and wires.

The following Muller's hypothesis of
delay characteristics conforms well to
practice: 1) delays can be both inertial
and pure; 2) delays in elements and
Dieces of wires from an element oubut
Lp to a fork can be of any finite vahe;

and 3) wires after a fork have a skew in
delay values not more k n the minimum
delay of an element. In general, design-
ers use self-synchronized code systems
to code the input, output, and internal
states of on automaton.

Our earlier work proved the possibil-
ity of designing a self-timed implemen-
tation of an arbitrary finite automaton
consisting of a combinational circuit and
memory elements. We also developed
methods to synthesize self-timed au-
tomata from electric-potential elements.
To do this, we use methods and p m -
dures designing self-timed realizations
of Boolean function systems, m r y el-
ements, and the circuits signaling transi-
tion processes completion in those
elements.

To create formal methods of self-timed
circuit synthesis, we need formal mod-
els. These models must reflect possible
work concurrency and interaction asyn-
chronism between different parts of the
device. In this case, unfortunately, a fi-
nite automaton model representing a se-
quential machine is useless.

Known formal methods of self-timed
device synthesis use dynamic models for
specifying parallel asynchronous pro-
cesses in circuits. These models include
Muller's diagrams,' signal graphs, and
change diagrams.2 Synthesis methods
based on such models work well for de-
signing autonomous devices. When syn-
thesizing devices with external inputs
and outputs, the specification-simulating
environment behavior must complement
the general device behavior specifica-
tion. This insertion usually requires "spec-
ification linearization,"2 a multiple
unwinding of the general specification
that significantly complicates both the

methods developed within the theory
of asynchronous automata.

We use the classic finite Mealy au-

tomaton model for designing a self-timed
device. The transition graph, shown in
Figure 1, presents such an automaton.

specification procedure and synthesis.
Also, some research derives the general
specification ofthe "&ce-envimment"
system using vertices of free choice3
rather than linearization.

ontheolherhad,thew$l-deveioped
and widely used language of finite au-
twnato dlaws simple determinution ofthe
required device-environment interaction
behavior. The idea of joining the odvan-
iuges of cardully d i e d finiie-autmaton
models with methods of dktimed struc-
ture specification and synthesis, while
desirable, is not original. We began in-
vestigating self-timed structures ex&
frwn such models. Several studies using
finite automaton models to design self-
timed devices eXist.3A

References
1. D.E. Muller and W.S. Bartky, "ATheory

of Asynchronous Circuits," Reports 75
and 78, Digital Computer Lab.,
University of Illinois, 1956, 1957.

2. M.A. Kishinevsky et al., Concurrent
Hardware: The Theory and Practice of
Sell-Timed Design, J. Wiley and Sons,
London, 1993.

3. T.A. Chu, "Synthesis of Hazard-Free
Control Circuits from Asynchronous
Finite State Machine Specifications,"
Proc. TAU-ACM Int'l Workshop on
Timing Issues in the Specification and
Synthesis of Dgital Systems, Princeton
University, Princeton, N.J., 1992, p. 28.

4. T.A. Chu, "An Efficient Critical Race-
Free State Assignment Technique for
Asynchronous Finite State Machines,"
Proc. 30th Design Automation Cod ,
Assn. of Computing Machinery, New
York, 1993, pp. 2-5.

In this graph, S, and S, belong to the
set of internal states;X,and yi belong to
the sets of input and output characters.

16 I l E E DESION C TEST OF COMPUTERS

The pair XJY , marks each arc leading
from one state to another. The automa-
ton passes from state Si to state S, under
the influence of input X, producing out-

Let us consider only those automata
in which each internal state is attain-
able from any other state, that is, those
with connected transition graphs. This
restriction is not excessive, because,
first, connected automata are of the
greatest interest. Second, any uncon-
nected graph can always be converted
to a connected one by using dummy in-
put and output characters.

Our procedure for designing a self-
timed device consists of the following
steps:

put 6.

1. choice of a standard self-timed re-
alization for a finite automaton

2. reduction of an automaton transi-
tion graph to a simple cycle graph

3. construction of a change diagram
device specification

4. application of formal methods to
the change diagram to obtain
Muller’s circuit for output and
memory element excitation
signals

Standard automaton realization.
Step 1 defines the automaton structural
scheme; the rules governing its interac-
tion with the environment; coding input,
output, and internal-state characters;
and the memory element structure.
Only logic functions of the allotted sig-
nal stay undefined. Now we can define
the partial order of signal change for the
signal sets representing the automaton’s
inputs and outputs as well as the mem-
ory element signals. However, the envi-
ronment’s nondeterministic behavior (it
chooses the next input set in an un-
known way) is a problem.

Two studies’J propose canonical ap-
proaches that allow us to simplify the
synthesis procedure. Using them, we
obtain standard realization circuits. The
memory element determines the type

of standard realization. Standard real-
izations use irredundant coding of
automaton internal states, unlike asyn-
chronous automata, which use antirace
coding. A standard realization contains
a combinational circuit, parallel regis-
ter, and perhaps, an indicator of tran-
sient process completion moments. D
flip-flops with two-rail inputs or T flip-
flops form the register. In this article, we
use a memory element of two master-
slave RS flip-flops.

Special design methods, as well as
proper information coding, provide in-
variability of circuit behavior from
element time parameters. Such code
systems are selfsynchronized. For self-
synchronized codes, set B appearing at
the output indicates the completion of a
transition from set A to set B. Self-
synchronized codes are a universal and
unique tool for fighting functional
hazards.

Asynchronous automata theory usu-
ally uses neighbor or quasi-neighbor
coding methods. Such coding systems
can be treated as single-phase self-
synchronized codes that are overly re-
dundant. They allow direct transition
from one character to another.

Those self-synchronized codes
where every working character alter-
nates with an empty one (spacer) are
more convenient. Note that using such
sequences removes the restriction pe-
culiar to asynchronous automata that
no character can follow itself. A work-
ing input character initiates the active
phase of the device work; the spacer ini-
tiates the passive phase. The self-
synchronized code of such sequences
are twophase.

The most commonly used twophase,
selfsynchronized codes are equal-
weight codes and codes having an iden-
tifier (Berger’s codes). These are the
basis of all other selfsynchronized code
systems. We prefer equal-weight codes
consisting of sets with a fixed number of
ones. An example is two-rail code that
represents each information bit by two

Figure 1. Mealy automaton transition
graph.

binary variables representing the active
phase contrary values. Spacers are sets
consisting either of all zeroes or all ones.
Optimum equal-weight code (Spemer‘s
code) has the least redundancy. Its sets
of length m contain ml2 ones.

In standard realizations, we usually
use two-phase self-synchronized code
systems for input and output states.
That system defines the automaton-
environment interaction. The automa-
ton replies to a working set with a work-
ing set and to a spacer with a spacer;
the environment replies to a spacer
with a working set and to a working set
with a spacer. It is also important to
choose rules governing the interaction
between different parts of the automa-
ton structural diagram. We discuss this
problem later.

Reducing the automaton graph. In
step 2, we unwind the automaton transi-
tion graph into a simple cycle to change
free choice of the next input characterto
a deterministic choice. The unwound
graph defines a sequence of input char-
acters that causes all the possible transi-
tions in the automaton and is a loop that
must pass every arc at least once. This
guarantees the definition of all possible
transitions. In such an unwinding, some
states can meet repeatedly.

We can reduce a connected, orient-
ed graph to a simple cycle in more than
one way. We may wish to find its opti-
mal unwinding; that is, the one con-
taining a minimum number of vertices.
The following is a possible algorithm for
doing so:

1. compile the set of possible simple
cycles from the automata graph

SPRING 1995 1 7

S E L F - T I M E D D E V I C E S

.::::::;::_'
Figure 2. Memory element based on two
flip-flops.

2. find all possible subsets of this set
that cover all the arcs of the graph

3. choose the subset with the mini-
mum number of cycle vertices

Any coverage of the graph is ade-
quate for our purposes because all cov-
erages define the same automaton; the
optimal coverage simply reduces the
subsequent work of the designer.

A designer next reduces the automa-
ton graph to a simple cycle graph by

1. removing any two cycles contain-
ing at least one common vertex
from the coverage

2. breaking both cycles by discon-
necting the arc between the cho-
sen common vertex and the
destination, then connecting the
broken cycles to form a new cycle
and returning it to the coverage

3. repeating this process until one cy-
cle remains in the coverage

This algorithm converges if the initial
automaton graph is connected.

Constructing change diagram
specifications. After unwinding the
transition graph, we construct a lin-
earized change diagram specification

tx, - ty, - 4 1 - -Y2

txp - ty3 - -x, - -Y3

(b)

> c > c > c @=.a
(a)

txl + -i?+ t r , --c ty, +-xl + ts, - 2, + -y2

txq+ -r3 - t r 3-+ t y 3 + -xp - t s 3 - -s3 + -y3
>C A > C >c > c V >c

(e)

Figure 3. Possible transitions in the unwound automaton graph and heir
representation by signal graphs: no state change (a), partial order of signal change
[b), state change (c), successive subtransitions {ti), and a signal change order (e).

of the device on the allotted signal set.
The standard realization type deter-
mines the way we construct it.

Two flipflops with heteropolar con-
trol represent every variable coding in-
ternal state of the automaton. Figure 2
shows a possible circuit of such a mem-
ory element. It contains four AND-NOR
gates with output signalss,$ and r,!. The
same characters indicate both the gate
outputs and signals. The gates form two
simple RS (s,$) and i?x (r,!) flip-flops
working as masterslave. A RS flip-flop
changes its state through transit state
(0,O) and a flipflop changes its state
through (1,l). The signs * and " mark
the inverted outputs of the flip-flops.

Set signals S and R are the external
inputs of both flipflops. Figure 2 shows
the memory element initial state that
corresponds to keeping the value of
zero. The value one is written into a
memory element in two phases. In the
first phase, signal S = 1 switches the left
flip-flop; in the second phase, when S =
0, information moves from the left flip
flop to the right. Double change of sig-
nal R writes zero in the same way.

To construct the standard realization
of an automaton we must code input,
output, and intemalstate characters. Let
two-phase, equal-weight, selfsynchro-
nizing codes represent input and output
characters. This establishes the rules of

interaction between the automaton and
the environment. We use binary code
to represent the internal states.

After coding, we must define the
rules of interaction between different
parts of the automaton structural
scheme. After that we can derive the
change diagram specification. Let us ac-
cept the following rules:

1. Every transition executes in two
phases. The first phase starts with a
set of self-synchronizing code at
the automaton input and finishes
when a set of code appears at the
output. The second phase starts
with a spacer at the input and fin-
ishes when a spacer appears at the
output.

2. If the transition does not cause a
change of state, then the input sig-
nals are the immediate cause of
output signal changes. Figure 3a
shows such a transition.

3. We break an automaton transition
from one state to another (Figure
3c) into two successive subtransi-
tions.

Figure 3d shows the subtransitions.
Automaton states Si and S, correspond
to states MSi and Msj of its memory ele
ment master flip-flop. MS, changes to
M q through intermediate state Ssj rep

18 WEE DESION I TEST OF COMPUWRS

resented by the memory element slave
flipflop. A selfsynchronizing code set
at the automaton input initiates the first
transition phase and causes switching
of the necessary number of slave flip-
flops. This leads to the appearance of a
self-synchronizing code set at the out-
put indicating phase completion. In the
second phase, when the spacer appears
at the input, the spacer writes the slave
flipflop states into the master flipflops.
After this, the spacer appears at the out-
puts of the automaton, indicating sec-
ond phase completion.

Let us code the input and output
characterj of the automaton so that vari-
ablesx, andx, of setX,, andvariablesy,
and y3 of set V, have the value one, and
the spacers include only zeroes. Then
a transition like the one shown in Figure
3a corresponds to the partial order of
signal change in Figure 3b.

Assume the codes of states Si and Si
differ in variables s, and s3 and in state Si
(s, = 0 and s, = 1). Then by coding char-
actersX, and F in the same way we can
easily represent the transition of Figure
3c by the signal change order in Figure
3e. Note that this graph has no flipflop
excitement signals. During synthesis, we
will build excitement functions into the
flipflop gates. Such an approach allows
the synthesis system to derive the nec-
essary types of flip-flops (RS, D, or 13.

We thus construct the signal change
orders for every transition of the au-
tomaton graph unwound to asimple cy-
cle. After defining the initial marking,
we obtain the signal graph specification
for the device.

We emphasize that the specifications
obtained from different unwindings of
an automaton graph, when processed
by the synthesis procedure, must lead
to the same result. We can strictly prove
this statement.

Self-timed stack memory
As an example, we first applied our

procedure to the design of a self-timed
stack memory. Several approaches ex-

st for designing this kind of memory;
ye divide them into two basic classes:
egister structures and memory-based
,tack. Studies of self-timed stack design
isually consider register structures? We
vi11 consider the second approach.

In a usual CMOS static-memory array
with two-rail representation of the data
lath, sufficiently simple tools indicate
,cad-operation completion. The main
lroblem is indicating write-operation
:ompletion. We solved this problem4
y breaking the write process into two
lhases: reading information and rewrit-
ng it. Memory detects rewrite comple-
ion by checking whether the code
ieing written coincides with the code
n the data path of the read. The details
If self-timed memory organization and
jesigning the control circuits are out-
;ide this article’s scope.

Figure 4 presents the stack structure.
t contains a self-timed memory array,
;tack pointer, and control unit. Signals
i and W initiate read and write opera-
ions. They first enter the self-timed
memory array and control unit to de-
.ermine the stack pointer work mode.
4ck is the signal that acknowledges op-
?ration completion to the environment.
4dr is the set of address signals coming
io the memory array from the stack
pointer. Adr initiates the memory work,
while R and W choose the mode. C is
the set of control signals coming to the
stack pointer from the control unit.

The signal graph in Figure 5 de-
scribes the rules governing stack block
interactions. We indicate active and
passive signal states by + and -. Extra
signal 0 unites W and R making them
indistinguishable.

Our goal is to design the control unit.
To d o this, we must consider the stack
pointer circuit, which produces mem-
ory block addresses.

Stack pointer. The stack pointer log-
ic circuit should be simple because its
complexity grows linearly with in-
creasing stack size. We achieve thissim-

1 Stack 11 Self-timed
pointer Adr I memory

arrav
i tTclT m

Data bus -

W R Ack

Figure 4. Stack structure.

- t C - tAdr - tAck rto -Ack- -Adr- -C- - O J

Figure 5. Rules governing stack block
interactions.

plicity by increasing the number of ex-
ternal control signals and, hence, com-
plicating the control circuit.

Figure 6, next page, shows such a
stack pointer circuit. It is based on a
multistable flip-flop with multiphase
control. Such a flipflop can come to sta-
ble states with violations of strict alter-
nation of low and high levels at the gate
outputs.

For example, in the sequence, ...,
010100101 ..., neighborstate pair00 is
a pointer. Compulsorily drawing the left
gate of the pair 00 into state 1 (00- 10)
shifts the pointer to the left. To shift the
pointer to the right, we draw the right
gate of the pair 00 into the state 1
(00-01). Thus, there are two control
signals necessary for shift control, for
example, D and U. However, if we
change any of these signals once, the
pointer will move to one of the sides
without stopping.

To prevent a through shift of the
pointer, we double the number of the
control signals and divide them into
even (De, U,) and odd (Dn, UJ, as in the
circuit of Figure 6. The circuit keeps the
pointer when all the control signals
equal 1. If the pointer is on an even po-
sition (corresponding to the two mid-
dle gates of the circuit) then De = 0 shifts

SPRINO 199s 19

S E L F - T I M E D D E V I C E S

fjgure 6. Stack pointer.

w/u,

Figure 7. Control unit automaton graph.

it to the left odd position and U, = 0 to
the right. The odd pointer positions in
Figure 6 correspond to the two left and
the two right gates. From these posi-
tions, D,=Oshifts the pointer to the left,
and U, = 0 shifts it to the right.

The pointer position corresponds to
the memory array address line. Signal
A, = 1 chooses the ith address line. The
stack pointer determines values of A, ac-
cording to the pointer position and con-
trol signal values.

Control unit. This unit produces the
stack pointer control signals using input
signals Wand R. The definition of this
automaton behavior should describe,

in particular, the interaction between
the stack and the environment. Stack
pointer behavior determines stack be-
havior. We represent it as follows:

If a write operation precedesa write,
U,= 0 shifts the pointer one position
up from an even position. U, = 0
shifts it one position up from an odd
position. After this, the stack pointer
produces the address signal.
If a write operation precedes a
read, pointer position does not
change, and U, = 0 or Do = 0 pro-
duces the address for an even po-
sition; U, = 0 or De = 0 for an odd
position.
If a read operation precedes a
read, De = 0 shifts the pointer one
position down from an even posi-
tion. Do = 0 shifts it one position
down from an odd position. The
stack pointer then produces the
address signal.
If a read operation precedes a
write, the pointer’s position does
not change, and U, = 0 or Do = 0
produces the address for an even
position; U, = 0 or De = 0 for an odd
position.
U, = U, = D, = Do = 1 will reset the
address signal.

Using this description, we can easily
represent the control unit by a Mealy
automaton with the transition graph of
Figure 7. The automaton states corre-
spond to the following situations:

WE-occurrence of a write by an
even address
WO-occurrence of a write by an
odd address
RE-occurrence of a read by an
even address
RO-occurrence of a read by an
odd address

To code four states, coding variables
S, and S, suffice. Let variables, take val-
ues from set (e,o} and variable S, take
values from set {r,w}. Then, clearly, the
coding of the automaton states is neigh-
bor since only one variable value
changes in every transition. Such
coding simplifies the automaton
realization.

We set the output signals, shown at
the arcs of the graph in Figure 7, so that
every variable that codes internal states
breaks its set into two nonoverlapping
subsets. Choosing such output signals
must simplify its logic functions.

For synchronous automaton realiza-
tion, the universal antirace method
uses a two-register memory that divides
the registers’ work in time. We find a
similar approach useful for self-timed
realization. For example, a pattern of
self-synchronizing code appearing at
the inputs triggers a write to the first reg-
ister. A spacer at the input causes in-
formation to move from the first register
to the second. In some cases, the sec-
ond register can contain a smaller num-
ber of simple flip-flops than the first.
When the information moves, it must
be compressed. We use this case in our
example.

Let variable S, correspond to RS flip-
flop Ye, Yo and variable S, to RS flipflop c, Y,. These two flip-flops form the first
register. Since in every transition only
one of these flip-flops changes its state,

20 IEEE DESION & TEST Of COMWTeRS

the second register can consist of one
flip-flop. Let it be flip-flop (Z,, 2,).

Such automaton memory organiza-
tion, together with coding input and
output characters using two-phase self-
synchronizing codes, provides rnonot-
onic representations for all signal logic
functions. In our case, the inputs and
outputs are already coded, and we can
easily check that these codes are two-
phase and self-timed. We have thus de-
signed the standard realization of the
automaton defined by the transition
graph of Figure 7.

This graph reduces to a simple cycle
graph rather easily. Two simple cycles,
obtained by passing all the graph ver-
tices clockwise and counterclockwise,
cover all the graph arcs. We construct
an unwinding of the graph from these
two cycles.

We derive the linearized specifica-
tion, represented by the signal graph in
Figure 8, by unwinding the graph of the
automaton standard realization. Using
this specification and formal synthesis
methods, we obtain the following
Muller’s circuit:

Ye = Yo v wz, v Rz,
Y, = Y, v w
Yo = Ye v WZ, v RZ,
Y, = Y, v R
Z, = Z,R v Z,W v Z2UeD,
Z, = Z,R v Z,W v Z,D,U,

~

U, = Y,Z,Y,
U. = Y,Z,Y,

De = YoZ,Y,
Do = YeZ2Y,

Considering these derivations as logic
functions of AND-NOR gates, we can
draw the logic circuit of the control
automaton.

Modulo-2” counter with a
constant response time

Our second application example has
many ~olutions.~.’ Each solution uses
two basic elements of structural
scheme realization:

- -z2 - +De+ -zl + tz2 + -R + -De- -y4- -y3+ t R

t R + -y2 ty l -Do + -R + tzl + -z2 + +Do

w tw - -y1 + ty2 4 -U, - -w + tz,

tu,+ -zl - tz2 - -w - -U,- ty3 - -y4 - tw J L

L t w - -y4 4 +ys 4 -U, - -w + tz, - -z2 + +U, -

L t R - -y3 + ty4 + -Do -R + tz, 4 -z2 +Do-

+De+ -Z1 + t Z 2 + -R + -De- t Y 2 - -YI+ +R*

- +U,- -21 - tz2 - -w - -Uo- ty1- -y2- +w+

Figure 8. Control automaton signal graph.

Ai -1 1- A,

Figure 9. Modulo-2” counter stage.

An arrangement of counter stages
in a pipeline guaranteeing that the
response time is independent of
the number of stages
A counter contains two intercon-
nected asynchronous pipelines.
Counting signals propagate in one;
carry and overflow signals propa-
gate in the other, but move in o p
posite directions.

Let us construct such a counter using
these principles and our automaton ap-
proach. In a modulo-2” counter, n is the
number of stages. Let the ith counter
stage be the black box shown in Figure
9. It receives counting signals from the
(i-1)th stage at input Ai and replies to
them at output Q, if there is no over-
flow, or at output Po if overflow occurs.
The ith stage passes the counting signals
to the (i+l)th stage through output A,;
Acknowledge signals respond to these
signals at inputs Qi or Pi, depending on
the presence of overflow. The modulo-
2“ counter consists of n such stages con-
nected in series. The least significant
stage interacts with the environment.

~

(b)

Figure 10. Transition graph of the
modulo-T counter stuge (a) and unwind-
ing of the graph (6j.

Free inputs of the most significant stage
meet the following boundary condi-
tions: input Pi connects to output A, and
constant zero feeds input QP

A finite automaton with the graph
shown in Figure 10a represents a
counter stage. The automaton has in-
ternal states So and SI that correspond
to keeping the information bit values 0
and 1. Signal Ai= 1, which is the analog
of clock signal for the automaton, initi-
ates every transition. Therefore, this sig-
nal does not appear in the transition
graph. The automaton passes from state
So to state S, on any condition; on the
corresponding transition arc the con-
dition is marked 1 and the output sig-
nals are Q, = 1 and A, = 1. The
automaton allows the transition from&
to So only when it receives input signal

SPRINO 1995 21

S E L F - T I M E D D E V I C E S

+A, + -Yo + tY1- 4,- -A, ++Si + -So+ 4 - +A, + -Y1 ++Yo

.t \ +A, --t +Q, ,i-*i0
-A, / 1 -A,

-? /;”” -Q, - 1

1 1
-Q, +so

t

‘s“ -!I (il 1
+p, e----

t
+Yo+ -Yl+ +A, + -Q,+ -So+ +Si + -A,- tQ,+ tY1 -Yo+ t A ,

Figure 1 1. Signal graph specification of the counter stage.

Qi

Pi

-t.

Figure 12. logic circuit of the counter stage.

Qi= 1 or Pi= 1. Two arcsdepict this tran-
sition since different output signals can
be produced during it: Qo= 1 when Qi=

1, and Po= 1 when Pi= 1.
One coding variable S suffices to

code two internal states. Let two simple
flip-flops correspond to it. They are a
slave flip-flop (Yo, Y,) with transit state

00 and a master flip-flop (So, S,) with
transit state 11. The inputs and the out-
puts of the automaton are already cod-
ed. We can easily check that for all
transitions coming from any internal
state the codes of the inputs and out-
puts are self-timed and twephase. Thus,
we have constructed a standard au-

tomaton realization.
Let us unwind the automaton graph

to a simple cycle (Figure lob). Using
this unwinding and the accepted stan-
dard automaton realization, we derive
the signal graph specification, shown in
Figure 11.

From this specification, formal meth-
ods produce the following Muller‘s
circuit:

Note that in this circuit the functions
of signals Q,, Po, and A, are self-
depending, that is, they must be imple-
mented as flip-flops madefrom a gate
and an inverter. Signals Q, and E in
function A, come from the gate outputs
of the corresponding flip-flops.

We can improve this solution by in-
serting changes into the signal graph
specification. For example, the modi-
fied specification derived by removing
two arrows, shown as dashed lines in
Figure 11, provides simpler functions
for Yl and A,

Y, = Yo v Aisl
A, =Po v YoSo v YoQo

Other signal functions do not change.
In this way, we can easily draw the
counter stage logic circuit (Figure 12)
from the Muller‘s circuit.

We analyzed the performance of
the counter circuit, measuring re-
sponse time by the number of gates
switched. That number equaled four
for every change of the counting sig-
nal and did not depend on the num-
ber of stages. Our solution, then, does
not exceed those already known in
c~mplexity.~-’

22 IEEE DESIGN & TEST OF COMPUTERS

kKE ANY DESIGN PROCEDURE, O u r s
contains both formal and informal
steps. Choosing the specification lan-
guage, behavior specification, and ba-
sic structure is informal. Designers use
theirexperience to make these choic-
es. These choices, in turn, determine
the quality of the solution.

Transitioning the specification with-
in a basic structure to a change diagram
is a formal step. It allows us to obtain an
self-timed implementation using well-
known formal methods? The facilities
used for formal synthesis determine s o
lution quality.

It is important to introduce the be-
havior of the basicstructure gates into
the change diagram. Starting our design
procedure at the gate level increases
the quality of the solution. This article's
limited length does not allow us to de-
scribe the details of this process. @

References
1. A. Astanovsky et al., Aperiodical Au-

tomata, V. Varshavsky, ed., Nauka,
Moscow, 1976 (in Russian).

2. V.I. Varshavsky et al., Self-Timed Control
of Concurrent procesSes, V. Varshavsky,
ed., Kluwer Academic Publisher,
Boston, 1990. (Russian, 1986).

3. M.B. Josephs and J.T. Udding, "The De-
sign of a Delay-Insensitive Stack," in De-
signing Correct Circuits, Workshops in
Computing, G . Jones and S. Sheeran,
eds., Springer-Verlag, New York, 1990,

4. V.I. Varshavsky et al., "Memory Device
from MOS Transistors," USSR patent,
Certificate No. 1365129, IC1 G 1 IC 11/40,
The Inuentions Bulletin, No. 1, 1988.

5. J.C. Ebergen and M.G. Peeters, "Modu-
lo-N Counters: Design and Analysis of
Delay-Insensitive Circuits," Proc. Sec-
ond Workshop on DBsigning Correct Cir-
cuirs, North Holland, Amsterdam, 1992,
pp. 2746.

6. C.D. Nielsen, "Performance Aspects of
Delay-Insensitive Design," PhD thesis,
Technical U. of Denmark, Lingby, Den-
mark, 1994.

pp. 132-152.

7. K. van Berkel, "VU1 Programming of a
Modulo-N Counter with Constant Re-
sponse Time and Constant Power,"
Asynchronous Design Methodologies,
IFIP, Vol. A-28, S. Furber and M. Ed-
wards, eds., Elsevier Science Publish-
ers, New York, 1993, pp. 1-1 1.

Victor I. Varshavsky is a professor and
head of the Computer Logic Design Labo-
ratory at the University of Aim, Japan. His
research interests are in the area of opera-
tion research, automata theory, logic design,
and computer engineering. Varshavsky r e
ceived the DEng degree in precise me-
chanics from the Leningrad Institute of
Precise Mechanics and Optics. He also
holds a PhD degree from the Leningrad In-
stitute of Aviation Instrumentation and a
DrEng from the Institute of Control Prob-
lems, Russian Academy of Science; both d e
grees are in engineering cybernetics.

Vyacheslav B. Marakhovsky is also a pro-
fessor at the University of Aim and is in
charge of the Computer Networks Labora-
tory. His research interests include automa-
ta theory, logic design, and computer
engineering. Marakhovsky holds the DEng
in electrical engineering from the Leningrad
Polytechnical Institute, a PhD in engineering
cybernetics from the Central Institute of Eco-
nomics and Mathematics, Russian Academy
of Science, and DrEng in computer science
from Leningrad Electrotechnical University.
He is a member of the IEEE.

Vadim Smolensky works at the Universi-
ty of Aim as a research associate, where he
participates in the Self-Timing and Event-
Driven Systems research project. Smolen-
sky received the DEng in computer science
from Leningrad Electrical Engineering
Institute.

Address questions or comments about
this article to Victor I. Varshavsky, Univer-
sity of Aizu, Tsuruga, Ikki-machi, Aizu-Waka-
matsu City, Fukushima, 956 Japan;
victor@u-aizu.ac.jp.

I k c t r o n i c Accou to
Abstracts Woeks

Beform Publication

Access the IEEE Computer
Society On-line Service via

World Wide Web
(http://www.computer.o@ or
gopher (jnfo.computer.org)

m Abshactsand tablesof contentsoflEEE
&sign & Tesf of Compufetx and other
Computer Society publications
Conference calendar
Career opportunities
General membershipandsubscription
information
Calls for papers
IEEE Cornputer Society Press Catalog
Volunteer and staff directory

8PUN6 1995 23

mailto:victor@u-aizu.ac.jp
http://www.computer.o

