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Summary. The paper discusses some geometrical and combinatorial questions connected with the

well-known problem of Kuratowski concerning the number of sets which can be constructed from a

subset of a topological space by applications of the closure and complement operators in any order.

Kuratowski considered the following problem while investigating the topological closure axioms:

What is the largest number of sets that can be obtained from an arbitrary subset in a topological
space by repeatedly applying the set operations of closure and complement in any order?

Kuratowski showed (e.g., see [8, 48–49]) that no more than 14 distinct sets can be obtained in this fashion.
Later it was proved (see [3, 180] and [5]) that this result remains valid in more general spaces.

Recall that a mapping g is called a closure operator on a set X if for all subsets A,B of X we have

A ⊂ gA (g is extensive),

ggA ⊂ gA (g is idempotent),

A ⊂ B =⇒ gA ⊂ gB (g is increasing).

A set X and closure operator g on X are together called a closure space. Let the complement of A in X be
denoted by cA. Kuratowski’s result is a consequence of the following statement:

Any semigroup of operators generated by g and c contains at most 14 elements.

Sets obtained from A ⊂ X by applying the operations g and c can be arranged into the following two
sequences:

A, gA, cgA, gcgA, cgcgA, gcgcgA, cgcgcgA,

cA, gcA, cgcA, gcgcA, cgcgcA, gcgcgcA, cgcgcgcA.

(1)

(2)

As both gcgcgcg = gcg and gcgcgcgc = gcgc [5], each of the sequences (1) and (2) contains at most
seven sets.
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The following two diagrams display these 14 sets ordered by set inclusion (−→ denotes ⊂ ):

(3)

(4)

It is easy to see that applying the operator c to each set in diagram (3) produces diagram (4). Introducing
the interior operator i = cgc, the following two diagrams express (3) and (4) in terms of g, i, and c :

(5)

(6)
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We investigate the consequences when sets in (3) equal sets in (4). For brevity we set B1 = cgcA,
B2 = cgcgcgcA, B3 = cgcgA, B4 = A, B5 = gcgcA, B6 = gcgcgA, B7 = gA and Cj = cBj , j = 1, . . . , 7.

B1 B2 B3 B4 B5 B6 B7

C1
0X ∗X ∗X X X

C2
0X ∗X ∗X X X

C3
0∅ 0∅ ∗X = ∗X ∗X

C4
∗∅ ∗∅ ∗∅ ∗X ∗X ∗X

C5
∗∅ ∗∅ = ∗∅ 0X 0X

C6 ∅ ∅ ∗∅ ∗∅ 0∅

C7 ∅ ∅ ∗∅ ∗∅ 0∅

(7)

Table (7) is interpreted as follows. If Ci = Bj , then i < j =⇒ Ci = Bj = X and i > j =⇒ Ci = Bj = ∅.
An equals sign means Ci = Bj without any common value implied. An asterisk (zero) means that the relation
Ci = Bj is possible only when g∅ = X (g∅ = ∅). Empty cells represent impossible equations. Symmetry
with respect to the main diagonal holds since Ci = Bj and Bi = Cj are equivalent.

See the appendix for a proof of table (7).

We now examine what happens when sets within (3) or sets within (4) are equal. By duality it suffices
to consider equalities within (5) alone. Note, our goal here is not to characterize the sets A for which given
equalities hold in diagram (5) (this was done in [10] and [4] for topological spaces). We merely point out
which equalities are equivalent to one another.

Theorem 1. The following equivalencies hold for all A ⊂ X:

1) A = giA⇐⇒ A = gigA, 4) giA = gigA⇐⇒ igA = igiA,

2) A = igA⇐⇒ A = igiA, 5) gA = X ⇐⇒ gigA = X,

3) giA = igA⇐⇒ igiA = gigA, 6) iA = ∅⇐⇒ igiA = ∅.

Proof. 1) If A = giA, then gA = ggiA = giA = A and A = giA = gigA. If A = gigA, then gA = gigA = A
and A = giA.

2) If A = igA, then A = iA and A = igiA. If A = igiA, then A = iA and A = igA.

3) giA = igA =⇒ gigA = giA = igA = igiA; igiA = gigA =⇒ giA = gigiA = gigA = igiA = igigA =
igA.

4) If giA = gigA, then igiA = igigA = igA. If A = igiA, then A = iA and A = igA.

Before proving parts 5) and 6), we note that gcg∅ = X. Indeed since g∅ ⊂ gcg∅ and g∅ ∪ cg∅ = X,
it follows that X ⊂ g(g∅ ∪ cg∅) ⊂ g(g∅ ∪ gcg∅) = gcg∅.

5) gA = X =⇒ gigA = giX = gcg∅ = X. If gigA = X, then gigA ⊂ gA = X.

6) iA = ∅ =⇒ igiA = ig∅ = cgcg∅ = cX = ∅. If igiA = ∅, then ∅ = iA ⊂ igiA.

Note that parts 1) – 4) of Theorem 1 are proved in [4] for topological spaces.

Definitions. For A ⊂ X let k(A) be the number of distinct sets generated by A by repeatedly applying the
operations g and c. Let l(A) be the number of distinct sets generated by A under g and i. Let k′(A) be the
number of sets in (1) that do not equal cA, or any sets to their left in (1). Let k′′(A) be the number of sets
in (2) that do not equal any sets to their left in (2), or any of the first k′(A) sets in (1).
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From diagrams (3) – (6) it follows that for all A ⊂ X we have:

2 ≤ k(A) ≤ 14, 1 ≤ l(A) ≤ 7, k(A) ≤ l(A) + l(cA) = 2l(A).

Theorem 2. For A ⊂ X the following hold:

1) The number k(A) is even.

2) The numbers k′(A) and k′′(A) are both odd.

Proof. Since X 6= ∅, no subset of X equals its own complement. Thus any finite family of subsets of X
that is closed under c has even cardinality. This proves part (a). The initial complementary pair (A, cA)
always has one set in (1) and the other in (2). All further complementary pairs reside within (1) or within
(2). This proves part (b).

Examples showing that k(A) can take any even value from 2 to 14 are presented in [1]. Necessary
and sufficient conditions for A to satisfy k(A) = 14 are presented in [9] for both general and connected
topological spaces.

Theorem 3. For A ⊂ X the following hold:

1) If k(A) = 2, then 1 ≤ l(A) ≤ 2. In this case l(A) = 2 holds if and only if g is trivial (g∅ = X).

2) If k(A) = 4, then 2 ≤ l(A) ≤ 3. In this case if l(A) = 3, then either g∅ = X, or gcgA = cgA and
gcA = gA.

3) If k(A) = 6, then l(A) = 3 or l(A) = 5. In this case l(A) = 5 holds if and only if both gA = gcA = X
and g∅ 6= ∅ hold.

4) If k(A) ≥ 8, then k(A) = 2l(A).

Proof. Since k(A) ≤ 2l(A), the lower bounds for l(A) have already been established. Since l(cA) = l(A),
we may assume without loss of generality that k′(A) ≥ k′′(A).

1) Clearly l(A) ≤ k(A) = 2. Suppose l(A) = 2. It follows from table (7) that the two sets in (5) are ∅
(= cgcA) and X (= gA). If A = ∅, then g∅ = gA = X. If A = X, then cA = ∅, hence g∅ = gcA = X.
Conversely suppose g∅ = X. Since l(A) ≤ 2, by (7) we have A = ∅ or A = X. If A = ∅ then gA = X,
hence l(A) = 2. If A = X then cA = ∅ and gcA = X. Hence cgcA = ∅. Conclude l(A) = 2.

2) Assume k(A) = 4. Theorem 2 implies k′(A) = 3 and k′′(A) = 1. Note, when k(A) ≥ 4, the set cA
does not equal any sets in diagram (5), since otherwise by table (7) we would get g∅ = X and either A = ∅
or A = X, implying k(A) = 2. Thus l(A) ≤ k(A)− 1 = 3.

Claim l(A) = 3 ⇐⇒ either cgA = iA = igA or cgA = iA = giA. Suppose the right side holds. We get
cgA = iA = ∅ by (7). Thus gA = X. Since cA is not in (5), A cannot equal either X or ∅. Thus l(A) = 3.
Conversely suppose l(A) = 3. Since k′(A) = 3 we have cgA 6= cA. Since k(A) = 4 and l(A) = 3, the set
cgA must therefore be in (5). This implies cgA = ∅ by (7). The presence of ∅ in (5) implies that iA = ∅.
It follows that neither A nor cA equals ∅ or X. Suppose g∅ = B where B 6= ∅ and B 6= X. Since cA is
not in (5) and k(A) = 4, the equation g∅ = giA thus implies g∅ = A. But then gA = gg∅ = g∅ = A,
contradicting gA = X. Hence either g∅ = ∅ (in which case giA = ∅) or g∅ = X (in which case igA = ∅).
This proves the claim.

Since cgA = iA = igA =⇒ g∅ = X, and cgA = iA = giA =⇒ both gcgA = cgA (= ∅) and gcA = gA
(= X), this completes the proof of part 2).

3) Suppose k(A) = 6. Then either k′(A) = 5 and k′′(A) = 1, or k′(A) = k′′(A) = 3.

(a) If k′(A) = 5 and k′′(A) = 1 we claim the sets cgA and gcgA either both belong to (5), or neither
does. If cgA is in (5) then it is immediate that gcgA is also in (5), since (5) is closed under g. On the other
hand suppose gcgA is in (5). By the same argument used below in part 4) (a) that deals with the case when
gcgA is in (5), not only do we get that cgA (= ∅) must also be in (5), we get that gcgA = gcgcA = g∅ 6= ∅.
Thus the claim holds. Since cA is not in (5), we conclude either l(A) = 3 or l(A) = 5.

(b) If k′(A) = k′′(A) = 3 we claim the sets cgA, gcA, and cA do not belong to (5). The set cA is not
in (5) since k(A) ≥ 4. Anytime cgA is in (5) we get cgA = ∅ by (7). The presence of ∅ in (5) implies
cgcA = ∅ = cgA, which by assumption cannot hold. Hence cgA is not in (5). The argument for gcA is
similar. This proves the claim. Hence l(A) = 3.
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(c) We now prove the stated equivalence in part 3).

(=⇒) Suppose l(A) = 5. We showed in part (a) that this implies both gcgA and cgA are in (5), with
gcgA = gcgcA = g∅ 6= ∅. By (7) we get cgA = ∅; the presence of ∅ in (5) implies iA = ∅. Hence
gA = gcA = X.

(⇐=) If gcA = gA = X, then cgA = ∅ is in diagram (5). By parts (a) and (b), this implies l(A) = 5.

4) Suppose k(A) = 8. Then either k′(A) = 7 and k′′(A) = 1, or k′(A) = 5 and k′′(A) = 3.

(a) We claim if k′(A) = 7 and k′′(A) = 1, then cA, cgA, gcgA, cgcgcgA do not belong to (5); if k′(A) = 5
and k′′(A) = 3, then cgA, gcgA, cA, gcA do not belong to (5). Clearly both cases imply l(A) = 4.

We know that cA cannot be in (5) in either case since k(A) ≥ 4. If cgA is in (5) then cgA = ∅ by (7).
But the presence of ∅ in (5) implies that cgcA = ∅ = cgA. This gets cgA out of (5) in the second case.
The first case is handled by noting that cgA = ∅ implies gcgcgA = X = gA. If gcA is in (5) then we have
gcA = X by (7). The presence of X in (5) implies that gA = X = gcA. This gets gcA out of (5) in the
second case. If cgcgcgA is in (5) then it equals ∅ by (7). This gets cgcgcgA out of (5) in the first case since
it implies gcgcgA = X = gA. If gcgA is in (5) then by (7) it must equal ∅, X, or gcgcA. If gcgA = ∅,
then cgA = ∅, hence cgcgA = X = gA. But this contradicts both case assumptions. Hence the relation
gcgA = ∅ cannot hold in either case. If gcgA = X is in (5), then gA = X. But then gcgA = gA, which
cannot hold in either case. Finally if gcgA = gcgcA, then by Claim 3 (b) in the appendix, we have

B1 = B2 = ∅ = C6 = C7,

C1 = C2 = X = B6 = B7,

B3 = C5, C3 = B5.

Since this implies k(A) ≤ 6, we conclude gcgA is out of (5) in both cases. This completes the proof of (a).

Suppose k(A) = 10. Then either k′(A) = 7 and k′′(A) = 3, or k′(A) = k′′(A) = 5.

(b) We claim if k′(A) = 7 and k′′(A) = 3, then cgA, gcgA, cgcgcgA, cA, gcA do not belong to (5);
if k′(A) = k′′(A) = 5, then cgA, gcgA, cA, gcA, cgcgcA do not belong to (5). Clearly both cases imply
l(A) = 5.

All of the arguments in the first and second cases in part 4) (a) respectively apply to the first and second
cases here. Furthermore, by the same argument that got gcA out of (5) when k′(A) = 5 and k′′(A) = 3,
we get the same result for the first case here. Lastly, suppose the second case holds and cgcgcA is in
(5). By (7) it follows that cgcgcA must equal ∅, X, or cgcgA. Since k′(A) = k′′(A) = 5 we immediately
have cgcgcA 6= cgcgA. If cgcgcA = ∅, then gcgcA = X = gA, contradicting k′(A) = k′′(A) = 5. Hence
cgcgcA 6= ∅. Similarly if cgcgcA = X, then gcgcA = ∅ = cgcA, which by assumption does not hold. We
conclude that in the second case, the set cgcgcA cannot be in (5). This completes the proof of (b).

Suppose k(A) = 12. Then k′(A) = 7 and k′′(A) = 5. By all of the arguments in part 4) (b), it follows
that the sets cgA, gcgA, cgcgcgA, cA, gcA, cgcgcA do not belong to (5). Therefore l(A) = 6.

When k(A) = 14 then, obviously, l(A) = 7. This completes the proof of Theorem 3.

Corollary 1. If g∅ = ∅, then k(A) = 2l(A) for all A ⊂ X, except as specified in Theorem 3 part 2).

Corollary 2. ([2], [9]) For any set A in a topological space, the relation k(A) = 14 holds if and only if
l(A) = 7.

Note that [2] gives necessary and sufficient conditions for a topological space X to satisfy

max{l(A) : A ⊂ X} = p (1 ≤ p ≤ 7).
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We now consider what values k(A) and l(A) can take as |X| varies.

Theorem 4. If l(A) = 7 for some A ⊂ X, then |X| ≥ 6.

Proof. The condition l(A) = 7 means that all seven sets in diagram (5) are distinct. Thus, clearly,
|igiA| > |iA|, |gigA| ≥ |igiA| + 2, |gA| > |gigA|, and therefore |g(A)| ≥ |iA| + 4. By parts 5) and 6) of
Theorem 1 we have |iA| > 0, |X| > |gA|. Therefore |X| ≥ 6.

For n = 1, . . . , 7 set L(n) = max{l(A) : A ⊂ X, |X| = n} and K(n) = max{k(A) : A ⊂ X, |X| = n}.
It is easy to verify the following values of L(n) and K(n) for 1 ≤ n ≤ 6:

n 1 2 3 4 5 6

L(n) 2 3 5 5 6 7

K(n) 2 4 8 10 12 14

(8)

Assuming g∅ = ∅, table (8) takes the form:

n 1 2 3 4 5 6

L(n) 1 3 3 4 6 7

K(n) 2 4 6 8 12 14

(9)

The values for K(n) in (8) are given in [1] for algebraic closure. Given these values, the corresponding
values of L(n) for 4 ≤ n ≤ 6 (and upper bounds for L(n) for 1 ≤ n ≤ 3) are supplied by Theorem 3. An
example with n = 3 and l(A) = 5 appears in Claim 3 part (a) in the appendix. Hence L(3) = 5. It is easy
to find examples that prove L(1) = 2 and L(2) = 3.

See the appendix for a treatment of the case g∅ = ∅.

For the case of a topological space it is known (see [1], [6]) that K(n) = 2L(n) = 2n (n = 1, . . . , 7).

A nontrivial example of a closure operator is the convex hull operator in a linear space. In [7] it is shown
that for the convex hull g in n-dimensional Euclidean space En (n ≥ 2) we have max{k(A) : A ⊂ En} = 10.
From this result and Theorem 3 we get the following corollary.

Corollary 3. The convex hull g in En satisfies the relation max{l(A) : A ⊂ En} = 5 (n ≥ 2).

It is easy to verify that the closed convex hull operator in a linear space is also a closure operator. A
proof similar to the above-mentioned one in [7] yields the following result:

Theorem 5. The closed convex hull g in En satisfies

max{k(A) : A ⊂ En} = 2 max{l(A) : A ⊂ En} = 10.

INSTITUTE OF MATHEMATICS AS MSSR, ACADEMIC 5, 277028 CHIŞINĂU (USSR)
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V. P. Soltan, On Kuratowski’s Problem

For any set A in a closure space let k(A) be the number of different sets obtained from A via the closure
operator g and the complement operator applied in any order and let l(A) be the number of different sets
obtained from A by applying the operators g and i = cgc. Kuratowski, and later Birkhoff and Hammer,
have shown that 2 ≤ k(A) ≤ 14, 1 ≤ l(A) ≤ 7, k(A) ≤ l(cA) + l(A) = 2l(A).

Result 1. The number k(A) is always even.

Result 2. When k(A) = 2, then 1 ≤ l(A) ≤ 2; k(A) = 4, then 2 ≤ l(A) ≤ 3; k(A) = 6, then l(A) = 3 or
l(A) = 5; k(A) ≥ 8, then k(A) = 2l(A).

We also consider some geometric issues and study the numbers k(A), l(A) as |X| varies.
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Appendix

The following proofs did not appear in the original paper.

Section 1. Proof of table (7).

Consider the following table of values of i and j satisfying gBn = Bi, gCn = Cj (1 ≤ n ≤ 7):

1n 2 3 4 5 6 7

5i 5 6 7 5 6 7

j 1 2 3 1 2 3 3

gBn = Bi, gCn = Cj

(10)

Let “ij” denote the (equivalent) equations Bi = Cj and Bj = Ci (1 ≤ i < j ≤ 7). The following logical
implications ( denotes =⇒) are easy to verify using (10):

(11)

Claim 1. For all i < j such that Bi ⊂ Bj in diagram (3), equations ij imply that Bi = Cj = ∅ and
Bj = Ci = X.

Proof. This follows immediately from the inclusions Bi = Cj = cBj ⊂ cBi and Bj = Ci = cBi ⊃ cBj .

Claim 2. The property stated in Claim 1 holds for all equations ij except 35.

Proof. Besides equations 35, the only equations ij not handled by Claim 1 are those involving B4 = A
and neither B1 nor B7. These are: 24, 34, 45, 46.

Suppose equations 24 hold. Then so do equations 27 by diagram (11). Thus by Claim 1, C2 = B7 = X
and B2 = C7 = ∅. Conclude B2 = C4 = ∅ and B4 = C2 = X.

The proofs for the other three sets of equations are similar to the one above, since 34 =⇒ 37, 45 =⇒ 15,
and 46 =⇒ 16. This completes the proof of Claim 2.

Claim 3.
(a) Equations 35 6=⇒ either B3 = C5 = ∅ or B3 = C5 = X.
(b) Equations 35 =⇒ B1 = B2 = ∅ = C6 = C7.

Proof. Let X = {1, 2, 3}. Define g by setting g∅ = {2} = g({2}) and gE = X for all other E. It is
easy to verify g is a closure operator. For A = {1} we have B3 = cgcg({1}) = {1, 3} = cgcgc({1}) = C5.
This proves part (a). Equations 35 imply B3 = C5 = cB5. Thus B1 ⊂ B2 ⊂ B3 ∩ B5 = ∅. Similarly
C7 ⊂ C6 ⊂ C3 ∩ C5 = ∅. This proves part (b).
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Claim 4. Equations 25 and 36 each imply g∅ = X.

Proof. By Claim 2, equations 25 imply B2 = ∅ and gB2 = B5 = X. Similarly, equations 36 imply B3 = ∅
and gB3 = B6 = X. This proves Claim 4.

Note, by Claim 4, any equations ij in diagram (11) that imply either 25 or 36 also imply g∅ = X.

Claim 5. Equations 56, 57, and 67 each imply g∅ = ∅.

Proof. By Claim 2, equations 56 and 57 each imply gB5 = B5 = ∅. Similarly, equations 67 imply
gB6 = B6 = ∅. This proves Claim 5.

Note, by substituting cA for A in Claim 5, we get that equations 12, 13, and 23 also imply g∅ = ∅.

Note that equations 12 and 67 each imply both g∅ = ∅ and g∅ = X. Hence, since X 6= ∅, neither
equations 12 nor equations 67 can hold in any closure space.

Claim 6.
(a) Neither g∅ = ∅ nor g∅ = X is implied by any of the following: 16, 17, 26, 27.
(b) Each of the following holds in at least one (nonempty) closure space: 13, 14, 23, 24, 34.

Proof. Let A = {1}. Suppose X = {1} and g∅ = X. Then:

(12) B1 = cgcA = ∅ = cgcgcgcA = B2,

(13) C6 = cgcgcgA = ∅ = cgA = C7, and

(14) C4 = cA = ∅ = cgcA = B1 = cgcgcgcA = B2 = cgcgA = B3.

Now suppose X = {1, 2}, g∅ = ∅, and gE = X for E 6= ∅. In this case equations (12) and (13) again
hold. The following equations also hold:

(15) C3 = gcgA = ∅ = cgcA = B1 = cgcgcgcA = B2.

Equations (12) and (13) show 16, 17, 26, and 27 each holding within nonempty closure spaces, one of which
satisfies g∅ = ∅ and the other g∅ = X. This proves part (a). Equations (14) and (15) imply part (b). This
completes the proof of Claim 6.

Note that by diagram (11) and duality, Claim 6 implies that the following equations also hold within at
least one (nonempty) closure space: 15, 25, 36, 37, 45, 46, 47.

Thus, where “=” denotes equality with no specific value implied, table (7) is as follows:

B1 B2 B3 B4 B5 B6 B7

C1
0X ∗X ∗X X X

C2
0X ∗X ∗X X X

C3
0∅ 0∅ ∗X = ∗X ∗X

C4
∗∅ ∗∅ ∗∅ ∗X ∗X ∗X

C5
∗∅ ∗∅ = ∗∅ 0X 0X

C6 ∅ ∅ ∗∅ ∗∅ 0∅

C7 ∅ ∅ ∗∅ ∗∅ 0∅

(16)

Translator’s note. Table (7) in the original contains six incorrect entries.
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Section 2. Proof of table (9).

In this section it will be assumed throughout that g∅ = ∅. Closure spaces satisfying this additional
axiom are called Fréchet V-spaces.

Case 1. (n = 1) It is trivial that K(1) = 2. Theorem 3 implies L(1) = 1.

Case 2. (n = 2) When X = {1, 2} and gA = X for A 6= ∅, we have k({1}) = 4 and l({1}) = 3. Hence
K(2) = 4 and L(2) = 3.

Case 3. (n = 3) Suppose |X| = 3. Without loss of generality we can assume X = {1, 2, 3}. Claim k(A) ≤ 6
for all A ⊂ X. It is immediate that k(X) = k(∅) = 2. Suppose A = {1}. It is easy to verify that this
implies k′′(A) ≤ 3. Thus, since gA = X and gA = A each imply k′(A) ≤ 3, we can assume without loss
of generality that gA = {1, 2}. Hence cgA = {3}. Since cA = {2, 3}, the only possible values of gcgA that
might satisfy k′(A) = 5, are {1, 3} and X. If gcgA = X then k′′(A) = 1, hence k(A) = 6. If gcgA = {1, 3},
then g{1} 6⊂ g{1, 3} (= {1, 3}), contradicting the definition of a closure operator. Hence gcgA 6= {1, 3}. This
proves the claim for A = {1}. Since k(A) = k(cA), the claim holds for all subsets of cardinality 2 as well.
Conclude k(A) ≤ 6.

Hence K(3) ≤ 6. It is easy to check that when X = {1, 2, 3}, g∅ = ∅, gA = {1, 2} for all nonempty
A ⊂ {1, 2}, and gA = X otherwise, then k({1}) = 6. Hence K(3) = 6. By Theorem 3 we get L(3) = 3.

Case 4. (n = 4) Suppose A ⊂ X = {1, 2, 3, 4}. Claim k(A) ≤ 8. If cgA = cgcA = ∅, it follows that every
set in diagrams (5) and (6) except possibly A and cA must equal X or ∅. Hence we may assume without
loss of generality that cgA 6= ∅.

Suppose iA = ∅. It follows that giA = igiA = iA (= ∅). Suppose k(A) ≥ 10. Since this implies
l(A) ≤ 5, no further equalities can hold within (5). Thus 1 ≤ |igA| < |gigA| < |gA| < 4. Hence also
1 ≤ |cgA| < |cgigA| < |cigA| < 4. These inequalities fix the cardinalities of all six sets, including |gcgA| =
|cigA| = 3. Since |X| = 4, we get that either A ⊂ gcgA or cA ⊂ gcgA. Hence either gA ⊂ gcgA or
gcA ⊂ gcgA. Since gcA = X, the only possibility is gA ⊂ gcgA. But since |gA| = |gcgA| = 3, we get
gA = gcgA. By (7), this implies that gcgA equals X, ∅ or giA (= ∅). This contradicts |gcgA| = 3.
Conclude k(A) ≤ 8.

Suppose iA 6= ∅. Suppose k(A) ≥ 10. Then l(A) ≥ 5 by Theorem 3. By diagram (5) we have the
following inclusions, where the notation “ αi−→” represents a variable whose possible values are “⊂

6=
” or “ = ”:

iA
α1−→ igiA

α2−→ giA
α3−→ gigA

α4−→ gA

iA
α5−→ A

α6−→ gA

igiA
α7−→ igA

igA
α8−→ gigA

For i = 1, . . . , 8 let αi = 0 if inclusion αi is an equality and αi = 1 otherwise. Since iA 6= ∅ and gA 6= X,
each of the following sums is bounded above by |gA| − |iA| ≤ 2:

I. α1 + α2 + α3 + α4

II. α1 + α7 + α8 + α4

III. α5 + α6

On the other hand, l(A) ≥ 5 implies
∑8
i=1 αi ≥ 6. The only possible values of αi are therefore α1 = α4 = 0

and αi = 1 for i = 2, 3, 5, 6, 7, 8. Hence, since l(A) ≥ 5, the sets A, giA, and igA are distinct subsets of gA
that satisfy |A| = |giA| = |igA| = 2. Furthermore each contains iA, but this is impossible since |gA| = 3
and |iA| = 1. Conclude k(A) ≤ 8. This proves the claim.

The claim implies K(4) ≤ 8. It is easy to check that the space X = {1, 2, 3, 4} with closure g defined in
table (17) satisfies k({2, 3}) = 8. This proves K(4) = 8. It follows by Theorem 3 that L(4) = 4.

– 10 –



A gA

∅ ∅
{1} {1, 2}
{2} {1, 2}
{3} {3}
{4} {3, 4}
{1, 2} {1, 2}
{1, 3} {1, 2, 3}
{1, 4} {1, 2, 3, 4}
{2, 3} {1, 2, 3}
{2, 4} {1, 2, 3, 4}
{3, 4} {3, 4}
{1, 2, 3} {1, 2, 3}
{1, 2, 4} {1, 2, 3, 4}
{1, 3, 4} {1, 2, 3, 4}
{2, 3, 4} {1, 2, 3, 4}
{1, 2, 3, 4} {1, 2, 3, 4}

(17)

Case 5. (n = 5, n = 6) The examples given in [1] for n = 5 and n = 6 both satisfy g∅ = ∅, hence the last
two columns in (8) are preserved when g∅ = ∅.

Mark Bowron

Las Vegas, NV USA
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