CIPA DC- 008-Translation- 2016

Exchangeable image file format for digital still cameras:
 Exif Version 2.31

This translation has been made based on the original Standard (CIPA DC-008-2016). In the event of any doubts arising as the contents, the original Standard is to be the final authority.

Established on April, 2010
Revised on July, 2016

Prepared by:
Standardization Committee

Published by:
Camera \& Imaging Products Association

Camera \& Imaging Products Association (CIPA) and Japan Electronics and Information Technology Industries Association (JEITA) jointly formulated this standard.

The following standards are technically equivalent.

CIPA:

DC-008-2016 Exchangeable image file format for digital still cameras:
Exif Version 2.31

JIETA:

CP-3451D Exchangeable image file format for digital still cameras: Exif Version 2.31
cila
JEITA

THIS DOCUMENT IS PROVIDED "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT.

IN NO EVENT SHALL EITHER CIPA, CIPA'S MEMBERS, THEIR SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION, LOSS OF BUSINESS PROFITS, LOSS OF BUSINESS INFORMATION, LOSS OF BUSINESS INTERRUPTION OR OTHER COMPENSATORY, INCIDENTAL OR CONSEQUENTIAL DAMAGES) ARISING OUT OF THIS DOCUMENT OR USE THEREOF EVEN IF CIPA, CIPA'S MEMBERS, THEIR SUBSIDIARIES OR AFFILIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CIPA, CIPA'S MEMBERS, THEIR SUBSIDIARIES OR AFFILIATES DISCLAIMS AND SHALL HAVE NO OBLIGATION OF DEFENSE, CONTRIBUTION OR INDEMNITY WITH RESPECT TO ANY ACTUAL OR ALLEGED INTELLECTUAL PROPERTY INFRINGEMENT ARISING OUT OF THIS DOCUMENT OR USE THEREOF.

THIS DOCUMENT CONTAINS INFORMATION THAT IS CONFIDENTIAL.

Contents

Introduction 1
Revision History 3

1. Scope 5
2. Definitions 6
2.1 Definition of Terms 6
2.2 Verbal forms for the expression of provisions 8
3. General 9
3.1 Format Structure 9
3.2 Exif Image File Specification 9
3.3 Exif Audio File Specification 10
3.4 Relation between Image and Audio File Specification 10
3.5 Presupposed Systems and Compatibility 10
3.6 Workflow for editing an image with application software 12
3.6.1 Actions 13
4. Exif Image File Specification 13
4.1 Outline of the Exif Image File Specification 13
4.2 Format Version 13
4.3 Definition of Glossary 14
4.4 Specifications Relating to Image Data 14
4.4.1 Number of Pixels 14
4.4.2 Pixel Aspect 14
4.4.3 Pixel Composition and Sampling 14
4.4.4 Image Data Arrangement 16
4.5 Basic Structure of Image Data 17
4.5.1 Basic Structure of Primary Image Data 17
4.5.2 Basic Structure of Uncompressed RGB Data. 17
4.5.3 Basic Structure of YCbCr Uncompressed Data 19
4.5.4 Basic Structure of JPEG Compressed Data 20
4.5.5 Application marker segments 21
4.5.6 How to deal with APPn markers undefined in the Exif standard 22
4.5.7 Recording data other than the primary image 23
4.5.8 Basic Structure of Thumbnail Data 23
4.6 Tags 25
4.6.1 Features of Attribute Information 25
4.6.2 IFD Structure 25
4.6.3 Exif-specific IFD 26
4.6.4 TIFF Rev. 6.0 Attribute Information 28
4.6.5 Exif IFD Attribute Information 42
4.6.6 GPS Attribute Information 70
4.6.7 Interoperability IFD Attribute Information 80
4.6.8 Tag Support Levels 81
4.7 JPEG Marker Segments Used in Exif 85
4.7.1 JPEG Marker Segments 86
4.7.2 Interoperability Structure of APP1 in Compressed Data 90
4.7.3 Interoperability Structure of APP2 in Compressed Data 91
4.8 Data Description 96
4.8.1 Stipulations on Compressed Image Size 96
4.8.2 Stipulations on Thumbnails 100
4.8.3 File Name Stipulations 100
4.8.4 Byte Order Stipulations 100
5. Exif Audio File Specification 101
5.1 Outline of the Exif Audio File Specification 101
5.2 Format Version 101
5.3 Definition of Terms 101
5.4 Specifications Relating to Audio Data 101
5.4.1 Sampling Frequency 101
5.4.2 Bit Size 101
5.4.3 Channels 102
5.4.4 Compression Schemes 102
5.5 Basic Structure of Audio Data 102
5.5.1 Basic Structure of WAVE Form Audio Files 102
5.5.2 Basic Structure of PCM Audio Data 109
5.5.3 Basic Structure of μ-Law Audio Data 114
5.5.4 Basic Structure of IMA-ADPCM Audio Data 116
5.6 Chunks Used 120
5.6.1 WAVE Form Audio File Basic Chunks. 120
5.6.2 LIST Chunk and INFO List 120
5.6.3 Chunks for Attribute Information Specific to Exif Audio Files 125
5.7 Data Description 129
5.7.1 File Naming Stipulation 129
5.7.2 Typical Exif Audio File 129
6. Logo Mark Guidelines 132
7. References 133
Annex A Image File Description Examples 135
A. 1 Uncompressed RGB File 135
A. 2 Uncompressed YCbCr File 138
A. 3 JPEG Compressed (4:2:2) File 142
A. 4 JPEG Compressed (4:2:0) File 147
Annex B Audio File Description Examples 153
B. 1 PCM Audio Data 153
B. 2μ-Law Audio Data 155
B. 3 IMA-ADPCM Audio Data 157
Annex C APEX Units 161
Annex D Color Space Guidelines 162
Annex E Guidelines for Implementing Tag Information 163
E. 1 General 163
E. 2 Tag Use in Exif/DCF Readers 163
E.2.1 ExposureTime 163
E.2.2 BrightnessValue 163
E.2.3 LightSource 164
E.2.4 Flash 164
E.2.5 SubjectArea 164
E.2.6 CustomRendered 164
E.2.7 ExposureMode 165
E.2.8 WhiteBalance 166
E.2.9 DigitalZoomRatio 166
E.2.10 FocalLengthIn35mmFilm 166
E.2.11 SceneCaptureType 166
E.2.12 GainControl 167
E.2.13 Contrast/Saturation/Sharpness 167
E.2.14 SubjectDistanceRange 168
E. 3 Application Software Guidelines 169
E.3.1 Tag handling by application software 169
E.3.2 Tag handling examples 169
E.3.3 Oth IFD 169
E.3.4 Exif IFD, Primary Image 170
E.3.5 InterOprerability IFD 174
E.3.6 GPS Info IFD 174
E.3.7 1st IFD 174
Annex F Notes on Conversion to Flashpix 175
F. 1 Converting Image Data 176
F. 2 Converting Tag Data 178
F. 3 Converting to Flashpix Extensions (APP2) 181
Annex G Use of Sensitivity-Related Tags 183

Introduction

This document is a standard that adds the revisions shown in the following items to "Exchangeable image file format for digital still cameras Exif 2.21" (specifically, CIPA DCG-008-2009 and JEITA CP-3451A; hereinafter called the "Exif Unified Version 2.21") that was defined by JEITA and CIPA.

1. Technical supplements of the main text, such as Annex G "Guidelines for Handling Exif/DCF" and Annex E "Exif Version 2.2 Explication," have been merged. And this standard has been revised.
2. For corrections and additions to new tags and parameters, priority was given to those reflecting References that had defined tags and those for which conventional tags no longer applied due to technical advancements.
3. Conformance levels in implementation and ambiguous sections in the specification were clarified, and sections with inadequate explanations were supplemented.
4. Furthermore, the format and notations were revised to improve readability, and typographic errors were corrected.

Items that underwent additions and corrections of tag specifications for this revision as follows (all are optional):

1) [Exif IFD] Addition and modification of Sensitivity-related tags that correspond to methods for measuring sensitivity

- For methods for measuring sensitivity, new sensitivity-related tags corresponding to SOS, REI, and ISO speed were established and parameters pertaining to these tags were added.
- New sensitivity (SOS, REI, ISO speed) were expanded to LONG in response to higher sensitivity.
- Methods for using sensitivity-related tags were added as Annex G.

2) [GPS IFD] Addition of methods for recording to GPS tags that apply to positioning methods other than GPS and guidelines for recording positioning errors

- Positioning methods using mobile phone base stations and wireless LAN were added.
- Recording of horizontal positioning errors was made possible.

3) [Exif IFD] Addition of body information tags and lens information tags

- For body information, recording of owner and camera serial number was made possible.
- For lens information, recording of lens specifications (focal length, f number, etc.) and manufacturer's name was made possible.

4) [Exif audio file specifications] Audio sampling frequencies and a bit number were added

- The frequencies $32.000 \mathrm{KHz}, 48.000 \mathrm{KHz}, 96.000 \mathrm{KHz}$, and 192.000 KHz were added.
- The bit number 24 bits was added.

5) [Exif IFD] Addition of light source parameters and changes to color temperature

- Parameters for light bulb-type fluorescent lights were added.
- Color temperature was changed in response to revision of JIS Z 9112 "classification of fluorescent lamps by chromaticity and color rendering property."

Revision History

Ver.	Date	Comment
1.0	October 1995	Published First Edition 1.0 - Established image data format definitions - Set definitions for structure of attribute information (tags) - Established basic tag definitions
1.1	May 1997	Published Revision 1.1 - Added tags - Added operating specifications
2.0	$\begin{aligned} & \text { November } \\ & 1997 \end{aligned}$	Published Revision 2.0 - Added sRGB color space - Added GPS - Added compressed thumbnails and audio files
2.1	$\begin{aligned} & \hline \text { December } \\ & 1998 \\ & \hline \end{aligned}$	Published Revision 2.1 - Added DCF interoperability tags
2.2	April 2002	Published Revision 2.2 - Applied ExifPrint - Developed tags for improving print quality (Photo contrast, sharpness, etc.) - Added tags pertaining to positioning and GPS
2.21	$\begin{aligned} & \text { September } \\ & 2003 \end{aligned}$	Published Revision 2.21 - Added and corrected of Exif 2.2 content in line with revision of DCF 2.0 - Added notation of tags for Gamma, ColorSpace, etc., that correspond to optional color space - Changed content of notation of flash tags and FileSource tags - Added operational guidelines (flash tags, scene capture type, etc) - Corrected notation pertaining to image data pixel composition and pixel sampling - Corrected misprints and omissions throughout the text
Unified Version 2.21	$\begin{aligned} & \text { September } \\ & 2009 \end{aligned}$	Published Unified Version 2.21 - Merged added/changed portion of Exif 2.21 to Exif 2.2 - Corrected misprints and omissions throughout the text - Added "Guidelines for Handling Exif/DCF" issued by CIPA (CIPA DCG-004-2009) as Annex G - Added explication of 2.2 as Annex H - Added explication of 2.21 as Annex I

2.3	April 2010	Published Revision 2.3 - Restructured the main standard text, guidelines, explications, etc., of Exif Unified Version 2.21 - Added and revised tags (Sensitivity-related tags, GPS information, camera and lens information, items pertaining to sound files, and light-source color) - Clarified specification levels and revised the scope of application - Supplemented explanations and adjusted format for the entire text
2.3 (Revised 2012)	$\begin{aligned} & \hline \text { December } \\ & 2012 \end{aligned}$	Published Revised Revision 2.3 - Corrected an explanation part of Orientation Tag - Corrected an explanation part of GPS Status Tag
2.31	July 2016	Published Revision 2.31 - Added time difference to UTC(Universal Time Coordinated) as tags relating to Date and Time - Added three time offset tags respectively corresponding to the three existing tags (File change date and time, Date and time of original data generation, Date and time of digital data generation) - Added tags relating to shooting situation (Temperature, Humidity, Pressure, WaterDepth, Acceleration, CameraElevationAngle) - Corrected misprints and omissions throughout the text (Including the reflection of the contents of the corrigendum established in September 2014 to the main text)

1. Scope

This standard specifies the formats to be used for images, sound, and tags in digital still cameras and in other systems handling image and sound files recorded by digital still cameras.

Formats specified in this standard are defined as folder structures that are based on Exif-JPEG and recording formats for memory. When formats are used as Exif/DCF files together with the DCF Standard, which guarantees interoperability among devices of different types, their scope shall cover devices, recording media, and application software that handle them. As devices mentioned above, the applicable items are devices with functions such as capturing, recording, displaying, editing, and printing images.

Specifically, examples of capture/recording devices include DSC, DVC, and camera phones, etc. Examples of display/playback devices include image display devices such as DVT, digital photo frames, and car navigation systems. In addition, image storage devices include image storers and home servers. Image printing devices include printers.

As application software mentioned above, the applicable items are application software providing functions for editing, displaying, printing and recording metadata as well as importing and editing images.

Specifically considered is application software that edits Exif/DCF tags and then saves them again or application software that adds metadata information undefined in the Exif Standard in Exif/DCF files and then saves it again.

2. Definitions

2.1 Definition of Terms

DSC	Digital still camera
DVC	Digital video camera
DTV	Digital television
Primary image	The main image data
Thumbnail	A small image used to index the primary image
Compressed data	Data referred to in the JPEG Standard as "entropy coded data"
Tag	A field recording ancillary data about an image. Corresponds to "field" in TIFF
Tag information	A description of the tag contents
Exif	An abbreviation of "Exchange image file format," used here as the general term for this standard and earlier versions of this standard
DCF	An abbreviation of "Design rule for Camera File System"; it defines folder structures based on Exif-JPEG and formats for recording in memory, and is the camera file system standard that guarantees interoperability among devices of different types.
DCF media	Removable memory recorded in compliance with the DCF or, removable and non-removable memory that a file system can access from an external device through IF (regardless of wired or wireless)

Exif/DCF Writer	A digital still camera (DSC) or other device or application software that can output an Exif/DCF file
Exif/DCF Editor	A device or application that edits (i.e., makes partial additions, changes, deletions) existing Exif/DCF files (Alternatively, image-editing application; includes some DTV, photo frames, and DSC)
Exif/DCF Reader	A device, such as a printer with a memory card slot, capable of directly reading an Exif/DCF file and printing or performing other output processing, as well as application software that uses Exif tags to perform image processing for output. (with playback function in conformity with the DCF Reader 1 and Reader 2 specifications described in 2.1 "Definition of Terms" of the DCF Standard)

The following definitions also apply to this standard:

- ".H" appended to a numerical value means it is hexadecimal notation.
- Unless otherwise indicated, other numerical values are given in decimal notation.

2.2 Verbal forms for the expression of provisions

The keywords in this document are to be interpreted as described in ISO/IEC Directives 2.
(See Directives2 Annex H "Verbal forms for the expression of provisions".)

Requirement	
Verbal forms	Equivalent expressions
shall	is mandatory
shall not	it is not allowed

Recommendation

Verbal forms	Equivalent expressions
should	it is recommended that is recommended
should not	

Permission

Verbal forms	Equivalent expressions
may	is optional
need not	is not required

Possibility and capability

Equivalent expressions	Equivalent expressions
can	it is possible to
can not	

3. General

3.1 Format Structure

This standard consists of the Exif image file specification and the Exif audio file specification (see Figure
1). The recording medium specification shall conform to the standard for the particular medium used and is not specified here. Recommendations on implementation are given in Design rule for Camera File system for directory and file naming.

Exif image file specification	Exif audio file specification
Recording medium specification	

Figure 1 Format structure

3.2 Exif Image File Specification

The Exif image file specification stipulates the method of recording image data in files, and specifies the following items:

- Structure of image data files,
- Tags used by this standard,
- Definition and management of format versions.

Features of the Exif image file specification include the following.
The file-recording format is based on existing formats. Compressed files are recorded as JPEG (ISO/IEC 10918-1) with application marker segments (APP1 and APP2) inserted. Uncompressed files are recorded in TIFF Rev. 6.0 format. The use of existing formats means files recorded using a DSC or related system can be read directly by commercial applications, and makes possible the use of functions for viewing and manipulating the images.

Related attribute information for both compressed and uncompressed files is stored in the tag information format defined in TIFF Rev. 6.0. Information specific to the camera system and not defined in TIFF is stored in private tags registered for Exif. The Exif image file specification also specifies the method for recording thumbnails. The reason for using the TIFF Rev. 6.0 tag format in the compressed file APP1 segment is to facilitate exchange of attribute data between Exif compressed and uncompressed files.
Compressed files can record extended data exceeding 64 KBytes by dividing it into multiple APP2 segments. The APP2 segment can be used when recording Flashpix extensions.

Details of the Exif image file specification are given in Chapter 4 of this document.

3.3 Exif Audio File Specification

The Exif audio file specification stipulates the method of writing audio data in files, and specifies the following items:

- Structure of audio data files,
- Chunks,
- Definition and management of format versions.

Features of the Exif audio file specification include the following.
Files are recorded using the existing RIFF WAVE Form Audio File format. As data formats, PCM and μ-Law PCM (conforming to ITU-T G.711) are used for uncompressed audio data, and IMA-ADPCM for compressed audio data. As with the image files specification, the aim is to enable direct reading, playback and manipulation of the files using the functions in commercial applications.
Related attribute information is stored as an INFO list in the case of general attributes, and as Exif-specific chunks in the case of attributes specific to Exif. The Exif-specific chunks are newly provided to enable necessary information to be added by making use of chunk extensibility. The recording of data in an Exif-specific chunk is done in the same way as for an INFO list.

Details of the Exif audio file specification are given in Chapter 5 of this document.

3.4 Relation between Image and Audio File Specification

This standard includes specifications not only for an image file format but also for an audio file format enabling the recording of audio as a supplementary function.

Also specified in this standard is the relational information indicating the relation between image files and audio files.

Mapping between image files and audio files can be done in various ways; but the Exif standard specifies only the simplest mapping, with others left up to the implementation.

3.5 Presupposed Systems and Compatibility

The image systems presupposed by this standard consist of three elements as follows:

- Equipment: Imaging devices such as cameras, printers and filing equipment,
- Commercial software: Off-the-shelf image processing software running on personal computers,
- Specialized software: Dedicated (system-specific) image processing software running on personal computers.

Image file compatibility on these systems is achieved as follows. The DSC or other system writes data to files in the format specified in this standard. A basic condition of equipment with a playback function is that it shall read the files it recorded itself. In a personal computer environment, the basic requirement is that dedicated software shall read all the images, audio and attribute information recorded in conformance with this standard (see Figure 2).

Figure 2 Compatibility Concepts

3.6 Workflow for editing an image with application software

Figure 3 shows the workflow when an Exif/DCF file is edited using an application. DSCs in this figure are examples of image capture/playback devices. Consideration is also given to the use of other devices such as a TV or printer.

Figure 3 Editing images with application software

3.6.1 Actions

In this workflow, the following cases are considered:

1. Recording an image use an Exif/DCF writer (in some cases, recording metadata is undefined in the Exif).
2. Importing the image into an Exif/DCF editor and editing it (in some cases, adding metadata that is undefined in the Exif at this time).
3. Exporting the image that was edited in the above-mentioned Exif/DCF editor to an Exif/DCF reader. At this time, there are cases in which the Exif/DCF reader can correspond to 6. "Reader Specifications" in the DCF Specification, and cases when it cannot.
4. Viewing the image with an Exif/DCF reader.

4. Exif Image File Specification

4.1 Outline of the Exif Image File Specification

This chapter gives details of the image file specification, covering the following items:

- Format version definition,
- Specifications relating to image data,
- Basic structure of image data,
- Tags,
- JPEG marker segments,
- Specifications on data recording.

4.2 Format Version

The version of the format specified here is recorded as 4 Bytes (see section 4.6.5). The address bytes are recorded as A1, A2, B1, and B2, starting with the lowest number. A1 and A2 store the upper part of the standard version, with the lower part stored in B1 and B2. When changes are made to the version number of this standard, the following rules apply.

- When the changes are such that data readers can properly recognize conventional information and skip the data that was recorded using newly added functions, the lower part of the version (B1, B2) is changed.
- When there is a possibility that a data reader implementing the old standard may operate incorrectly due to the new specifications, the upper part of the version (A1, A2) is changed.
Players should be able to play back files of versions earlier than the supported standard.

4.3 Definition of Glossary

Terms and notation are used as follows in this standard:

- The initial IFD in a file is the "Oth IFD," with the next IFD being called the 1st IFD.

4.4 Specifications Relating to Image Data

4.4.1 Number of Pixels

There is no limit on number of pixels of the primary image when it is recorded as either uncompressed or JPEG compressed data. Note that when recording as JPEG compressed data images for which the number of lines (ImageLength) or number of samples/line (ImageWidth) is not a multiple of 8 or 16, the method of recording is as stipulated in section 4.8.1. The above specification applies similarly to thumbnails.

4.4.2 Pixel Aspect

Image data shall be recorded as square pixels with a pixel aspect ratio of 1:1. This specification is applied similarly to thumbnails.

4.4.3 Pixel Composition and Sampling

When uncompressed data is used, the combination of pixel composition and pixel sampling for image data shall be RGB 4:4:4 and either $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 2$ or $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 0$. When compressed data is used, the combination shall be $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 2$ or $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 0$. The pixel composition of image data shall also be 8 bits each. This specification is applied similarly to thumbnails.

As sampling points on the elements making up pixels, the Y and Cb, Cr sampling points may be either co-sited or centered. Figure 4 shows typical pixel sampling for image width w and height h. In the case of $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 2$, co-sited is recommended for the sake of improved image quality on TV systems. For $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 0$, centered is recommended according to the TIFF default which is most common format of the personal computer applications.

Y

Cb, Cr
4) $\mathrm{YCbCr} 4: 2: 0$ (Co-sited)

Figure 4 Pixel Composition and Pixel Sampling

4.4.4 Image Data Arrangement

Image datand one screen shall consist of lines traced from top to bottom. JPEG compressed data shall consist of blocks configured of pixels traced in similar sequence. Figure 5 shows the various data arrangements for recording in files images with pixels of width w and height h.

2) Uncompressed RGB Planar (4:4:4)

5) Compresed JPEG Block-Interleave (4:2:2)

6) Compressed JPEG Block-Interleave (4:2:0)

Figure 5 Data Arrangement

4.5 Basic Structure of Image Data

4.5.1 Basic Structure of Primary Image Data

Image data employs following existing image formats, depending on the image data type:

- RGB uncompressed data: Baseline TIFF Rev. 6.0 RGB Full Color Images,
- YCbCr uncompressed data: TIFF Rev. 6.0 Extensions YCbCr Images,
- JPEG compressed data: JPEG Baseline ADCT.

For compressed data, the attribute information required by the DSC application shall be recorded in APP1. Data writing in APP1 shall be compatible with TIFF. The use of a common method of storing attribute information for both compressed and uncompressed data results in a simpler format, while the ability to add private tags for additional information takes advantage of the extensibility of the tag mechanism.

4.5.2 Basic Structure of Uncompressed RGB Data

Uncompressed RGB data is recorded in conformance with Baseline TIFF Rev. 6.0 RGB Full Color Color Images.
Attribute information is recorded in tags specified in TIFF Rev. 6.0. Attribute information specific to Exif is recorded using private tags reserved in TIFF for this standard. The private tags point to sets of this attribute information (Exif IFD).

Files are structured as follows (see Figure 6). As in the TIFF standard, the recording location of each IFD value is not specified:

- File Header,
- Oth IFD,
- Oth IFD Value,
- 1st IFD,
- 1st IFD Value,
- 1st (Thumbnail) Image Data,
- Oth (Primary) Image Data.

Figure 6 Basic Structure of Uncompressed Data Files

File Headers are 8 Bytes as defined in the TIFF standard, with the Offset of IFD indicating the start address of the 0th IFD (see Table 1).

The 0th IFD Offset of Next IFD indicates the start address of the 1st IFD (thumbnail images). When the 1st IFD is not recorded, the 0th IFD Offset of Next IFD shall terminate with 00000000.H.

On the IFD description method see section 4.6.2

Table 1 TIFF Headers

Name	Size (Bytes)	Value
Byte Order	2	Either "II" (4949.H) (little endian) or "MM" (4D4D.H) (big endian) depending on the CPU of the machine doing the recording shall be written.
42	2	002A.H (fixed)
Offset of IFD	4	Oth IFD offset. If the TIFF header is followed immediately by the 0th IFD, it is written as 00000008.H.

4.5.3 Basic Structure of YCbCr Uncompressed Data

YCbCr uncompressed data is recorded in conformance with TIFF Rev. 6.0 Extensions YcbCr Images. Tags for the following information are available for YCbCr uncompressed data in addition to the attribute information for RGB uncompressed data;

- RGB-YCbCr color transformation matrix coefficients (YCbCrCoefficients),
- Chrominance subsampling information (YCbCrSubSampling),
- Information on matching/nonmatching of chrominance and luminance samples (YCbCrPositioning). The method of recording other attribute information is the same as for uncompressed RGB data (see section 4.5.2).

4.5.4 Basic Structure of JPEG Compressed Data

Compressed data files shall be recorded in conformance with the JPEG DCT format specified in ISOIIEC 10918-1, with the Application Market Segment (APP1) inserted. APP1 shall be recorded immediately after the SOI marker indicating the beginning of the file (see Figure 7).Multiple APP2 may be recorded as necessary, starting immediately after APP1. APPn other than APP1 and APP2 or COM segments are not used by Exif. However Exif/DCF readers should be designed skip over unknown APPn and COM.

Figure 7 Basic Structure of Compressed Data Files

Interoperability, APP1 consists of the APP1 marker, Exif identifier code, and the attribute information itself. The size of APP1 including all these elements shall not exceed the 64 KBytes specified in the JPEG standard.

Attribute information is stored in TIFF structure including a File Header, with a maximum of two IFD (0th IFD, 1st IFD). The 0th IFD may record attribute information concerning the compressed image (primary image). The 1st IFD may be used to record a thumbnail image. For details see section 4.7.2 APP2 consists of the APP2 marker, FPXR (Flashpix Ready) identifier code, and contents list for Flashpix extension recording, or stream data. A string of multiple APP2 marker segments shall be used to record data exceeding 64 KBytes. For details see section 4.7.3.

4.5.5 Application marker segments

The basic structure of JPEG compressed data in Exif adopts a configuration based on marker segments compliant with the "Baseline DCT format of JPEG."

In the JPEG standard on which the Exif standard is based, the use of the APPn (Reserved for application segments) and COM (Comment) marker is not restricted. In the Exif standard (See section 4.5.4), it is written, "APPn other than APP1 and APP2 or COM segments are not used". However, there is no mention of prohibited use of undefined APPn markers. Therefore, undefined APPn markers can be optionally used for recording by vendors or trade groups. In this case, compliance with the following rules is recommended in order to maintain reproduction compatibility with the Exif devices.In this guideline, marker segments of JPEG compressed data should be recorded in accordance with the order shown in Table 2 and should be interpreted as described in the table.

That is, it is possible to optionally record multiple APPn (n is a value from zero to 15) markers immediately after APP1 and APP2 defined in the Exif standard.

The bracketed marker segment names show optional marker segments in the Exif standard.

Table 2 Marker segments of JPEG compressed data in Exif

No	Name of marker	Specification in the Exif standard
1	SOI	Recording this marker is mandatory. It shall be recorded in this position at the beginning of all markers.
2	APP1	Exif Attribute Information Recording this marker is mandatory. It shall be recorded in this position immediately after SOI.
3	(APP2)	Flashpix Extension data Recording this marker is optional. Multiple APP2 markers can be optionally recorded in any order. It shall be recorded in this position, if necessary.
4	(APPn)	Recording this marker is optional. Multiple markers can be recorded, as necessary.
5	DQT, DHT, (DRI), SOF	Other marker groups defined in Exif Only the DRI marker is optional. Recording the rest of the markers is mandatory. Their recording order may be changeable.
6	SOS (compressed data)	If the DRI marker is recorded, the RSTm marker shall be inserted as well. 7

The following Figure 8 shows an example structure of JPEG compressed data when undefined data in the Exif standard is added.

In this case, the added segments are assumed as APPx, APPy and APPz (x, y and z are optional numbers from zero to 15).

SOI	Start of Image
APP1	Application marker segment 1 (for Exif Attribute Information)
(APP2)	Application marker segment 2 (for Flashpix Extension data)
(APPx)	Application marker segment x (data 1 undefined in Exif)
(APPy)	Application marker segment y (data 2 undefined in Exif)
(APPz)	Application marker segment z (data 3 undefined in Exif)
DQT	Quantization Table
DHT	(Resfman Table Interval)
(DRI)	Frame Header
SOF	Scan Header
SOS	Compressed of Image
EOI	Data

Figure 8 Structure of JPEG compressed data with added APPn in Exif (Example)

4.5.6 How to deal with APPn markers undefined in the Exif standard

Exif/DCF writers should record only the minimum for vendors when recording APPn markers undefined in the Exif standard. Especially, metadata for which the content is inconsistent with that of metadata written in the Exif standard should not be recorded.

Even if APPn markers are undefined in the Exif standard and incomprehensible, Exif/DCF editors should not delete them, in consideration that the necessary information is recorded. Moreover,

Exif/DCF editors should add only the minimum for vendors when adding APPn markers undefined in the Exif standard. Especially, metadata for which the content is inconsistent with that of metadata written in the Exif standard should not be added.

When adding APPn markers, because the volume becomes quite large, current devices might not be able to handle the file itself. In other cases, the large volume might affect the performance of the device. Such cases should be kept in mind. For example, when an Exif/DCF editor uses optional APPn to add unique information to the file created by an Exif/DCF writer, the file size increases by the amount of added information. Even if the additional information is small, because the file size increases, some Exif/DCF readers might not properly handle the file itself due to the regulation in the specifications of the device. Other Exif/DCF readers might be affected in terms of performance. Therefore, it is necessary to take into account such cases.

Exif/DCF readers should be implemented to operate without interruption even if APPn markers undefined in the Exif standard have been recorded. It is recommended that Exif/DCF readers be designed to skip over unknown APP markers in the Exif standard (see section 4.5.4).

4.5.7 Recording data other than the primary image

The JPEG standard defines data formats such as compressed image data format and it does not mention file formats. Therefore, it is possible to add information other than the primary image by separately defining the structure of an image file.

For example, the file formats for recording multiple images and for information other than images are considered. If there is a standard specification, specific methods for implementation and handling should comply with the standard specification.

In Exif/DCF editors, when APP markers compliant with a standard specification are used to manage the start address of an image with offset in files, it should be considered that the start address of the image might be changed by adding the APPn markers.

In Exif/DCF writers, when data is recorded using a unique method that does not comply with a standard specification, it should be kept in mind that the data might be changed or deleted when used with other Exif/DCF writers or editors.

Moreover, Exif/DCF readers should be implemented to operate without interruption even if certain kinds of data have been recorded after EOI of the primary image defined in the Exif standard. Specifically, unknown data after EOI of the primary image should be skipped. (see section 4.7.1)

4.5.8 Basic Structure of Thumbnail Data

Thumbnail data is recorded in the 1st IFD similarly to primary images, using two existing image
formats.
No limit is placed on the size of thumbnail images. It is optional to record thumbnails but it is recommended that they be recorded if possible, unless hardware or other restrictions preclude this.Thumbnail data does not necessarily have to adopt the same data structure as that used for primary images. If, however, the primary images are recorded as uncompressed RGB data or as uncompressed YCbCr data, thumbnail images shall not be recorded as JPEG compressed data (see Table 3).

Table 3 Combinations of primary image and thumbnail data structures

		Primary Image	
		Uncompressed	Compressed
Thumbnail	Uncompressed	Possible	Possible
	Compressed	Not possible	Possible

When thumbnails are recorded in uncompressed format, they are to be recorded in the 1st IFD in conformance with Baseline TIFF Rev. 6.0 RGB Full Color Images or TIFF Rev. 6.0 Extensions YCbCr Images.

An Exif-specific recording method is used to record compressed thumbnails.
In this case the Compression tag value is set to " 6 " and tags in the 1st IFD (JPEG Interchange Format, JPEG Interchange Format Length) are used to designate the location and size. The images are recorded at the designated location as a JPEG stream (from SOI to EOI) conforming to the JPEG Baseline DCT format. APPn marker, COM marker, nor restart marker shall not be recorded in the JPEG stream (see Figure 9). To avoid duplicate definitions, the 1st IFD is not used to record a tag indicating a TIFF image or information recorded elsewhere as a JPEG marker segment.

Figure 9 Structure of Exif file with compressed thumbnail

4.6 Tags

4.6.1 Features of Attribute Information

RGB data conforms to Baseline TIFF Rev. 6.0 RGB Full Color Images and YCbCr data to TIFF Rev. 6.0 Extensions YCbCr Images. Accordingly, the parts that follow the TIFF structure shall be recorded in conformance to the TIFF standard. In addition to the attribute information indicated as mandatory in the TIFF standard, this Exif standard adds the TIFF optional tags that can be used in a DSC or other system, Exif-specific tags for recording DSC-specific attribute information, and GPS tags for recording position information. There are also Exif-original specifications not found in the TIFF standard for compressed recording of thumbnails.
Recording of compressed data differs from uncompressed data in the following respects:

- When the primary image data is recorded in compressed form, there is no tag indicating the primary image itself or its address (pointer),
- When thumbnail data is recorded in compressed form, address and size are designated using Exif-specific tags,
- Tags that duplicate information given in the JPEG Baseline are not recorded (for either primary images or thumbnails).
- Information relating to compression can be recorded using the tags for this purpose.

4.6.2 IFD Structure

The IFD used in this standard consists of a 2-byte count (number of fields), 12-byte field Interoperability arrays, and 4-byte offset to the next IFD, in conformance with TIFF Rev. 6.0.Each of the 12-byte field Interoperability consists of the following four elements respectively.

Bytes 0-1 Tag
Bytes 2-3 Type
Bytes 4-7 Count
Bytes 8-11 Value Offset
Each element is explained briefly below. For details see TIFF Rev. 6.0.

Tag

Each tag is assigned a unique 2-byte number to identify the field. The tag numbers in the Exif 0th IFD and 1st IFD are all the same as the TIFF tag numbers.

Type
The following types are used in Exif:

$1=$ BYTE	An 8-bit unsigned integer.
$2=$ ASCII	An 8-bit byte containing one 7-bit ASCII code.
	The final byte is terminated with NULL.
$3=$ SHORT	A 16-bit (2-byte) unsigned integer,
$4=$ LONG	A 32-bit (4-byte) unsigned integer,

```
    5 = RATIONAL Two LONGs. The first LONG is the numerator and the second LONG expresses the denominator.
\(7=\) UNDEFINED \(\quad\) An 8-bit byte that may take any value depending on the field definition.
\(9=\) SLONG A 32-bit (4-byte) signed integer (2's complement notation).
\(10=\) SRATIONAL Two SLONGs. The first SLONG is the numerator and the second SLONG is the denominator.
```


Count

The number of values. It should be noted carefully that the count is not the sum of the bytes. In the case of one value of SHORT (16 bits), for example, the count is '1' even though it is 2 Bytes.

Value Offset

This tag records the offset from the start of the TIFF header to the position where the value itself is recorded. In cases where the value fits in 4 Bytes, the value itself is recorded. If the value is smaller than 4 Bytes, the value is stored in the 4-Byte area starting from the left, i.e., from the lower end of the byte offset area. For example, in big endian format, if the type is SHORT and the value is 1 , it is recorded as 00010000.H.

Note that field Interoperability shall be recorded in sequence starting from the smallest tag number.
There is no stipulation regarding the order or position of tag value (Value) recording.

4.6.3 Exif-specific IFD

A. Exif IFD

Exif IFD is a set of tags for recording Exif-specific attribute information. It is pointed to by the offset from the TIFF header (Value Offset) indicated by an Exif private tag value.
Exif IFD Pointer

```
Tag \(=34665\) (8769.H)
Type \(=\) LONG
Count = 1
Default = None
```

A pointer to the Exif IFD. Interoperability, Exif IFD has the same structure as that of the IFD specified in TIFF. Ordinarily, however, it does not contain image data as in the case of TIFF.
B. GPS IFD

GPS IFD is a set of tags for recording information such as GPS information. It is pointed to by the offset from the TIFF header (Value Offset) indicated by a GPS private tag value.
GPS Info IFD Pointer
Tag $=34853$ (8825.H)
Type $=$ LONG
Count = 1
Default $=$ None
A pointer to the GPS Info IFD. The Interoperability structure of the GPS Info IFD, like that of Exif IFD, has no image data.

C. Interoperability IFD

Interoperability IFD is composed of tags which store the information to ensure the Interoperability and pointed by the following tag located in Exif IFD.
Interoperability IFD Pointer
Tag $=40965$ (A005.H)
Type $=$ LONG
Count = 1
Default = None
The Interoperability structure of Interoperability IFD is same as TIFF defined IFD structure but does not contain the image data characteristically compared with normal TIFF IFD.

4.6.4 TIFF Rev. 6.0 Attribute Information

Table 4 lists the attribute information used in Exif, including the attributes given as mandatory in Baseline TIFF Rev. 6.0 RGB Full Color Images and TIFF Rev. 6.0 Extensions YCbCr Images, as well as the optional TIFF tags used by DSC and other systems. The contents are explained below.

Table 4 TIFF Rev. 6.0 Attribute Information Used in Exif

Tag Name	Field Name	Tag ID		Type	Count
		Dec	Hex		
A. Tags relating to image data struc Image width Image height Number of bits per component Compression scheme Pixel composition Orientation of image Number of components Image data arrangement Subsampling ratio of Y to C Y and C positioning Image resolution in width direction Image resolution in height direction Unit of X and Y resolution	re ImageWidth ImageLength BitsPerSample Compression PhotometricInterpretation Orientation SamplesPerPixel PlanarConfiguration YCbCrSubSampling YCbCrPositioning XResolution YResolution ResolutionUnit	$\begin{aligned} & 256 \\ & 257 \\ & 258 \\ & 259 \\ & 262 \\ & 274 \\ & 277 \\ & 284 \\ & 530 \\ & 531 \\ & 282 \\ & 283 \\ & 296 \end{aligned}$	$\begin{aligned} & 100 \\ & 101 \\ & 102 \\ & 103 \\ & 106 \\ & 112 \\ & 115 \\ & 11 \mathrm{C} \\ & 212 \\ & 213 \\ & 11 \mathrm{~A} \\ & 11 \mathrm{~B} \\ & 128 \end{aligned}$	SHORT or LONG SHORT or LONG SHORT RATIONAL RATIONAL SHORT	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
B. Tags relating to recording offset Image data location Number of rows per strip Bytes per compressed strip Offset to JPEG SOI Bytes of JPEG data	StripOffsets RowsPerStrip StripByteCounts JPEGInterchangeFormat JPEGInterchangeFormatLength	$\begin{aligned} & 273 \\ & 278 \\ & 279 \\ & 513 \\ & 514 \end{aligned}$	$\begin{aligned} & 111 \\ & 116 \\ & 117 \\ & 201 \\ & 202 \end{aligned}$	SHORT or LONG SHORT or LONG SHORT or LONG LONG LONG	$\begin{gathered} \text { *S } \\ 1 \\ \text { *S } \\ 1 \\ 1 \end{gathered}$
C. Tags relating to image data chara Transfer function White point chromaticity Chromaticities of primaries Color space transformation matrix coefficients Pair of black and white reference values	teristics TransferFunction WhitePoint PrimaryChromaticities YCbCrCoefficients ReferenceBlackWhite	$\begin{aligned} & 301 \\ & 318 \\ & 319 \\ & 529 \\ & 532 \end{aligned}$	$\begin{aligned} & 12 \mathrm{D} \\ & 13 \mathrm{E} \\ & 13 \mathrm{~F} \\ & 211 \\ & 214 \end{aligned}$	SHORT RATIONAL RATIONAL RATIONAL RATIONAL	$\begin{gathered} 3 * 256 \\ 2 \\ 6 \\ 3 \\ 6 \end{gathered}$
D. Other tags File change date and time Image title Image input equipment manufacturer Image input equipment model Software used Person who created the image Copyright holder	DateTime ImageDescription Make Model Software Artist Copyright	$\begin{gathered} 306 \\ 270 \\ 271 \\ 272 \\ 305 \\ 315 \\ 33432 \end{gathered}$	$\begin{gathered} 132 \\ 10 \mathrm{E} \\ 10 \mathrm{~F} \\ 110 \\ 131 \\ 13 \mathrm{~B} \\ 8298 \end{gathered}$	$\begin{aligned} & \text { ASCII } \\ & \text { ASCII } \end{aligned}$	20 Any Any Any Any Any Any

*S Chunky format: StripsPerImage
Planar format: \quad SamplesPerImage * StripsPerImage
StripsPerImage $=$ floor((ImageLength + RowsPerStrip -1)/ RowsPerStrip $)$

A. Tags relating to image data structure

■ ImageWidth

The number of columns of image data, equal to the number of pixels per row. In JPEG compressed data, this tag shall not be used because a JPEG marker is used instead of it.

Tag	$=256(100 . H)$
Type	$=$ SHORT or LONG
Count	$=1$
Default	$=$ None

- ImageLength

The number of rows of image data. In JPEG compressed data, this tag shall not be used because a JPEG marker is used instead of it.

```
Tag= = 257(101.H)
Type = SHORT or LONG
Count = 1
Default = None
```


- BitsPerSample

The number of bits per image component. In this standard each component of the image is 8 bits, so the value for this tag is 8 . See also SamplesPerPixel. In JPEG compressed data, this tag shall not be used because a JPEG marker is used instead of it.

Tag	$=258(102 . H)$
Type	$=$ SHORT
Count	$=3$
Default	$=888$

■ Compression

The compression scheme used for the image data. When a primary image is JPEG compressed, this designation is not necessary. So, this tag shall not be recorded. When thumbnails use JPEG compression, this tag value is set to 6 .

Tag	$=259(103 . H)$
Type	$=$ SHORT
Count	$=1$
Default	$=$ None
1	$=$ uncompressed
6	$=$ JPEG compression (thumbnails only)
Other	$=$ reserved

■ PhotometricInterpretation

The pixel composition. In JPEG compressed data, this tag shall not be used because a JPEG marker is used instead of it.

```
Tag = 262 (106.H)
Type = SHORT
```

Count	$=1$
Default	$=$ None
2	$=\mathrm{RGB}$
6	$=\mathrm{YCbCr}$
Other	$=$ reserved

- Orientation

The image orientation viewed in terms of rows and columns.

Tag	$=$	274 (112.H)
Type	$=$	SHORT
Count	$=$	1
Default	$=$	1
1	$=$	The Oth row is at the visual top of the image, and the Oth column is the visual left-hand side.
2	=	The Oth row is at the visual top of the image, and the Oth column is the visual right-hand side.
3	$=$	The Oth row is at the visual bottom of the image, and the 0th column is the visual right-hand side.
4	=	The Oth row is at the visual bottom of the image, and the 0th column is the visual left-hand side.
5	$=$	The Oth row is the visual left-hand side of the image, and the Oth column is the visual top.
6	$=$	The Oth row is the visual right-hand side of the image, and the Oth column is the visual top.
7	$=$	The Oth row is the visual right-hand side of the image, and the 0th column is the visual bottom.
8	$=$	The Oth row is the visual left-hand side of the image, and the 0th column is the visual bottom.
Oth		reserved

Recording orientation

Table 5 shows the relationship between the total number of columns and total number of rows of coded image data that is stored in an Exif image file and an Exif tag.

Table 5 Relationship between column count/row count of coded image data and Exif tag

	When uncompressed RGB and YCbCr data (See 4.6.5.A)	When compressed JPEG data (See 4.6.5.C)
Column count	ImageWidth tag	PixelXDimension
Row count	ImageLength tag	PixelYDimension

Figure 10 shows the pixel arrangement of coded image data that is stored in an Exif image file. It should be noted that the notation " $(3,2)$ " in the figure indicates the pixel location "third column, second row."
(See section 4.4.4 for details)

	C0	C1	C2	C3
R0	$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$
R1	$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$
R2	$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$

Figure 10 Data array of an Exif image file

Figure 11 shows the orientation of an image display on a display device. The notation "visual top" refers to the upper edge of the displayed image when looking directly at the screen from its front. Likewise, the notations "visual left-hand," "visual right-hand," and "visual bottom" refer to the left edge, right edge, and bottom edge of the screen, respectively.

Figure 11 Orientation of an image display on a display device

Figure 12 shows the relationship between coded image data that is stored in an Exif image file and orientation of the image display on a display screen according to the orientation tag.

visual bottom

Orientation $=3$

visual bottom

Orientation $=5$

visual bottom

Orientation $=2$

visual bottom

Orientation $=4$

Orientation $=6$

The notation ,
$(0,0)=$ (smallest column number, smallest row number)
$(C, R)=$ (largest column number, largest row number)

Figure 12 Relationship between image data and orientation on a display screen according to an orientation tag

- Orientation = 1 is created when 0 th row of the coded image data stored in the Exif image file and the visual top of the display screen, and Oth column and visual left, will each be matched for display
- Orientation $=2$ is equivalent to an arrangement that is reversed Orientation $=1$ horizontally
- Orientation $=3$ is equivalent to an arrangement that is turned Orientation $=690$ degrees clockwise
- Orientation $=4$ is equivalent to an arrangement that is reversed Orientation $=3$ horizontally
- Orientation $=5$ is equivalent to an arrangement that is reversed Orientation $=6$ horizontally
- Orientation $=6$ is equivalent to an arrangement that is turned Orientation $=190$ degrees clockwise
- Orientation $=7$ is equivalent to an arrangement that is reversed Orientation $=8$ horizontally
- Orientation $=8$ is equivalent to an arrangement that is turned Orientation $=390$ degrees clockwise

Table 6 shows the relationship between the orientation tag and rotation processing that should be conducted when displaying coded image data that is stored on an Exif image file on a screen.

Table 6 Relationship between the orientation tag and rotation processing to display image data on a screen

(The integers 1 to 8 in the table are orientation tag values)

■ SamplesPerPixel

The number of components per pixel. Since this standard applies to RGB and YCbCr images, the value set for this tag is 3 . In JPEG compressed data, this tag shall not be used because a JPEG marker is used instead of it.

Tag	$=277(115 . H)$
Type	$=$ SHORT
Count	$=1$
Default	$=3$

■ PlanarConfiguration

Indicates whether pixel components are recorded in chunky or planar format. In JPEG compressed data, this tag shall not be used because a JPEG marker is used instead of it. If this field does not exist, the TIFF default of 1 (chunky) is assumed.

Tag	$=284(11 \mathrm{C} . \mathrm{H})$
Type	$=$ SHORT
Count	$=1$
1	$=$ chunky format
2	$=$ planar format
Other	$=$ reserved

- YCbCrSubSampling

The sampling ratio of chrominance components in relation to the luminance component. In JPEG compressed data a JPEG marker is used instead of this tag. So, this tag shall not be recorded

Tag $=530(212 . \mathrm{H})$

Type	$=$ SHORT
Count	$=2$
$[2,1]$	$=$ YCbCr4:2:2
$[2,2]$	$=$ YCbCr4:2:0
Other	$=$ reserved

- YCbCrPositioning

The position of chrominance components in relation to the luminance component. This field is designated only for JPEG compressed data or uncompressed YCbCr data. The TIFF default is 1 (centered); but when $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 2$ it is recommended in this standard that 2 (co-sited) be used to record data, in order to improve the image quality when viewed on TV systems. When this field does not exist, the reader shall assume the TIFF default. In the case of $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 0$, the TIFF default (centered) is recommended. If the Exif/DCF reader does not have the capability of supporting both kinds of YCbCrPositioning, it shall follow the TIFF default regardless of the value in this field. It is preferable that readers can support both centered and co-sited positioning.

Tag	$=531(213 . H)$
Type	$=$ SHORT
Count	$=1$
Default	$=1$
1	$=$ centered
2	$=$ co-sited
Other	$=$ reserved

b) $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 0$
X Luminance Sample
O Chrominance Sample

Figure 13 YcbCrPositioning

- XResolution

The number of pixels per ResolutionUnit in the ImageWidth direction. When the image resolution is
unknown, 72 [dpi] shall be designated.

Tag	$=282(11 A . H)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=72$

■ YResolution

The number of pixels per ResolutionUnit in the ImageLength direction. The same value as XResolution shall be designated.

Tag	$=283(11 B . H)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=72$

■ ResolutionUnit

The unit for measuring XResolution and YResolution. The same unit is used for both XResolution and YResolution. If the image resolution in unknown, 2 (inches) shall be designated.

Tag	$=296(128 . H)$
Type	$=$ SHORT
Count	$=1$
Default	$=2$
2	$=$ inches
3	$=$ centimeters
Other	$=$ reserved

B. Tags relating to recording offset

■ StripOffsets

For each strip, the byte offset of that strip. It is recommended that this be selected so the number of strip bytes does not exceed 64 KBytes.In the case of JPEG compressed data, this designation is not necessary,. So, this tag shall not be recorded. See also RowsPerStrip and StripByteCounts.

```
Tag = 273 (111.H)
Type = SHORT or LONG
Count = StripsPerImage (when PlanarConfiguration = 1)
    = SamplesPerPixel * StripsPerImage (when PlanarConfiguration = 2)
Default = None
```


■ RowsPerStrip

The number of rows per strip. This is the number of rows in the image of one strip when an image is divided into strips.In the case of JPEG compressed data, this designation is not necessary. So, this tag shall not be recorded..See also RowsPerStrip and StripByteCounts.

Tag	$=278(116 . H)$
Type	$=$ SHORT or LONG
Count	$=1$
Default	$=$ None

- StripByteCounts

The total number of bytes in each strip. In the case of JPEG compressed data,, this designation is not
necessary. So, this tag shall not be recorded.

Tag	$=279(117 . H)$	
Type	$=$ SHORT or LONG	
Count	$=$ StripsPerImage	(when PlanarConfiguration $=1$)
	$=$ SamplesPerPixel * StripsPerlmage	(when PlanarConfiguration $=2$)
Default	$=$ None	

- JPEGInterchangeFormat

The offset to the start byte (SOI) of JPEG compressed thumbnail data. This shall not be used for primary image JPEG data.

Tag	$=513(201 . H)$
Type	$=$ LONG
Default	$=$ None

■ JPEGInterchangeFormatLength
The number of bytes of JPEG compressed thumbnail data. This is not used for primary image JPEG data. JPEG thumbnails are not divided but are recorded as a continuous JPEG bitstream from SOI to EOI. APPn and COM markers should not be recorded. Compressed thumbnails shall be recorded in no more than 64 KBytes, including all other data to be recorded in APP1.

Tag	$=514(202 . H)$
Type	$=$ LONG
Default	$=$ None

C. Tags Relating to Image Data Characteristics

- TransferFunction

A transfer function for the image, described in tabular style. Normally this tag need not be used, since color space is specified in the color space information tag (ColorSpace).

Tag	$=301(12$ D.H $)$
Type	$=$ SHORT
Count	$=3 * 256$
Default	$=$ None
WhitePoint	

The chromaticity of the white point of the image. Normally this tag need not be used, since color space is specified in the color space information tag (ColorSpace).

Tag	$=318(13 \mathrm{E} . \mathrm{H})$
Type	$=$ RATIONAL
Count	$=2$
Default	$=$ None

■ PrimaryChromaticities

The chromaticity of the three primary colors of the image. Normally this tag need not be used, since color space is specified in the color space information tag (ColorSpace).

```
Tag = 319 (13F.H)
```

```
Type = RATIONAL
Count = 6
Default = None
```


- YCbCrCoefficients

The matrix coefficients for transformation from RGB to YCbCr image data. No default is given in TIFF; but here the characteristics given in Annex D, "Color Space Guidelines," is used as the default.

Tag	$=529(211 . H)$
Type	$=$ RATIONAL
Count	$=3$
Default	$=$ See Annex D

■ ReferenceBlackWhite

The reference black point value and reference white point value. No defaults are given in TIFF, but the values below are given as defaults here. The color space is declared in a color space information tag, with the default being the value that gives the optimal image characteristics Interoperability these conditions.

```
Tag= = 532(214.H)
Type = RATIONAL
Count = 6
Default = [0, 255, 0, 255, 0, 255] (when PhotometricInterpretation is RGB)
    = [0, 255, 0, 128, 0, 128] (when PhotometricInterpretation is YCbCr)
```


D. Other Tags

- DateTime

The date and time of image creation. In this standard it is the date and time the file was changed. The format is "YYYY:MM:DD HH:MM:SS" with time shown in 24 -hour format, and the date and time separated by one blank character [20.H]. When the date and time are unknown, all the character spaces except colons (":") should be filled with blank characters, or else the Interoperability field should be filled with blank characters. The character string length is 20 Bytes including NULL for termination. When the field is left blank, it is treated as unknown.

Tag	$=306(132 . \mathrm{H})$
Type	$=$ ASCII
Count	$=20$
Default	$=$ None

- ImageDescription

A character string giving the title of the image. It is possible to be added a comment such as "1988 company picnic" or the like. Two-byte character codes cannot be used. When a 2-byte code is necessary, the Exif Private tag UserComment is to be used.

Tag	$=270(10 E . H)$
Type	$=$ ASCII
Count	$=$ Any

Default $=$ None

■ Make

The manufacturer of the recording equipment. This is the manufacturer of the DSC, scanner, video digitizer or other equipment that generated the image. When the field is left blank, it is treated as unknown.

Tag	$=271(10 \mathrm{~F} . \mathrm{H})$
Type	$=$ ASCII
Count	$=$ Any
Default	$=$ None

- Model

The model name or model number of the equipment. This is the model name of number of the DSC, scanner, video digitizer or other equipment that generated the image. When the field is left blank, it is treated as unknown.

Tag	$=272(110 . H)$
Type	$=$ ASCII
Count	$=$ Any
Default	$=$ None

- Software

This tag records the name and version of the software or firmware of the camera or image input device used to generate the image. The detailed format is not specified, but it is recommended that the example shown below be followed. When the field is left blank, it is treated as unknown.
Ex.) "Exif Software Version 1.00a"

Tag	$=305(131 \mathrm{~h})$
Type	$=$ ASCII
Count	$=$ Any
Default	$=$ None

■ Artist

This tag records the name of the camera owner, photographer or image creator. The detailed format is not specified, but it is recommended that the information be written as in the example below for ease of Interoperability. When the field is left blank, it is treated as unknown.

Ex.) "Camera owner, John Smith; Photographer, Michael Brown; Image creator, Ken James"

Tag	$=315(13 B h)$
Type	$=$ ASCII
Count	$=$ Any
Default	$=$ None

- Copyright

Copyright information. In this standard the tag is used to indicate both the photographer and editor copyrights. It is the copyright notice of the person or organization claiming rights to the image. The Interoperability copyright statement including date and rights should be written in this field; e.g.,
"Copyright, John Smith, 19xx. All rights reserved." In this standard the field records both the photographer and editor copyrights, with each recorded in a separate part of the statement. When there is a clear distinction between the photographer and editor copyrights, these are to be written in the order of photographer followed by editor copyright, separated by NULL (in this case, since the statement also ends with a NULL, there are two NULL codes) (see example 1). When only the photographer copyright is given, it is terminated by one NULL code (see example 2). When only the editor copyright is given, the photographer copyright part consists of one space followed by a terminating NULL code, then the editor copyright is given (see example 3). When the field is left blank, it is treated as unknown.

Ex. 1) When both the photographer copyright and editor copyright are given.
Photographer copyright + NULL[00.H] + editor copyright + NULL[00.H]
Ex. 2) When only the photographer copyright is given.
Photographer copyright + NULL[00.H]
Ex. 3) When only the editor copyright is given.
Space[20.H]+ NULL[00.H] + editor copyright + NULL[00.H]
Tag $=33432$ (8298.H)
Type $=$ ASCII
Count $=$ Any
Default $=$ None

4.6.5 Exif IFD Attribute Information

The attribute information (field names and codes) recorded in the Exif IFD is given in Table 7 and Table 8 followed by an explanation of the contents.

Table 7 Exif IFD Attribute Information (1)

Table 8 Exif IFD Attribute Information (2)

G. Tags Relating to Picture-Taking Conditions					
Exposure time	ExposureTime	33434	829A	RATIONAL	1
F number	FNumber	33437	829D	RATIONAL	1
Exposure program	ExposureProgram	34850	8822	SHORT	1
Spectral sensitivity	SpectralSensitivity	34852	8824	ASCII	Any
Photographic Sensitivity	PhotographicSensitivity	34855	8827	SHORT	Any
Optoelectric conversion factor	OECF	34856	8828	UNDEFINED	Any
Sensitivity Type	SensitivityType	34864	8830	SHORT	1
Standard Output Sensitivity	StandardOutputSensitivity	34865	8831	LONG	1
Recommended ExposureIndex	RecommendedExposureIndex	34866	8832	LONG	1
ISO Speed	ISOSpeed	34867	8833	LONG	1
ISO Speed Latitude yyy	ISOSpeedLatitudeyyy	34868	8834	LONG	1
ISO Speed Latitude zzz	ISOSpeedLatitudezzz	34869	8835	LONG	1
Shutter speed	ShutterSpeedValue	37377	9201	SRATIONAL	1
Aperture	ApertureValue	37378	9202	RATIONAL	1
Brightness	BrightnessValue	37379	9203	SRATIONAL	1
Exposure bias	ExposureBiasValue	37380	9204	SRATIONAL	1
Maximum lens aperture	MaxApertureValue	37381	9205	RATIONAL	1
Subject distance	SubjectDistance	37382	9206	RATIONAL	1
Metering mode	MeteringMode	37383	9207	SHORT	1
Light source	LightSource	37384	9208	SHORT	1
Flash	Flash	37385	9209	SHORT	1
Lens focal length	FocalLength	37386	920A	RATIONAL	1
Subject area	SubjectArea	37396	9214	SHORT	2 or 3 or 4
Flash energy	FlashEnergy	41483	A20B	RATIONAL	1
Spatial frequency response	SpatialFrequencyResponse	41484	A20C	UNDEFINED	Any
Focal plane X resolution	FocalPlaneXResolution	41486	A20E	RATIONAL	1
Focal plane Y resolution	FocalPlaneYResolution	41487	A20F	RATIONAL	1
Focal plane resolution unit	FocalPlaneResolutionUnit	41488	A210	SHORT	1
Subject location	SubjectLocation	41492	A214	SHORT	2
Exposure index	ExposureIndex	41493	A215	RATIONAL	1
Sensing method	SensingMethod	41495	A217	SHORT	1
File source	FileSource	41728	A300	UNDEFINED	1
Scene type	SceneType	41729	A301	UNDEFINED	1
CFA pattern	CFAPattern	41730	A302	UNDEFINED	Any
Custom image processing	CustomRendered	41985	A401	SHORT	1
Exposure mode	ExposureMode	41986	A402	SHORT	1
White balance	WhiteBalance	41987	A403	SHORT	1
Digital zoom ratio	DigitalZoomRatio	41988	A404	RATIONAL	1
Focal length in 35 mm film	FocalLengthIn35mmFilm	41989	A405	SHORT	1
Scene capture type	SceneCaptureType	41990	A406	SHORT	1
Gain control	GainControl	41991	A407	RATIONAL	1
Contrast	Contrast	41992	A408	SHORT	1
Saturation	Saturation	41993	A409	SHORT	1
Sharpness	Sharpness	41994	A40A	SHORT	1
Device settings description	DeviceSettingDescription	41995	A40B	UNDEFINED	Any
Subject distance range	SubjectDistanceRange	41996	A40C	SHORT	1

A. Tags Relating to Version

■ ExifVersion

The version of this standard supported. Nonexistence of this field is taken to mean nonconformance to the standard (see section 4.2). In according with conformance to this standard, this tag shall be recorded like "0231" as 4-byte ASCII. Since the type is UNDEFINED, it shall not be terminated with NULL.

Tag	$=36864(9000 . H)$
Type	$=$ UNDEFINED
Count	$=4$
Default	$=" 0231 "$

- FlashpixVersion

The Flashpix format version supported by a FPXR file. If the FPXR function supports Flashpix format Ver. 1.0, this is indicated similarly to ExifVersion by recording "0100" as 4-byte ASCII. Since the type is UNDEFINED, it shall not be terminated with NULL.

Tag	$=40960($ A000.H)
Type	$=$ UNDEFINED
Count	$=4$
Default	$=$ "0100"
0100	$=$ Flashpix Format Version 1.0
Other	$=$ reserved

B. Tags Relating to ColorSpace

- ColorSpace

The color space information tag (ColorSpace) is always recorded as the color space specifier. Normally sRGB (=1) is used to define the color space based on the PC monitor conditions and environment. If a color space other than sRGB is used, Uncalibrated (=FFFF.H) is set. Image data recorded as Uncalibrated may be treated as sRGB when it is converted to Flashpix. On sRGB see Annex D.

Tag	$=40961($ A001.H)
Type	$=$ SHORT
Count	$=1$
1	$=$ sRGB
FFFF.H	$=$ Uncalibrated
Other	$=$ reserved

- Gamma

Indicates the value of coefficient gamma. The formula of transfer function used for image reproduction is expressed as follows.
$($ Reproduced value $)=(\text { Input value })^{\text {gamma }}$
Both reproduced value and input value indicate normalized value, whose minimum value is 0 and maximum value is 1 .

Tag $=42240$ (A500.H)

Type $=$ RATIONAL
Count $=1$
Default $=$ None

C. Tags Relating to Image Configuration

- PixeIXDimension

Information specific to compressed data. When a compressed file is recorded, the valid width of the meaningful image shall be recorded in this tag, whether or not there is padding data or a restart marker.

This tag shall not exist in an uncompressed file. For details see section 4.8.1 and Annex F.
Tag $\quad=40962$ (A002.H)
Type $=$ SHORT or LONG
Count $=1$
Default $=$ None

- PixelYDimension

Information specific to compressed data. When a compressed file is recorded, the valid height of the meaningful image shall be recorded in this tag, whether or not there is padding data or a restart marker. This tag shall not exist in an uncompressed file. For details see section 4.8.1 and Annex F. Since data padding is unnecessary in the vertical direction, the number of lines recorded in this valid image height tag will in fact be the same as that recorded in the SOF.

Tag	$=40963($ A003.H $)$
Type	$=$ SHORT or LONG
Count	$=1$

- ComponentsConfiguration

Information specific to compressed data. The channels of each component are arranged in order from the 1st component to the 4th. For uncompressed data the data arrangement is given in the PhotometricInterpretation tag. However, since PhotometricInterpretation can only express the order of Y, Cb and Cr , this tag is provided for cases when compressed data uses components other than Y, Cb, and Cr and to enable support of other sequences.

Tag	$=37121$ (9101.H)
Type	$=$ UNDEFINED
Count	$=4$
Default	$=4560$ (if RGB uncompressed)
	1230 (other cases)
0	$=$ does not exist
1	$=Y$
2	$=\mathrm{Cb}$
3	$=\mathrm{Cr}$
4	$=\mathrm{R}$
5	$=\mathrm{G}$

6	$=B$
Other	$=$ reserved

■ CompressedBitsPerPixel

Information specific to compressed data. The compression mode used for a compressed image is indicated in unit bits per pixel.

Tag	$=37122(9102 . H)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

D. Tags Relating to User Information

- MakerNote

A tag for manufacturers of Exif/DCF writers to record any desired information. The contents are up to the manufacturer, but this tag shall not be used for any other than its intended purpose.

Tag	$=37500(927 C . H)$
Type	$=$ UNDEFINED
Count	$=$ Any
Default	$=$ None

■ UserComment
A tag for Exif users to write keywords or comments on the image besides those in ImageDescription, and without the character code limitations of the ImageDescription tag.

Tag	$=37510(9286 . H)$
Type	$=$ UNDEFINED
Count	$=$ Any
Default	$=$ None

The character code used in the UserComment tag is identified based on an ID code in a fixed 8-byte area at the start of the tag data area. The unused portion of the area shall be padded with NULL ("00.H"). ID codes are assigned by means of registration. The designation method and references for each character code are given in Table 9. The value of Count N is determined based on the 8 bytes in the character code area and the number of bytes in the user comment part. Since the TYPE is not ASCII, NULL termination is not necessary (see Figure 14).

Table 9 Character Codes and their Designation

Character Code	Code Designation (8 Bytes)	References
ASCII	$41 . \mathrm{H}, 53 . \mathrm{H}, 43 . \mathrm{H}, 49 . \mathrm{H}, 49 . \mathrm{H}, 00 . \mathrm{H}, 00 . \mathrm{H}, 00 . \mathrm{H}$	ITU-T T.50 IA5
JIS	$4 \mathrm{~A}, \mathrm{H}, 49 . \mathrm{H}, 53 . \mathrm{H}, 00 . \mathrm{H}$	JIS X208-1990
Unicode	$55 . \mathrm{H}, 4 \mathrm{E} . \mathrm{H}, 49 . \mathrm{H}, 43 . \mathrm{H}, 4 \mathrm{~F} . \mathrm{H}, 44 . \mathrm{H}, 45 . \mathrm{H}, 00 . \mathrm{H}$	Unicode Standard
Undefined	$00 . \mathrm{H}, 00 . \mathrm{H}$	Undefined

Exif Private Tag

Figure 14 User Comment Tag

The ID code for the UserComment area may be a Defined code such as JIS or ASCII, or may be Undefined. The Undefined name is UndefinedText, and the ID code is filled with 8 Bytes of all "NULL" ("00.H"). An Exif/DCF reader that reads the UserComment tag shall have a function for determining the ID code. This function is not required in Exif/DCF readers that do not use the UserComment tag (see Table 10).

Table 10 Implementation of Defined and Undefined Character Codes

ID Code	Exif/DCF reader Implementation
Defined	Determines the ID code and displays it in accord with the Exif/DCF reader capability.
Undefined (all NULL)	Depends on the localized PC in each country. (If a character code is used for which there is no clear specification like Shift-JIS in Japan, Undefined is used.) Although the possibility of unreadable characters exists, display of these characters is left as a matter of Exif/DCF reader implementation.

When a UserComment area is set aside, it is recommended that the ID code be ASCII and that the following user comment part be filled with blank characters [20.H].

E. Tag Relating to Related File

■ RelatedSoundFile

This tag is used to record the name of an audio file related to the image data. The only relational information recorded here is the Exif audio file name and extension (an ASCII string consisting of 8 characters + '.' +3 characters). The path is not recorded. Stipulations on audio are given in section 5.6.3 "erel". File naming conventions are given in section 5.7.1.

When using this tag, audio files shall be recorded in conformance to the Exif audio format. Writers can also store the data such as Audio within APP2 as Flashpix extension stream data.

Audio files shall be recorded in conformance to the Exif audio format.
The mapping of Exif image files and audio files is done in any of the three ways shown in Table 11. If multiple files are mapped to one file as in [2] or [3] of this Table 11, the above format shall be used to record just one audio file name. If there are multiple audio files, the first recorded file shall be given.In the case of [3] in Table 11, for example, for the Exif image file "DSC00001. JPG" only "SND00001. WAV" is given as the related Exif audio file.
When there are three Exif audio files "SND00001. WAV", "SND00002. WAV" and "SND00003. WAV", the Exif image file name for each of them, "DSC00001. JPG," is indicated. By combining multiple relational information, a variety of playback possibilities can be supported. The method of using relational information is left to the implementation on the playback side. Since this information is an ASCII character string, it shalll be terminated by NULL.

Table 11 Mapping between Image and Audio Files

	Relationship	Exif Image File Exif Audio File
[1]	1 to 1	DSC00001.JPG \longleftarrow SND00001.WAV
[2]	Plural to 1	
[3]	1 to plural	

When this tag is used to map audio files, the relation of the audio file to image data shall also be indicated on the audio file end.

Tag	$=40964($ A004.H)
Type	$=$ ASCII
Count	$=13$
Default	$=$ None

F. Tags Relating to Date and Time

- DateTimeOriginal

The date and time when the original image data was generated. For a DSC the date and time the picture was taken are recorded. The format is "YYYY:MM:DD HH:MM:SS" with time shown in 24-hour format, and the date and time separated by one blank character [20.H]. When the date and time are unknown, all the character spaces except colons (":") should be filled with blank characters, or else the Interoperability field should be filled with blank characters. The character string length is 20 Bytes including NULL for termination. When the field is left blank, it is treated as unknown.
Tag $=36867$ (9003.H)

Type	$=$ ASCII
Count	$=20$
Default	$=$ None

■ DateTimeDigitized

The date and time when the image was stored as digital data. If, for example, an image was captured by DSC and at the same time the file was recorded, then the DateTimeOriginal and DateTimeDigitized will have the same contents. The format is "YYYY:MM:DD HH:MM:SS" with time shown in 24-hour format, and the date and time separated by one blank character [20.H]. When the date and time are unknown, all the character spaces except colons (":")should be filled with blank characters, or else the Interoperability field should be filled with blank characters. The character string length is 20 Bytes including NULL for termination. When the field is left blank, it is treated as unknown.

Tag	$=36868(9004 . \mathrm{H})$
Type	$=$ ASCII
Count	$=20$
Default	$=$ None

- OffsetTime

A tag used to record the offset from UTC (the time difference from Universal Time Coordinated including daylight saving time) of the time of DateTime tag. The format when recording the offset is " $\pm \mathrm{HH}: M M$ ". The part of " \pm " shall be recorded as " + " or "-". When the offset are unknown, all the character spaces except colons (":")should be filled with blank characters, or else the Interoperability field should be filled with blank characters. The character string length is 7 Bytes including NULL for termination. When the field is left blank, it is treated as unknown.

Tag	$=36880(9010 . \mathrm{H})$
Type	$=$ ASCII
Count	$=7$
Default	$=$ None

■ OffsetTimeOriginal

A tag used to record the offset from UTC (the time difference from Universal Time Coordinated including daylight saving time) of the time of DateTimeOriginal tag. The format when recording the offset is " $\pm \mathrm{HH}: M M$ ". The part of " \pm " shall be recorded as " + " or " - ". When the offset are unknown, all the character spaces except colons (":")should be filled with blank characters, or else the Interoperability field should be filled with blank characters. The character string length is 7 Bytes including NULL for termination. When the field is left blank, it is treated as unknown.

Tag	$=36881(9011 . \mathrm{H})$
Type	$=$ ASCII
Count	$=7$
Default	$=$ None

■ OffsetTimeDigitized

A tag used to record the offset from UTC (the time difference from Universal Time Coordinated
including daylight saving time) of the time of DateTimeDigitized tag. The format when recording the offset is " $\pm \mathrm{HH}: \mathrm{MM} "$. The part of " \pm " shall be recorded as " + " or "-". When the offset are unknown, all the character spaces except colons (":")should be filled with blank characters, or else the Interoperability field should be filled with blank characters. The character string length is 7 Bytes including NULL for termination. When the field is left blank, it is treated as unknown.

Tag	$=36882(9012 . \mathrm{H})$
Type	$=$ ASCII
Count	$=7$
Default	$=$ None

■ SubsecTime

A tag used to record fractions of seconds for the DateTime tag.

Tag	$=37520(9290 . \mathrm{H})$
Type	$=$ ASCII
Count	$=$ Any
Default	$=$ None

■ SubsecTimeOriginal

A tag used to record fractions of seconds for the DateTimeOriginal tag.

Tag	$=37521(9291 . \mathrm{H})$
Type	$=$ ASCII
N	$=$ Any
Default	$=$ None

■ SubsecTimeDigitized

A tag used to record fractions of seconds for the DateTimeDigitized tag.

Tag	$=37522(9292 . \mathrm{H})$
Type	$=$ ASCII
N	$=$ Any
Default	$=$ None

Note Recording subsecond data (SubsecTime, SubsecTimeOriginal, SubsecTimeDigitized)
The tag type is ASCII and the string length including NULL is variable length. When the number of valid digits is up to the second decimal place, the subsecond value goes in the Value position. When it is up to four decimal places, an address value is Interoperability, with the subsecond value put in the location pointed to by that address. (Since the count of ASCII type field Interoperability is a value that includes NULL, when the number of valid digits is up to four decimal places the count is 5 , and the offset value goes in the Value Offset field. See section 4.6.2.) Note that the subsecond tag differs from the DateTime tag and other such tags already defined in TIFF Rev. 6.0, and that both are recorded in the Exif IFD.

Ex.: September 9, 1998, 9:15:30.130 (the number of valid digits is up to the third decimal place)
DateTime 1998:09:01 09:15:30 [NULL]
SubSecTime 130 [NULL]

If the string length is longer than the number of valid digits, the digits are aligned with the start of the area and the rest is filled with blank characters $[20 . \mathrm{H}]$. If the subsecond data is unknown, the Interoperability area should be filled with blank characters.

Examples when subsecond data is 0.130 seconds:
Ex. 1) '1','3','0',[NULL]
Ex. 2) ' 1 ','3', 'O',[20.H],[NULL]
Ex. 3) '1','3', 'O', [20.H], [20.H], [20.H], [20.H], [20.H], [NULL]

Example when subsecond data is unknown:

Ex. 4) [20.H], [20.H], [20.H], [20.H], [20.H], [20.H], [20.H], [20.H], [NULL]

G. Tags Relating to Picture-Taking Conditions

- ExposureTime

Exposure time, given in seconds (sec).

Tag	$=33434(829 A . H)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ FNumber

The F number.
Tag $=33437$ (829D.H)
Type $=$ RATIONAL
Count $=1$
Default $=$ None

■ ExposureProgram

The class of the program used by the camera to set exposure when the picture is taken. The tag values are as follows.

Tag	$=34850(8822 . \mathrm{H})$
Type	$=$ SHORT
Count	$=1$
Default	$=0$
0	$=$ Not defined
1	$=$ Manual
2	$=$ Normal program
3	$=$ Aperture priority
4	$=$ Shutter priority
5	$=$ Creative program (biased toward depth of field)
6	$=$ Action program (biased toward fast shutter speed)
7	$=$ Portrait mode (for closeup photos with the background out of focus)
8	$=$ Landscape mode (for landscape photos with the background in focus)
Other	$=$ reserved

■ SpectralSensitivity

Indicates the spectral sensitivity of each channel of the camera used. The tag value is an ASCII string compatible with the standard developed by the ASTM Technical committee.

Tag	$=34852(8824 . H)$
Type	$=$ ASCII
Count	$=$ Any
Default	$=$ None

■ PhotographicSensitivity

This tag indicates the sensitivity of the camera or input device when the image was shot. More specifically, it indicates one of the following values that are parameters defined in ISO 12232: standard output sensitivity (SOS), recommended exposure index (REI), or ISO speed. Accordingly, if a tag corresponding to a parameter that is designated by a SensitivityType tag is recorded, the values of the tag and of this PhotographicSensitivity tag are the same. However, if the value is 65535 (the maximum value of SHORT) or higher, the value of this tag shall be 65535. When recording this tag, the SensitivityType tag should also be recorded. In addition, while "Count = Any", only 1 count should be used when recording this tag.

Note that this tag was referred to as "ISOSpeedRatings" in versions of this standard up to Version 2.21.
See Annex G for use of sensitivity-related tags.

Tag	$=34855(8827 . H)$
Type	$=$ SHORT
Count	$=$ Any
Default	$=$ None

■ OECF
Indicates the Opto-Electric Conversion Function (OECF) specified in ISO 14524. OECF is the relationship between the camera optical input and the image values.
Tag $=34856$ (8828.H)

Type $=$ UNDEFINED
Count $=$ ANY
Default $=$ None
When this tag records an OECF of m rows and n columns, the values are as in Figure 15.

Length	Meaning	
2	SHORT	Columns $=\mathrm{n}$
2	SHORT	Rows $=\mathrm{m}$
Any	ASCII	0th column item name (NULL terminated)
$:$	$:$	$:$
Any	ASCII	n-1th column item name (NULL terminated)
8	SRATIONAL	OECF value [0,0]
$:$	$:$	$:$
8	SRATIONAL	OECF value [n-1,0]
8	SRATIONAL	OECF value [0,m-1]

$:$	$:$	$:$
8	SRATIONAL	OECF value $[\mathrm{n}-1, \mathrm{~m}-1]$

Figure 15 OECF Description
Table 12 gives a simple example.
Table 12 Example of Exposure and RGB Output Level

Camera log Aperture	R Output Level	G Output Level	B Output Level
-3.0	10.2	12.4	8.9
-2.0	48.1	47.5	48.3
-1.0	150.2	152.0	149.8

■ SensitivityType

The SensitivityType tag indicates which one of the parameters of ISO12232 is the PhotographicSensitivity tag. Although it is an optional tag, it should be recorded when a PhotographicSensitivity tag is recorded. Value $=4,5,6$, or 7 may be used in case that the values of plural parameters are the same. See Annex G for use of sensitivity-related tags.

■ StandardOutputSensitivity

This tag indicates the standard output sensitivity value of a camera or input device defined in ISO 12232. When recording this tag, the PhotographicSensitivity and SensitivityType tags shall also be recorded. See Annex G for use of sensitivity-related tags.

Tag $\quad=34865$ (8831.H)
Type $=$ LONG
Count $=1$
Default $=$ None

■ RecommendedExposureIndex

This tag indicates the recommended exposure index value of a camera or input device defined in ISO 12232. When recording this tag, the PhotographicSensitivity and SensitivityType tags shall also be recorded. See Annex G for use of sensitivity-related tags.

Tag $\quad=34866$ (8832.H)
Type $=$ LONG
Count $=1$
Default = None
■ ISO Speed
This tag indicates the ISO speed value of a camera or input device that is defined in ISO 12232. When recording this tag, the PhotographicSensitivity and SensitivityType tags shall also be recorded.

See Annex G for use of sensitivity-related tags.
Tag $\quad=\quad 34867$ (8833.H)
Type $=$ LONG
Count $=1$
Default $=$ None

■ ISOSpeedLatitudeyyy

This tag indicates the ISO speed latitude yyy value of a camera or input device that is defined in ISO 12232.

However, this tag shall not be recorded without ISOSpeed and ISOSpeedLatitudezzz.
See Annex G for use of sensitivity-related tags.
Tag $=34868$ (8834.H)
Type $=$ LONG
Count $=1$
Default $=$ None

■ ISOSpeedLatitudezzz

This tag indicates the ISO speed latitude zzz value of a camera or input device that is defined in ISO 12232.

However, this tag shall not be recorded without ISOSpeed and ISOSpeedLatitudeyyy.
See Annex G for use of sensitivity-related tags..
Tag $\quad=34869$ (8835.H)
Type $=$ LONG
Count $=1$
Default = None

See Annex G for use of sensitivity-related tags.

- ShutterSpeedValue

Shutter speed. The unit is the APEX (Additive System of Photographic Exposure) setting (see Annex C).

Tag	$=37377(9201 . H)$
Type	$=$ SRATIONAL
Count	$=1$
Default	$=$ None

- ApertureValue

The lens aperture. The unit is the APEX value.

Tag	$=37378(9202 . H)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

- BrightnessValue

The value of brightness. The unit is the APEX value. Ordinarily it is given in the range of -99.99 to 99.99. Note that if the numerator of the recorded value is FFFFFFFFF.H, Unknown shall be indicated.

Tag	$=37379(9203 . H)$
Type	$=$ SRATIONAL
Count	$=1$
Default	$=$ None

■ ExposureBiasValue

The exposure bias. The unit is the APEX value. Ordinarily it is given in the range of -99.99 to 99.99 .

Tag	$=37380(9204 . H)$
Type	$=$ SRATIONAL
Count	$=1$
Default	$=$ None

■ MaxApertureValue

The smallest F number of the lens. The unit is the APEX value. Ordinarily it is given in the range of 00.00 to 99.99, but it is not limited to this range.

Tag	$=37381(9205 . H)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ SubjectDistance

The distance to the subject, given in meters. Note that if the numerator of the recorded value is FFFFFFFFF.H, Infinity shall be indicated; and if the numerator is 0, Distance unknown shall be indicated.

Tag	$=37382(9206 . H)$
Type	$=$ RATIONAL

Count $=1$
Default $=$ None

■ MeteringMode

The metering mode.

Tag	$=37383(9207 . H)$
Type	$=$ SHORT
Count	$=1$
Default	$=0$
0	$=$ unknown
1	$=$ Average
2	$=$ CenterWeightedAverage
3	$=$ Spot
4	$=$ MultiSpot
5	$=$ Pattern
6	$=$ Partial
255	$=$ other
Other	$=$ reserved

- LightSource

The kind of light source.

Tag	$=37384$ (9208.H)
Type	$=$ SHORT
Count	$=1$
Default	$=0$
0	$=$ unknown
1	$=$ Daylight
2	$=$ Fluorescent
3	$=$ Tungsten (incandescent light)
4	$=$ Flash
9	$=$ Fine weather
10	$=$ Cloudy weather
11	$=$ Dhade
12	$=$ Daylight fluorescent (D 5700-7100K)
13	$=$ Cool white fluorescent (W 3800-4500K)
14	$=$ White fluorescent (WW 3250-3800K)
15	$=$ Standard light A
16	$=$ Standard light B
17	$=$ Standard light C
18	
19	$=1500-3250 K)$

20	$=$ D55
21	$=$ D65
22	$=$ D75
23	$=$ D50
24	$=$ ISO studio tungsten
255	$=$ other light source
Other	$=$ reserved

■ Flash

This tag indicates the status of flash when the image was shot. Bit 0 indicates the flash firing status, bits 1 and 2 indicate the flash return status, bits 3 and 4 indicate the flash mode, bit 5 indicates whether the flash function is present, and bit 6 indicates "red eye" mode (see Figure 16).

Tag $=37385$ (9209.H)
Type $=$ SHORT
Count $=1$

Figure 16 Bit Coding of the Flash Tag
Values for bit 0 indicating whether the flash fired.
$0 b=$ Flash did not fire.
1b = Flash fired
Values for bits 1 and 2 indicating the status of returned light.
$00 b=$ No strobe return detection function
01b = reserved
10b $=$ Strobe return light not detected.
$11 \mathrm{~b}=$ Strobe return light detected.
Values for bits 3 and 4 indicating the camera's flash mode.
00b = unknown
01b = Compulsory flash firing
10b = Compulsory flash suppression
11b $=$ Auto mode
Values for bit 5 indicating the presence of a flash function.
$0 \mathrm{~b}=$ Flash function present

1b $=$ No flash function
Values for bit 6 indicating the camera's red-eye mode.
Ob $=$ No red-eye reduction mode or unknown
1b $=$ Red-eye reduction supported

■ SubjectArea

This tag indicates the location and area of the main subject in the overall scene.

Tag	$=37396(9214 . H)$
Type	$=$ SHORT
Count	$=2$ or 3 or 4
Default	$=$ None

The subject location and area are defined by Count values as follows.
Count $=2$ Indicates the location of the main subject as coordinates. The first value is the X coordinate and the second is the Y coordinate.

Count = 3 The area of the main subject is given as a circle. The circular area is expressed as center coordinates and diameter. The first value is the center X coordinate, the second is the center Y coordinate, and the third is the diameter. (See Figure 17.)
Count $=4$ The area of the main subject is given as a rectangle. The rectangular area is expressed as center coordinates and area dimensions. The first value is the center X coordinate, the second is the center Y coordinate, the third is the width of the area, and the fourth is the height of the area. (See Figure 18.)

Note that the coordinate values, width, and height are expressed in relation to the upper left as origin, prior to rotation processing as per the Rotation tag.

Figure 17 Circular area designation

Figure 18 Rectangular area designation

■ FocalLength

The actual focal length of the lens, in mm . Conversion is not made to the focal length of a 35 mm film camera.

Tag	$=37386(920 A . H)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ FlashEnergy

Indicates the strobe energy at the time the image is captured, as measured in Beam Candle Power Seconds (BCPS).

Tag	$=41483($ A20B.H)
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

- SpatialFrequencyResponse

This tag records the camera or input device spatial frequency table and SFR values in the direction of image width, image height, and diagonal direction, as specified in ISO 12233.

Tag	$=41484($ A20CH $)$
Type	$=$ UNDEFINED
Count	$=$ ANY
Default	$=$ None

When the spatial frequency response for m rows and n columns is recorded, the values are as shown in Figure 19

Length	Type	Meaning
2	SHORT	Columns $=\mathrm{n}$
2	SHORT	Rows $=\mathrm{m}$
Any	ASCII	Oth column item name (NULL terminated)
$:$	$:$	$:$
Any	ASCII	$\mathrm{n}-1$ th column item name (NULL terminated)
8	RATIONAL	SFR value $[0,0]$
$:$	$:$	$:$
8	RATIONAL	SFR value $[\mathrm{n}-1,0]$
8	RATIONAL	SFR value $[0, \mathrm{~m}-1]$
$:$	$:$	$:$
8	RATIONAL	SFR value $[\mathrm{n}-1, \mathrm{~m}-1]$

Figure 19 Spatial Frequency Response Description
Table 13 gives a simple example.
Table 13 Example of Spatial Frequency Response

Spatial Frequency (lw/ph)	Along Image Width	Along Image Height
0.1	1.00	1.00
0.2	0.90	0.95
0.3	0.80	0.85

- FocalPlaneXResolution

Indicates the number of pixels in the image width (X) direction per FocalPlaneResolutionUnit on the camera focal plane.

Tag	$=41486($ A20E.H)
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ FocalPlaneYResolution

Indicates the number of pixels in the image height (Y) direction per FocalPlaneResolutionUnit on the camera focal plane.

Tag	$=41487$ (A20F.H)
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

- FocalPlaneResolutionUnit

Indicates the unit for measuring FocalPlaneXResolution and FocalPlaneYResolution. This value is the same as the ResolutionUnit.

Tag	$=41488($ A210.H)
Type	$=$ SHORT
Count	$=1$
Default	$=2$ (inch)

Note on use of tags concerning focal plane resolution

These tags record the actual focal plane resolutions of the main image which is written as a file after processing instead of the pixel resolution of the image sensor in the camera. It should be noted carefully that the data from the image sensor is resampled.
These tags are used at the same time as a FocalLength tag when the angle of field of the recorded image is to be calculated precisely.

- SubjectLocation

Indicates the location of the main subject in the scene. The value of this tag represents the pixel at the center of the main subject relative to the left edge, prior to rotation processing as per the Rotation tag. The first value indicates the X column number and second indicates the Y row number.

Tag	$=41492($ A214.H)
Type	$=$ SHORT
Count	$=2$
Default	$=$ None

When a camera records the main subject location, it is recommended that the SubjectArea tag be used instead of this tag.

- ExposureIndex

Indicates the exposure index selected on the camera or input device at the time the image is captured.

Tag	$=41493($ A215.H $)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ SensingMethod
Indicates the image sensor type on the camera or input device. The values are as follows.

Tag	$=41495($ A217.H)
Type	$=$ SHORT
Count	$=1$
Default	$=$ None
1	$=$ Not defined
2	$=$ One-chip color area sensor
3	$=$ Two-chip color area sensor
4	$=$ Three-chip color area sensor
5	$=$ Color sequential area sensor
7	$=$ Trilinear sensor
8	$=$ Color sequential linear sensor
Other	$=$ reserved

- FileSource

Indicates the image source. If a DSC recorded the image, this tag value always shall be set to 3 .

Tag	$=41728($ A300.H $)$
Type	$=$ UNDEFINED
Count	$=1$
Default	$=3$
0	$=$ others
1	$=$ scanner of transparent type
2	$=$ scanner of reflex type
3	$=$ DSC
Other	$=$ reserved

- SceneType

Indicates the type of scene. If a DSC recorded the image, this tag value shall always be set to 1 , indicating that the image was directly photographed.

Tag	$=41729($ A301.H $)$
Type	$=$ UNDEFINED
Count	$=1$
Default	$=1$
1	$=$ A directly photographed image

Other = reserved

■ CFAPattern

Indicates the color filter array (CFA) geometric pattern of the image sensor when a one-chip color area sensor is used. It does not apply to all sensing methods.

Tag	$=41730($ A302.H $)$
Type	$=$ UNDEFINED
Count	$=$ ANY
Default	$=$ None

Figure 20 shows how a CFA pattern is recorded for a one-chip color area sensor when the color filter array is repeated in $\mathrm{m} \times \mathrm{n}$ (vertical x lateral) pixel units.

Length	Type	Meaning
2	SHORT	Horizontal repeat pixel unit $=\mathrm{n}$
2	SHORT	Vertical repeat pixel unit $=\mathrm{m}$
1	BYTE	CFA value $[0.0]$
$:$	$:$	$:$
1	BYTE	CFA value $[\mathrm{n}-1.0]$
1	BYTE	CFA value $[0 . \mathrm{m}-1]$
$:$	$:$	\vdots
1	BYTE	CFA value $[\mathrm{n}-1 . \mathrm{m}-1]$

Figure 20 CFA Pattern Description
The relation of color filter color to CFA value is shown in Table 14.
Table 14 Color Filter Color and CFA Value

Filter Color	CFA Value
RED	$00 . \mathrm{H}$
GREEN	$01 . \mathrm{H}$
BLUE	$02 . \mathrm{H}$
CYAN	$03 . \mathrm{H}$
MAGENTA	$04 . \mathrm{H}$
YELLOW	$05 . \mathrm{H}$
WHITE	$06 . \mathrm{H}$

For example, when the CFA pattern values are $\{0002 . \mathrm{H}, 0002 . \mathrm{H}, 01 . \mathrm{H}, 00 . \mathrm{H}, 02 . \mathrm{H}, 01 . \mathrm{H}\}$, the color filter array is as shown in Figure 21

G	R	G	R	$\ldots \ldots \ldots$
B	G	B	G	$\ldots \ldots \ldots$
G	R	G	R	$\ldots \ldots \ldots$
B	G	B	G	$\ldots \ldots \ldots$
$:$	$:$	$:$	$:$	

Figure 21 Color Filter Array

■ CustomRendered

This tag indicates the use of special processing on image data, such as rendering geared to output.

When special processing is performed, the Exif/DCF reader is expected to disable or minimize any further processing.

Tag	$=41985(\mathrm{~A} 401 . \mathrm{H})$
Type	$=$ SHORT
Count	$=1$
Default	$=0$
0	$=$ Normal process
1	$=$ Custom process
Other	$=$ reserved

■ ExposureMode

This tag indicates the exposure mode set when the image was shot. In auto-bracketing mode, the camera shoots a series of frames of the same scene at different exposure settings.

Tag	$=41986($ A402.H)
Type	$=$ SHORT
Count	$=1$
Default	$=$ None
0	$=$ Auto exposure
1	$=$ Manual exposure
2	$=$ Auto bracket
Other	$=$ reserved

- WhiteBalance

This tag indicates the white balance mode set when the image was shot.

Tag	$=41987($ A403.H $)$
Type	$=$ SHORT
Count	$=1$
Default	$=$ None
0	$=$ Auto white balance
1	$=$ Manual white balance
Other	$=$ reserved

- DigitalZoomRatio

This tag indicates the digital zoom ratio when the image was shot. If the numerator of the recorded value is 0 , this indicates that digital zoom was not used.

Tag	$=41988($ A404.H)
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ FocalLengthIn35mmFilm
This tag indicates the equivalent focal length assuming a 35 mm film camera, in mm . A value of 0 means the focal length is unknown. Note that this tag differs from the FocalLength tag.

```
Type \(=\) SHORT
Count \(=1\)
Default \(=\) None
```


■ SceneCaptureType

This tag indicates the type of scene that was shot. It may also be used to record the mode in which the image was shot. Note that this differs from the scene type (SceneType) tag.

Tag	$=41990($ A406.H)
Type	$=$ SHORT
Count	$=1$
Default	$=0$
0	$=$ Standard
1	$=$ Landscape
2	$=$ Portrait
3	$=$ Night scene
Other	$=$ reserved

- GainControl

This tag indicates the degree of overall image gain adjustment.

Tag	$=41991($ A407.H)
Type	$=$ SHORT
Count	$=1$
Default	$=$ None
0	$=$ None
1	$=$ Low gain up
2	$=$ High gain up
3	$=$ Low gain down
4	$=$ High gain down
Other	$=$ reserved

■ Contrast
This tag indicates the direction of contrast processing applied by the camera when the image was shot.

Tag	$=41992($ A408.H $)$
Type	$=$ SHORT
Count	$=1$
Default	$=0$
0	$=$ Normal
1	$=$ Soft
2	$=$ Hard
Other	$=$ reserved

■ Saturation

This tag indicates the direction of saturation processing applied by the camera when the image was shot.

Tag	$=41993($ A409.H)
Type	$=$ SHORT
Count	$=1$
Default	$=0$
0	$=$ Normal
1	$=$ Low saturation
2	$=$ High saturation
Other	$=$ reserved

■ Sharpness

This tag indicates the direction of sharpness processing applied by the camera when the image was shot.

Tag	$=41994$ (A40A.H)
Type	$=$ SHORT
Count	$=1$
Default	$=0$
0	$=$ Normal
1	$=$ Soft
2	$=$ Hard
Other	$=$ reserved

- DeviceSettingDescription

This tag indicates information on the picture-taking conditions of a particular camera model.
The tag is used only to indicate the picture-taking conditions in the Exif/DCF reader.
Tag $=41995$ (A40B.H)
Type $=$ UNDEFINED
Count = Any
Default $=$ None
The information is recorded in the format shown in Figure 22. The data is recorded in Unicode using SHORT type for the number of display rows and columns and UNDEFINED type for the camera settings. The Unicode (UCS-2) string including Signature is NULL terminated. The specifics of the Unicode string are as given in ISO/IEC 10646-1.

Length	Type	Meaning
2	SHORT	Display columns
2	SHORT	Display rows
Any	UNDEFINED	Camera setting-1
Any	UNDEFINED	Camera setting-2
$:$	$:$	$:$
Any	UNDEFINED	Camera setting-n

Figure 22 Format used to record picture-taking conditions

■ SubjectDistanceRange

This tag indicates the distance to the subject.

Tag	$=41996($ A40C.H)
Type	$=$ SHORT
Count	$=1$
Default	$=$ None
0	$=$ unknown
1	$=$ Macro
2	$=$ Close view
3	$=$ Distant view
Other	$=$ reserved

G2. Tags Relating to Shooting Situation

Note: Tags relating to shooting situation indicate the respective situations of the photographing scenes. If the shooting situation is recorded including the ambient circumstance, the photographing locations can be looked back later, so it would be more enjoyable and meaningful. These tags are prepared for helping to bring up memories when photographed.

- Temperature

Temperature as the ambient situation at the shot, for example the room temperature where the photographer was holding the camera. The unit is ${ }^{\circ} \mathrm{C}$. If the denominator of the recorded value is FFFFFFFFF.H, unknown shall be indicated. Obtaining method or accuracy is not stipulated. Therefore methods like that the photographer manually input the numeric, as an example, are usable.

Tag	$=37888(9400 . \mathrm{H})$	
Type	$=$	SRATIONAL
Count	$=1$	
Default	$=$ None	

■ Humidity

Humidity as the ambient situation at the shot, for example the room humidity where the photographer was holding the camera. The unit is \%. If the denominator of the recorded value is FFFFFFFFF.H, unknown shall be indicated. Obtaining method or accuracy is not stipulated. Therefore methods like that the photographer manually input the numeric, as an example, are usable.

Tag	$=37889(9401 . H)$	
Type	$=$	RATIONAL
Count	$=1$	
Default	$=$ None	

■ Pressure

Pressure as the ambient situation at the shot, for example the room atmospfere where the photographer was holding the camera or the water pressure under the sea. The unit is hPa. If the denominator of the recorded value is FFFFFFFFF.H, unknown shall be indicated. Obtaining method or accuracy is not stipulated. Therefore methods like that the photographer manually input the numeric, as an example, are usable.

Tag	$=$	$37890(9402 . H)$
Type	$=$	RATIONAL
Count	$=1$	
Default	$=$	None

■ WaterDepth

Water depth as the ambient situation at the shot, for example the water depth of the camera at underwater photography. The unit is m . When the value is negative, the absolute value of it indicates the height (elevation) above the water level. If the denominator of the recorded value is FFFFFFFFF.H, unknown shall be indicated. Obtaining method or accuracy is not stipulated. Therefore methods like that the photographer manually input the numeric, as an example, are usable.

Tag	$=$	$37891(9403 . H)$
Type	$=$	SRATIONAL
Count	$=1$	
Default	$=$	None

- Acceleration

Acceleration (a scalar regardless of direction) as the ambient situation at the shot, for example the driving acceleration of the vehicle which the photographer rode on at the shot. The unit is $\mathrm{mGal}\left(10^{-5}\right.$ $\mathrm{m} / \mathrm{s}^{2}$). If the denominator of the recorded value is FFFFFFFFF.H, unknown shall be indicated. Obtaining method or accuracy is not stipulated. Therefore methods like that the photographer manually input the numeric, as an example, are usable.

Tag $=37892$ (9404.H)
Type $=$ RATIONAL

Count $=1$
Default $=$ None

■ CameraElevationAngle

Elevation/depression. angle of the orientation of the camera(imaging optical axis) as the ambient situation at the shot. The unit is degree $\left({ }^{\circ}\right)$. The range of the value is from -180 to less than 180 . If the denominator of the recorded value is FFFFFFFFF.H, unknown shall be indicated. Obtaining method or accuracy is not stipulated. Therefore methods like that the photographer manually input the numeric, as an example, are usable.

Tag	$=$	$37893(9405 . H)$
Type	$=$	SRATIONAL
Count	$=1$	
Default	$=$ None	

H. Other tags

■ ImageUniqueID

This tag indicates an identifier assigned uniquely to each image. It is recorded as an ASCII string equivalent to hexadecimal notation and 128-bit fixed length.

Tag	$=42016($ A420.H $)$
Type	$=$ ASCII
Count	$=33$
Default	$=$ None

■ CameraOwnerName
This tag records the owner of a camera used in photography as an ASCII string.

Tag	$=42032($ A430.H)
Type	$=$ ASCII
Count	$=$ ANY
Default	$=$ None

■ BodySerialNumber

This tag records the serial number of the body of the camera that was used in photography as an ASCII string.

Tag	$=42033($ A431.H $)$
Type	$=$ ASCII
Count	$=$ ANY
Default	$=$ None

■ LensSpecification

This tag notes minimum focal length, maximum focal length, minimum F number in the minimum focal length, and minimum F number in the maximum focal length, which are specification information for the lens that was used in photography. When the minimum F number is unknown, the notation is $0 / 0$.

Tag	$=42034(\mathrm{~A} 432 . \mathrm{H})$
Type	$=$ RATIONAL
Count	$=4$
Default	$=$ None
Value $1:=$	Minimum focal length (unit: mm)
Value $2:=$	Maximum focal length (unit: mm)
Value $3:=$	Minimum F number in the minimum focal length
Value $4:$	$=\quad$ Minimum F number in the maximum focal length

- LensMake

This tag records the lens manufacturer as an ASCII string.
Tag $\quad=\quad 42035$ (A433.H)
Type $=\mathrm{ASCII}$
Count $=$ Any
Default $=$ None

LensModel

This tag records the lens's model name and model number as an ASCII string.

Tag	$=42036($ A434.H $)$
Type	$=$ ASCII
Count	$=$ Any
Default	$=$ None

■ LensSerialNumber

This tag records the serial number of the interchangeable lens that was used in photography as an ASCII string.

Tag	$=42037($ A435.H $)$
Type	$=$ ASCII
Count	$=$ ANY
Default	$=$ None

4.6.6 GPS Attribute Information

The attribute information (field names and codes) recorded in the GPS Info IFD is given in Table 15, followed by an explanation of the contents.

Table 15 GPS Attribute Information

Tag Name	Field Name	Tag ID		Type	Count
		Dec	Hex		
A. Tags Relating to GPS					
GPS tag version	GPSVersionID	0	0	BYTE	4
North or South Latitude	GPSLatitudeRef	1	1	ASCII	2
Latitude	GPSLatitude	2	2	RATIONAL	3
East or West Longitude	GPSLongitudeRef	3	3	ASCII	2
Longitude	GPSLongitude	4	4	RATIONAL	3
Altitude reference	GPSAltitudeRef	5	5	BYTE	1
Altitude	GPSAltitude	6	6	RATIONAL	1
GPS time (atomic clock)	GPSTimeStamp	7	7	RATIONAL	3
GPS satellites used for measurement	GPSSatellites	8	8	ASCII	Any
GPS receiver status	GPSStatus	9	9	ASCII	2
GPS measurement mode	GPSMeasureMode	10	A	ASCII	2
Measurement precision	GPSDOP	11	B	RATIONAL	1
Speed unit	GPSSpeedRef	12	C	ASCII	2
Speed of GPS receiver	GPSSpeed	13	D	RATIONAL	1
Reference for direction of movement	GPSTrackRef	14	E	ASCII	2
Direction of movement	GPSTrack	15	F	RATIONAL	1
Reference for direction of image	GPSImgDirectionRef	16	10	ASCII	2
Direction of image	GPSImgDirection	17	11	RATIONAL	1
Geodetic survey data used	GPSMapDatum	18	12	ASCII	Any
Reference for latitude of destination	GPSDestLatitudeRef	19	13	ASCII	2
Latitude of destination	GPSDestLatitude	20	14	RATIONAL	3
Reference for longitude of destination	GPSDestLongitudeRef	21	15	ASCII	2
Longitude of destination	GPSDestLongitude	22	16	RATIONAL	3
Reference for bearing of destination	GPSDestBearingRef	23	17	ASCII	2
Bearing of destination	GPSDestBearing	24	18	RATIONAL	1
Reference for distance to destination	GPSDestDistanceRef	25	19	ASCII	2
Distance to destination	GPSDestDistance	26	1A	RATIONAL	1
Name of GPS processing method	GPSProcessingMethod	27	1B	UNDEFINED	Any
Name of GPS area	GPSArealnformation	28	1 C	UNDEFINED	Any
GPS date	GPSDateStamp	29	1D	ASCII	11
GPS differential correction	GPSDifferential	30	1E	SHORT	1
Horizontal positioning error	GPSHPositioningError	31	1F	RATIONAL	1

A. Tags Relating to GPS

■ GPSVersionID

Indicates the version of GPSInfoIFD. The version is given as 2.3.0.0. This tag is mandatory when GPSInfo tag is present. Note that the GPSVersionID tag is written as a different byte than the Exif Version tag.

Tag	$=0(0 . \mathrm{H})$
Type	$=$ BYTE
Count	$=4$
Default	$=2.3 .0 .0$
2.3 .0 .0	$=$ Version 2.3
Other	$=$ reserved

■ GPSLatitudeRef

Indicates whether the latitude is north or south latitude. The ASCII value ' N ' indicates north latitude, and ' S ' is south latitude.

Tag	$=1(1 . \mathrm{H})$
Type	$=$ ASCII
Count	$=2$

```
Default = None
    ' N ' \(=\) North latitude
    'S' = South latitude
    Other = reserved
```


■ GPSLatitude

Indicates the latitude. The latitude is expressed as three RATIONAL values giving the degrees, minutes, and seconds, respectively. If latitude is expressed as degrees, minutes and seconds, a typical format would be $\mathrm{dd} / 1, \mathrm{~mm} / 1, \mathrm{ss} / 1$. When degrees and minutes are used and, for example, fractions of minutes are given up to two decimal places, the format would be dd/1,mmmm/100,0/1.

Tag	$=2(2 . \mathrm{H})$
Type	$=$ RATIONAL
Count	$=3$
Default	$=$ None

- GPSLongitudeRef

Indicates whether the longitude is east or west longitude. ASCII ' E ' indicates east longitude, and 'W' is west longitude.

Tag	$=3(3 . H)$
Type	$=$ ASCII
Count	$=2$
Default	$=$ None
'E'	$=$ East longitude
'W'	$=$ West longitude
Other	$=$ reserved

■ GPSLongitude

Indicates the longitude. The longitude is expressed as three RATIONAL values giving the degrees, minutes, and seconds, respectively. If longitude is expressed as degrees, minutes and seconds, a typical format would be ddd/1,mm/1,ss/1. When degrees and minutes are used and, for example, fractions of minutes are given up to two decimal places, the format would be ddd/1,mmmm/100,0/1.

Tag	$=4(4 . \mathrm{H})$
Type	$=$ RATIONAL
Count	$=3$
Default	$=$ None

■ GPSAltitudeRef
Indicates the altitude used as the reference altitude. If the reference is sea level and the altitude is above sea level, 0 is given. If the altitude is below sea level, a value of 1 is given and the altitude is indicated as an absolute value in the GPSAltitude tag. The reference unit is meters. Note that this tag is BYTE type, unlike other reference tags.

Tag	$=5(5 . H)$
Type	$=$ BYTE
Count	$=1$
Default	$=0$

0 = Sea level
$1=$ Sea level reference (negative value)
Other = reserved

■ GPSAItitude

Indicates the altitude based on the reference in GPSAltitudeRef. Altitude is expressed as one RATIONAL value. The reference unit is meters.

Tag	$=6(6 . \mathrm{H})$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ GPSTimeStamp
Indicates the time as UTC (Coordinated Universal Time). TimeStamp is expressed as three RATIONAL values giving the hour, minute, and second.

Tag	$=7(7 . \mathrm{H})$
Type	$=$ RATIONAL
Count	$=3$
Default	$=$ None

■ GPSSatellites
Indicates the GPS satellites used for measurements. This tag may be used to describe the number of satellites, their ID number, angle of elevation, azimuth, SNR and other information in ASCII notation. The format is not specified. If the GPS receiver is incapable of taking measurements, value of the tag shall be set to NULL.

Tag $=8(8 . \mathrm{H})$
Type $=$ ASCII
Count = Any
Default $=$ None
■ GPSStatus
Indicates the status of the GPS receiver when the image is recorded. ' A ' means measurement is in progress, and ' V ' means the measurement is interrupted.

Tag	$=9(9 . \mathrm{H})$
Type	$=\mathrm{ASCII}$
Count	$=2$
Default	$=$ None
'A'	$=$ Measurement in progress
'V'	$=$ Measurement interrupted
Other	$=$ reserved

■ GPSMeasureMode
Indicates the GPS measurement mode. '2' means two-dimensional measurement and '3' means three-dimensional measurement is in progress. Originally it was defined for GPS, but it may be used
for recording a measure mode to record the position information provided from a mobile base station or wireless LAN as well as GPS.

```
Tag \(=10\) (A.H)
Type \(=\) ASCII
Count \(=2\)
Default \(=\) None
    '2' = 2-dimensional measurement
    '3' = 3-dimensional measurement
    Other = reserved
```

- GPSDOP

Indicates the GPS DOP (data degree of precision). An HDOP value is written during two-dimensional measurement, and PDOP during three-dimensional measurement.

Tag	$=11($ B.H $)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ GPSSpeedRef

Indicates the unit used to express the GPS receiver speed of movement. ' K ' ' M ' and ' N ' represents kilometers per hour, miles per hour, and knots.

```
Tag \(=12\) (C.H)
Type \(=\) ASCII
Count \(=2\)
Default \(=\) ' K '
    'K' = Kilometers per hour
    ' M ' = Miles per hour
    ' N ' \(=\) Knots
    Other = reserved
- GPSSpeed
```

Indicates the speed of GPS receiver movement.
Tag $=13$ (D.H)
Type $=$ RATIONAL
Count $=1$
Default = None
■ GPSTrackRef
Indicates the reference for giving the direction of GPS receiver movement. 'T' denotes true direction and ' M ' is magnetic direction.

Tag	$=14($ E.H $)$
Type	$=$ ASCII
Count	$=2$

```
Default = 'T'
    'T' = True direction
    ' M ' = Magnetic direction
    Other = reserved
```

■ GPSTrack

Indicates the direction of GPS receiver movement. The range of values is from 0.00 to 359.99 .

```
Tag = 15 (F.H)
Type = RATIONAL
Count = 1
Default = None
```


- GPSImgDirectionRef

Indicates the reference for giving the direction of the image when it is captured. ' T ' denotes true direction and ' M ' is magnetic direction.

Tag	$=16(10 . \mathrm{H})$
Type	$=\mathrm{ASCII}$
Count	$=2$
Default	$=$ 'T'
'T'	$=$ True direction
'M'	$=$ Magnetic direction
Other	$=$ reserved

■ GPSImgDirection

Indicates the direction of the image when it was captured. The range of values is from 0.00 to 359.99 .

Tag	$=17(11 . \mathrm{H})$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

- GPSMapDatum

Indicates the geodetic survey data used by the GPS receiver. If the survey data is restricted to Japan,the value of this tag is 'TOKYO' or 'WGS-84'. If a GPS Info tag is recorded, it is strongly recommended that this tag be recorded.

Tag	$=18(12 . \mathrm{H})$
Type	$=$ ASCII
Count	$=$ Any
Default	$=$ None

■ GPSDestLatitudeRef
Indicates whether the latitude of the destination point is north or south latitude. The ASCII value ' N ' indicates north latitude, and ' S ' is south latitude.

```
Tag= = 19(13.H)
Type = ASCII
```

```
Count = 2
Default = None
    'N' = North latitude
    'S' = South latitude
    Other = reserved
```


- GPSDestLatitude

Indicates the latitude of the destination point. The latitude is expressed as three RATIONAL values giving the degrees, minutes, and seconds, respectively. If latitude is expressed as degrees, minutes and seconds, a typical format would be dd/1,mm/1,ss/1. When degrees and minutes are used and, for example, fractions of minutes are given up to two decimal places, the format would be dd/1, mmmm/100, 0/1.

Tag	$=20(14 . H)$
Type	$=$ RATIONAL
Count	$=3$
Default	$=$ None

- GPSDestLongitudeRef

Indicates whether the longitude of the destination point is east or west longitude. ASCII 'E' indicates east longitude, and 'W' is west longitude.

Tag	$=21(15 . H)$
Type	$=$ ASCII
Count	$=2$
Default	$=$ None
'E'	$=$ East longitude
'W'	$=$ West longitude
Other	$=$ reserved

■ GPSDestLongitude

Indicates the longitude of the destination point. The longitude is expressed as three RATIONAL values giving the degrees, minutes, and seconds, respectively. If longitude is expressed as degrees, minutes and seconds, a typical format would be ddd/1, $\mathrm{mm} / 1, \mathrm{ss} / 1$. When degrees and minutes are used and, for example, fractions of minutes are given up to two decimal places, the format would be ddd/1, mmmm/100, 0/1.

Tag	$=22(16 . H)$
Type	$=$ RATIONAL
Count	$=3$
Default	$=$ None

■ GPSDestBearingRef

Indicates the reference used for giving the bearing to the destination point. 'T' denotes true direction and ' M ' is magnetic direction.

Tag	$=23(17 . H)$
Type	$=$ ASCII
Count	$=2$

```
Default = 'T'
    'T' = True direction
    ' M ' \(=\) Magnetic direction
    Other = reserved
```


■ GPSDestBearing

Indicates the bearing to the destination point. The range of values is from 0.00 to 359.99.

Tag	$=24(18 . H)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ GPSDestDistanceRef

Indicates the unit used to express the distance to the destination point. ' K ', ' M ' and ' N ' represent kilometers, miles and nautical miles .

Tag	$=25(19 . \mathrm{H})$
Type	$=$ ASCII
Count	$=2$
Default	$=$ 'K'
'K'	$=$ Kilometers
'M'	$=$ Miles
' $\mathrm{N} '$	$=$ Nautical miles
Other	$=$ reserved

■ GPSDestDistance

Indicates the distance to the destination point.

Tag	$=26(1 A . H)$
Type	$=$ RATIONAL
Count	$=1$
Default	$=$ None

■ GPSProcessingMethod
A character string recording the name of the method used for location finding. The first byte indicates the character code used (Table 9, Table 10), and this is followed by the name of the method. Since the Type is not ASCII, NULL termination is not necessary.

Tag $=27$ (1B.H)
Type $=$ UNDEFINED
Count $=$ Any
Default = None

Although this tag was originally defined for GPS use, it may record positional information obtained from mobile phone base stations and wireless LAN in addition to GPS. When recording information that was gathered using the above-mentioned methods, this tag and related tags may be used as shown in
the following examples.

When data from a mobile phone base station (cell-id) is used to calculate positional information:

- To record the string "CELLID" in GPSProcessingMethod as ASCII
- To record a GPSMeasureMode tag (in the case of CELLID, normally "2")

When wireless LAN data is used to calculate positional information:

- To record the string "WLAN" in GPSProcessingMethod as ASCII
- To record a GPSMeasureMode tag (in the case of wireless LAN, normally "2")

When GPS satellite data is used to calculate positional information:

- To record the string "GPS" in GPSProcessingMethod as ASCII
- To record a GPSMeasureMode tag (in the case of GPS, normally " 2 " or " 3 ")

When more than one of the above-mention methods are used to calculate positional information (hybrid method):

- A method using the pertinent strings "CELLID," "WLAN," and/or "GPS" is listed by opening space in the GPSProcessingMethod tag. At this time, the method that most contributed to the measurement is listed first
- The measurement mode that most contributed to calculation of positional information is recorded in GPSMeasureMode

When positional information (Exif GPS IFD:1-6) was entered manually:

- To record the string "MANUAL" in the GPSProcessingMethod tag as ASCII
- A GPSMeasureMode tag is not recorded

- GPSArealnformation

A character string recording the name of the GPS area. The first byte indicates the character code used (Table 9, Table 10), and this is followed by the name of the GPS area. Since the Type is not ASCII, NULL termination is not necessary.
Tag $=28(1 \mathrm{C} . \mathrm{H})$
Type $=$ UNDEFINED
Count $=$ Any
Default $=$ None

- GPSDateStamp

A character string recording date and time information relative to UTC (Coordinated Universal Time).

The format is "YYYY:MM:DD." The length of the string is 11 Bytes including NULL.

Tag	$=29(1 D . H)$
Type	$=$ ASCII
Count	$=11$
Default	$=$ None

■ GPSDifferential

Indicates whether differential correction is applied to the GPS receiver.

Tag	$=30(1 \mathrm{E} . \mathrm{H})$
Type	$=$ SHORT
Count	$=1$
Default	$=$ None
0	$=$ Measurement without differential correction
1	$=$ Differential correction applied
Other	$=$ reserved

■ GPSHPositioningError

This tag indicates horizontal positioning errors in meters.

```
Tag = 31 (1F.H)
Type = RATIONAL
Count = 1
Default = None
```

Note When the tag Type is ASCII, it shall be terminated with NULL.
It shall be noted carefully that since the value count includes the terminator NULL, the total count is the number of data+1. For example, GPSLatitudeRef cannot have any values other than Type ASCII ' N ' or ' S '; but because the terminator NULL is added, the value of N is 2 .

4.6.7 Interoperability IFD Attribute Information

The attached information(field name, code) stored in Interoperability IFD is listed in Table 16. The meaning is explained below.

Table 16 Interoperability IFD Attribute Information

Tag Name Field Name	Tag ID		Type	Count
	Dec	Hex		
A. Attached Information Related to Interoperability	1	1	ASCII	
Interoperability Identification InteroperabilityIndex				Any

A. Tags Relating to Interoperability

The rules for Exif image files defines the description of the following tag. Other tags stored in Interoperability IFD may be defined dependently to each Interoperability rule.

■ InteroperabilityIndex

Indicates the identification of the Interoperability rule. The following rules are defined. Four Bytes used including the termination code (NULL).

Tag	$=$	1 (1.H)
Type	$=$	ASCII
Count	$=$	Any
Default	$=$	None
"R98"	$=$	Indicates a file conforming to R98 file specification of Recommended Exif Interoperability Rules (Exif R 98) or to DCF basic file stipulated by Design Rule for Camera File System.
"THM"	$=$	Indicates a file conforming to DCF thumbnail file stipulated by Design rule for Camera File System.
"R03"	$=$	Indicates a file conforming to DCF Option File stipulated by Design rule for Camera File System.

4.6.8 Tag Support Levels

The tags and their support levels are given here.

A. Primary Image (0th IFD) Support Levels

The support levels of primary image (Oth IFD) tags are given in Table 17, Table 18,Table 19 and Table 20.

Table 17 Tag Support Levels (1) - Oth IFD TIFF Tags -

Tag Name	Field Name	Tag ID		Uncompressed			Compressed
		Dec	Hex	Chunky	Planar	YCC	
Image width	ImageWidth	256	100	M	M	M	J
Image height	ImageLength	257	101	M	M	M	J
Number of bits per component	BitsPerSample	258	102	M	M	M	J
Compression scheme	Compression	259	103	M	M	M	J
Pixel composition	PhotometricInterpretation	262	106	M	M	M	N
Image title	ImageDescription	270	10E	R	R	R	R
Manufacturer of image input equipment	Make	271	10F	R	R	R	R
Model of image input equipment	Model	272	110	R	R	R	R
Image data location	StripOffsets	273	111	M	M	M	N
Orientation of image	Orientation	274	112	R	R	R	R
Number of components	SamplesPerPixel	277	115	M	M	M	J
Number of rows per strip	RowsPerStrip	278	116	M	M	M	N
Bytes per compressed strip	StripByteCounts	279	117	M	M	M	N
Image resolution in width direction	XResolution	282	11A	M	M	M	M
Image resolution in height direction	YResolution	283	11B	M	M	M	M
Image data arrangement	PlanarConfiguration	284	11C	O	M	0	J
Unit of X and Y resolution	ResolutionUnit	296	128	M	M	M	M
Transfer function	TransferFunction	301	12D	O	0	0	O
Software used	Software	305	131	0	0	0	0
File change date and time	DateTime	306	132	R	R	R	R
Person who created the image	Artist	315	13B	0	0	O	0
White point chromaticity	WhitePoint	318	13E	0	0	0	0
Chromaticities of primaries	PrimaryChromaticities	319	13F	O	0	O	O
Offset to JPEG SOI	JPEGInterchangeFormat	513	201	N	N	N	N
Bytes of JPEG data	JPEGInterchangeFormatLength	514	202	N	N	N	N
Color space transformation matrix coefficients	YCbCrCoefficients	529	211	N	N	0	O
Subsampling ratio of Y to C	YCbCrSubSampling	530	212	N	N	M	J
Y and C positioning	YCbCrPositioning	531	213	N	N	M	M
Pair of black and white reference values	ReferenceBlackWhite	532	214	0	0	0	0
Copyright holder	Copyright	33432	8298	O	0	0	O
Exif tag	Exif IFD Pointer	34665	8769	M	M	M	M
GPS tag	GPSInfo IFD Pointer	34853	8825	0	0	0	0

M : Mandatory (shall be recorded)
R: Recommended
O: Optional
N : It is not allowed to record
J : It is not allowed to record (included in JPEG marker)

Table 18 Tag Support Levels (2) - Oth IFD Exif Private Tags -

Tag Name	Field Name	Tag ID		Uncompressed			Compres sed
		Dec	Hex	Chunky	Planar	YCC	
Exposure time	ExposureTime	33434	829A	R	R	R	R
F number	FNumber	33437	829D	0	0	0	0
Exposure program	ExposureProgram	34850	8822	0	0	0	0
Spectral sensitivity	SpectralSensitivity	34852	8824	0	0	0	0
Photographic Sensitivity	PhotographicSensitivity	34855	8827	0	0	0	0
Optoelectric coefficient	OECF	34856	8828	0	0	0	0
Sensitivity Type	SensitivityType	34864	8830	0	0	0	0
Standard Output Sensitivity	StandardOutputSensitivity	34865	8831	0	0	0	0
Recommended Exposure Index	RecommendedExposureIndex	34866	8832	0	0	0	0
ISOSpeed	ISOSpeed	34867	8833	0	0	0	0
ISOSpeed Latitude yyy	ISOSpeedLatitudeyyy	34868	8834	0	0	0	0
ISOSpeed Latitude zzz	ISOSpeedLatitudezzz	34869	8835	0	0	0	0
Exif Version	ExifVersion	36864	9000	M	M	M	M
Date and time original image was generated	DateTimeOriginal	36867	9003	0	0	0	O
Date and time image was made digital data	DateTimeDigitized	36868	9004	O	0	0	O
Offset data of DateTime	OffsetTime	36880	9010	0	0	0	0
Offset data of DateTimeOriginal	OffsetTimeOriginal	36881	9011	0	0	0	0
Offset data of DateTimeDigitized	OffsetTimeDigitized	36882	9012	O	0	0	O
Meaning of each component	ComponentsConfiguration	37121	9101	N	N	N	M
Image compression mode	CompressedBitsPerPixel	37122	9102	N	N	N	0
Shutter speed	ShutterSpeedValue	37377	9201	0	0	0	0
Aperture	ApertureValue	37378	9202	0	0	0	0
Brightness	BrightnessValue	37379	9203	0	0	0	0
Exposure bias	ExposureBiasValue	37380	9204	O	0	0	O
Maximum lens aperture	MaxApertureValue	37381	9205	0	0	0	0
Subject distance	SubjectDistance	37382	9206	0	0	0	0
Metering mode	MeteringMode	37383	9207	0	0	0	0
Light source	LightSource	37384	9208	0	0	0	0
Flash	Flash	37385	9209	R	R	R	R
Lens focal length	FocalLength	37386	920A	O	0	0	O
Subject area	SubjectArea	37396	9214	0	0	0	0
Manufacturer notes	MakerNote	37500	927C	0	0	0	0
User comments	UserComment	37510	9286	0	0	0	0
DateTime subseconds	SubSecTime	37520	9290	0	0	0	O
DateTimeOriginal subseconds	SubSecTimeOriginal	37521	9291	0	0	0	0
DateTimeDigitized subseconds	SubSecTimeDigitized	37522	9292	0	0	0	0
Temperature	Temperature	37888	9400	0	0	0	0
Humidity	Humidity	37889	9401	0	0	0	0
Pressure	Pressure	37890	9402	0	0	0	0
WaterDepth	WaterDepth	37891	9403	0	0	0	0
Acceleration	Acceleration	37892	9404	0	0	0	O
Camera elevation angle	CameraElevationAngle	37893	9405	O	O	O	O
Supported Flashpix version	FlashpixVersion	40960	A000	M	M	M	M
Color space information	ColorSpace	40961	A001	M	M	M	M
Valid image width	PixelXDimension	40962	A002	N	N	N	M
Valid image height	PixelYDimension	40963	A003	N	N	N	M
Related audio file	RelatedSoundFile	40964	A004	O	0	O	0
Interoperability tag	Interoperability IFD Pointer	40965	A005	N	N	N	0
Flash energy	FlashEnergy	41483	A20B	0	0	0	0
Spatial frequency response	SpatialFrequencyResponse	41484	A20C	0	0	0	0
Focal plane X resolution	FocalPlaneXResolution	41486	A20E	0	0	0	0
Focal plane Y resolution	FocalPlaneYResolution	41487	A20F	0	0	0	0
Focal plane resolution unit	FocalPlaneResolutionUnit	41488	A210	0	0	0	0
Subject location	SubjectLocation	41492	A214	0	0	0	0
Exposure index	Exposurelndex	41493	A215	0	0	0	0
Sensing method	SensingMethod	41495	A217	0	0	0	0
File source	FileSource	41728	A300	0	0	0	0
Scene type	SceneType	41729	A301	0	0	0	0
CFA pattern	CFAPattern	41730	A302	0	0	0	0
Custom image processing	CustomRendered	41985	A401	0	0	0	0
Exposure mode	ExposureMode	41986	A402	R	R	R	R
White balance	WhiteBalance	41987	A403	R	R	R	R
Digital zoom ratio	DigitalZoomRatio	41988	A404	0	0	0	0
Focal length in 35 mm film	FocalLengthIn35mmFilm	41989	A405	O	0	0	O

Scene capture type	SceneCaptureType	41990	A 406	R	R	R	R
Gain control	GainControl	41991	A 407	O	O	O	O
Contrast	Contrast	41992	A 408	O	O	O	O
Saturation	Saturation	41993	A 409	O	O	O	O
Sharpness	Sharpness	41994	A 40 A	O	O	O	O
Device settings description	DeviceSettingDescription	41995	A 40 B	O	O	O	O
Subject distance range	SubjectDistanceRange	41996	A 40 C	O	O	O	O
Unique image ID	ImageUniqueID	42016	A 420	O	O	O	O
Camera Owner Name	CameraOwnerName	42032	A 430	O	O	O	O
BodySerial Number	BodySerialNumber	42033	A 431	O	O	O	O
Lens Specification	LensSpecification	42034	A 432	O	O	O	O
Lens Make	LensMake	42035	A 433	O	O	O	O
Lens Model	LensModel	42036	A 434	O	O	O	O
Lens Serial Number	LensSerialNumber	42037	A 435	O	O	O	O
Gamma	Gamma	42240	A 500	O	O	O	O

Notation

M : Mandatory (shall be recorded)

R : Recommended

O: Optional

N : It is not allowed to record
J : It is not allowed to record (included in JPEG marker)
Table 19 Tag Support Levels (3) - 0th IFD GPS Info Tags -

Tag Name	Field Name	Tag ID		Uncompressed			Comp-r essed
		Dec	Hex	Chunky	Planar	YCC	
GPS tag version	GPSVersionID	0	0	O	0	O	O
North or South Latitude	GPSLatitudeRef	1	1	0	0	0	0
Latitude	GPSLatitude	2	2	0	0	0	0
East or West Longitude	GPSLongitudeRef	3	3	0	0	0	0
Longitude	GPSLongitude	4	4	0	0	0	0
Altitude reference	GPSAltitudeRef	5	5	0	0	0	0
Altitude	GPSAltitude	6	6	0	0	0	0
GPS time (atomic clock)	GPSTimeStamp	7	7	0	0	0	0
GPS satellites used for measurement	GPSSatellites	8	8	0	0	0	0
GPS receiver status	GPSStatus	9	9	0	0	0	0
GPS measurement mode	GPSMeasureMode	10	A	0	0	0	0
Measurement precision	GPSDOP	11	B	0	0	0	0
Speed unit	GPSSpeedRef	12	C	0	0	0	0
Speed of GPS receiver	GPSSpeed	13	D	0	0	0	0
Reference for direction of movement	GPSTrackRef	14	E	0	0	0	0
Direction of movement	GPSTrack	15	F	0	0	0	0
Reference for direction of image	GPSImgDirectionRef	16	10	0	0	0	0
Direction of image	GPSImgDirection	17	11	0	0	0	0
Geodetic survey data used	GPSMapDatum	18	12	0	0	0	0
Reference for latitude of destination	GPSDestLatitudeRef	19	13	0	0	0	0
Latitude of destination	GPSDestLatitude	20	14	0	0	0	0
Reference for longitude of destination	GPSDestLongitudeRef	21	15	0	0	0	0
Longitude of destination	GPSDestLongitude	22	16	0	0	0	0
Reference for bearing of destination	GPSDestBearingRef	23	17	0	0	0	0
Bearing of destination	GPSDestBearing	24	18	0	0	0	0
Reference for distance to destination	GPSDestDistanceRef	25	19	0	0	0	0
Distance to destination	GPSDestDistance	26	1A	0	0	0	0
Name of GPS processing method	GPSProcessingMethod	27	1B	0	0	0	0
Name of GPS area	GPSArealnformation	28	1 C	0	0	0	0
GPS date	GPSDateStamp	29	1D	0	0	0	0
GPS differential correction	GPSDifferential	30	1E	0	0	0	0
Horizontal positioning error	GPSHPositioningError	31	1F	0	0	0	O

Notation

R : Recommended
O : Optional
N : It is not allowed to record
J : It is not allowed to record (included in JPEG marker)
Table 20 Tag Support Levels (4) - Oth IFD Interoperability Tag -

Tag Name	Field Name	Tag ID		Uncompressed			Comp -ressed
		Dec	Hex	Chunky	Planar	YCC	
Interoperability Identification	InteroperabilityIndex	1	1	N	N	N	0

Notation

M : Mandatory (shall be recorded)
R : Recommended
O: Optional
N : It is not allowed to record
J : It is not allowed to record (included in JPEG marker)

B. Thumbnail (1st IFD) Support Levels

The support levels of thumbnail (1st IFD) tags are shown in Table 21.

Table 21 Tag Support Levels (5) - 1st IFD TIFF Tag -

Tag Name	Field Name	Tag ID		Uncompressed			Compressed
		Dec	Hex	Chunky	Planar	YCC	
Image width	ImageWidth	256	100	M	M	M	J
Image height	ImageLength	257	101	M	M	M	J
Number of bits per component	BitsPerSample	258	102	M	M	M	J
Compression scheme	Compression	259	103	M	M	M	M
Pixel composition	PhotometricInterpretation	262	106	M	M	M	J
Image title	ImageDescription	270	10E	O	0	0	0
Manufacturer of image input equipment	Make	271	10F	O	0	0	O
Model of image input equipment	Model	272	110	O	0	0	O
Image data location	StripOffsets	273	111	M	M	M	N
Orientation of image	Orientation	274	112	O	0	0	0
Number of components	SamplesPerPixel	277	115	M	M	M	J
Number of rows per strip	RowsPerStrip	278	116	M	M	M	N
Bytes per compressed strip	StripByteCounts	279	117	M	M	M	N
Image resolution in width direction	XResolution	282	11A	M	M	M	M
Image resolution in height direction	YResolution	283	11B	M	M	M	M
Image data arrangement	PlanarConfiguration	284	11C	O	M	0	J
Unit of X and Y resolution	ResolutionUnit	296	128	M	M	M	M
Transfer function	TransferFunction	301	12D	0	0	0	0
Software used	Software	305	131	0	0	0	0
File change date and time	DateTime	306	132	0	0	0	0
Person who created the image	Artist	315	13B	0	0	0	0
White point chromaticity	WhitePoint	318	13E	0	0	0	0
Chromaticities of primaries	PrimaryChromaticities	319	13F	0	0	0	0
Offset to JPEG SOI	JPEGInterchangeFormat	513	201	N	N	N	M
Bytes of JPEG data	JPEGInterchangeFormatLength	514	202	N	N	N	M
Color space transformation matrix coefficients	YCbCrCoefficients	529	211	N	N	0	O
Subsampling ratio of Y to C	YCbCrSubSampling	530	212	N	N	M	J
Y and C positioning	YCbCrPositioning	531	213	N	N	0	0
Pair of black and white reference values	ReferenceBlackWhite	532	214	0	0	0	0
Copyright holder	Copyright	33432	8298	0	0	0	0
Exif tag	Exif IFD Pointer	34665	8769	0	0	0	0
GPS tag	GPSInfo IFD Pointer	34853	8825	O	0	0	0

Notation

M : Mandatory (shall be recorded)
R: Recommended
O: Optional
N : It is not allowed to record
J : It is not allowed to record (included in JPEG marker)

4.7 JPEG Marker Segments Used in Exif

In addition to the compressed data (Interoperability coded data), a compressed file contains one each of the marker segments APP1, DQT, DHT, SOF and SOS. The compressed data begins with an SOI and ends with an EOI marker. A restart marker (DRI, RSTm) may be inserted optionally. Another option is to have two or more APP2 marker segments. APPn other than APP1 and APP2 or COM segments are not used by Exif. However Exif/DCF readers should be designed skip over unknown APPn and COM.APP1
shall be recorded immediately after SOI, and if there is an APP2 it follows after APP1. DQT, DHT, DRI and SOF come after APP2 and before SOS, in any order.
The marker segments used in Exif are listed in Table 22.

Table 22 Marker Segments

	Marker Name	Marker Code	Description
SOI	Start of Image	FFD8.H	Start of compressed data
APP1	Application Segment 1	FFE1.H	Exif attribute information
APP2	Application Segment 2	FFE2.H	Exif extended data
DQT	Define Quantization Table	FFDB.H	Quantization table definition
DHT	Define Huffman Table	FFC4.H	Huffman table definition
DRI	Define Restart Interoperability	FFDD.H	Restart Interoperability definition
SOF	Start of Frame	FFC0.H	Parameter data relating to frame
SOS	Start of Scan	FFDA.H	Parameters relating to components
EOI	End of Image	FFD9.H	End of compressed data

The data structures of markers defined in JPEG Baseline DCT and used in Exif compressed files, as well as the APP1 and APP2 data structures defined specifically for this standard, are explained below.

4.7.1 JPEG Marker Segments

The data structure of JPEG marker segments other than APP1 and APP2 is noted below.
A. Start of compressed data (SOI: Start of Image)

SOI is a marker code indicating the start of compressed data (see Figure 23).

Figure 23 SOI Structure

B. Quantization table definition (DQT: Define Quantization Table)

DQT is a marker code defining a quantization table.
As many as three kinds of tables may be recorded with a precision of 8 bits ($\mathrm{Pq}=0$). All quantization tables shall be defined in one DQT marker segment; recording of multiple DQT markers is not allowed. The table may have any values (see Figure 24). DQT, DHT, DRI and SOF may line up in any order, but shall be recorded after APP1 (or APP2 if any) and before SOS.

Address Offset (Hex)	$\begin{aligned} & \text { Code } \\ & \text { (Hex) } \end{aligned}$	Meaning
+00	FF	Marker Prefix
+01	DB	DQT
+02	$\begin{aligned} & 00 \\ & \text { C5 } \end{aligned}$	Length of field $2+(1+64) * 3=197 \text { (Bytes) }$
+04	00	$\mathrm{Y}: \mathrm{Pq}=0, \mathrm{Nq}=0$
+05		Quantization table $\mathrm{Y}: \mathrm{Q} 0$ Quantization table $\mathrm{Y}:$ Q63
+45	01	Cb : $\mathrm{Pq}=0, \mathrm{Nq}=1$
+46		Quantization table Cb:Q0 Quantization table Cb:Q63
+86	02	Cr: $\mathrm{Pq}=0, \mathrm{Nq}=1$
+87		Quantization table Cr:Q0 $:$ $:$ Quantization table Cr:Q63

Figure 24 DQT Structure (with three quantization tables)

C. Huffman table definition (DHT: Define Huffman Table)

DHT is a marker code defining a Huffman table.
In this standard a single component shall have a Huffman table consisting of a set of DC and AC, and each component shall be mapped to one or another of the Huffman tables defined by DHT. All Huffman tables shall be recorded in one DHT marker segment; recording of multiple DHT markers is not allowed.

A Huffman table may have any values, or the JPEG reference values can be used as the base table (see Figure 25).

DQT, DHT, DRI and SOF may line up in any order, but shall be recorded after APP1 (or APP2 if any) and before SOS.

Address Offset (Hex)	Code (Hex)	Meaning
+00	FF	Marker Prefix
+01	C4	DHT
+02	$\begin{aligned} & \hline 01 \\ & \text { A2 } \end{aligned}$	$\begin{gathered} \text { Length of field } \\ \begin{array}{c} 2+(1+16+12+1+16+162) * 2 \\ =418 \text { Bytes } \end{array} \end{gathered}$
+04	00	Table number Y-DC : 00
+05	\vdots	DHT parameter
+21	10	Table number Y-AC : 10
+22	\vdots	DHT parameter
+D4	01	Table number C-DC : 01
+D5	\vdots	DHT parameter
+F1	11	Table number C-AC : 11
+F2	: \vdots	DHT parameter

Figure 25 DHT Structure
D. Restart Interoperability definition (DRI: Define Restart Interoperability)

DRI is a marker defining the Interoperability at which restart markers are inserted (see Figure 26). The recording of DRI and insertion of restart markers are optional. If restart markers are inserted, DRI shall be recorded and its values shall be 4 MCU (Minimum Coding Unit), i.e., 64 pixel units, regardless of whether 4:2:2 or 4:2:0 is used for color sampling (see Annex F). Only one DRI shall be recorded. DQT, DHT, DRI and SOF may line up in any order, but shall be recorded after APP1 (or APP2 if any) and before SOS.

Address Offset (Hex)	Code (Hex)	Meaning
+00	FF	Marker Prefix
+00	DD	DRI
+02	00	Length of field $2+2=4$ (Bytes)
+04	XX	00
	YY	04

Figure 26 DRI Structure

E. Frame header (SOF: Start of Frame)

SOF is a marker code indicating the start of a frame segment and giving various parameters for that frame (see Figure 27).

DQT, DHT, DRI and SOF may line up in any order, but shall be recorded after APP1 (or APP2 if any) and before SOS.

Address Offset (Hex)	Code (Hex)	Meaning
+00	FF	Marker Prefix
+00	C0	SOF
+02	$\begin{aligned} & 00 \\ & 11 \end{aligned}$	Length of field $\text { 2+1+2+2+1+2*3 = } 17 \text { (Bytes) }$
+04	08	Data precision (bits)
+05	$\begin{aligned} & \mathrm{XX} \\ & Y Y \end{aligned}$	Vertical lines XXYY (Hex) lines
+07	$\begin{gathered} \text { ww } \\ \text { zz } \end{gathered}$	Horizontal lines WWZZ (Hex) pixels
+09	03	Components
+0A	01	Component number (1:Y)
+0B	21or22	$\mathrm{HO}=2, \mathrm{~V} 0=1(4: 2: 2)$ or 2(4:2:0)
+0C	00	Quantization designation
+0D	02	Component number (2:Cb)
+0E	11	H1 =1, V1 = 1
+0F	01	Quantization designation
+10	03	Component number (3:Cr)
+11	11	$\mathrm{H} 2=1, \mathrm{~V} 2=1$
+12	02	Quantization designation

Figure 27 SOF Structure

F. Scan header (SOS: Start of Scan)

SOS is a marker code giving various scan-related parameters (see Figure 28).

Address Offset (Hex)	Code (Hex)	Meaning
+00	FF	Marker Prefix
+00	DA	SOS
+02	00	Length of field
	OC	2+1+3*2+3 = 12 (Bytes)
+04	03	Components in scan
+05	01	Component selector Y : 01
+06	00	Huffman table selector Y : 00
+07	02	Component selector Cb : 02
+08	11	Huffman table selector C : 11
+09	03	Component selector Cr : 03
+0A	11	Huffman table selector C : 11
+0B	00	Scan start position in block
+0C	3F	Scan end position in block
+0D	00	Successive approximation Bit position

Figure 28 SOS Structure
G. Compressed data

Compressed data is byte data block Interoperability at the required ratio of $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}$ and Huffman encoded. An EOB (End of Block) is inserted in each block when the last value of its DCT coefficient is 0. If restart marker insertion is defined in DRI, restart markers are inserted at 4 MCU Interoperability.
H. End of compressed data (EOI : End of Image)

EOI is a marker code indicating the end of Interoperability coded data, and is paired with SOI (see Figure 29). No specification is made regarding data arrays that come after EOI.

Address Offset (Hex)	$\begin{aligned} & \text { Code } \\ & \text { (Hex) } \end{aligned}$	Meaning
+00	FF	Marker Prefix
+01	D9	EOI

Figure 29 EOI Structure

4.7.2 Interoperability Structure of APP1 in Compressed Data

APP1 consists of an APP1 marker indicating that it is an application area, a length code indicating its size, and primary image attribute information patterned after the TIFF structure. The APP1 segment cannot record more than 64 KBytes, a limitation that shall be kept in mind when recording thumbnail images. APP1 also records attribute information for JPEG compressed images. The features of this marker segment are described below.
A. Order of APP1 recording

APP1 shall be recorded immediately after the SOI marker indicating the start of the file (see Figure 7).
B. APP1 Interoperability structure

APP1 consists of an APP1 marker, Exif ID code and the attribute information itself (see Figure 30).

Address Offset (Hex)	Code (Hex)	Meaning
+00	FF	Marker Prefix
+01	E1	APP1
+02		Length of field
+04	45	'E'
+05	78	'x'
+06	69	'i'
+07	66	'f'
+08	00	NULL
+09	00	Padding
+0A		Attribute information

Figure 30 Basic Structure of APP1 Marker Segment

C. Exif ID code

The Exif ID code indicates that the APP1 segment Interoperability is Exif format. After a 4-Byte code, 00.H is recorded in 2 Bytes. The reason for recording this code is to avoid duplication with other applications making use of JPEG application marker segments (APPn).
D. Attribute information

Attribute information can be recorded in 2 IFDs (0th IFD, 1st IFD) following the TIFF structure, including the File Header. The 0th IFD records compressed image attributes (the image itself). The 1st IFD may be used for thumbnail images.
E. TIFF header

The TIFF header in APP1 constitutes 8 Bytes of data, including the byte order and the Offset of IFD indicating the first IFD. The Offset is referenced to the address of the first byte of the Byte Order. For example, the Offset of IFD address in the TIFF Header is 4 (see Table 1).
F. Relation to JPEG marker segments

Attribute information is recorded in essentially the same format as that used to record uncompressed data attribute information. In order to avoid duplication, however, attribute information recorded in a JPEG marker segment shall not be recorded in APP1.

4.7.3 Interoperability Structure of APP2 in Compressed Data

APP2 consists of an APP2 marker indicating that it is an application area, a length code indicating its size, and Flashpix (see Annex F) extensions. If there is no need to record extensions, this marker segment may be omitted.

There are two kinds of APP2 marker segments for recording Flashpix extensions.

One is a Contents List Segment recording a storage and stream list making up the extended data. One file contains only one contents list segment.
The second is a Stream Data Segment storing the data for each of the streams listed in the Contents List Segment. If necessary, there may be two or more APP2 marker segments for storing stream data. In addition there is an APP2 segment reserved for Flashpix use, which is specified in the Flashpix standard.

The contents of data that can be recorded as stream data is left for future specification. It may include one or more Audio data.
A. Order of APP2 recording.

APP2 segments shall follow after the APP1 segment, in the order of Contents List Segment and Stream Data Segments. If there are two or more stream data segments, their order is as given in the contents list (see Figure 7).
B. APP2 Interoperability structure

APP2 consists of an APP2 marker, ID code (FPXR), and Contents List or Stream Data (see Figure 31).

Address Offset (Hex)	Code (Hex)	Meaning
+00	FF	Marker Prefix
+01	E2	APP2
+02		Length of field
+04	46	'F'
+05	50	'P'
+06	58	'X'
+07	52	'R'
+08	00	NULL
+09	00	Version
+0A		Contents List or Stream Data

Figure 31 Basic Structure of APP2 Marker Segment
C. FPXR ID code

The FPXR ID code indicates that the APP2 segment contains FPXR data. It is a 4-byte code followed by $00 . \mathrm{H}$ recorded in 1 Byte. The reason for recording this code is to avoid duplication with other applications making use of JPEG application marker segments (APPn). The subsequent byte gives the version number (00.H).
D. Contents list structure

The contents list segment lists the storages and streams to be created when the file is converted to a Flashpix image file. The first two bytes give the number of Interoperability.

The Interoperability fields on the contents list are as follows.

- Entity size

Indicates the size of the stream, or else FFFFFFFFF.H (in the case of a storage). It is recorded in big endian format.

- Default value

A fixed value not set explicitly in the stream data segment but used as the default for each byte.

- Storage/Stream name

The name of the storage and stream added for transformation to Flashpix. It is given as the full path name from the Flashpix source image object root storage. "/" represents a directory separator and shall be the first character of the property value. This name is a 16 -bit character string from the Unicode code page, with NULL termination. It is recorded in little endian format.

- Entity class ID

The storage ClassID, given only in the case of a storage Interoperability. It is written as 16-bytes in little endian format.

The data structure of the Contents List Segment is given in Figure 32.

Address Offset (Hex)	Bytes (Hex)	Code (Hex)	Meaning
+00	1	FF	Marker Prefix
+01	1	E2	APP2
+02	2		Length of field
+04	4		"FPXR"
+08	1	00	NULL
+09	1	00	Version
+0A	1	01	Contents List
+OB	2		Interoperability Count
+0C	4		Entity size 1
+11	1		Default value 0
+12	mo		Storage or Stream name 0
+12+mo	(${ }_{0}$)		(Entity Class ID 0)
$+12+\mathrm{mo}^{+}+{ }_{\text {n }}$	4		Entity size 1
	1		Default value 1
.	m_{1}		Storage or Stream name 1
.	$\left(\mathrm{n}_{1}\right)$		(Entity Class ID 1)
.	:	:	
.	4		Entity size I
.	1		Default value I
:	mı		Storage or Stream name I
:	(n)		(Entity Class ID I)

Figure 32 Contents List Segment Structure

E. Stream Data Segment structure

A stream data segment records part or all of the stream listed in the contents list segment. Because of the 64-KByte size limit of a JPEG marker segment, a stream longer than this shall be recorded in two or more stream data segments. Instead of writing stream data directly in multiple stream data segments, the segments may be filled based on a fixed default. A stream data segment can contain the following data.

- Index into Contents Lists

The order of Interoperability recorded in a contents list segment starting from 0.

- Offset into the full Flashpix stream

The offset to the first byte of stream data in the Flashpix stream.

- Stream Data

The actual data stream recorded as extended data in the transformation to Flashpix. The length of this data is indicated by the length code in the stream data segment.

The data structure of a Stream Data Segment is given in Figure 33.

Address Offset (Hex)	Bytes (Hex)	Code (Hex)	Meaning
+00	1	FF	Marker Prefix
+01	1	E2	APP2
+02	2		Length of field
+04	4		"FPXR"
+08	1	00	NULL
+09	1	00	Version
+0A	1	02	Stream Data
+0B	2	N	Index to Contents List
$+0 \mathrm{C}$	4	(Offset)	Offset to Flashpix stream
+11	Variable	(value)	Stream Data

Figure 33 Stream Data Segment Structure

F. Reserved Segment (Reserved for future use by the Flashpix format)

This marker segment is reserved for future use. An example is given in Figure 34.

Address Offset (Hex)	Bytes (Hex)	Code (Hex)	Meaning
+00	1	FF	Marker Prefix
+01	1	E2	APP2
+02	2		Length of field
+04	4		"FPXR"
+08	1	00	NULL
+09	1	00	Version
+0A	1	03	Reserved for Flashpix
+0B	:	:	

Figure 34 Structure of Data Segment Reserved for Flashpix

4.8 Data Description

4.8.1 Stipulations on Compressed Image Size

The JPEG format is adopted for compressed images. Since JPEG compresses images in blocks of 8 x 8 pixels, preferably the pixel number set as the width and height of the image should be exact multiples of the MCU (multiples of 16 for width, and multiples of 8 for height if $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 2$, or 16 if $\mathrm{Y}: \mathrm{Cb}: \mathrm{Cr}=4: 2: 0$). It is not required, however, that all image data be fit within this range. If a restart marker is inserted every 4 MCU for the sake of transformation to Flashpix, the width of the image shall be an exact multiple of 4 MCU (64 pixels). There is no such restriction on height.
Specifications on inserting data to adjust the recorded image size relative to the valid image size, or padding, are given below.
A. Image size recording procedure in the Exif/DCF writer

An Exif/DCF writer shall record a compressed image with the image width information and height information set in accord with the stipulations below, and padded as necessary. When the image is padded in the direction of width, the padding data shall be appended at the right edge. Padding in the direction of height shall be appended at the bottom edge.

The data used for padding is not specified.
[Stipulations on image width]
Image width information consists of the valid image width tag (PixelXDimension), SOF marker information, and JPEG compressed data. Of these three, the recording of a valid image width tag is mandatory.
Image width is padded to the right in the following cases. The value used for padding is not specified.

- When the image width is not an exact multiple of 16 and the JPEG block has unused capacity to be filled.
- When the image width is not a multiple of 64 and the insufficiency shall be made up in order to insert restart markers.

The method of describing the various image width data with and without padding is given in Figure 35. It shall be noted carefully that the value of SOF is used in some cases to describe the valid image width, and in others to describe the image width after padding.

Figure 35 Image Data Width Description
Table 23 gives examples of information recorded in the direction of image width and padding data width, for each of cases A, B, and C of Figure 35.

Table 23 Typical Width Direction Information and Padding Data

	Valid Image Width	PixelXDimension	SOF Information	Compressed Data	Padding Width
A	640	640	640	640	0
B	634	634	634	640	$6(<1 \mathrm{MCU})$
C	620	620	640	640	$20(>1 \mathrm{MCU})$

[Stipulations on image height]
Image height information consists of the valid image height tag (PixelYDimension), SOF marker information, and JPEG compressed data. Of these three, the recording of a valid image height tag is mandatory.

The image height is padded in the following case. The padding value is not specified.
When the image height is not an exact multiple of 16 and the JPEG block has unused capacity to be
filled.
Insertion of a restart marker does not require padding. The method of recording the various image height data with and without padding is given in Figure 36. The SOF marker always has the same value as the effective image height tag.

Figure 36 Image Data Height Description

Table 24 gives examples of information recorded in the direction of image height and padding data height, for each of cases A, B, and C of Figure 36.

Table 24 Typical Height Direction Information and Padding Data (when Y:Cb:Cr = 4:2:2)

	Valid Image Height	Valid Image Height Tag	SOF Information	Compressed Data	Padding Height
A	480	480	480	480	0
B	474	474	474	480	$6(<1 \mathrm{MCU})$
C	460	460	460	464	$4(<1 \mathrm{MCU})$

B. Image size reproduction procedure in the Exif/DCF reader

It is recommended that the Exif/DCF reader (and in particular, dedicated software) follow the procedureshown in Figure 37 for reproducing images. First it expands the image based on the SOF information.

Next it trims the image on the right and lower edges in accord with information in the valid image width tag and height tag, and reproduces the valid image data. If the SOF information and the valid imagewidth and height tag information are the same, trimming is unnecessary.

Figure 37 Procedure for Image Data Reproduction

Some off-the-shelf software lacks a function for handling valid image width and height tags. If the valid image width differs from the number of horizontal pixels recorded in the SOF, padding data may be displayed. The padding data values should be chosen with this possibility in mind.

4.8.2 Stipulations on Thumbnails

A. Exif/DCF writer

The recording of thumbnail images is an optional specification of the Exif/DCF reader. It is therefore allowable to have Exif files with and without thumbnails. For details see section 4.5.8

B. Exif/DCF reader

This format shall be designed so that the primary image will be reproduced intact whether or not thumbnail images are recorded in the file. It is assumed that even when functions are provided for viewing images on the camera or player, for viewing the process of image transfer from camera to PC, or for using thumbnails as an index display in the camera software or other image software, there will still be cases where the file is viewed without thumbnails. The creation and displaying of thumbnails should therefore be performed or not at the discretion of the user.

4.8.3 File Name Stipulations

A. Exif/DCF writer

The file name and characters used for file names are not specified, other than to stipulate the use of ASCII alphanumerics. (File names in Japanese or other character sets are not to be used.) File names shall be 8 characters or fewer, not including the extension. (Long file names are not to be used.) The file name extensions are ".JPG" for compressed data files and ".TIF" for uncompressed data files.

4.8.4 Byte Order Stipulations

A. Exif/DCF reader

It is recommended that the Exif/DCF reader be able to reproduce Exif files recorded in both little endian and big endian formats.

5. Exif Audio File Specification

5.1 Outline of the Exif Audio File Specification

This chapter gives details of the audio file specification, covering the following items:

- Format version definition,
- Specifications relating to audio data,
- Basic structure of audio data,
- Chunks,
- File naming conventions.

5.2 Format Version

The version of the format specified here is recorded as 4 bytes (see section 5.6.3). The address bytes are recorded as A1, A2, B1, B2, starting with the lowest number. A1 and A2 store the upper part of the standard version, with the lower part stored in B1 and B2. When changes are made to the version number of this standard, the following rules apply:

- When the changes are such that data readers can properly recognize conventional information and skip the data that was recorded using newly added functions, the lower part of the version (B1, B2) is changed,
- When there is a possibility that a data reader implementing the old standard may operate incorrectly due to the new specifications, the upper part of the version (A1, A2) is changed.
Players should be able to play back files of versions earlier than the supported standard.

5.3 Definition of Terms

Terms and notation are used as follows in this section:

- Text enclosed in " " is a character string, and " "Z means a character string ending in NULL (00.H),

5.4 Specifications Relating to Audio Data

5.4.1 Sampling Frequency

The sampling frequency shall be any of $8.000 \mathrm{KHz}, 11.025 \mathrm{KHz}, 22.050 \mathrm{KHz}, 32.000 \mathrm{KHz}, 44.100 \mathrm{KHz}$, 48.000 KHz, 96.000 KHz or 192.000 KHz . Only 8.000 KHz shall be used for μ-LAW PCM in accord with ITU-T G.711. IMA-ADPCM shall be $8.000 \mathrm{KHz}, 11.025 \mathrm{KHz}, 22.050 \mathrm{KHz}$, or 44.100 KHz , which are recommended by the IMA (Interactive Multimedia Association).

5.4.2 Bit Size

The bit size shall be 8 bits, 16 bits or 24 bits. Only 8 bits shall be used for μ-LAW PCM in accord with ITU-T G.711; and only 4 bits shall be used for IMA-ADPCM in accord with the IMA (Interoperability Multimedia Association) specification.

5.4.3 Channels

The number of channels shall be either monaural or stereo (2 ch).

5.4.4 Compression Schemes

The following three compressions schemes are specified here:

- Uncompressed audio data: PCM ,
- Uncompressed audio data: μ-Law PCM (conforming to ITU-T G.711),
- Compressed data: IMA-ADPCM.

5.5 Basic Structure of Audio Data

Exif audio files are based on the RIFF WAVE Form Audio File format adopted as a Windows(tm) standard audio file format, with the addition of various DSC attribute information as needed. Exif audio files are data-compatible with WAVE Form Audio files and can be played on accessories supplied with Windows(tm).

Of the general attribute information required by DSC applications, the common attributes are recorded on an INFO list, and the Exif-specific attributes are recorded in Exif chunks. The Exif chunks are provided to enable the addition of information as necessary, taking advantage of chunk extensibility. The method of recording data in the Exif-specific chunks is patterned after that for the INFO list.

5.5.1 Basic Structure of WAVE Form Audio Files

The WAVE Form Audio File format is based on the RIFF (Resource Interoperability File Format) tagged file structure.
A RIFF file consists of basic data blocks called chunks.

(1) Chunk

Using C language syntax, a chunk may be defined as a structure, like that in Equation 1. The chunk structure may also be expressed in graphical form as in Figure 38.

```
typedef struct {
    unsigned long ckID;// 4-character code
    unsigned long ckSize; // Size of member <ckData>
    unsigned char ckData[ckSize]; // The data in the chunk
```

\} CK;
-- - [Equation 1]

Address Offset	Meaning
(Hex)	

Figure 38 Chunk Structure

【Explanation】

ckID (chunk ID, a 4-character code) consists of from one to four ASCII alphanumerics, left-justified and filled with blank characters if less than four characters in length. Blanks cannot be inserted between characters. This four-character code identifies the contents of the chunk data, described later. Software processing the chunk may be skiped if its chunk ID is unknown..
ckSize (chunk Size) is a 32 -bit unsigned integer giving the size (bytes) of the ckData[ckSize] (chunk Data). This size does not include padding bytes following the ckID, ckSize itself and ckData. The byte order is little endian (LSB first, MSB last). In the case of RIFF files, values of more than one byte are all written in little endian order. If two or more chunks follow in sequence, the value of chSize shall be read properly in order to know the start address (ckID) of the next chunk.
ckData[ckSize] (chunk Data) is the actual data included in that chunk, and may be recorded as binary data of either fixed length or variable length. The start of ckData is aligned with the RIFF file start position in word (16-bit) units. If the data size is an odd number of bytes, a padding byte with the value '0' is appended after the ckData. This padding byte is not included in the ckSize (chunk Size).
ckData[ckSize] (chunk Data) can itself have a particular structure rather than being a simple byte array. That is, ckData itself may include a chunk (sub-chunk). In other words, chunks may be arranged hierarchically. Only certain chunks are allowed to contain sub-chunks. These are the RIFF chunk and LIST chunk described later below. Generally two or more sub-chunks may be contained in these chunks. All other chunks store only one binary data element in the ckData.

(2) RIFF Form

A "RIFF form" is a chunk with "RIFF" as its chunk ID (ckID); it is also used to mean a file format with the RIFF structure (RIFF file).
A "RIFF chunk" ckData (chunk data) consists of a 4-character code at the beginning called the formType (form type), followed by a sub-chunk.
A RIFF chunk is at the top of the chunk hierarchy. A RIFF form shall have this chunk, but may have only one. All other chunks are sub-chunks of the RIFF chunk.
A form type is generally a code identifying the data contents, among other things. It is also possible to tell from this code what kind of sub-chunk a chunk contains. A form type shall be registered. A registered form type is written in all upper-case letters.
Along with a form type, a chunk ID (ckID) shall also be registered. A chunk ID in all upper-case letters indicates a general-purpose chunk that may be used with various form types. A chunk ID used with a specific form type is written in all lower-case letters.
An illustration of the RIFF chunk is given in Figure 39.

Figure 39 RIFF Chunk Structure

Note Representative form types are given in Table 25. These are written in all upper-case letters because they are registered form types.

Table 25 Representative Form Types

Form Type	Name
PAL	Palette file form
RDIB	RIFF DIB (Device Independent Bitmap) form
RMID	RIFF MIDI form
RMMP	RIFF multimedia movie form
WAVE	WAVE Form Audio File format

(3) WAVE Form Audio File Format

The WAVE Form is one kind of RIFF form. It is a file for handling digitized sound data. The form type is WAVE, in upper-case letters.

The file extension for a WAVE Form Audio File is ".WAV".
The data structure of the WAVE Form Audio File format is shown in Figure 40.
As is evident from Figure 40, the chunk data (ckData [ckSize]) of a RIFF chunk generally consists of the formType ("WAVE"), fmt-ck (format chunk), fact-ck (fact chunk), and data-ck (data chunk). fmt-ck and data-ck are mandatory chunks, but fact-ck may be mandatory or not, depending on the format type (audio coding format) of the WAVE Form.
In addition to these, optional sub-chunks may be recorded and may store various attribute information. These optional sub-chunks are not shown in Figure 40.

Figure 40 Data Structure of the WAVE Form Audio File Format
<fmt-ck>
fmt-ck (format chunk) contains format information designating the format of audio data included in the data-ck (data chunk) described later below. The ckID (chunk ID) of fmt-ck is "fmt."
"fmt " is 3 characters long, so a blank character (20.H) goes at the end.
fmt-ck is mandatory and shall always be recorded before data-ck.
Since fmt-ck has the chunk structure, ckSize and ckData[ckSize] are included as its members; but the contents of the ckData depend on the format type (audio coding format). This ckData consists of the structure given in Equation 2, and the byte array given in Equation 3.
struct\{
unsigned int wFormatTag; // Format type
unsigned int nChannels; // Number of channels
unsigned long nSamplesPerSec; // Sampling rate
unsigned long nAvgBytesPerSec; // Average bytes per second
unsigned int nBlockAlign; // Block alignment
unsigned int wBitsPerSample; // Bits per sample
unsigned int cbSize; // Additional bytes
\} WAVEFORMATEX; ---[Equation 2]
unsigned char extByte[cbSize]; // Additional byte array - - -[Equation 3]

The meaning of each member of the format information is given in Table 26.

Table 26 Format Information Members

Member	Description
wFormatTag	An unsigned 16-bit integer indicating the format type (audio coding format) of the WAVE Form. Typical format types are given below. PCM (Pulse Code Modulation) format: 0001.H μ-Law format (ITU-T G.711): 0007.H IMA-ADPCM (DVI-ADPCM) format: 0011.H
nChannels	An unsigned 16 -bit integer indicating the number of channels. Monaural is 1 and stereo is 2.
nSamplesPerSec	An unsigned 32-bit integer indicating the sampling rate (samples per second). Audio is played in each channel at this rate. In PCM format the common values of this member are 8.000 KHz , $11.025 \mathrm{KHz}, 22.050 \mathrm{KHz}, 32.000 \mathrm{KHz}, 44.100 \mathrm{KHz}, 48.000 \mathrm{KHz}, 96.000 \mathrm{KHz}$, and 192.000 KHz .
nAvgBytesPerSec	An unsigned 32-bit integer indicating the average bytes per second, a value transferred to the data in data-ck. In PCM format, nAvgBytesPerSec is equivalent to the equation below. nSamplesPerSec * nBlockAlign
nBlockAlign	An unsigned 16-bit integer indicating the (byte unit) block alignment in data-ck. In PCM format, nBlockAlign is equivalent to the equation below. nChannels * wBitsPerSample/8
wBitsPerSample	An unsigned 16-bit integer indicating the bits per sample of each channel. In PCM format, this value is 8,16 or 24 . In the case of compressed sound data, when this value cannot be defined it becomes ' 0 '.
cbSize	An unsigned 16-bit integer indicating the size (in bytes) of the additional format information extByte[cbSize] appended after the WAVEFORMATEX structure. This information is used to store attributes added in non-PCM formats. If additional information is not needed, it becomes ' 0 '. In PCM format, this member is not needed (the cbSize field itself is not necessary).
extByte[cbSize]	A byte array representing the additional format information appended after the WAVEFORMATEX structure. The meaning of this information depends on the format type. If the value of cbSize is 0 , this field does not exist. In PCM format, both the cbSize field and extByte[cbSize] field are unnecessary.

The fmt-ck structure can be illustrated as in Figure 41.

Figure 41 fmt-ck Structure
<fact-ck>
fact-ck (fact chunk) is used to store file-dependent information relating to the WAVE file contents. The ckID (chunk ID) of fact-ck is "fact".

It is assumed that fact-ck will be extended in the future to store information needed by WAVE files at that time, but currently only one information member is defined.

The information that can be stored in fact-ck at the present time is defined in Equation 4.
unsigned long dwSampleLength; // Sample length ---[Equation 4]
Table 27 fact-ck Member

Member	Description
dwSampleLength	An unsigned 32-bit integer indicating the number of audio data samples (sample length). When this information is combined with nSamplePerSec in fmt-ck, the data length can be expressed in seconds (recording time).

Since the only information defined presently is dwSampleLength, the value of ckSize (chunk Size) for fact-ck is '00000004.H'; but ckSize may change in the future as information is added (in which case it will be larger than '00000004.H'). Programs shall be able to skip over fields they cannot Interoperability and go on to process the next chunk. For this reason the capability of correctly reading the value of ckSize is a necessary requirement.

The structure of fact-ck is illustrated in Figure 42. The value of ckSize is fixed at '00000004.H' (this value is used in Write processing).

Figure 42 fact-ck Structure
<data-ck>
data-ck (data chunk) is a chunk for storing audio data. Its ckID (chunk ID) is "data".
The ckData (chunk Data) of data-ck consists of the audio data only. In some cases the chunk is filled out with padding bytes.
The audio data is coded based on the format type. The information in fmt-ck is used when the audio data is played back.

The ckSize (chunk Size) of data-ck is the size of the coded audio data only. The structure of data-ck is illustrated in Figure 43.

Figure 43 data-ck Structure

5.5.2 Basic Structure of PCM Audio Data

PCM audio data has linear quantization (A/D conversion) characteristics, and is not encoded for compression. It therefore does not need to be decompressed for playback, but can simply be played by reading it directly.
The basic structure of audio data when the format type is PCM (Pulse Code Modulation) format is shown in Figure 44.

Figure 44 Basic Structure of PCM Format

The specific values stored in fmt-ck in the case of PCM format are as shown in Table 28.

Table 28 PCM Format fmt-ck Information

PCM (Pulse Code Modulation) Format	dulation) Format
Members	Code
ckSize (fmt-ck)	00000010.H (16 Bytes, since cbSize is unnecessary)
wFormatTag	0001.H (PCM format)
nChannels	The values of each mode are as follows. 0001.H (monaural) or 0002.H (stereo)
nSamplesPerSec	The values of each mode are as follows. $\begin{aligned} & 00001 \mathrm{~F} 40 . \mathrm{H}(8.000 \mathrm{KHz}) \\ & 00002 \mathrm{~B} 11 . \mathrm{H}(11.025 \mathrm{KHz}) \\ & 00005622 . \mathrm{H}(22.050 \mathrm{KHz}) \\ & 00007 \mathrm{D} 00 . \mathrm{H}(32.000 \mathrm{KHz}) \\ & 0000 \mathrm{AC} 44 . \mathrm{H}(44.100 \mathrm{KHz}) \\ & 0000 \mathrm{BB} 80 . \mathrm{H}(48.000 \mathrm{KHz}) \\ & 00017700 . \mathrm{H}(96.000 \mathrm{KHz}) \\ & 0002 \mathrm{EE} 00 . \mathrm{H}(192.000 \mathrm{KHz}) \end{aligned}$

nAvgBytesPerSec	The values of each mode are as follows. $00001 \mathrm{~F} 40 . \mathrm{H}$ ($8.000 \mathrm{KHz}, 8$-bit monaural) $00003 E 80 . \mathrm{H}(8.000 \mathrm{KHz}, 8$-bit stereo) 00003E80.H (8.000KHz, 16-bit monaural) 00007D00.H (8.000KHz, 16 -bit stereo) 00005DC0.H ($8.000 \mathrm{KHz}, 24$-bit monaural) 0000BB80.H ($8.000 \mathrm{KHz}, 24$-bit stereo) 00002B11.H (11.025 KHz, 8-bit monaural) $00005622 . \mathrm{H}$ (11.025 KHz, 8-bit stereo) $00005622 . \mathrm{H}$ ($11.025 \mathrm{KHz}, 16$-bit monaural) 0000AC44.H ($11.025 \mathrm{KHz}, 16$-bit stereo) 00008133.H (11.025KHz, 24-bit monaural) $00010266 . \mathrm{H}$ ($11.025 \mathrm{KHz}, 24$-bit stereo) $00005622 . \mathrm{H}$ ($22.050 \mathrm{KHz}, 8$-bit monaural) 0000AC44.H (22.050KHz, 8-bit stereo) 0000AC44.H (22.050KHz, 16 -bit monaural) $00015888 . \mathrm{H}$ ($22.050 \mathrm{KHz}, 16$-bit stereo) 00010266.H (22.050KHz, 24-bit monaural) 000204CC.H (22.050KHz, 24-bit stereo) 00007D00.H ($32.000 \mathrm{KHz}, 8$-bit monaural) 0000FA00.H ($32.000 \mathrm{KHz}, 8$-bit stereo) 0000FA00.H ($32.000 \mathrm{KHz}, 16$-bit monaural) $0001 F 400 . \mathrm{H}(32.000 \mathrm{KHz}, 16$-bit stereo) 00017700.H (32.000KHz, 24-bit monaural) 0002EE00.H (32.000KHz, 24-bit stereo) 0000AC44.H (44.100KHz, 8-bit monaural) 00015888.H (44.100KHz, 8-bit stereo) 00015888.H (44.100KHz, 16-bit monaural) 0002B110.H ($44.100 \mathrm{KHz}, 16$-bit stereo) 000204CC.H (44.100KHz, 24-bit monaural) 00040998.H (44.100KHz, 24-bit stereo) 0000BB80.H ($48.000 \mathrm{KHz}, 8$-bit monaural) 00017700.H (48.000KHz, 8-bit stereo) 00017700.H ($48.000 \mathrm{KHz}, 16$-bit monaural) 0002EE00.H ($48.000 \mathrm{KHz}, 16$-bit stereo) 00023280.H (48.000KHz, 24-bit monaural) 00046500.H (48.000 KHz , 24-bit stereo) 00017700.H ($96.000 \mathrm{KHz}, 8$-bit monaural) 0002EE00.H ($96.000 \mathrm{KHz}, 8$-bit stereo) 0002EE00.H ($96.000 \mathrm{KHz}, 16$-bit monaural) 0005DC00.H ($96.000 \mathrm{KHz}, 16$-bit stereo) $00046500 . \mathrm{H}$ ($96.000 \mathrm{KHz}, 24$-bit monaural) 0008CA00.H ($96.000 \mathrm{KHz}, 24$-bit stereo) 0002EE00.H ($192.000 \mathrm{KHz}, 8$-bit monaural) 0005DC00.H (192.000KHz, 8-bit stereo) 0005DC00.H (192.000KHz, 16-bit monaural) 000BB800.H (192.000KHz, 16-bit stereo) 0008CA00.H ($192.000 \mathrm{KHz}, 24$-bit monaural) 00119400.H (192.000KHz, 24-bit stereo)
nBlockAlign	The values of each mode are as follows. 0001.H (8-bit monaural) 0002.H (8-bit stereo) 0002.H (16-bit monaural) 0004.H (16-bit stereo) 0003.H (24-bit monaural) 0006.H (24-bit stereo) Definition: nChannels * wBitsPerSample/8
wBitsPerSample	The values of each mode are as follows. 0008.H (8bit) or 0010.H (16bit) or 0018.H (24bit)
cbSize	Not used
extByte[cbSize]	Not used

In the case of PCM format audio data, the data format of each sample is 8 -bit or 16 -bit integer.
These sample data formats and their values are given in Table 29.

Table 29 Sample Data Formats and Values

Sample Size	Data Format	Minimum	Interoperability	Maximum
8-bit PCM	Unsigned Integer	$0(00 . \mathrm{H})$	$128(80 . \mathrm{H})$	$255(\mathrm{FF} . \mathrm{H})$
16-bit PCM	Signed Integer	$-32768(8000 . \mathrm{H})$	$0(0000 . \mathrm{H})$	$32767(7 \mathrm{FFF} . \mathrm{H})$
24-bit PCM	Signed Integer	$-8388608(800000 . \mathrm{H})$	$0(0000 . \mathrm{H})$	8388607 (7FFFFF.H)

The PCM format audio data contained in data-ck is packed as shown in Figure 45. Here the left-hand byte stores the lower address and the right-hand byte holds the upper address.

8-bit monaural PCM
Sample 0
Sample 1
Sample 2
Sample 3

Channel 0	Channel 0	Channel 0	Channel 0
Byte 1		Byte 2	Byte 3

8-bit stereo PCM
Sample 0
Sample 1

Channel 0 (left)	Channel 1 (right)	Channel 0 (left)	Channel 1 (right)
Byte 0	Byte 1	Byte 2	Byte 3

16-bit monaural PCM
Sample 0
Sample 1

Sample 0		Sample 1	
Channel 0 Lower Byte	Channel 0 Upper Byte	Channel 0 Lower Byte	Channel 0 Upper Byte

$\begin{array}{llll}\text { Byte 0 } & \text { Byte 1 } & \text { Byte 2 } & \text { Byte 3 }\end{array}$
16-bit stereo PCM
Sample 0

Channel 0 (left) Lower Byte	Channel 0 (left) Upper Byte	Channel 1 (right) Lower Byte	Channel 1 (right) Upper Byte
Byte 0 Byte 1		Byte 2	Byte 3

24-bit monaural PCM

Sample 0					Sample 1		
Channel 0 Lower Byte	Channel 0 Middle Byte	Channel 0 Upper Byte	Channel 0 Lower Byte	Channel 0 Middle Byte	Channel 0 Upper Byte		
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5		

24-bit stereo PCM

Channel 0 (left) Lower Byte	Channel 0 (left) Middle Byte	Channel 0 (left) Upper Byte	Channel 1 (right) Lower Byte	Channel 1 (right) Middle Byte	Channel 1 (right) Upper Byte
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5

Figure 45 Packing of PCM Audio Data

5.5.3 Basic Structure of μ-Law Audio Data

Each of the audio data samples of μ-Law audio data has nonlinear (logarithmic) quantization characteristics. For this reason 16 bits of data can be represented in an 8-bit size. In playback, either the data is first converted to linear 16-bit data and then put through a linear D/A converter, or else the analog signal is derived by going through an 8-bit nonlinear D/A converter with characteristics opposite the μ-Law quantization characteristics. Details of the nonlinear quantization characteristics and of the conversion between 8-bit μ-Law data and 16-bit linear data are given in the ITU-T G. 711 standard. When the format type is μ-Law (ITU-T G.711) format, the basic structure is expressed as in Figure 46 . The two differences from PCM format are the larger size of fmt-ck (the cbSize file exists) and the existence of fact-ck.

Figure 46 Basic Structure of μ-Law Format

The specific values of the information stored in fmt-ck and fact-ck in the case of the μ-Law format are given in Table 30.

Table 30 fmt-ck and fact-ck Information in μ-Law Format

μ-Law (ITU-T G.711) Format	
Members	Code
ckSize(fmt-ck)	$00000012 . \mathrm{H}$ (18Bytes, WAVEFORMATEX only)
wFormatTag	0007.H (μ-Law format)
nChannels	The values of each mode are as follows. 0001.H (monaural) or 0002.H (stereo)
nSamplesPerSec	00001F40.H (8.000KHz)
nAvgBytesPerSec	The values of each mode are as follows. 00001F40.H (8.000KHz, 8-bit monaural) 00003E80.H (8.000KHz, 8-bit stereo) Definition: nSamplesPerSec * nBlockAlign
nBlockAlign	The values of each mode are as follows. $0001 . \mathrm{H}$ (8bit monaural) 0002.H (8bit stereo) Definition: nChannels * wBitsPerSample/8
wBitsPerSample	0008.H (8bit)
cbSize	0000.H (extByte[cbSize] does not exist)
extByte[cbSize]	Not used
dwSampleLength	It is recommended that the actual number of samples that can be played be recorded here. Definition: (ckSize_of_data-ck) / nBlockAlign

The μ-Law audio data contained in data-ck is packed as shown in Figure 47. Here the left-hand bytestores the lower address and the right-hand byte holds the upper address.

μ-Law monaural			
Sample 0	Sample 1	Sample 2	Sample 3
Channel 0	Channel 0	Channel 0	Channel 0
Byte 0	Byte 1	Byte 2	Byte 3

Figure 47 Packing of μ-Law Audio Data

5.5.4 Basic Structure of IMA-ADPCM Audio Data

IMA-ADPCM audio data is 4-bit data obtained by compressing 16-bit linear PCM audio data. IMA-ADPCM, as seen in its other name DVI-ADPCM, uses a compression algorithm originally developed by the Intel DVI Group (DVI: Digital Video Interoperability). It was later adopted by the IMA (Interoperability Multimedia Association) as a standard audio data format.

Details of the IMA-ADPCM algorithm are given in the IMA Digital Audio Doc-Pac and other documents. When the format type is IMA-ADPCM (DVI-ADPCM), the basic structure is as shown in Figure 48. A fact-ck is recorded as with the μ-Law format, but a difference from that format is the larger fmt-ck size (in addition to a cbSize field there is a wSamplesPerBlock field).

Figure 48 Basic Structure of IMA-ADPCM Format

The specific values of the information stored in fmt-ck and fact-ck in the case of the IMA-ADPCM format are given in Table 31 and Table 32.

Table 31 IMA-ADPCM Format fmt-ck and fact-ck Information (1)

IMA-ADPCM (DVI-ADPCM) Format	
Members	Code
ckSize(fmt-ck)	00000014.H (20 Bytes)
wFormatTag	0011.H (IMA-ADPCM format)
nChannels	0001.H (monaural) or 0002.H (stereo)
nSamplesPerSec	The values of each mode are as follows. $\begin{aligned} & \text { 00001F40.H }(8.000 \mathrm{KHz}) \\ & \text { 00002B11.H (11.025 KHz) } \\ & \text { 00005622.H (22.050 KHz) } \\ & \text { 0000AC44.H (44.100KHz) } \end{aligned}$
nAvgBytesPerSec	The values of each mode are as follows. 00000FD7.H ($8.000 \mathrm{KHz}, 4$-bit monaural) 00001FAE.H (8.000KHz, 4-bit stereo) 000015D4.H (11.025 KHz, 4-bit monaural) 00002BA9.H (11.025 KHz , 4-bit stereo) 00002B5C.H ($22.050 \mathrm{KHz}, 4$-bit monaural) 000056B9.H (22.050KHz, 4-bit stereo) 0000566D.H ($44.100 \mathrm{KHz}, 4$-bit monaural) 0000ACDB.H (44.100 KHz , 4-bit stereo) Definition: nSamplesPerSec*nBlockAlign/wSamplesPerBlock
nBlockAlign	The values of each mode are as follows. $0100 . \mathrm{H}$ ($8.000 \mathrm{KHz}, 4$-bit monaural) 0200.H (8.000KHz, 4-bit stereo) 0100.H (11.025 KHz, 4-bit monaural) 0200.H (11.025 KHz, 4-bit stereo) 0200.H ($22.050 \mathrm{KHz}, 4$-bit monaural) 0400.H ($22.050 \mathrm{KHz}, 4$-bit stereo) 0400.H (44.100KHz, 4-bit monaural) $0800 . \mathrm{H}$ ($44.100 \mathrm{KHz}, 4$-bit stereo) Although the definition is $(\mathrm{N}+1) * 4$ * nChannels, the use of 256 * nChannels * max (1,nSamplesPerSec / 11.025KHz) is recommended.
wBitsPerSample	0004.H (4 bits)
cbSize	0002.H

Table 32 IMA-ADPCM Format fmt-ck and fact-ck Information (2)

IMA-ADPCM (DVI-ADPCM) Format	
extByte[cbSize]	The values of each mode are as follows. 01F9.H (8.000KHz, 4-bit monaural) 01F9.H (8.000KHz, 4-bit stereo) 01F9.H (11.025 KHz, 4-bit monaural) 01F9.H (11.025 KHz, 4 bit stereo) 03F9.H (22.050KHz, 4-bit monaural) 03F9.H (22.050KHz, 4-bit stereo) 07F9.H (44.100KHz, 4-bit monaural) 07F9.H (44.100KHz, 4-bit stereo) If the definition is, wSamplesPerBlock (an unsigned 16-bit integer indicating the samples per channel-unit block), and $\mathrm{X}=(\mathrm{nBlockAlign}-(4 * \text { nChannels }))^{*} 8$ $\mathrm{Y}=$ wBitsPerSample * nChannels then, wSamplesPerBlock $=(\mathrm{X} / \mathrm{Y})+1$
dwSampleLength	It is recommended that the actual number of samples that can be played back be recorded. The definition is as follows. If $X=$ ckSize_of_data-ck/nBlockAlign then, dwSampleLength $=(X+1) *$ wSamplesPerBlock

The IMA-ADPCM audio data contained in data-ck is packed as shown in Figure 49,Figure 50 and Figure 51 when it is recorded.
A feature of this format is the existence of a header at the start of each block. The header records the initial sample value for that block and a step (quantization table) index. The audio data in each channel is independent, so the number of header words is the same as the number of channels.
A header word consists of 4 Bytes, and is defined as in Equation 5. The existence of a header means IMA-ADPCM audio data can be played from any block. In other words, random access is possible on a per-block basis.

In Figure 49 to Figure 51, the left-hand byte stores the lower address and the right-hand byte holds the upper address.

```
typedef struct {
    signed int iSamp0; // Initial sample value of the block
    unsigned char bStepTableIndex; // Step table index
    unsigned char bReserved; // reserved byte
} IMA_ADPCMBLOCKHEADER; ---[Equation 5]
```

In Figure 49 to Figure 51, N, M, and P have the following significance.
$\mathrm{N}=$ (nBlockAlign/(4*nChannels)) -1

- - -[Equation 6]
$\mathrm{M}=0,1,2,3, \ldots \ldots . \mathrm{N}-1 \quad--$-[Equation 7]
$P=(M * 8)+1 \quad---[E q u a t i o n 8]$

Data (total = N words/Channel)

Figure 49 Packing of IMA-ADPCM Audio Data

Figure 50 Header Word of IMA-ADPCM Audio Data

Figure 51 Data Word M of IMA-ADPCM Audio Data

5.6 Chunks Used

The chunks used in Exif audio files are described here.

5.6.1 WAVE Form Audio File Basic Chunks

The basic chunks of a WAVE Form Audio File, as is evident from the basic structure of the WAVE file shown in Figure 40, are the four below.

- RIFF chunk
- fmt chunk
- fact chunk
- data chunk
[Additional Explanation]
The fmt chunk, fact chunk and data chunk are sub-chunks of the RIFF chunk. A WAVE file consists of one RIFF chunk, with specific information recorded in the sub-chunks.

Only when the form type is PCM (Pulse Code Modulation) format, the fact chunk is unnecessary. With non-PCM formats such as μ-Law and IMA-ADPCM, it is mandatory, which is why fact-ck is included in the basic chunks here.

It is possible to add other optional sub-chunks as well.
At the head of the chunk data (ckData) of the RIFF chunk there is a form type called "WAVE".

5.6.2 LIST Chunk and INFO List

A WAVE form and other RIFF forms store a variety of information in sub-chunks of the RIFF chunk. These sub-chunks in many cases are specific to each form type; but there are also general-purpose chunks for storing additional information regardless of the data specified for a given form type.
One of these general-purpose chunks is the LIST chunk. Here the use of the LIST chunk is explained.

(1) LIST Chunk

The LIST chunk is a general-purpose chunk that may be used with the files of many different form types. The LIST chunk is a pre-registered general-purpose chunk, so its ckID (chunk ID)should be written in upper-case letters.

Included in the LIST chunk is a sub-chunk list (series of sub-chunks) and sequence designation. The LIST chunk ckData (chunk data) consists of a four-character code at the beginning called a listType (list type), followed by the sub-chunk list.
This structure resembles that of the RIFF chunk, but the LIST chunk is always farther down the hierarchy than the RIFF chunk.

The list type is used to identify the list contents. For this reason there are list types that are used only with certain form types. If a list type is encountered that cannot be Interoperability, that LIST chunk may be ignored.

The list type shall be registered. A general-purpose list type that is registered and should be used with various form types is written in all upper-case letters.

A list type that can be used only with a specific form type is written in lower-case letters.
The LIST chunk structure is illustrated in Figure 52.

Figure 52 LIST Chunk Structure

(2) INFO List

An "INFO list" is a LIST chunk having the registered, general-purpose listType "INFO".
The need for information such as title, copyright and comments is similar in each of the form types. The INFO list is used for storing these kinds of information.

The information itself in an INFO list is stored in the sub-chunk lists. These sub-chunks use only pre-registered, general-purpose chunks, described later below.
The INFO list information is supplementary and has no influence on the Interoperability of the main data, such as WAVE form audio data. It may therefore be skipped without problem. If an unknown chunk is included on the INFO list, as when a new chunk has been defined, it shall be to be ignored. The INFO list chunks currently defined are given in Table 33. These pre-registered chunks are stored as ASCII text strings terminated by NULL (the final byte is ' $00 . \mathrm{H}^{\prime}$).

Table 33 INFO List Chunks

Chunk ID	
IARL	Archival Location. Indicates where the subject of the file is archived.
IART	Artist. Lists the artist of the original subject of the file.
ICMS	Commissioned. Lists the name of the person or organization that commissioned the subject of the file.
ICMT	Comments. Provides general comments about the file or the subject of the file.
ICOP	Copyright. Records the copyright information for the file.
ICRD	Creation date. Indicates the date the subject of the file was created.
ICRP	Cropped. Indicates whether an image has been cropped
IDIM	Dimensions. Specifies the size of the original subject of the file.
IDPI	Dots Per Inch. Stores the dots per inch (DPI) setting of the digitizer used to produce the file.
IENG	Engineer. Stores the name of the engineer who worked on the file.
IGNR	Genre. Describes the genre of the original work.
IKEY	Keywords. Provides a list of keywords that refer to the file or subject of the file.
ILGT	Lightness. Describes the changes in lightness settings on the digitizer required to produce the file.
IMED	Medium. Describes the original subject of the file, such as, "computer image," "drawing," "lithograph," and so forth.
INAM	Name. Stores the title of the subject of the file.
IPLT	Palette Setting. Specifies the number of colors requested when digitizing an image.
ISRD	Product. Specifies the name of the title the file was originally intended for, such as "Encyclopedia of Pacific Northwest Geography."
ISR	Subject. Describes the file contents, such as "Aerial view of Seattle."
ISFT	Software. Identifies the name of the software package used to create the file.
ISH	Sharpness. Identifies the changes in sharpness for the digitizer required to produce the file.
Technician. Identifies the technician who digitized the subject file.	
Source. Identifies the name of the person or organization who supplied the original	
subject of the file.	

A typical INFO list is shown in Figure 53.

Address Offset (Hex)	Code (Hex)	Meaning		Code (Hex)	Meaning
+00	4C	"LIST"		49	$\begin{aligned} & \text { "INAM" } \\ & \text { (ckID) } \end{aligned}$
+01	49			4E	
+02	53		,	41	
+03	54		-	4D	
+04	40	$\begin{aligned} & \text { 00000040.H } \\ & \text { (ckSize) } \end{aligned}$		0A	0000000A.H (ckSize)
+05	00			00	
+06	00			00	
+07	00		-	00	
+08	49	"INFO" (listType)			"Two Trees"Z (ckData)
+09	4E				
+OA	46				
+OB	4F				
$+O C$$+1 E$		INAM-ck (18 Bytes)		49	$\begin{aligned} & \text { "ICMT" } \\ & \text { (ckID) } \end{aligned}$
		ICMT-ck(42 Bytes)		4E	
				41	
			,	4D	
				21	$\begin{aligned} & \text { 00000021.H } \\ & \text { (ckSize) } \end{aligned}$
				00	
			,	00	
				00	
					"A picture for the opening screen"Z (ckData)

Figure 53 Typical INFO List
The following points need to be observed in using the INFO list. They are explained in reference to

Figure 53.

The ' Z ' at the end of the text string information in the INAM and ICMT chunks means NULL termination. The actual code appended is '00.H'.

The chunk data (ckData) in each chunk shall be an even number of bytes. If the data itself is an odd number of bytes, it shall be padded by one additional byte.
In the example in Figure 53, the ICMT chunk has 33 Bytes of information including the NULL termination, so a padding byte ' $00 . \mathrm{H}$ ' shall be appended. No padding is necessary with the INAM chunk information, since the size including NULL termination is 10 Bytes.
The value of the chunk size (ckSize) of the ICMT chunk does not include the padding byte. However, the chunk size of the LIST chunk that is its parent chunk shall include the padding bytes in the sub-chunks. If this rule is not observed, it will not be possible to determine the start address of a chunk following after this LIST chunk.

(3) INFO List used by Exif audio files

The INFO list used with Exif audio files is as follows.
The chunks that may be included on the INFO list are those given in Table 33; but of these, only the following are used with Exif audio files.
[Chunks Used with Exif]
INAM
Records the title of the Exif audio file. The title is written in an ASCII string and terminated with NULL. Recording this information is optional.

Ex.) "Exif Audio File Example"Z

IGNR

Records the genre of the Exif audio file subject. The genre name is written in an ASCII string and terminated with NULL. Recording this information is optional.

Ex.) "narration"Z

ICRD

Records the date the Exif audio file was created. It is written as a fixed-length ASCII string, in the format year-month-day. That is, the year, month, and day are separated by a hyphen. The year is four digits, while month and day are two digits each. If the number of the month or the day is less than 10 , the first digit is 0 . The order shall be year-month-day. Since this information is written as an ASCII string, it shall be terminated with NULL. This chunk is fixed-length (the chunk data is 11 Bytes, and a padding byte is added to make it an even byte number). Recording this information is optional.
Ex.) "1997-04-08"Z (Note: =April 8, 1997)
ICMT
Records a general comment on the Exif audio file or its subject. Comments are written in ASCII text terminated with NULL. If there are two or more comments, each statement ends with a period. A carriage return or line feed character shall not be used. Recording this information is optional.
Ex.) "Recorded by Digital Still Camera"Z

IART

Records the name of the Exif audio file creator. The name is written in an ASCII string and terminated with NULL. Recording this information is optional.
Ex.) "Taro Yamada"Z
ICOP
Records copyright information for the Exif audio file. The copyright is written in ASCII text and terminated with NULL. In case of multiple copyright information, each is separated by a semicolon followed by one blank space (20.H). Recording this information is optional.
Ex.) "Copyright Exif Corporation 1997."Z

[Notes and Additional Information]

A camera shall not record chunks other than those listed above.
If a camera encounters an unknown chunk when reading the INFO list, it shall skip that chunk. It is possible that the INFO list will be expanded in the future, and this provision ensures that compatibility
will be maintained.
Information shall be recorded in accord with the general INFO list stipulations.
All the information on the INFO list is optional, and does not have to be recorded.
The INFO list used for Exif audio files consists of pre-registered, general-purpose chunks only, which means this information can be read by commercial "RIFF Form Reader" software (such as the utility software provided with Windows(tm)).

5.6.3 Chunks for Attribute Information Specific to Exif Audio Files

Recording of attribute information specific to Exif audio files is done as follows.
Exif-specific attributes are those not defined for ordinary WAVE Form Audio Files but only for Exif audio files. This is auxiliary information with no influence on Interoperability of the audio data itself. For this reason an Exif audio file can still be compatible with a standard WAVE Form Audio File. The attributes specific to Exif audio files are recorded as follows.

(1) LIST chunk is used.

The compatibility noted above is realized by using a pre-registered, general-purpose LIST chunk to record the attribute information specific to Exif audio files. Since it may be used with all the LIST chunk form types, this chunk may be put in the WAVE Form Audio File. The individual information is recorded in sub-chunks of the LIST chunk.

(2) A dedicated list type "exif" is defined.

The information in the LIST chunk is explicitly labeled as information specific to Exif audio files by defining a dedicated list type. The following is used as this list type.

- Dedicated Exif list type: "exif" (all lower-case letters)

The attributes specific to Exif audio files cannot be used in the WAVE Form Audio File format, so it is all written in lower-case letters.

Hereafter, the notation "exif list" is used to mean the LIST chunk whose list type is exif.
(3) A dedicated chunk is defined for each of the attributes.

Since there are no corresponding existing chunks, a dedicated chunk is defined to record the attribute information specific to Exif audio files. The information items and their chunks are described below. [Information items and chunks]

ever

Records the version information (number) of this standard.
As with Exif image files, it is recorded in 4 Bytes. The address bytes are recorded as A1, A2, B1, B2, starting with the lowest number. A1 and A2 store the upper part of the standard version, with the lower part stored in B1 and B2. A1, A2, B1 and B2 are ASCII numerals giving the version number, but NULL termination is unnecessary. This chunk is mandatory.
On the conventions for version number updating, see section 5.2.
Ex.) "0200" (Note: =Version 2.00)

erel

Records information pointing to an Exif image file related to the Exif audio file recorded in this chunk.

Recording this information makes it possible for a camera or application software to map an image to sound during playback.
The relational information consists of the name of the corresponding Exif image file, given as an 8-character file name plus 3-character extension in ASCII format. The path is not written. Stipulations on images are given in section 4.6.5. File naming rules are covered in section 5.7.1.

The mapping of Exif image files and audio files is done in any of the three ways shown in Table 34. If multiple files are mapped to one file as in [2] or [3] of Table 34, the above format is used to record just one destination file name. If there are multiple destination files, the first recorded file is given. In the case of [2] in Table 34, for the Exif audio file "SND00001.WAV" only "DSC00001.JPG" is given as the related image file. When there are three Exif image files "DSC00001.JPG," "DSC00002.JPG" and "DSC00003.JPG," the related Exif audio file name for each of them, "SND00001.WAV," is indicated. By combining multiple relational information, a variety of playback possibilities can be supported. The method of using relational information is left to the implementation on the playback side. Since this information is an ASCII character string, it is terminated by NULL. If there is a related Exif image file, this chunk is mandatory.

Ex.) "DSC00001.JPG"Z

Table 34 Mapping between Image and Audio Files

	Relationship	Exif Image File Exif Audio File
[1]	1 to 1	DSC00001.JPG $\longleftarrow \sqrt{\text { SND00001.WAV }}$
[2]	Many to 1	DSC00001.JPG \quad SND00001.WAV
		DSC00002.JPG \leftarrow
		DSC00003.JPG
[3]	1 to many	DSC00001.JPG \quad SND00001.WAV
		$\longrightarrow \text { SND00002.WAV }$
		SND00003.WAV

etim

Records the time of Exif audio file creation. This is defined as the time the recording of audio data was started. Time is expressed as a variable-length ASCII string. In order to conform as closely as possible to the Exif image file, time is recorded in the format "hour:minute:second.subsecond," with a colon in between each time unit and a period before the subsecond position.

Hour, minute and second are written as two digits each, with the first digit a zero if the value is one digit. Subseconds may be expressed to any desired decimal place. If there is no subsecond information, the string ends with a period only.

The order of time units is hour, minute, second, subsecond. The information is written as an ASCII string, so it shall be terminated with NULL. Recording this information is optional.
Ex.) "10:05:10.130"Z
ecor
Records the name of the manufacturer of the equipment on which the Exif audio file was created. The manufacturer name shall be written in an ASCII string and terminated with NULL. Recording this information is optional.

Ex.) "Digital Still Camera Corporation"Z
emdl
Records the model name of the equipment on which the Exif audio file was created. The model name shall be written in an ASCII string and terminated with NULL. Recording this information is optional.

Ex.) "DSCamera1000"Z
emnt
As with Exif image files, this chunk is used by the Exif/DCF writer manufacturer to record design information, version history and other maker-specific information. The contents and format of the information are up to each manufacturer. Other manufacturers see this information only as a byte array of the size determined by the chunk size (ckSize).

Recording this information is optional.

eucm

Records user comment information that cannot be recorded on, or is not suitable for, the INFO list. Basically this is text information. Character code information is included so languages that do not use ASCII may be used here. Recording this chunk is optional.

Recording of user comments is discussed below. The structure of the user comment chunk is shown in Figure 54.

Figure 54 Structure of User Comment Chunk

As seen in Figure 54, the chunk data area storing the user comment starts with an 8-byte character code area, where the character code is given. The rest of the chunk data area is the user comment area, used for writing comments. The currently defined character codes are shown in Table 35. A registration system is used for character codes to avoid duplication. When a character code is registered, a standard document is indicated in the reference column to indicate the character format
specification. If a character code is used for which there is no clear specification like Shift-JIS in Japan, Undefined is designated.
The character code is written from the start of the character code area, and the unused portion is padded with NULL ('OO.H'). In order to match the format of the actual comments in the user comment part to that of the Exif image file UserComment tag, NULL termination is not used even if the comment is written in ASCII text. In accord with the chunk specification, however, a padding byte ('00.H') shall be used if the chunk data is not an even number of bytes.

Table 35 Character Codes and Character Code Designation

Character Code	Code Designation (8 Bytes)	Reference
ASCII	$41 . \mathrm{H}, 53 . \mathrm{H}, 43 . \mathrm{H}, 49 . \mathrm{H}, 49 . \mathrm{H}, 00 . \mathrm{H}, 00 . \mathrm{H}, 00 . \mathrm{H}$	ITU-T T.50 IA5
JIS	$4 \mathrm{~A} . \mathrm{H}, 49 . \mathrm{H}, 53 . \mathrm{H}, 00 . \mathrm{H}$	JIS X0208-1990
Unicode	$55 . \mathrm{H}, 4 \mathrm{E} . \mathrm{H}, 49 . \mathrm{H}, 43 . \mathrm{H}, 4 \mathrm{~F} . \mathrm{H}, 44 . \mathrm{H}, 45 . \mathrm{H}, 00 . \mathrm{H}$	Unicode Standard
Undefined	$00 . \mathrm{H}, 00 . \mathrm{H}$	Undefined

[Notes and Additional Information]

The above chunks incorporated in exif list are used with a specific form type ('WAVE') and are therefore written in all lower-case letters.

Only the ever chunk is mandatory; the others are optional. If an Exif image file related to an audio file exists, the erel chunk is also mandatory.

When the exif list is read by a camera, information that cannot be recognized may be encountered, such as the emnt chunk or an Undefined string in the eucm chunk. In that case the chunk shall be skipped.

An Exif/DCF reader and writer shall conform to the stipulations for an ordinary LIST chunk.
A general-purpose RIFF Form Reader will ignore the exif list. A dedicated Exif/DCF reader is required for reading the exif list.

Figure 55 shows the exif list structure and a coding example. The ever chunk is mandatory and has a fixed length (chunk data is 4 Bytes). The erel chunk data is 13 Bytes (odd), so a padding byte is added. The erel chunk is also fixed length.

Figure 55 exif List Structure and Typical Coding

5.7 Data Description

5.7.1 File Naming Stipulation

The file name and characters used for file names are not specified, other than to stipulate the use of ASCII alphanumerics. (File names in Japanese or other character sets are not to be used.) File names shall be 8 characters or fewer, not including the extension. (Long file names are not to be used.) The file extension is ".WAV" (to match the WAVE Form Audio File extension) regardless of the audio data format type.

5.7.2 Typical Exif Audio File

Typical Exif Audio File Figure 56 shows the configuration of a typical Exif audio file.
The shaded parts of Figure 56 are the mandatory elements of an Exif audio file. The hatching (fact-ck only) means that this chunk is not required if the audio data is PCM (Pulse Code Modulation) format, but is mandatory for all non-PCM formats (μ-Law, IMA-ADPCM), etc. The non-shaded elements are optional.

Figure 56 Exif Audio File Configuration

The means of recording the data of each element is given in the section for that element.
Figure 57 shows the most common Exif audio file data structure. Exif audio file data is recorded in accord with the structure shown in Figure 57. Each sub-chunk is recorded in accord with its stipulations. Optional chunks may be omitted.

Figure 57 Data Structure of a Typical Exif Audio File

6. Logo Mark Guidelines

Software and other products conforming to the JEITA Exif Standard Version 2.2 can use the logo mark shown below. See the JEITA Web page below for details.
http://www.jeita.or.jp/

> Exii Print

7. References

The standards listed below comprise a part of this standard through their appearance as quotations or references. If a quoted or referenced standard provides the publish date (or, in the case of JIS, the year that the standard came into effect), only that version composes a part of this standard; any later revised versions, amendments, or supplements are not used. If the publish date (or year of coming into effect) is not added, the latest version (including amendments and supplements) is used.

ExifR98	ExifR98 Version 1.0 JEIDA-49-1 June.1998 http://www.jeita.or.jp/
DCF	Design rule for Camera File system: CIPA DC-009 http://www.cipa.jp/index.html CP-3461. http://www.jeita.or.jp/
	7-bit and 8-bit double byte coded KANJI sets for information interchange JIS X 0208 http://www.jsa.or.jp/
	Classification of fluorescent lamps by chromaticity and colour rendering property JIS z 9112 http://www.jsa.or.jp/
	Standard Practice for Electronic Interchange of Color and Appearance Data ASTM E1708- 95 http://www.astm.org/
Photography -- Cameras using 35 mm film and roll film -- Picture sizes ISO 1754 http://www.iso.org/	
	Photography -- Illuminants for sensitometry -- Specifications for daylight, incandescent tungsten and printer ISO 7559 http://www.iso.org/
	Information technology -- Universal Multiple-Octet Coded Character Set (UCS) Part1: Architecture and Basic Multilingual Plane ISO/EC 10646-1 http://www.iso.org/
JPEG	Information technology -- Digital compression and coding of continuous-tone still images: Requirements and guidelines ISO/IEC 10918-1 http://www.iso.org/ Recommendation http://www.itu.int/
Photography - Digital still cameras - Determination of exposure index, ISO speed ratings, standard output sensitivity, and recommended exposure index ISO 12232 http://www.iso.org/	

	Photography -- Electronic still-picture cameras -- Resolution measurements ISO 12233 http://www.iso.org/
	Photography -- Electronic still-picture cameras -- Methods for measuring opto-electronic conversion functions (OECFs) ISO 14524 http://www.iso.org/
sRGB	Multimedia systems and equipment - Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB IEC 61966-2-1 ed1.0 http://www.iec.ch/
sRGB	Amd. 1 Ed. 1 to Multimedia systems and equipment Colour measurement and management Part 2-1: Colour Management Default RGB colour space sRGB (2003) IEC 61966-2-1-am1 ed1.0 http://www.iec.ch/
PCM	Pulse code modulation(PCM) of voice frequencies Recommendation G. 711 http://www.itu.int/
	International Reference Alphabet (IRA) (Formerly International Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information interchange Recommendation T. 50 (09/1992) http://www.itu.int/
TIFF	TIFF Revision 6.0 Final, June 3,1992 http://www.adobe.com/
Flashpix	Flashpix Format Specification Version 1.0,September 11,1996 Eastman Kodak Company
RIFF	New Multimedia Data Types and Data Techniques,1996 Microsoft Corporation http://www.microsoft.com/
ADPCM	Recommended Practices for Enhancing Digital Audio Compatibility in Multimedia Systems Revision 3.00,October 21,1992 The Interactive Multimedia Association(IMA)
Unicode	Unicode Standard,1991 http://www.unicode.org/ The Unicode Consortium
IMA-ADPCM	IMA Digital Audio Doc-Pac,1992 The Interactive Multimedia Association(IMA)
Directives2	ISO/IEC Directives, Part 2 "Rules for the structure and drafting of International Standards" http://www.iso.org/ http://isotc.iso.org/livelink/livelink/fetch/2000/2122/3146825/4229629/4230450/4230 456/ISO IEC Directives Part 2 Rules for the structure and drafting of Intern ational Standards 2004 5th edition pdf format .pdf?nodeid=4230517\&vernu $\underline{m}=0$

Annex A Image File Description Examples

A. 1 Uncompressed RGB File

Table 36 Uncompressed RGB File Description Sample Contents

Primary Image	
Pixels Image Title Image Input Equipment Manufacturer Image Input Equipment Model Name Orientation Strips Lines per Strip Bytes per Strip Image Resolution Image Data Arrangement File Change Date and Time Copyright	$640(\mathrm{~W}) \times 480(\mathrm{H})$ Exif_TIFF_RGB DSCompany Example Normal 96 5 9600 72 dpi (Width), 72 dpi (Length) Chunky 1997:09:01 12:00:00.000 Copyright, ABCDE,1997
Exif-specific Information	
Version Date and Time of Original Image Creation Date and Time of File Creation Thumbnail Pixels Orientation Strips Lines per Strip Bytes per Strip Image Resolution	Ver. 2.0 $\begin{aligned} & \text { 1997:09:01 12:00:00.000 } \\ & \text { 1997:09:01 12:00:00.000 } \end{aligned}$ $80(\mathrm{~W}) \times 60(\mathrm{H})$ Normal 1 60 14400 72 dpi (Width), 72 dpi (Length)

Table 37 Uncompressed RGB File Description Sample

Header	Offset (Hex)	Name	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCII") } \end{gathered}$			
	$\begin{aligned} & 0000 \\ & 0002 \\ & 0004 \end{aligned}$	Byte Order 42 Oth IFD Offset			$\begin{aligned} & \hline(" M M ") \\ & 32 A \\ & 00008 \end{aligned}$	
Oth IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	0008	Number of Interoperability	0014			
	Offset (Hex)	Name	Tag ID (Hex)	Type (Hex)	Count (Hex)	ValueOffset (Hex or "ASCII")
	000A	ImageWidth	0100	0004	00000001	00000280
	0016	ImageLength	0101	0004	00000001	000001E0
	0022	BitsPerSample	0102	0003	00000003	000000FE
	002E	Compression	0103	0003	00000001	00010000
	003A	PhotometricInterpretation	0106	0003	00000001	00020000
	0046	ImageDescription	010E	0002	0000000E	00000104
	0052	Make	010F	0002	00000009	00000112
	005E	Model	0110	0002	00000008	0000011C
	006A	StripOffsets	0111	0004	00000060	00000124
	0076	Orientation	0112	0003	00000001	00010000
	0082	SamplesPerPixel	0	0003	00000001	00030000
	008E	RowsPerStrip	0116	0004	00000001	00000005
	009A	StripByteCounts	0117	0004	00000060	000002A4
	00A6	XResolution	011A	0005	00000001	00000424
	00B2	YResolution	011B	0005	00000001	0000042C
	OOBE	PlanarConfiguration	011C	0003	00000001	00010000
	OOCA	ResolutionUnit	0128	0003	00000001	00020000
	00D6	DateTime	0132	0002	00000014	00000434
	00E2	Copyright	8298	0002	00000015	00000484
	OOEE	Exif IFD Pointer	8769	0004	00000001	0000045E
	Offset (Hex)	Name	Offset (Hex)			
	00FA	Next IFD Offset	000004EC			
	Offset (Hex)	Name	Data (Hex or "ASCII")			
Value longer than 4Byte of 0th IFD	00FE 0104 0112 011 C 0124 02A4 0424 042 C 0434 0448	BitPerSample Value ImageDescription Value Make Value Model Value StripOffsets Value StripByteCounts Value XResolution Value YResolution Value DateTime Value Copyright Value (Last Byte is Padded)			F_RGB"00 mpany"00 ple"00 ffset2....offs count2....cou 300000001 12:00:00"00000	t95 t95 00
Exif IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	045E	Exif IFD Number	0008			
	Offset (Hex)	Name	Tag ID (Hex)	Type (Hex)	Count (Hex)	ValueOffset (Hex or "ASCII")
	0460	ExifVersion	9000	0007	00000004	"0200"
	046C	DateTimeOriginal	9003	0002	00000014	000004C4
	0478	DateTimeDigitized	9004	0002	00000014	000004D8
	0484	SubSecTime	9290	0002	00000004	"000"00
	0490	SubSecTimeOriginal	$\begin{aligned} & 9291 \\ & 9292 \end{aligned}$	$\begin{aligned} & 0002 \\ & 0002 \end{aligned}$	00000004	"000"00
	049C	SubSecTimeDigitized			00000004	"000"00

	$\begin{aligned} & \text { 04A8 } \\ & \text { 04B4 } \end{aligned}$	FlashpixVersion Colorspace	$\begin{aligned} & \text { A000 } \\ & \text { A001 } \end{aligned}$	$\begin{aligned} & 0007 \\ & 0003 \end{aligned}$	$\begin{aligned} & 00000004 \\ & 00000001 \end{aligned}$	"0100"
	Offset (Hex)	Name			fset ex)	
	04C0	Next IFD Offset			00000	
Value longer than 4Byte of Exif IFD	Offset (Hex)	Name	Data (Hex or "ASCII")			
	$\begin{aligned} & \text { 04C4 } \\ & \text { 04D8 } \end{aligned}$	SubSecTimeOriginal Value SubSecTimeDigitized Value	$\begin{aligned} & \text { "1997:09:01 12:00:00"00 } \\ & \text { 1997:09:01 12:00:00"00 } \end{aligned}$			
1st IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	04EC	Number Of Interoperability	000D			
	Offset (Hex)	Name	Tag ID (Hex)	Type (Hex)	Count (Hex)	ValueOffset (Hex)
	04EE	ImageWidth	0100	0004	00000001	00000050
	04FA	ImageLength	0101	0004	00000001	0000003C
	0506	BitsPerSample	0102	0003	00000003	0000058E
	0512	Compression	0103	0003	00000001	00010000
	051E	PhotometricInterpretation	0106	0003	00000001	00020000
	052A	StripOffsets	0111	0004	00000001	000005A4
	0536	SamplesPerPixel	011	0003	00000001	00030000
	0542	RowsPerStrip	0116	0004	00000001	0000003C
	054E	StripByteCounts	0117	0004	00000001	00003840
	055A	XResolution	011A	0005	00000001	00000594
	0566	YResolution	011B	0005	00000001	0000059C
	0572	PlanarConfiguration	011C	0003	00000001	00010000
	057E	ResolutionUnit	0128	0003	00000001	00020000
	Offset (Hex)	Name	Offset (Hex)			
	058A	Next IFD Offset	00000000			
Value longer than 4Byte of 1st IFD	Offset (Hex)	Name	Data (Hex or "ASCII")			
	058E	BitPerSample Value	000800080008 0000004800000001 0000004800000001 $:$			
	0594	XResolution Value				
	059C	YResolution Value				
	05A4	Thumbnail Image Data Strip				
Primary Image	Offset (Hex)	Name	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCII") } \end{gathered}$			
	3DE4	Primary Image Data Strip0	:			
	6364	Primary Image Data Strip1	:			
	:		:			
	-		:			
	OE2864	Primary Image Data Strip95	:			

A. 2 Uncompressed YCbCr File

Table 38 Uncompressed YCbCr File Description Sample Contents

Primary Image	
Pixels Image Title Image Input Equipment Manufacturer Image Input Equipment Model Name Orientation Strips Lines per Strip Bytes per Strip Image Resolution Image Data Arrangement File Change Date and Time Pixel Composition Copyright	$640(\mathrm{~W}) \times 480(\mathrm{H})$ Exif_TIFF_YCC DSCompany Example Normal 69 7 8960 72 dpi (Width), 72 dpi (Length) Chunky 1997:09:01 12:00:00 Subsampling $=4: 2: 2$ Chrominance Subsampling point matches luminance point Copyright, ABCDE,1997
Exif-specific Information	
Version Date and Time of Original Image Creation Date and Time of File Creation Shutter Speed Aperture Brightness Exposure Bias Maximum Lens Aperture Subject Distance Metering Mode Light Source Flash ON/OFF	Ver. 2.0 1997:09:01 12:00:00 1997:09:01 12:00:00 59/10 (equivalent to 1/60 sec.) 50/10 (equivalent to F:5.6) $80 / 10$ 0/0 200/10 $20 / 10$ MultiSpot Daylight ON
GPS Information	
Version Measurement Position Altitude GPS Time GPS Receiver Movement Image Direction Geodetic Data Used for Measurement	Ver. 2.0 North Latitude 35 deg. 48 min .8 sec., East Longitude 139 deg. 34 min .55 sec . 30.48 meters above sea level $0: 00: 00$ Moving at $1 \mathrm{~km} / \mathrm{h}$ at 0 deg. true direction 0 deg. true direction TOKYO
Thumbnail	
Pixels Orientation Strips Lines per Strip Bytes per Strip Image Resolution	$80(\mathrm{~W}) \times 60(\mathrm{H})$ Normal 1 60 9600 72 dpi (Width), 72 dpi (Length)

Table 39 Uncompressed YCbCr File Description Sample

Header	$\begin{aligned} & \text { Offset } \\ & \text { (Hex) } \end{aligned}$	Name	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCII") } \end{gathered}$			
	0000	Byte Order	4949 ("II")			
	0002	42	2A00			
	0004	Oth IFD Offset	08000000			
Oth IFD	$\begin{aligned} & \text { Offset } \\ & \text { (Hex) } \end{aligned}$	Name	Interoperability Number (Hex)			
	0008	Number of Interoperability	1700			
	Offset (Hex)	Name	Tag ID (Hex)	Type (Hex)	$\begin{aligned} & \text { Count } \\ & \text { (Hex) } \end{aligned}$	ValueOffset (Hex or "ASCII")
	000A	ageWidth	0001	0400	01000000	80020000
	0016	ImageLength	0101	0400	01000000	E0010000
	0022	BitsPerSample	0201	0300	03000000	22010000
	002E	Compression	0301	0300	01000000	01000000
	003A	PhotometricInterpretation	0601	0300	01000000	06000000
	0046	ImageDescription	0E01	0200	0E000000	28010000
	0052	Make	OFO1	0200	09000000	36010000
	005E	Model	1001	0200	08000000	40010000
	006A	StripOffsets	1101	0400	45000000	48010000
	0076	Orientation	1201	0300	01000000	01000000
	0082	SamplesPerPixel	1501	0300	01000000	03000000
	008E	RowsPerStrip	1601	0400	01000000	07000000
	009A	StripByteCounts	1701	0400	45000000	5C020000
	00A6	XResolution	1 101	0500	01000000	70030000
	00B2	YResolution	$1 \mathrm{B01}$	0500	01000000	78030000
	OOBE	PlanarConfiguration	$1 \mathrm{C01}$	0300	01000000	01000000
	00CA	ResolutionUnit	2801	0300	01000000	02000000
	00D6	DateTime	3201	0200	14000000	80030000
	00E2	YCbCrSubSampling	1202	0300	02000000	02000100
	OOEE	YCbCrPositioning	1302	0300	01000000	02000000
	00FA	Copyright	9882	0200	15000000	94030000
	0106	Exif IFD Pointer	6987	0400	01000000	AA030000
	0112	GPS IFD Offset	2588	0400	01000000	10050000
	Offset (Hex)	Name	Offset (Hex)			
	011E	Next IFD Offset	7E060000			
Value longer than 4Byte of Oth IFD	$\begin{aligned} & \text { Offset } \\ & \text { (Hex) } \end{aligned}$	Name	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCII") } \end{gathered}$			
	$\begin{aligned} & \hline 0122 \\ & 0128 \\ & 0136 \\ & 0140 \\ & 0148 \\ & 025 \mathrm{C} \\ & 0370 \\ & 037 \mathrm{C} \\ & 0380 \\ & 0394 \end{aligned}$	BitPerSample Value ImageDescription Value Make Value Model Value StripOffsets Value StripByteCounts Value XResolution Value YResolution Value DateTime Value Copyright Value (Last Byte is Padded)		(off	30008000800 _TIFF_YCC' Company"00 Example"00 et1,offset2... unt1, count2... 0000010000 0000010000 09:01 12:00:00 t,ABCDE,19	
Exif IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	03AA	Exif IFD Number	1400			
	Offset (Hex)	Name	$\begin{aligned} & \hline \text { Tag ID } \\ & \text { (Hex) } \end{aligned}$	$\begin{aligned} & \text { Type } \\ & \text { (Hex) } \end{aligned}$	$\begin{aligned} & \text { Count } \\ & \text { (Hex) } \end{aligned}$	ValueOffset (Hex or "ASCII")
	03AC	ExposureTime	9 A 82	0500	01000000	A0040000
	03B8	FNumber	9 D 82	0500	01000000	A8040000

	03 C 4	ExifVersion	0090	0700	04000000	"0200"
	03D0	DateTimeOriginal	0390	0200	14000000	B0040000
	03DC	DateTimeDigitized	0490	0200	14000000	C4040000
	03E8	ShutterSpeedValue	0192	OAOO	01000000	D8040000
	03F4	ApertureValue	0292	0500	01000000	E0040000
	0400	BrightnessValue	0392	OAOO	01000000	E8040000
	040C	ExposureBiasValue	0492	OAOO	01000000	F0040000
	0418	MaxApertureRatioValue	0592	0500	01000000	F8040000
	0424	SubjectDistance	0692	0500	01000000	00050000
	0430	MeteringMode	0792	0300	01000000	01000000
	043C	LightSource	0892	0300	01000000	01000000
	0448	Flash	0992	0300	01000000	01000000
	0454	FocalLength	0 092	0500	01000000	08050000
	0460	SubSecTime	9092	0200	04000000	"000"00
	046C	SubSecTimeOriginal	9192	0200	04000000	"000"00
	0478	SubSecTimeDigitized	9292	0200	04000000	"000"00
	0484	FlashpixVersion	A000	0700	04000000	"0100"
	0490	ColorSpace	A001	0300	01000000	01000000
	Offset (Hex)	Name	Offset (Hex)			
	049C	Next IFD Offset	00000000			
Value longer than 4 Bytes of Exif IFD	Offset (Hex)	Name	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCII") } \end{gathered}$			
	04A0	ExposureTime Value FNumber Value DateTimeOriginal Value DateTimeDigitized Value ShutterSpeed Value ApertureValue Value BrightnessValue Value ExposureBiasValue Value MaxApertureRatio Value SubjectDistance Value FocalLength Value	$010000003 \mathrm{C000000}$			
	04A8		0400000001000000			
	04B0		"1997:09:01 12:00:00"00			
	04C4		"1997:09:01 12:00:00"00			
	04D8		0600000001000000			
	04E0		0400000001000000			
	04E8		0000000001000000			
	04F0		0000000001000000			
	04F8		0100000001000000			
	0500		OF0000000A000000			
	0508		3200000001000000			
GPS IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	0510	GPS IFD Number	0013			
	Offset (Hex)	Name	Tag ID (Hex)	Type (Hex)	Count (Hex)	ValueOffset (Hex or "ASCII")
	0512	GPSVersionID	0000	0100	04000000	02000000
	051E	GPSLatitudeRef	0100	0200	02000000	"N"000000
	052A	GPSLatitude	0200	0500	03000000	FA050000
	0536	GPSLongitudeRef	0300	0200	02000000	"E"000000
	0542	GPSLongitude	0400	0500	03000000	12060000
	054E	GPSAltitudeRef	0500	0100	01000000	00000000
	055A	GPSAltitude	0600	0500	01000000	2A060000
	0566	GPSTimeStamp	0700	0500	03000000	32060000
	0572	GPSSatellites	0800	0200	OD000000	4A060000
	057E	GPSStatus	0900	0200	02000000	"A"000000
	058A	GPSMeasureMode	OAOO	0200	02000000	"2"000000
	0596	GPSDOP	ово0	0500	01000000	58060000
	05A2	GPSSpeedRef	0с00	0200	02000000	"K"000000
	05AE	GPSSpeed	0D00	0500	01000000	60060000
	05BA	GPSTrackRef	OEOO	0200	02000000	"T"000000
	05C6	GPSTrack	OFOO	0500	01000000	68060000
	05D2	GPSImgDirectionRef	1000	0200	02000000	"T"000000
	05DE	GPSImgDirection	1100	0500	01000000	70060000
	05EA	GPSMapDatum	1200	0200	06000000	78060000

	Offset (Hex)	Name	Offset (Hex)			
	05F6	Next IFD Offset	00000000			
	Offset (Hex)	Name	Data (Hex or "ASCII")			
Value longer than 4 Bytes of GPS IFD	05FA 0612 $062 A$ 0632 $064 A$ 0658 0660 0668 0670 0678	GPSLatitude Value GPSLongitude Value GPSAltitude Value GPSTimeStamp Value GPSSatellites Value (Last Byte is padded) GPSDOP Value GPSSpeed Value GPSTrack Value GPSImgDirection Value GPSMapDatum Value	23000	001000 001000 001000		000001000000 000001000000 000001000000
1st IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	067E	Number Of Interoperability	0F00			
	Offset (Hex)	Name	Tag ID (Hex)	Type (Hex)	$\begin{aligned} & \text { Count } \\ & \text { (Hex) } \end{aligned}$	ValueOffset (Hex or "ASCII")
	0680	ImageWidth	0001	0400	01000000	50000000
	068C	ImageLength	0101	0400	01000000	$3 \mathrm{C000000}$
	0698	BitsPerSample	0201	0300	03000000	38070000
	06A4	Compression	0301	0300	01000000	01000000
	06B0	PhotometricInterpretation	0601	0300	01000000	06000000
	06BC	StripOffsets	1101	0400	01000000	4E070000
	06C8	SamplesPerPixel	1501	0300	01000000	03000000
	06D4	RowsPerStrip	1601	0400	01000000	$3 \mathrm{C000000}$
	06E0	StripByteCounts	1701	0400	01000000	80250000
	06EC	XResolution	1A01	0500	01000000	3E070000
	06F8	YResolution	1B01	0500	01000000	46070000
	0704	PlanarConfiguration	$1 \mathrm{C01}$	0300	01000000	01000000
	0710	ResolutionUnit	2801	0300	01000000	02000000
	071C	YCbCrSubSampling	1202	0300	02000000	02000100
	0728	YCbCrPositioning	1302	0300	01000000	02000000
	Offset (Hex)	Name	Offset (Hex)			
	0734	Next IFD Offset	00000000			
Value longer than 4Byte of 1st IFD	Offset (Hex)	Name	Data (Hex or "ASCII")			
	$\begin{aligned} & 0738 \\ & 073 E \\ & 0746 \\ & 074 E \end{aligned}$	BitPerSample Value XResolution Value YResolution Value (Thumbnail Image Data Strip)	08000800080048000000010000004800000001000000			
	Offset (Hex)	Name	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCII") } \end{gathered}$			
Primary Image Data	$\begin{gathered} \text { 2CCE } \\ \text { 4FCE } \\ : \\ : \\ 0978 C E \end{gathered}$	Image Data Strip0 Image Data Strip1 Image Data Strip68				

A. 3 JPEG Compressed (4:2:2) File

Table 40 JPEG Compressed (4:2:2) File Description Sample Contents

Primary Image	
Recording Format Subsampling Restart Markers Quantization Tables Pixels Image Title Image Input Equipment Manufacturer Image Input Equipment Model Name Orientation Image Resolution File Change Date and Time Copyright	JPEG YCC 4:2:2 Inserted 3 $640(\mathrm{~W}) \times 480(\mathrm{H})$ Exif_JPEG_422 DS Company Example Normal 72 dpi (Width), 72 dpi (Length) 1997:09:01 12:00:00 Copyright, ABCDE,1997
Exif-specific Information	
Version Date and Time of Original Image Creation Date and Time of File Creation Components Image Compression Mode Shutter Speed Aperture Brightness Exposure Bias Maximum Lens Aperture Subject Distance Metering Mode Light Source Flash ON/OFF	Ver. 2.0 1997:09:01 12:00:00 1997:09:01 12:00:00 Y,Cb,Cr 2bit/pel 59/10 (equivalent to 1/60 sec.) 50/10 (equivalent to F:5.6) 80/10 0/0 200/10 $20 / 10$ MultiSpot Daylight ON
Thumbnails	
Recording Format Subsampling Pixels Image Resolution	$\begin{gathered} \text { JPEG } \\ \text { YCC } 4: 2: 2 \\ 80(\mathrm{~W}) \times 60(\mathrm{H}) \\ 72 \text { dpi (Width), } 72 \mathrm{dpi} \text { (Length) } \end{gathered}$

Table 41 JPEG Compressed (4:2:2) File JPEG Stream Description Sample

Offset (Hex)	Maker Segment	Name	Code (Hex)	Comment
0000	SOI	SOI Marker	FFD8	Start of Image
$\begin{aligned} & 0002 \\ & 0004 \\ & 0006 \\ & 000 \mathrm{~B} \\ & 000 \mathrm{C} \end{aligned}$	APP1	APP1 Marker APP1 Length Identifier Pad APP1 Body	FFE1 291C "Exif"00 00	See Next Table
$\begin{aligned} & 0 E 39 \\ & 0 E 3 B \\ & 0 E 3 D \\ & 0 E 3 E \\ & 0 E 7 E \\ & 0 E 7 F \\ & 0 E B F \\ & 0 E C 0 \end{aligned}$	DQT	DQT Marker DQT Length Pq, Tq table elements Pq,Tq table elements Pq,Tq table elements	FFDB $00 C 5$ 00 100B0C0E.... 01 $0 F 101016 \ldots$. 02 $0 F 101016 \ldots$.	Define Quantization Table 64 Bytes of Data 64 Bytes of Data 64 Bytes of Data
$\begin{aligned} & \text { OF00 } \\ & \text { OF02 } \\ & \text { OF04 } \\ & \text { OF05 } \\ & \text { OF15 } \\ & \text { OF21 } \\ & \text { OF22 } \\ & \text { OF32 } \\ & \text { OFD4 } \\ & \text { OFD5 } \\ & \text { OFE5 } \\ & \text { 0FF1 } \\ & \text { 0FF2 } \\ & \text { 1002 } \end{aligned}$	DHT	DHT Marker DHT Length Th Li Vij	FFC4 01 A 2 00 $00010501 \ldots$. $00010203 \ldots$. 10 $00020103 \ldots$. $01020300 \ldots$. 01 $00030101 \ldots$. $00010203 \ldots$. 11 $00020102 \ldots$. $00010203 \ldots$.	Table 0 for DC Table 0 for AC Table 1 for DC Table 1 for AC
$\begin{aligned} & 10 \mathrm{~A} 4 \\ & 10 \mathrm{~A} 6 \\ & 10 \mathrm{~A} 8 \end{aligned}$	DRI	DRI Marker DRI Length Ri	$\begin{aligned} & \text { FFDD } \\ & 0004 \\ & 0004 \end{aligned}$	
10AA 10AC 10AE 10AF 10B1 10B3 10B4 10B5	SOF0	SOFO Marker SOFO Length P Y X Nf C1 H1, V1	$\begin{gathered} \text { FFC0 } \\ 0011 \\ 08 \\ 01 E 0 \\ 0280 \\ 03 \\ 01 \\ 21 \end{gathered}$	

10B6		Tq1	00	
10B7		C2	02	
10B8		H2, V2	11	
10B9		Tq2	01	
10BA		C3	03	
10BB		H3, V3	11	
10BC		Tq3	02	
10BD		SOS Marker	FFDA	
10BF		SOS Length	000C	
10C1		Ns	03	
10C2		Cs1	01	
10C3		Td1,Ta1	00	
10C4		Cs2	02	
10C5		Td2, Ta2	11	
10C6		Cs3	03	
10C7		Td3,Ta3	11	
10C8		Ss	00	
10C9		Se	3F	
10CA		Ah,Al	00	
10CB	Image Data		F36A....	Compressed Data
111C4	EOI		FFD9	

Table 42 JPEG Compressed (4:2:2) File APP1 Description Sample

Header	Offset (Hex)	Name	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCI") } \end{gathered}$			
	0000	Byte Order	4949 ("II")			
	0002	42	2A00			
	0004	0th IFD Offset	08000000			
Oth IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	0008	Number of Interoperability	OBOO			
	Offset (Hex)	Name	Tag ID (Hex)	Type (Hex)	$\begin{aligned} & \text { Count } \\ & \text { (Hex) } \end{aligned}$	ValueOffset (Hex or "ASCII")
	000A	ImageDescription	0E01	0200	0E000000	92000000
	0016	Make	0F01	0200	09000000	A0000000
	0022	Model	1001	0200	08000000	AA000000
	002E	Orientation	1201	0300	01000000	01000000
	003A	XResolution	1 A 01	0500	01000000	B2000000
	0046	YResolution	$1 \mathrm{B01}$	0500	01000000	BA000000
	0052	ResolutionUnit	2801	0300	01000000	02000000
	005E	DateTime	3201	0200	14000000	C2000000
	006A	YCbCrPositioning	1302	0300	01000000	02000000
	0076	CopyRight	9882	0200	15000000	D6000000
	0082	Exif IFD Pointer	6987	0400	01000000	EC000000
	Offset (Hex)	Name	Offset (Hex)			
	008E	Next IFD Offset	C402			
	Offset (Hex)	Name	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCII") } \end{gathered}$			
Value longer than 4Byte of Oth IFD	0092 00A0 00AA 00B2 00BA 00C2 00D6	ImageDescription Value Make Value Model Value XResolution Value YResolution Value DateTime Value Copyright Value (Last Byte is Padded)	"Exif_JPEG_422"00"DSCompany"00"Example"0048000000010000004800000001000000"1997:09:01 12:00:00"00"Copyright,ABCDE,1997"0000			
Exif IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	00EC	Exif IFD Number	1900			
	Offset (Hex)	Name	$\begin{aligned} & \hline \text { Tag ID } \\ & \text { (Hex) } \end{aligned}$	Type (Hex)	$\begin{aligned} & \text { Count } \\ & \text { (Hex) } \end{aligned}$	ValueOffset (Hex or "ASCII")
	O0EE	ExposureTime	9 A 82	0500	01000000	1E020000
	00FA	FNumber	$9 \mathrm{D82}$	0500	01000000	26020000
	0106	ExifVersion	0090	0700	04000000	"0200"
	0112	DateTimeOriginal	0390	0200	14000000	2E020000
	011E	DateTimeDigitized	0490	0200	14000000	42020000
	012A	ComponentsConfiguration	0191	0700	04000000	01020000
	0136	CompressedBitsPerPixel	0292	0500	01000000	56020000
	0142	ShutterSpeedValue	0192	OAOO	01000000	5E020000
	014E	ApertureValue	0292	0500	01000000	66020000
	015A	BrightnessValue	0392	OAOO	01000000	6E020000
	0166	ExposureBiasValue	0492	OAOO	01000000	76020000
	0172	MaxApertureRatioValue	0592	0500	01000000	7E020000
	017E	SubjectDistance	0692	0500	01000000	86020000
	018A	MeteringMode	0792	0300	01000000	01000000
	0196	LightSource	0892	0300	01000000	01000000
	01A2	Flash	0992	0300	01000000	00000000
	01AE	FocalLength	$0 \mathrm{A92}$	0500	01000000	8E020000
	01BA	UserComments	8692	0700	2E000000	96020000

	01 C 6	SubSecTime	9092	0200	04000000	"000"00
	01D2	SubSecTimeOriginal	9192	0200	04000000	"000"00
	01DE	SubSecTimeDigitized	9292	0200	04000000	"000"00
	01EA	FlashpixVersion	A000	0700	04000000	"0100"
	01F6	Colorspace	A001	0300	01000000	01000000
	0202	Pixel X Dimension	A002	0400	01000000	80020000
	020E	Pixel Y Dimension	A003	0400	01000000	E0010000
	Offset (Hex)	Name			Offset (Hex)	
	021A	Next IFD Offset			000000	
Value longer than 4 Bytes of Exif IFD	Offset (Hex)	Name	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCII") } \end{gathered}$			
	021E	ExposureTime Value	$010000003 C 000000$			
	0226	FNumber Value	0400000001000000			
	022E	DateTimeOriginal Value	"1997:09:01 12:00:00"00			
	0242	DateTimeDigitized Value	"1997:09:01 12:00:00"00			
	0256	CompressedBitsPerPixel Value	0200000001000000			
	025E	ShutterSpeedValue Value	0600000001000000			
	0266	ApertureValue Value	0400000001000000			
	026E	BrightnessValue Value	0000000001000000			
	0276	ExposureBiasValue Value	0000000001000000			
	027E	MaxApertureRatioValue Value	0100000001000000			
	0286	SubjectDistance Value	OF0000000A000000			
	028E	FocalLength Value	3200000001000000			
	0296	UserComment Value (46 Bytes)	4A49530000000000....			
1st IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	02C4	Number Of Interoperability	0700			
	Offset (Hex)	Name	Tag ID (Hex)	Type (Hex)	Count (Hex)	ValueOffset (Hex or "ASCII")
	02C6	Compression	0301	0300	01000000	01000000
	02D2	XResolution	1A01	0500	01000000	1E030000
	02DE	YResolution	1B01	0500	01000000	26030000
	02EA	ResolutionUnit	2801	0300	01000000	02000000
	02F6	JPEGInterchangeFormat	0102	0400	01000000	2D0E0000
	0302	JPEGInterchangeFormatLength	0202	0400	01000000	FF0A0000
	030E	YCbCrPositioning	1302	0300	01000000	02000000
	Offset (Hex)	Name	Offset (Hex)			
	031A	Next IFD Offset	00000000			
Value longer than 4Byte of 1st IFD	Offset (Hex)	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCI"") } \end{gathered}$	Name			
	031E	4800000001000000	XResolution Value YResolution Value			
	0326	4800000001000000				
Thumbnail Image Data	Offset (Hex)	Name	Data			
	032E	Thumbnail Data	(JPEG Stream)			

A. 4 JPEG Compressed (4:2:0) File

Table 43 JPEG Compressed (4:2:0) File Description Sample Contents

Primary Image	
Recording Format Subsampling Restart Markers Quantization Tables Pixels Image Title SOF Recorded Pixels DCT Data Image Title Image Input Equipment Manufacturer Image Input Equipment Model Name Orientation Image Resolution File Change Date and Time Copyright	JPEG YCC 4:2:0 Inserted 2 $620(\mathrm{~W}) \times 475(\mathrm{H})$ 620×475 640×475 640×480 Exif_JPEG_420 DSCompany Example Normal 72 dpi (Width), 72 dpi (Length) 1997:09:01 12:00:00 Copyright, ABCDE,1997
Exif-specific Information	
Version Date and Time of Original Image Creation Date and Time of File Creation Components Image Compression Mode Shutter Speed Aperture Brightness Exposure Bias Maximum Lens Aperture Subject Distance Metering Mode Light Source Flash ON/OFF	Ver. 2.0 1997:09:01 12:00:00 1997:09:01 12:00:00 Y,Cb,Cr 2bit/pel 59/10 (equivalent to 1/60 sec.) 50/10 (equivalent to F:5.6) 80/10 0/0 200/10 $20 / 10$ MultiSpot Daylight ON
Thumbnails	
Recording Format Subsampling Pixels Image Resolution	TIFF YCC $4: 2: 0$ 80×60 72 dpi (Width), 72 dpi (Length)

Table 44 JPEG Compressed (4:2:0) File JPEG Stream Description Sample

$\begin{aligned} & \text { Offset } \\ & (\mathrm{Hex}) \end{aligned}$	Maker Segment	Name	$\begin{aligned} & \text { Code } \\ & \text { (Hex) } \end{aligned}$	Comment
0000	SOI	SOI Marker	FFD8	Start of Image
$\begin{array}{\|l\|} \hline 0002 \\ 0004 \\ 0006 \\ 000 \mathrm{~B} \\ 000 \mathrm{C} \\ \hline \end{array}$	APP1	APP1 Marker APP1 Length Identifier Pad APP1 Body	$\begin{gathered} \text { FFE1 } \\ \text { 1FBC } \\ \text { "Exif"00 } \\ 00 \end{gathered}$	See Next Table
$\begin{aligned} & 1 \text { FC0 } \\ & 1 \text { FC2 } \\ & 1 \text { FC4 } \\ & 1 \text { FC5 } \\ & 2005 \\ & 2006 \end{aligned}$	DQT	DQT Marker DQT Length Pq, Tq table elements Pq,Tq table elements	$\begin{gathered} \text { FFDB } \\ 0084 \\ 00 \\ 08060607 \ldots . \\ 01 \\ 0909090 C \end{gathered}$	Define Quantization Table 64 Bytes of Data 64 Bytes of Data
$\begin{array}{\|c\|} 2046 \\ 2048 \\ 204 \mathrm{~A} \\ 204 \mathrm{~B} \\ 205 \mathrm{~B} \\ 2067 \\ 2068 \\ 2078 \\ 211 \mathrm{~A} \\ 211 \mathrm{~B} \\ 212 \mathrm{~B} \\ 2137 \\ 2138 \\ 2148 \end{array}$	DHT	DHT Marker DHT Length Th Li Vij	$\begin{gathered} \text { FFC4 } \\ 01 \mathrm{~A} 2 \\ 00 \\ 00010501 \ldots . \\ 00010203 \ldots . \\ 10 \\ 00020103 \ldots . \\ 01020300 \ldots . \\ 01 \\ 00030101 \ldots . \\ 00010203 \ldots . \\ 11 \\ 00020102 \ldots \\ 00010203 \ldots . \end{gathered}$	Table 0 for DC Table 0 for AC Table 1 for DC Table 1 for AC
$\begin{aligned} & 21 \mathrm{EA} \\ & 21 \mathrm{EC} \\ & 21 \mathrm{EE} \\ & \hline \end{aligned}$	DRI	DR Marker DRI Length Ri	$\begin{gathered} \text { FFDD } \\ 0004 \\ 0004 \\ \hline \end{gathered}$	
$\begin{aligned} & 21 \mathrm{F0} \\ & 21 \mathrm{~F} 2 \\ & 21 \mathrm{~F} 4 \\ & 21 \mathrm{~F} 5 \\ & 21 \mathrm{~F} 7 \\ & 21 \mathrm{~F} \\ & 21 \mathrm{FA} \\ & 21 \mathrm{FB} \\ & 21 \mathrm{FC} \\ & 21 \mathrm{FD} \end{aligned}$	SOF0	SOFO Marker SOFO Lentth P Y X Nf C1 H1, V1 Tq1 C2	$\begin{gathered} \text { FFC0 } \\ 0011 \\ 08 \\ 01 \mathrm{DB} \\ 0280 \\ 03 \\ 01 \\ 22 \\ 00 \\ 02 \end{gathered}$	

21FE		H2, V2	11	
21FF		Tq2	01	
2200		C3	03	
2201		H3,V3	11	
2202		Tq3	01	
2203		SOS Marker	FFDA	
2205		SOS Length	000C	
2207		Ns	03	
2208		Cs1	01	
2209		Td1,Ta1	00	
220A	SOS	Cs2	02	
220B		Td2, Ta2	11	
220C		Cs3	03	
220D		Td3,Ta3	11	
220E		Ss	00	
220F		Se	3 F	
2210		Ah, Al	00	
2211	Image Data		F9FE....	Compressed Data
$\begin{gathered} 13 B A \\ 4 \end{gathered}$	EOI		FFD9	

Table 45 JPEG Compressed (4:2:0) File APP1 Description Sample

	Offset (Hex)	Name	Tag ID (Hex)	$\begin{aligned} & \text { Type } \\ & \text { (Hex) } \end{aligned}$	$\begin{aligned} & \text { Count } \\ & \text { (Hex) } \end{aligned}$	ValueOffse (Hex or "ASCII")
	OOEE	ExposureTime	9 A 82	0500	01000000	1E020000
	00FA	FNumber	9D82	0500	01000000	26020000
	0106	ExifVersion	0090	0700	04000000	"0200"
	0112	DateTimeOriginal	0390	0200	14000000	2E020000
	011E	DateTimeDigitized	0490	0200	14000000	42020000
	012A	ComponentsConfiguration	0191	0700	04000000	01020300
	0136	CompressedBitsPerPixel	0292	0500	01000000	56020000
	0142	ShutterSpeedValue	0192	OAOO	01000000	5E020000
	014E	ApertureValue	0292	0500	01000000	66020000
	015A	BrightnessValue	0392	OA00	01000000	6E020000
	0166	ExposureBiasValue	0492	OAOO	01000000	76020000
	0172	MaxApertureRatioValue	0592	0500	01000000	7E020000
	017E	SubjectDistance	0692	0500	01000000	86020000
	018A	MeteringMode	0792	0300	01000000	01000000
	0196	LightSource	0892	0300	01000000	01000000
	01A2	Flash	0992	0300	01000000	00000000
	01AE	FocalLength	0 O92	0500	01000000	8E020000
	01BA	UserComments	8692	0700	2E000000	96020000
	$01 \mathrm{C6}$	SubSecTime	9092	0200	04000000	30303000
	01D2	SubSecTimeOriginal	9192	0200	04000000	"000"00
	01DE	SubSecTimeDigitized	9292	0200	04000000	"000"00
	01EA	FlashpixVersion	A000	0700	04000000	"0100"
	01F6	ColorSpace	A001	0300	01000000	01000000
	0202	Pixel \times Dimension	A002	0400	01000000	6C020000
	020E	Pixel Y Dimension	A003	0400	01000000	DB010000
	Offset (Hex)	Name	Offset (Hex)			
	021A	Next IFD Offset	00000000			
Value longer than 4 Bytes of Exif IFD	Offset (Hex)	Name	Data (Hex or "ASCII")			
	021E	ExposureTime Value	010000003C000000			
	0226	FNumber Value	0400000001000000			
	022E	DateTimeOriginal Value	"1997:09:01 12:00:00"00			
	0242	DateTimeDigitized Value	"1997:09:01 12:00:00"00			
	0256	CompressedBitsPerPixel Value	0200000001000000			
	025E	ShutterSpeedValue Value	0600000001000000			

	$\begin{aligned} & 0266 \\ & 026 \mathrm{E} \\ & 0276 \\ & 027 \mathrm{E} \\ & 0286 \\ & 028 \mathrm{E} \\ & 0296 \end{aligned}$	ApertureValue Value BrightnessValue Value ExposureBiasValue Value MaxApertureRatioValue Value SubjectDistance Value FocalLength Value UserComment Value (46 Bytes)		04 00 00 01 0	$\begin{aligned} & 000010000 \\ & 000010000 \\ & 000010000 \\ & 000010000 \\ & 0000 A 0000 \\ & 000010000 \\ & 00000000 \end{aligned}$	
1st IFD	Offset (Hex)	Name	Interoperability Number (Hex)			
	02C4	Number Of Interoperability	OFOO			
	Offset (Hex)	Name	Tag ID (Hex)	Type (Hex)	Count (Hex)	ValueOffset (Hex or "ASCII")
	02 C 6	ImageWidth	0001	0400	01000000	50000000
	02D2	ImageLength	0101	0400	01000000	3C000000
	02DE	BitsPerSample	0201	0300	03000000	7E030000
	02EA	Compression	0301	0300	01000000	01000000
	02F6	PhotometricInterpretation	0601	0300	01000000	06000000
	0302	StripOffsets	1101	0400	01000000	94030000
	030E	SamplesPerPixel	1501	0300	01000000	03000000
	031A	RowsPerStrip	1601	0400	01000000	3C000000
	0326	StripByteCounts	1701	0400	01000000	201C0000
	0332	XResolution	1A01	0500	01000000	84030000
	033E	YResolution	1B01	0500	01000000	8C030000
	034A	PlanarConfiguration	$1 \mathrm{C01}$	0300	01000000	01000000
	0356	ResolutionUnit	2801	0300	01000000	02000000
	0362	YCbCrSubSampling	1202	0300	02000000	02000200
	036E	YCbCrPositioning	1302	0300	01000000	02000000
	Offset (Hex)	Name	Offset (Hex)			
	037A	Next IFD Offset	00000000			
Value longer	$\begin{aligned} & \text { Offset } \\ & \text { (Hex) } \end{aligned}$	Name	Data (Hex or "ASCII")			
than 4Byte of 1st IFD	$\begin{aligned} & 037 \mathrm{E} \\ & 0384 \\ & 038 \mathrm{C} \end{aligned}$	BitsPerSample Value XResolution Value YResolution Value			008000800	
Thumbnail Image Data	Offset (Hex)	Name	Data (Hex or "ASCII")			
	0394	Thumbnail Image Data Strip				

Annex B Audio File Description Examples

B. 1 PCM Audio Data

Table 46 PCM Audio File Description Sample Contents

Audio Data	
Format Type	PCM Format
Channels	monaural
Sampling Frequency	22.050 KHz
Bits per Sample	8 Bits/Sample
Total Samples	27768 Samples
Attribute Information	ExifPCMExampleZ
Audio Title	None
Audio Genre	1997-07-13
Recording Date	Taro Yamada
Recording Engineer	Copyright Exif Corporation on 1997.
Copyright	0200 (Version 2.0)
DSC00001.JPGZ	
Related Exif Image File	$10: 15: 30.130 Z$
Recording Start Time	DSC CorporationZ
Exif-specific Information	DSC1000Z
Recording Equipment Manufacturer	None
Recording Equipment Model	None
Manufacturer Note	
User Comment	

Table 47 PCM Audio File Description Example

	Offset (Hex)	Name	Comment	Data (Hex or "ASCII")
RIFF-ck	$\begin{aligned} & 0000 \\ & 0004 \\ & 0008 \end{aligned}$	ckID ckSize formType	RIFF WAVE	$\begin{aligned} & \hline 52494646 \\ & 766 D 0000 \\ & 57415645 \end{aligned}$
fmt-ck	$\begin{aligned} & \hline 000 \mathrm{C} \\ & 0010 \\ & 0014 \\ & 0016 \\ & 0018 \\ & 001 \mathrm{C} \\ & 0020 \\ & 0022 \\ & \hline \end{aligned}$	ckID ckSize wFormatTag nchannels nSamplesPerSec nAvgBytesPerSec nBlockAlign wBitsPerSample	fmt PCM Format monaural 22.050 KHz 22050 Bytes/sec 1 Byte/block 8 bits/sample	$666 D 7420$ 10000000 0100 0100 22560000 22560000 0100 0800
INFO-LIST	$\begin{aligned} & \hline 0024 \\ & 0028 \\ & 002 C \end{aligned}$	ckID ckSize listType	$\begin{gathered} \hline \text { LIST } \\ \text { "INFO" } \end{gathered}$	$\begin{aligned} & \hline \text { 4C495354 } \\ & 6 E 000000 \\ & \text { 494E464F } \end{aligned}$
INAM-ck	$\begin{aligned} & 0030 \\ & 0034 \\ & 0038 \end{aligned}$	ckID ckSize ckData	INAM (audio title)	494E414D OF000000 "ExifPCMExample"0000
ICRD-ck	$\begin{aligned} & 0048 \\ & 004 C \\ & 0050 \end{aligned}$	ckID ckSize ckData	ICRD (July 13, 1997)	49435244 $0 B 000000$ $" 1997-07-13 " 0000$
IART-ck	$\begin{aligned} & \hline 005 C \\ & 0060 \\ & 0064 \end{aligned}$	ckID ckSize ckData	IART (creator)	$\begin{gathered} 49415254 \\ \text { 0C000000 } \\ \text { "Taro Yamada"00 } \end{gathered}$
ICOP-ck	$\begin{aligned} & 0070 \\ & 0074 \\ & 0078 \end{aligned}$	ckID ckSize ckData	ICOP (copyright)	49434F50 21000000 "Copyright Exif Corporation on 1997."0000
exif-LIST	$\begin{aligned} & \hline \text { 009A } \\ & \text { 009E } \\ & \text { 00A2 } \end{aligned}$	ckID ckSize listType	LIST exif	$\begin{aligned} & 4 C 495354 \\ & 64000000 \\ & 65786966 \end{aligned}$
ever-ck	$\begin{aligned} & \hline \text { OOA6 } \\ & \text { OOAA } \\ & \text { OOAE } \end{aligned}$	ckID ckSize ckData	ever Ver. 2.0	$\begin{gathered} 65766572 \\ 4000000 \\ 200 \end{gathered}$
erel-ck	$\begin{aligned} & \hline \text { 00B2 } \\ & \text { 00B6 } \\ & \text { O0BA } \end{aligned}$	ckID ckSize ckData	erel (relation to Exif image file)	6572656C 0D000000 "DSC00001.JPG"0000
etim-ck	$\begin{aligned} & \text { 00C8 } \\ & \text { 00CC } \\ & \text { 00D0 } \end{aligned}$	ckID ckSize ckData	etim $(10: 15: 30.130)$	6574696D 0D000000 "10:15:30.130"0000
ecor-ck	$\begin{aligned} & \text { OODE } \\ & \text { OOE2 } \\ & \text { OOE6 } \end{aligned}$	ckID ckSize ckSize	ecor (equipment manufacturer)	$65636 F 72$ 10000000 "DSC Corporation"00
emdl-ck	$\begin{aligned} & \text { 00F6 } \\ & \text { 00FA } \\ & \text { 00FE } \end{aligned}$	ckID ckSize ckData	emdl (equipment model)	656D646C 8000000 "DSC1000"00
data-ck	$\begin{aligned} & \hline 0106 \\ & 010 \mathrm{~A} \\ & \text { O10E } \end{aligned}$	ckID ckSize ckData	data PCM Audio Data	64617461 $706 C 0000$ $00000000000 \ldots \ldots$.

(Total samples $=27768$)

B. 2μ-Law Audio Data

Table 48μ-Law Audio File Description Sample Contents

Audio Data	
Format Type	μ-LAW PCM
Channels	monaural
Sampling Frequency	8.000 KHz
Bits per Sample	8 bits
Total Samples	111912
Attribute Information	μ-LAW PCM ExampleZ
Audio Title	GreetingZ
Recording Date	$1997-07-17$
Recording Engineer	Interoperability Multimedia
Copyright	AssociationZ
Copyright ABCZ	
Exif Version	
Related Exif Image File	0200 (Version 2.0)
Recording Start Time	DSC00001.JPGZ
Recording Equipment Manufacturer	$10: 20: 30.130 Z$
Recording Equipment Model	ABCD CorporationZ
Manufacturer Note	Camera XYZZ
User Comment	0000000000000000

Table 49μ-Law Audio File Description Sample

	Offset (Hex)	Name	Comment	$\begin{gathered} \text { Data } \\ \text { (Hex or "ASCII") } \\ \hline \end{gathered}$
RIFF-ck	$\begin{aligned} & 0000 \\ & 0004 \\ & 0008 \end{aligned}$	ckID ckSize formType	RIFF WAVE	52494646 AAB60100 57415645
fmt-ck	$\begin{aligned} & 000 \mathrm{C} \\ & 0010 \\ & 0014 \\ & 0016 \\ & 0018 \\ & 001 \mathrm{C} \\ & 0020 \\ & 0022 \\ & 0024 \end{aligned}$	ckID ckSize wFormatTag nchannels nSamplesPerSec nAvgBytesPerSec nBlockAlign wBitsPerSample cbSize	fmt_ μ-Law Format monaural 8.000 KHz 8.00KBytes/sec 1Byte/block 8 bits/sample 0	$\begin{gathered} 666 D 7420 \\ 12000000 \\ 0700 \\ 0100 \\ 401 F 0000 \\ \text { 401F0000 } \\ 0100 \\ 0800 \\ 0000 \\ \hline \end{gathered}$
fact-ck	$\begin{aligned} & 0026 \\ & 002 \mathrm{~A} \\ & 002 \mathrm{E} \end{aligned}$	```ckID ckSize dwSampleLength```	fact	$\begin{aligned} & 66616374 \\ & 04000000 \\ & 28 B 50100 \end{aligned}$
INFO-LIST	$\begin{aligned} & 0032 \\ & 0036 \\ & 003 A \end{aligned}$	ckID ckSize listType	LIST INFO	4C495354 AC000000 494E464F
INAM-ck	$\begin{aligned} & 003 E \\ & 0042 \\ & 0046 \end{aligned}$	ckID ckSize ckData	INAM (audio title)	$\begin{aligned} & \text { 494E414D } \\ & 12000000 \end{aligned}$ "uLAW PCM Example"00
IGNR-ck	$\begin{aligned} & 0058 \\ & 005 \mathrm{C} \\ & 0060 \\ & \hline \end{aligned}$	ckID ckSize ckData	IGNR (recording genre)	$\begin{gathered} \text { 49474E52 } \\ 09000000 \\ \text { "Greeting"Z } \\ \hline \end{gathered}$
ICRD-ck	$\begin{aligned} & 006 \mathrm{~A} \\ & 006 \mathrm{E} \\ & 0072 \end{aligned}$	ckID ckSize ckData	ICRD (July 17, 1997)	$\begin{gathered} 49435244 \\ 0 B 000000 \\ " 1997-07-17 " 00 \\ \hline \end{gathered}$
ICMT-ck	$\begin{aligned} & 007 \mathrm{E} \\ & 0082 \\ & 0086 \end{aligned}$	ckID ckSize ckData	ICMT (This File μ-LAW Sample)	$\begin{aligned} & \text { 49434D54 } \\ & 18000000 \end{aligned}$ "This File uLAW Sample"000000
IART-ck	$\begin{aligned} & \text { 009E } \\ & \text { 00A2 } \\ & \text { 00A6 } \end{aligned}$	ckID ckSize ckData	IART (creator)	49415254 23000000 "Interoperability Multimedia Association"00
ICOP-ck	$\begin{aligned} & \text { OOCA } \\ & \text { OOCE } \\ & \text { 00D2 } \\ & \hline \end{aligned}$	ckID ckSize ckData	$\begin{gathered} \text { ICOP } \\ \text { (creator) } \\ \hline \end{gathered}$	$\begin{gathered} 49434 F 50 \\ 10000000 \\ \text { "ABCD Corporation"00 } \\ \hline \end{gathered}$
exif-LIST	$\begin{aligned} & \text { OOE2 } \\ & \text { OOE6 } \\ & \text { OOEA } \end{aligned}$	ckID ckSize listType	LIST exif	$\begin{aligned} & 4 C 495354 \\ & 94000000 \\ & 65786966 \end{aligned}$
ever-ck	$\begin{aligned} & \text { OOEE } \\ & \text { 00F2 } \\ & \text { 00F6 } \end{aligned}$	ckID ckSize ckData	ever Ver. 2.0	$\begin{aligned} & 4 C 495354 \\ & 94000000 \\ & 65786966 \end{aligned}$
erel-ck	00FA	ckID	erel	4C495354

	$\begin{aligned} & \text { OOFE } \\ & 0102 \end{aligned}$	ckSize ckData	(relation to Exif image file)	$\begin{gathered} 94000000 \\ \text { "DSC00001.JPG"00 } \end{gathered}$
etim-ck	$\begin{aligned} & 0110 \\ & 0114 \\ & 0118 \\ & \hline \end{aligned}$	$\begin{gathered} \text { ckID } \\ \text { ckSize } \\ \text { ckData } \end{gathered}$	etim (10:20:30.130)	$\begin{gathered} 4 C 495354 \\ 94000000 \\ " 10: 20: 30.130 " 00 \\ \hline \end{gathered}$
ecor-ck	$\begin{aligned} & 0126 \\ & 012 \mathrm{~A} \\ & 012 \mathrm{E} \\ & \hline \end{aligned}$	ckID ckSize ckSize	ecor (equipment manufacturer)	$\begin{gathered} 4 C 495354 \\ 94000000 \\ \text { "ABCD Corporation"00 } \\ \hline \end{gathered}$
emdl-ck	$\begin{array}{r} 0140 \\ 0144 \\ 0148 \\ \hline \end{array}$	$\begin{gathered} \text { ckID } \\ \text { ckSize } \\ \text { ckData } \\ \hline \end{gathered}$	emdl (equipment model)	$\begin{gathered} \text { 656D646C } \\ \text { 0A000000 } \\ \text { "Camera XY"0000 } \\ \hline \end{gathered}$
emnt-ck	$\begin{aligned} & 0152 \\ & 0156 \\ & 015 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { ckID } \\ & \text { ckSize } \\ & \text { ckData } \end{aligned}$	$\begin{gathered} \text { emnt } \\ \text { (manufacturer note) } \end{gathered}$	$\begin{gathered} 656 \mathrm{D} 6 \mathrm{E} 74 \\ 08000000 \\ 0000000000000000 \\ \hline \end{gathered}$
eucm-ck	$\begin{array}{r} 0162 \\ 0166 \\ 016 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & \text { ckID } \\ & \text { ckSize } \\ & \text { ckData } \end{aligned}$	eucm (user comment)	$\begin{gathered} 6575636 \mathrm{D} \\ 14000000 \\ \text { 41534349490000005573657220436F6D } \end{gathered}$
data-ck	$\begin{aligned} & 017 \mathrm{E} \\ & 0182 \\ & 0186 \end{aligned}$	ckID ckSize ckData	data μ-Law Audio Data	$\begin{aligned} & 64617461 \\ & \text { 28B50100 } \end{aligned}$ F2FE00007FFF0000E3.

$($ Total samples $=111912)$

B. 3 IMA-ADPCM Audio Data

Table 50 IMA-ADPCM Audio File Description Sample Contents

Audio Data	
Format Type	IMA-ADPCM Format
Channels	stereo
Sampling Frequency	8.000 KHz
Bytes per Block	8110 Bytes/sec
Bits per Sample	4 bits/sample
Total Data Bytes	35840 Bytes
Attribute Information	
Audio Title	IMA-ADPCM ExampleZ
Audio Genre	None
Recording Date	1997-08-11Z
Comment	None
Recording Engineer	Hanako YamadaZ
Copyright	Copyright XYZ on 1997.Z
Exif-specific Information	
Exif Version	0200 (Version 2.0)
Related Exif Image File	DSC00001.JPGZ
Recording Start Time	$15: 14: 13.135 Z$
Recording Equipment Manufacturer	DSC Interoperability CorporationZ
Recording Equipment Model	DSC Camera-2Z
Manufacturer Note	None
User Comment	None

Table 51 IMA-ADPCM Audio File Description Example

	Offset (Hex)	Name	Comment	Data (Hex or "ASCII")
RIFF-ck	$\begin{aligned} & 0000 \\ & 0004 \\ & 0008 \\ & \hline \end{aligned}$	$\begin{gathered} \text { ckID } \\ \text { ckSize } \\ \text { formType } \\ \hline \end{gathered}$	RIFF WAVE	$\begin{array}{r} 52494646 \\ 248 D 0000 \\ 57415645 \\ \hline \end{array}$
fmt-ck	$\begin{aligned} & 000 C \\ & 0010 \\ & 0014 \\ & 0016 \\ & 0018 \\ & 001 \mathrm{C} \\ & 0020 \\ & 0022 \\ & 0024 \\ & 0026 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \text { ckID } \\ \text { ckSize } \\ \text { wFormatTag } \\ \text { nchannels } \\ \text { nSamplesPerSec } \\ \text { nAvgBytesPerSec } \\ \text { nBlockAlign } \\ \text { wBitsPerSample } \\ \text { cbSize } \\ \text { wSamplesPerBlock } \\ \hline \end{array}$	"fmt_" IMA-ADPCM Format stereo 8.000 KHz 8110 Bytes/sec 512 Bytes/block 4 bits/sample Additional Bytes $=2$ 505 Bytes/block	$666 D 7420$ 14000000 1100 0200 $401 F 0000$ AE1F0000 0002 0400 0200 F901
fact-ck	$\begin{aligned} & 0028 \\ & 002 \mathrm{C} \\ & 0030 \\ & \hline \end{aligned}$	```ckID ckSize dwSampleLength```	fact 35350 samples	$\begin{aligned} & 66616374 \\ & 04000000 \\ & 168 A 0000 \\ & \hline \end{aligned}$
INFO-LIST	$\begin{aligned} & 0034 \\ & 0038 \\ & 003 C \\ & \hline \end{aligned}$	ckID ckSize listType	LIST INFO	$\begin{aligned} & 4 \mathrm{C} 495354 \\ & 68000000 \\ & 494 \mathrm{E} 464 \mathrm{~F} \\ & \hline \end{aligned}$
INAM-ck	$\begin{aligned} & 0040 \\ & 0044 \\ & 0048 \\ & \hline \end{aligned}$	ckID ckSize ckData	INAM (audio title)	$\begin{gathered} \text { 494E414D } \\ 12000000 \end{gathered}$ "IMA-ADPCM Example"00
IGNR-ck	$\begin{aligned} & 0058 \\ & 005 \mathrm{C} \\ & 0060 \\ & \hline \end{aligned}$	ckID ckSize ckData	IGNR (recording genre)	49474E52 09000000 "Greeting"Z
ICRD-ck	$\begin{aligned} & 005 \mathrm{~A} \\ & 005 \mathrm{E} \\ & 0062 \end{aligned}$	ckID ckSize ckData	ICRD (August 11, 1997)	$\begin{gathered} 49435244 \\ 0 B 000000 \\ \text { "1997-08-11"0000 } \\ \hline \end{gathered}$
IART-ck	$\begin{aligned} & 006 \mathrm{E} \\ & 0072 \\ & 0076 \\ & \hline \end{aligned}$	ckID ckSize ckData	$\begin{aligned} & \text { IART } \\ & \text { (creator) } \end{aligned}$	$\begin{aligned} & 49415254 \\ & 0 E 000000 \end{aligned}$ "Hanako Yamada"00
ICOP-ck	$\begin{array}{r} 0084 \\ 0088 \\ 008 \mathrm{C} \end{array}$	ckID ckSize ckData	ICOP (copyright)	49434F50 17000000 "Copyright XYZ on 1997."0000
exif-LIST	$\begin{aligned} & \text { O0E2 } \\ & \text { 00E6 } \\ & \text { 00EA } \end{aligned}$	$\begin{gathered} \text { ckID } \\ \text { ckSize } \\ \text { listType } \\ \hline \end{gathered}$	LIST exif	$\begin{aligned} & 4 C 495354 \\ & 94000000 \\ & 65786966 \end{aligned}$
ever-ck	$\begin{aligned} & \text { 00A4 } \\ & \text { 00A8 } \\ & \text { 00AC } \end{aligned}$	$\begin{gathered} \text { ckID } \\ \text { ckSize } \\ \text { listType } \\ \hline \end{gathered}$	LIST exif	$\begin{aligned} & 4 C 495354 \\ & 78000000 \\ & 65786966 \\ & \hline \end{aligned}$

erel-ck	$\begin{aligned} & 00 B C \\ & 00 C 0 \\ & 00 C 4 \\ & \hline \end{aligned}$	$\begin{gathered} \text { ckID } \\ \text { ckSize } \\ \text { ckData } \\ \hline \end{gathered}$	erel (relation to Exif image file)	$\begin{gathered} 6572656 \mathrm{C} \\ 0 \mathrm{D000000} \\ \text { "DSC00001.JPG"0000 } \\ \hline \end{gathered}$
etim-ck	$\begin{aligned} & \text { 00D2 } \\ & \text { 00D6 } \\ & \text { 00DA } \end{aligned}$	ckID ckSize ckData	etim $(15: 14: 13.135)$	$\begin{gathered} \text { 6574696D } \\ 0 \mathrm{D} 000000 \\ " 15: 14: 13.135 " 0000 \end{gathered}$
ecor-ck	$\begin{aligned} & \text { OOE8 } \\ & \text { OOEC } \\ & \text { OOFO } \\ & \hline \end{aligned}$	$\begin{gathered} \text { ckID } \\ \text { ckSize } \\ \text { ckSize } \\ \hline \end{gathered}$	ecor (equipment manufacturer)	$\begin{aligned} & 65636 F 72 \\ & \text { 1E000000 } \end{aligned}$ "DSC Interoperability Corporation"00
emdl-ck	$\begin{aligned} & \text { O10E } \\ & 0112 \\ & 0116 \\ & \hline \end{aligned}$	$\begin{gathered} \text { ckID } \\ \text { ckSize } \\ \text { ckData } \end{gathered}$	emdl (equipment model)	$\begin{gathered} \text { 656D646C } \\ 0 \mathrm{D000000} \\ \text { "DSC Camera-2"0000 } \end{gathered}$
data-ck	$\begin{aligned} & 0124 \\ & 0128 \\ & 012 C \\ & \hline \end{aligned}$	ckID ckSize ckData	data	$\begin{aligned} & 64617461 \\ & 008 C 0000 \end{aligned}$

Annex C APEX Units

The camera information in this standard conforms to the APEX (Additive System of Photographic Exposure) unit system. APEX is a convenient unit for expressing exposure (Ev). The relation of APEX to other units is essentially as follows.
a) ApertureValue (Av) $=2 \log 2$ (F number)
b) ShutterSpeedValue $(T v)=-\log 2$ (exposure time)
c) BrightnessValue $(\mathrm{Bv})=\log 2(\mathrm{~B} / \mathrm{NK}) \quad$ Note that: $\mathrm{B}: \mathrm{cd} / \mathrm{cm} 2, \mathrm{~N}, \mathrm{~K}$: constant

Film sensitivity (not used in this standard) is expressed as follows.
d) Film sensitivity (Sv) $=\log 2($ ASA / 3.125$)$

Using these values, exposure (Ev) is calculated as follows.
e) $\mathrm{Ev}=\mathrm{Av}+\mathrm{Tv}=\mathrm{Bv}+\mathrm{Sv}$

The table below gives examples of values actually used as camera information.

Table 52 Typical APEX Values

ApertureValue (APEX)	F-Number
0	1
1	1.4
2	2
3	2.8
4	4
5	5.6
6	8
7	11
8	16
9	22
10	32

ShutterSpeed Value (APEX)	ExposureTime (second)
-5	30
-4	15
-3	8
-2	4
-1	2
0	1
1	$1 / 2$
2	$1 / 4$
3	$1 / 8$
4	$1 / 30$
5	$1 / 60$
6	$1 / 125$
7	$1 / 250$
8	$1 / 500$
9	$1 / 1000$
10	$1 / 2000$
11	

BrightnessValue (APEX)	foot lambert
-2	$1 / 4$
-1	$1 / 2$
0	1
1	2
2	4
3	8
4	15
5	30

Annex D
 Color Space Guidelines

sRGB defines standard monitor color characteristics and viewing environment. The images taken and processed by a DSC should be designed on the premise of being reproduced and viewed in accord with those definitions.
In reality, the recorded data is often saved in a YCC color space because of JPEG compression. It is therefore necessary to clarify the relationship between the above sRGB color space and YCC color space. A definition of this relationship is to be found in the sYCC standard (for which standardization is being advanced in the IEC), and the present standard uses this as reference. One result of referring to the sYCC standard is that colors outside the sRGB color space are included.

Annex E Guidelines for Implementing Tag Information

E. 1 General

This chapter gives guidelines for implementing and using the tags defined by the Exif Standard that are of use in print processing (e.g. image retouching). Exif/DCF writers should record these tags as indicated in these guidelines. Exif/DCF readers can make use of the information recorded in Exif file tags in order to perform optimal image processing. Note that the output processing indicated here for Exif/DCF readers are given for the sake of example. Examples of tag handling by application software are also given, in section E. 3 Application Software Guidelines.Tag IDs and values are given in the explanations. For details, refer to the Exif Standard.

E. 2 Tag Use in Exif/DCF Readers

Exif/DCF readers can make use of the information recorded as tags in an Exif file to perform optimal image processing. The following tags are useful for photo retouch processing and their use is to be encouraged whenever possible.
a) ExposureMode
b) WhiteBalance
c) Flash
d) SceneCaptureType
e) ExposureTime
f) CustomRendered

E.2.1 ExposureTime

Tag Information
Exposure time, given in seconds (sec).
[Exif/DCF reader]
-When exposure time is unusually long, the Exif/DCF reader can assume the possibility of noise occurring.

- Other tags (brightness, shutter speed, gain control, captured scene type, etc.) may be used as supplementary information.

E.2.2 BrightnessValue
 Tag Information

The value of brightness. The unit is the APEX value.
[Exif/DCF writer]
-The Exif/DCF writer should record the brightness of the presumed main subject. When flash is used, thebrightness level before firing should be recorded.

[Exif/DCF reader]

-The Exif/DCF reader may judge the possibility of noise occurring from very low light conditions.

- This tag may be used to determine the weather conditions, etc., in daylight shooting.

E.2.3 LightSource
 Tag Information

Indicates the kind of light source.
[Exif/DCF writer]
-The Exif/DCF writer should record the light source as estimated by the Exif/DCF writer based on white balance, etc., or as set by the user.

- This will sometimes differ from the actual light source used for shooting
[Exif/DCF reader]
-This information may be referred to when adjusting white balance.

E.2.4 Flash

Tag Information
This tag indicates the flash status when the picture was taken.

[Exif/DCF writer]

-The red-eye bit indicates whether the flash was fired for the purpose of red-eye reduction, including pre-flash.
-The red-eye bit can be set when a flash mode for the purpose of reducing red-eye reduction is set.
[Exif/DCF reader]
-This tag can be used along with subject distance range (or subject distance), scene type and brightness to determine whether suitable exposure is possible.

E.2.5 SubjectArea

Tag Information

This tag indicates the location and area of the main subject in the overall scene.

[Exif/DCF writer]

-The Exif/DCF writer should record a subject area that is large enough to enable the Exif/DCF reader to determine the subject, preferably at least one percent of the total image area.

[Exif/DCF reader]

- An Exif/DCF reader can refer to this information as the area for image optimization processing.

E.2.6 CustomRendered

Tag Information
This tag indicates the use of special processing on image data by Exif/DCF writer, such as rendering geared to output. When special processing is performed, the Exif/DCF reader is expected to disable or minimize any further processing.
[Exif/DCF writer]
-For ordinary shooting this is set to 0 (normal process). If the Exif/DCF writer applies special processing such as monochrome mode or sepia mode, and it is desired to prevent or minimize automatic adjustment by the Exif/DCF reader, a value of 1 is set (custom process).
-For ordinary shooting value of 0 is recorded (normal process). If the Exif/DCF writer considers the specific character of output devices, a value of 1 is recorded (custom process).
-When this tag is set to 1 (custom process), vendors should leads users to understand its function.

- Usage cases
- When the user changes exposure or white balance on pursose
-When the user takes pictures using not standard set up but different mode on purpose
-When the user takes pictures using sepia mode or monochrome mode
-When the user chooses soft focus effect
-When the Exif/DCF writer chooses various effects meeting each scene

[Exif/DCF reader]

-When a value of 1 (custom process) is set, the Exif/DCF reader determines that the image has already been specially processed, and should either disable or reduce any further processing in order to prevent double processing.
-Even if a value of 1 (custom process) is recorded, basic processing, which depends on each output device, is not needed to be decreased. (See Table 53)

Table 53 Relation between Custom Rendered and Output device process

Tag record value	Basic process	Image data-adaptive process	Tag information-utilized process
Ordinary process	Do	Do	Do
Custom process	Do	No or less	No or less

Basic process: process which depends on the output device.
Image data-adaptive process:Image data correction process which depends on the image data. (brightness retouch, color retouch etc)
Image information-utilized process: Image data correction processing, which depends on the tag information.

E.2.7 ExposureMode

Tag Information

This tag indicates the exposure mode set when the image was shot.
[Exif/DCF writer]

- If shutter speed and aperture were set by the user, the Exif/DCF writer sets a value of 1 (manual exposure); if auto-bracketing was set, a value of 2 (auto bracket) is recorded.
-When exposure bias was set, it is up to the Exif/DCF writer whether to record 0 (auto exposure) or 1 (manual exposure).

[Exif/DCF reader]

-When a value of 0 (auto exposure) is set, an Exif/DCF reader should perform automatic adjustment of exposure settings.
-When a value of 1 (manual exposure) or 2 (auto bracketing) is set, the Exif/DCF reader should either not perform automatic bias or should reduce the amount of bias.

E.2.8 WhiteBalance

Tag Information
This tag indicates the white balance set when the image was shot.
[Exif/DCF writer]

- If white balance is determined automatically, 0 (auto white balance) is recorded.
- If preset, custom setting, or while balance auto-bracketing is set, 1 (manual white balance) is recorded.
[Exif/DCF reader]
- If 0 (auto white balance) is recorded, color balance should be adjusted automatically. The Exif/DCF reader may use the light source tag as additional information when performing the adjustment.
-If 1 (manual white balance) is indicated, either normal color balance should not be adjusted automatically or the adjustment level should be reduced.

E.2.9 DigitalZoomRatio

Tag Information
This tag indicates the digital zoom ratio when the image was shot.
[Exif/DCF reader]

- This information can be used as additional information for zoom processing when converting resolution.

E.2.10 FocalLengthIn35mmFilm

Tag Information
This tag indicates the equivalent focal length assuming a 35mm film camera.
[Exif/DCF writer]
-Digital zoom ratio is not taken into account.
[Exif/DCF reader]

- An Exif/DCF reader can use this value along with subject distance to estimate the magnification.

E.2.11 SceneCaptureType

Tag Information
This tag indicates the type of scene that was shot. It can also be used to set the mode in which the image was shot.
[Exif/DCF writer]

- The Exif/DCF writer records the shooting mode set by the user or the scene type determined by the Exif/DCF writer.
- A value of 1 (landscape) indicates a mode suitable for shooting scenery, 2 (portrait) means a mode suitable for portrait photography, and 3(night scene) means a mode suitable for night scenes was set.
- In case of multiple objects in one scene, Exif/DCF writer chooses a value, which suites the main object.
-When the Exif/DCF writer changes the value of contrast, saturation, sharpness, gaincontrol etc, to realize some effects on the photograph, it is better to record the directions.

[Exif/DCF reader]

-The Exif/DCF reader can use this information to perform image processing suitable for the type of scene that was shot.

- The Exif/DCF reader should use this tag and the image analysis result, or other related tags, to prevent over-correction or processing that defeats the purpose of the recorded values.
- If the captured scene type as well as saturation, sharpness and contrast are recorded, it is up to the Exif/DCF reader which of these to use. These tags are recommended to be refered.
-Processing examples are given in the table below for each objective.
Table 54 Examples of Processing for Different Scene Types

	Processing Objective	Processing Example
Normal	To make the ordinary scenery look more attractive	Normal processing
Landscape	To make the landscape scenery look more attractive	Enhancement of contrast, saturation, and sharpness
Portrait	To make the subject look more attractive	Memory color correction of skin color
Night Scene	To make the night scene look more attractive	Inhibition of soft tone correction Noise reduction

E.2.12 GainControl

Tag Information

This tag indicates the degree of overall image gain adjustment.

[Exif/DCF writer]

- The Exif/DCF writer records the difference in gain in relation to the default (factory setting) sensitivity. The default sensitivity may differ for each Exif/DCF writer.
- If there is more than one default value, this tag is not used.

[Exif/DCF reader]

- The Exif/DCF reader can estimate the degree of noise occurrence in accord with the recorded value.
- Other tags (exposure time, shutter speed, brightness, captured scene type, etc.) may be used as supplementary information.

E.2.13 Contrast/Saturation/Sharpness

Tag Information

The Contrast tag indicates the direction of contrast processing applied by the camera when the image was shot.

The Saturation tag indicates the direction of saturation processing applied by the camera when the image was shot.

The Sharpness tag indicates the direction of sharpness processing applied by the camera when the image was shot.

[Exif/DCF writer]

-The Exif/DCF writer records the difference in contrast, saturation and sharpness in relation to the default (factory setting) values.

- The defaults may differ for each Exif/DCF writer.
-Regarding the effects matching SceneCaptureType, the Exif/DCF writer should record processing directions by using these tags.

[Exif/DCF reader]

-The Exif/DCF reader should understand that the recorded values are for the purpose of print processing and should avoid over-correction or processing that defeats the purpose of the recorded values.

- Other tags (such as SceneCaptureType) may be used as supplementary information.
-Processing examples are given in the table below for each objective.

Table 55 Examples of Processing to be avoided by Exif/DCF Readers

	Processing that goes against the intent of the recorded values	Double processing
Contrast	Softening when hard contrast was intended	Excessive softening when soft contrast is recorded
Saturation	Lowering saturation when high saturation was intended	Raising saturation excessively when high saturation is recorded
Sharpness		
Increasing sharpness when weak sharpness was intended	Increasing sharpness excessively when strong sharpness is recorded	

E.2.14 SubjectDistanceRange

Tag Information

Indicates the distance range to the subject.

[Exif/DCF writer]

-This is the distance to the part of the scene determined by the Exif/DCF writer to be the main subject. The means of measuring this and the precision are implementation dependent. The camera setting may be recorded.
-When the subject distance range cannot be determined, 0 (unknown) shall be recorded.
-When macro mode is set, 1 (macro) shall be recorded.

- Generally if the subject distance is 1 to 3 meters, 2 (close view) shall be recorded.
- If the subject is farther than close range, 3 (distant view) shall be recorded.

[Exif/DCF reader]

- This information can be used as information for processing images shot with flash.
- It can also be used as additional information about the SceneCaptureType.

E. 3 Application Software Guidelines

These guidelines give examples of tag handling when Exif image files are edited in application software. The problem here is that when application software edits and saves an Exif file, in some cases the tag information is not recorded the way it should be. By developing applications to handle tags in accordance with these guidelines, program developers can ensure that Exif image files are treated suitably.

E.3.1 Tag handling by application software

Tags contain important information about the image data in a file. When application software processes an image and saves it as a new Exif image file, it is important that this Exif tag information be recorded properly along with the image. When a large amount of tag information is to be re-recorded, it can be copied from the original Exif file. Some of the tags, however, should be updated to reflect the changes made by the application software.

E.3.2 Tag handling examples

This section explains tag handling when the following representative processing is performed.
a) Rotation
b) Trimming
c) Image retouching (exposure bias, adjustment of white balance, brightness, contrast, sharpness, etc.)
d) Red-eye reduction (partial image retouching)
e)Special processing (sepia processing, monochrome processing or other processing affecting the entire image)
In sections E.3.3 and following, the tags that can be copied unchanged and those that need to be updated are indicated. If multiple processing was performed (e.g., rotation plus trimming) and tag handling differs for each process, "Update tag value" takes precedence. If the changed Exif image file does not contain the tags listed here, the saved file after alteration should not include them either. Tag handling examples for each IFD are given in the following sections.

E.3.3 Oth IFD

The following tags should be copied unchanged.
-ImageDescription; ID= 270
-Make; ID= 271

- Model; ID= 272
- Xresolution; ID= 282
- Yresolution; ID= 283
-ResolutionUnit; ID= 296
-TransferFunction; ID= 301
-Artist; ID= 315
-WhitePoint; ID= 318
-PrimaryChromaticities; ID= 319
- YcbCrCoefficients; ID= 529
-ReferenceBlackWhite; ID=532
- Copyright; ID= 33432

Examples of the preferred tag handling for each type of processing are given below.

Table 56 0th IFD tag handling examples

Tag	Rotation	Trimming	Retouch	Red-eye	Special
Orientation $\mathrm{ID}=274$	Set to 1				
YCbCrPositioning $\mathrm{ID}=531$	Update value				
Software $I D=305$	Change to name of used software				
DateTime ID=306,	Changed to saved date and time				

E.3.4 Exif IFD, Primary Image

The following tags should be copied unchanged.
-ExposureTime; ID= 33434
-Fnumber; ID= 33437
-ExposureProgram; ID= 34850
-SpectralSensitivity; ID= 34852
-PhotographicSensitivity; ID= 34855

- OECF; ID= 34856
-SensitivityType; ID= 34864
-StandardOutputSensitivity; ID= 34865
-RecommendedExposureIndex; ID= 34866
-ISOSpeed; ID= 34867
-ISOSpeedLatitudeyyy; ID= 34868
-ISOSpeedLatitudezzz; ID= 34869
-ExifVersion; ID= 36864
-DateTimeOrginal; ID= 36867
-DateTimeDigitized; ID= 36868
- OffsetTimeOrginal; ID=36881
- OffsetTimeDigitized; ID= 36882
-ComponentsConfiguration; ID= 37121
-ShutterSpeedValue; ID= 37377
- ApertureValue; ID= 37378
-BrightnessValue; ID= 37379
-ExposureBiasValue; ID= 37380
- MaxApertureValue; ID= 37381
-SubjectDistance; ID= 37382
- MeteringMode; ID= 37383
- LightSource; ID= 37384
-Flash; ID= 37385
-FocalLength; ID= 37386
- MakerNotes; ID= 37500
-SubSecTimeOriginal; ID= 37521
-SubSecTimeDigitized; ID= 37522
-Temperature; ID= 37888
-Humidity; ID= 37889
-Pressure; ID= 37890
-WaterDepth; ID= 37891
-Acceleration; ID= 37892
-CameraElevationAngle; ID= 37893
-FlashPixVersion; ID= 40960
-ColorSpace; ID= 40961
-RelatedSoundFile; ID= 40964
-FlashEnergy; ID= 41483
-SpatialFrequencyResponse ; ID= 41484
-FocalPlaneX-Resolution; ID= 41486
-FocalPlaneY-Resolution; ID= 41487
-FocalPlane-ResolutionUnit; ID= 41488
-ExposureIndex; ID= 41493
-SensingMethod; ID= 41495
-FileSource; ID= 41728
-SceneType; ID= 41729
-CFApattern; ID= 41730
-ExposureMode; ID= 41986
-WhiteBalance; ID= 41987
-DigitalZoomRatio; ID= 41988
-FocalLengthIn35mmFilm; ID=441989
-SceneCaptureType; ID= 41990
- GainControl; ID= 41991
-Contrast; ID= 41992
- Saturation; ID= 41993
-Sharpness; ID= 41994
-DeviceSettingDescription; ID= 41995
-SubjectDistanceRange; ID= 41996
- ImageUniqueID; ID= 42016
-CameraOwnerName; ID= 42032
-BodySerialNumber; ID= 42033
-LensSpecification; ID= 42034
-LensMake; ID= 42035
-LensModel; ID= 42036
-LensSerialNumber; ID= 42037

Examples of the preferred tag handling for each type of processing are given below.
Table 57 Exif IFD tag handling examples

Tag		Rotation	Trimming	Retouch	Red-eye	Special
CompressedBitsPerPixel ID=37122		Update value based on compression mode set when saved.	Same as "Rotation"	Same as "Rotation"	Same as "Rotation"	Same as "Rotation"
$\begin{aligned} & \text { PixeIXDimension } \\ & \text { ID=40962 } \end{aligned}$		Updateto width rotation. after	Update to width after trimming.	No change	No change	No change
$\begin{aligned} & \text { PixeIYDimension } \\ & \text { ID=40963 } \end{aligned}$		Update to height after rotation.	Update to height after trimming.	No change	No change	No change
$\begin{aligned} & \text { OffsetTime } \\ & \text { ID=36880 } \end{aligned}$		If the Exif/DCF writer can record this tag, update when saving.	Same as "Rotation"	$\begin{aligned} & \hline \text { Same as } \\ & \text { "Rotation" } \end{aligned}$	Same as "Rotation"	Same as "Rotation"
$\begin{aligned} & \text { SubsecTime } \\ & \text { ID=37520 } \end{aligned}$		If the Exif/DCF writer can record this tag, update when saving.	Same as "Rotation"	$\begin{aligned} & \hline \text { Same as } \\ & \text { "Rotation" } \end{aligned}$	Same as "Rotation"	Same as "Rotation"
SubjectLocationID $=41492$ID=41492		Update toto value rotation	Update toto value after trimmingLer	No change	No change	No change
SubjectArea ID=37396		Update to value after rotation	Update to value after trimming	No change	No change	No change
CustomRendere d ID=41985	$\begin{aligned} & \begin{array}{l} \text { value } \\ =0 \end{array} \end{aligned}$	No change	No change	Set to 1.	Set to 1. Can be left unchanged depending on size of affected area	Set to 1.
	$\begin{aligned} & \begin{array}{l} \text { value } \\ =1 \end{array} \end{aligned}$	No change	No change	No change. Preferably this processing should not be performed.	No change. Processing may be performed depending on size of area.	No change. Preferably this processing should not be performed.

E.3.5 InterOprerability IFD

Tags in the InterOperability IFD should be copied unchanged.

E.3.6 GPS Info IFD

Tags in the GPS Info IFD should be copied unchanged.

E.3.7 1st IFD

The following tags should be copied unchanged.

- Compression; ID= 259
- ImageDescription; ID= 270
- Make; ID= 271
-Model; ID= 272
-TransferFunction; ID= 301
- Artist; ID= 306
-WhitePoint; ID= 318
-PrimaryChromaticities; ID= 319
- YCbCrCoefficients; ID=529
-ReferenceBlackWhite; ID=532
-Copyright; ID= 33432
Examples of the preferred tag handling for each type of processing are given below.
Table 58 1st IFD tag handling examples

Tag	Rotation	Trimming	Retouch	Red-eye	Special
Orientation ID=274	Set to 1				
YCbCrPositionin g ID= 531	Update value	Update value	Update value	Update value	Update value
XResolution ID= 282	Adjust width resolution to primary image	Same as "Rotation"			
YResolution ID= 283,	Adjust height resolution to primary image	Same as "Rotation"			
ResolutionUnit ID= 296	Adjust resolution unit to primary image	Same as "Rotation"			
DateTime ID=306	Changed to date and time saved	Same as "Rotation"			

Annex F Notes on Conversion to Flashpix

The data recording method in this standard makes it possible to convert from Exif to Flashpix format with no loss of image quality, and retaining all attribute information. A file that is thus designed from the start for conversion to Flashpix is called a Flashpix-Ready (FPXR) file.

There are three main Flashpix-Ready functions:
a) All Exif tag information is mapped to the Flashpix Image Info Property Set,
b) APP2 extended data can be converted to Flashpix extensions,
c) JPEG images can be converted to the Flashpix tile structure without image quality loss, making use of restart markers.

Figure 58 llustrates the conversion process.

Figure 58 Conversion from Exif to Flashpix

F. 1 Converting Image Data

Flashpix compressed image data consists of JPEG-compressed 64×64-pixel tiles. Converting JPEG images without restart markers to Flashpix images requires that the JPEG data be expanded and re-compressed, which can lead to image quality loss. By inserting restart markers at 64-pixel Interoperability, Flashpix images of the maximum resolution can be generated simply by rearranging the JPEG-compressed data.
Figure 59 shows how compressed data is rearranged using restart markers.

(a) MCU (4:2:2)

$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$
$(5,0)$	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$
$(6,0)$	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$
$(7,0)$	$(7,1)$	$(7,2)$	$(7,3)$	$(7,4)$
$(8,0)$	$(8,1)$	$(8,2)$	$(8,3)$	$(8,4)$

(b) Tile block

(c) Recording order

Figure 59 Conversion to Flashpix Using Restart Markers

Recording of restart markers is optional, and conversion to Flashpix is possible without them; but conversion without restart markers may result in some image quality loss and require a longer processing time.

In order for restart markers to be inserted at 64-pixel Interoperability, the image data width shall be an exact multiple of 64. Therefore the valid image width is recorded as tag information (PixelXDimension), and the JPEG compressed data is recorded with the valid image padded to the right to make it an exact multiple of 64 (see section 4.8.1).

As in the Flashpix standard, padding is used where necessary to achieve exact multiples of 64; and when converting to Flashpix, the padding data on the right can be treated in the same way as valid image data.
If the image height is not an exact multiple of 64, Exif files are not padded; so when converting to Flashpix pad the bottom edge of the image shall be necessary. .

Figure 60 Image Size Restrictions

F. 2 Converting Tag Data

When Exif attribute information is converted to Flashpix, a one-to-one conversion can be made to the Property Set used to record Flashpix attributes. The rules for converting from each kind of Exif tag to the Flashpix PropertySet are given in the tables below (conversion of GPS Info tags is to be determined later).

Table 59 Conversion between Exif Tags and Flashpix Property Set (1) (TIFF Tags)

Exif			FPX		
Field Name	Tag Code		Property Set	Group	Name
	Dec	Hex			
ImageWidth	256	100	-	-	-
ImageLength	257	101	-	-	-
BitsPerSample	258	102	-	-	-
Compression	259	103	-	-	-
PhotometricInterpretation	262	106	-	-	-
ImageDescription	270	10E	Image Info	Content Description	Caption text
Make	271	10F	Image Info	Camera Information	Camera manufacturer name
Model	272	110	Image Info	Camera Information	Camera model name
StripOffsets	273	111	-	-	-
Orientation	274	112	Transform	-	Spatial Orientation
SamplesPerPixel	277	115	-	-	-
RowsPerStrip	278	116	-	-	-
StripByteCounts	279	117	-	-	-
XResolution	282	11A	Image Contents	Primary description	Default display width
YResolution	283	11B	Image Contents	Primary description	Default display height
PlanarConfiguration	284	11C	-	- -	-
ResolutionUnit	296	128	Image Contents	Primary description	Display height/width units
TransferFunction	301	12D	-	-	
Software	305	131	Image Info	File source	Software Name
DateTime	306	132	Ignore	Ignore	Ignore
Artist	315	13B	Image Info	Intellectual Property	Authorship
WhitePoint	318	13E	-	-	-
PrimaryChromaticities	319	13F	-	-	-
YCbCrCoefficients	529	211	-	-	-
YCbCrSubSampling	530	212	-	-	-
YCbCrPositioning	531	213	Ignore	Ignore	Ignore
ReferenceBlackWhite	532	214	-	-	-
Copyright	33432	8298	Image Info	Intellectual Property	Copyright message
Exif IFD Pointer	34665	8769	-	-	-
GPS Info IFD Pointer	34853	8825	-	-	-

Table 60 Conversion between Exif Tags and Flashpix Property Set (2) (Exif Private Tags)

Exif			FPX		
Field Name	Tag Code		Property Set	Group	Name
	Dec	Hex			
ExposureTi	33434	829A	fo	Per Picture Camera Setting	xposure tim
FNumber	33437	829D	Image Info	Per Picture Camera Setting	F-number
ExposureProgram	34850	8822	Image Info	Per Picture Camera Setting	xposure program
SpectralSensitivity	34852	8824	Image Info	Digital Camera Characterization	pectral sensitivity
PhotographicSensitivity	34855	8827	Image Info	Digital Camera Characterization	ISO speed ratings
OECF	34857	8829	Image Info	Digital Camera Characterization	OECF
ExifVersion	36864	9000			
DateTimeOriginal	36867	9003	Image Info Image Info	Content Description	Date of the original image Capture date
DateTimeDigitized	36868	9004	Summary Info		Create date/time
ComponentsConfiguration	37121	9101	nor	no	Ignore
CompressedBitsPerPixel	37122	9102	gnor	Ignore	Ignore
ShutterSpeedValue	37377	9201	Image Info	Per Picture Camera Setting	Exposure time
ApertureValue	37378	9202	Image Info	Per Picture Camera Setting	F-number
BrightnessValue	37379	9203	Image Info	Per Picture Camera Setting	Brightness value
ExposureBiasValue	37380	9204	Image Info	Per Picture Camera Setting	Exposure bias value
MaxApertureValue	37381	9205	Image Info	Per Picture Camera Setting	Maximum aperture value
SubjectDistance	37382	9206	Image Info	Per Picture Camera Setting	Subject distance
MeteringMode	37383	9207	Image Info	Per Picture Camera Setting	Metering mode
LightSource	37384	9208	Image Info	Per Picture Camera Setting	Scene illuminant
Flash	37385	9209	Image Info	Per Picture Camera Setting	las
			Image Info	Per Picture Camera Setting	Flash return
FocalLength	37386	920A	Image Info	Per Picture Camera Setting	ocal length
MakerNote	37500	927C			
UserComment	37510	9286	Image Info	de	ntent description notes
SubSecTime	37520	9290	Ignore	gno	Ignore
SubSecTimeOrigin	37521	9291	Image Info	Content Description	ate of the original image
			Image Info	Per Picture Camera Setting	Capture d
SubSecTimeDigitized	37522	9292	Summary Info		Create date/time
FlashpixVersion	40960	A000			
ColorSp	40961	A001	Contents	solution d	ubimag
PixelXDimension	40962	A002	Image Contents		ighe
PixelYDimension	40963	A003	Image Contents	Primary de	ighest resolution height
RelatedSoundFile	40964	A004			
FlashEnergy	41483	A20B	Image	Per Picture Camera Setting	Flash Energy
SpatialFrequencyRespons e	41484	A20C	Image Info	Digital Camera Characterization	Spatial frequency response
Focalplane	41486	A20E	Image	Digital Camera Characterization	ocal plane X resolutio
FocalplaneYResolution	41487	A20F	Image	Digital Camera Characterization	Focal plane Y resolutio
FocalplaneResolutionUnit	41488	A210	Image Inf	Digital Camera Characterization	Focal plane resolution unit
SubjectLocation	41492	A214	Image Info	Per Picture Camera Setting	ubject location
ExposureIndex	41493	A215	Image Info	Per Picture Camera Setting	Exposure index
SensingMethod	41495	A217	Image In	Digital Camera Characterization	ensing method
FileSource	41728	A300	Image Info	File Sourc	File source
SceneType	41729	A301	Image Info	File Source	Scene type
CFAPattern	41730	A302	Image Info	Digital Camera Characterization	CFA pattern

Table 61 Conversion between Exif Tags and Flashpix Property Set (3) (GPS Info Tags)

Exif			FPX		
Field Name	Tag Code		Property Set	Group	Name
	Dec	Hex			
GPSVersionID	0	0	GPS Info extension	-	GPSVersionID
GPSLatitudeRef	1	1	GPS Info extension	-	GPSLatitudeRef
GPSLatitude	2	2	GPS Info extension	-	GPSLatitude
GPSLongitudeRef	3	3	GPS Info extension	-	GPSLongitudeRef
GPSLongitude	4	4	GPS Info extension	-	GPSLongitude
GPSAltitudeRef	5	5	GPS Info extension	-	GPSAltitudeRef
GPSAltitude	6	6	GPS Info extension	-	GPSAltitude
GPSTimeStamp	7	7	GPS Info extension	-	GPSTimeStamp
GPSSatellites	8	8	GPS Info extension	-	GPSSatellites
GPSStatus	9	9	GPS Info extension		GPSStatus
GPSMeasureMode	10	A	GPS Info extension	-	GPSMeasureMode
GPSDOP	11	B	GPS Info extension	-	GPSDOP
GPSSpeedRef	12	C	GPS Info extension	-	GPSSpeedRef
GPSSpeed	13	D	GPS Info extension	-	GPSSpeed
GPSTrackRef	14	E	GPS Info extension	-	GPSTrackRef
GPSTrack	15	F	GPS Info extension	-	GPSTrack
GPSImgDirectionRef	16	10	GPS Info extension	-	GPSImgDirectionRef
GPSImgDirection	17	11	GPS Info extension	-	GPSImgDirection
GPSMapDatum	18	12	GPS Info extension	-	GPSMapDatum
GPSDestLatitudeRef	19	13	GPS Info extension	-	GPSDestLatitudeRef
GPSDestLatitude	20	14	GPS Info extension	-	GPSDestLatitude
GPSDestLongitudeRef	21	15	GPS Info extension	-	GPSDestLongitudeRef
GPSDestLongitude	22	16	GPS Info extension	-	GPSDestLongitude
GPSDestBearingRef	23	17	GPS Info extension	-	GPSDestBearingRef
GPSDestBearing	24	18	GPS Info extension	-	GPSDestBearing
GPSDestDistanceRef	25	19	GPS Info extension	-	GPSDestDistanceRef
GPSDestDistance	26	1A	GPS Info extension	-	GPSDestDistance

F. 3 Converting to Flashpix Extensions (APP2)

The extended data recorded in APP2 marker segments can be converted readily to Flashpix extensions.

First of all, Figure 61 shows the conversion process when APP2 is recorded as one Interoperability per stream of data.

An area with data size of $8000 . \mathrm{H}$, Default value $00 . \mathrm{H}$ is allocated to the stream name " $¥ 005 \mathrm{MyPropertySet"} \mathrm{(} ¥ 005$ means $005 . \mathrm{H}$) in the Flashpix file Structured Storage structure, and the stream data recorded in APP2-2 is copied to offset $00000000 . \mathrm{H}$, that is, the start of the allocated area.

Exif
APP2-1

Contents List
Number of Entry $=1$
Data size $=0 \times 8000$
Default value $=0 \times 00$
Path " $¥ 005 \mathrm{MyPropertySef"}$

APP2-2
Stream data
Index = 0x00
Offset $=0 \times 00000000$

Stream data

Full Flashpix Stream

Figure 61 Conversion to Flashpix Extensions (1)
Next, Figure 62 shows the conversion process when one Interoperability per two streams of data is recorded in APP2.
This time an area with data size of $10000 . \mathrm{H}$, Default value $00 . \mathrm{H}$ is allocated to the stream name " $¥ 005 \mathrm{MyPropertySet"} \mathrm{in} \mathrm{the} \mathrm{Flashpix} \mathrm{file} \mathrm{Structured} \mathrm{Storage} \mathrm{structure}$, in APP2-2 is copied to offset 00000000.H, that is, the start of the allocated area, while the stream data recorded in APP2-3 is copied starting from offset 00008000.H.

Figure 62 Conversion to Flashpix Extensions (2)
Finally, Figure 63 shows an example of conversion when 2 Interoperability per stream of data are recorded in APP2.

Here a data size of $8000 . \mathrm{H}$, Default value $00 . \mathrm{H}$ is allocated to the stream name "MyPropertySet" Interoperability the storage name " $¥ 005 \mathrm{MyStorage}$ " in the Flashpix file Structured Storage structure, and the stream data recorded in APP2-2 is copied to offset $00000000 . \mathrm{H}$, that is, the start of the allocated area.
Path"/MyStorage/¥005MyPropertySet

Stream data
Index $=0 \times 00$
Offset $A=0 \times 00000000$
Stream data

Figure 63 Conversion to Flashpix Extensions (3)

Annex G Use of Sensitivity-Related Tags

"Sensitivity-related tags" refer generally to seven tags: PhotographicSensitivity, SensitivityType, StandardOutputSensitivity, RecommendedExposureIndex, ISO Speed, ISOSpeedLatitudeyyy, and ISOSpeedLatitudezzz.

The current specifications of sensitivity-related tags resulted from consideration of a couple of circumstances. First, the PhotographicSensitivity tag whose ID was 34855 was previously referred to as ISOSpeedRating, which, in reality, led to confused interpretations of sensitivity that resulted in many recordings that differed from ISO speed as defined under the ISO 12232 standard. Second, sensitivity parameters were added to ISO 12232 as a result of a 2006 revision.

The PhotographicSensitivity tag records the sensitivity of the camera or input device when the image of the relevant file was taken. And the parameter that can be recorded as sensitivity here is a value for one of the following, all of which are defined in ISO 12232: standard output sensitivity (SOS), recommended exposure index (REI), and ISO speed.

For the PhotographicSensitivity tag is an existing tag from Version 2.21 and earlier versions though its name and definition has changed, it is expected that its digit number will become insufficient to match the advancing sensitivity of cameras because its Type is SHORT. However, in the case that the sensitivity value to be noted is 65535 (the maximum value of SHORT) or higher, it records a value of 65535 . Thus it is desirable for the file reader to read this value and then move on to read the values in related tags that correspond to the types that were designated by the SensitivityType tag. (Readers corresponding to Version 2.21 and earlier versions simply interpret this sensitivity value as having reached the upper limit.) In other words, in the case that only one sensitivity parameter is used and digit number is sufficient, it is possible to record sensitivity by using only the existing PhotographicSensitivity tag (and the newly defined SensitivityTYPE tag). (Although using Count = 1 is first principle, this is only recommended and "Any" is continued as a specification based on consideration for interoperability.)

SensitivityTYPE tag indicates which one of the three kinds of parameters of ISO12232 is the PhotographicSensitivity. However, these three parameters sometimes can take the same numerical values depending on the camera's gradation and exposure characteristics, Value $=4,5,6$, or 7 may be used in such cases. At the same time, Value $=1,2$, or 3 shoud be used in case that the same numerical value is coincidentally occurred and only one kind of difinition is contemplating camera design. Furthermore, in case of the camera compliant with CIPA standard DC-004 (sensitivity of digital cameras), it is necessary to use either SOS or REI in the sensitivity notation, and therefore one of value $=1,2,4,5,6$, or 7 is used. And when type is unknown (for example, in case of handling a file recorded by a camera that applies to Version 2.21 or earlier), then value $=0$ should be used. (As a rule, the SensitivityType tag is also recorded when
the PhotographicSensitivity tag is recorded; however, this is only recommended due to consideration for interoperability.)

On the tags of StandardOutputSensitivity, RecommendedExposureIndex and ISOSpeed, numerical values for the tags should be noted in accordance with their definitions respectively, however, when recording even just one of the three tags, it is necessary to record the PhotographicSensitivity tag and SensitivityType tag because it means that a sensitivity parameter is recorded in this case. (The three tags do not exist for Version 2.21 and earlier; therefore recording is possible if a device corresponds to one of the three tags.) On ISOSpeedLatitudeyyy and ISOSpeedLatitudezzz tags, numerical values for the tags should be recorded in accordance with their definitions. However, using these tags on their own is prohibited because they are incidental parameters of ISO speed.

Participating members

The bulk of the deliberations over the formulation of the standards described in this document was performed by the Exif/DCF Working Group.
The members of the Working Group are listed below.
[Standardization Committee]

Chair	Canon Inc.	Akira Suga
Vice Chair	FUJIFILM Corporation	Mikio Watanabe
Vice Chair	NIKON CORPORATION	Koichiro Kawamura
Vice Chair	Olympus Corporation	Hideaki Yoshida
Vice Chair	Panasonic Corporation	Masaaki Nakayama
Vice Chair	Sony Corporation	Naoya Katoh

[Standard Development Group]

Leader	Olympus Corporation	Osamu Nonaka
Sub Leader	Canon Inc.	Hidetoshi Masuda
Sub Leader	NIKON CORPORATION	Hiroto Shimizu

【Exif/DCF Working Group】

Chief
Sub Chief
Canon Inc.
Sub Chief Olympus Corporation
Canon Inc.
CASIO COMPUTER CO., LTD.
CASIO COMPUTER CO., LTD.
FUJIFILM Corporation
FUJITSU LABORATORIES LTD.
FUJITSU LABORATORIES LTD.
Morpho, Inc.
NIKON CORPORATION
NIKON CORPORATION
Olympus Corporation
Olympus Corporation
Olympus Corporation
Panasonic Corporation
Panasonic Corporation
Ricoh Company, Ltd.
Ricoh Company, Ltd.
Ricoh Company, Ltd.
Sony Corporation
Sony Corporation
Sony Corporation
JEITA AV\&IT Technology
Standardization Represent

Akira Suga
Mikio Watanabe
Koichiro Kawamura
Hideaki Yoshida
Masaaki Nakayama
Naoya Katoh

Osamu Nonaka
Hidetoshi Masuda
Hiroto Shimizu

Hayato Hokoi
Hidetoshi Masuda
Hideaki Yoshida
Kenichi Matsuhashi
Kenji Iwamoto
Kazunori Yanagi
Mikio Watanabe
Kimitaka Murashita
Yuushi Toyoda
Tsutomu Imai
Koji Hosomi
Keita Kimura
Toshihiro Ogata
Kazuo Kanda
Tetsuya Toyoda
Kazuya Abe
Shigeo Sakaue
Hirokazu Maeda
Kouichi Ishibashi
Noriyuki Kondo
Naoya Katoh
Toshiki Fujisawa
Toshihiro Ishizaka
Takahiro Imai

[^0]
CIPA DC- 008-Translation- 2016

Established on April, 2010
Revised on July, 2016
Published by Camera \& Imaging Products Association MA Shibaura Bldg., 3-8-10, Shibaura, Minato-ku, Tokyo, 108-0023 Japan

TEL +81-3-5442-4800 FAX +81-3-5442-4801

All rights reserved

No part of this standard may be reproduced in any form or by any means without prior permission from the publisher.

[^0]: Any and all standards and guidelines published by CIPA have been set forth without examining any possibility of infringement or violation of Intellectual Property Rights (patent right, utility model right, trademark right, design right, copyright and any other rights or legal interests of the same kind).
 In no event shall CIPA be liable in terms of Intellectual Property Rights for the contents of such standards and guidelines.

