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1. Introduction

Numerous studies have shown that exposure to the natural en-
vironment is associated with a range of improved health outcomes in-
cluding reduced mortality (Mitchell and Popham, 2008), improved
birth outcomes (Hystad et al., 2014; Laurent et al., 2013), lower in-
cidence of cancer (James et al., 2016), better mental health (Alcock
et al., 2014; Kuo and Faber Taylor, 2004), improved respiratory health
(Donovan et al., 2018; Liddicoat et al., 2018), and lower rates of car-
diovascular disease (Donovan et al., 2013; Tsao et al., 2014). The ma-
jority of these greenness-and-health studies have characterized ex-
posure to the natural environment using the normalized difference
vegetation index (NDVI), which is a greenness index, bounded by −1
and 1, that is typically derived from satellite imagery. This reliance on
NDVI is understandable. It is available globally and has been collected
consistently for decades, so it can be used to measure change over time.
In addition, some NDVI measures (notably those based on Landsat
imagery) are available at no cost. However, NDVI also has significant
limitations. It has coarse resolution (typically 5–30m) and is two di-
mensional, so it may do a poor job of characterizing exposure to the
natural environment especially in urban areas that have highly het-
erogeneous vegetation.

Advances in remote sensing mean that future greenness-and-health
studies need not rely on NDVI. In particular, the increasing availability
of Light Detection and Ranging imagery (LiDAR) will allow future
studies to use higher-resolution, 3D green metrics. Whether these more
sophisticated measures provide any additional insight into the re-
lationship between the natural environment and public health is,
however, unclear. We address this question by estimating the re-
lationship between exposure to the natural environment and birth
outcomes using two different types of exposure metrics: one set derived
from LiDAR and the other derived from 30m-resolution Landsat ima-
gery.

1.1. Literature review

The link between the natural environment and birth outcomes is
perhaps the most studied greenness-and-health relationship. Donovan
et al. (2011) examined the relationship between the natural environ-
ment and birth outcomes in Portland, Oregon (n= 5696). Using 1m-
resolution classified aerial imagery, they found that women with more
tree cover within 50m of their homes were less likely to have a small
for gestational age (SGA) birth.

Most subsequent studies of greenness and birth outcomes char-
acterized exposure to the natural environment using 30m-resolution
NDVI derived from Landsat imagery (Agay-Shay et al., 2014; Dadvand
et al., 2012; Grazuleviciene et al., 2015; Hystad et al., 2014; Laurent
et al., 2013; Markevych et al., 2014). These studies all found a positive
association between NDVI and birth weight in buffers ranging from
50m to 500m around maternal address. In addition, two of the studies
(Dadvand et al., 2012; Laurent et al., 2013) found that this relationship
was strongest for women with low levels of education.

Two studies examined the relationship between the natural en-
vironment and birth outcomes using 250m-resolution NDVI derived
from Moderate Resolution Imaging Spectroradiometer (MODIS) data.
Casey et al. (2016) found that greenness in 250m and 1,250m buffers
around maternal address was associated with a reduced probability of
SGA and pre-term birth for 20,569 children born in Pennsylvania. Si-
milarly, in a large cohort (n= 3,026,603) of children born in Texas,
Cusack et al. (2017) found that greenness within 250m of maternal
address was positively associated with birth weight, although this re-
lationship was markedly attenuated by controlling for SES.

Not all greenness-and-birth-outcomes studies used NDVI. Ebisu
et al. (2016) characterized exposure to the natural environment using
30m-resolution National Land Cover Data, which categorizes all land in
the US into 1 of 20 classes. In a large cohort of children born in Con-
necticut (n= 239,811), the authors found that more green land cover
was positively associated with birth weight.
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Finally, not all studies found a significant relationship between ex-
posure to the natural environment and birth outcomes. In a cohort of
61,140 children born in Rhode Island, Glazer et al. (2018) found that
30m-resolution NDVI in a 500m buffer around maternal address was
positively associated with birth weight. This result was robust to ad-
justment for individual-level SES but became insignificant after ad-
justing for neighborhood-level SES. This result is consistent with other
studies that found that the relationship between greenness and birth
outcomes is attenuated by controlling for SES (Cusack et al., 2017).

The use of NDVI to characterize exposure to the natural environ-
ment is not confined to birth-outcome studies. For example, previous
studies have used NDVI to examine the relationship between greenness
and cognitive development (Dadvand et al., 2015), mortality (James
et al., 2016), and asthma (Donovan et al., 2018).

1.2. LiDAR metrics

Airborne Laser Scanning (ALS) is an active remote-sensing tech-
nology that uses short pulses of light emitted from LiDAR instruments to
illuminate targets of interest. Pulse photons pass through the atmo-
sphere, hit the target and are backscattered. A portion of these back-
scattered photons are intercepted by the LiDAR sensors. Differences in
pulse return times, combined with precisely recorded aircraft location
and altitude, yield 3D representations of targeted scenes. Pulses or-
iented towards opaque objects, such as roads, bare ground, or buildings,
typically generate a single point or return. In contrast, non-solid ob-
jects, including tree crowns, can generate multiple returns from a single
pulse (for a detailed introduction to ALS and LiDAR see Gatziolis and
Andersen (2008)). Raw LiDAR data are inherently three-dimensional
and comprise a dense cloud of points with precise location information.
Conversely, the information content of the satellite imagery used to
calculate NDVI is two dimensional.

ALS is the preferred method for generating detailed and precise
digital descriptions of ground surfaces (Liu, 2008), in part because of its
ability to penetrate non-solid objects. In wildland settings, ALS data
applications include hydrologic modeling (Barber et al., 2005), assess-
ment of forest above-ground biomass (Sheridan et al., 2014), and
mapping of snow depth (Deems et al., 2013). In urban settings, LiDAR
has been used to delineate road networks (Soilán et al., 2018), detect
impervious surfaces (Weng, 2012), and to measure individual trees
(Höfle et al., 2012).

The resolution, and cost, of LiDAR data depends on its acquisition
specifications, including pulse density (quantified as number of pulses
per unit area) and overall spatial extent. Higher pulse densities produce
higher-resolution imagery but require the plane acquiring the LIDAR to
fly at a lower altitude and to substantially overlap adjacent scan lines,
which results in an increase in flight time and cost. Large scan angles
widen the scan swath and can reduce cost but can also cause problems,
because LiDAR is most accurate when the laser pulse is close to per-
pendicular to the ground (directly under the aircraft). Artifacts pro-
liferate as the scan angle diverges from the perpendicular, especially in
areas with complex topography.

2. Methods

2.1. Data and study area

Our study area is 403 km2 on the Westside of the Portland, Oregon
Metropolitan Area (Fig. 1) that incorporates parts of Portland, Bea-
verton, and Hillsboro. LiDAR was acquired over the study area between
December 29, 2012 and January 2, 2013 at eight pulses per square
meter, which generated an average of 2.20 ground returns per square
meter. The diameter of the laser pulse at ground level was 30 cm, so the
entire target area was effectively illuminated (i.e. census rather than
sampling). Fig. 2 shows a perspective view of the LiDAR point cloud for
an example scene in the study area.

2.2. Outcomes

We obtained data on birth outcomes from the Oregon Health
Authority's Center for Health Statistics. From 2008 to 2014, there were
14,682 singleton live births in our study area. We defined a birth as
small for gestational age (SGA) if the baby's weight was below the 15th
percentile based on gestational age and gender (Xu et al., 2010) (we did
not calculate race-specific thresholds). Our reference population for
defining SGA births was all US births in 2009 and 2010 (Talge et al.,
2014). We defined births that occurred before 37 weeks gestational age
as preterm and births that occurred before 32 weeks gestational age as
very preterm. This study was approved by the Oregon Health Authority
(#RRC180046) and Yale University's IRB (#2000023085).

2.3. Exposure metrics

Fig. 3 shows an example of a LiDAR-point cloud along with 2D re-
presentations of vegetation height derived from the LiDAR data at
different spatial resolutions. To convert the raw LiDAR data into ex-
posure metrics, we first classified all returns as either vegetation, built,
or other (water, for example) using a module in the GlobalMapper 20
software package. Next, we created a 1-m resolution landcover raster
over the entire study area by calculating the frequency of LiDAR return
classes and assigning the majority class to each cell. We ensured that
the resolution and coordinate origin of the landcover classification
raster matched the one of the Digital Terrain Model (DTM) (description
of the ground surface) provided by the LiDAR data vendor. This co-

Fig. 1. Study area on the Westside of the Portland Metropolitan Area.

Fig. 2. Perspective view of the high-density ALS point cloud in Portland,
Oregon Metropolitan Area.
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registration of the landcover classification raster and the DTM guar-
anteed there would be no degradation of precision in class assignments
when the two were used together to discriminate between land-cover
types. We used near-neighbor interpolation and class-majority rules to
calculate land-cover rasters with progressively coarser resolution: 2.5,
5, 10, 15, and 30m. For raster cells classified as vegetation we calcu-
lated five metrics using only returns classified as vegetation: maximum
vegetation height, 90th percentile of vegetation height, mean of vege-
tation height, standard deviation of vegetation height, and mean ve-
getation entropy. Entropy is a unit-less metric derived from the raw
LiDAR point cloud, which quantifies the variability in the position of
the points within the cloud. A landscape consisting of very dense ma-
ture, even-aged deciduous trees would have a low entropy value, be-
cause most of the returns would be near the top of the canopy. In
contrast, a landscape consisting of some tall trees mixed with unders-
tory vegetation would have a high entropy value.

Fig. 4 shows four of these metrics for an example plot (60m buffer
with 5m resolution). For clarity, we did not include 90th percentile of
vegetation height, as its distribution was almost identical to the dis-
tribution of maximum of vegetation height.

We next calculated the mean value of these five metrics in 60, 120,
and 240m buffers around the centroid of each house's lot and the
proportion of each buffer covered by vegetation. We chose buffer sizes
that were multiples of 30 to make our measures compatible with 30m-
resolution NDVI metrics. For each class of metric—maximum vegeta-
tion height, for example—we created 15 variables (three buffer sizes
and five resolutions). Finally, we calculated mean NDVI in 60m, 120m,
and 240m buffers around each address using a 30m, satellite-imagery-
based NDVI base layer following the process detailed in Chander et al.
(2009) and retrieved from Google Earth Engine for year 2012 (Gorelick
et al., 2017).

To allow odds ratios on NDVI and LiDAR metrics to be easily
compared, we standardized all continuous exposure metrics by sub-
tracting the mean and dividing by the standard deviation.

2.4. Covariates

We obtained data on covariates from birth records including gender,
plurality, parity, maternal medical complications and health char-
acteristics (including tobacco and alcohol use, hypertension and dia-
betes), congenital anomalies, maternal and paternal demographic
characteristics, prenatal care, method of payment for birth, and ma-
ternal residential address.

2.5. Statistical analysis

We used a two-step process to estimate logit models of SGA, pre-
term, and very preterm births accounting for exposure to greenness and
controlling for covariates. First, we use an iterative backwards selec-
tion, with progressively smaller p-value thresholds (final threshold
p < 0.1), to estimate a model without variables describing exposure to
the natural environment (the backwards selection process was done by
hand not using an automated process). To this base model, we sys-
tematically added different green metrics to determine the influence of
buffer size, resolution, and different underlying imagery. To help with
model selection, we calculated Aikaike Information Criterion (AIC) for
each model. In addition, we estimated linear versions of each model in
which the dependent variable was either birthweight or gestational age
(results not shown). This allowed us to calculate variance-inflation
factors (VIF) for each independent variable. If VIFs revealed multi-
collinearity, we either dropped the problematic variable or created
composite variables. In particular, tree height and the standard devia-
tion of tree height are highly correlated, and we wanted to include both
in a single model, because the landscape-architecture literature has
shown that people prefer heterogeneous natural landscapes with both
tall vegetation but also open areas (de Val et al., 2006; Wang and Zhao,
2017). Neither vegetation height, nor variation in vegetation height,
alone would adequately describe these sort of landscapes. To address
this issue, we created four indicator variables that denoted whether
vegetation height, and the standard deviation of vegetation height,

Fig. 3. LiDAR-derived representation of mean vegetation height at different spatial resolution, perspective view of corresponding point cloud, and satellite imagery-
derived NDVI raster in the study area.
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were above or below their mean values. For example, a buffer was
classified as high-high, if the mean of vegetation height was above its
mean value (across all buffers of the same size and resolution) and the
standard deviation of vegetation height was also above its mean value.
In contrast, we classified a buffer as low-low, if mean vegetation height
and the standard deviation of vegetation height were both below their
respective mean values. For convenience, we refer to these indicators as
landscape-type indicators. Supplementary Figs. 1–4 are short videos
showing examples of each of the four landscape types. We chose to split
vegetation height and standard deviation into only two categories
(thereby creating four landscape types) for two reasons. First, splitting
vegetation height and standard deviation into more categories would
have created statistical-power problems. For example, even with just
four landscapes types, only 5% of landscapes in our analysis were in the
low-high class. Second, as the number of landscape classes increased,
results would have been increasingly difficult to interpret.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.healthplace.2019.05.011.

Insignificant variables can still be confounders (Rothman et al.,
2008), so we systematically reintroduced insignificant variables paying
particular attention to those that theory, or past studies, suggest may by
associated with birth weight. If a reintroduced variable induced a 10%
of larger change in coefficients of interest, then we retained it.

3. Results

The results for non-green variables were consistent with past re-
search and a priori expectations. Note that birth year was a risk factor
for SGA birth, indicating that SGA births became more common later in
the study period (see Table 1).

The mean of vegetation height (2.5 m resolution and 60m buffer)
was protective of SGA birth (Table 2). This result is consistent with
previous research in Portland, which found that trees in a 50m buffer
were protective of SGA birth (Donovan et al., 2011). None of the green
metrics were protective of preterm or very preterm birth, which was
again consistent with previous research.

Characterizing exposure to the natural environment using four
landscape-indicator variables modestly improved the fit of the model
(Table 2). In particular, the two landscape types for which the standard
deviation of vegetation height was above average were protective of
SGA birth. Low-high landscapes were the most protective (OR: 0.775,
95% CI: 0.602–0.996) followed by high-high landscapes (OR: 0.854,
95% CI: 0.764–0.954). Although low-high landscapes were more pro-
tective than high-high landscapes, the statistical significance of this
relationship was lower than for high-high landscapes. This may be an
issue of statistical power: only 5.0% of landscapes were classified as
low-high, whereas 37% of landscapes were classified as high-high.
Entropy, which also measures vegetation heterogeneity, was not sig-
nificantly associated with either SGA or preterm birth.

Fig. 5 shows that the magnitude and statistical significance of the
landscape-type indicator variables declined as buffer size increased.
The impact of changing resolution was less systematic, although there
was some loss of significance as resolution coarsened (Fig. 6).

NDVI was also protective of SGA birth, although the NDVI model
did not perform as well as the two models that used LiDAR metrics
(Table 2). For reference, the base SGA model, without any green me-
trics, had a McFadden R2 of 0.0266 and an AIC of 10,435.

Fig. 4. Example of LiDAR-derived vegetation metrics within a 60-m circular buffer in the study area, displayed at 5-m raster resolution. .
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4. Discussion

We created multiple metrics describing exposure to the natural
environment and tested which best explained the likelihood of an SGA
birth in a cohort of children born in the Portland, Oregon Metropolitan
Area between 2008 and 2014. Metrics derived from LiDAR, and those
based on 30m-resolution NDVI data, were both protective of SGA birth.
However, regression models with LiDAR metrics performed the best
and revealed unique information about the relationship between the
natural environment and birth outcomes. Specifically, we found that
increased vegetation height was protective of SGA births. In addition,
we found that variation in vegetation height was protective of SGA
births. This relationship would not have been revealed by NDVI me-
trics, as they rely on 2D imagery that contains no information about
vegetation height.

Results suggest increased vegetation height is protective of SGA
births, but that the greatest protection comes from landscapes with both
high vegetation and also variation in vegetation height. In contrast,
homogenous landscapes such as grass fields (low-low landscape) or
dense forests (high-low landscape) were not protective. However, the
insignificance of low-low landscapes could be partly because these
landscapes may be more likely to contain built landscape elements like
roads or parking lots (binary metrics take into account vegetation
height and variation in vegetation height, but they do not account for
the total area covered by vegetation).

Our finding that heterogeneous landscapes offer the most protection
against SGA birth is consistent with the broader landscape-architecture
literature that has repeatedly found that people prefer heterogeneous
natural landscapes. For example, Wang and Zhao (2017) assessed the
landscape preferences of respondents using a series of photographs.
Homogenous landscapes, that were either very open or very closed, had
the lowest ratings. Similarly, de Val et al. (2006) found that structural
heterogeneity was an important determinant of landscape preference.

The protective effect of heterogeneous vegetation height may pro-
vide some insight into the mechanisms linking the natural environment
and birth outcomes. In particular, it is unlikely that the natural en-
vironment exerts its protective effect predominantly through

Table 1
Descriptive statistics for select exposures and covariates for children born in the
study area 2008–2012 (n= 14,682).

Variable Mean Standard deviation

Birth weight (g) 3371 576
Gestational age (weeks) 39 1.9
Birth order 2.0 1.1
Obese (%) 19 39
Overweight (%) 24 43
Underweight (%) 3.7 19
Tobacco use during pregnancy (%) 5.7 23
Payment: private insurance (%) 68 46
Payment: public insurance (%) 28 45
Mother's race: white (%) 82 38
Mother's race: Pacific Islander (%) 1.2 11
Mother's race Asian (%) 13 34
Mother's race: Native American (%) 1.6 13
Mother's race: black (%) 2.9 17
Mother's race: Hispanic (%) 23 42
Mean of maximum tree height (m) 60m buffer 11.5 3.7
Mean of maximum tree height (m) 120m buffer 12.3 3.5
Mean of maximum tree height (m) 240m buffer 13.2 3.1
Mean of 90th percentile of tree height (m) 60m

buffer
10.6 3.2

Mean of 90th percentile of tree height (m) 120m
buffer

11.4 3.5

Mean of 90th percentile of tree height (m) 240m
buffer

12.1 3.7

Mean of mean tree height (m) 60m buffer 8.2 2.6
Mean of mean tree height (m) 120m buffer 8.7 2.5
Mean of mean tree height (m) 240m buffer 9.3 2.3
Entropy 60m buffer 0.62 0.044
Entropy 120m buffer 0.63 0.035
Entropy 240m buffer 0.64 0.025
Vegetation 60m buffer (%) 29.4 45.5
Vegetation 120m buffer (%) 30.0 45.8
Vegetation 240m buffer (%) 30.1 45.9
NDVI 60m 0.50 0.086
NDVI 120m 0.52 0.076
NDVI 240m 0.53 0.067

Table 2
Logit regression results for small-for-gestational age birth (weight< 15 percentile) with three different measures of exposure to the natural environment: mean of
mean tree height (60m buffer and 2.5 m resolution), indicator variable denoting whether tree height and tree SD are above average (60m buffer and 2.5 m
resolution), and NDVI (60m buffer and 30m resolution).

3D METRICS (CONTNUOUS) 3D METRICS (BINARY) NDVI

VARIABLES OR CI OR CI OR CI

Mother's race: Hispanic (%) 1.288*** 1.118–1.483 1.290*** 1.120–1.485 1.269*** 1.101–1.463
Mother's race: black (%) 1.818*** 1.389–2.379 1.806*** 1.380–2.363 1.792*** 1.369–2.346
Mother's race: Native American (%) 1.120 0.760–1.650 1.120 0.760–1.650 1.113 0.755–1.640
Mother's race Asian (%) 2.051*** 1.791–2.349 2.048*** 1.789–2.345 2.060*** 1.799–2.360
Mother's race: Pacific Islander (%) 0.777 0.465–1.300 0.774 0.463–1.295 0.776 0.464–1.297
Mother's race: Other (%) 1.056 0.742–1.503 1.054 0.740–1.500 1.057 0.743–1.505
Payment: public insurance (%) 1.166** 1.025–1.327 1.167** 1.026–1.328 1.148** 1.008–1.307
Payment: self-pay (%) 0.675* 0.424–1.073 0.670* 0.421–1.067 0.670* 0.421–1.067
Payment: other (%) 1.017 0.457–2.266 1.011 0.454–2.252 1.018 0.457–2.266
Tobacco use during pregnancy (%) 1.632*** 1.335–1.995 1.649*** 1.348–2.016 1.635*** 1.338–1.999
Underweight (%) 1.720*** 1.387–2.134 1.717*** 1.384–2.130 1.712*** 1.380–2.124
Overweight (%) 0.778*** 0.683–0.887 0.777*** 0.682–0.886 0.775*** 0.680–0.884
Obese (%) 0.727*** 0.626–0.844 0.723*** 0.623–0.840 0.724*** 0.623–0.840
Birth order 0.861*** 0.818–0.906 0.862*** 0.820–0.908 0.863*** 0.820–0.908
Birth year 1.097** 1.015–1.187 1.100** 1.017–1.189 1.098** 1.015–1.187
Mean of tree height (60 m buffer, 2.5 m resolution) 0.929*** 0.880–0.981
Height high, SD of height low (60m buffer, 2.5 m resolution) 0.932 0.717–1.212
Height low, SD of height high (60m buffer, 2.5 m resolution) 0.775** 0.602–0.996
Height high, SD of height high (60m buffer, 2.5 m resolution) 0.854*** 0.764–0.954
NDVI (60m) 0.944** 0.896–0.995
McFadden R2 0.0272 0.0275 0.027
AIC 10,429 10,431 10,433
Observations 14,677 14,682 14,682
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improvements in air quality. If that were the case, then we would ex-
pect landscape types with greater leaf area (high-low, for example) to
be most protective. There are number of mechanisms that may explain
the observed protective effect of landscape types. Perhaps, the most
plausible is that aesthetically pleasing landscape types reduce stress and
are psychologically restorative (Kaplan, 1995; Li and Sullivan, 2016). In
addition, it is possible that heterogeneous landscapes may encourage
people to spend more time outdoors thereby promoting social con-
nectivity, and increased social connectivity is associated with im-
provements in a broad range of health outcomes (Cacioppo and
Cacioppo, 2014).

We are not suggesting that LiDAR should entirely replace NDVI as a

source of exposure metrics in greenness-and-health studies. For inter-
national or country-wide studies, NDVI is one of the few available data
sources for characterizing exposure to the natural environment. In ad-
dition, despite NDVI being a coarse 2D exposure metric, it was sig-
nificantly associated with the probability of an SGA birth, and the re-
sults from the NDVI and LiDAR models were broadly consistent.
Nonetheless, future studies may wish to supplement NDVI with LiDAR
metrics, as LiDAR may reveal unique information about the relationship
between the natural environment and the health outcome under study.

LiDAR acquisitions can be costly and are often funded by a con-
sortium of interested groups. However, raw and derived data for many
of these acquisitions are freely available and cover an increasing area.

Fig. 5. Odds-ratio plots for landscape-type indicators (60, 120, and 240m).

Fig. 6. Odds-ratio plots for landscape-type indicators (2.5, 5, 10, 15, and 30m resolution).
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For example, in Oregon, where this study was conducted, 40% of
forested areas have been scanned with high-density LiDAR once, and
several places have been flown repeatedly. As well as cost and data-
availability considerations, analyses involving LiDAR data can be more
complex and computationally intensive than working with 2D satellite
data.

Technological advancements in active remote-sensing technologies
such as ALS continue to improve data information content and reduce
cost. For example, recently commercialized single-photon and Geiger-
mode ALS systems (Stoker et al., 2016) offer an order of magnitude
higher return density for a fraction of the cost of the standard discrete-
return systems, as they can be operated from higher above-ground al-
titudes and aircraft speeds.

We found that regression models using LiDAR-derived metrics
modestly out performed equivalent models that used NDVI-derived
metrics. More importantly, results from the two models support dis-
tinctly different policy prescriptions. The NDVI model suggests that
simply adding more greenness will protect against SGA. However, the
NDVI model provides no insight into the best form this additional
greenness should take. In contrast, the LiDAR model suggests that the
structural arrangement of this greenness matters. Simply adding more
greenness may not always be protective (the coefficient on high-low
landscapes was insignificant, for example). To be most effective, addi-
tional greenness should increase vertical heterogeneity.

Current policy goals for increasing vegetation in urban areas may
have been influenced by the limitations of exposure metrics including
NDVI. For example, many US cities (including the ten largest) have
explicit tree-planting goals (Donovan, 2017). Virtually all of these goals
are stated in terms of planting a certain number of trees (New York
City's Million-Tree Initiative, for example) or increasing canopy cover
(Portland, Oregon plans to expand canopy cover from 30% to 33%).
Simple tree-planting targets—such as “Let's plant a million trees”—are
easily understood goals that may galvanize public support. “Let's in-
crease the standard deviation of mean vegetation height by 0.1” is,
perhaps, less compelling. Nonetheless, if our results are confirmed, then
more nuanced policy goals may be appropriate.

Our study has several limitations. LiDAR allowed us to characterize
aspects of the natural environment that had not been captured by ex-
tant 2D imagery. However, LiDAR does have limitations. It cannot de-
termine vegetation species, for example. In addition, the algorithms we
used to classify a return as vegetation, building, or other were imperfect
and resulted in several notable artifacts. For example, the edges of
buildings were often misclassified as vegetation, because when a LiDAR
pulse obliquely hits the side of a building, it can generate multiple re-
turns that the algorithm mistakes for non-solid vegetation (these arti-
facts can be seen in Supplementary Figs. 1–4). In addition, measuring
the physical extent of the natural environment is only one component of
exposure. People with exactly the same vegetation around their homes
may interact with it in markedly different ways. Therefore, to be most
effective, LiDAR may need to be combined with other technologies
(location data from smart phones, for example) to better characterize a
person's exposure to the natural environment. It is also unknown
whether our results hold in other locations or for other health out-
comes. Finally, this was an observational study that couldn't establish a
causal relationship between greenness and the birth outcomes. In par-
ticular, it is possible that more appealing landscape types are associated
with other drivers of adverse birth outcomes. Nonetheless, we believe
that our results demonstrate that LiDAR data can be used to reveal
unique information about the relationship between the natural en-
vironment and health.

Funding sources

This study was partially supported by two endowments from the
Yale University School of Public Health: the A. J. Stolwijk Fellowship
Award and the Climate Change & Health Initiative.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.healthplace.2019.05.011.

References

Agay-Shay, K., Peled, A., Crespo, A.V., Peretz, C., Amitai, Y., Linn, S., Friger, M.,
Nieuwenhuijsen, M.J., 2014. Green spaces and adverse pregnancy outcomes. Occup.
Environ. Med. 71, 562–569.

Alcock, I., White, M.P., Wheeler, B.W., Fleming, L.E., Depledge, M.H., 2014. Longitudinal
effects on mental health of moving to greener and less green urban areas. Environ.
Sci. Technol. 48, 1247–1255.

Barber, C.P., Shortridge, A.J.C., Science, G.I., 2005. Lidar elevation data for surface hy-
drologic modeling: resolution and representation issues. 32, 401–410.

Cacioppo, J.T., Cacioppo, S., 2014. Social relationships and health: the toxic effects of
perceived social isolation. Soc. Personal. Psychol. Compass 8, 58–72.

Casey, J.A., James, P., Rudolph, K.E., Wu, C.-D., Schwartz, B., 2016. Greenness and birth
outcomes in a range of Pennsylvania communities. Int. J. Environ. Res. 13, 311.

Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric cali-
bration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens.
Environ. 113, 893–903.

Cusack, L., Larkin, A., Carozza, S., Hystad, P.J.E.r., 2017. Associations between
Residential Greenness and Birth Outcomes across Texas, vol. 152. pp. 88–95.

Dadvand, P., Nazelle, A.d., Figuearas, F., Basagaña, X., Su, J., Amoly, E., Jerret, M.,
Vrijheid, M., Sunyer, J., Nieuwenhuijsen, M.J., 2012. Green space, health inequality
and pregnancy. Environ. Int. 44, 3–30.

Dadvand, P., Nieuwenhuijsen, M.J., Esnaola, M., Forns, J., Basagana, X., Alvarez-
Pedrerol, M., Rivas, I., Lopez-Vicente, M., De Castro Pascual, M., Su, J., Jerrett, M.,
Querol, X., Sunyer, J., 2015. Green spaces and cognitive development in primary
schoolchildren. Proc. Natl. Acad. Sci. USA 112, 7937–7942.

de Val, G.d.l.F., Atauri, J.A., de Lucio, J.V., 2006. Relationship between landscape visual
attributes and spatial pattern indices: a test study in Mediterranean-climate land-
scapes. Landsc. Urban Plan. 77, 393–407.

Deems, J.S., Painter, T.H., Finnegan, D.C., 2013. Lidar measurement of snow depth: a
review, J. Glaciol. 59, 467–479.

Donovan, G.H., 2017. Including public-health benefits of trees in urban-forestry decision
making. Urban For. Urban Green. 22, 120–123.

Donovan, G.H., Butry, D.T., Michael, Y.L., Prestemon, J.P., Liebhold, A.M., Gatziolis, D.,
Mao, M.Y., 2013. The relationship between trees and human health: evidence from
the spread of the emerald ash borer. Am. J. Prev. Med. 44, 139–145.

Donovan, G.H., Gatziolis, D., Longley, I., Douwes, J., 2018. Vegetation diversity protects
against childhood asthma: results from a large New Zealand birth cohort. Native
Plants 4, 358–364.

Donovan, G.H., Michael, Y.L., Butry, D.T., Sullivan, A.D., Chase, J.M., 2011. Urban trees
and the risk of poor birth outcomes. Health Place 17, 390–393.

Ebisu, K., Holford, T.R., Bell, M.L., 2016. Association between greenness, urbanicity, and
birth weight. Sci. Total Environ. 542, 750–756.

Gatziolis, D., Andersen, H.-E., 2008. A Guide to LIDAR Data Acquisition and Processing
for the Forests of the Pacific Northwest. US Department of Agriculture, Forest Service,
Pacific Northwest Research Station, OR, pp. 32 Gen. Tech. Rep. PNW-GTR-768.

Glazer, K.B., Eliot, M.N., Danilack, V.A., Carlson, L., Phipps, M.G., Dadvand, P., Savitz,
D.A., Wellenius, G.A., 2018. Residential green space and birth outcomes in a coastal
setting. Environ. Res. 163, 97–107.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google
Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ.
202, 18–27.

Grazuleviciene, R., Danileviciute, A., Dedele, A., Vencloviene, J., Andrusaityte, S.,
Uždanaviciute, I., Nieuwenhuijsen, M.J., 2015. Surrounding greenness, proximity to
city parks and pregnancy outcomes in Kaunas cohort study. Int. J. Hyg Environ.
Health 218, 358–365.

Höfle, B., Hollaus, M., Hagenauer, J., Sensing, R., 2012. Urban vegetation detection using
radiometrically calibrated small-footprint full-waveform airborne LiDAR data, J.
Photogrammetry. 67, 134–147.

Hystad, P., Davies, H.W., Frank, L., Van Loon, J., Gehring, U., Tamburic, L., Brauer, M.,
2014. Residential greenness and birth outcomes: evaluating the influence of spatially
correlated built-environment factors. Environ. Health Perspect. 122, 1095–1102.

James, P., Hart, J.E., Banay, R.F., Laden, F., 2016. Exposure to greenness and mortality in
a nationwide prospective cohort study of women. Environ. Health Perspect. 124,
1344–1352.

Kaplan, S., 1995. The restorative benefits of nature: toward an integrative framework. J.
Environ. Psychol. 15, 169–182.

Kuo, F.E., Faber Taylor, A., 2004. A potential natural treatment for attention-deficit/
hyperactivity disorder: evidence from a national study. Am. J. Public Health 94,
1580–1586.

Laurent, O., Wu, J., Li, L., Milesi, C., 2013. Green spaces and pregnancy outcomes in
Southern California. Health Place 24, 190–195.

Li, D., Sullivan, W.C., 2016. Impact of views to school landscapes on recovery from stress
and mental fatigue. Landsc. Urban Plan. 148, 149–158.

Liddicoat, C., Bi, P., Waycott, M., Glover, J., Lowe, A.J., Weinstein, P., 2018. Landscape
biodiversity correlates with respiratory health in Australia. J. Environ. Manag. 206,
113–122.

Liu, X., 2008. Airborne LiDAR for DEM generation: some critical issues. Prog. Phys.
Geogr. 2, 31–49.

G.H. Donovan, et al. Health and Place 57 (2019) 305–312

311

https://doi.org/10.1016/j.healthplace.2019.05.011
https://doi.org/10.1016/j.healthplace.2019.05.011
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref1
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref1
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref1
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref2
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref2
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref2
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref3
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref3
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref4
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref4
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref5
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref5
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref6
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref6
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref6
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref7
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref7
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref8
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref8
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref8
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref9
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref9
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref9
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref9
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref10
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref10
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref10
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref11
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref11
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref12
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref12
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref13
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref13
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref13
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref14
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref14
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref14
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref15
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref15
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref16
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref16
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref17
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref17
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref17
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref18
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref18
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref18
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref19
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref19
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref19
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref20
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref20
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref20
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref20
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref21
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref21
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref21
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref22
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref22
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref22
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref23
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref23
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref23
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref24
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref24
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref25
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref25
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref25
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref26
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref26
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref27
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref27
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref28
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref28
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref28
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref29
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref29


Markevych, I., Fuertes, E., Tiesler, C.M., Birk, M., Bauer, C.P., Koletzko, S., von Berg, A.,
Berdel, D., Heinrich, J., 2014. Surrounding greenness and birth weight: results from
the GINIplus and LISAplus birth cohorts in Munich. Health Place 26, 39–46.

Mitchell, R., Popham, F., 2008. Effects of exposure to natural environment on health
inequalities: an observational population study. Lancet 372, 1655–1660.

Rothman, K.J., Greenland, S., Lash, T.L., 2008. Modern Epidemiology, third ed. Wolters
Kluwer, Philadelphia, PA.

Sheridan, R.D., Popescu, S.C., Gatziolis, D., Morgan, C.L., Ku, N.-W.J.R.S., 2014.
Modeling forest aboveground biomass and volume using airborne LiDAR metrics and
forest inventory and analysis data in the Pacific Northwest. 7, 229–255.

Soilán, M., Truong-Hong, L., Riveiro, B., Laefer, D., 2018. Automatic extraction of road
features in urban environments using dense ALS data. Int. J. Appl. Earth Observ. 64,
226–236.

Stoker, J.M., Abdullah, Q.A., Nayegandhi, A., Winehouse, J.J.R.S., 2016. Evaluation of

single photon and geiger mode lidar for the 3D elevation program. 8, 767.
Talge, N.M., Mudd, L.M., Sikorskii, A., Basso, O.J.P., 2014. United States Birth Weight

Reference Corrected for Implausible Gestational Age Estimates. pp. 2013–3285 peds.
Tsao, T.M., Tsai, M.J., Wang, Y.N., Lin, H.L., Wu, C.F., Hwang, J.S., Hsu, S.H., Chao, H.,

Chuang, K.J., Chou, C.C., Su, T.C., 2014. The health effects of a forest environment on
subclinical cardiovascular disease and heath-related quality of life. PLoS One 9,
e103231.

Wang, R., Zhao, J., 2017. Demographic groups' differences in visual preference for ve-
getated landscapes in urban green space. Sustain. Cities Soc. 28, 350–357.

Weng, Q., 2012. Remote sensing of impervious surfaces in the urban areas: requirements,
methods, and trends. Remote Sens. Environ. 117, 34–49.

Xu, H., Simonet, F., Luo, Z.C., 2010. Optimal birth weight percentile cut-offs in defining
small- or large-for-gestational-age. Acta Paediatr. 99, 550–555.

G.H. Donovan, et al. Health and Place 57 (2019) 305–312

312

http://refhub.elsevier.com/S1353-8292(18)31160-2/sref30
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref30
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref30
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref31
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref31
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref32
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref32
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref33
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref33
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref33
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref34
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref34
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref34
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref35
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref35
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref36
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref36
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref37
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref37
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref37
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref37
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref38
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref38
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref39
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref39
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref40
http://refhub.elsevier.com/S1353-8292(18)31160-2/sref40

	The natural environment and birth outcomes: Comparting 3D exposure metrics derived from LiDAR to 2D metrics based on the normalized difference vegetation index
	Introduction
	Literature review
	LiDAR metrics

	Methods
	Data and study area
	Outcomes
	Exposure metrics
	Covariates
	Statistical analysis

	Results
	Discussion
	Funding sources
	Supplementary data
	References




