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History of NP-Completeness

Stephen Cook, 1971, showed that formula Satisfiability is
NP-Complete.

Karp’s paper showed that computational intractability is
the rule rather than the exception.

Together Cook & Karp, and independently Levin laid the
foundations of the theory of NP-Completeness.

“... Karp introduced the now standard methodology for
proving problemsto be NP-Complete ...” — Turing Award
citation.



Definitions

Given an alphabet S,

A problem Q isaset of ‘yes instances e.qg..
SAT = {F | Fissatisfiable}, (x1Ux2)1 SAT

An agorithm A solves problem Q if, A(X)=‘yes < x1 Q.

A certifier B isan efficient certifier for problem Q if,

Vx. (xT Q< 3y.ly|£ poly(|x]) st. B(x,y)="yes and
running time of B £ poly([x|+|y]) )

P ={Q|Qhasapolynomial time algorithm A}

NP ={Q|Q hasan efficient certifier B}



Defn’s. (contd.)

Let L, M be languages.

L £, M if dapolynomial time computable function f s.t.
Xl Lo f(x)1 M.

The relation £; is symmetric and transitive.

Also,L £, MandM 1 P= L1 P
LE-MandM1 NP= LI NP.

L issaid to be complete for NP w.r.t £, if
i. VMT NP, M£,L (= LisNP-Hard), and
i.LT NP



Classification of NP-Complete
Problems

. Constraint Satisfaction : SAT, 3SAT

2. Covering . Set Cover, Vertex Cover, Feedback Set, Clique

o 0~ W

Cover, Chromatic Number, Hitting Set
Packing : Set Packing

Partitioning : 3D-Matching, Exact Cover
Sequencing : Hamilton Circuit, Sequencing
Numerical Problems : Subset Sum, Max Cut



Some NP-Complete Problems

3SAT : Given F(x,, ....x,) in3-CNFi.e. F=C,U... UC_,
C = (x, Ux,Uxy,), isF satisfiable ?

Clique : Given agraph G, a number k, does G have a complete
subgraph of sizek ?

Vertex Cover : Given G=(V,E), |, isthere asubset U of V stt.
|lU |= | and for every e=(u,v), at least one of u,visinU ?

3D-Matching : Given finitedigoint sets X, Y, Z of sizen, and a set
of triples{t} | X Y  Z, aretheren parwisedigoint triples?

Subset Sum(Knapsack) : Given n elements, {w,, ...,w,} and a
target B, isthere a subset of e ements which adds up exactly to B ?



3SAT £; Clique

Construct V={3s, ifn| s isaliteral and occursin C, }
E={(&,in&,j)|i* jands * d}
K=m

ed. F= (x,Ux, U x;) U(x,U x, Ux,)

¢, G
‘IJ' ‘IE
X, X,

Az Az



Suppose F = C, U... UC,issatisfiable, then at least one
literal s; In everyC |strue also both s, and s, are not true

= the nodes{esl, 1 ..., &, mi} form acllqueof size m=k.

Conversely if d acligue of size m, then we must have a node
&, Infor each i, since two literals in the same clause do not
have an edge between them. Also both s, s cannot bein the
cligue.

= setting the corresponding literals to true satisfies F.

\ F1 3SAT < (G, m)1 Cligue



Clique £, Vertex Cover

Construct G* = (V,E®), where E*= {(u,v) | (u,v) | E}
= V|-k= nk

Suppose G has aclique K of sizek. Then in G, no two
vertices in K are connected = V-K is avertex cover for G©
since for any edge e=(u,v) I EC, both u, v cannot bein K

= V-K isavertex cover of size n-k.

Conversely if G has avertex cover U of size n-k. Then no
two verticesin V-U are connected in G©

= V-U formsaclique of sizek in G.



3D-Matching £, Subset Sum

Let m= [{t}|+1. Encode each triple as a number in base m.
Each triple written asa‘bit’ string of length 3n in base m.

X — pogition)’ = J-1, O£ )" <n

y,— positionk =n+k-1, nE£K <2n

z,— podition |’ = 2n+1-1, 2n£1' <3n

For each t= (X, Y\, 2), wehavew, =m’' + mk + mf' ie. w; is
the string which has 1sat positions|j’, K and |’.

Zy oo o D Yy Y Y Xy e X X
o..1..00..1212..00..1..0

Finally welet B = string of all 1s= (me"-1)/(m-1).



If we have a 3D-Matching, then since there are n pairwise
digoint triples, each x;, y,, z Is present in exactly onetriple

\ adding w;’ s corresponding to the triples gives a string of 1s
= thereis asubseat with sum = B.

Conversdly if there is a subset adding up to B, then by
construction the triples corresponding to the elements cover
each x;, y,, z exactly once

= there are n pairwise digoint triples.



Impact of the paper

Along with Cook’ s paper laid the foundations of the theory
of NP-Completeness.

Showed that all these different looking problems are
essentially the same problem in disguise.

Since Karp’s paper there have been a plethora of paperson
proving problems NP-Complete or NP-Hard.
Gary & Johnson, “Computers and Intractability : A Guide

to the Theory of NP-Completeness’ has an extensive
catalogue of these.

An AltaVista search for NP Completeness gave 227,598
hits.



Discussion

* Inthe face of computational intractability, how do we
approach NP-Compl ete problems?

* Are all NP-Complete and NP-Hard problems equally hard?
« Areall instances of NP-Complete problems equally hard?

« PCP model(Arora, Lund, Motwani et al.) — Proof, Verifier
model.

Given a string X, a proof of membership y, a probabilistic (r(n), q(n))
verifier uses O(r(n)) random bits to compute O(q(n)) addresses in the
proof. Then using random access it queries those addresses and decides
membership.

Main Theorem : NP = PCP(log n,1)
« Karp anecdotes?
e P=NP?



