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ABSTRACT
Wehave limited understanding of how older adults use smart-
phones, how their usage differs from younger users, and the
causes for those differences. As a result, researchers and
developers may miss promising opportunities to support
older adults or offer solutions to unimportant problems. To
characterize smartphone usage among older adults, we col-
lected iPhone usage data from 84 healthy older adults over
three months. We find that older adults use fewer apps, take
longer to complete tasks, and send fewer messages. We use
cognitive test results from these same older adults to then
show that up to 79% of these differences can be explained by
cognitive decline, and that we can predict cognitive test per-
formance from smartphone usage with 83% ROCAUC. While
older adults differ from younger adults in app usage behavior,
the “cognitively young” older adults use smartphones much
like their younger counterparts. Our study suggests that to
better support all older adults, researchers and developers
should consider the full spectrum of cognitive function.
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1 INTRODUCTION
Although more than 42% of older adults use smartphones
[3], relatively little is known about smartphone usage pat-
terns amongst older adults (65 or older), particularly when
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compared to what we know about the younger population’s
smartphone usage patterns [27]. Understanding similarities
and differences in how older adults and the younger popula-
tion use smartphones is important for designing engaging
and helpful experiences. Emerging trends in health and well-
ness applications delivered through smartphones seem espe-
cially well-suited to the needs of older adults, yet designers
may fail to create applications that address the needs of older
adults without this understanding. For example, older adults
often experience cognitive decline while aging, but we do
not know to what extent this affects smartphone use [26].
In this paper, we present a quantitative study of smart-

phone usage by older adults (aged 61 to 76), utilizing a dataset
that we created containing usage metadata logs of 84 iPhone
users over a three month period. We characterize application
usage in a number of different ways, including by type and
number of applications used, amount of time spent on appli-
cations, and behavior in switching between applications. We
compare with prior work that looked at similar behavior in
the general population, noting that the usage behaviors of
older adults are different than younger adults, but more simi-
lar than might have been previously assumed. This suggests
that approaches developed for the general population might
usefully be applied for older smartphone users as well.
We also uncover important differences that may guide

design principles for application developers to better design
for the older population. By reproducing analyses frequently
performed on other smartphone usage data sets in prior
work, we demonstrate that older adults display distinct app
usage characteristics from younger adults, such as using
fewer apps and keeping them open for longer. To further
characterize the usage patterns of older adults, we apply new
analysis techniques for app-usage dynamics to reveal how
applications are used in sequence (e.g., most switches into
Photos comes from Camera, and most switches into Safari
come from Mail).

While these differences likely result from a complex com-
bination of generational and age-related shifts in culture,
values, lifestyle, and cognitive / physical abilities, we focus
on how cognitive function of participants is associated with
differences in use. Cognitive function is of particular interest
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in the context of older adults, as cognitive function has pre-
viously been found to be important across a wide array of
activities, e.g., in technology usage [16], office productivity
[29], and avoiding motor vehicle accidents [55].

Each participant in our study also underwent neurocogni-
tive testing in two major cognitive domains: (i) perceptual
and motor, and (ii) learning and memory. To explore how dif-
ferences in cognitive function might explain differences we
observe in behavior, we constructed a quasi-experiment im-
plemented using our usage log data pairedwith the neurocog-
nitive testing results of our participants. Our 84 participants
had assessed neurocognitive function in the normal range,
yet we observed a wide distribution of performance on neu-
rocognitive testing. Specifically, some healthy older adults
perform on neurocognitive testing at the level of younger
adults, while others did not. We compared app usage behav-
ior of those who performed like younger adults with the
remainder of our participants, and found that the observed
differences in usage behavior can be largely explained by
cognitive function. We generalized these results into a pre-
dictive model capable of predicting neurocognitive testing
performance from app usage patterns with 83% ROC AUC.

Our research demonstrates that while older adults display
some notable differences as compared to younger adults,
“cognitively young” older adults use smartphones much like
their younger counterparts. To better support all older adults,
researchers and developers should especially consider how
to design applications that can accommodate users who are
no longer cognitively young. Older adults now form a sizable
percentage of the user base of smartphones. Our research
contributes an important step toward understanding how to
best support them.

2 PRIORWORK
Our work is informed by prior work on (i) studies of smart-
phone app usage patterns, (ii) how older adults use tech-
nology, and (iii) predicting personal characteristics from
smartphone usage.

Smartphone App Usage Patterns
Smartphone app usage patterns have been studied exten-
sively. Researchers have investigated how many apps people
install, which apps are most used at which time of day, and
how long these apps are kept open for [10, 19, 24]. They’ve
investigated daily routines [20] and even predicted which
app a user will launch next [5].
We note that two factors unify most of this work. The

first is that these studies have typically relied upon data
from younger adults. For instance: in Do et al’s study, using
data gathered from 77 volunteers, only 11% of participants
were over 40 [19]. Larger-scale studies, which rely on users

deciding to download publicly available logging apps, typi-
cally did not collect demographic data but can be assumed
to contain primarily younger adults given the demographics
of Android users [10]. While some specific demographics
have been investigated, such as a 14-participant study of
teenagers [9], researchers have yet to characterize the usage
patterns of older adults.

The second unifying factor is that, as pointed out by Mor-
rison et al. [36], nearly all of this work has been performed
using Android phones rather than on iPhone and iOS, as
the Android platform allows for the easy installation of log-
ging software for OS-level events such as app launches and
phone unlocking. Morrison responded by reproducing on
iPhone a variety of studies previously performed on An-
droid. Morrison achieved this by focusing on 10,000 jailbro-
ken users, which enabled them to install an app that could
log OS-level events. While this study did not collect or re-
port demographic information, people who jailbreak their
iPhones have been found to have a mean of 36 years old and
and are 65% male [35].

In this paper, we analyze iPhone usage patterns – notably,
older adults are more likely to use an iPhone than any other
age groups [22]. Therefore, when we compare usage statis-
tics reproduced on our population with other studies, we do
so primarily with Morrison et al.’s work, given that it is the
only study reporting general usage patterns from iPhones.
iOS is different than Android and may promote different us-
age patterns. Further, people who choose iPhone have been
found to exhibit sociological differences [43]. One difficulty
with this comparison is that, as noted by Morrison, users of
jailbroken devices likely differ from the general population
in that they may be more engaged and familiar with their
iPhones. Therefore, their usage patterns can likely be con-
sidered on the more ‘extreme’ end of what we may expect
from the general population [36].

Technology and Older Adults
Older adult’s relationship with technology is an important
area of research and has been studied extensively. Technol-
ogy use tends to decline with age [46]. While older adults
generally use fewer technologies than younger adults, and
use them less frequently, notable exceptions have been found
in domains such as healthcare [11, 40].

While older adult’s general relationship with technology
is well-documented, their specific usage patterns are not.
Work which quantifies how older adults use smartphones
– increasingly the most important and versatile pieces of
technology in our lives – is extremely limited. Many stud-
ies have broadly surveyed older adults on their preferences
and attitudes towards mobile phones, but have not analyzed
actual usage data [38]. Some studies are centered around
input. For instance, older adults have been found to input
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text via voice equally as fast as younger adults, but slower in
other input methods [49]. While some work has sought to
create guidelines for designing mobile phone interfaces for
older adults, typically recommending larger buttons and less
complex interfaces [1, 18, 47], it relies primarily on surveys
of older adults and their preferences, rather than analysis of
their actual app usage data.

Even more difficult than understanding the app usage pat-
terns of older adults is understanding why these patterns
might be different than younger adults. One area of study is
cognitive ability. Older adults with cognitive difficulties may
perceive technology as more difficult to use [45], and indi-
viduals with higher cognitive levels are likely to participate
in a wider variety of web-based tasks (i.e., Internet use and
email) [23]. Perceptual speed, an area of cognitive ability,
has been found to be a reasonable predictor of determining
desktop browsing characteristics in older adults [15]. Poten-
tial cultural and lifestyle causes have also been explored. In
a qualitative survey of 14 older adults, several reasons for
a lack of technology use emerged: they were found to be
uncomfortable with having to take on responsibility for tasks
previously handled by trained professionals, made deliberate
decisions to not use technologies when they perceived them
as replacing or eroding something of value to them; and sup-
ported by the fact that opting out of technology use fits with
cultural expectations and thus seems acceptable, despite be-
ing increasingly limiting in digital society [31]. In our work,
we aim to quantify how much of certain app-usage behav-
ioral differences between older adults and younger adults
can be explained by cognitive ability versus other factors.

Relating Personal Characterstics to Smartphone Use
Smartphones can be a window into their users’ minds. Early
work in this area found that smartphone usage patterns
can be used to predict personality traits [12]. More recently,
smartphone usage patterns have been used to predict propen-
sity to trust others, their college GPA, depression dynamics,
sleep quality, and social capital [6, 8, 48, 51, 52]. Researchers
have even shown that people exhibit unique app usage signa-
tures, and can be differentiated just from their usage patterns
[56]. Other work has focused on linking real-time physio-
logical traits to usage patterns. In a study of 20 participants
over 40 days, Murnane et al. connected app usage patterns
with biological rhythms, finding that usage patterns vary for
individuals with different body clock types [37].
To our knowledge, our work is the first to focus on how

smartphone app usage patterns can be explained by cog-
nitive ability. Other work has looked at how higher-level
smartphone habits may have a lasting impact on cognitive
function and development [54]. We are aware of only one pa-
per which predicts cognitive ability from smartphone usage,
and its focus was on lower level physical touch events such

Dataset statistics
# of participants 84
Age range 61-76
Median age 66
% female 69.0
Observation period Three months, mid 2018
Total app launches 494, 641
Total unlocks 186, 968
Total minutes of app use 1, 396, 429.9
Total messages 386, 573
Total calls 66, 371

Table 1: Descriptive statistics from our dataset of
smartphone usage log data from older adults.

as tapping on the space-bar followed by the first character of
a word, rather than on higher level app usage behavior [17].

3 DATASET DESCRIPTION
We conducted a three-month observational study using smart-
phone data collected from 84 healthy older adults, ranging
in age from 61 to 76, with paired neurocognitive testing. Our
dataset contains 494,641 app launches and 186,968 phone
unlocks. Table 1 lists descriptive statistics from our dataset.
All participants were existing iPhone users (iPhone 5S

or newer) for at least one year prior to joining the study.
Participants were provided with an iPhone 7 Plus to use
as their primary personal phone. The iPhones were instru-
mented with logging software that recorded lock/unlock
events, apps launched/closed, and anonymized metadata for
each text message and call sent/received. A full backup of
their personal pre-study iPhone was uploaded to the new
iPhones 7. We gave participants new iPhones installed with a
backup of their existing iPhone for two reasons: first, logging
app launches on iOS requires custom software that could not
be installed on participants’ existing phones. Second, doing
so removes confounders related to individual device quality,
speed, size, or battery.
At the start of the study, participants took a neurocogni-

tive screening exam called the Cogstate Brief Battery (CBB).
We discuss the CBB in more detail in Section 5. No partici-
pants with diagnosed cognitive impairment were included
in our study. Participants were recruited at medical centers
in several locations around the United States. Participants
completed a survey to report diagnosed medical conditions.
We removed participants diagnosed with cognitive impair-
ment, deafness, blindness, motor impairment disorders, or
depression. Participants were not given special instruction
as to how frequently or for what purpose they should use
their iPhones. We surveyed participants for their race, edu-
cational attainment, and employment status. 82 participants
identified themselves asWhite Caucasian, 1 as African Amer-
ican, and 1 as Hispanic. 34% had achieved a graduate degree
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as their highest level of education, 35% an undergraduate
degree, and 31% a high school diploma. 26% were currently
employed full time, 13% part-time, 53% retired, and 6% other.
For the purposes of our evaluation, we consider an app

launch to take place each time a user actively brings a new
app into focus. This includes when a user taps on a notifica-
tion to launch its corresponding app, but does not include
notifications themselves, widgets, or other background ser-
vices. Following convention from prior work, when app cat-
egories are discussed, we use the categories provided by app
developers to the Apple App Store. For Apple’s first party
apps that are built into iOS and are thus not on the Store, we
manually assigned apps to categories.

4 HOWOLDER ADULTS USE SMARTPHONES
We begin by reproducing analyses by Morrison et al. [36].
As mentioned in our Prior Work section, this is the only
other paper to have characterized iPhone app-usage statis-
tics. Their analyses consist primarily of descriptive statistics
centered around number of apps used, type of apps used,
total usage by time of day, and usage duration. In the follow-
ing subsections, we report our results and discuss how they
compare. In many cases, the scope of our analysis is limited
by available prior work. In many cases, we go beyond what
has been done in prior work in order to present a more thor-
ough picture of how older adults use smartphones, despite
the inability to directly compare those results to younger
adults. Thus, our work combines replication of prior work
with new analysis, focusing on older adults whose usage has
not been studied in this way before.

Number of apps and duration of use
Participants used an average of 50.3 unique apps (std. dev
22.7). This is notably lower than Morrison et al., who found
an average of 64.0 (std. dev. 52.5) and the Boehmer et al.
Android study which found an average of of 74.37 (std. dev.
44.16) [10]. We find that older adults keep apps open for an
average of 121.2 seconds, nearly 37% longer than the 88.6
seconds found by Morrison et al.

App usage by category
In Table 2, we aggregate app usage by category. We list the
percent of app launches that fall into each category along
with the mean duration of app usage. In a comparison to the
results reportedMorrison et al.’swork (who also used theApp
Store’s categories), we find that the Communication category
dominates for both populations, though with older adults at
a slightly lower 46.3% than Morrison’s 49%. However, Social
Networking apps make up only half as many of launches for
older adults as they do for younger adults, at 6.8% compared
to 12.6%. When older adults do launch a Social Networking
app, they keep it open for nearly twice as long, 207 vs. 115

Category Avg. du-
ration

Pct.
launches

Sample apps

Communication 74.2 46.32 Messages, Mail, Phone, Messenger
Browser 144.7 8.32 Safari, Google Chrome
Productivity 70.3 6.80 Gmail, Calendar, Notes, Reminders
Photo & Video 103.1 6.55 Instagram, Camera, Photos, YouTube
Social Networking 207.3 6.37 Facebook, LinkedIn, Nextdoor, Pinterest
Utilities 107.1 4.63 Google, Clock, App Store, Calculator
Games 364.4 4.04 Words With Friends, Candy Crush
Navigation 226.5 2.59 Google Maps, Apple Maps, Waze
News 196.6 2.48 Apple News, BuzzFeed, NY Times
Health & Fitness 67.5 1.73 Activity, FitBit, Health, MyFitnessPal
Settings 68.1 1.61 Settings
Weather 53.6 1.28 Weather, The Weather Channel
Finance 55.7 1.19 E*TRADE Mobile, Chase Mobile, Wallet, Coinbase
Music 159.0 1.19 Apple Music, Pandora, Spotify
Travel 73.2 0.98 Yelp, Uber, Lyft, Expedia
Business 94.2 0.81 Slack, Kisi
Shopping 116.2 0.69 Amazon, Poshmark, Groupon
Books 168.6 0.59 Audible, Kindle, iBooks
Entertainment 183.2 0.56 Podcasts, Netflix, iTunes Store, Hulu
Lifestyle 96.0 0.53 Redfin Real Estate, Nest, Zillow
Food & Drink 111.7 0.27 Starbucks, OpenTable, Caviar
Sports 238.8 0.21 ESPN, FanDuel, 18 Birdies Golf
Reference 237.9 0.11 Bible, Dictionary
Education 194.6 0.08 Duolingo, Lumosity: Daily Brain Games, iTunes U
Medical 100.2 0.07 Mychart, Mango Health, Migraine Buddy

Table 2: Average duration and percent launches for
each category, sorted bymost launched. Categories for
each app are taken from the App Store.

seconds. Perhaps the biggest difference in a single category
is Weather: the category makes up only 0.3% of launches in
younger adults, but is more than quadrupled for older adults
at 1.3%. Duration of Weather apps is significantly longer for
older adults as well, at 53.6 seconds vs. 28.9 seconds.

App usage by hour of day

Figure 1: Older adults use their phones earlier in the day
than younger adults. We show app launches by hour of day
from our dataset of older adults overlayed on the results re-
ported by Morrison et al [36] for younger adults. The y-axis
is normalized as percent of total usage to allow for compar-
ison between populations with different sample sizes.

Figure 1 shows the total number of app launches per hour
of the day, overlayed atop the same plot from Morrison et
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al’s work among younger users. We note a distinct shift in
older adult’s usage to earlier in the day. This may be sugges-
tive of different sleep patterns between the populations, as
smartphone usage has been found to provide a reasonable
measure of sleeping habits [14].

App micro-usage
Ferreira et al. introduced the concept of a micro-usage [21],
which defines short bursts of interaction with apps versus
longer, more involved interactions. Typically, micro-usage is
found by partitioning app usage duration data into two clus-
ters, which look for a natural break point that can separate
a micro-usage from a longer usage. To compute this break-
point, we follow prior work by applying k-means clustering
to log-scale app duration data, with k=2. The micro-usage
breakpoint we found was 27.5 seconds, 28.5% higher than
the 21.4 seconds found by Morrison et al. We propose two
possible explanations for this difference: that older adults
attempt to complete more tasks during micro-uses of apps,
or that older adults take longer to complete the same tasks
during micro-uses as younger adults. Unfortunately, we can’t
conclusively investigate this with our data, but it may be an
interesting question for future work.

Multi-app sessions
Following Morrison et al., a session is defined as the period
of activity between unlocking and locking a phone, with the
requirement that a session is ended only after the phone has
been locked for at least 30 seconds. We found that partici-
pants open an average of 2.9 apps per session, with 67.2%
of sessions consisting of 3 apps or fewer, and 73.5% of ses-
sions consisting of 4 apps or fewer. 36.1% of sessions contain
only one app. By comparison, Morrison et al. found 76.7%
containing 3 apps or fewer, 83.5% containing 4 apps or fewer,
and 38% containing only one app. These results suggest that
older adults open more apps per session than younger adults.
Morrison does not report average number of apps per ses-
sion.

App dynamics
Inspired by work relating to behavioral patterns during web
surfing sessions [53], we believe that deeper exploration of
sequential app usage within and between sessions is an in-
teresting and important component in understanding the
app-usage behavior of users. Specifically, we focused on be-
havior around how users switch from one app to another.
Though not studied in great detail in prior literature, some
work has used sequential app usage patterns as a means to
predict or recommend future apps [33]. We aim to under-
stand and visualize these patterns, and call this area of study
“app dynamics”. In this paper, we limited our scope of ex-
ploration to sequential app usage within single sessions. To

analyze this data, we created bi-grams from each sequence.
For instance, if within a single session a user opened Face-
book, followed by Messages, followed by Weather, we would
then have the bi-grams (Facebook, Messages) and (Messages,
Weather), We then treat these bi-grams as a bipartite graph,
where apps being switched out of and apps being switched
into are treated as disjoint sets of nodes, with edges indicat-
ing a switch between two apps. We find 289,771 resulting
switches in our dataset. We chose to remove all self-switches
from our analysis. While likely an interesting and worthy
area of study, self-switches are complicated by unclear in-
tent (e.g., someone may have accidentally closed an app or
be returning from a phone call). We believe that extracting
meaning from these switches would require further logging
of OS-level behaviors.

Figure 2 shows the frequency and direction of app switches
for the top twelve apps in our dataset (in terms of total
launches), created from the bi-grams discussed above. The
thickness of the lines indicate magnitude in terms of percent
of switches. While for clarity of visualization we only plot
the top twelve apps, we note that 72% of sessions start with
one of the top twelve apps, and 70.7% of switches are into
one of the top 12 apps.
We note a few interesting trends. A sizable percent of

switches from every app are into Messages. Given that Mes-
sages displays a notification when a newmessage is received,
and that incoming messages are often of high interest to
smartphone users [50], this behavior makes sense – users
stop what they are doing when they receive a message to
attend to that message. On the opposite end of the spec-
trum, we see that Contacts is rarely switched into, even from
Phone. We observe that Messenger (Facebook’s messaging
product) shows a strong link to Facebook, while Facebook
has a much wider distribution of potential switches. Future
work, particularly with a larger sample size, should work
to understand and visualize how these switches may differ
between users.

Switch duration. Above, we studied the origin and destina-
tion of app switches. We now investigate the time it takes
for those switches to occur. Specifically, we are interested in
switches where the user chooses to move directly from one
app to another app, without engaging in other iOS-related
features such as widgets along the way, which adds noise
to the process of switching. For this analysis, we therefore
filtered to only switches where there are two sequential apps
logged as coming into focus with no other process coming
into focus between them (the home screen itself is not logged
by the OS as coming into focus when it appears). To further
reduce the chance that a user is not directly switching from
one app to another (as opposed closing an app, putting their
phone down for a little while without locking it, and picking
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Figure 2: Frequency and direction of app switches, as percent of total switches, for the top twelve apps in our dataset. Messages
is the most frequently switched into app, making up 31% of switches. We see clear connections between some apps, such as
Camera to Photos and Messenger to Facebook.

it back up again), we filtered to switches that took at most 30
seconds. This left us with 120,721 switches. We found that a
switch takes an average of 10.79 seconds.

Messages and calls
We found that our users send and receive an average of 37.2
messages and 5.1 calls per day. While we are not aware of
any iPhone-specific studies reporting the messaging and
calling behavior of younger adults, a platform-agnostic Pew
study found that teenagers send and receive a mean of 67
text messages per day [32].

5 EXPLAINING BEHAVIORAL DIFFERENCES
THROUGH COGNITIVE ABILITY

We provide evidence above that older adults display notably
different app usage patterns than younger adults. We now
ask: how can these differences be explained? As mentioned

earlier, in this paper we focused specifically on cognitive
function. We aim to quantify how much of the difference
between usage patterns of younger adults and older adults
can be explained by cognitive decline. To do this, we defined
a group of cognitively young older adults and investigated
how these users differ from younger adults, as well as from
cognitively normal adults.

Cogstate Brief Battery Assessment
To answer this question, we make use of our app usage
data in combination with cognitive test results from each
participant.
During study enrollment, the CogState Brief Battery as-

sessment (CBB) was administered to each participant. The
CBB consists of a simple reaction time task (Detection task),
a choice reaction time task (Identification task), a one-back
working memory task (One-Back task), and a continuous
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recognition visual learning task (Learning Task). A full de-
scription of each task and their validity is available in Maruff
et al. [34]. For each individual task, Cogstate reports many
associated raw performance measures, often involving accu-
racy and speed of performance. Depending on the task, one
of the raw scores is designated by Cogstate as the “primary
outcome” of the task. Cogstate also provides two composite
scores computed from a mixture of these raw scores and
normalized across ages. The two composites are described
as follows: Psychomotor Function/Attention composite, in-
corporating the Detection and Identification tests, relative to
age-matched normative data, and Learning/Working Mem-
ory composite, incorporating theOne Card Learning andOne
Back tests, relative to age-matched normative data. Within
our population of healthy older adults, we find that our CBB
scores are approximately normally distributed.

Experimental design
To determine whether differences in app usage patterns be-
tween younger adults and older adults can be explained by
cognitive function, we designed a quasi-experiment. Quasi-
experiments are frequently used to estimate causal relation-
ships in health-related observational studies where random-
ized controlled studies would otherwise be infeasible, un-
ethical, or impossible [28]. In our case, random assignment
would be unethical and likely impossible since it would re-
quire recruiting a group of older adults with equal cognitive
ability and then intentionally inducing cognitive decline to
a random subset of those participants.
For our quasi-experiment, we employed a posttest-only

nonequivalent control group design [13]. We created two
groups. The first group consisted of older adults with the
cognitive ability of a typical younger adult. We denote this
group as YC. To determine which participants to assign to
this group, we relied on normative data provided by Cogstate
on their CBB test, which indicates the scores expected of a
healthy younger adult. We selected all older adults in our
study whose CBB scores are within one standard deviation
of the normative data, and assign them to the YC group.
We then created a matched group, NC, from the remaining
participants, using an almost-exact matching strategy [44],
matching on the age covariate. This is important because age
is known to be correlated with cognitive decline and, as we
demonstrated earlier, app usage patterns. We created these
groups for the two different composites mentioned above.
After creating our groups in this way, we had 16 participants
per group.

Results
For eachmetric reported in the “HowOlder Adults Use Smart-
phones” section, we report the mean value from our YC and

NC groups along with statistical significance from a Mann-
Whitney U test. We also report Pearson correlation values
for each metric continuously over the entire dataset (not
just the matched users in the YC and NC groups). Table 3
shows the results from our quasi-experiment. For each app
usage metric, to test whether our result may be confounded
by socio-economic factors, we also ran an ANCOVA analy-
sis to look for a main effect of race, educational attainment,
or employment status on app usage patterns, after control-
ling for cognitive scores. We do not find significant main
effects, meaning we don’t find evidence these covariates are
confounding the results of our quasi-experiment.

Quasi-experiment Discussion
The results of our quasi-experiment indicate that a surpris-
ingly large amount of the difference in app usage behavior
between older adults and younger adults can be explained by
cognitive ability. In this section, we discuss the results from
each app-usage behavior tested in the experiment. We found
that cognitive ability can explain over 67% of the difference
between older adults and younger adults in terms of number
of apps used, over 76% of the difference in duration, and 79%
of the difference in micro-usage breakpoint.

Number of apps used. We found that number of apps used
varies significantlywith the Psychomotor Function/Attention
composite, but not with Learning/Working Memory compos-
ite. YCs in Psychomotor Function/Attention use 59.5 apps
on average, while NCs use only 47.9. Compared to older
adults’ overall mean of 50.3 reported earlier, Psychomotor
Function/Attention can explain over 67% of the difference
from the 64.0 found for Morrison et al’s younger adults. This
result agrees with findings from psychological literature: we
hypothesize that number of apps used may be a proxy for
information seeking and curiosity, which has been found to
be strongly linked with attention [25].

App duration. Duration varies significantly with the Learn-
ing/Working Memory composite, with YCs averaging 96.2
seconds compared to NCs 122.4. Learning/Working Memory
can explain over 76% of the difference between the duration
for younger adults, which Morrison et al. found to be 88.6
seconds, and older adults overall which we found to be 121.2
seconds. We hypothesize that how long a user keeps an app
open may be a proxy for processing speed, and prior work
has found that working memory influences processing speed
and reading fluency [30]. Therefore, we expect that YCs for
this composite would experience this faster usage duration.

Micro-usage breakpoint. The micro-usage breakpoint for YCs
in the Learning/Working Memory composite is 7.2 seconds
lower. We did not find a significant difference for the Psy-
chomotor Function/Attention composite. Compared to our

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 168 Page 7



Learning/Working Memory Psychomotor Function/Attention
Behavior YC mean NC mean Pearson R YC mean NC mean Pearson R
# apps used 47.8 51.0 .038 59.5* 47.9* .256*
App duration (seconds) 96.2** 122.4** -.220* 119.6 116.3 .033
Micro-usage breakpoint (seconds) 22.7*** 29.9*** -.256* 28.5 28.9 .039
Apps per session 2.6 3.1 -.032 3.2 2.9 .095
Messages per day 43.7* 33.8* .143 36.5 37.6 0.070
Calls per day 9.9* 6.4* .189 7.1 7.9 -.092
App switch speed 10.09* 10.74* -.279** 10.56 10.62 -.099
Early morning pct usage 12.54 10.1 0.228* 11.46 10.38 0.27*
Mid morning pct usage 29.56** 26.54** 0.136 27.88 26.98 0.162
Afternoon pct usage 33.44 33.91 -.033 34.77 33.57 -.008
Night pct usage 22.08** 27.12** -0.346** 24.46 26.51 -0.253*

Table 3: Results from our quasi-experiment. Statistically significant results are highlighted in bold. Older adults
who are cognitively young in Learning/WorkingMemory keep apps open for less time anduse their phones earlier
in themorning. Older adults who are cognitively young in Psychomotor Function/Attention usemore apps.Mann-
Whitney U test between YC and NC columns is used to test significance (∗ p < 0.05,**p < 0.01,***p < 0.001).

overall older adults micro-usage breakpoint of 27.5 seconds,
as reported earlier, cognitive ability can explain 79% of the
difference from the 21.4 second breakpoint in younger adults
reported by Morrison et al. [36].

Categorical/apps breakdown. As in the prior section of this
paper, we investigated both duration and percent of total
usage in terms of categories. We also analyzed potential dif-
ferences in specific apps (only the top twenty apps in terms
of total launches were selected). Given there are 20 apps and
25 categories, each with two dimensions to evaluate them on,
there is not room to list each result. Rather, we chose to list
none of them, as no significant correlations were found after
correcting for multiple hypothesis testing (even before cor-
rection, only three significant correlations were found). One
likely explanation is that as we evaluated granular behaviors
in our relatively small dataset, noise between participants
became too great to statistically overcome.

Messages. We found that the number of messages varies sig-
nificantly with Learning/Working Memory, with YCs send-
ing and receiving 10 messages more per day. As mentioned
earlier, we are not aware of comparable data from younger
iPhone users. This result is in agreement with psychology
literature, which has found that social engagement has sig-
nificant links with cognitive ability among older adults [7].

Switching speed. We found that YCs in the Learning/Working
Memory composite switch apps 2/3 of a second faster than
NCs. One might expect to also see a difference in the Psy-
chomotor Function composite, given that switching apps
quickly likely requires some level of quick physical tapping
coordination. Surprisingly, we do not see a significant result
here, indicating that the likely reason older adults switch

apps more slowly is due to their mental capacity to retain
the information necessary to complete the tasks, rather than
the physical ability to tap the correct areas.

Hour of day. Here we analyze the percent of app launches
that fall into a given time of day. Daytime sleepiness has
been found to be highly correlated with cognitive ability in
older adults [39], and we hypothesized that daytime sleepi-
ness may manifest itself as relatively fewer launches during
the morning and daytime versus night. We broke down app
usage by time into four components: early morning (5am-
7am), mid-morning (8am-12pm), afternoon (12pm-5pm), and
night (5pm-10pm). Our results appear to confirm this re-
lationship, particularly when looking at learning/working
memory. While 22.1% of usage takes place at night for YCs,
27.1% takes place at night for NCs. Interestingly, this is our
only result in which YCs actually behave less like younger
users: earlier, we observed that younger adults tend to use
their phones far more during late night hours than older
adults. Figure 3 shows this difference.

6 PREDICTING COGNITIVE ABILITY
We designed a novel prediction task of predicting “cogni-
tively young” older adults – predicting whether an older
adult has the cognitive ability of a typical younger adult.
To build such a model, we leveraged insights described in
previous sections. We demonstrated that despite the large
variation inherent to human behavior, and the relatively
small sample size in our dataset, we can achieve up to 83%
ROC AUC for learning/working memory. This prediction
task is designed to validate our empirical findings, and show
that the results we report above can be used as generalizable
features in a predictive model.
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Figure 3: Cognitively young older adults launch a larger
percentage of apps in the morning, and cognitively normal
older adults launch a larger percentage at night.

Task Description
Based on a user’s app-usage behavior, we predicted whether
that user has the cognitive ability of a typical younger adult
or has experienced cognitive decline. We attempt this task
for both of the CBB composites described in the previous
section, and using the same normative data described in
the previous section to determine which users fall into the
cognitively young or cognitively normal groups.

Experimental setup
For this classification task, we used the area under the ROC
curve (ROC AUC) as our evaluation metric with Leave One
Out cross-validation for estimation. We experiment with
L1-normed logistic regression and Gradient Boosted Trees
[42], finding that the latter produced better results. (71%
vs. 83% ROC AUC). To avoid over-fitting, for models where
the number of feature vectors exceeds ten, we select the
ten best features using the training set of each Leave-One-
Out iteration, calculated from their ANOVA F-values. The
hyper-parameter max tree depth is determined by a 20-fold
cross-validation using the training set within each LOO itera-
tion. As age-corrected normative data were used to compute
the CBB composites (i.e., Psychomotor/Attention and Learn-
ing/Working Memory), age was not entered as a covariate
in these analyses. Because of the unbalanced dataset (20.5%
of participants were cognitively young) and the trade-off be-
tween true-and false-positive rate associated with prediction,
we chose to compare models using the area under the re-
ceiver operating characteristic (ROC) curve (AUC) which is
equal to the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen
negative one [2]. Thus, a random baseline will score 50%.

Models. To illustrate the predictive power of the different
types of app-usage behaviors reported earlier in this paper,
we define a series of models, each with a different feature
set corresponding to one of these app-usage behaviors:

Figure 4: Accuracy for predicting cognitively young older
adults in terms of the Learning/Working Memory compos-
ite for each feature set. We reach 83% ROC AUC in a com-
bined Gradient Boosted Trees model with all features. For
the Psychomotor Function/Attention composite, only one
feature predicted better than random guessing: number of
apps used reached 72% ROC AUC.

(1) Number of apps used:Number of unique apps opened.
(2) App duration:Mean duration across all apps opened.
(3) Micro-usage: A user’s micro-usage breakpoint and

percent of app launches that are a micro-usage.
(4) Category-specific: For each category, percent launches

and mean duration of an app use in that category.
(5) App-specific: For each app, percent launches and

mean duration of an app use for that app.
(6) Messages:Mean number of messages per day.
(7) Switching speed: Average time taken to switch be-

tween apps (switches filtered as described earlier).
(8) Usage by hour of day: Percent app launches by hour

of the day.
(9) All: All features combined.

Results
Learning/Working Memory. Figure 4 shows the results from
predicting whether an older adult is cognitively young in
terms of learning/workingmemory.With a Gradient Boosted
Trees model that chooses from all available features, we
reach 83% ROC AUC. We note that micro-usage breakpoint,
app switch duration, and usage by time of day result in the
highest prediction performance. The combined model out-
performs each of the feature sets individually, suggesting
that together the features complement each other with new
information, rather than capturing the same information.

Psychomotor Function/Attention. Predicting older adults who
are cognitively young in terms of Psychomotor function /
attention from our app-usage behaviors proved to be sig-
nificantly more challenging. We find that only one feature
produced an accuracy better than random guessing: number
of apps used, which produced an accuracy of 72% ROC AUC.
This is not surprising, as we found few significant results for
this composite in our earlier quasi-experiment, but number
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of apps used showed a strong result with cognitively young
older adults using 11.6 more apps than cognitively normal
older adults.

7 DISCUSSION
There are several important limitations to our work. The first
stems from our sample size. At 84 participants, our dataset is
larger than many papers which discuss app usage patterns
and which connect smartphone usage to psychological or
behavioral characteristics. However, an even larger dataset
would enable analysis of more granular behaviors such as
specific app usage patterns and also would have enabled to
better control for confounders.While wemade a strong effort
to account for confounders that seemed most likely to impact
our results, future work should further investigate these. For
instance, while we remove participants with cognitive im-
pairment, deafness, blindness, motor impairment disorders,
and depression, there may be potential other medical con-
founders that we were unable to consider. A larger and more
diverse sample size would also enable further investigation
of potential socio-economic confounders.

Another important limitation is that we did not directly re-
cruit younger adults to compare older adults with; rather, we
compare our results with prior work published on younger
adults. This resulted in two challenges: first, we were only
able to compare results for metrics that we replicate from
prior work (rather than those we created ourself). Second,
while we took care to reproduce the studies we compare
our results to as closely as possible, reproduction always
opens up the door to potential differences in data collection,
cleaning, or analysis methods that may influence results. We
also note that, by giving users new iPhones 7 installed with
a backup of their existing iPhones, it is possible that some
participants could experience a breaking-in period to adjust
to their new physical devices which could potentially impact
how they used their phones.

The final limitation relates to our quasi-experiment. While
quasi-experiments are a common and generally accepted
method to estimate causal direction in behavioral health
research [28], we note that they are still estimates and not
guaranteed to be correct to the same degree a controlled
randomly-assigned experiment would be.

Our results underscore prior qualitative results that older
adults are not a monolithic population. We believe there may
be opportunities to create accessibility features for smart-
phones that can take in to account the spectrum of cognitive
ability and its impact on usage patterns. We find that while
cognitively young older adults are able to hold more infor-
mation and be more expressive in their usage patterns and
choices (1, 3, 4), and therefor have similar engagement pat-
terns when they do use phones, they are still effected by the
physical results of aging (2). Therefore, our results show that

a sizable number of older adults – those who are cognitively
young – may be best treated as similar to a younger popula-
tion for features relating only to cognitive ability. However,
as we see when looking at usage by time of day, older adults
who are cognitively young do not necessarily display signs of
physical/lifestyle youth, and, in fact, moved in the opposite
direction from how younger adults behaved (Table 3).
There are two important implications of our work. First,

our results suggest that smartphones could be used as passive
preliminary detection tools for cognitive decline by moni-
toring app usage patterns. This potentially enables alerts
to loved ones or suggestions that users seek professional
medical advice. Second, prior work has described methods
to design interfaces while minimizing cognitive load [41].
Related methods have been used to design smartphone in-
terfaces intended specifically for older adults [4]. However,
these are likely not equally desirable for all older adults
because they can come at the cost of efficiency or utility.
Our results suggest that smartphones and their apps may be
able to dynamically adjust their interfaces to better support
the individual cognitive needs of older adults by passively
detecting cognitive decline.

8 CONCLUSION
We present a quantitative analysis of the smartphone app
usage patterns of older adults. We find that older adults use
fewer apps, keep them open longer, and use their phones
earlier in the day. We also introduce analysis on what we call
“app usage dynamics”, in which we investigate which apps
users switch into and how long it takes them to perform
the switch. We then design a quasi-experiment to explain
the observed differences between older adults and younger
adults through cognitive ability, finding that usage patterns
of “cognitively young” older adults come close to matching
those of younger adults for some metrics like number of
apps used, but not others like the times of day they use
their phones. We then show that the results presented in
our quasi-experiment are sufficiently strong to predict older
adults who are cognitively young with 83% ROC AUC. While
prior work suggests that differences in older adults usage of
smartphones may be primarily attributable to differences in
culture, values, and lifestyle, we find that for some behaviors,
differences can be largely explained by cognitive decline.
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