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Abstract
The 2010 Deepwater Horizon (DWH) accident in the Gulf of Mexico had many
unique aspects to it not seen in previous marine spills. Indeed, research related to
the DWH response phase, Natural Resource Damage Assessment, Gulf of Mex-
ico Research Initiative (GoMRI), National Academy of Sciences, US agencies:
NOAA, EPA, Fish & Wildlife, DOE, and Coast Guard have made this the most
studied marine oil spill in the world. There are many oil biodegradation lessons
learned from this experience and these will undoubtedly continue for many years.

1 Introduction

On April 20, 2010, the Deepwater Horizon (DWH) an ultra-deepwater, dynamically
positioned, semi-submersible, mobile offshore drilling rig owned by Transocean
caught fire while drilling at the Macondo prospect in the Mississippi Canyon Block
252 lease and exploded 77 km off the coast of Louisiana in the Gulf of Mexico with
the loss of 11 lives. Several attempts to activate the blowout prevention device and
the blind sheer ram failed. Two days later on April 22, 2010, the DWH sank to the
seafloor at 1500 m, with the 53 cm riser pipe detaching from the rig it collapsed into a
convoluted heap on the seafloor and began leaking oil in at least 3 sections. This
caused the largest marine oil spill in United States history and the second largest
marine oil spill in the world (Fig. 1). On June 3, 2010, the riser was cut off at the top
of the blowout prevention device. After several attempts to stem the flow of oil
failed, the well was successfully capped on July 15, 2010, and declared dead by the
National Incident Commander on September 19, 2010. The government estimate of
the amount of oil that came from the Macondo well directly into the environment
was 4.1 million barrels with an additional 820,000 barrels captured via siphon tubes
(Fig. 2) (FISG 2010). The cleanup effort was the largest ever in the world with more
than 31,800 people involved (Fig. 2) (Deepwater HorizonUnified Command, 2010).

The DWH accident had many unique aspects to it not seen in previous marine
spills. Indeed, research related to the DWH response phase, Natural Resource
Damage Assessment, Gulf of Mexico Research Initiative (GoMRI), National Acad-
emy of Sciences, US agencies: NOAA, EPA, Fish & Wildlife, DOE, and Coast
Guard have made this the most studied marine oil spill in the world. There are many
oil biodegradation lessons learned from this experience and these will undoubtedly
continue for many years.

2 Lesson 1. Marine Oil Biodegradation Like All Politics Is
Local and DWH Had Many Unique Aspects

Marine oil biodegradation is affected by a large number of parameters, e.g., oil type,
currents, weather, temperature, pressure, limiting nutrients, water depth, input of oil
(leak, spill, failure of blowout prevention device), season, risk receptors, and ability
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to apply remediation (dispersants, siphon tubes, booms, skimmers, burns). Many of
these can work synergistically to impact oil biodegradation: (1) chemical disper-
sants + mineral fines can enhance formation and transfer of oil from the surface into
the water column (Li et al. 2007), (2) autoinoculation from gyres + “memory
response” of oil degraders leads to an increase in microbial abundance and acceler-
ated oil biodegradation (Valentine et al. 2012), (3) oil droplet size + dispersion + bio-
degradation rates + dissolution enhances biodegradation, dissolution and dispersion
rated oil hydrocarbons (Brakstad et al. 2015a), (4) cometabolic biodegradation + dis-
persion + secondary electron donors enhances biodegradation, dissolution, and
dispersion rates of oil hydrocarbons even when the oil itself cannot be a suitable
electron donor (Hazen et al. 2016), and (5) biosurfactants from multiple microor-
ganisms can enhance bioavailability of poorly soluble hydrocarbons in the oil (Singh
et al. 2007; McGenity et al. 2012).

DWH had many unique aspects, it was the deepest oil well blowout that has ever
occurred, and it was the first time that dispersants were applied at the well head. It
was not controlled for 84 days. It had deep water temperatures of 4 �C and
simultaneous surface water temperatures of over 30 �C (Hazen et al. 2010).

Fig. 1 Graphic depiction of Deepwater Horizon spill and cleanup, showing oil droplets rising to
the surface and small droplet forming a deepwater cloud, oil sheens, and slicks the surface, with
burning skimming, weathering, and blowout prevention (BOP) device that failed and injection of
dispersant in the deep and at the surface. (After Atlas and Hazen (2011))
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It occurred during the hurricane season, but only two major storms occurred during
the period. There was a deepwater gyre at 1100 m that went from the Macondo well
head out 15 km to the SW before turning back (Valentine et al. 2012). Deep water
plumes occurred at four depths: 25, 265, 865, 1175 m, oil at the surface was moving
to the North East while oil in the 1100 m plume was moving to the South West, the
other three water column plumes moved to the SE, and NW (Spier et al. 2013). The
Gulf of Mexico has more natural seeps than any other deepwater basin being
considered for deepwater oil production (NAS 2003). Macondo oil is a very light
crude, the Macondo well was jetting oil at high temperature (200 �C) and high
pressure (676 bars) at the well head (pressure of the ocean at 1500 m was 152 bars).

Number of barrels and % breakdown*

Skimmed

total oil leaked
4.9m

31,800

3,447km 441

1.84m

160,000

13%

17%

23%

23%

The cleanup effort to date

Burned
260,000
Chemically dispersed
770,000
Naturally dispersed
630,000
Captured
820,000
Evaporated/dissolved
1.2M
Remaining oil

personnel involved in protecting
and cleaning the shoreline
and wildlife

containment and absorbent
boom deployed

* Based on Flow Rate Techical Group’s estimate
Sources: Deepwater Horizon
Unified Command. NOAA

controlled burns
conducted

gallons of
dispersant
used

1.1M

3%

5%

16%

13%

17%

23%

23%

Fig. 2 Where the oil went? The Federal Interagency Solutions Group, Oil Budget Calculator
Science and Engineering Team (November, 2010)
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The Macondo well was also one of the deepest wells; thus, the hydrostatic pressure
may have had an effect on oil degraders like we have not seen before (Marietou et al.
2018). The Macondo oil had a high proportion of methane (Kessler et al. 2011).
Nutrients from the Mississippi River made the overall nutrients higher near the spill
(Hazen et al. 2010), and many hydrocarbons found in the Macondo oil and in the
CORREXIT dispersant used were also found in Mississippi River and drainage into
the Gulf of Mexico from non DWH sources (Kujawinski et al. 2011; King et al.
2014a).

3 Lesson 2. Oil in the Water Column and in Coastal
Sediments Biodegraded Faster Than Expected

One of the first studies on oil biodegradation reported that the Macondo oil average
half-life of alkanes in the deep water (1100) plume was 1.2–6.1 days (Table 1)
(Hazen et al. 2010). The deepwater plume contained more than 80% alkanes, and
four different techniques were used to make these calculations using microcosms
with water and fresh Macondo oil at 5 �C, mixed consortia (Venosa and Holder
2007) incubations with fresh Macondo oil at 5 �C, and changes in alkane concen-
tration from in the plume from the source to 10 km down gradient with split sample
analyses done by two different labs and considering whether it took 2 days or 5 days
to traverse that 10 km gradient (Hazen et al. 2010; Valentine et al. 2012). This
surprised a lot of people. Rapid biodegradation also occurred initially of propane and
ethane (Valentine et al. 2010). A more recent study again verified these findings
(Thessen and North 2017). Considering that below 700 m the temperature in the
Gulf of Mexico is always 5 �C or less and it has been that way for millions of years, it
should not be surprising that there are true psychrophiles that can degrade oil faster at
5 �C then at 20 �C and given there potentially long period of adaption degrade it
faster than in previous studies at the surface (Baelum et al. 2012; Chakraborty et al.
2012; Dubinsky et al. 2013; Brakstad et al. 2015a; Hazen et al. 2016).

Macondo oil was also deposited in the sediments especially around the well head
and in some other parts closer to shore as marine snow etc. (Rahsepar et al. 2017).
Numerous studies also found that the sediment microbial community was degrading
the Macondo oil faster than initially expected (Kimes et al. 2013, 2014; King et al.
2014a; Mason et al. 2014). Studies showed that a very active microbial community
in the sediment was enriched in anaerobes (Deltaproteobacteria) in the deeper
sediment and aerobes (Gammaproteobacteria) at the sediment surface that was
very actively degrading a variety ofMacondo well hydrocarbons including aromatic
hydrocarbons (Kimes et al. 2013; Mason et al. 2014). Key hydrocarbon degradation
pathways were determined by 14C-labeled substrates in order: propylene, glycol,
dodecane, toluene, and phenanthrene (Mason et al. 2014).

Many studies along the coast where emulsified and weathered Macondo oil
washed ashore also found that degradation rates of the Macondo oil were faster
than previous studies at other sites around the world had shown (King et al. 2012,
2014a, b). Beach samples collected during the response phase and after showed a
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dominance of Alphaproteobacteria and Gammaproteobacteria (Kostka et al. 2011;
Lamendella et al. 2014). Taxonomic diversity decreased in the sands for first few
months but rebounded 1 year after the oil came ashore and much of the oil had been
degraded (King et al. 2014a). Initially Pensacola Beach sands oil-degraders
increased two orders of magnitude within the first week, while diversity decreased
50% (Huettel et al. 2018). Half-lives of the aliphatic and aromatic hydrocarbons
were less than 25 days. Aerobic oil degradation was significantly promoted by tidal
pumping. In the coastal salt marsh (Mobile Bay), the oil degrading community
increased in richness and abundance especially among the Proteobacteria,
Bacteroidetes, and Actinobacteria (Beazley et al. 2012). This study also suggested
that marsh rhizosphere microbial communities could be contributing to the hydro-
carbon degradation since there was a greater decrease in Macondo oil in marsh grass
sediments than in inlet sediments that lacked marsh grass (King et al. 2014a). Studies
in marshes in Barataria Bay, Louisiana, also showed increases in the bacteria
Rhodobacterales and Sphingomonadales and the fungi Dothideomycetes
(Mahmoudi et al. 2013). Another study that included 11 sites in southern Louisiana
found that all studied marshes had increased abundance in Proteobacteria,
Firmicutes, Bacteroidetes, and Actinobacteria during the first 4 months, but after
2 years with barely detectable hydrocarbon levels the bacteria communities were
more diverse and dominated by Alphaproteobacteria (Rhizobiales), Chloroflexi
(Dehalococcoidia), and Planctomycetes (Engel et al. 2017).

Table 1 MC-252 alkane half-life (days) from field and laboratory with currents of 2–5 days to
move 10 km from source. (After Hazen et al. (2010))

Plume
samples

Plume
samples

BP
data

BP
data

Mixed
Consortia
5�C

Microcosm
water, 5�C

Average 2.4 6.1 1.2 2.9 3.5 2.2

n-Tridecane C13alk 1.6 4.0 1.4 3.5 3.1 2.1

n-Tetradecane C14alk 1.5 3.8 1.4 3.4 3.5 2.3

Pentadecane C15alk 1.5 3.8 1.0 2.4 3.6 2.1

n-hexadecane C16alk 1.6 4.0 2.0 5.0 3.6 2.2

n-heptadecane C17alk 1.7 4.3 1.1 2.8 3.6 2.3

Pristane C19teralk 1.6 4.1 1.3 3.2 3.0 2.3

n-octadecane C18alk 2.1 5.2 1.0 2.6 4.2 2.3

Phytane C20teralk 1.8 4.6 1.4 3.4 3.6 2.3

n-Nonadecane C19alk 2.1 5.4 1.0 2.6 3.6 2.3

eicosane C20alk 3.2 7.9 1.0 2.5 3.7 2.3

Heneicosane C21alk 3.7 9.3 1.9 4.7 3.5 2.6

n-Docosane C22alk 3.8 9.5 1.0 2.5 3.7 2.2

Tricosane C23alk 3.7 9.2 1.0 2.5 3.6 2.2

tetracosane C24alk 3.2 8.0 0.9 2.2 3.5 2.3

n-Pentacosane C25alk 2.8 7.0 0.8 1.9 3.6 2.0

n-hexacosane C26alk 3.1 7.8 0.6 1.6 3.1 1.7
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4 Lesson 3. Long-Term Adaption to Natural Seeps Played an
Important Role in DWH Oil Biodegradation

Natural seeps in the Gulf of Mexico are the most abundant of any deepwater marine
basin being considered for petroleum exploration and production (Fig. 3) (NAS
2003). A 10-year average showed that 400,000–1,000,000 barrels oil go into the
Gulf of Mexico every year from natural seeps. These seeps are episodic and are
primarily due to the major salt domes in the Gulf of Mexico which allow leakage
from deeper petroleum reservoirs intersected by the salt domes. Recent use of
satellite imagery and Fourier transform-ion cyclotron resonance-mass spectrometry
may enable an even more detailed quantification of natural seeps in the Gulf of
Mexico (Krajewski et al. 2018). Natural seeps in North America are estimated to
exceed 160,000 tons and 600,000 tons globally each year. Over 60% of the petro-
leum entering North American waters comes from natural seeps, but only 45% of the
petroleum entering the marine environment worldwide is from natural seeps (NAS
2003) See ▶ “Oil Biodegradation in Deep Marine Basin” chapter in this book.

It is not surprising then that microbes have become very well adapted to oil
biodegradation in the Gulf of Mexico since it is the major long-term carbon and
energy source that has been episodically released over millions of years (Kimes et al.
2013; Hazen et al. 2016). This long-term adaption to episodic release of oil provided
a “memory” response that allowed oil-biodegraders to respond rapidly whenever oil
was being seeped. Indeed, a significant increase in Oceanospirillaceae was seen
only 1 km from the well head, and calculations suggest that it would only take the
prevailing several hours to reach this area (Fig. 4) (Hazen et al. 2010).

5 Lesson 4. Jetting and Dispersants at the Well Head
Increased Oil Biodegradation

The pressure of the Macondo well at the well head was 676 bars at >200 �C while
the ambient pressure in the water around the well head was 152 bars at <5 �C. This
would cause jetting a well-known phenomenon for oil well blowouts (Agbaglah et
al. 2011). This would form oil droplets that would increase biodegradation primarily
because of the change in the ratio of surface/volume (Fig. 4). Microbes can biode-
grade oil hydrocarbons dissolved in water or are present at the oil/water interface.
During DWH it was decided that even though jetting was occurring, there was too
much oil coming to the surface close to the well control operations. This presented a
major safety concern since the high methane content and relative flammability of the
oil increased the risk of a fire and or explosion. So, for the first time ever permission
to inject Corexit 9500 at the well head was given. It was also hoped that this would
increase dispersion and biodegradation of oil so that less would reach the surface.
Within 4 h after subsurface injection of dispersant was started, the oil coming to the
surface was much farther away from the well control operations and every time that
dispersant injection was stopped within 4 h the surface slick would move closer to
the well control operations. Corexit 9500 was also used at the surface by spraying on
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surface slicks via ships and planes. It was also used on surface slicks during the Ixtoc
I blowout in the Gulf of Mexico in 1979 (Hooper and NOAA Hazardous Materials
Response Project (U.S.) 1982). Corexit 9500 or analogs had been used as an oil
dispersant for more than 30 years. Any droplets that were formed by jetting or
dispersant that were 10–60 μm in diameter were neutrally buoyant and were
entrained in the current at 1100 m. Droplets that were 300 μm or larger were
positively buoyant and rose to the surface.

Several studies on the Macondo oil have clearly demonstrated that smaller
droplets degrade faster (Baelum et al. 2012; Adams et al. 2013; Vilcaez et al.
2013; Brakstad et al. 2014, 2015a, b; King et al. 2014a). Some studies have
suggested that Corexit 9500 may be directly inhibitory to some oil biodegraders
(Kleindienst et al. 2015). However, the vast majority of papers has found no
inhibition by Corexit 9500 (Baelum et al. 2012; Prince and Butler 2014; Brakstad
et al. 2015a; Prince 2015; Hazen et al. 2016; Techtmann et al. 2017b).

6 Lesson 5. Comparisons of DWH with Exxon Valdez Oil Spill
for Oil Biodegradation Were Not Appropriate

It was appalling that during the DWH spill the media and many scientists were
comparing DWH to the Exxon Valdez oil spill. While the Exxon Valdez oil spill was
the largest oil spill in US marine waters up until DWH it was in no ways similar (Atlas
and Hazen 2011). Unlike the DWH, the Exxon Valdez oil spill in Prince William Sound
was a tanker spill that was close to shore and was “dead” oil, i.e., it did not have any of
the methane or volatile organic carbon that the Macondo oil had. The Prudhoe Bay oil
was heavier than Macondo oil and inherently less biodegradable. Natural attenuation
was less of an option for the Exxon Valdez oil spill since the oil accumulated on shore
near risk receptors for birds, fish, and mammals so several biostimulation techniques
were tried. Since DWH was nearly 50 miles off shore and was degrading rapidly in the
water column, no oil could be detected only 2 weeks after the well was finally capped.

Fig. 4 Oil-degrading bacteria from 1100 m plume attached to a droplet of Macondo Oil. (Bright-
field, 100X)
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Since Prince William Sound had no natural seeps and no exposure to oil prior to
completion the Trans Alaskan pipeline it was not surprising that Prudhoe Bay oil
biodegraded much more slowly than the Macondo oil. For a thorough comparison of
DVH with the Exxon Valdez oil spills, see Atlas and Hazen (2011).

7 Lesson 6. Models for DWH Were Inappropriate at First

Because of the uniqueness of the DWH oil spill few, if any, models were prepared to
simulate what happened especially in terms of oil biodegradation. The SINTEF
OSCAR model was tried initially but failed to predict the oil biodegradation rates in
the deep plume, primarily because it used a Q(10) algorithm that assumed that for
every 10 �C change in temperature, there would be a proportional change in
biodegradation rate (Bagi et al. 2013). This did not take into consideration that the
dominant bacteria in the deep were psychrophiles (Hazen et al. 2010, 2016; Baelum
et al. 2012; Chakraborty et al. 2012). Droplet break-up models include Equilibrium
correlations (Johansen et al. 2013; Li et al. 2016) and Dynamic models (Zhao et al.
2017). SINTEF since 2010 has developed several updates to the original Oil Spill
Contingency and Response (OSCAR) model. The Structured Learning in Microbial
Ecology (SLiME) model was found to predict the concentration of oil in DWH deep
plume almost perfectly from the microbial community structure (Smith et al. 2015).

8 Lesson 7. Cometabolic Oil Biodegradation May Be
Important in Deep Marine Basins

The aerobic cometabolic biodegraders are dependent upon oxygenases, e.g., meth-
ane monooxygenase, toluene dioxygenase, toluene monooxygenase, and ammonia
monooxygense. These enzymes are extremely strong oxidizers, e.g., methane mono-
oxygenase is known to transform over 1000 different compounds. However, like any
bioremediation process, the proper biogeochemical conditions are necessary to
maximize and maintain biodegradation, e.g., maintaining oxygen levels or other
terminal electron acceptors that the cometabolic biodegrader is dependent (Hazen
1997, Hazen and Sayler 2016), and chapter on ▶ “Cometabolic Bioremediation” in
this book. In addition, co-metabolic biostimulation may require pulsing of electron
donor or electron acceptor to reduce competitive inhibition between the substrate the
microbe can use and the contaminant. Pulsing of methane was found to significantly
improve biodegradation of trichloroethylene rates by methanotrophs (Hazen 2010).
Indeed, during the DWH leak (Hazen et al. 2010), there was evidence that in the Gulf
of Mexico where episodic releases of methane have occurred for millions of years
from natural seeps this pulsing of methane may be removing oil and other organics
via cometabolic biodegradation. The methane oxidizers bloomed during the DWH
leaked above 400 m once the well was capped (Reddy et al. 2012; Redmond and
Valentine 2012; Dubinsky et al. 2013). This suggests that intrinsic cometabolic
bioremediation or cometabolic natural attenuation may be a serious phenomenon
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in the ocean (Stackhouse et al. 2017). Methanotrophs, methane-oxidizing bacteria,
oxidize methane via a series of enzymes that are unique to this group. The primary
enzyme in this oxidation chain is methane monooxygenase. Methane mono-
oxygenase is an extremely powerful oxidizer, thus giving it the capability of
oxidizing a wide variety of normally recalcitrant compounds including oil constit-
uents (Cardy et al. 1991). See ▶ “Cometabolic Bioremediation” in this book.

9 Lesson 8. Blooms of Oil Degraders in the Deep Led to a
Temporal Succession of Other Bacterial Communities with
Unknown Effects on Trophic Levels

Once the oil was undetectable in the water column, many thought that the total
biomass that would drastically decrease immediately and the microbial community
diversity would increase to prespill levels (Hazen et al. 2010). However, once the oil
degraders lost their competitive edge in using oil as a carbon and energy source, they
began to die back, but there was a succession of bacteria that could use daughter
products from direct oil degraders, i.e., “cheaters” bacteria that could not use the oil
directly but could use some daughter product (Techtmann et al. 2016). As time
progressed, even the “cheaters” could not compete so bacteria that could use the
dead bacteria as a nutrient flourished (Fig. 5) (Dubinsky et al. 2013). So, the total
microbial biomass slowly subsided over several months. The diversity of the
microbial biomass also changed dramatically with the oil with the prespill having
951 subfamilies in 62 bacterial phyla (Fig. 6). The DWH deep oil plume had only 16
subfamilies in the Gammaproteobacteria (Hazen et al. 2010). Though bacteria do not
sequester oil hydrocarbons like some organisms they basically convert oil hydrocar-
bons to bacterial compounds, this change in diversity could have had dramatic
effects on the subsequent trophic levels since the size, shape, and compound
composition of the food source had changed. This could also have a long-term effect
even though the oil was gone! To date only a few studies have been published
considering this (Graham et al. 2010; Abbriano et al. 2011; Chanton et al. 2012; Jung
et al. 2012; Carassou et al. 2014; Walsh et al. 2015).

10 Lesson 9. Molecular Techniques Led to a More Thorough
Understanding of DWH Oil Biodegradation

Unlike previous major oil spills molecular techniques, especially sequencing had
advanced significantly allowing a near real-time assessment of oil biodegradation
microbial community structure and function, in the water column, surface, sediment
and coastal areas (Hazen et al. 2010, 2013, 2016; Kostka et al. 2011; Baelum et al.
2012; Beazley et al. 2012; Dubinsky et al. 2012, 2013; Lu et al. 2012; Mason et al.
2012, 2014; King et al. 2014a). It also allowed storing of samples shipboard by
freezing allowing the safe transport and subsequent analysis and archiving of critical
samples (Fig. 7).

Lessons from the 2010 Deepwater Horizon Accident in the Gulf of Mexico 11

http://link.springer.com/&ldquo;Cometabolic Bioremediation&rdquo;


11 Lesson 10. Hydrostatic Pressure Had Little Effect on DWH
Oil Biodegradation

Because of the depth of theMacondo well (1500 m), it was thought by many that the
hydrostatic pressure might reduce biodegradation and/or promote biodegradation by
piezophiles. Recent studies used water collected at depth during the response phase of
DWH and preserved hydrostatic pressure as much as possible for simulations in the
laboratory. In the laboratory simulations, these sampleswere exposed to 0.1, 15, and 30

Fig. 5 Temporal Community Structure Changes showing sustained alterations in subsurface
microbial communities and impacted the deep ocean for at least months after well containment.
(After Dubinsky et al. (2013))
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Fig. 6 951 subfamilies were detected in 62 bacterial phyla. Only 16 subfamilies in gammaproteo-
bacteria significantly enriched in plume. (After Hazen et al. (2010))
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Megapascals (MPa) pressure (the Macondo well was at 15 Megapascals) (Marietou et
al. 2018). Their results suggest that pressure acts synergistically with low temperature
to slow microbial growth and change microbial community structure and thus oil
degradation in deep-sea environments. This only happened withDWHwhen the water
collected was exposed to 30 MPa, since DWH was actually at 15 MPa and there was
little effect of pressure. However, if deep basin oil exploration continues, it is bound to
get deeper and more attention should be paid to getting samples collected in situ at
pressure from these deeper strata to determine the effect that pressure is having on the
oil degrading microbiome (Hazen et al. 2016; Hazen and Techtmann 2018).

12 Research Needs

Because of all the new techniques that were demonstrated with DWH, Standard
Operating Procedures (SOP) were in dire need during the response phase, during the
subsequent investigations for National Resource and Damage Assessment (NRDA),
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Fig. 7 Themicrobial community in the deep-water plume was distinct from themicrobial community
in uncontaminated waters at the same depth. Hierarchical clustering identified similarities between
microbial communities. Uncontaminated deep-water samples showed a higher relative abundance
of Alphaproteobacteria and Acidobacteria, while the deep-water oil plume had lower abundance of
Alphaproteobacteria and Pelagibacteraceae and much higher abundance of Gammaproteobacteria
including Oceanospirillaceae and Pseudomonadaceae. (After Hazen et al. (2010))
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and during long-term investigations of effects of the DWH accident. We need a
dynamic set of SOPs that are put together and peer reviewed by a multidisciplinary
group of experts that can be used by the scientific community for oil biodegradation
research.

In Situ Sampling and Characterization. During the response phase of the DWH
accident, it was difficult to find many in situ sampling and characterization devices
that were useful for taking critical samples. A lot of SOPs were developed on the fly
many of the response phase ships used standard CTD sampling rosettes out fitted with
2 UV fluorometers which used fluorescence to detect hydrocarbons and captured
water at depth with Niskin bottles. The UV fluorometers (Quantech/Thermo Scien-
tific) were employed in tandem to determine fluorescence intensity ratios (FIRs). One
fluorometer was equipped with a pair of wavelength filters allowing excitation at
280 nm and emission at 340 nm. The second fluorometer was equipped with the same
280 nm excitation filter and a longer (445 nm) wavelength. The Niskin bottles were
cleaned internally with distilled water and detergents between samplings. The sam-
pling crews were sensitive to the problem of contamination from surface oil and used
physical methods to disperse the surface slick before initiating sampling by the CTD,
e.g., prop wash at the back of the ship before deployment and recovery, and detergent
if prop wash was insufficient. For side deployments, the surface of the water was
sprayed with freshwater to disperse surface oil; if this was insufficient, detergent was
applied to the surface of the water then sprayed with freshwater to disperse surface oil.
From each sample 800–2000 ml of water was filtered through sterile filter units
containing 47 mm diameter polyethylsulfone membranes with 0.22 μm pore size
(MOBIO Laboratories, Inc., Carlsbad, CA) and then immediately frozen and stored at
�20 �C for the remainder of the cruise. Filters were shipped on dry ice to Lawrence
Berkeley National Laboratory and stored at �80 �C until DNA and PLFA extraction
(Hazen et al. 2010). We also saw deployment of new in situ physical/chemical
characterization devices like a subsurface hydrocarbon survey using an autonomous
underwater vehicle and a ship-cabled sampler (Camilli et al. 2010). Recently it has
also been demonstrated that oil seeps and spills can be linked to their origin by Fourier
Transform Ion Cyclotron Resonance Mass Spectrometry (Krajewski et al. 2018). For
sampling microbiomes in situ we need more development of devices that can be
triggered remotely to filter and/or sample at depth like the large volume Stand Alone
Particle Sampler (SAPS, Challenger Oceanic, UK, with controller, battery, and pump
upgrades by Oceanlab, University of Aberdeen, Scotland) which can filter 62 and
123 L of seawater at depth through a 292 mm diameter nylon filter with a pore size of
0.2 μm (Techtmann et al. 2015) and the commercially available McLane Pump Large
Volume water sampler (McLane Labs, Falmouth MA) which can filter 10.3 and 27 L
of water per sample (Techtmann et al. 2017a).

Mesocosms/Microcosms. Bottle effects are real, as are sampling with considera-
tion of ambient temperature and pressure and travel time of the sampling device
(Marietou et al. 2018). It has been found that on-board ship microcosms/mesocosms
start with different community structures and give different results in terms of
function and diversity than water samples taken back over some days of travel for
laboratory mesocosms (Liu et al. 2017). Too many times during DWH the media
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interviewed scientists that did not have data or did not have data tied to rigorous
SOPs and peer review, which gave the public the wrong impression of what was
going on during the DWH accident.
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