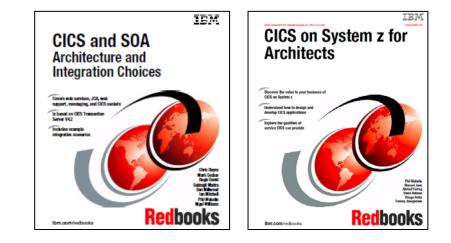


Securing Access to CICS

Nigel Williams | Certified IT Specialist | IBM IBM Client Center, Montpellier, France

nigel_williams@uk.ibm.com

Thanks to: Phil Wakelin, Colin Penfold, James O'Grady, Ivan Hargreaves, Fraser Bohm and Rob Jones


Abstract and agenda

CICS applications and their associated data constitute some of the most valuable assets owned by an enterprise. These applications are rarely used in isolation anymore, instead, they form an integral part of a wider set of business processes that span several platforms and architectures. This session outlines the main planning considerations to help you to choose between different options for securing access to CICS. Security consideration for the strategic CICS integration technologies are reviewed, including:

- Web services
- CICS Transaction Gateway
- WebSphere MQ

This presentation is based on some new IBM ITSO Redbooks publications

- Transaction processing trends
- CICS integration scenarios
- Security challenges
- Sample solutions What's new in CICS TS V5.1
- What's new in CICS TG V9.0
- Summary

Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.

Transaction processing trends

Business

- New business services to attract customers and maintain their loyalty
- Business agility and optimization
- Control of risks and ability to respond to regulatory scrutiny
- Requirement to build partner relationships, and manage acquisitions and mergers
- Pressure to reduce costs

Technical

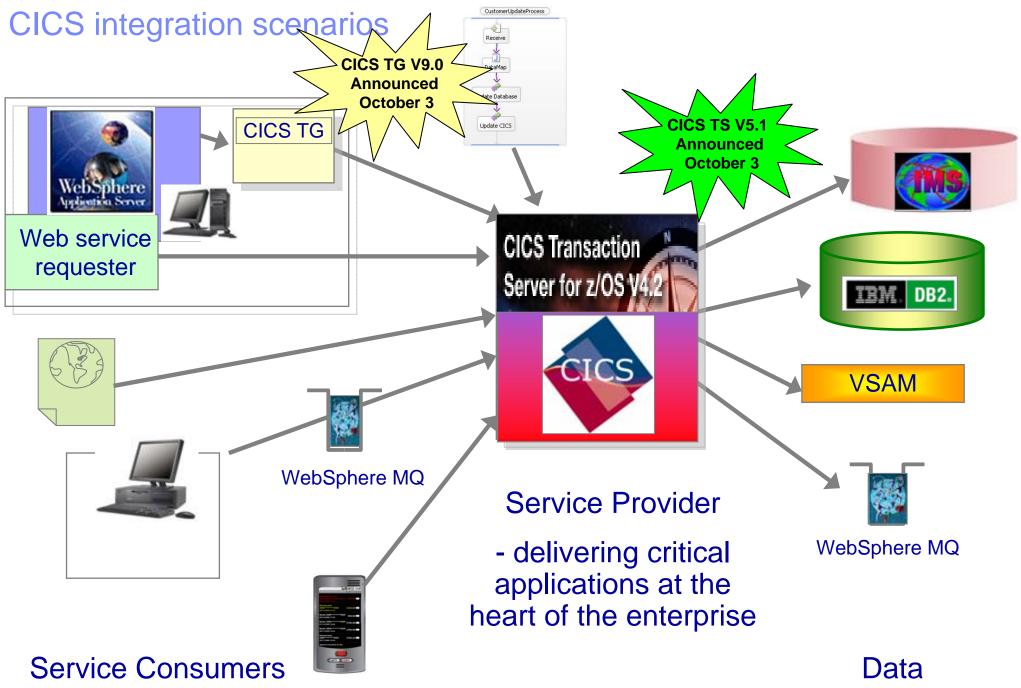
- Continued evolution of SOA
- Mobile
- Web 2.0
- Business events and rules
- BPM

Transaction Processing: Past, Present and Future

Published October 2012

"We try to provide a friendly and pleasant online experience to our customers and that also rewards them for their loyalty." (Misha Kravchenko, Marriott International)

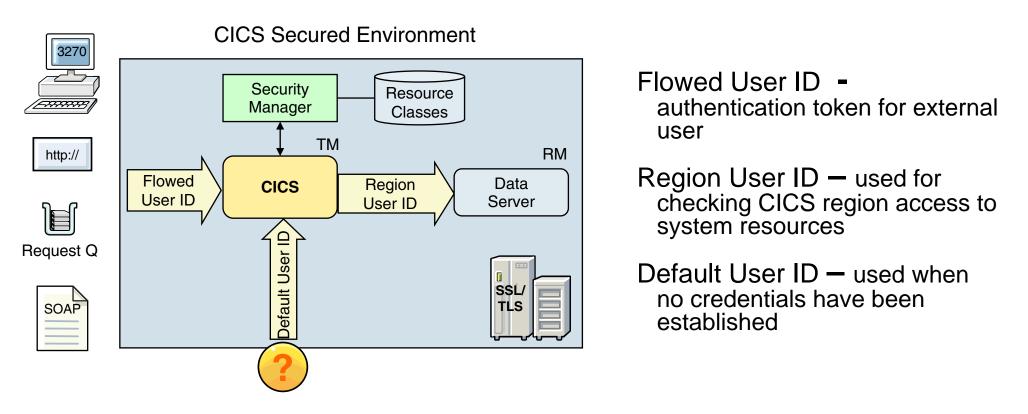
"The major business trends impacting our TP systems are increasing customer expectation, the need for quicker delivery of applications and more partner integration" (China Merchants Bank)


"The overall cost of the service layer is greater than the process layer, which in turn is greater than the media access layer. This means that the best ROI is achieved through service reuse."

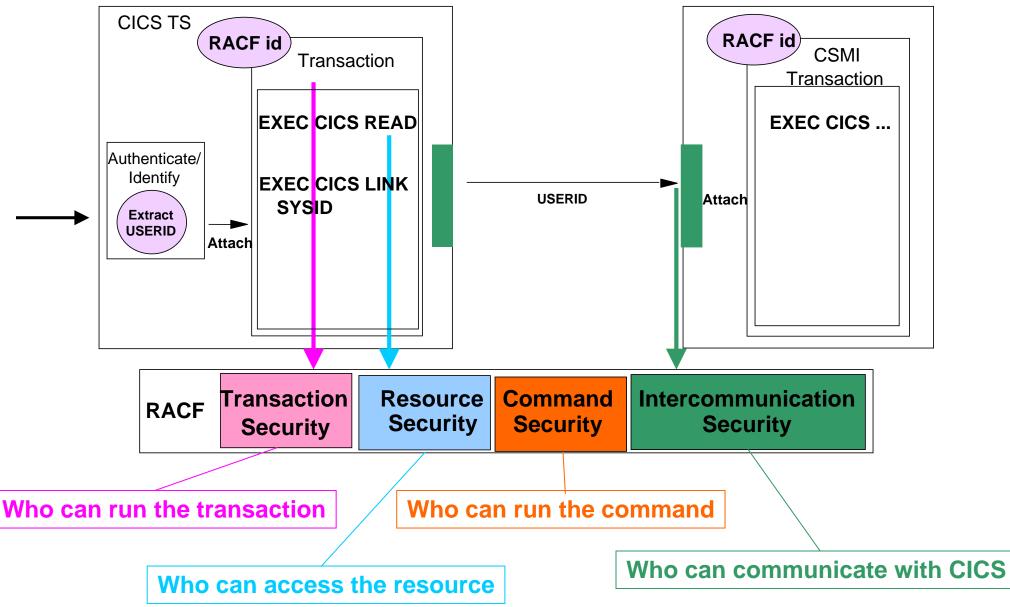
"The use of web services is strategic for the bank." (Marcel Däppen, UBS WM&SB)

"We expect more growth coming from the mobile channel and we also foresee a workload increase from new self-service applications." (ABN AMRO Bank)

GSE REGION BELUX, Enterprise Systems Security Group

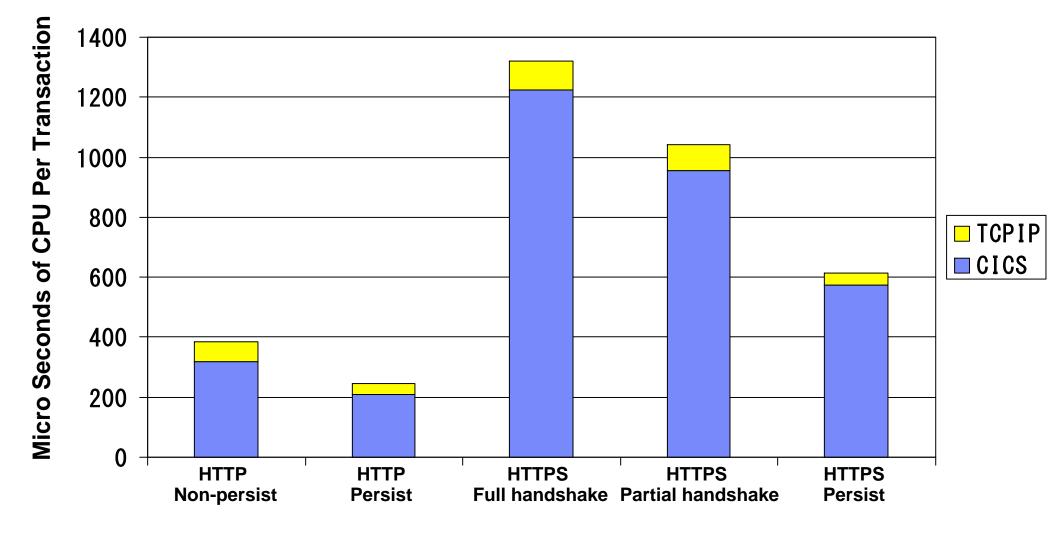


© IBM Corporation 2012


CICS secure integration

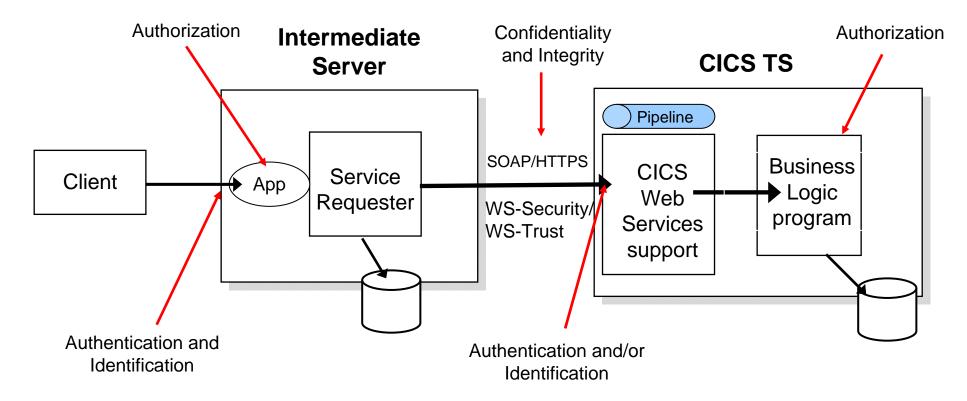
Authentication - CICS requires a password/pass phrase, digital certificate or identity assertion Identification - CICS requires an 8-character userid for use with its external security manager Authorization - CICS uses ESM to authorize the userid to a specified resource class Confidentiality/Integrity - CICS uses TLS/SSL or WS-Security

CICS base security



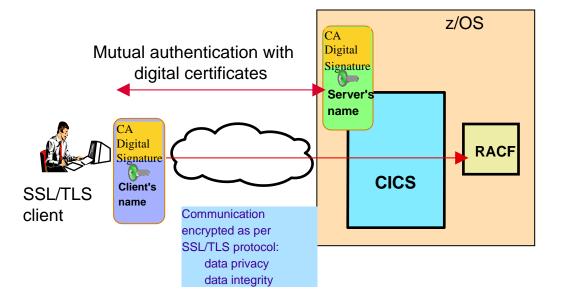
Common challenges to securing access to CICS

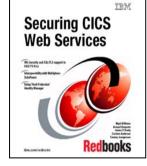
- End-to-end security is often hampered by the issue of how to provide secure access between middleware components that use disparate security technologies, such as user registries and security token formats
- Often security is at odds with performance, because the most secure techniques require the most processing overhead
- The range of options is vast and the required skill level is high, both of which can sometimes slow down the implementation


CPU cost comparison (to get 32K bytes of data in/out of CICS)

Tests conducted on a z196 M80 running CICS TS V4.2 and using Triple DES, 168 key length, SHA-1, RSA. This data is planned for publication later this year. Thanks to the CICS Performance team -John Burgess, Graham Rawson and Arndt Eade)

CICS web services security considerations




- Transport security alone (e.g SSL/TLS) may be sufficient simple environments
- Message security (WS-Security) can be used for more advanced requirements
- Some security functions can be 'offloaded' to WebSphere DataPower
- z/OS identity propagation is supported
- CICS can interoperate with a Secure Token Service (STS) to provide support for a wide range of security tokens

CICS web services are the most widely adopted CICS feature in the last 10 years

CICS support for SSL/TLS

- CICS uses System SSL to support both the SSL 3.0 and TLS 1.0 protocols
- CICS service provider application can be secured using HTTPS
- CICS service requester application can also use HTTPS
- CICS supports SSL session id reuse
- HTTPS provides
 - Confidentiality for the data passed between the service requester and the service provider by using efficient secret key cryptography
 - Integrity for the data passed between the service requester and the service provider
 - Client authentication through either HTTP basic authentication or a client X.509 certificate
 - Mutual trust through exchange of certificates
- It can be used with hardware cryptographic devices when ICSF (Integrated Cryptographic Services Facility) is enabled
- Enabled by SIT parameters and attributes of the TCPIPService
- Site certificates can be used to simplify certificate administration
- New PERFORM SSL REBUILD command to refresh the certificates used by a CICS region for SSL handshakes

CICS TS V5.4

Defining a TCPIPSERVICE for SSL/TLS

CEDA DEFine TCpipservice(TCPIPABC)						
TCpipservice	e : S3C1SSL					
GROup	: S3C1					
DEscription	==> Example TCPIPSERVICE					
Urm	==> DFHWBADX					
POrtnumber	==> 20002	1-65535				
STatus	==> Open	Open ! Closed				
PROtocol	==> Http	Iiop ! Http ! Eci ! User				
TRansaction	==> CWXN					
Backlog	==> 00005	0-32767				
TSqprefix	==>					
Ipaddress	==>					
SOcketclose	==> 000030	No ! 0-240000 (HHMMSS)				
Maxdatalen	==> 000032	3-524288				
SECURITY						
SS1	==> Clientauth	Yes ! No ! Clientauth				
Certificate	==> 'leave blank	for default or specify label'				
Ciphers	==> 0A1613100D05042F30313233					
Authenticate	e ==> CERTIFICATE	NO ASSERTED AUTOMATIC AUTOREGISTER BASIC CERTIFICATE				

Mapping cypher codes

Cipher	Algorithm	Key length	Hash	Key exchange	Certificate		
04	RC4	128 bits	MD5	RSA	RSA		
05	RC4	128 bits	SHA-1	RSA	RSA		
0A	Triple DES	168 bits	SHA-1	RSA	RSA		
0C	DES		ockets Leve	1 trace showing cynher	and cartificate selection		
0D	Triple DES	CICS Sockets Level 1 trace showing cypher and certificate selection					
0F	DES	56 b SO 0802 SOSE EXIT - FUNCTION(SECURE_SOC_INIT) RESPONSE(OK)					
10	Triple DES	168 GSK_RETURN_CODE(0) CERTIFICATE_user ID(USERWS02) CIPHER_SELECTED(0A) CIPHER_NAME(SSL_RSA_WITH_3DES_EDE_CBC_SHA)					
12	DES						
13	Triple DES	168 bits	SHA-1	ephemeral Diffie-Hellman	DSS		
15	DES	56 bits	SHA-1	ephemeral Diffie-Hellman	RSA		
16	Triple DES	168 bits	SHA-1	ephemeral Diffie-Hellman	RSA		
2F	AES	128 bits Ne	ew monitorin	g fields to list the SSL cip	oher suite used CICS TS V5.1		
30	AES	128 bits	SHA-1	fixed Diffie-Hellman	DSS		
31	AES	128 bits	SHA-1	fixed Diffie-Hellman	RSA		
32	AES	128 bits	SHA-1	ephemeral Diffie-Hellman	DSS		
33	AES	128 bits	SHA-1	ephemeral Diffie-Hellman	RSA		
35	AES	256 bits	SHA-1	RSA	RSA		
36	AES	256 bits	SHA-1	ephemeral Diffie-Hellman	DSS		
37	AES	256 bits	SHA-1	ephemeral Diffie-Hellman	RSA		
38	AES	256 bits	SHA-1	ephemeral Diffie-Hellman	DSS		
39	AES	256 bits	SHA-1	ephemeral Diffie-Hellman	RSA		

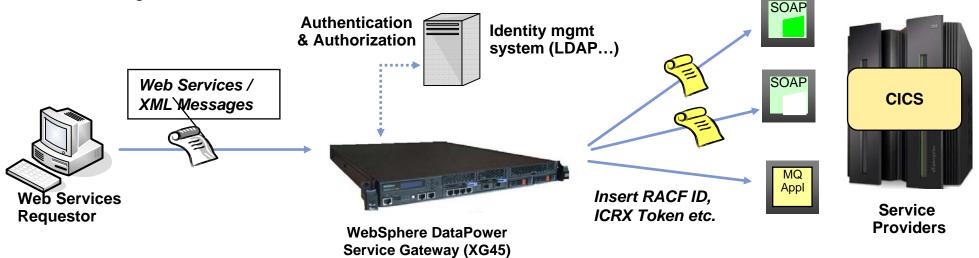
© IBM Corporation 2012

PERFORM SSL REBUILD

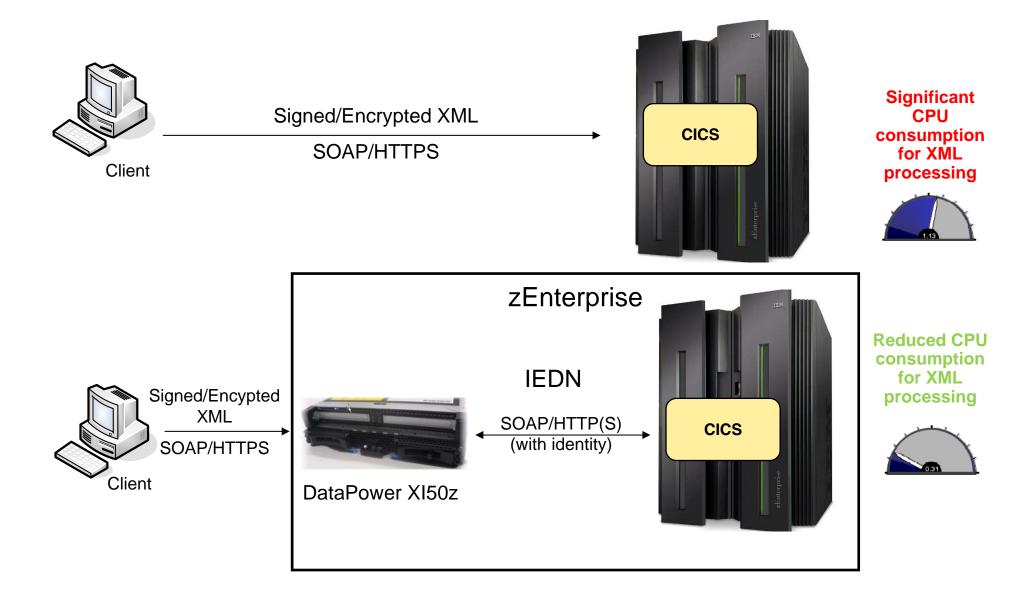
- New PERFORM SSL REBUILD command
 - -via SPI program, CEMT, Web User Interface or CICS Explorer
- The scenarios this changes are:
 - -Adding new certificate to a keyring
 - Update the URIMAP or TCPIPSERVICE resource definition with the label name of new certificate
 - Install definition
 - Issue SSL REBUILD and CICS will then use new certificate
 - -Certificate is about to expire
 - Renew the certificate in the keyring
 - Issue SSL REBUILD and CICS will then use new certificate

CICS support for message security

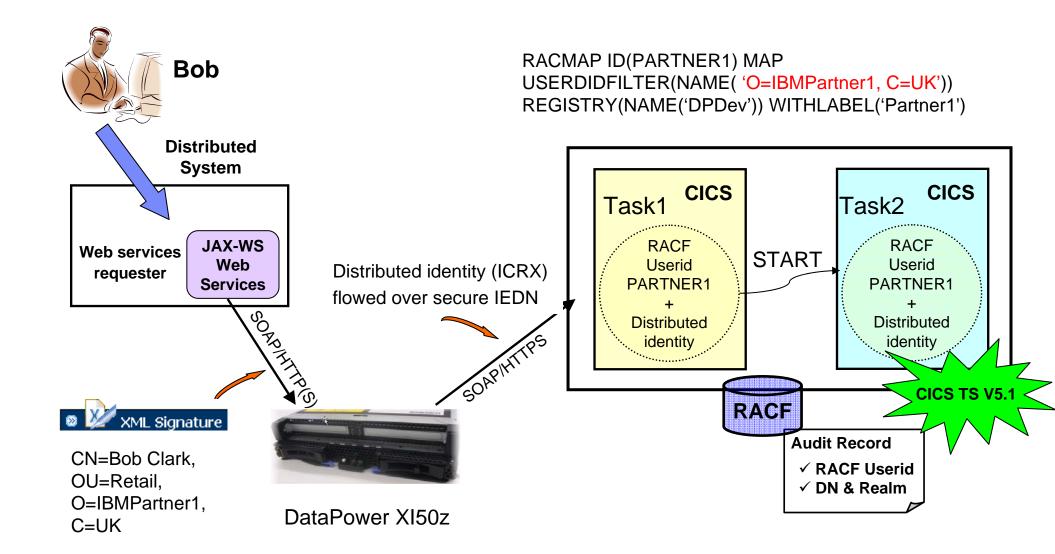
- Various mechanisms for deriving a user ID from an inbound message, including:
 - Basic authentication
 - X.509 certificate
 - Identity assertion
 - Interoperation with a trusted third party



- Various mechanisms for attaching a security token to outbound message, including:
 - X.509 certificate
 - Identity assertion
 - Interoperation with a trusted third party
- Signature validation of inbound message signatures and signature generation for the SOAP body on outbound messages
- Decryption of encrypted data in inbound messages and encryption of the SOAP body content on outbound messages
- Enabled by including the <wsse-handler> element in the pipeline configuration file

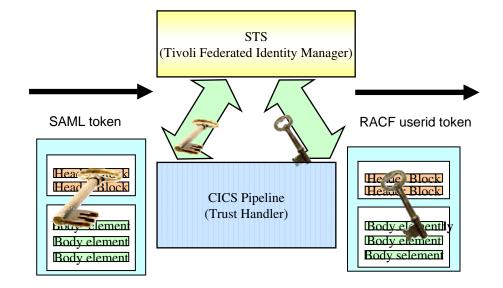

Using DataPower to secure CICS web services

- Encryption of transport layer HTTP, HTTPS, SSL
- <u>XML/SOAP Firewall</u> Filter on any content, metadata or network variables
- <u>Data Validation</u> Approve incoming/outgoing XML
- <u>Field Level Security</u> WS-Security, encrypt & sign individual fields, non-repudiation
- <u>Access Control</u> (AAA) enforces access policy stored in an Identity Management Solution
- <u>Message Enrichment</u> Insert header info, SAML token, Kerberos token, RACF ID, ICRX …
- <u>Anti Virus Protection</u> integrates with corporate virus checking through ICAP protocol
- <u>Security standards</u> WS-Security, WS-Policy, SAML, Kerberos, WS-Trust, WS-Addressing…



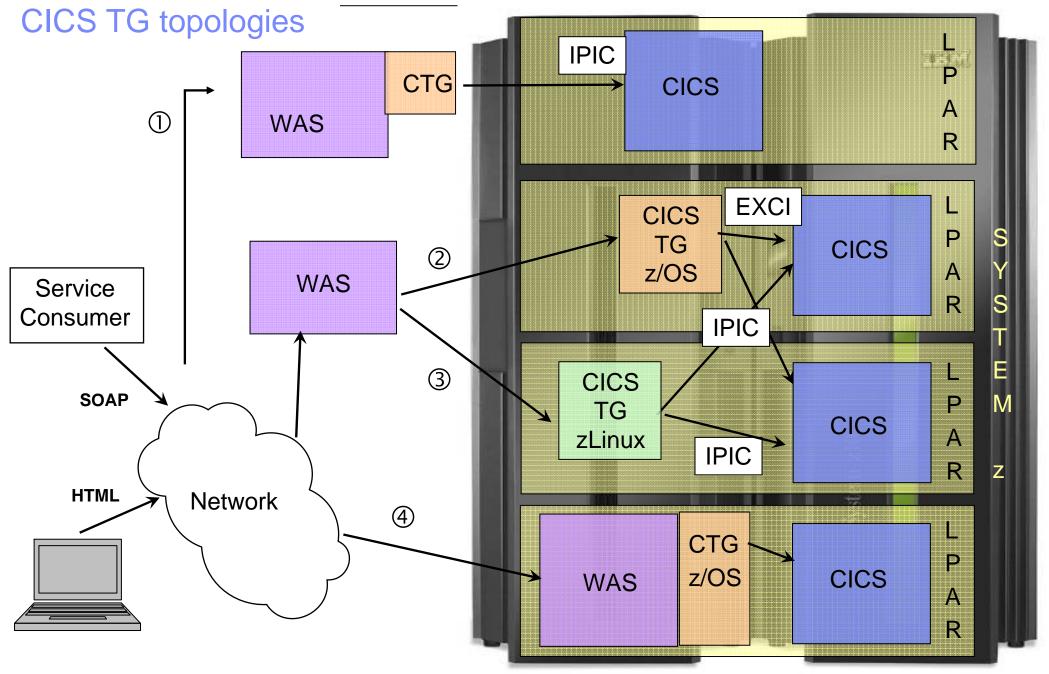
Why use DataPower to offload security functions?

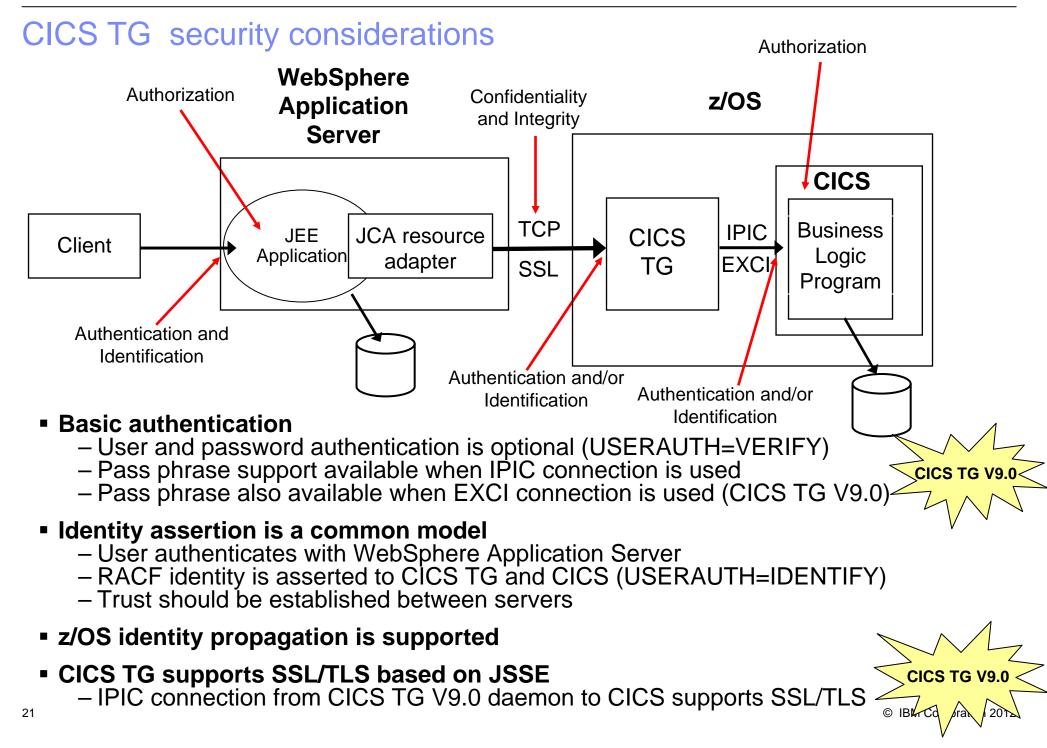
Implementing z/OS identity propagation with CICS web services



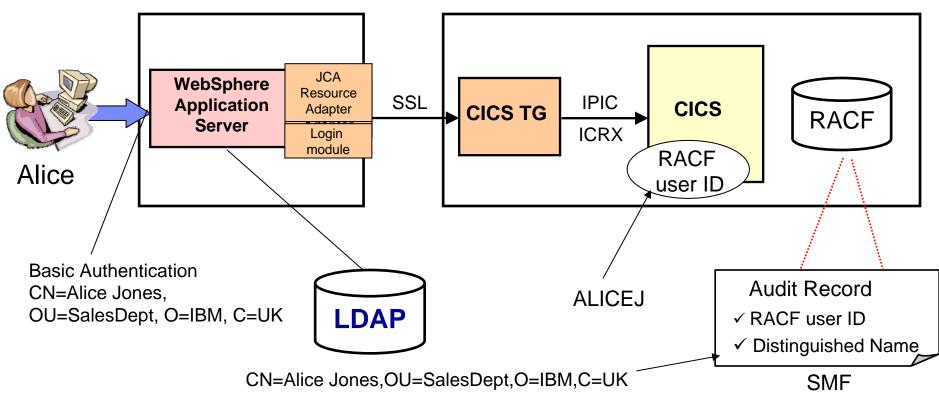
ICRX=Identity Context Reference

CICS support for WS-Trust


- WS-Trust provides a framework for building trust relationships
 - Sender and Receiver in different security domains
 - Security tokens must be vouched for by trusted third party
 - Trusted third party called a Security Token Service (STS)


- STS can be used to transform one form of user identification into another form
- Tivoli Federated Identity Manager (TFIM) can act as an STS
 - Provides framework to support standards-based, federated identity management between enterprises that have established a trust relationship
- TFIM supports a wide range of security tokens, including SAML, UsernameTokens, Kerberos, LTPA, Passticket and X.509 tokens
- Enabled by including the <wsse-handler> and <sts_authentication> elements in the CICS Web services pipeline configuration file

GSE REGION BELUX, Enterprise Systems Security Group

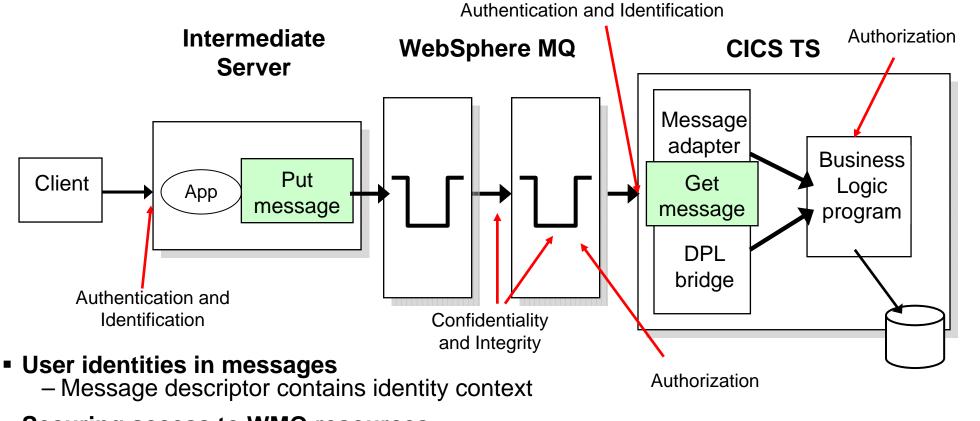


CICS TG V9.0

orpon tion 2012

Implementing z/OS identity propagation with CICS TG

RACMAP ID(ALICEJ) MAP USERDIDFILTER(NAME('CN=Alice Jones, OU=SalesDept,O=IBM,C=UK')) REGISTRY(NAME('Idaps://myIdap.uk.ibm.com')) WITHLABEL('Alice')

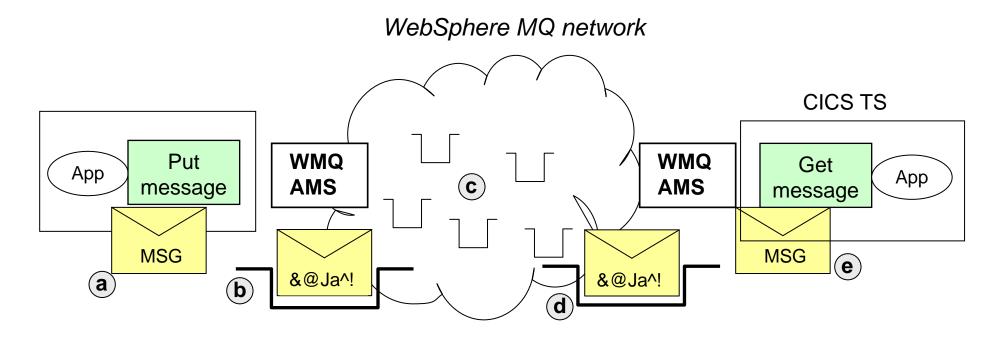


Note: CICS TG V9.0 introduces z/OS identity propagation support for remote connections to CICS TG daemon running on a non-z/OS platform

z/OS



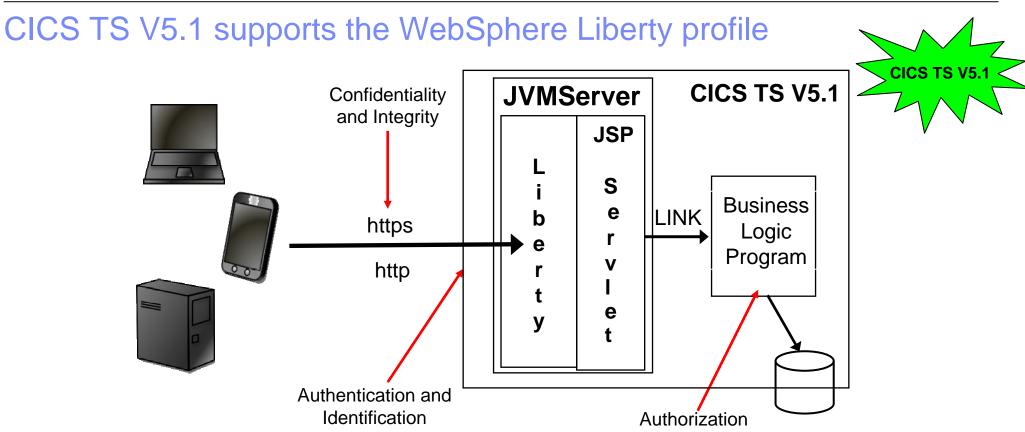
CICS and WebSphere MQ security considerations


Securing access to WMQ resources

- User ids associated with task and CICS region id are checked
- CICS DPL bridge
 - Additional options to control authentication
- SSL/TLS support
 - Between queue managers
- WMQ Advanced Message Security
 24 End-to-end confidentiality

WMQ Advanced Message Security

- 1. Sender application uses MQPUT API to put a message to a queue
- 2. MQPUT is intercepted by a security exit and signing/encrypting policy is applied by WMQ AMS client interceptor
- 3. Signed and encrypted message is transmitted across the WMQ network
- 4. Receiver application uses MQGET API to get the message from queue
- 5. WMQ AMS client interceptor performs signature checking and decryption as specified by the queue's data-protection policy, and then returns the original message to the calling application



Security options table

	CICS Web services	CICS TG	WebSphere MQ
Basic authentication	Supported	Supported	Supported
Identity assertion	Supported	Supported	Supported
z/OS Identity Propagation	Supported	Supported	Not supported
SSL/TLS	Supported	Supported	Supported
Message security	Supported	Not supported	Supported with WMQ AMS

GSE REGION BELUX, Enterprise Systems Security Group

Authentication

- User and password authentication is optional (specified in cicsSecurity.xml file)

- Confidentiality/integrity

 Supports SSL/TLS based on JSSE
 - Server authentication only

Authorization

- Default transaction CJSA can be switched using URIMAP so you can use different transactions to authorize different sets of users based on URI
- Multiple servlet requests, as part of an application, take advantage of SSO (single sign-on)

Summary

- Different business and technology trends are driving more and more integration with CICS applications
- Lots of options for securing access to and from CICS
- Start with a well defined set of security requirements
- Options exist for true end-to-end security
- Often need to optimize chosen solution in order to minimize impact on performance

GSE REGION BELUX, Enterprise Systems Security Group

Copyright Information

© Copyright IBM Corporation 2012. All Rights Reserved. IBM, the IBM logo, ibm.com, AppScan, CICS, Cloudburst, Cognos, CPLEX, DataPower, DB2, FileNet, ILOG, IMS, InfoSphere, Lotus, Lotus Notes, Maximo, Quickr, Rational, Rational Team Concert, Sametime, Tivoli, WebSphere, and z/OS are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at ibm.com/legal/copytrade.shtml.

Coremetrics is a trademark or registered trademark of Coremetrics, Inc., an IBM Company.

SPSS is a trademark or registered trademark of SPSS, Inc. (or its affiliates), an IBM Company.

Unica is a trademark or registered trademark of Unica Corporation, an IBM Company.

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates. Other company, product and service names may be trademarks or service marks of others. References in this publication to IBM products and services do not imply that IBM intends to make them available in all countries in which IBM operates.