COM S 687 Introduction to Cryptography
 Lecture 11: The Goldreich-Levin Theorem
 Instructor: Rafael Pass
 Scribe: Krishnaprasad Vikram

Hard-Core Bits

Definition: A predicate $b:\{0,1\}^{\gamma} \rightarrow\{0,1\}$ is hardcore for a function f if
(a) b is efficiently computable
(b) \forall p.p.t. \mathcal{A}, \exists a negligible polynomial ϵ s.t.
$\forall k \operatorname{Pr}\left[X \leftarrow\{0,1\}^{k}: \mathcal{A}\left(1^{k}, f(X)=b(X)\right)\right] \leq \frac{1}{2}+\epsilon(k)$

Intuitively, a hardcore bit (described as a function b) is efficiently computable given an input x, but is hard to compute given only $f(x)$. In other words, f hides the bit b. This definition can be trivially extended to collections of one-way functions.

Construction of a PRG[1]

Using the idea of hardcore bits, and assuming the existence of a one-way permutation f we constructed in the previous lecture a PRG $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ given by

$$
G(s)=f(s) \| b(s)
$$

where f is a one-way permutation and b is a hard core bit for f, and $\|$ is the string concatenation operator. Intuitively, this is a PRG given that it passes the next-bit test since it would be hard to compute the $n+1^{\text {th }}$ bit $b(s)$ given the first n bits $f(s)$. However, this directly does not hold true of a OWF (Why? We might be proving that in an upcoming homework).

However, there is a theorem that says " \exists of a OWF $\Leftrightarrow \exists$ of a Pseudo-random number generator" [3]. We'll prove the (supposedly easy) \Leftarrow direction in one of the homeworks.

Now, we'll show in class that " \exists of a OWP $\Rightarrow \exists$ of a PRG". Note that it is an open problem to prove that any OWF or a OWP has a hard core bit. What we'll show is that every OWF (or OWP) can be transformed into a new OWF (respectively OWP) that has a hard-core bit.

One possibility of a hardcore bit is a parity function, but that might be easy to compute given $f(x)$. We'll try something more sophisticated.

Theorem

Let f be a OWF. Then $f^{\prime}(X, r)=f(X), r$ (where $\left.|X|=|r|\right)$ is a OWF and $b(X, r)=$ $\langle X, r\rangle_{2}=\Sigma X_{i} r_{i} \bmod 2($ inner product mod 2$)$ is a hardcore predicate for f.

Here r essentially tells us which bits to take parity of. Note that f^{\prime} is a OWP if f is a OWP.

Proof. (by reductio ad absurdum) We show that if \mathcal{A}, given $f^{\prime}(X, r)$ can compute $b(X, r)$ w.p. significantly better than $1 / 2 \Rightarrow \exists$ p.p.t. \mathcal{B} that inverts f.

We'll do the proof in three steps. In the first step, we consider a very oversimplified case and prove the theorem for that case. In the next step, we take a less simplified case and finally we take the general case.

In the very oversimplified case, we assume \mathcal{A} always computes b correctly. And so, we can construct a f^{\prime} with an r such that the first bit is 1 and the other bits are 0 . In such a case \mathcal{A} would return the first bit of X. Similarly we can set the second bits of r to be 1 to obtain the second bit of X. Thus, we have \mathcal{B} given by
$\mathcal{B}(y)$: Let $X_{i}=\mathcal{A}\left(y, e_{i}\right)$ where $e_{i}=000 \ldots 1 \ldots 000$ where the 1 is on the $i^{\text {th }}$ position.
-Output $X_{1}, X_{2}, \ldots, X_{n}$
This works, since $\left\langle X, e_{i}\right\rangle_{2}=X_{i}$
Now, in the less simplified case, we assume that \mathcal{A}, when given random $y=f(X)$ and random r, computes $b(X, r)$ w.p. $\frac{3}{4}+\epsilon, \quad\left(\epsilon=\frac{1}{\text { poly }(n)}, n\right.$ is the length of $\left.X\right)$.
Intuition: we want the attacker to compute b with a fixed X and a varying r so that given enough observations, X can be computed eventually. The trick is to find the set of $\operatorname{good} X$, for which this will work.

As an attempt to find such X, let $S=\left\{X \left\lvert\, \operatorname{Pr}[\mathcal{A}(f(X), r)=b(X, r)]>\frac{3}{4}+\frac{\epsilon}{2}\right.\right\}$. It can be shown that $|S|>\epsilon / 2$.

A simple attack with various e_{i} might not work here. More rerandomization is required. Idea: Use linearity of $\langle a, b\rangle$.

Useful relevant fact: $\langle a, b \oplus c\rangle=\langle a, b\rangle \oplus\langle a, c\rangle \bmod 2$
Proof.

$$
\begin{aligned}
\langle a, b \oplus c\rangle & =\Sigma a_{i}\left(b_{i}+c_{i}\right) \\
& =\Sigma a_{i} b_{i}+\Sigma a_{i} c_{i} \\
& =\langle a, b\rangle+\langle a, c\rangle \bmod 2
\end{aligned}
$$

Attacker asks: $\langle X, r\rangle,\left\langle X, r+e_{1}\right\rangle$
and then XOR both to get $\left\langle X, e_{1}\right\rangle$ without ever asking for e_{1}.
And so, \mathcal{B} inverts f as follows: $\mathcal{B}(y)$:

$$
\text { For } i=1 \text { to } n
$$

1. Pick random r in $\{0,1\}^{n}$
2. Let $r^{\prime}=e_{i} \oplus r$
3. Compute guess for X_{i} as $\mathcal{A}(y, r) \oplus \mathcal{A}\left(y, r^{\prime}\right)$
4. Repeat $\operatorname{poly}(1 / \epsilon)$ times and let X_{i} be majority of guesses.

Finally output X_{1}, \ldots, X_{n}.
If we assume e_{1} and $r+e_{1}$ as independent, the proof works fine. However, they are not independent. The proof is still OK though, as can be seen using the union bound:

The proof works because:

- w.p. $\frac{1}{4}-\frac{\epsilon}{2} \quad \mathcal{A}(y, r) \neq b(X, r)$
- w.p. $\frac{1}{4}-\frac{\epsilon}{2} \mathcal{A}\left(y, r^{\prime}\right) \neq b(X, r)$
- by union bound w.p. $\frac{1}{2}$ both answers of \mathcal{A} are OK.
- Since $\langle y, r\rangle+\left\langle y, r^{\prime}\right\rangle=\left\langle y, r \oplus r^{\prime}\right\rangle=\left\langle y, e_{i}\right\rangle$, each guess is correct w.p. $\frac{1}{2}+\epsilon$
- Since samples are independent, using Chernoff Bound it can be shown that every bit is OK w.h.p.

Now, to the general case. Here, we assume that \mathcal{A}, given random $y=f(X)$, random r computes $b(X, r)$ w.p. $\frac{1}{2}+\epsilon \quad\left(\epsilon=\frac{1}{\text { poly(n) }}\right)$
Let $S=\left\{X \left\lvert\, \operatorname{Pr}[\mathcal{A}(f(X), r)=b(X, r)]>\frac{1}{2}+\frac{\epsilon}{2}\right.\right\}$. It again follows that $|S|>\frac{\epsilon}{2}$.
Assume set access to oracle C that given $f(X)$ gives us samples

$$
\begin{gathered}
\left\langle X, r_{1}\right\rangle, r_{1} \\
\vdots \\
\left\langle X, r_{n}\right\rangle, r_{n}
\end{gathered} \text { (where } r_{1}, \ldots, r_{n} \text { are independent and random) }
$$

We now recall Homework 1, where given an algorithm that computes a correct bit value w.p. greater than $\frac{1}{2}+\epsilon$, we can run it multiple times and take the majority result, thereby computing the bit w.p. as close to 1 as desired.

From here on, the idea is to eliminate C from the constructed machine step by step, so that we don't need an oracle in the final machine \mathcal{B}.

Consider the following $\mathcal{B}(y)$:

$$
\text { For } i=1 \text { to } n
$$

1. $C(y) \rightarrow\left(b_{1}, r_{1}\right), \ldots,\left(b_{m}, r_{m}\right)$
2. Let $r_{j}^{\prime}=e_{i} \oplus r_{j}$
3. Compute $g_{j}=b_{j} \oplus \mathcal{A}\left(y, r^{\prime}\right)$
4. Let $X_{i}=\operatorname{majority}\left(g_{1}, \ldots, g_{m}\right)$

Output X_{1}, \ldots, X_{m}
Each guess g_{i} is correct w.p. $\frac{1}{2}+\frac{\epsilon}{2}=\frac{1}{2}+\epsilon^{\prime}$. As in HW1, by Chernoff bound, an x_{i} is wrong w.p. $\leq 2^{-\epsilon^{\prime 2} m}$ (was $2^{-4 \epsilon^{2} m}$ in the HW). If $m \gg \frac{1}{\epsilon^{\prime}}$, we are OK.
Now, we assume that C gives us samples $\left\langle X, r_{1}\right\rangle, r_{1} ; \ldots ;\left\langle X, r_{n}\right\rangle, r_{n}$ which are random but only pairwise independent. Again, using results from HW1, by Chebyshev's theorem, each X_{i} is wrong w.p. $\leq \frac{1-4 \epsilon^{\prime 2}}{4 m \epsilon^{\prime 2}} \leq \frac{1}{m \epsilon^{\prime 2}}$ (ignoring constants).
By union bound, any of the X_{i} is wrong w.p. $\leq \frac{n}{m \epsilon^{\prime 2}} \leq \frac{1}{2}$, when $m \geq \frac{2 n}{\epsilon^{\prime 2}}$. Therefore, as long as we have polynomially many samples (precisely $\frac{2 n}{\epsilon^{\prime 2}}$ pairwise independent samples), we'd be done.

The question now is: How do we get pairwise independent samples? So, our initial attempt to remove C would be to pick r_{1}, \ldots, r_{m} on random and guess b_{1}, \ldots, b_{m} randomly. However, b_{i} would be correct only w.p. 2^{-m}.

A better attempt is to pick $\log (m)$ samples $s_{1}, \ldots, s_{\log (m)}$ and guessing $b_{1}^{\prime}, \ldots, b_{\log (m)}^{\prime}$ randomly. Here the guess is correct with probability $1 / m$.

Now, generate $r_{1}, r_{2}, \ldots, r_{m-1}$ as all possible sums ($\bmod 2$) of subsets of $s_{1}, \ldots, s_{\log (m)}$, and $b_{1}, b_{2}, \ldots, b_{m}$ as the corresponding subsets of b_{i}^{\prime}. Mathematically

$$
\begin{aligned}
r_{i} & =\sum_{j \in I_{i}} s_{j} j \in I \text { iff } i_{j}=1 \\
b_{i} & =\sum_{j \in I_{i}} b_{j}^{\prime}
\end{aligned}
$$

In HW1, we showed that these r_{i} are pairwise independent samples. Yet w.p. $1 / m$, all guesses for $b_{1}^{\prime}, \ldots, b_{\log (m)}^{\prime}$ are correct, which means that b_{1}, \ldots, b_{m-1} are also correct.

Thus, for a fraction of ϵ^{\prime} of X^{\prime} it holds that w.p. $1 / m$ we invert w.p. $1 / 2$. That is $\mathcal{B}(y)$ inverts w.p.

$$
\frac{\epsilon^{\prime}}{2 m}=\frac{\epsilon^{\prime 3}}{4 n}=\frac{(\epsilon / 2)^{3}}{4 n} \quad\left(m=\frac{2 n}{\epsilon^{2}}\right)
$$

which contradicts the (strong) one-way-ness of f.
Yao proved that if OWF exists, then there exists OWF with hard core bits. But this construction is due to Goldreich and Levin[2] and by Charles Rackoff[?].

References

[1] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput., 13(4):850-864, 1984.
[2] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In STOC '89: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 25-32, New York, NY, USA, 1989. ACM Press.
[3] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from any one-way function. SIAM J. Comput., 28(4):1364-1396, 1999.

