
 1 

Energy Technology Systems Analysis Programme 
 

http://www.etsap.org/tools.htm 
 
 
 
 
 
 
 
 
 
 

Documentation for the TIMES Model 
 

PART I 
 
 

April 2005 
 

 
 
 
 
Authors:  
  Richard Loulou 
  Uwe Remne 
  Amit Kanudia 

Antti Lehtila  
Gary Goldstein 



 2 

General Introduction 
 
 
 
This documentation is composed of thee Parts.  
 
Part I comprises eight chapters constituting a general description of the TIMES 
paradigm, with emphasis on the model’s general structure and its economic significance. 
Part I also includes a simplified mathematical formulation of TIMES, a chapter 
comparing it to the MARKAL model, pointing to similarities and differences, and 
chapters describing new model options. 
 
Part II is a comprehensive reference manual intended for the technically minded modeler 
or programmer looking for an in-depth understanding of the complete model details, in 
particular the relationship between the input data and the model mathematics, or 
contemplating making changes to the model’s equations. Part II includes a full 
description of the sets, attributes, variables, and equations of the TIMES model. 
 
Part III describes the GAMS control statements required to run the TIMES model. 
GAMS is a modeling language that translates a TIMES database into the Linear 
Programming matrix, and then submits this LP to an optimizer and generates the result 
files. In addition to the GAMS program, two model interfaces (VEDA-FE and VEDA-
BE) are used to create, browse, and modify the input data, and to explore and further 
process the model’s results. The two VEDA interfaces are described in detail in their own 
user’s guides. 
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1 Introduction to the TIMES model 
 
1.1 A brief summary  
 
TIMES (an acronym for The Integrated MARKAL-EFOM1 System) is an economic 
model generator for local, national or multi-regional energy systems, which provides a 
technology-rich basis for estimating energy dynamics over a long-term, multi-period time 
horizon. It is usually applied to the analysis of the entire energy sector, but may also 
applied to study in detail single sectors (e.g. the electricity and district heat sector). 

Reference case estimates of end-use energy service demands (e.g., car road travel; 
residential lighting; steam heat requirements in the paper industry; etc.) are provided by 
the user for each region. In addition, the user provides estimates of the existing stock of 
energy related equipment in all sectors, and the characteristics of available future 
technologies, as well as present and future sources of primary energy supply and their 
potentials.  

Using these as inputs, the TIMES model aims to supply energy services at minimum 
global cost (more accurately at minimum loss of surplus) by simultaneously making 
equipment investment and operating, primary energy supply, and energy trade decisions, 
by region. For example, if there is an increase in residential lighting energy service 
relative to the reference scenario (perhaps due to a decline in the cost of residential 
lighting, or due to a different assumption on GDP growth), either existing generation 
equipment must be used more intensively or new – possibly more efficient – equipment 
must be installed. The choice by the model of the generation equipment (type and fuel) is 
based on the analysis of the characteristics of alternative generation technologies, on the 
economics of the energy supply, and on environmental criteria. TIMES is thus a 
vertically integrated model of the entire extended energy system.  

The scope of the model extends beyond purely energy oriented issues, to the 
representation of environmental emissions, and perhaps materials, related to the energy 
system. In addition, the model is admirably suited to the analysis of energy-
environmental policies, which may be represented with accuracy thanks to the 
explicitness of the representation of technologies and fuels in all sectors. 
In TIMES – like in its MARKAL forebear – the quantities and prices of the various 
commodities are in equilibrium, i.e. their prices and quantities in each time period are 
such that the suppliers produce exactly the quantities demanded by the consumers. This 
equilibrium has the property that the total surplus is maximized.  
 
 
1.2 Using the TIMES model 
 
The TIMES model is particularly suited to the exploration of possible energy futures 
based on contrasted scenarios. Given the long horizons simulated with TIMES, the 

                                                 
1 MARKAL (MARket ALlocation model, Fishbone et al, 1981, 1983, Berger et al. 1992) and EFOM (Van 
Voort et al, 1984)  are two bottom-up energy models which inspired the structure of TIMES.  
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scenario approach is really the only choice (whereas for the shorter term, econometric 
methods may provide useful projections). Scenarios, unlike forecasts, do not pre-suppose 
knowledge of the main drivers of the energy system. Instead, a scenario consists of a set 
of coherent assumptions about the future trajectories of these drivers, leading to a 
coherent organization of the system under study. A scenario builder must therefore 
carefully test the assumptions made for internal coherence, via a credible storyline. 
 
In TIMES, a complete scenario consists of four types of inputs: energy service demands, 
primary resource potentials, a policy setting, and the descriptions of a set of technologies. 
We now present a few comments on each of these four components. 
 

1.2.1 The Demand Component of a TIMES scenario 
 
In the case of the TIMES model demand drivers (population, GDP, family units, etc.) are 

obtained externally, via other models or from accepted other sources. As one 
example, the TIMES global model constructed for the EFDA2 used the GEM-E33 
general equilibrium model to generate a set of coherent (total and sectoral) GDP 
growth rates in the various regions. Note that GEM-E3 itself uses other drivers as 
inputs in order to derive GDP trajectories. These GEM-E3 drivers consist of measures 
of technological progress, population, degree of market competitiveness, and a few 
other perhaps qualitative assumptions. For population and household projections, 
both GEM-E3 and TIMES used the same exogenous sources (IPCC, Nakicenovic 
2000, Moomaw and Moreira, 2001). Other approaches may be used to derive TIMES 
drivers, whether via models or other means. 

 
For the EFDA model, the main drivers were: Population, GDP, GDP per capita, number 
of households, and sector GDP. For sectoral TIMES models, the demand drivers may be 
different depending on the system boundaries. 
 
Once the drivers for a TIMES model are determined and quantified the construction of 
the reference demand scenario requires computing a set of energy service demands over 
the horizon. This is done by choosing elasticities of demands to their respective drivers, 
in each region, using the following general formula: 
 

ElasticityDriverDemand =  
 
As mentioned above, the demands are provided for the reference scenario. However, 
when the model is run for alternate scenarios (for instance for an emission constrained 
case, or for a set of alternate technological assumptions), it is likely that the demands will 
be affected. TIMES has the capability of estimating the response of the demands to the 
changing conditions of an alternate scenario. To do this, the model requires still another 
set of inputs, namely the assumed elasticities of the demands to their own prices. TIMES 

                                                 
2 EFDA: European Fusion Development Agreement  
3 GEM-E3 General Equilibrium Model for Economy, Energy and Environment 
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is then able to endogenously adjust the demands to the alternate cases without exogenous 
intervention. In fact, the TIMES model is driven not by demands but by demand curves. 
 
To summarize:  the TIMES demand scenario components consist in a set of assumptions 
on the drivers (GDP, population, households) and on the elasticities of the demands to the 
drivers and to their own prices. 
 

1.2.2 The Supply Component  of a TIMES Scenario 
 
The second constituent of a scenario is a set of supply curves for primary energy and 
material resources. Multi-stepped supply curves can be easily modeled in TIMES, each 
step representing a certain potential of the resource available at a particular cost. In some 
cases, the potential may be expressed as a cumulative potential over the model horizon 
(e.g. reserves of gas, crude oil, etc), as a cumulative potential over the ressource base 
(e.g. available areas for wind converters differentiated by velocities, available farmland 
for biocrops, roof areas for PV installations) and in others as an annual potential (e.g. 
maximum extraction rates, or for renewable resources the available wind, biomass, or 
hydro potentials). Note that the supply component also includes the identification of 
trading possibilities, where the amounts and prices of the traded commodities are 
determined endogenously (within any imposed limits). 

1.2.3 The Policy Component of a TIMES Scenario 
 
Insofar as some policies impact on the energy system, they may become an integral part 
of the scenario definition. For instance, a No-Policy scenario may perfectly ignore 
emissions of various pollutants, while alternate policy scenarios may enforce emission 
restrictions, or emission taxes, etc. The detailed technological nature of TIMES allows 
the simulation of a wide variety of both micro measures (e.g. technology portfolios, or 
targeted subsidies to groups of technologies), and broader policy targets (such as general 
carbon tax, or permit trading system on air contaminants). A simpler example might be a 
nuclear policy that limits the future capacity nuclear plants. Another example might be 
the imposition of fuel taxes, or of industrial subsidies, etc. 

1.2.4 The Techno-economic component of a TIMES Scenario  
 
The fourth and last constituent of a scenario is the set of technical and economic 
parameters assumed for the transformation of primary resources into energy services. In 
TIMES, these techno-economic parameters are described in the form of technologies (or 
processes) that transform some commodities into others (fuels, materials, energy services, 
emissions). In TIMES, some technologies may be imposed and others may simply be 
available for the model to choose. The quality of a TIMES model rests on a rich, well 
developed set of technologies, both current and future, for the model to choose from. The 
emphasis put on the technological database is one of the main distinguishing factors of 
the class of Bottom-up models, to which TIMES belongs. Other classes of models will 
tend to emphasize other aspects of the system (e.g. interactions with the rest of the 
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economy) and treat the technical system in a more succinct manner via aggregate 
production functions. 
 
Remark: two scenarios may differ in all or in only some of their components. For 
instance, the same demand scenario may very well lead to multiple scenarios by varying 
the primary resource potentials and/or technologies and/or policies, insofar as the 
alternative scenario assumptions do not alter the basic demand inputs (Drivers and 
Elasticities). The scenario builder must always be careful about the overall coherence of 
the various assumptions made on the four components of a scenario. 
 
Organization of PART I 
 

Chapter 2 provides a general overview of the representation in TIMES of the 
Reference Energy System (RES) of a typical region or country, focusing on its basic 
elements, namely technologies and commodities. Chapter 3 discusses the economic 
rationale of the model, and Chapter 4 presents a streamlined representation of the Linear 
Programming problem used by TIMES to compute the equilibrium. Chapter 5 contains a 
comparison of the respective features of TIMES and MARKAL, intended primarily for 
users already familiar with MARKAL, while Chapter 6 describes in detail the elastic 
demand feature and other economic and mathematical properties of the TIMES 
equilibrium. Chapters 7 and 8, respectively describe two model options: Lumpy 
Investments (LI), and Endogenous Technological Learning (ETL).  
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2 The basic structure of the TIMES model 
 
It is useful to distinguish between a model’s structure and a particular instance of its 

implementation. A model’s structure exemplifies its fundamental approach for 
representing and analyzing a problem—it does not change from one implementation to 
the next. All TIMES models exploit an identical mathematical structure. However, 
because TIMES is data4 driven, each (regional) model will vary according to the data 
inputs. For example, in a multi-region model one region may, as a matter of user data 
input, have undiscovered domestic oil reserves. Accordingly, TIMES generates 
technologies and processes that account for the cost of discovery and field development. 
If, alternatively, user supplied data indicate that a region does not have undiscovered oil 
reserves no such technologies and processes would be included in the representation of 
that region’s Reference Energy System (RES, see sections 2.3 and 2.4). Due to this 
property TIMES can also be called a model generator that, based on the input information 
provided by the modeler, generates an instance of a model. In the following, if not stated 
otherwise, the expression model is used with two meanings: the instance of a TIMES 
model or more generally the model generator TIMES. 
 

The structure of TIMES is ultimately defined by variables and equations determined 
from the data input provided by the user. This information collectively defines each 
TIMES regional model database, and therefore the resulting mathematical representation 
of the RES for each region. The database itself contains both qualitative and quantitative 
data. The qualitative data includes, for example, lists of energy carriers, the technologies 
that the modeler feels are applicable (to each region) over a specified time horizon, as 
well as the environmental emissions that are to be tracked. This information may be 
further classified into subgroups, for example energy carriers may be split by type (e.g., 
fossil, nuclear, renewable, etc). Quantitative data, in contrast, contains the technological 
and economic parameter assumptions specific to each technology, region, and time 
period.  When constructing multi-region models it is often the case that a technology may 
be available for use in two distinct regions; however, cost and performance assumptions 
may be quite different (i.e., consider a residential heat pump in Canada versus the same 
piece of equipment in China). This chapter discusses both qualitative and quantitative 
assumptions in the TIMES modeling system.  

 
The TIMES energy economy is made up of producers and consumers of commodities 

such as energy carriers, materials, energy services, and emissions. TIMES, like most 
equilibrium models, assumes competitive markets for all commodities. The result is a 
supply-demand equilibrium that maximizes the net total surplus (i.e. the sum of 
producers’ and consumers’ surpluses) as will be fully discussed in chapters 3 and 6. 
TIMES may, however, depart from perfectly competitive market assumptions by the 
introduction of user-defined explicit constraints, such as limits to technological 
penetration, constraints on emissions, exogenous oil price, etc. Market imperfections can 
also be introduced in the form of taxes, subsidies and hurdle rates. 

                                                 
4 Data in this context refers to parameter assumptions, technology characteristics, projections of energy 
service demands, etc.  It does not refer to historical data series.   
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Operationally, a TIMES run configures the energy system (of a set of regions) over a 

certain time horizon in such a way as to minimize the net total cost (or equivalently 
maximize the net total surplus) of the system, while satisfying a number of constraints. 
TIMES is run in a dynamic manner, which is to say that all investment decisions are 
made in each period with full knowledge of future events. The model is said to have 
perfect foresight (or to be clairvoyant).  In addition to time-periods (which may be of 
variable length), there are time divisions within a year, also called time-slices, which may 
be defined at will by the user (see Figure 2.1). For instance, the user may want to define 
seasons, day/night, and/or weekdays/weekends. Time-slices are especially important 
whenever the mode and cost of production of an energy carrier at different times of the 
year are significantly different. This is the case for instance when the demand for an 
energy form fluctuates across the year and a variety of technologies may be chosen for its 
production. The production technologies may themselves have different characteristics 
depending on the time of year (e.g. wind turbines or run-of-the-river hydro plants). In 
such cases, the matching of supply and demand requires that the activities of the 
technologies producing and consuming the commodity be tracked at each time slice. 
Examples of commodities requiring time-slicing may include electricity, district heat, 
natural gas, industrial steam, and hydrogen. Two additional reasons for defining sub 
yearly time slices are a) the fact that the commodity is expensive (or even impossible) to 
store (thus requiring that production technologies be suitably activated in each time slice 
to match the demand), and b) the existence of an expensive infrastructure whose capacity 
should be sufficient to bear the peak demand for the commodity. The net result of these 
chracteristics is that the deployment in time of the various production technologies may 
be very different in different time-slices, and furthermore that specific investment 
decisions be taken to insure adequate reserve capacity at peak.  
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Figure 2.1: Example of a timeslice tree 
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2.1 Time horizon 
 

The time horizon is divided into a (user-chosen) number of time-periods, each model 
period containing a (possibly different) number of years.  For TIMES each year in a 
given period is considered identical, except for the cost objective function which 
differentiates between payments in each year of a period. For all other quantities 
(capacities, commodity flows, operating levels, etc) any model input or output related to 
period t applies to each of the years in that period, with the exception of investment 
variables, which are usually made only once in a period5,. In this respect, TIMES is 
similar to MARKAL but differs from the approach used in EFOM, where capacities and 
flows were assumed to evolve linearly between so-called milestone years. 

The initial period is usually considered a past period, over which the model has no 
freedom, and for which the quantities of interest are all fixed by the user at their historical 
values. It is often advised to choose an initial period consisting of a single year, in order 
to facilitate calibration to standard energy statistics. Calibration to the initial period is one 
of the more important tasks required when setting up a TIMES model. The main 
variables to be calibrated are: the capacities and operating levels of all technologies, as 
well as the extracted, exported, imported, produced, and consumed quantities for all 
energy carriers, and the emissions if modeled.  

In TIMES years preceding the first period also play a role. Although no explicit 
variables are defined for these years, data may be provided by the modeler on past 
investments. Note carefully that the specification of past investments influences not only 
the initial period’s calibration, but also the model’s behavior over several future periods, 
since the past investments provide residual capacity in several years within the modeling 
horizon proper. 
 
2.2 Decoupling of data and model horizon 
 
In TIMES, special efforts have been made to de-couple the specification of data from the 
definition of the time periods for which a model is run. Two TIMES features facilitate 
this decoupling.  
 
First, the fact that investments made in past years are recognized by TIMES makes it 
much easier to modify the choice of the initial and subsequent periods without major 
revisions of the database.  
 
Second, the specification of process and demand input data in TIMES is made by 
specifying the years when the data apply, and the model takes care of interpolating and 
extrapolating the data to represent the particular periods chosen by the modeler for a 
particular model run.  
 
                                                 
5 There are exceptional cases when an investment must be repeated more than once in a period, namely 
when the period is so long that it exceeds the technical life of the investment. These cases are described in 
detail in section 5.2 of PART II. 



 14 

These two features combine to make a change in the definition of periods quite easy and 
error-free. For instance, if a modeler decides to change the initial year from 1995 to 2005, 
and perhaps change the number and durations of all other periods as well, only one type 
of data change is needed, namely to define the investments made from 1995 to 2004 as 
past investments. All other data specifications need not be altered6. This feature 
represents a great simplification of the modeler’s work. In particular, it enables the user 
to define time periods that have varying lengths, without changing the input data. 
 
 
2.3 The RES concept 
 
The TIMES energy economy consists of three types of entities: 
 

� Technologies (also called processes) are representations of physical devices that 
transform commodities into other commodities. Processes may be primary 
sources of commodities (e.g. mining processes, import processes), or 
transformation activities such as conversion plants that produce electricity, 
energy-processing plants such as refineries, end-use demand devices such as cars 
and heating systems, etc,  

� Commodities consisting of energy carriers, energy services, materials, monetary 
flows, and emissions. A commodity is generally produced by some process(es) 
and/or consumed by other process(es), and 

� Commodity flows, that are the links between processes and commodities. A flow 
is of the same nature as a commodity but is attached to a particular process, and 
represents one input or one output of that process. 

 
It is helpful to picture the relationships among these various entities using a network 
diagram, referred to as a Reference Energy System (RES). In TIMES, the RES processes 
are represented as boxes and commodities as vertical lines. Commodity flows are 
represented as links between process boxes and commodity lines. Using graph theory 
terminology, a RES is an oriented graph, where both the processes and the commodities 
are the nodes of the graph. They are interconnected by the flows, which are the arcs of 
the graph. Each arc (flow) is oriented and links exactly one process node with one 
commodity node. Such a graph is called bi-partite, since its set of nodes may be 
partitioned into two subsets and there are no arcs directly linking two nodes in the same 
subset. 
 

Figure 2.2 depicts a small portion of a hypothetical RES containing a single energy 
service demand, namely residential space heating. There are three end-use space heating 
technologies using the gas, electricity, and heating oil energy carriers (commodities), 
respectively. These energy carriers in turn are produced by other technologies, 
represented in the diagram by one gas plant, three electricity-generating plants (gas fired, 
coal fired, oil fired), and one oil refinery. To complete the production chain on the 
primary energy side, the diagram also represents an extraction source for natural gas, an 
                                                 
6 However, if the horizon has been lengthened, additional data for the new years at the end of the horizon 
must of course be provided, unless the original database horizon already covers the new model horizon.  
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extraction source for coal, and two sources of crude oil (one extracted domestically and 
then transported by pipeline, and the other one imported).  This simple RES has a total of 
13 commodities and 13 processes. These elements form Note that in the RES every time 
a commodity enters/leaves a process (via a particular flow) its name is changed (e.g., wet 
gas becomes dry gas, crude becomes pipeline crude). This simple rule enables the inter-
connections between the processes to be properly maintained throughout the network.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2. Partial view of a simple Reference Energy System 
(all arcs are oriented left to right) 

 
To organize the RES, and inform the modeling system of the nature of its components, 
the various technologies, commodities, and flows may be classified into sets. Each 
TIMES set regroups components of a similar nature. The entities belonging to a set are 
referred to as members, items or elements of that set. The same item may appear in 
multiple technology or commodity sets. While the topology of the RES can be 
represented by a multi-dimensional network, which maps the flow of the commodities to 
the various technologies, the set membership conveys the nature of the individual 
components and is often most relevant to post-processing (reporting) than influencing the 
model structure itself.  
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Contrary to MARKAL, TIMES has relatively few sets for forming process or commodity 
groups. In MARKAL the processes are differentiated depending on whether they are 
sources, conversion processes, end-use devices, etc., and processes in each set have their 
own specialized attributes. In TIMES most processes are endowed with essentially the 
same attributes (with the exceptions of  storage and inter-regional exchange processes), 
and unless the user decides otherwise (e.g. by providing values for some attributes and 
ignoring others), they have the same variables attached to them, and must obey similar 
constraints. Therefore, the differentiation between the various species of processes or 
commodities is made through data specification only, thus eliminating the need to define 
specialized membership sets (unless desired for processing results). Most of the TIMES 
features (e.g. sub-annual time-slice resolution, vintaging) are available for all processes 
and the modeler chooses the features being assigned to a particular process by specifying 
a corresponding indicator set (e.g. PRC_TSL, PRC_VINT). 
 
However, the TIMES commodities are still classified into several Major Groups. There 
are five such groups: energy carriers, materials, energy services, emissions, and monetary 
flows. The use of these groups is essential in the definition of some TIMES constraints, 
as discussed in chapter 4. 
 
 
2.4 Overview of the TIMES attributes 
 
TIMES has some attributes that were not available in MARKAL. More importantly, 
some attributes correspond to powerful new features that confer to TIMES additional 
flexibility. The complete list of attributes is shown in PART II, and we provide below 
only succinct comments on the types of attribute attached to each entity of the RES or to 
the RES as a whole.  
 
Attributes may be cardinal (e.g. numbers) or ordinal (e.g. sets). For example, some of 
ordinal attributes are defined for process to describe subsets of flows that are then used to 
construct specific flow constraints. Subsection 4.4 describes such flow constraints,a nd 
Chapter 2 of PART II gives the complete list of TIMES sets.  
 
The cardinal attributes are usually called parameters. We give below a brief idea of the 
types of parameters available in the TIMES model generator. 
 

2.4.1 Parameters associated with processes 
 
TIMES process-oriented parameters fall into three general categories. First are technical 
parameters that include efficiency, availability factor(s), commodity consumptions per 
unit of activity, shares of fuels per unit activity, technical life of the process, construction 
lead time, dismantling lead-time and duration, amounts of the commodities consumed 
(respectively released) by the construction (respectively dismantling) of one unit of the 
process, and contribution to the peak equations. The efficiency, availability factors, and 
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commodity inputs and outputs of a process may be defined in several flexible ways 
depending on the desired process flexibility, on the time-slice resolution chosen for the 
process and on the time-slice resolution of the commodities involved. Certain parameters 
are only relevant to special processes, such as storage processes or processes that 
implement trade between regions.  
 
The other class of process parameters is economic and policy parameters that include a 
variety of costs attached to the investment, dismantling, maintenance, and operation of a 
process. In addition, taxes and subsidies may be defined in a very flexible manner.  Other 
economic parameters are the economic life of a process (which is the time during which 
the investment cost of a process is amortized, which may differ from the operational 
lifetime) and the process specific discount rate, also called hurdle rate, both of which 
serve to calculate the annualized payments on the process investment cost.  
 
Finally, the modeler may impose a variety of bounds (upper, lower, equality) on the 
investment, capacity, and activity of a process. 
 
Note that many process parameters may be vintaged (i.e. dependent upon the date of 
installation of new capacity), and furthermore may be defined as being dependent on the 
age of the technology. The latter feature is implemented by means of special data 
grouped under the SHAPE parameter, which introduces user-defined shaping indexes that 
can be applied to age-dependent parameters. For instance, the annual maintenance cost of 
an automobile could be defined to remain constant for say 3 years and then increase in a 
linear manner each year after the third year.  
 

2.4.2 Parameters associated with commodities  
 
Commodity-oriented parameters fall into three categories. 
 
Technical parameters associated with commodities include overall efficiency (for 
instance grid efficiency), and the time-slices over which that commodity is to be tracked. 
For demand commodities, in addition the annual projected demand and load curves (if the 
commodity has a subannual time-slice resolution) can be specified. 
 
Economic parameters include additional costs, taxes, and subsidies on the overall or net 
production of a commodity.. These cost elements are then added to all other (implicit) 
costs of that commodity. In the case of a demand service, additional parameters define 
the demand curve (i.e. the relationship between the quantity of demand and its price). 
These parameters are: the demand’s own-price elasticity, the total allowed range of 
variation of the demand value, and the number of steps to use for the discrete 
approximation of the curve. 
 
Policy based parameters include bounds (at each period or cumulative) on the overall or 
net production of a commodity, or on the imports or exports of a commodity by a region. 
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In TIMES the net or the total production of each commodity may be explicitly 
represented by a variable, if needed for imposing a bound or a tax. No such direct 
possibility was available in MARKAL, although the same result could be achieved via 
clever modeling. 

2.4.3 Parameters attached to commodity flows into and out of processes 
 
A commodity flow (more simply, a flow) is an amount of a given commodity produced or 
consumed by a given process. Some processes have several flows entering or leaving it, 
perhaps of different types (fuels, materials, demands, or emissions). In TIMES, unlike in 
MARKAL, each flow has a variable attached to it, as well as several attributes 
(parameters or sets) 
 
Technical parameters (along with some set attributes), permit full control over the 
maximum and/or minimum share a given input or output flow may take within the same 
commodity group. For instance, a flexible turbine may accept oil or gas as input, and the 
modeler may use a parameter to limit the share of oil to at most 40% of the total fuel 
input. Other parameters and sets define the amount of certain outflows in relation to 
certain inflows (e.g., efficiency, emission rate by fuel). For instance, in an oil refinery a 
parameter may be used to set the total amount of refined products  equal to 92% of the 
total amount of crude oils (s) entering the refinery, or to calculate certain emissions as  a 
fixed proportion of the amount of oil consumed. If a flow has a sub-annual time-slice 
resolution, a load curve can be specified for the flow7. 
 
Economic parameters include delivery and other variable costs, taxes and subsidies 
attached to an individual process flow. 
 

2.4.4 Parameters attached to the entire RES 
 
These parameters include currency conversion factors (in a multi-regional model), 
region-specific time-slice definitions, a region-specific general discount rate, and 
reference year for calculating the discounted total cost (objective function). In addition, 
certain switches control the activation of the data interpolation procedure as well as 
special model features to be employed (e.g., run with ETL, see chapter 8).  
 
2.5 Process and Commodity classification 
 
Although TIMES does not explicitly differentiate processes or commodities that belong 
to different portions of the RES (with the exception of storage and trading processes), 
there are three ways in which some differentiation does occur.  
 

                                                 
7 It is possible to define not only load curves for a flow, but also bounds on the share of a flow in a specific 
time-slice relative to the annual flow, e.g. the flow in the time-slice “WinterDay” has to be at least 10 % of 
the total annual flow. 
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First, TIMES does require the definition of Primary Commodity Groups (pcg), i.e. 
subsets of commodities of the same nature entering or leaving a process. For each given 
process, the modeler defines a pcg as a subset of commodities of the same nature, eitehr 
entering or leaving the process as flows. TIMES uses the pcg to define the activity of the 
process, and also its capacity. Besides establishing the process activity and capacity, 
these groups are convenient aids for defining certain complex quantities related to 
process flows, as discussed in section 4.4 and in PART II.  
 
As noted previously TIMES does not require that the user provide many set 
memberships. However, the TIMES report step does pass some set declarations to the 
VEDA-BE result-processing system to facilitate construction of results analysis tables. 
These include process subsets to distinguish demand devices, energy processes, material 
processes (by weight or volume), refineries, electric production plants, coupled heat and 
power plants, heating plants, storage technologies and distribution (link) technologies; 
and commodity subsets for energy, useful energy demands (split into six aggregate sub-
sectors), environmental indicators, and materials. 
 
The third instance of commodity or process differentiation is not embedded in TIMES, 
but rests on the modeler. A modeler may well want to choose process and commodity 
names in a judicious manner so as to more easily identify them when browsing through 
the input database or when examining results. As an example, the World Multi-regional 
TIMES model developed within ETSAP adopts a naming convention whereby the first 
three characters denote the sector and the next three the fuel (e.g., light fuel oil used in 
the residential sector is denoted RESLFO). Similarly, process names are chosen so as to 
identify the sub-sector or end-use (first three characters), the main fuel used (next three), 
and the specific technology (last four). For instance, a standard (001) residential water 
heater (RHW) using electricity (ELC) is named RWHELC001. Naming conventions may 
thus play a critical role in allowing the easy identification of an element’s position in the 
RES.  
 
Similarly, energy services may be labeled so that they are more easily recognized. For 
instance, the first letter may indicate the broad sector (e.g. ‘T’ for transports) and the 
second letter designate any homogenous sub-sectors (e.g. ‘R’ for road transport), the third 
character being free.  
 
In the same fashion, fuels, materials, and emissions are identified so as to immediately 
designate the sector and sub-sector where they are produced or consumed. To achieve 
this some fuels have to change names when they change sectors, which is accomplished 
via processes whose primary role is to change the name of a fuel. In addition, such a 
process may serve as a bearer of sector wide parameters such as distribution cost, price 
markup, tax, that are specific to that sector and fuel. For instance, a tax may be levied on 
industrial distillate use but not on agricultural distillate use, even though the two 
commodities are physically identical.  
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3 Economic rationale of the TIMES modeling approach 
 
This chapter provides a detailed economic interpretation of the TIMES and other partial 
equilibrium models based on maximizing total surplus. Partial equilibrium models have 
one common feature – they simultaneously configure the production and consumption of 
commodities (i.e. fuels, materials, and energy services) and their prices. The price of 
producing a commodity affects the demand for that commodity, while at the same time 
the demand affects the commodity’s price. A market is said to have reached an 
equilibrium at prices p* and quantities q* when no consumer wishes to purchase less than 
q* and no producer wishes to produce more than q* at price p*. Both p* and q* are 
vectors whose dimension is equal to the number of different commodities being modeled. 
As will be explained below, when all markets are in equilibrium the total economic 
surplus is maximized.  

The concept of total surplus maximization extends the direct cost minimization 
approach upon which earlier bottom-up energy system models were based. These simpler 
models had fixed energy service demands, and thus were limited to minimizing the cost 
of supplying these demands. In contrast, the TIMES demands for energy services are 
themselves elastic to their own prices, thus allowing the model to compute a bona fide 
supply-demand equilibrium. This feature is a fundamental step toward capturing the main 
feedback from the economy to the energy system. 

Section 3.1 provides a brief review of different types of energy models. Section 3.2 
discusses the economic rationale of the TIMES model with emphasis on the features that 
distinguish TIMES from other bottom-up models (such as the early incarnations of 
MARKAL, see Fishbone and Abilock, 1981, Berger et al., 1992, though MARKAL has 
since been extended beyond these early versions). Section 3.3 describes the details of 
how price elastic demands are modeled in TIMES, and section 3.4 provides additional 
discussion of the economic properties of the model.  

 
3.1. A brief classification of energy models 
 
Many energy models are in current use around the world, each designed to emphasize a 
particular facet of interest. Differences include: economic rationale, level of 
disaggregation of the variables, time horizon over which decisions are made (and which 
is closely related to the type of decisions,i.e. only operational planning or also investment 
decisions), and geographic scope. One of the most significant differentiating features 
among energy models is the degree of detail with which commodities and technologies 
are represented, which will guide our classification of models in two major classes.  
 

3.1.1 ‘Top-Down’ Models 
 
At one end of the spectrum are aggregated General Equilibrium (GE) models. In these 
each sector is represented by a production function designed to simulate the potential 
substitutions between the main factors of production (also highly aggregated into a few 
variables such as: energy, capital, and labor) in the production of each sector’s output. In 
this model category are found a number of models of national or global energy systems. 
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These models are usually called “Top-Down”, because they represent an entire economy 
via a relatively small number of aggregate variables and equations. In these models, 
production function parameters are calculated for each sector such that inputs and outputs 
reproduce a single base historical year.8 In policy runs, the mix of inputs9 required to 
produce one unit of a sector’s output is allowed to vary according to user-selected 
elasticities of substitution. Sectoral production functions most typically have the 
following general form:  
 

    ( ) ρρρρ /1
0 SESLsKs EBLBKBAX ⋅+⋅+⋅=    (3-1) 

 
where   XS  is the output of sector S, 

KS, LS, and ES are the inputs of capital, labor and energy needed to 
produce one unit of output in sector S, 

� is the elasticity of substitution parameter, 
A0 and the B’s are scaling coefficients. 

 
The choice of � determines the ease or difficulty with which one production factor 

may be substituted for another: the smaller � is (but still greater than or equal to 1), the 
easier it is to substitute the factors to produce the same amount of output from sector S. 
Also note that the degree of factor substitutability does not vary among the factors of 
production — the ease with which capital can be substituted for labor is equal to the ease 
with which capital can be substituted for energy, while maintaining the same level of 
output. GE models may also use alternate forms of production function (3-1), but retain 
the basic idea of an explicit substitutability of production factors. 
 

3.1.2 ‘Bottom-Up’ Models 
 
At the other end of the spectrum are the very detailed, technology explicit models that 
focus primarily on the energy sector of an economy. In these models, each important 
energy-using technology is identified by a detailed description of its inputs, outputs, unit 
costs, and several other technical and economic characteristics. In these so-called 
‘Bottom-Up’ models, a sector is constituted by a (usually large) number of logically 
arranged technologies, linked together by their inputs and outputs (commodities, which 
may be energy forms or carriers, materials, emissions and/or demand services). Some 
bottom-up models compute a partial equilibrium via maximization of the total net 
(consumer and producer) surplus, while others simulate other types of behavior by 
economic agents, as will be discussed below. In bottom-up models, one unit of sectoral 
output (e.g., a billion vehicle kilometers, one billion tonnes transported by heavy trucks 
or one Petajoule of residential cooling service) is produced using a mix of individual 
technologies’ outputs. Thus the production function of a sector is implicitly constructed, 

                                                 
8 These models assume that the relationships (as defined by the form of the production functions as well as 
the calculated parameters) between sector level inputs and outputs are in equilibrium in the base year. 
9 Most models use inputs such as labor, energy, and capital, but other input factors may conceivably be 
added, such as arable land, water, or even technical know-how. Similarly, labor may be further subdivided 
into several categories. 



 22 

rather than explicitly specified as in more aggregated models. Such implicit production 
functions may be quite complex, depending on the complexity of the reference energy 
system of each sector (sub-RES).  

3.1.3 Recent Modeling Advances 
 
While the above dichotomy applied fairly well to earlier models, these distinctions now 
tend to be somewhat blurred by recent advances in both categories of model. In the case 
of aggregate top-down models, several general equilibrium models now include a fair 
amount of fuel and technology disaggregation in the key energy producing sectors (for 
instance: electricity production, oil and gas supply). This is the case with MERGE10 and 
SGM11, for instance. In the other direction, the more advanced bottom-up models are 
‘reaching up’ to capture some of the effects of the entire economy on the energy system. 
For instance, the TIMES model has end-use demands (including demands for industrial 
output) that are sensitive to their own prices, and thus capture the impact of rising energy 
prices on economic output and vice versa. Recent incarnations of technology-rich models 
are multi-regional, and thus are able to consider the impacts of energy-related decisions 
on trade. It is worth noting that while the multi-regional top-down models have always 
represented trade, they have done so with a very limited set of traded commodities – 
typically one or two, whereas there may be quite a number of traded energy forms and 
materials in multi-regional bottom-up models.  
 
MARKAL-MACRO (see [9]) is a hybrid model combining the technological detail of 
MARKAL with a succinct representation of the macro-economy consisting of a single 
producing sector. Because of its succinct single-sector production function, MARKAL-
MACRO is able to compute a general equilibrium in a single optimization step. The 
NEMS12 model is another example of a full linkage between several technology rich 
modules of the various energy subsectors and a set of macro-economic equations, 
although the linkage here is not as tight as in MARKAL-MACRO, and thus requires 
iterative resolution methods.  
 
The TIMES model introduces further enhancements over and above those of MARKAL. 
In TIMES, the horizon may be divided into periods of unequal lengths, thus permitting a 
more flexible modeling of long horizons: typically, one may adopt short periods in the 
near-term (the initial period often consists of a single base year), and longer ones in the 
out years; TIMES includes both technology related variables (as in MARKAL) and flow 
related variables (as in the EFOM model,van der Voort et. al., 1984), thus allowing the 
easy creation of more flexible processes and constraints; the expression of the TIMES 
objective function (total system cost) tracks the payments of investments and other costs 
much more precisely that in other bottom-up models; and, several other new features of 
TIMES that are fully discussed in chapters 4 and 5, and in PART II of this 
documentation.  

                                                 
10 Model for Evaluating Regional and Global Effects (Manne et al., 1995) 
11 Second Generation Model (Edmonds et al., 1991) 
12 National Energy Modeling System, a detailed integrated equilibrium model of an energy system linked to 
the economy at large, US Dept of Energy, Energy Information Administration (2000) 
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In spite of these advances in both classes of models, there remain important differences. 
Specifically:  
 

• Top-down models encompass macroeconomic variables beyond the energy sector 
proper, such as wages, consumption, and interest rates, and 

• Bottom-up models have a rich representation of the variety of technologies 
(existing and/or future) available to meet energy needs, and, they often have the 
capability to track a wide variety of traded commodities. 

 
The Top-down vs. Bottom-up approach is not the only relevant difference among 

energy models. Among Top-down models, the so-called Computable General 
Equilibrium models (CGE) described above differ markedly from the macro econometric 
models. The latter do not compute equilibrium solutions, but rather simulate the flows of 
capital and other monetized quantities between sectors (see e.g. Meade, 1996 on the LIFT 
model). They use econometrically derived input-output coefficients to compute the 
impacts of these flows on the main sectoral indicators, including economic output (GDP) 
and other variables (labor, investments). The sectoral variables are then aggregated into 
national indicators of consumption, interest rate, GDP, labor, and wages.  

Among technology explicit models also, two main classes are usually distinguished: 
the first class is that of the partial equilibrium models such as MARKAL and TIMES, 
that use optimization techniques to compute a least cost (or maximum surplus) path for 
the energy system. The second class is that of simulation models, where the emphasis is 
on representing a system not governed purely by financial costs and profits. In these 
simulation models (e.g. CIMS, Jaccard et al. 2003), investment decisions taken by a 
representative agent (firm or consumer) are only partially based on profit maximization, 
and technologies may capture a share of the market even though their life-cycle cost may 
be higher than that of other technologies. Simulation models use market-sharing formulas 
that preclude the easy computation of equilibrium – at least not in a single pass. The 
SAGE incarnation of the MARKAL model possesses a market sharing mechanism that 
allows it to reproduce certain behavioral characteristics of observed markets. 

The next section focuses on the TIMES model, the most recent advanced partial 
equilibrium model.  
 
3.2 The TIMES paradigm  
 

Since certain portions of this and the next sections require an understanding of the 
concepts and terminology of Linear Programming, the reader requiring a brush-up on this 
topic may first read section 4.5, and then, if needed, some standard textbook on LP, such 
as Hillier and Lieberman (1990) or Chvàtal (1983). The application of Linear 
Programming to microeconomic theory is covered in Gale (1960), and in Dorfman, 
Samuelson, and Solow (1958, and subsequent editions).  
 
A brief description of TIMES would express that it is a: 

• Technology explicit; 
• Multi-regional;  
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• Partial equilibrium model;  
that assumes: 

• Price elastic demands; and  
• Competitive markets: with  
• Perfect foresight (resulting in Marginal value Pricing) 
 

We now proceed to flesh out each of these properties.  
 

3.2.1 A technology explicit model 
 

As already presented in chapter 2 (and described in much more detail in Part II), each 
technology is described in TIMES by a number of technical and economic parameters. 
Thus each technology is explicitly identified (given a unique name) and distinguished 
from all others in the model. A mature TIMES model may include several thousand 
technologies in all sectors of the energy system (energy procurement, conversion, 
processing, transmission, and end-uses) in each region. Thus TIMES is not only 
technology explicit, it is technology rich as well. Furthermore, the number of 
technologies and their relative topology may be changed at will, purely via data input 
specification, without the user ever having to modify the model’s equations. The model is 
thus to a large extent data driven. 
 

3.2.2 Multi-regional feature 
 

Some existing TIMES models covering the entire energy system include up to 15 
regional modules, while some existing sectoral models consist of up to 27 regions. The 
number of regions in a model is limited only by the difficulty of solving LP’s of very 
large size. The individual regional modules are linked by energy and material trading 
variables, and by emission permit trading variables, if desired. The trade variables 
transform the set of regional modules into a single multi-regional (possibly global) 
energy model, where actions taken in one region may affect all other regions. This feature 
is of course essential when global as well as regional energy and emission policies are 
being simulated. Thus a multi-regional TIMES modeled is geographically integrated. 
 

3.2.3 Partial equilibrium properties 
 

TIMES computes a partial equilibrium on energy markets. This means that the model 
computes both the flows of energy forms and materials as well as their prices, in such a 
way that, at the prices computed by the model, the suppliers of energy produce exactly 
the amounts that the consumers are willing to buy. This equilibrium feature is present at 
every stage of the energy system: primary energy forms, secondary energy forms, and 
energy services. A supply-demand equilibrium model has as economic rationale the 
maximization of the total surplus, defined as the sum of suppliers and consumers 
surpluses. The mathematical method used to maximize the surplus must be adapted to the 
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particular mathematical properties of the model. In TIMES, these properties are as 
follows: 
 

• Outputs of a technology are linear functions of its inputs (subsection 3.2.3.1); 
• Total economic surplus is maximized over the entire horizon (3.2.3.2), and 
• Energy markets are competitive, with perfect foresight (3.2.3.3). 

 
As a result of these assumptions the following additional properties hold: 

• The market price of each commodity is equal to its marginal value in the overall 
system (3.2.3.4), and  

• Each economic agent maximizes its own profit or utility (3.2.3.5). 
.  
 
3.2.3.1 Linearity 
 

A linear input-to-output relationship first means that each technology represented 
may be implemented at any capacity, from zero to some upper limit, without economies 
or diseconomies of scale. In a real economy, a given technology is usually available in 
discrete sizes, rather than on a continuum. In particular, for some real life technologies, 
there may be a minimum size below which the technology cannot be implemented (or 
else at a prohibitive cost), as for instance a nuclear power plant, or a hydroelectric 
project. In such cases, because TIMES assumes that all technologies may be implemented 
in any size, it may happen that the model’s solution shows some technology’s capacity at 
an unrealistically small size. However, in most applications, such a situation is relatively 
infrequent and often innocuous, since the scope of application is at the country or 
region’s level, and thus large enough so that small capacities are unlikely to occur.  

On the other hand, there may be situations where plant size matters, for instance when 
the region being modeled is very small. In such cases, it is possible to enforce a rule by 
which certain capacities are allowed only in multiples of a given size (e.g., build or not a 
gas pipeline), by introducing integer variables. This option, referred to as Lumpy 
Investment (LI) is available in TIMES and is discussed in chapter 7.  This approach 
should, however, be used sparingly because it greatly increases solution time. 
Alternatively and more simply, a user may add user-defined constraints to force to zero 
any capacities that are clearly too small.  

It is the linearity property that allows the TIMES equilibrium to be computed using 
Linear Programming techniques. In the case where economies of scale or some other 
non-convex relationship is important to the problem being investigated, the optimization 
program would no longer be linear or even convex. We shall examine such a case in 
chapter 8 when discussing Endogenous Technology Learning. 

The fact that TIMES’s equations are linear, however, does not mean that production 
functions behave in a linear fashion. Indeed, the TIMES production functions are usually 
highly non-linear (although convex), representing non-linear functions as a stepped 
sequence of linear functions. As a simple example, a supply of some resource may be 
represented as a sequence of segments, each with rising (but constant within its interval) 
unit cost. The modeler defines the ‘width’ of each interval so that the resulting supply 
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curve may simulate any non-linear convex function. In brief, diseconomies of scale are 
usually present at the sectoral level. 
 
3.2.3.2 Maximization of total surplus: Price equals Marginal value 
 

The total surplus of an economy is the sum of the suppliers’ and the consumers’ 
surpluses. The term supplier designates any economic agent that produces (and sells) one 
or more commodities (i.e., in TIMES, an energy form, a material, an emission permit, 
and/or an energy service). A consumer is a buyer of one or more commodities. In 
TIMES, the suppliers of a commodity are technologies that procure a given commodity, 
and the consumers of a commodity are technologies or demands that consume a given 
commodity. Some technologies may be both suppliers and consumers, but not of the 
same commodity (since a technology never has the same commodity as input and output, 
with the exception of storage technologies13). Therefore, for each commodity the RES 
defines a set of suppliers and a set of consumers.  

It is customary in microeconomics to represent the set of suppliers of a commodity by 
their inverse production function, that plots the marginal production cost of the 
commodity (vertical axis) as a function of the quantity supplied (horizontal axis). In 
TIMES, as in other linear optimization models, the supply curve of a commodity is not 
explicitly expressed as a function of aggregate factor inputs such as capital, labor and 
energy (as they would in typical production functions used in the economic literature). 
However, it is a standard result of Linear Programming theory that the inverse supply 
function is step-wise constant and increasing in each factor (see Figures 2 and 3. for the 
case of a single commodity14). Each horizontal step of the inverse supply function 
indicates that the commodity is produced by a certain technology or set of technologies in 
a strictly linear fashion. As the quantity produced increases, one or more resources in the 
mix (either a technological potential or some resource’s availability) is exhausted, and 
therefore the system must start using a different (more expensive) technology or set of 
technologies in order to produce additional units of the commodity, albeit at higher unit 
cost. Thus, each change in production mix generates one step of the staircase production 
function with a value higher than the preceding step. The width of any particular step 
depends upon the technological potential and/or resource availability associated with the 
set of technologies represented by that step.  

                                                 
13 Even here, a storage process consumes a given commodity at a certain time-slice or period, and restitutes 
it at a later time-slice or period. Therefore, the output commodity is not identical to the input commodity. 
14 This is so because in Linear Programming the shadow price of a constraint remains constant over a 
certain interval, and then changes abruptly, giving rise to a stepwise constant functional shape. 
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Figure 3.1. Equilibrium in the case of an energy form: the model implicitly 
constructs both the supply and the demand curves 
 

In a similar manner, each TIMES instance defines a series of inverse demand 
functions. In the case of demands, two cases are distinguished. First, if the commodity in 
question is an energy carrier whose production and consumption are endogenous to the 
model, then its demand function is implicitly constructed within TIMES, and is a step-
wise constant, decreasing function of the quantity demanded, as illustrated in Figure 3.1 
for a single commodity. If on the other hand the commodity is a demand for an energy 
service, then its demand curve is defined by the user via the spcification of the own-price 
elasticity of that demand, and the curve is in this instance a smoothly decreasing curve as 
illustrated in Figure 3.215. In both cases, the supply-demand equilibrium is at the 
intersection of the supply function and the demand function, and corresponds to an 
equilibrium quantity QE and an equilibrium price PE

16. At price PE, suppliers are willing 
to supply the quantity QE and consumers are willing to buy exactly that same quantity QE. 
Of course, the TIMES equilibrium concerns many commodities, and the equilibrium is a 
multi-dimensional analog of the above, where QE and PE are now vectors rather than 
scalars.  

The above description of the TIMES equilibrium is valid for any energy form that is 
entirely endogenous to TIMES, i.e. an energy carrier, material, or emission permit. In the 
case of an energy service, TIMES does not implicitly construct the demand function. 
Rather, the user explicitly defines the demand function by specifying its own price 

                                                 
15 This smooth curve will be discretized later for computational purposes, as described in chapter 6 
16 As may be seen in figures 2 and 3, the equilibrium is not necessarily unique. In the case shown in Figure 
2, any point on the vertical segment containing the equilibrium is also an equilibrium, with the same QE but 
a different PE. In other cases, the multiple equilibria may have the same price and different quantities. 
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elasticity. Each energy service demand is assumed to have a constant own price elasticity 
function of the form (see Figure 3.2):  

 
D/D0 = (P/P0)E     (3.3-1) 

 
Where {D0 ,P0} is a reference pair of demand and price values for that energy service 

over the forecast horizon, and E is the (negative) own price elasticity of that energy 
service demand, as chosen by the user (note that though not shown by the notation, this 
price elasticity may vary over time). The pair {D0, P0} is obtained by solving TIMES for 
a reference scenario. More precisely, D0 is the demand projection estimated by the user in 
the reference case based upon explicitly defined relationships to economic and 
demographic drivers, and P0 is the shadow price of that energy service demand obtained 
by running the reference case scenario of TIMES.  

Using Figure 3.1 as an example, the definition of the suppliers’ surplus corresponding 
to a certain point S on the inverse supply curve is the difference between the total revenue 
and the total cost of supplying a commodity, i.e. the gross profit. In Figure 3.1, the 
surplus is thus the area between the horizontal segment SS’ and the inverse supply curve. 
Similarly, the consumers’ surplus for a point C on the inverse demand curve, is defined 
as the area between the segment CC’ and the inverse demand curve. This area is a 
consumer’s analog to a producer’s profit; more precisely it is the cumulative opportunity 
gain of all consumers who purchase the commodity at a price lower than the price they 
would have been willing to pay. For a given quantity Q, the total surplus (suppliers’ plus 
consumers’) is simply the area between the two inverse curves situated at the left of Q. It 
should be clear from Figure 3.1 that the total surplus is maximized exactly when Q is 
equal to the equilibrium quantity QE. Therefore, we may state (in the single commodity 
case) the following Equivalence Principle:  

 
“The supply-demand equilibrium is reached when the total surplus is maximized” 

 
This is a remarkably useful result, as it leads to a method for computing the equilibrium, 
as will be see in much detail in Chapter 6. In the multi-dimensional case, the proof of the 
above statement is less obvious, and requires a certain qualifying property (called the 
integrability property) to hold (Samuelson, 1952, Takayama and Judge, 1972). One 
sufficient condition for the integrability property to be satisfied is realized when the 
cross-price elasticities of any two energy forms are equal, viz. 

jiQPQP jiij ,allfor// ∂∂=∂∂  
In the case of commodities that are energy services, these conditions are trivially satisfied 
in TIMES because we have assumed zero cross price elasticities. In the case of an energy 
carrier, where the demand curve is implicitly derived, it is also easy to show that the 
integrability property is always satisfied17. Thus the equivalence principle is valid in all 
cases.  

                                                 
17 This results from the fact that in TIMES each price Pi is the shadow price of a balance constraint (see 
section 4.5), and may thus be (loosely) expressed as the derivative of the objective function F with respect 
to the right-hand-side of a balance constraint, i.e. iQF ∂∂ / . When that price is further differentiated with 
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In summary, the equivalence principle guarantees that the TIMES supply-demand 
equilibrium maximizes total surplus.The total surplus concept has long been a mainstay 
of social welfare economics because it takes into account both the surpluses of consumers 
and of producers.18  

 

Figure 3.2. Equilibrium in the case of an energy service: the user, explicitly provides 
the demand curve, usually using a simple functional form 
 
Remark: In older versions of MARKAL, and in several other least-cost bottom-up 
models, energy service demands are exogenously specified by the modeler, and only the 
cost of supplying these energy services is minimized. Such a case is illustrated in Figure 
3.3 where the “inverse demand curve” is a vertical line. The objective of such models 
was simply the minimization of the total cost of meeting exogenously specified levels of 
energy service. 

                                                                                                                                                 
respect to another quantity Qj, one gets ji QQF ∂•∂∂ /2 , which, under mild conditions is always equal 

to ij QQF ∂•∂∂ /2 , as desired. 
18 See e.g. Samuelson, P, and W. Nordhaus (1977) 
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Figure 3.3. Equilibrium when an energy service demand is fixed 
 
 
3.2.3.3 Competitive energy markets with perfect foresight 
 
Competitive energy markets are characterized by perfect information and atomic 
economic agents, which together preclude any of them from exercising market power. 
That is, neither the level any individual producer supplies, nor the level any individual 
consumer demands, affects the equilibrium market price (because there are many other 
buyers and sellers to replace them).  It is a standard result of microeconomic theory that 
the assumption of competitive markets entails that the market price of a commodity is 
equal to its marginal value in the economy. This is of course also verified in the TIMES 
economy, as discussed in the next subsection.  

In TIMES, the perfect information assumption extends to the entire planning horizon, 
so that each agent has perfect foresight, i.e. complete knowledge of the market’s 
parameters, present and future. Hence, the equilibrium is computed by maximizing total 
surplus in one pass for the entire set of periods. Such a farsighted equilibrium is also 
called an inter-temporal, dynamic or clairvoyant equilibrium. 

Note that there are at least two ways in which the perfect foresight assumption may 
be relaxed: in one variant, agents are assumed to have foresight over a limited portion of 
the horizon, say one period. Such an assumption of limited foresight is embodied in the 
SAGE variant of MARKAL. There is for the time being no such variant of the TIMES 
model. In another variant, foresight is assumed to be imperfect, meaning that agents may 
only assume probabilities for certain key future events. This assumption is at the basis of 
the Stochastic Programming option in Standard MARKAL. A Stochastic version of 
TIMES is at the planning stage.  
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3.2.3.4 Marginal value pricing 
 
We have seen in the preceding subsections that the TIMES equilibrium occurs at the 
intersection of the inverse supply and inverse demand curves. It follows that the 
equilibrium prices are equal to the marginal system values of the various commodities. 
From a different angle, the duality theory of Linear Programming (section 4.5) indicates 
that for each constraint of the TIMES linear program there is a dual variable. This dual 
variable (when an optimal solution is reached) is also called the constraint’s shadow 
price19, and is equal to the marginal change of the objective function per unit increase of 
the constraint’s right-hand-side. For instance (section 4.5), the shadow price of the 
balance constraint of a commodity (whether it be an energy form, material, a service 
demand, or an emission) represents the competitive market price of the commodity.  

The fact that the price of a commodity is equal to its marginal value is an important 
feature of competitive markets. Duality theory does not necessarily indicate that the 
marginal value of a commodity is equal to the marginal cost of producing that 
commodity. For instance, in the equilibrium shown in Figure 3.4 the price does not 
correspond to any marginal supply cost, since it is situated at a discontinuity of the 
inverse supply curve. In this case, the price is precisely determined by demand rather than 
by supply, and the term marginal cost pricing (so often used in the context of optimizing 
models) is incorrect. The term marginal value pricing is a more appropriate term to use.  

It is important to note that marginal value pricing does not imply that suppliers have 
zero profit. Profit is exactly equal to the suppliers’ surplus, and Figures 2 through 5 show 
that it is generally positive. Only the last few units produced may have zero profit, if, and 
when, their production cost equals the equilibrium price, and even in this case zero profit 
is not automatic as exemplified in Figure 3.3.  

In TIMES the shadow prices of commodities play a very important diagnostic role. If 
some shadow price is clearly out of line (i.e. if it seems much too small or too large 
compared to the anticipated market prices), this indicates that the model’s database may 
contain some errors. The examination of shadow prices is just as important as the 
analysis of the quantities produced and consumed of each commodity and of the 
technological investments.  

 
 

                                                 
19 The term Shadow Price is often used in the mathematical economics literature, whenever the price is 
derived from the marginal value of a commodity. The qualifier ‘shadow’ is used to distinguish the 
competitive market price from the price observed in the real world, which may be different, as is the case in 
regulated industries or in sectors where either consumers or producers exercise market power. When the 
equilibrium is computed using LP optimization, as is the case for MARKAL, the shadow price of each 
commodity is computed as the dual variable of that commodity’s balance constraint, as will be further 
developed in section 3.4. 
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Figure 3.4. Case where the equilibrium price is not equal to any marginal supply 
cost. 
 
 
3.2.3.5 Profit maximization: the Invisible Hand 
 
An interesting property may be derived from the assumptions of competitiveness. While 
the avowed objective of the TIMES model is to maximize the overall surplus, it is also 
true that each economic agent in TIMES maximizes its own ‘profit’. This property is akin 
to the famous ‘invisible hand’ property of competitive markets, and may be established 
rigorously by the following theorem that we state in an informal manner:  

 
Theorem: Let (p*,q*) be the pair of equilibrium vectors. If we now replace the 

original TIMES linear program by one where the commodity prices are fixed at value p*, 
and we let each agent maximize its own profit, there exists a vector of optimal quantities 
produced or purchased by the agents that is equal to q*20. 
 

This property is important inasmuch as it provides an alternative justification for the 
class of equilibria based on the maximization of total surplus. It is now possible to shift 
the model’s rationale from a global, societal one (surplus maximization), to a local, 
decentralized one (individual utility maximization). Of course, the equivalence suggested 
by the theorem is valid only insofar as the marginal value pricing mechanism is strictly 
enforced—that is, neither individual producers’ nor individual consumers’ behaviors 
affect market prices—both groups are price takers. Clearly, many markets are not 

                                                 
20 However, the resulting Linear Program has multiple optimal solutions. Therefore, although q* is an 
optimal solution, it is not necessarily the one found when the modified LP is solved. 
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competitive in the sense the term has been used here. For example, the behavior of a few, 
state-owned oil producers has a dramatic impact on world oil prices, that then depart 
from their marginal system value. Market power21 may also exist in cases where a few 
consumers dominate a market. The entire annual crop of a given region’s supply of 
coffee beans may, for example, be purchased by a handful of purchasers who may then 
greatly influence prices.  
 

 

                                                 
21 An agent has market power if its decisions, all other things being equal, have an impact on the market 
price. Monopolies and Oligopolies are example of markets where one or several agents have market power. 
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4 A simplified description of the TIMES optimization 
program 

 
 
This chapter contains a simplified formulation of the TIMES Linear Program. A Linear 
Programming problem consists in the minimization (or maximization) of an objective 
function defined as a mathematical expression of decision variables, subject to 
constraints (also called equations22) also expressed mathematically. Very large instances 
of Linear Programs involving hundreds of thousands of constraints and variables may be 
formulated in the GAMS language, and solved via powerful Linear Programming 
optimizers23. The Linear Program described in this chapter is much simplified, since it 
ignores many exceptions and complexities that are not essential to a basic understanding 
of the principles of the model. Section 4.5 gives additional details on general Linear 
Programming concepts. The full details of the parameters, variables, objective function, 
and constraints of TIMES are given in Part II of this documentation. 

 
An optimization problem formulation consists of three types of entities:  
� the decision variables: i.e. the unknowns, or endogenous quantities, to be 

determined by the optimization,  
� the objective function: expressing the criterion to be minimized or maximized, and  
� constraints: equations or inequalities involving the decision variables that must be 

satisfied by the optimal solution. 
 
4.1 Indices 
 
The model data structures (sets and parameters), variables and equations use the 
following indexes: 
 
r: indicates the region  
t or v: time period; t corresponds to the current period, and v is used to indicate the 

vintage year of an investment When a process is not vintaged  then v = t. 
p: process (technology); 
s: time-slice; this index is relevant only for user-designated commodities and  

processes that are tracked at finer than annual level (e.g. electricity, low- 
temperature heat, and perhaps run-of-river hydro or natural gas, etc.). Time-slice 
defaults to “ANNUAL”, indicating that a commodity is tracked only annually. 

c: commodity (energy, material, emission, demand); 
 
 
4.2 Decision Variables 
 

                                                 
22 This rather improper term includes equality as well as inequality relationships between mathematical 
expressions. 
23 For more information on optimizers see The Solver Manual of the GAMS A USER'S GUIDE, Anthony 
Brooke, David Kendrick, Alexander Meeraus, and Ramesh Raman, December 1998. 
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The decision variables represent the choices to be made by the model, i.e. the 
unknowns. The various kinds of decision variables in a TIMES model are: 
 
NCAP(r,v,p): new capacity addition (investment) for technology p, in period v and region 
r.  For all technologies the v value corresponds to the vintage of the process, i.e. year in 
which it is invested in. For vintaged technologies (declared as such by the user) the 
vintage (v) information is reflected in other process variables, discussed below. Typical 
units are PJ/year for most energy technologies, Million tonnes per year (for steel, 
aluminum, and paper industries), Billion vehicle-kilometers per year (B-vkms/year) or 
million cars for road vehicles and GW for electricity equipment (1GW=31.536 PJ/year), 
etc.  
 
CAP(r,v,t,p): installed capacity of process p, in region r and period t (optionally with 
vintage v). It represents the total capacity in place in period t, considering the residual 
capacity at the beginning of the modeling horizon and new investments made prior to and 
including period t  that have not reached their technical lifetime. Typical units: same as 
investments. The CAP variables are actually not explicitly defined in the model, but are 
derived from the NCAP variables and data on past investments and plant lifetimes. 
 
CAPT(r,t,p): total installed capacity of technology p, in region r and period t, all vintages 
together. The CAPT variables are only defined when some bound or user-constraint are 
specified for them. They do not enter any other equation. 
 
ACT(r,v,t,p,s): activity level of technology p, in region r and period t (optionally vintage 
v and time-slice s). Typical units: PJ for all energy technologies. The s index is relevant 
only for processes that produce or consume commodities specifically declared as time-
sliced. Moreover, it is the process that determines which time slices prevail, via a special  
attribute. By default, only annual activityis tracked. 
 
FLOW(r,v,t,p,c,s): the quantity of commodity c consumed or produced by process p, in 
region r and period t (optionally with vintage v and time-slice s). Typical units: PJ for all 
energy technologies. The FLOW variables confer considerable flexibility to the processes 
modeled in TIMES, as they allow the user to define flexible processes for which input 
and/or output flows are not rigidly linked to the process’ activity.  
 
SIN(r,v,t,p,c,s)/SOUT(r,v,t,p,c,s): the quantity of commodity c stored or discharged by 
storage process p, in time-slice s, period t (optionally with vintage v), and region r. 
 
TRADE(r,t,p,c,s,imp) and TRADE(r,t,p,c,s,exp):) quantity of commodity c (PJ per year) 
sold (exp) or purchased (imp) by region r through export (resp. import) process p in 
period t (optionally in time-slice s). Note that the topology defined for the exchange 
process p specifies the traded commodity c, the region r, and the regions r’ with which 
region r is trading commodity c. In the case of bi-lateral trading, if it is desired that 
region r trade with several other regions, then each such trade requires the definition of a 
separate bi-lateral exchange process. Note that it is also possible to define multi-lateral 
trading relationships between region r and several other regions r’ by defining one of the 
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regions as the common market for trade in commodity c. In this case, the commodity is 
‘put on the market’ and may be bought by any other region participating in the market. 
This case is convenient for global commodities such as emission permits or crude oil.  
Finally, exogenous trading may also be modeled by specifying the r’ region as an 
external region. Exogenous trading is required for models that are not global, since 
exchanges with non modeled regions cannot be considered endogenous.  
 
D(r,t,d): demand for end-use energy service d in region r  and period t. In the reference 
scenario, this variable is fixed by the user. In non-reference scenarios D(r,t,d) may differ 
from the reference case demand due to the responsiveness of demands to prices (based on 
each service demand’s own-price elasticity). Note that in this simplified formulation, we 
do not show the variables used to decompose D(r,t,d) into a sum of step-wise quantities 
(see chapter 6 and Part II for details). 
 
Other variables:  TIMES has a number of commodity related variables that are not 
strictly needed but are convenient for reporting purposes and/or for applying certain 
bounds to them. Examples of such variables are: the total amount produced of a 
commodity (COMPRD), or the total amount consumed of a commodity (COMCON).24  
 

 
4.3 TIMES objective function: discounted total system cost 
 

The Surplus Maximization objective is first transformed into an equivalent Cost 
Minimization objective by taking the negative of the surplus, and calling this the total 
system cost. This practice is in part inspired from historical custom from the days of the 
fixed demand MARKAL model. The TIMES objective is therefore to minimize the total 
cost of the system, properly augmented by the ‘cost’ of lost demand. All cost elements 
are appropriately discounted to a selected year.  

 
While the TIMES constraints and variables are linked to a period, the components of 

the system cost are expressed for each year of the horizon (and even for some years 
outside the horizon). This choice is meant to provide a smoother, more realistic rendition 
of the stream of payments in the energy system, as will be discussed below. Each year, 
the total cost includes the following elements:  

� Capital Costs incurred for investing into and/or dismantling processes; 
� Fixed and variable annual Operation and Maintenance (O&M) Costs, and other 

annual costs occurring during the dismantling of technologies; 
� Costs incurred for exogenous imports and for domestic resource production;  
� Revenues from exogenous exports; 
� Delivery costs for required commodities consumed by processes;  

                                                 
24 These extra variables, as well as the flow variables, add only a moderate computational burden to the 
optimization process thanks to the use of a reduction algorithm to detect and eliminate redundant variables 
and constraints before solving the LP. These variables and constraints are later reinstated in the solution file 
for reporting purposes. 
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� Taxes and subsidies associated with commodity flows and process activities or 
investments; 

� Revenues from recuperation of embedded commodities, accrued when a process’s 
dismantling releases some valuable commodities; 

� Salvage value of processes and embedded commodities at the end of the planning 
horizon;  

� Welfare loss resulting from reduced end-use demands. Chapter 6 presents the 
mathematical derivation of this quantity. 

 
As already mentioned, in TIMES, special care is taken to precisely track the monetary 
flows related to process investments and dismantling in each year of the horizon. Such 
tracking is made complex by several factors:  

� First, TIMES recognizes that there may be a lead-time between the beginning and 
the end of the construction of some large processes, thus spreading the investment 
installments over several years;  

� Second, TIMES also recognizes that for some other processes (e.g. new cars), the 
investments in new capacity occur progressively over several years of a time 
period, rather than in one lump amount (as in MARKAL);  

� Third, there is the possibility that a certain investment decision made at period t 
will have to be repeated more than once during that same period (this will occur if 
the tth period is long compared to the process life);  

� Fourth, TIMES recognizes that there may be dismantling capital costs at the end-
of-life of some processes (e.g. a nuclear plant), and these costs, while attached to 
the investment variable indexed by period t, are actually incurred much later, and  

� Finally, TIMES assumes that the payment of any capital cost is spread over an 
economic life that may be different from the technical life of the process, and 
annualized at a different rate than the overall discount rate. 

 
These various TIMES features, while adding precision and realism to the cost profile, 
also introduce complex mathematical expressions in the objective function. In this 
simplified formulation, we do not provide much detail on these complex expressions, 
which are fully described in section 5.1 of Part II. We limit our description to giving 
general indications on the cost elements composing the objective function, as follows:  
� The investment and dismantling costs are transformed into streams of annual 

payments, computed for each year of the horizon (and beyond, in the case of 
dismantling costs and recycling revenues), along the lines suggested above; 

� A salvage value of all investments still active at the end of the horizon (EOH) is 
calculated and its value is assigned to the (single) year following the EOH;  

� The other costs listed above, which are all annual costs, are added to the 
annualized capital cost payments, minus salvage value, to form the ANNCOST 
quantity (below), and 

� TIMES then computes for each region a total net present value of the stream of 
annual costs, discounted to a user selected reference year. These regional 
discounted costs are then aggregated into a single total cost, which constitutes the 
objective function to be minimized by the model in its equilibrium computation. 
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where: 
 

NPV    is the net present value of the total cost for all 
regions (the  

TIMES objective function); 
ANNCOST(r,y) is the total annual cost in region r and year y; 
dr,y    is the general discount rate; 
REFYR   is the reference year for discounting; 
YEARS   is the set of years for which there are costs,  

including all years in the horizon, plus past years 
(before the initial period) if costs have been defined 
for past investments, plus a number of years after 
EOH where some investment and dismantling costs 
are still being incurred, as well as the Salvage 
Value; 

R    is the set of regions in the area of study, and 
 
As already mentioned, the exact computation of ANNCOST is quite complex and is 
postponed until PART II, section 5.1. 
 
 
4.4 Constraints 
 
 

While minimizing total discounted cost the TIMES model must satisfy a large 
number of constraints (the so-called equations of the model) which express the physical 
and logical relationships that must be satisfied in order to properly depict the associated 
energy system. TIMES constraints are of several kinds. We list and briefly discuss the 
main types of constraints. A full description is given in Part II. If any constraint is not 
satisfied, the model is said to be infeasible, a condition caused by a data error or an over-
specification of some requirement. 

 
In the descriptions of the equations that follow, the equation and variable names (and 

their indexes) are in bold italic type, and the parameters (and their indexes), 
corresponding to the input data, are in regular italic typeset. Furthermore, some 
parameter indexes have been omitted in order to provide a streamlined presentation. 
 

4.4.1 Capacity Transfer (conservation of investments) 
 
Investing in a particular technology increases its installed capacity for the duration of the 
physical life of the technology. At the end of that life, the total capacity for this 
technology is decreased by the same amount. When computing the available capacity in 
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some time period, the model takes into account the capacity resulting from all 
investments up to that period, some of which may have been made prior to the initial 
period but are still in operating condition (embodied by the residual capacity of the 
technology), and others that have been decided by the model at, or after, the initial 
period, up to and including the period in question.  
 
The total available capacity for each technology p, in region r, in period t (all vintages), is 
equal to the sum of investments made by the model at past and current periods, and 
whose physical life has not yet ended, plus capacity in place prior to the modeling 
horizon that is still available. The exact formulation of this constraint is made quite 
complex by the fact that TIMES accepts variable time periods, and therefore the end of 
life of an investment may well fall in the middle of a future time period. We ignore here 
these complexities and provide a streamlined version of this constraint. Full details are 
shown in Part II. 
 
EQ_CPT(r,t,p) - Capacity transfer 
 

CAPT(r,t,p) = Sum {over all periods t’ preceding or equal to t such that 
t-t’<LIFE(r,t’,p) of NCAP(r,t’,p)}  + RESID(r,t,p)      (4-1)  
 
where RESID(r,t,p) is the (exogenously provided) capacity of technology 
p due to investments that were made prior to the initial model period and 
still exist in region r at time t.  

 

4.4.2 Definition of process activity variables 
 
Since TIMES recognizes activity variables as well as flow variables, it is necessary to 
relate these two types of variables. This is done by introducing a constraint that equates 
an overall activity variable, ACT(r,v,t,p,s), with the appropriate set of flow variables, 
FLOW(r,v,t,p,c,s), properly weighted This is accomplished by first identifying the group 
of commodities that defines the activity (and thereby the capacity as well) of the process. 
In a simple process, one consuming a single commodity and producing a single 
commodity, the modeler simply chooses one of these two flows to define the activity, and 
thereby the process normalization (input or output). In more complex processes, with 
several commodities (perhaps of different types) as inputs and/or outputs, the definition 
of the activity variable requires first to choose the primary commodity group (pcg) that 
will serve as the activity-defining group. For instance, the pcg may be the group of 
energy carriers, or the group of materials of a given type, or the group of GHG emissions, 
etc. The modeler then identifies whether the activity is defined via inputs or via outputs 
that beong to the selected pcg. Conceptually, this leads to the following relationship: 
 
EQ_ACTFLO(r,v,t,p,s) – Activity definition 
 

ACT(r,v,t,p,s) = SUM{c in pcg of FLOW(r,v,t,p,c,s) / ACTFLO(r,v, p,c)} (4-2) 
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where ACTFLO(r,v, p,c) is a conversion factor (often equal to 1) from the activity 
of the process to the flow of a particular commodity.  

 

4.4.3 Use of capacity 
 
In each time period the model may use some or all of the installed capacity according to 
the Availability Factor (AF) of that technology. Note that the model may decide to use 
less than the available capacity during certain time-slices, or even throughout one or more 
whole periods, if such a decision contributes to minimizing the overall cost. Optionally, 
there is a provision for the modeler to force specific technologies to use their capacity to 
their full potential.  
 
For each technology p, period t, vintage v, region r, and time-slice s, the activity of the 
technology may not exceed its available capacity, as specified by a user defined 
availability factor. 
 
EQ_CAPACT (r,v,t,p,s) - Use of capacity 
 
ACT (r,v,t,p,s) ≤≤≤≤ or = AF(r,v,t,p,s)* CAPUNIT(r,p))*FR(r,s)* CAP(r,v,t,p)   (4-3) 
 
Here CAPUNIT(r,p) is the conversion factor between units of capacity and activity (often 
equal to 1, except for power plants). The FR(r,s) parameter is equal to the duration of 
timeslice s. The availability factor AF also serves to indicate the nature of the constraint 
as an inequality or an equality. In the latter case the capacity is forced to be fully utilized,. 
Note that the CAP(r,v,t,p) variable is not explicitly defined in TIMES. Instead it is 
replaced in (4-3) by a fraction (less than or equal to 1) of the investment variable 
NCAP(r,v,p)25a sum of past investments that are still operating, as in equation (4-1).   
 
 
Example: a coal fired power plant’s activity in any time-slice is bounded above by 80% 
of its capacity, i.e. ACT (r,v,t,p,s)  ≤≤≤≤  0 .8*31.536 * CAP(r,v,t,p), where CAPUNIT(r,p) = 
31.536 is the conversion factor between the units of the capacity variable (GW) and the 
activity-based capacity unit (PJ/a) The activity-based capacity unit is obtained from the 
activity unit(PJ) by division by  a denominator of one year. 
 
The s index of the AF coefficient in equation (4-3) indicates that the user may specify 
time-sliced dependency on the availabilityof the installed capacity of some technologies, 
if desirable. This is especially needed when the operation of the equipment depends on 
the availability of a resource that cannot be stored, such as wind and sun, or that can be 
only partially stored, such as water in a reservoir. In other cases, the user may provide an 
AF factor that does not depend on s, which is then applied to the entire year. The 
operation profile of a technology within a year, if the technology has a sub-annual 
                                                 
25 That fraction is equal to 1 if the technical life of the investment made in period v fully covers period t. It 
is less than 1 (perhaps 0) otherwise. Chapter 5 of PART II provides details of the computation of that 
fraction. 
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process resolution, is determined by the optimization routine.  The number of 
EQ_CAPACT constraints is at least equal to the number of time-slices at which the 
equipment operates. For technologies with only an annual characterization the number of 
constraints is reduced to one per period (where s=”ANNUAL”). 

4.4.4 Commodity Balance Equation: 
 
In each time period, the production by a region plus imports from other regions of each 
commodity must balance the amount consumed in the region or exported to other regions. 
In TIMES, the sense of each balance constraint (≥≥≥≥ or =) is user controlled, via a special 
parameter attached to each commodity. However, the constraint defaults to an equality in 
the case of materials (i.e. the quantity produced and imported is exactly equal to that 
consumed and exported), and to an inequality in the case of energy carriers, emissions 
and demands (thus allowing some surplus production). For those commodities for which 
time-slices have been defined, the balance constraint must be satisfied in each time-slice.  
 
The balance constraint is very complex, due to the many terms involving production or 
consumption of a commodity. We present a much simplified version below, to simply 
indicate the basic meaning of this equation. 
 
For each commodity c, time period t (vintage v), region r, and time-slice s (if necessary 
or “ANNUAL” if not), this constraint requires that the disposition of each commodity 
balances its procurement. The disposition includes consumption in the region plus 
exports; the procurement includes production in the region plus imports.  
 
EQ_COMBAL(r,t,c,s) - Commodity Balance 
 

 
[ Sum {over all p,c ∈∈∈∈ TOP(r,p,c,”out”) of: [FLOW(r,v,t,p,c,s) + 
SOUT(r,v,t,p,c,s)*STG_EFF(r,v,p)] } + 
 
Sum {over all p,c ∈∈∈∈ RPC_IRE(r,p,c,”imp”) of: 
TRADE(r,t,p,c,s,”imp”)} + 
 
Sum {over all p of: Release(r,t,p,c)*NCAP(r,t,p,c)} ]  * COM_IE(r,t,c,s) 

 
 ≥≥≥≥  or  =       (4-4) 

 
Sum {over all p,c ∈∈∈∈ TOP(r,p,c,”in”) of: FLOW(r,v,t,p,c,s) + 
SIN(r,v,t,p,c,s)} +  
 
Sum {over all p,c ∈∈∈∈ RPC_IRE(r,p,c,”exp”)} of:   
TRADE(r,t,p,c,s,’exp”)  +  
 
Sum {over all p of: Sink(r,t,p,c)*NCAP(r,t,p,c)} + 
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FR(c,s) * DM(c,t)    
    
 
     

where:  
 
The constraint is  ≥  for energy forms and = for materials and emissions 

(unless these defaults are overridden by the user). 
TOP(r,p,c,”in/out”) identifies that there is an input/output flow of 

commodity c into/from process p in region r; 
RPC_IRE(r,p,c,”imp/exp”) identifies that there is an import/export flow 

into/from region r of commodity c via process p; 
STG_EFF(r,v,p) is the efficiency of storage process p; 
COM_IE(r,t,c) is the infrastructure efficiency of commodity c; 
Release(r,t,p,c) is the amount of commodity c recuperated per unit of 

capacity of process p dismantled (useful to represent some materials or 
fuels that are recuperated while dismantling a facility); 

Sink(r,t,p,c) is the quantity of commodity c required per unit of new 
capacity of process p (useful to represent some materials or fuels 
consumed for the construction of a facility); 

FR(s) is the fraction of the year covered by time-slice s (equal to 1 for 
non- time-sliced commodities).  

 
Example: Gasoline consumed by vehicles plus gasoline exported to other regions must 
not exceed gasoline produced from refineries plus gasoline imported from other regions. 
 

4.4.5 Defining flow relationships in a process  
 
A process with one or more (perhaps heterogeneous) commodity flows is essentially 
defined by one or more independent input and output flow variables. In the absence of 
relationships between these flows, the process would be completely undetermined, i.e. its 
outputs would be independent form its inputs.We therefore need one or more constraints 
stating that the ratio of the sum of some of its output flows to the sum of some of its input 
flows is equal to a constant (which is akin to an efficiency). In the case of a single 
commodity in, and a single commodity out of a process, this equation defines the 
traditional efficiency of the process. With several commodities, this constraint may leave 
some freedom to individual output (or input) flows, as long as their sum is in fixed 
proportion to the sum of input (or output) flows. An important rule for this constraint is 
that each sum must be taken over commodities of the same type (i.e. in the same group, 
say: energy carriers, or emissions, etc.). In TIMES, for each process the modeler 
identifies the input commodity group cg1, and the output commodity group cg2, and 
chooses a value for the efficiency ratio, named FLOFUNC(p,cg1,cg2). The following 
equation embodies this: 
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EQ_PTRANS(r,v,t,p,cg1,cg2,s) –Efficiency definition 
 

SUM {c in cg2 of : FLOW(r,v,t,p,c,s ) }=  
 
FLOFUNC(r,v,cg1,cg2,s) * SUM {c within cg1 of: 

COEFF(r,v,p,cg1,c,cg2,s)* FLOW(r,v,t,p,c,s)}  (4-5) 
 

Where COEFF(r,v,p,cg1,c,cg2,s) takes into account the harmonization of 
different time-slice resolution of the flow variables, which have been omitted here 
for simplicity, as well as commodity-dependent transformation efficiencies. 

 

4.4.6 Limiting flow shares in flexible processes 
 
When either of the commodity groups cg1 or cg2 contains more than one element, the 
previous constraint allows a lot of freedom on the values of flows. The process is 
therefore quite flexible. The flow share constraint is intended to limit the flexibility, by 
constraining the share of each flow within its own group. For instance, a refinery output 
might consist of three refined products: c1=light, c2=medium, and c3=heavy distillate. If 
losses are 9% of the input, then the user must specify FLOFUNC = 0.91 to define the 
overall efficiency. The user may then want to limit the flexibility of the slate of outputs 
by means of three FLOSHAR(ci) coefficients, say 0.4, 0.5, 0.6, resulting in three flow 
share constraints as follows: 
 

FLOW(c1) ≤  0.4*[FLOW(c1) + FLOW(c2) + FLOW(c3)], so that c1 is at most 40% 
of the total output,  

FLOW(c2) ≤  0.5*[FLOW(c1) + FLOW(c2) + FLOW(c3)], so that c2 is at most 50% 
of the total output, 

FLOW(c3) ≤  0.6*[FLOW(c1) + FLOW(c2) + FLOW(c3)], so that c3 is at most 60% 
of the total output, 

 
The general form of this constraint is: 
 
EQ_INSHR(c,cg,p,r,t,s) and EQ_OUTSHR(c,cg,p,r,t,s) 
 

FLOW(c) ≤,≥≥≥≥, =  FLOSHAR(c) * Sum {over all c’ in cg of: FLOW(c’) } (4-6) 
 
The commodity group cg may be on the input or output side of the process. 
 

4.4.7 Peaking Reserve Constraint (time-sliced commodities only) 
 
This constraint imposes that the total capacity of all processes producing a commodity at 
each time period and in each region must exceed the average demand in the time-slice 
where peaking occurs by a certain percentage. This percentage is the Peak Reserve 
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Factor, RESERV(r,t,c), and is chosen to insure against several contingencies, such as: 
possible commodity shortfall due to uncertainty regarding its supply (e.g. water 
availability in a reservoir); unplanned equipment down time; and random peak demand 
that exceeds the average demand during the time-slice when the peak occurs. This 
constraint is therefore akin to a safety margin to protect against random events not 
explicitly represented in the model. In a typical cold country the peaking time-slice for 
electricity (or natural gas) will be Winter-Day, and the total electric plant generating 
capacity (or gas supply plant) must exceed the Winter-Day demand load by a certain 
percentage. In a warm country the peaking time-slice may be Summer-Day for electricity 
(due to heavy air conditioning demand). The user controls for which time-slices a 
peaking equation is maintained.  
 
For each time period t and for region r, there must be enough installed capacity to exceed 
the required capacity in the season with largest demand for commodity c by a safety 
factor E called the peak reserve factor.  
 
EQ_PEAK(r,t,c,s) - commodity peak requirements  
 

Sum {over all p producing c with c=pcg of CAPUNIT(r,p) * Peak(r,v,p,c,s) * 
FR(s) *CAP(r,v,t,p) * ACTFLO(r,v,p,c) } +   
 
Sum {over all p producing c with c#pcg of Peak(r,v,p,c,s) *FLOW(r,v,t,p,c,s) + 
TRADE(r,t,p,c,s,i)  
 
≥≥≥≥              (4-7)  
 
[1+RESERVE(r,t,c,s)] * [ Sum {over all p consuming c of FLOW(r,v,t,p,c,s) + 
TRADE(r,t,p,c,s,e) } ]       

 
 

where: 
 
RESERV(r,t,c,s) is the region-specific reserve coefficient for commodity c 

in time-slice s, which allows for unexpected down time of equipment, 
for demand at peak, and for uncertain resource availability, and  

Peak(r,v,p,c,s) (never larger than 1) specifies the fraction of technology p’s 
capacity in a region r for a period t and commodity c (electricity or heat only) that 
is allowed to contribute to the peak load in slice s; many types of supply 
processes are predictably available during the peak and thus have a peak 
coefficient equal to 1, whereas others (such as wind turbines or solar plants in the 
case of electricity) are attributed a peak coefficient less than 1, since they are on 
average only fractionally available at peak (e.g., a wind turbine typically has a 
peak coefficient of .25 or .3, whereas a hydroelectric plant, a gas plant, or a 
nuclear plant typically has a peak coefficient equal to 1). 
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For simplicity it has been assumed in (4-7) that the time-slice resolution of the 
peaking commodity and the time-slice resolution of the commodity flows 
(FLOW, TRADE) are the same. In practice, this is not the case and additional 
conversion factors or summation operations are necessary to match different time-
slice levels. 
 
Remark: to establish the peak capacity, two cases must be distinguished in 
equation EQ_PEAK.  
  – For production processes where the peaking commodity is the only commodity 
in the primary commodity group (denoted c=pcg), the capacity of the process may 
be assumed to contribute to the peak.  
  – For processes where the peaking commodity is not the only member of the 
pcg, there are several commodities included in the pcg. Therefore, the capacity as 
such cannot be used in the equation. In this case, the actual production is taken 
into account in the contribution to the peak, instead of the capacity. For example, 
in the case of CHP only the production of electricity contributes to the peak 
electricity supply, not the entire capacity of the plant, because the activity of the 
process consists of both electricity and heat generation in either fixed or flexible 
proportions, and, depending on the modeler's choice, the capacity may represent 
either the electric power of the turbine in condensing or back-pressure mode, or 
the sum of power and heat capacities in back-pressure mode. 

 
Note also that in the peak equation (4-7), it is assumed that imports of the commodity are 
contributing to the peak of the importing region (thus, exports are of the firm power 
type).  
 

4.4.8 Constraints on commodities 
 
In TIMES variables are optionally attached to various quantities related to commodities, 
such as total quantity produced. Therefore it is quite easy to put constraints on these 
quantities, by simply bounding the commodity variables at each period. It is also possible 
to impose cumulative bounds on commodities over more than one period, a particularly 
useful feature for cumulatively bounding emissions or modeling reserves of fossil fuels.  
By introducing suitably naming conventions for emissions the user may constrain 
emissions from specific sectors. Furthermore, the user may also impose global emission 
constraints that apply to several regions taken together, by allowing emissions to be 
traded across regions.  Alternatively or concurrently a tax or penalty may be applied to 
each produced (or consumed) unit of a commodity (energy form, emission), via specific 
parameters. 
 
A specific type of constraint my be defined to limit the share of process (p) in the total 
production of commodity (c). The constraint indicates that the flow of commodity (c) 
from/to process (p) is bounded by a given fraction of the total production of commodity 
(c).  In the present implementation, the same given fraction is applied to all time slices. 
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4.4.9 User Constraints 
 
In addition to the standard TIMES constraints discussed above, the user interested in 
developing reference case projections of energy market behavior typically introduces 
additional constraints to express these special conditions. For example, there may a user-
defined constraint limiting investment in new nuclear capacity (regardless of the type of 
reactor), or dictating that a certain percentage of new electricity generation capacity must 
be powered by renewable energy sources. User constraints may be employed across time 
periods, to for example model options for retrofitting and life extension for processes. 

 
In order to facilitate the creation of a new user constraint TIMES provides a template for 
indicating a) the set of variables involved in the constraint, and b) the user-defined 
coefficients needed in the constraint.  

 

4.4.10 Representation of oil refining in MARKAL 
 
Two alternative approaches are available in MARKAL to represent oil refining. Under 
the simplified approach that is adopted in the majority of MARKAL models, the refinery 
is treated as a set of one or more standard MARKAL technologies. But a more 
sophisticated approach is available where the modeler wishes to specify bona fide quality 
requirement constraints for each refined product, such as: Octane Rating, Sulfur Content, 
Flash Index, Density, Cetane Number, Viscosity, Reid Vapor Pressure, etc. This 
approach is embodied in the special oil-refining module of MARKAL – whose main 
features are outlined in this section – and requires additional parameters, variables, and 
constraints.   
 
4.4.10.1 New sets and parameters 
 
First, in order to properly apply the specific constraints to this sector, the model requires 
that several sets and other parameters that are unique to this sector be defined, as follows: 
 

- Constant REFUNIT: specifies in what units the refinery streams are defined 
(volume, weight, or energy) 

- Set REF: contains the list of refining processes (a subset of PRC) 
- Set OPR: contains the intermediate energy carriers (refinery streams) that are 

produced by the members of REF, plus the available crude oils. Each stream will 
enter the production of one or more RPP. The members of OPR are expressed in 
units specified by REFUNIT (volume, weight, or energy).  

- Set BLE: contains the product commodity of the blending activity 
- Parameter CONVERT: contains the density and energy content (by weight or by 

volume) of each blending stream. These parameters are used as coefficients of the 
blending equations to convert them to correct units (see below). 

- Set SPE: contains the names of the specifications that must be imposed on refined 
petroleum products (RPPs), such as octane rating, sulfur content, etc. 
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- Parameter BL_COM: contains the values of the blending specifications SPE for 
the blending streams OPR 

- Parameter BL_SPEC: contains the value of the specification SPE of the blending 
product BLE 

 
4.4.10.2 New variables 
 
Once these constants, sets and tables are defined by the user, the model automatically 
creates blending variables as follows: 
 
BLNDt,,ble,opr :  is the amount of blending stock OPR entering the production of the refined 

product ble at time period t. 
 
4.4.10.3 New blending constraints 
 
These variables and input parameters are finally used to express the following two types 
of blending constraints: 
 
Blending by volume (e.g. octane rating) 
 

� �
∈ ∈

⋅=⋅
OPRopr OPRopr

oprbletbleoprbletopr BLNDoctBLNDoct ,,,, )(  

 
where 

- octopr is the octane content by volume of one unit of stream opr (itself expressed 
in units REFUNIT.  If REFUNIT is not equal to ‘volume’, some conversion 
coefficients (specified in table CONVERT) must be applied to the variables of 
the equation. 

- Octble is the required volume octane rating of the refined product enc 
- BLND variables are expressed in volume units. 

 
Blending by weight (e.g. sulfur content) 
 

� �
∈ ∈

⋅=⋅
OPRopr OPRopr

oprbletbleoprbletopr BLNDsulfBLNDsulf ,,,, )(  

 
where 

- sulfopr is the sulfur content by weight of one unit of stream opr (itself expressed in 
units REFUNIT.  If REFUNIT is not equal to ‘weight’, then conversion 
coefficients (specified in table CONVERT) must be applied to the variables of 
the equation. 

- sulfblec is the weight sulfur content of the refined product enc 
- BLND variables are expressed in weight units. 
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4.5 Linear Programming complements 
 
This section is not strictly needed for a basic understanding of the TIMES model and may 
be skipped on a first reading. However, it provides additional insights into the 
microeconomics of the TIMES equilibrium. In particular, it contains a review of the 
theoretical foundation of Linear Programming and Duality Theory. This knowledge may 
help the user to better understand the central role shadow prices and reduced costs play in 
the economics of the TIMES model. More complete treatments of Linear Programming 
and Duality Theory may be found in several standard textbooks such as Chvátal (1983) or 
Hillier and Lieberman (1990 and subsequent editions). Samuelson and Nordhaus (1977) 
contains a treatment of micro-economics based on mathematical programming. 
 

4.5.1 A brief primer on Linear Programming and Duality Theory 
 
4.5.1.1 Basic definitions 
 
In this subsection, the superscript t following a vector or matrix represents the transpose 
of that vector or matrix. A Linear Program may always be represented as the following 
Primal Problem in canonical form:  

 
Max ctx           (4-7) 

s.t.  Ax � b        (4-8) 
x � 0        (4-9) 

 
where x is a vector of decision variables, ctx is a linear function representing the objective 
to maximize, and Ax � b is a set of inequality constraints. Assume that the LP has a finite 
optimal solution, x*.  
 
Then each decision variable, x* j falls into one of three categories.  x* 

j may be: 
 

• equal to its lower bound (as defined in a constraint), or 
• equal to its upper bound, or  
• strictly between the two bounds. 

 
In the last case, the variable x* j is called basic. Otherwise it is non-basic. 
 
For each primal problem, there corresponds a Dual problem derived as follows:  
 

                     Min  bt y            (4-10) 
s.t.   Aty � c                   (4-11) 
             y � 0             (4-12) 
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Note that the number of dual variables equals the number of constraints in the primal 
problem. In fact, each dual variable yi may be assigned to its corresponding primal 
constraint, which we represent as: Aix � bi, where Ai is the ith row of matrix A. 
 
4.5.1.2 Duality Theory 
 
Duality theory consists mainly of three theorems26: weak duality, strong duality, and 
complimentary slackness.  
 
Weak Duality Theorem 
If x is any feasible solution to the primal problem and y is any feasible solution to the 
dual, then the following inequality holds:  
 

ctx � bty          (4-13) 
 

The weak duality theorem states that the value of a feasible dual objective is never 
smaller than the value of a feasible primal objective. The difference between the two is 
called the duality gap for the pair of feasible primal and dual solutions (x,y). 
 
Strong duality theorem 
If the primal problem has a finite, optimal solution x*, then so does the dual problem (y*), 
and both problems have the same optimal objective value (their duality gap is zero):  
 

ctx* = bty*     (4-14) 
 
Note that the optimal values of the dual variables are also called the shadow prices of the 
primal constraints. 
 
Complementary Slackness theorem 
 
At an optimal solution to an LP problem:  

• If y*i is > 0 then the corresponding primal constraint is satisfied at equality (i.e. 
Aix*=bi and the ith primal constraint is called tight. Conversely, if the ith primal 
constraint is slack (not tight), then y*i = 0, 

• If x*j is basic, then the corresponding dual constraint is satisfied at equality, (i.e. 
At

j*y =cj, where At
j  is the jth row of At, i.e. the jth column of A. Conversely, if the 

jth dual constraint is slack, then x*j is equal to one of its bounds. 
Remark: Note however that a primal constraint may have zero slack and yet have a dual 
equal to 0. And, a primal variable may be non basic (i.e. be equal to one of its bounds), 
and yet the corresponding dual slack be still equal to 0. These situations are 
differentcases of the so-called degeneracy of the LP. They ofetn occur when constraints 
are over specified (a trivial case occurs if a constraint is repeated twice in the LP)  

                                                 
26 Their proofs may be found in most textbooks on Linear Programming, such as Chvatal (1983) or Hillier 
and Lieberman (1990). 
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4.5.2 Sensitivity analysis and the economic interpretation of dual variables 
 
It may be shown that if the jth RHS bj of the primal is changed by an infinitesimal amount 
d, and if the primal LP is solved again, then its new optimal objective value is equal to 
the old optimal value plus the quantity  yj* • d, where yj* is the optimal dual variable 
value.  

Loosely speaking27, one may say that the partial derivative of the optimal primal 
objective function’s value with respect to the RHS of the ith primal constraint is equal to 
the optimal shadow price of that constraint.  
 
4.5.2.1 Economic Interpretation of the Dual Variables  
 
If the primal problem consists of maximizing the surplus (objective function ctx), by 
choosing an activity vector x, subject to upper limits on several resources (the b vector) 
then:  

• Each aij coefficient of the dual problem matrix, A, then represents the 
consumption of resource bj by activity xi; 

• The optimal dual variable value y*j is the unit price of resource j, and 
• The total optimal surplus derived from the optimal activity vector, x*, is equal to 

the total value of all resources, b, priced at the optimal dual values y* (strong 
duality theorem). 

 
Furthermore, each dual constraint At

j*y � cj  has an important economic interpretation. 
Based on the Complementary Slackness theorem, if an LP solution x* is optimal, then for 
each x* j that is not equal to its upper or lower bound (i.e. each basic variable x* j), there 
corresponds a tight dual constraint y*A’j = cj, which means that the revenue coefficient cj 
must be exactly equal to the cost of purchasing the resources needed to produce one unit 
of x j. In economists’ terms, marginal cost equals marginal revenue, and both are equal to 
the market price of x* j.  If a variable is not basic, then by definition it is equal to its 
lower bound or to its upper bound. In both cases, the unit revenue cj need not be equal to 
the cost of the required resources. The technology is then either non-competitive (if it is 
at its lower bound) or it is super competitive and makes a surplus (if it is at its upper 
bound). 
 
Example: The optimal dual value attached to the balance constraint of commodity c 
represents the change in objective function value resulting from one additional unit of the 
commodity. This is precisely the internal price of that commodity. 
 
4.5.2.2 Reduced Surplus and Reduced Cost 
 
In a maximization problem, the difference y*A’j - cj  is called the reduced surplus of 
technology j, and is available from the solution of a TIMES problem. It is a useful 
indicator of the competitiveness of a technology, as follows: 

                                                 
27 Strictly speaking, the partial derivative may not exist for some values of the RHS, and may then be 
replaced by a directional derivative. 
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• if x* j is at its lower bound, its unit revenue cj is less than the resource cost (i.e. its 

reduced surplus is positive). The technology is not competitive (and stays at its 
lower bound in the equilibrium); 

• if x* j is at its upper bound, revenue cj is larger than the cost of resources (i.e. its 
reduced surplus is negative). The technology is super competitive and produces a 
surplus; and 

• if x* j is basic, its reduced surplus is equal to 0. The technology is competitive but 
does not produce a surplus. 

 
We now restate the above summary in the case of a Linear Program that minimizes cost 
subject to constraints: 
 

Min ctx        
s.t.  Ax � b         

x � 0  
 
In a minimization problem (such as the usual formulation of TIMES), the difference  cj  - 
y*A’j  is called the reduced cost of technology j. The following holds: 
 

• if x* j is at its lower bound, its unit cost cj  is larger than the value created (i.e. its 
reduced cost is positive). The technology is not competitive (and stays at its 
lower bound in the equilibrium); 

• if x* j is at its upper bound, its cost cj is less than the value created (i.e. its 
reduced cost is negative). The technology is super competitive and produces a 
profit; and 

• if x* j is basic, its reduced cost is equal to 0. The technology is competitive but 
does not produce a profit 

 
The reduced costs/surpluses may thus be used to rank all technologies, including those 
that are not selected by the model.  
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5 A comparison of the TIMES and MARKAL models 
 
This chapter contains a point-by-point comparison of the TIMES and MARKAL models. 
It is of interest primarily to modelers already familiar with MARKAL, and to modelers 
who are considering adoption of either model. The descriptions of the features given 
below are not detailed, since they are repeated elsewhere in the documentation. Rather, 
the function of this chapter is to guide the reader, by mentioning the features that are 
present in one model and not in the other. 
  
5.1 Similarities 
 
The TIMES and the MARKAL models share the same basic modeling paradigm. Both 
models are technology explicit, dynamic partial equilibrium models of energy markets. In 
both cases the equilibrium is obtained by maximizing the total surplus of consumers and 
suppliers via Linear Programming. The two models also share the multi-regional feature, 
which allows the modeler to construct geographically integrated (even global) instances. 
These fundamental features were described in chapter 3 of this documentation, and 
Section 1.3, PART I of the MARKAL documentation, and constitute the backbone of the 
common paradigm. However, there are also significant differences in the two models, 
which we now outline. These differences do not affect the basic paradigm common to the 
two models, but rather some of their technical features and properties.  
 
5.2 TIMES features not in MARKAL 
 

5.2.1 Variable length time periods 
 
MARKAL has fixed length time periods. However TIMES allows the user to define 
period lengths in a completely flexible way. This is a major model difference, which 
indeed required a complete re-definition of the mathematics of most TIMES constraints 
and of the TIMES objective function. The variable period length feature is very useful in 
two instances: first if the user wishes to use a single year as initial period (handy for 
calibration purposes), and second when the user contemplates long horizons, where the 
first few periods may be described in some detail by relatively short periods (say 5 years), 
while the longer term may be regrouped into a few periods with long durations (perhaps 
20 or more years). 

5.2.2 Data decoupling  
 
This somewhat misunderstood feature does not confer additional power to TIMES, but it 
greatly simplifies the maintenance of the model database and allows the user great 
flexibility in modifying the new definition of the planning horizon. In TIMES all input 
data are specified by the user independently from the definition of the time periods 
employed for a particular model run. All time-dependent input data are specified by the 
year in which the data applies. The model then takes care of matching the data with the 
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periods, wherever required. If necessary the data is interpolated (or extrapolated) by the 
model preprocessor code to provide data points at those time periods required for the 
current model run. In addition, the user has control over the interpolation and 
extrapolation of each time series.  
 
The general rule of data decoupling applies also to past data: whereas in MARKAL the 
user had to provide the residual capacity profiles for all existing technologies in the initial 
period, and over the periods in which the capacity remains available, in TIMES the user 
provides technical and cost data at those past years when the investments actually took 
place, and the model takes care of calculating how much capacity remains in the various 
modeling periods. Thus, past and future data are treated essentially in the same manner in 
TIMES. One instance when the data decoupling feature immensely simplifies model 
management is when the user wishes to change the initial period, and/or the lengths of the 
periods. In TIMES, there is essentially nothing to do, except declaring the dates of the 
new periods. In MARKAL, such a change represents a much larger effort requiring a 
substantive revision of the database. 
 

5.2.3 Flexible time slices and storage processes 
 
In MARKAL, only two commodities have time-slices: electricity and low temperature 
heat, and their time slices are rigidly defined (six time-slices for electricity and three for 
heat). In TIMES, any commodity and process may have its own, user-chosen time-slices. 
These flexible time-slices are segregated into three groups, seasonal (or monthly), weekly 
(weekday vs weekend), and daily (day/night), where any level may be expanded 
(contracted) or omitted. 
 
The flexible nature of the TIMES time-slices is supported by storage processes that 
’consume’ commodities at one time-slice and release them at another. MARKAL only 
supports night-to-day (electricity) storage. 
 
Note that many TIMES parameters may be time-slice dependent (such as availability 
factor (AF), basic efficiency (FLO_FUNC), etc). 
 

5.2.4 Process generality 
 
In MARKAL processes in different RES sectors are endowed with different (data and 
mathematical) properties. For instance, end-use processes do not have activity variables 
(activity is then equated to capacity), and source processes have no investment variables. 
In TIMES, every process has the same basic features, which are activated or not solely 
via data specification.  
 

5.2.5 Flexible processes 
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In MARKAL processes are by definition rigid, except for some specialized processes 
which permit flexible output (such as limit refineries or pass-out turbine CHPs), and thus 
outputs and inputs are in fixed proportions with one another. In TIMES, the situation is 
reversed, and each process starts by being entirely flexible, unless the user specifies 
certain coefficients to rigidly link inputs to outputs. This feature permits better modeling 
of many real-life processes as a single technology, where MARKAL requires several 
technologies (as well as dummy commodities) to achieve the same result. A typical 
example is that of a boiler that accepts any of 3 liquid fuels as input, but whose efficiency 
depends on the fuel used. In MARKAL, to model this situation requires four processes 
(one per possible fuel plus one that carries the investment cost and other parameters), 
plus one dummy fuel. In TIMES one process is sufficient, and no dummy fuel is required. 
Note also that TIMES has a number of parameters that limit the input share of each fuel, 
whereas in MARKAL, imposing such limits requires that the user define several user 
constraints.28 
 

5.2.6 Investment and dismantling lead-times and costs 
 
New TIMES parameters allow the user to model the construction phase and dismantling 
of facilities that have reached their end-of-life. These are: lead times attached to the 
construction or to the dismantling of facilities, capital cost for dismantling, surveillance 
costs during the dismantling lead-time. Like in MARKAL, there is also the possibility to 
define flows of commodities consumed at construction time, or released at dismantling 
times, thus allowing the representation of life-cycle energy and emission accounting. 

5.2.7 Vintaged processes and age-dependent parameters 
 
The variables associated with user declared vintaged processes employ both the time 
period p and vintage period v (in which new investments are made and associated input 
data is obtained). The user indicates that a process is to be modeled as a vintaged process 
by using a special vintage parameter. Note that in MARKAL vintaging is possible only 
for demand devices (for which there is no activity variable) or via the definition of 
several replicas of a process, each replica being a different vintage. In TIMES, the same 
process name is used for all vintages of the same process.29   
 
In addition, some parameters can be specified to have different values according to the 
age of the process. In the current version of TIMES, these parameters include the 
availability factors, the in/out flow ratios (equivalent to efficiencies), and the fixed cost 

                                                 
28 In the end the two models use equivalent mathematical expressions to represent a flexible process. Only 
TIMES reduces the user’s effort to a minimum, while MARKAL requires the user to manually define the 
multiple processes, dummy fuels and user constraints. 
29 The representation of vintage as a separate index helps eliminate a common confusion that existed in 
MARKAL, namely the confusion of vintage with the age of a process. For instance, if the user defines an  
annual cost for a car equal to 10 in 2005 and only 8 in 2010, the decrease would not only apply to cars 
purchased in 2010, but also to cars purchased in 2005 and earlier when they reach the 2010 period. 
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parameters only. Several other parameters could, in principle, be defined to be age-
dependent, but such extensions have not been implemented yet. 

5.2.8 Commodity related variables 
 
MARKAL has very few commodity related variables, namely exports/imports, and 
emissions. TIMES has a large number of commodity-related variables such as: total 
production, total consumption, but also specific variables representing the flows of 
commodities entering or exiting each process.  This allows the user many “handles” to 
put limits, and costs on commodities.  
 

5.2.9 More accurate and realistic depiction of investment cost payments 
 
In MARKAL each investment is assumed to be paid in its entirety at the beginning of 
some time period. In TIMES the timing of investment payments is quite detailed. For 
large facilities (e.g. a nuclear plant), capital is progressively laid out in yearly increments 
over the facility’s construction time, and furthermore, the payment of each increment is 
made in installments spread over the economic life of the facility. For small processes 
(e.g. a car) the capacity expansion is assumed to occur regularly each year rather than in 
one large lump, and the payments are therefore also spread over time. Furthermore, when 
a time period is quite long (i.e. longer that the life of the investment), TIMES has an 
automatic mechanism to repeat the investment more than once over the period. These 
features allow for a much smoother (and more realistic) representation of the stream of 
capital outlays in TIMES than in MARKAL. 
 
Moreover, in TIMES all discount rates can be defined to be time-dependent, whereas in 
MARKAL both the general and technology-specific discount rates are constant over time. 
 

5.2.10 Climate equations  
 
TIMES now possesses a set of variables and equations that endogenize the concentration 
of CO2 and also calculate the radiative forcing and global temperature change resulting 
from GHG emissions and accumulation in the atmosphere. This new feature is described 
in chapter 7 of PART II. 
 



 56 

5.3 MARKAL features not in TIMES 

Over the years, several extensions were added to the MARKAL model. Most of these 
extensions have been implemented in TIMES, for instance elastic demands, multi-
regional trading, lumpy investments, and endogenous technological learning. Four 
extensions of MARKAL have not (yet) been implemented in TIMES, namely:  

• Stochastic programming,  

• Integration of damage costs in the objective function,  

• Myopic energy markets (SAGE), and  

• MARKAL-MACRO.  

There are plans to implement most of these missing options in the future.  
 
The interested reader is referred to the MARKAL documentation30 for the descriptions of 
these four options, and the full description of the model.  
 
 
 
 

                                                 
30 http://www.etsap.org/documentation.asp, with links to Standard MARKAL, MARKAL-MACRO and 
SAGE write-ups. 
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6 Elastic demands and the computation of the supply-demand 

equilibrium 
 
In the preceding chapters, we have seen that TIMES does more than minimize the cost of 
supplying energy services. Instead, it computes a supply-demand equilibrium where both 
the supply options and the energy service demands are computed by the model. The 
equilibrium is driven by the user-defined specification of demand functions, which 
determine how each energy service demand varies as a function of the market price of that 
energy service. The TIMES code assumes that each demand has constant own-price 
elasticity in a given time period, and that cross price elasticities are zero. Economic theory 
establishes that the equilibrium thus computed corresponds to the maximization of the net 
total surplus, defined as the sum of the suppliers and of the consumers’ surpluses 
(Samuelson, 1952, Takayama and Judge, 1972). The total net surplus has been often 
considered a valid metric of societal welfare in microeconomic literature, and this fact 
confers strong validity to the equilibrium computed by TIMES.  

The TIMES model is normally run in two contrasted modes: first to simulate some 
reference case, and then to simulate alternate scenarios, each of which departs in some way 
from the reference case assumptions and parameters. For instance, an alternate scenario may 
make different assumptions on the availability or the cost of some new technologies. Or, it 
may assume that certain energy or environmental policies are being implemented (e.g. 
emission taxes, or portfolio standards, or efficiency improvements). Or again, a scenario 
may assume that a certain goal must be reached (such as a cap on emissions), leaving the 
model free to achieve that goal at least cost. In almost any such alternate scenario, some 
strain is put on some sectors, resulting in increases in the marginal values of at least some 
energy services (for example, severe emission reductions may increase the price of auto 
transportation). In TIMES demands self-adjust in reaction to changes (relative to the 
reference case) of their own price, and therefore the model goes beyond the optimization of 
the energy sector only. Thus although TIMES falls short of computing a general 
equilibrium, it does capture a major element31 of the feedback effects not previously 
accounted for in bottom-up energy models.  

In this chapter, we explain how Linear Programming computes the equilibrium. 
Additional technical details may be found in Tosato (1980) and in Loulou and Lavigne 
(1995). One of the first large scale application of these methods was realized in the Project 
Independence Energy System (PIES, Hogan, 1975), although in the context of demands for 
final energy rather than for energy services as in TIMES or MARKAL. 
 
6.1 Theoretical considerations: the Equivalence Theorem 
 
 
The computational method is based on the equivalence theorem presented in chapter 3, 
which we restate here:   

                                                 
31 It has been argued, based on strong circumstantial evidence, that the change in demands for energy 
services is indeed the main feedback economic effect of energy system policies (Loulou and Kanudia, 
2002) 
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"A supply/demand economic equilibrium is reached when the sum of the producers and the 
consumers surpluses is maximized"  
 
Figure 3.2 of Chapter 3 provides a graphical illustration of this theorem in a case where only 
one commodity is considered.  
 
6.2 Mathematics of the TIMES equilibrium 

6.2.1 Defining demand functions 
 
For each demand category, define a demand curve, i.e. a function determining demand as a 
function of price. In TIMES, a constant elasticity relationship is used, represented as:  
 

)16()( −•= iE
iii pKpDM  

where DMi is the ith demand, pi is its price, taken to be the marginal cost of procuring the ith 
commodity, and Ei is the own price elasticity of that demand. Note that although the region 
and time indexes r, t have been omitted in this notation, all quantities in Equation (1.6-1), 
including the elasticities are region (if appropriate) and time dependent. Constant Ki may be 
obtained if one point (p0

i,DM 0i) of the curve is known (the reference case). Thus Equation 
(1.6-1) may be rewritten as:  
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Or its inverse: 
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where the superscript ‘0’ indicates the reference case, and the elasticity Ei is negative. Note 
also that the elasticity may have two different values, one for upward changes in demand, 
the other for downward changes. 
 

6.2.2 Formulating the TIMES equilibrium 
 
With inelastic demands, the TIMES model may be written as the following Linear 
Program 
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where X is the vector of all variables and I is the number of demand categories. In words: 
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• (6-3) expresses the total discounted cost to be minimized. 
• (6-4) is the set of demand satisfaction constraints (where the CAP variables are the 

capacities of end-use technologies, and the DM right-hand-sides are the exogenous 
demands to satisfy).   

• (6-5) is the set of all other constraints. 
 

With elastic demands the role of TIMES is to compute a supply/demand equilibrium 
among equations (1.6-3) through (1.6-5) where both the supply side and the demand side 
adjust to changes in prices, and the prices charged by the supply side are the marginal costs 
of the demand categories (i.e. pi is the marginal cost of producing demand DMi). A priori 
this seems to be a difficult task, because the prices used on the demand side are computed as 
part of the solution to equations (1.6-3), (1.6-4), and (1.6-5). The Equivalence Theorem, 
however, states that such an equilibrium is reached as the solution of the following 
mathematical program, where the objective is to maximize the net total surplus:  
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Where X is the vector of all TIMES variables with associated cost vector c, (6-6) expresses 
the total net surplus, and DM is now a vector of variables in (6 -7), rather than fixed 
demands.  

The integral in (6-6) is easily computed, yielding the following maximization program:  
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6.2.3 Linearization of the Mathematical Program 
 
The Mathematical Program embodied in (6-6)’, (6-7)’ and (6-8)’ has a non-linear objective 
function. Because the latter is separable (i.e. does not include cross terms) and concave in 
the DMi variables, each of its terms is easily linearized by piece-wise linear functions which 
approximate the integrals in (6-6). This is the same as saying that the inverse demand curves 
are approximated by staircase functions, as illustrated in figure 6.1. By so doing, the 
resulting optimization problem becomes linear again. The linearization proceeds as follows.  
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a) For each demand category i, the user selects a range within which it is 

estimated that the demand value DMi(t) will always remain, even after 
adjustment for price effects (for instance the range could be equal to the 
reference demand DMo

i(t) plus or minus 50%). The smallest range value is 
denoted DM(t)min . 

b) Select a grid that divides each range into a number n of equal width intervals. 
Let ßi(t) be the resulting common width of the grid,  ßi(t)= Ri(t)/n.  See Figure 
6.1 for a sketch of the non-linear expression and of its step-wise constant 
approximation. The number of steps, n, should be chosen so that the step-wise 
constant approximation remains close to the exact value of the function. 

c) For each demand segment DMi(t) define n step-variables (one per grid 
interval), denoted s1,i(t), s2,i (t), …, sn,i(t). Each s variable is bounded below by 0 
and above by ßi(t). One may now replace in equations (6-6)’ and (6-7)’ each 
DMi(t) variable by the sum of the n-step variables, and each non-linear term in 
the objective function by a weighted sum of the n step-variables, as follows:  
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The resulting Mathematical Program is now fully linearized. 
 
Remark: instead of maximizing the linearized objective function, TIMES minimizes its 
negative, which then has the dimension of a cost. The portion of that cost representing the 
negative of the consumer surplus is akin to a welfare loss. 
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x=DMi(t)

F(x) = x (1/Ei)

Ai,j(t)

Range = Ri(t) 

βi(t)

Figure 6.1. Step-wise approximation of the non-linear terms in the objective 
function 
 
 

6.2.4 Calibration of the demand functions 
 
Besides selecting elasticities for the various demand categories, the user must evaluate each 
constant Ki(t). To do so, we have seen that one needs to know one point on each demand 
function in each time period, { p0

i(t),DM0
i(t) }. To determine such a point, we perform a 

single preliminary run of the inelastic TIMES model (with exogenous DM0
i(t)), and use the 

resulting shadow prices p0
i(t) for all demand constraints, in all time periods for each region.  

 

6.2.5 Computational considerations 
 
Each demand segment that is elastic to its own price requires the definition of as many 
variables as there are steps in the discrete representation of the demand curve (both upward 
and down if desired), for each period and region. Each such variable has an upper bound, 
but is otherwise involved in no new constraint. Therefore, the linear program is augmented 
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by a number of variables, but does not have more constraints than the initial inelastic LP 
(with the exception of the upper bounds). It is well known that with the modern LP codes 
the number of variables has little or no impact on computational time in Linear 
Programming, whether the variables are upper bounded or not. Therefore, the inclusion in 
TIMES of elastic demands has a very minor impact on computational time or on the 
tractability of the resulting LP. This is an important observation in view of the very large 
LP’s that result from representing multi-regional and global models in TIMES.  
 

6.2.6 Interpreting TIMES costs, surplus, and prices 
 
It is important to note that, instead of maximizing the net total surplus, TIMES minimizes its 
negative (plus a constant), obtained by changing the signs in expression (6-6). For this and 
other reasons, it is inappropriate to pay too much attention to the meaning of the absolute 
objective function values. Rather, examining the difference between the objective function 
values of two scenarios is a far more useful exercise. That difference is of course, the 
negative of the difference between the net total surpluses of the two scenario runs.  

Note again that the popular interpretation of shadow prices as the marginal costs of 
model constraints is inaccurate. Rather, the shadow price of a constraint is, by definition, the 
incremental value of the objective function per unit of that constraint’s right hand side 
(RHS). The interpretation is that of an amount of surplus loss per unit of the constraint’s 
RHS. The difference is subtle but nevertheless important. For instance, the shadow price of 
the electricity balance constraint is not necessarily the marginal cost of producing electricity. 
Indeed, when the RHS of the balanced constraint is increased by one unit, one of two things 
may occur: either the system produces one more unit of electricity, or else the system 
consumes one unit less of electricity (perhaps by choosing more efficient end-use devices or 
by reducing an electricity-intensive energy service, etc.). It is therefore correct to speak of 
shadow prices as the marginal system value of a resource, rather than the marginal cost of 
procuring that resource.  
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7 The Lumpy Investment option 
 
 

In some cases, the linearity property of the TIMES model may become a drawback 
for the accurate modeling of certain investment decisions. Consider for example a 
TIMES model for a relatively small community such as a city. For such a scope the 
granularity of some investments may have to be taken into account. For instance, the size 
of an electricity generation plant proposed by the model would have to conform to an 
implementable minimum size (it would make no sense to decide to construct a 50 MW 
nuclear plant). Another example for multi-region modelling might be whether or not to 
build cross-region electric grid(s) or gas pipeline(s) in discrete size increments. Processes 
subject to investments of only specific size increments are described as “lumpy” 
investments.  

 
For other types of investments, size does not matter: for instance the model may 

decide to purchase 10,950.52 electric cars, which is easily rounded to 10,950 without any 
serious inconvenience. The situation is similar for a number of residential or commercial 
heating devices, or for the capacity of wind turbines or industrial boilers, or for any 
technologies with relatively small minimum feasible sizes. Such technologies would not 
be candidates for treatment as “lumpy” investments.  

 
It is the user’s responsibility to decide that certain technologies should (or should not) 

respect the minimum size constraint, weighing the pros and cons of so doing. This 
chapter explains how the TIMES LP is transformed into a Mixed Integer Program (MIP) 
to accommodate minimum or multiple size constraints, and states the consequences of so 
doing on computational time and on the interpretation of duality results. 
 

The lumpy investment option available in TIMES is slightly more general than the 
one described above. It insures that investment in technology k is equal to one of a finite 
number N of pre-determined sizes: 0, S1(t), S2(t), …,SN(t). As implied by the notation, 
these discrete sizes may be different at different time periods. Note that by choosing the 
N sizes as the successive multiples of a fixed number S, it is possible to invest (perhaps 
many times) in a technology with fixed standard size. 
 

Imposing such a constraint on an investment is unfortunately impossible to formulate 
using standard LP constraints and variables. It requires the introduction of integer 
variables in the formulation. The optimization problem resulting from the introduction of 
integer variables into a Linear Program is called a Mixed Integer Program (MIP).  
 
7.1 Formulation and Solution of the Mixed Integer Linear Program 
 

Typically, the modeling of a lumpy investment involves Integer Variables, i.e. 
variables whose values may only be non-negative integers (0, 1, 2, …). The mathematical 
formulation is as follows 
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The second and third constraints imply that at most one of the Z variables is equal to 
1. Thereforew, the first constraint now means that NCAP is equal to one of the preset 
sizes or is equal to 0, which is the desired result. 
 

Although the formulation of lumpy investments looks simple, it has a profound effect 
on the resulting optimization program. Indeed, MIP problems are notoriously more 
difficult to solve than LPs, and in fact many of the properties of linear programs 
discussed in the preceding chapters do not hold for MIPs, including duality theory, 
complementary slackness, etc. Note that the constraint that Z(p,t) should be 0 or 1  
departs from the divisibility property of linear programs. This means that the feasibility 
domain of integer variables (and therefore of some investment variables) is no longer 
contiguous, thus making it vastly more difficult to apply purely algebraic methods to 
solve MIP’s. In fact, practically all MIP solution algorithms make use (at least to some 
degree) of partial enumerative schemes, which tend to be time consuming and less 
reliable32 than the algebraic methods used in LP. 
 

The reader interested in more technical details on the solution of LPs and of MIPs is 
referred to references (Hillier and Lieberman, 1990,  Nemhauser et al. 1989). In the next 
section we shall be content to state one important remark on the interpretation of the dual 
results from MIP optimization. 
 
7.2 Important remark on the MIP dual solution (shadow prices) 
 

Using MIP rather than LP has an important impact on the interpretation of the TIMES 
shadow prices. Once the optimal MIP solution has been found, it is customary for MIP 
solvers to fix all integer variables at their optimal (integer) values, and to perform one 

                                                 
32 A TIMES LP program of a given size tends to have fairly constant solution time, even if the database is 
modified. In contrast, a TIMES MIP may show some erratic solution times. One may observe reasonable 
solution times (although significantly longer than LP solution times) for most instances, with an occasional 
very long solution time for some instances. This phenomenon is predicted by the theory of complexity as 
applied to MIP, see Papadimitriou and Steiglitz (1982) 
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additional iteration of the LP algorithm, so as to obtain the dual solution (i.e. the shadow 
prices of all constraints). However, the interpretation of these prices is different from that 
of a LP. Consider for instance the shadow price of the natural gas balance constraint: in a 
pure LP, this value represents the price of natural gas. In MIP, this value represents the 
price of gas conditional on having fixed the lumpy investments at their optimal integer 
values. What does this mean? We shall attempt an explanation via one example: suppose 
that one lumpy investment was the investment in a gas pipeline; then, the gas shadow 
price will not include the investment cost of the pipeline, since that investment was fixed 
when the dual solution was computed.  
 

In conclusion, when using MIP, only the primal solution is fully reliable. In spite of 
this major caveat, modeling lumpy investments may be of paramount importance in some 
instances, and may thus justify the extra computing time and the partial loss of dual 
information. 
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8 Endogenous Technological Learning (ETL) 
 
 
In a long-term dynamic model such as TIMES the characteristics of many of the future 
technologies are almost inevitably changing over the sequence of future periods due to 
technological learning.  

In some cases it is possible to forecast such changes in characteristics as a function of 
time, and thus to define a time-series of values for each parameter (e.g. unit investment 
cost, or efficiency). In such cases, technological learning is exogenous since it depends 
only on time elapsed and may thus be established outside the model.  

In other cases there is evidence that the pace at which some technological parameters 
change is dependent on the experience acquired with this technology. Such experience is 
not solely a function of time elapsed, but typically depends on the cumulative investment 
(often global) in the technology. In such a situation, technological learning is 
endogenous, since the future values of the parameters are no longer a function of time 
elapsed alone, but depend on the cumulative investment decisions taken by the model 
(which are unknown).  In other words, the evolution of technological parameters may no 
longer be established outside the model, since it depends on the model’s results. ETL is 
also named Learning-By-Doing (LBD) by some authors. 

Whereas exogenous technological learning does not require any additional modeling, 
endogenous technological learning (ETL) presents a tough challenge in terms of 
modeling ingenuity and of solution time. In TIMES, there is a provision to represent the 
effects of endogenous learning on the unit investment cost of technologies. Other 
parameters (such as efficiency) are not treated, at this time. 
 
8.1 The basic ETL challenge 
 
 
Empirical studies of unit investment costs of several technologies have been undertaken 
in several countries. Many of these studies find an empirical relationship between the unit 
investment cost of a technology at time t, INVCOSTt, and the cumulative investment in 

that technology up to time t, �
−=

=
t

j
jt INVVARC

1

_ .  

  
A typical relationship between unit investment cost and cumulative investments is of the 
form:  
 

)18( −⋅= −b
tt CaINVCOST  

 
where a is the initial unit investment cost (when Ct is equal to 1) and b is the learning 
index, representing the speed of learning33. As experience builds up, the unit investment 

                                                 
33 It is usual to define, instead of b, another parameter, pr called the progress ratio, which is related to b via 
the following relationship: 

pr b= −2  
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cost decreases, and thus may make investments in the technology more attractive. It 
should be clear that near-sighted investors will not be able to detect the advantage of 
investing early in learning technologies, since they will only observe the high initial 
investment cost and, being near-sighted, will not anticipate the future drop in investment 
cost resulting from early investments. In other words, tapping the full potential of 
technological learning requires far-sighted agents who accept making initially non-
profitable investments in order to later benefit from the investment cost reduction. 

With regard to actual implementation, simply using (8-1) as the objective function 
coefficient of VAR_INVt will yield a non-linear, non-convex expression. Therefore, the 
resulting mathematical optimization is no longer linear, and requires special techniques 
for its solution. In TIMES, a Mixed Integer Programming (MIP) formulation is used, that 
we now describe.  
 
8.2 The TIMES formulation of ETL 
 

8.2.1 The Cumulative Investment Cost 
 
We follow the basic approach described in Barreto, 2001 
 
The first step of the formulation is to express the total investment cost, i.e. the quantity 
that should appear in the objective function for the investment cost of a learning 
technology in period t. TCt is obtained by integrating expression (8-1):  
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TCt is a concave function of Ct, with a shape as shown in figure 8.1 
 

                                                                                                                                                 
Hence, 1-pr is the cost reduction incurred when cumulative investment is doubled. Typical observed pr 
values are in a range of .75 to .95 
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Figure 8.1. Example of a cumulative learning curve 

 
With the Mixed Integer Programming approach implemented in TIMES, the cumulative 
learning curve is approximated by linear segments, and binary variables are used to 
represent some logical conditions. Figure 8.2 shows a possible piecewise linear 
approximation of the curve of Figure 8.1. The choice of the number of steps and of their 
respective lengths is carefully made so as to provide a good approximation of the smooth 
cumulative learning curve. In particular, the steps must be smaller for small values than 
for larger values, since the curvature of the curve diminishes as total investment 
increases. The formulation of the ETL variables and constraints proceeds as follows (we 
omit the period, region, and technology indexes for notational clarity):  
 

1. The user specifies the set of learning technologies (TEG). 
2. For each learning technology, the user provides: 

a) The progress ratio pr (from which the learning index b may be inferred) 
b) One initial point on the learning curve, denoted (C0 , TC0 )  
c) The maximum allowed cumulative investment Cmax (from which the 

maximum total investment cost TCmax may be inferred) 
d) The number N of segments for approximating the cumulative learning 

curve over the (C0, Cmax) interval (note that N may be different for 
different technologies). 

3. The model automatically selects appropriate values for the N step lengths, and 
then proceeds to generate the required new variables and constraints, and the new 
objective function coefficients for each learning technology. The detailed 
formulae are shown and briefly commented on below. 
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Figure 8-2.  Example of a 4-segment approximation of the cumulative cost curve 

 

8.2.2 Calculation of break points and segment lengths 
 
The successive interval lengths on the vertical axis are chosen to be in geometric 
progression, each interval being twice at wide as the preceding one. In this fashion, the 
intervals near the low values of the curve are smaller so as to better approximate the 
curve in its high curvature zone. Let {TCi-1 , TCi} be the ith interval on the vertical axis, 
for i = 1, …, N-1.  Then:  
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Note that TCmax  is equal to TCN. 
 
The break points on the horizontal axis are obtained by plugging the TCi ’s into 
expression (1.10-2), yielding:  
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8.2.3 New variables 
 
Once intervals are chosen, standard approaches are available to represent a concave 
function by means of integer (0-1) variables. We describe the approach used in TIMES. 
First, we define N continuous variables xi, i= 1,…,N. Each xi represents the portion of 
cumulative investments lying in the ith interval. Therefore, the following holds:  
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We now define N integer (0-1) variables zi that serve as indicators of whether or not the 
value of C lies in the ith interval. We may now write the expression for TC, as follows: 
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where bi is the slope of the ith line segment, and ai is the value of the intercept of that 
segment with the vertical axis, as shown in figure 8.3. The precise expressions for ai and 
bi are: 
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8.2.4 New constraints 
 
For (1.8-4) to be valid we must make sure that exactly one zi is equal to 1, and the others 
equal to 0. This is done (recalling that the zi variables are 0-1) via:  
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We also need to make sure that each xi lies within the ith interval whenever zi is equal to 1 
and is equal to 0 otherwise. This is done via two constraints: 
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8.2.5 Objective function terms 
 
Re-establishing the period index, we see that the objective function term at period t, for a 
learning technology is thus equal to TCt - TCt-1, which needs to be discounted like all 
other investment costs.   

bi

Ci-1                  Ci

TCi

TCi-1

ai

 
Figure 8.3. The ith segment of the step-wise approximation 

 
 

8.2.6 Additional (optional) constraints 
 
Solving integer programming problems is facilitated if the domain of feasibility of the 
integer variables is reduced. This may be done via additional constraints, that are not 
strictly needed but that are guaranteed to hold. In our application we know that 
experience (i.e. cumulative investment) is always increasing as time goes on. Therefore, 
if the cumulative investment in period t lies in segment i, it is certain that it will not lie in 
segments i-1, i-2, .., 1 in time period t+1. This leads to two new constraints (re-
establishing the period index t for the z variables):  
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Summarizing the above formulation, we observe that each learning technology requires 
the introduction of N*T integer (0-1) variables. For example, if the model has 10 periods 
and a 5-segment approximation is selected, 50 integer (0-1) variables are created for that 
learning technology, assuming that the technology is available in the first period of the 
model. Thus, the formulation may become very onerous in terms of solution time, if 
many learning technologies are envisioned, and if the model is of large size to begin with. 
In section 8.5 we provide some comments on ETL, as well as a word of warning.  
 
8.3 Clustered learning 
 

An interesting variation of ETL is also available in TIMES, namely the case where 
several technologies use the same key technology (or component), itself subject to 
learning. For instance, table 8.1 lists 11 technologies using the key Gas Turbine 
technology. As experience builds up for gas the turbine, each of the 11 technologies in 
the cluster benefits. The phenomenon of clustered learning is modeled in TIMES via the 
following modification of the formulation of the previous section.  

Let k designate the key technology and let l = 1, 2, …, L designate the set of clustered 
technologies attached to k. The approach consists of three steps:  
 

i) Step 1: designate k as a learning technology, and write for it the formulation 
of the previous section; 

ii) Step 2: subtract from each INVCOSTl the initial investment cost of 
technology k (this will avoid double counting the investment cost of k); 

iii) Step 3: add the following constraint to the model, in each time period. This 
ensures that learning on k spreads to all members of its cluster: 
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Table 8-1: Cluster of gas turbine technologies  
(from A. Sebregts and K. Smekens, unpublished report, 2002) 

Description 

Integrated Coal gasification power plant 
Integrated Coal Gasification Fuel Cell plant 
Gas turbine peaking plant 
Existing gas Combined Cycle power plant 
New gas Combined Cycle power plant 
Combined cycle Fuel Cell power plant 
Existing gas turbine CHP plant 
Existing Combined Cycle CHP plant 
Biomass gasification: small industrial cog. 
Biomass gasification: Combined Cycle power plant 
Biomass gasification: ISTIG+reheat 

 
 
 
8.4 Learning in a Multiregional TIMES Model  
 

Technological learning may be acquired via global or local experience, depending on 
the technology considered. There are examples of techniques that were developed and 
perfected in certain regions of the World, but have tended to remain regional, never fully 
spreading globally. Examples are found in land management, irrigation, and in household 
heating and cooking devices. Other technologies are truly global in the sense that the 
same (or close to the same) technology becomes rather rapidly commercially available 
globally. In the latter case, global experience benefits users of the technology world wide. 
Learning is said to spillover globally. Examples are found in large electricity plants, in 
steel production, wind turbines, and many other sectors.  

The first and obvious implication of these observations is that the appropriate model 
scope must be used to study either type of technology learning.  
The formulation described in the previous sections is adequate in two cases: a) learning in 
a single region model, and b) regional learning in a multiregional model. It does not 
directly apply to global learning in a multiregional global model, where the cumulative 
investment variable must represent the sum of all cumulative investments in all regions 
together. We now describe an approach to global learning that may be implemented in 
TIMES, using only standard TIMES entities.   
 
The first step in modeling multiregional ETL (MRETL) is to create one additional region, 
region 0, which will play the role of the Manufacturing Region. This region’s RES 
consists only of the set of (global) learning technologies (LT’s). Each such LT has the 
following specifications: 

a) The LT has no commodity input 
b) The LT has only one output, a new commodity c representing the ‘learning’. This 

output is precisely equal to the investment level in the LT in each period.  
c) Commodity c may be exported to all other regions 
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Finally, in each ‘real’ region, the LT is represented with all its attributes except the 
investment cost NCAP_COST  Furthermore, the construction of one unit of the LT 
requires an input of one unit of the learning commodity c (using the NCAP_ICOM 
parameter see chapter 3 of PART II). This ensures that the sum of all investments in 
the LT in the real regions is exactly equal to the investment in the LT in region 0, as 
desired. 

 
8.5 Endogenous vs. Exogenous Learning: Discussion 
 
In this section, we formulate a few comments and warnings that may be useful to 
potential users of the ETL feature.  

We start by stating a very important caveat to the ETL formulation described in the 
previous sections: if a model is run with such a formulation, it is very likely that the 
model will select some technologies, and will invest massively at some early period in 
these technologies unless it is prevented from doing so by additional constraints. Why 
this is likely to happen may be qualitatively explained by the fact that once a learning 
technology is selected for investing, two opposing forces are at play in deciding the 
optimal timing of the investments. On the one hand, the discounting provides an 
incentive for postponing investments. On the other hand, investing early allows the unit 
investment cost to drop immediately, and thus allows much cheaper investments in the 
learning technologies in the current and all future periods. Given the considerable cost 
reduction that is usually induced by learning, the first factor (discounting) is highly 
unlikely to predominate, and hence the model will tend to invest massively and early in 
such technologies, or not at all. Of course, what we mean by “massively” depends on the 
other constraints of the problem (such as the extent to which the commodity produced by 
the learning technology is in demand, the presence of existing technologies that compete 
with the learning technology, etc.). However, there is a clear danger that we may observe 
unrealistically large investments in some learning technologies.  

ETL modelers are well aware of this phenomenon, and they use additional constraints 
to control the penetration trajectory of learning technologies. These constraints may take 
the form of upper bounds on the capacity of or the investment in the learning 
technologies in each time period, reflecting what is considered by the user to be realistic 
penetrations. These upper bounds play a determining role in the solution of the problem, 
and it is most often observed that the capacity of a learning technology is either equal to 0 
or to the upper bound. This last observation indicates that the selection of upper bounds 
(or capacity/investment growth rates) by the modeler is the predominant factor in 
controlling the penetration of successful learning technologies.  

In view of the preceding discussion, a fundamental question arises: is it worthwhile 
for the modeler to go to the trouble of modeling endogenous learning (with all the 
attendant computational burdens) when the results are to a large extent conditioned by 
exogenous upper bounds?  We do not have a clear and unambiguous answer to this 
question; that is left for each modeler to evaluate. 

However, given the above caveat, a possible alternative to ETL would consist in 
using exogenous learning trajectories. To do so, the same sequence of ‘realistic’ upper 
bounds on capacity would be selected by the modeler, and the values of the unit 
investment costs (INVCOST) would be externally computed by plugging these upper 
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bounds into the learning formula (8-1). This approach makes use of the same exogenous 
upper bounds as the ETL approach, but avoids the MIP computational burden of ETL. Of 
course, the running of exogenous learning scenarios is not entirely foolsafe, since there is 
no absolute guarantee that the capacity of a learning technology will turn out to be 
exactly equal to its exogenous upper bound. If that were not the case, a modified scenario 
would have to be run, with upper bounds adjusted downward. This trial-and-error 
approach may seem inelegant, but it should be remembered that it (or some other 
heuristic approach) might prove to be necessary in those cases where the number of 
learning technologies and the model size are both large (thus making the rigorous ETL 
formulation computationally intractable). 
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