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1. The area of computational toxicology has undergone a lot of scientific developments over 

the past few decades. As a result, a vast range of models, methods, and tools based on in 
silico approaches are now available that offer a rapid, cost-effective, and ethical alternative 
to animal testing of chemical substances - including cosmetic ingredients.  

2. Various regulatory frameworks in different ICCR countries have a commitment to adhere to 
3Rs principles 1 , and to promote the use of alternative means for assessing safety of 
chemical substances instead of testing on animals. In Europe, animal testing of cosmetic 
ingredients/ products, and marketing of new cosmetic ingredients/ products tested on 
animals is now banned.  

3. The usefulness of structure-activity modelling and other in silico (computational) methods as 
an alternative to testing chemical toxicity in animals has been recognised both by industry 
and regulators worldwide. This has also been identified as one of the main alternative routes 
to cosmetic safety assessment in the ICCR-5 report ’Principles of Cosmetic Safety 
Assessment’2. 

4. In view of the importance of this field, this joint industry-regulator Working Group (WG) 
carried out an appraisal of the current status of in silico approaches in regard to their 
relevance and use in safety assessment of cosmetic ingredients within the ICCR 
jurisdictions. This capability review is meant to provide a basis for development of a 
roadmap for the eventual application of in silico methods in the safety assessment of 
cosmetic ingredients. 

5. The main approaches that allow in silico assessment of chemical toxicity include 
computational models based on structure-activity relationship (SAR), or quantitative 
structure-activity relationship (QSAR), and other in silico tools e.g. for mining large chemical 
toxicity databases and for a ‘read-across’ from experimental data on structurally and/or 
functionally similar compounds. Also available are toxicity expert systems that combine 
different structure-activity based rules, approximations, and/or (Q)SAR models. These 
versatile in silico models, methods, and tools are available both as commercial and free-
access software platforms.  

6. The appraisal showed that the available in silico systems cover a wide range of chemical 
structure space and majority of the toxicological endpoints that are normally considered in 
the safety assessment of cosmetic ingredients. 

7. The development and use of in silico methods requires a thorough consideration of quality 
and validation of the data and the resulting models and tools, and whether the chemical 
structure and toxicological space contained within the model’s applicability domain 
adequately covers a given query chemical structure.  

8. In this regard, the WG recognises that there is a large number of in silico methods 
referenced in the literature that might be useful for toxicity assessment of cosmetic 
ingredients. However, this report is limited to an overview of those relevant approaches that 
are currently under common use. The description of any model or system in this report is, 
therefore, only meant to provide a general overview and not an endorsement of quality or a 
recommendation for use as such.  

9. Despite a lot of advancements in this field, and the need and the drivers for alternative 
methods for safety assessment of cosmetics, the current use of in silico approaches is 

                                           

1 Replacement, Refinement and Reduction of the use animals in laboratory procedures 
2 http://ec.europa.eu/consumers/sectors/cosmetics/files/pdf/iccr5_safety_en.pdf 

http://ec.europa.eu/consumers/sectors/cosmetics/files/pdf/iccr5_safety_en.pdf
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largely limited to internal decision making both at the industry and the regulatory levels in 
most ICCR jurisdictions.  

10. The lack of full adoption of in silico approaches as a mainstream alternative to safety 
assessment of cosmetic ingredients on animals appears to be for two main reasons: 

a. The current availability of models and tools that have been developed under 
stringent quality and validation criteria, such as those laid out by the OECD, is limited 
to only a handful that can be considered of suitable quality to merit use as a routine 
alternative to in vivo testing for safety assessment of cosmetics.  

b. Different models and systems sometime tend to yield conflicting results, which 
makes it difficult for a user to choose a particular in silico system in preference to the 
others, or to rely on its predicted estimates in a safety assessment. This is because 
each model and system is generally built on a different dataset and algorithm(s), and 
therefore tends to decipher and interpret the chemical structure and toxicological 
information in a different way. Each model/system also reflects a different level of 
uncertainty and variability associated with the data used in developing it, and the 
modelling process itself, and may also have a different applicability domain within 
which the predicted estimates of toxicity are reliable.  

11. It practice, however, some of these limitations can be addressed; for example, in silico 
assessments may be drawn from those models and systems that meet the stringent quality 
and validation standards and have clearly defined applicability domains. Although this may 
limit the number of workable in silico tools, it should provide more confidence in the 
predicted estimates. It may also be possible to add more confidence to the in silico 
assessments through the use of a combination of appropriate (Q)SAR models, expert 
systems, and/or read-across approaches, rather than relying on a single model/system. A 
‘weight of evidence’ gathered this way should provide sufficient basis for a reliable in silico 
assessment of chemical toxicity for safety evaluation. 

12. It needs to be emphasised that the development, use, and interpretation of the results of in 
silico approaches requires a skilled approach and expert knowledge of toxicology and 
(bio)chemistry. Thus, despite the ease of use offered by certain advanced in silico platforms, 
the assessment of toxicity by in silico approaches must not be reduced to a ‘black box’ 
routine. 

13. Further work in this area is recommended in relation to development of a uniform and 
standardised approach that allows the selection and use of appropriate in silico system(s), 
and interpretation of the results from a safety assessment perspective. In addition, a 
framework also needs to be developed that allows integration of different in silico 
approaches in a consistent scheme to collate sufficient weight of evidence against relevant 
toxicological endpoints for use in safety assessment of cosmetic ingredients. 
 

  
The International Cooperation on Cosmetic Regulation (ICCR) held its sixth annual meeting 
(ICCR-6) July 10-13, 2012 in Rockville, Maryland, U.S.A. to discuss issues related to cosmetics 
and cosmetic-like drug/quasi-drug products.  

As part of the meeting, FDA made a presentation on the current “state of play” of QSAR and “in 
silico” technologies in the safety assessment of cosmetic ingredients. Further it was noted that 
recent peer-review publications and public presentations including those at the 2012 Personal 
Care Products Council Regulatory Science Summit  (March 29, 2012, Bethesda, MD) and at the 
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124th Meeting of the Cosmetic Ingredient Review (CIR) Expert Panel (March 5, 2012, 
Washington, DC)  confirm that “in silico” technologies relevant to cosmetics safety assessment 
are being explored in Europe by the EC-JRC, and in the U.S. by FDA-CFSAN and –CDER and 
EPA as well as by other U.S. federal agencies.  

Therefore ICCR proposed that the topic of “in silico” computational toxicology tools be 
introduced to the ICCR Agenda. 

2.1 Purpose 

The purpose of this WG is to explore suitability of the various available in silico approaches for 
assessing the safety of ingredients intended for use in cosmetics.  

2.2 Scope 
The main task of this WG is to carry out a review of the existing in silico methods that are 
available and in use for suitability in relation to assess the safety of cosmetic ingredients. 
Although an account of the different relevant in silico approaches will be taken, the work of the 
WG will focus on general evaluation of the approaches, and not on the assessment of any 
specific methods, models, or tools. The WG will also aim to propose a tiered approach based on 
selected methods that can be useful in screening/ prioritization, and potentially in higher tier 
safety assessment of cosmetic ingredients. For this, the WG will also explore possible 
integration of the different in silico methods, models, and tools so that limitations of individual 
approaches can be overcome, and sufficient ‘weight of evidence’ generated to underpin 
reliability of the in silico assessments.  

  

2.3 Approach  

To achieve the objectives set out by this WG, the members met via audio-conferences, and 
discussed and developed a consensus on the in silico approaches that can be useful for 
assessing the safety of cosmetic ingredients.  

The WG in their approach aimed to: 

1. Identify those high priority endpoints from the list of toxicological endpoints routinely 
assessed for cosmetics for which in silico methods are already available and being 
used3. 

2. Define the scope of the report in terms of the different types of in silico approaches that 
can be useful in safety assessments (e.g. QSAR & expert systems, biokinetic 
modelling4, molecular modelling). Summarize the strengths as well as limitations of the 
approaches5. Indicate how their quality (including the uncertainty) is being assessed and 
reported.  

3. Develop an “activity matrix” that summaries, for the priority endpoints, the major ongoing 
or recently completed projects in the ICCR regions (including the regulatory authorities 
and industry associations) that are either developing in silico tools and/or exploring their 
applicability relevant to the safety assessment of cosmetics. This will include projects 

                                           

3 The development of new methods is outside the scope of this activity. 
4
 This includes the modeling of internal exposure, and in vitro-in vivo extrapolation, thereby providing 

a basis for risk assessment based on alternative methods. 
5
 This will involve a general evaluation of the approaches, not focussed on specific methods, models or 

tools 
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that may be focused specifically on cosmetics, as well as those methods, models and 
tools that could be indirectly applicable to cosmetic ingredients.  

4. Briefly describe each project, with supporting references and web links. 
5. Briefly describe each selected method in a systematic way6, including the tier(s) in which 

it can be used, and the type of assessment it can support (hazard identification, potency 
classification, and/or risk assessment) 

6. Identify data/knowledge gaps in terms of our ability to assess the suitability of in silico 
approaches for assessing cosmetics. 

7. Make recommendations for further work needed by the ICCR (if any). 

 

2.4  Timelines: 
 Scoping document to be discussed at ICCR 7 (Japan, July 8-10, 2013) 

 Report to be drafted by ICCR-8, 2014. 

2.5  Authors: 
Renata Teixeira do Amaral Brazilian Association of Personal Cosmetics, Toiletry and                                                     

Fragrance, Av. Paulista, 1313. Cj.1080. zipcode:01311-923; São 
Paulo – SP – Brazil   

Jay Ansell: Personal Care Products Council, 1620 L Street, NW, Washington, 
DC 20036, USA. 

Nora Aptula: SEAC, Unilever, Colworth Science Park, United Kingdom.  

Takao Ashikaga:  Shiseido, Quality Assessment Center, Safety Technology 
Development Group, Japan.  

Qasim Chaudhry (Chair): The Food and Environment Research Agency, Sand Hutton, York 
Y041 1LZ, United Kingdom.  

Akihiko Hirose:  Division of Risk Assessment, Biological Safety Research Center, 
National Institute of Health Sciences, Japan. 

Joanna Jaworska (Co-Chair): Procter & Gamble, Modeling & Simulation, Biological        
Systems, Temselaan 100, 1853 Strombeek-Bever, Belgium. 

Hajime Kojima:  Japanese Center for the Validation of Alternative Methods, 
Biological Safety Research Center, National Institute of Health 
Sciences, Japan. 

Mark Lafranconi:  Tox Horizons, LLC, Maineville, OH 45039, U.S.A. 

Edwin Matthews: Office of Food Additive Safety, Center for Food Safety and Applied 
Nutrition, U.S. Food and Drug Administration, 5100 Paint Branch 
Parkway, College Park, MD 20740, USA.  

Stanley Milstein:   Office of Cosmetics and Colors, Center  for Food Safety and 
Applied Nutrition, U.S. Food and Drug Administration, 5100 Paint 
Branch Parkway, College Park, MD 20740, USA.  

                                           

6 The QSAR Model Reporting Format, or simplified version of this, could be an option: 

http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/qsar_tools/QRF 
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Cássia Roesler: Brazilian Health Surveillance Agency, General Office of 
Cosmetics, SIA Trecho 5, Área especial 57, Lote 200, CEP: 
71205-050; Brasília – DF – Brazil. 

Eric Vaillancourt:  Health Canada, Risk Assessment Division, Risk Assessment 
Bureau, Consumer Product Safety Directorate, 269 Laurier Ave. 
West, 7th floor, 7-101, Ottawa (Ontario)  K1A 0K9, Canada. 

Rajeshwar Verma: Office of Cosmetics and Colors & Office of Food Additive Safety, 
Center for Food Safety and Applied Nutrition, U.S. Food and Drug 
Administration, 5100 Paint Branch Parkway, College Park, MD 
20740, USA. 

Andrew Worth:   European Commission, Joint Research Centre, Institute for Health 
and Consumer Protection, Via Enrico Fermi 2749 21027 Ispra, 
Italy. 

Jeffrey Yourick:  Office of Applied Research and Safety Assessment, Center for 
Food Safety and Applied Nutrition, U.S. Food and Drug 
Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA. 

 

  

3.1 (Q)SAR based models  

The chemical structure of a compound carries a lot of information – some of which is not very 
obvious per se. This embedded information can be deciphered in the form of numerical 
‘descriptors’ of physicochemical parameters, which ultimately determine the properties, 
behaviour, and biological activity of a given compound. Such a description of the chemical 
structure space of a group of compounds in the form of various descriptors (e.g. steric, 
hydrophobic, electronic, topologic, etc) allows modelling the measured data on a specific 
biological endpoint to find mathematical relationship(s) between the chemical structure and its 
biological activity. The resulting in silico (computational) models may either be based on 
structure-activity relationship (SAR), or quantitative structure-activity relationship (QSAR) 7 . 
Other in silico approaches allow read-across from experimental data on structurally and/or 
functionally similar compounds to derive estimates of toxicity of an untested chemical. 

A typical QSAR model describes quantitative relationship(s) between a chemical structure and 
biological activity, and generally takes the form of a linear equation:  

Relative Biological Activity = Constant + (C_1,P_1) + (C_2,P_2) + …. (C_n,P_n)  

where the parameters P_1 to P_n are computed for each molecule in the series, and 
coefficients C_1 to C_n are calculated by fitting variations in the parameters and the 
physicochemical property or the biological activity. However, a structure-activity relationship 
could also be non-linear.  

An SAR model on the other hand describes qualitative relationship(s) between a chemical 
structure and biological activity. In its simplest form, an SAR takes the form of a ‘structural alert’, 
which represents a distinctive feature in a molecule that bears a relationship with its biological 
activity.  

                                           

7 For introduction to theory and applications of QSARs see Benfenati (2012). 
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Since early developments in this field in the 1960s, many more reliable chemical property/effect 
databases, powerful data-mining tools, linear and non-linear algorithms, and soft-computing 
techniques that can decipher relational patterns in large and complex datasets have become 
available. These, combined with increasing computational power, have led to the development 
of more versatile and reliable in silico methods and tools for the assessment of chemical toxicity. 
The (Q)SAR approaches have also progressed from modelling a few physicochemical 
properties of closely related compounds, and endpoints at the molecular level (e.g. enzyme 
inhibition, or receptor binding), to more diverse chemical structures and

 Linear algorithms, such as multiple regression, are generally 
useful for modelling numerical and continuous biological data (e.g. LD50), whereas description 
of discrete response (e.g. active/inactive, weak/moderate/strong) generally requires decision 
trees, neural networks, support vectors, or clustering algorithms, etc8. The in silico modelling 
approaches have also enabled the assessment of other toxicity modulating factors, such as 
absorption, distribution, metabolism and elimination (ADME) in live organisms. As a result, in 
silico methods and tools are increasingly seen as an important alternative to testing safety of 
chemical substances in animals. As such, they offer a rapid, cost-effective, and ethical 
alternative to animal testing. A number of in silico models and systems are currently available, 
which cover a wide range of chemical space and are therefore valuable for assessment of a 
variety of chemical substances – including cosmetic ingredients.  

 

3.1.1 Mechanistic vs statistical QSARs  

Although multidimensional QSARs developed using molecular structure descriptors and 
regression analysis techniques have found wide utility and acceptance, it is often difficult to 
extract a physical interpretation of such models because of the types of descriptors involved and 
the multidimensional nature of the model. Such models are referred to as statistical. In contrast, 
mechanistic QSARs are based on a mechanistic hypothesis that drives the choice of 
descriptors. A good discussion on this subject is provided by Lipnick (1999). 

 

3.1.2 Model validation 

Once developed, (Q)SAR models are generally subjected to rigorous testing for robustness and 
predictivity, and a clear description of the ‘applicability domain’, which is the biological response 
and chemical structure space within which a model makes predictions with a given reliability 
(Netzeva et al., 2005). A fully tested and validated (Q)SAR model would generally yield good 
predictive assessment of the toxicity of an untested chemical as long as the query compound 
falls within the domain of the model’s prediction space. Thoroughly tested and validated (Q)SAR 
models therefore a valuable means for predicting the biological activity (including toxicity) of 
untested chemicals within the bounds of the chemical structure space covered by the model. 
This also means that each model carries certain limitations and boundaries, and in respect to 
the chemicals space it covers, and may not perform reliably when used against chemicals that 
are outside the model’s applicability domain. It is, however, possible to address some of these 
limitations in practice – e.g. through the use of a combination of different (Q)SAR models, expert 
systems, and read-across approaches to derive sufficient ‘weight of evidence’ that can provide 
basis for a reliable in silico assessment of chemical toxicity.  

 

                                           

8 For further reading on the choice of different statistical algorithms for QSAR building see Chaudhry et 

al. (2007). 
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3.1.3 Availability and currents use 

A variety of (Q)SAR based models and expert systems are available for predicting a range of 
toxicity endpoints. These include both free access and commercial software platforms. For in 
silico assessments intended for regulatory purposes, the (Q)SAR models generally considered 
relevant are those that have been developed in accordance with the stringent quality criteria and 
validation principles, e.g. those laid down by the OECD (2004). The OECD’s ‘Guidance 
Document on the Validation of (Q)SAR Models’ published in 2007 aims at providing further 
guidance on how specific QSAR models can be evaluated with respect to the OECD principles. 

The use of (Q)SAR models as an alternative approach to testing chemical toxicity on animals 
has been promoted by regulatory authorities in a number of countries. In Europe, the use of in 
silico approaches for assessment of chemical toxicity has come into focus due to the ban on 
testing cosmetic ingredients and products on animals. The use of validated (Q)SARs is currently 
allowed under certain provisions of some European regulations, e.g. the chemicals Regulation 
REACH. Also in Europe, the Danish EPA has produced a comprehensive set of QSAR models 
for their ‘self-classification system’ of industrial chemicals. This database is now incorporated in 
to the OECD QSAR Toolbox. Other examples of the use of (Q)SAR models within the ICCR 
jurisdictions is provided in section 4.2. It is however worth highlighting that, despite substantial 
advancements in this field, and the need for suitable alternatives to animal testing, the use of 
(Q)SAR models has still not been fully adopted as a mainstream method for safety assessment 
of cosmetic ingredients in any of the ICCR’s jurisdiction. They are, however, being applied by 
many as screening tools for internal decision making and as important elements for 
development of a weight of evidence (WoE) for risk assessment. A number of projects have 
made some inroads into the application of this field in relation to safety assessment of 
cosmetics. For example considerable work has been done on fragrance allergens, and progress 
at the EU level can be seen in the specialist Cosmetic Sector reports of ECVAM5. The potential 
application of in silico methods for safety assessment of cosmetic ingredients has also been 
mentioned in the Preamble of the SCCS Memorandum on "Alternative test methods in human 
health safety assessment of cosmetic ingredients in the EU" (SCCS/1294/10). 

 

3.2 Expert systems 
An expert system has been defined as any formalised system that is often, but not necessarily, 
computer based, and that can be used to make predictions on the basis of prior information 
(Deaden et al., 1997). In silico toxicology expert systems may combine different approaches to 
predict toxicity of a substance from chemical structure. The expert systems (and their 
implementation in software tools) are based on three main modelling approaches referred to 
rule-based, statistically-based, or hybrid methods. 

Rule-based systems contain “if-then-else” rules that have been derived from toxicological 
knowledge, and combine them with expert judgment and/or fuzzy logic. Commonly used 
software tools based on this approach include OncoLogic (Woo et al. 2005), Derek Nexus® 
(Sanderson & Earnshaw 1991; Ridings et al., 1996) and HazardExpert (Smithing & Darvas 
1992). Derek Nexus® and HazardExpert can be used in conjunction with their related programs 
Meteor and Metabolexpert to predict the toxic potential of metabolites as well as the parent 
compounds. In addition to these commercial tools, many of the models included in the freely 
available Toxtree software and the OECD QSAR Toolbox are rule-based. An example is the 
Benigni-Bossa rulebase for genotoxicity and carcinogenicity (Benigni et al., 2008). 

Statistically-based systems use a variety of statistical, rule-induction, artificial intelligence, and 
pattern recognition techniques to build models from non-congeneric databases. Statistically 
based systems are included in the commercial tools MultiCASE and TOPKAT, and the publicly 
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available Lazar and CAESAR models. In addition, many models published in the scientific 
literature, but not (yet) implemented in software are statistically based. 

Hybrid models are based on a combination of knowledge-based rules and statistically-derived 
models. These are based on the general idea that, within the structural space of a single 
structural alert (considered to represent a single interaction mechanism), statistically derived 
models can quantitatively predict the variation in the reactivity of the alert conditioned by the rest 
of the molecular structure. Examples of the hybrid approach include models implemented in 
OASIS TIMES (Patlewicz et al., 2007).  

The advantages and disadvantages of these approaches are summarised in Table 1. 

 

Table 1. Comparison of three main approaches used in expert systems 

Approach Advantages Disadvantages 

Rule-based  mechanistically connected to the 
predicted endpoint 

 provide reasoning for the 
predictions 

 in many cases support the 
prediction with literature 
references or expert knowledge  

 often restricted and/or ill-defined 
applicability domain 

 usually cannot explain differences of 
the activity within a chemical class 

 usually have lower accuracy of the 
prediction than statistical models 

Statistical  usually have high accuracy of the 
predictions 

 can be used for preliminary 
research when mechanism of 
action is unknown  

 usually difficult to interpret the model 
predictions  

 often do not provide mechanistically 
reasoning of the predictions 

 often non-transparent to the end-user  

Hybrid  combines advantages of rule-
based and statistical approaches, 
including mechanistic 
interpretability (for SA part),  and 
overall accuracy 

 likely to have restricted applicability 
domain 

 

 

 

3.3 Read Across 
Over the past decades, enormous amount of information relating to physicochemical properties 
and toxicity of chemicals has been collated in the form of extensive databases. In addition to 
being useful as data resources, they also provide a means for estimating the toxicity of an 
untested chemical by drawing parallels from the measured data on other tested chemicals. 
Such a ‘read across’ inevitably needs a tight category of already tested chemical analogues that 
are structurally and/or functionally related to the untested query chemical. The OECD QSAR 
ToolBox is an example of a versatile suite of programs which can also predict various toxicity 
endpoints based on read-across using a substantial set of high quality databases. The users 
may import additional databases into the toolbox to expand its usefulness. The ToolBox allows 
identification of analogues for a given chemical, retrieve available experimental data for the 
analogues, and fill data gaps by read-across or trend analysis. The use of read across has 
become more common in predictive toxicology. In comparison to QSAR programs that use 
groups of analogues as a source from which to derive mathematical relationships, read across 
uses analogues directly to predict endpoints for the target. For this reason, it is most important 
that groups or categories of analogues are carefully assembled taking into account not only 
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structural similarity, but where possible, also mechanistic similarity. Read across predictions are 
not possible where close analogues of the target compound cannot be found in the databases.  

 

3.4 Important considerations 

3.4.1 Data and Model Quality 
The reliability and robustness of in silico predictive models is intrinsically dependent on the 
quality of the data used in building and validating the model. This applies to data on chemical 
identity, structure, descriptors, biological activity, statistical algorithms used in building the 
model, and the degree to which the model was tested and validated. Thus whilst good quality 
data are essential for (Q)SAR model building, it also need to be remembered that each model 
also reflects the variability and uncertainty within the chemical and toxicity data (due to inter- 
and intra- species differences, and differences in the experimental protocols used, etc).  

The scarcity of good quality toxicity data for a sufficient number of related compounds is often 
the main limiting factor in the development of robust and reliable in silico models. A data quality 
algorithm has been proposed by Malazizi et al (2006). For in silico model development, 
biological test data from good laboratory practice (GLP) is often sufficiently reliable. 

Accurate measurement of toxicity in a living organism is intrinsically complex, as a measured 
endpoint, such as mortality, may have involved a number of processes and mechanisms. 
However, uncertainty in the measurements does not preclude the use of the data in modelling. 
As long as the models do not produce false negative predictions, they are generally acceptable 
because any false positive predictions will still be on the conservative side in a risk assessment. 

Other factors, such as the existence of a chemical in different enantiomeric forms, cannot be 
resolved easily by in silico methods, the vast majority of which is based on descriptors derived 
from two-dimensional structures. Compared to 2D structures, the use of parameters relating to 
3D structures require much a greater effort because it is generally difficult to obtain an optimised 
configuration of a given molecule that can be regarded as resembling to its form in ‘real life’. 
Generally, 3D modelling approaches use the lowest energy conformation of a chemical 
structure, and where available, derive the descriptors from its crystal structure. Certain specialist 
in silico systems, such as CoMFA (Comparative Molecular Field Analysis) can consider chirality 
and hence can deal with different enantiomeric forms of a chemical. Different tautomeric forms 
also present a problem in terms of reliability of in silico assessment as they can co-exist or can 
readily interchange from one form to another. Again selecting a structure at the lowest energy 
conformation is generally used in modelling to overcome such issues. 

In November 2004, the OECD Member Countries agreed on the principles for validating QSAR 
models for their use in the regulatory assessment of chemical safety. The internationally agreed 
principles provide Member Countries with a consistent and scientifically motivated framework for 
evaluating the regulatory applicability of QSAR models.  

The OECD Principles for QSAR Model Validation, which are intended to be read in conjunction 
with the guidance document, are as follows: 

"To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be 
associated with the following information: 

1. a defined endpoint; 
2. an unambiguous algorithm; 
3. a defined domain of applicability; 
4. appropriate measures of goodness-of-fit, robustness and predictivity; 
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5. a mechanistic interpretation, if possible. 

Further information on the OECD principles is given on the OECD website 
(http://www.oecd.org/env/ehs/risk-assessment/validationofqsarmodels.htm). 

 

3.4.2 Description of Software/Database Version 

The acceptability of a (Q)SAR or read across prediction relies, in part, on a transparent 
description of the software tool and the process to generate the prediction. It is therefore 
important that details are provided on the software version/databases used in any in silico 
assessment to keep consistency between assessments. As software platforms may evolve and 
become available in different versions, it is very important to document the version used, and if 
possible the training set of compounds used, to make the prediction. The same applies to 
database versions. Even using the same process, one may reach different conclusions due to 
differences in data availability because of the use of different databases. Therefor database 
source and the exact version used should be documented in an in silico assessment. This will 
not only provide transparency, but will also allow other users to reproduce the results if needed.  

 

3.4.3 Documenting the validity of QSAR models 

Although numerous QSAR models have been developed and published in the scientific 
literature, and some models have been used in regulatory assessment of chemicals in some 
countries for many years, a transparent validation process and objective determination of the 
reliability of QSAR models are crucial to further enhance their regulatory acceptance. 

The QSAR Model Reporting Format (QMRF) was developed by the JRC and EU Member 
State authorities as a harmonised template for summarising and reporting key information on 
QSAR models, including the results of any validation studies. The information is structured 
according to the OECD validation principles. Further information on the QMRF is given on the 
JRC website (http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/qsar_tools/QRF). 

 

3.4.4 Quantification/ characterization of uncertainty 

Until now modelling techniques used in applications to toxicology have been predominantly 
deterministic (e.g. classification trees; regression models). A deterministic technique treats 
every piece of information at face value and generates a single result for given a set of input 
parameters.  

However, the fact that deterministic models ignore uncertainty in knowledge and variability in 
data is not sufficient to justify the use of probabilistic models in place of deterministic models. 
The most important aspect of the model is how it affects decision-making. Deterministic 
frameworks are generally sufficient when dealing with single endpoint prediction. However, in 
the WoE approach, the need for probabilistic modelling may arise from the aim of placing 
knowledge and complex, multifaceted, and mutually dependent data in a systematic, evidence-
based, reasoning framework. Therefore, probabilistic WoE frameworks are more realistic than 
the deterministic ones. In a probabilistic WoE, each piece of evidence is used together with its 
uncertainty. Deterministic models calculate uncertainty but this information is not conveyed to 
the user. As such, WoE would greatly benefit from probabilistic approaches that can provide 
predictions with uncertainty, as this would result in improved weighing different pieces of evidence. 

http://www.oecd.org/env/ehs/risk-assessment/validationofqsarmodels.htm
http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/qsar_tools/QRF
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4.1 Data requirements for cosmetic ingredients 
With the exception of Europe, where animal testing of cosmetic ingredients is banned, safety 
assessment of cosmetics in other ICCR jurisdictions relies on toxicological data from animal 
tests, and/or in vitro models. Where available, human clinical and epidemiological data is also 
used to provide additional information on the toxicological effects of chemicals intended for use 
in cosmetic products. These conventional methods, however, involve a lot of time, effort, and 
costs. There are further ethical and other constraints to animal testing, such as questions about 
predictivity for human risk assessment and the general commitment to the 3Rs principle9. This is 
where the use of in silico approaches can be very useful in terms of filling some of the data 
gaps. In the context of mapping the current and projected uptake of in silico methods and tools 
in regulatory perspective, it is important to consider the current requirements for safety data in 
the different ICCR jurisdictions. A brief description of the data requirements for safety 
assessment of cosmetic ingredients is provided below: 

 

4.1.1 CANADA  

 All cosmetics sold in Canada must be safe to use and must meet the requirements of the 
Food and Drugs Act, the Cosmetic Regulations, and the Consumer Packaging and Labelling 
Act and Regulations.  All intentional ingredients must be listed on the label, and the 
manufacturer must notify Health Canada that it is selling the product and provide information 
about the product’s formulation.  

 Health Canada uses the List of Prohibited and Restricted Cosmetic Ingredients (also known 
as the Cosmetic Ingredient Hotlist) to communicate to manufacturers that certain 
substances may cause injury to the health of the user, which is in contravention of the 
general prohibition in the Food and Drugs Act.  Departmental officials closely follow 
international scientific and regulatory reports, and regularly review the safety of cosmetic 
ingredients.    

 Health Canada takes a risk-based approach to regulating cosmetics, considering both the 
properties of substances in products, as well as the amounts to which people are exposed 
under normal conditions of use, to determine whether there is a risk that needs to be 
addressed by the Government.  If the scientific evidence suggests that a cosmetic ingredient 
may be unsafe, the Department would conduct a review and, where warranted, take action. 
This could include banning ingredients or restricting their use, requiring certain labelling 
communicating the risk to Canadians, or having the cosmetic product removed from stores.    

 The Canadian government launched the Chemicals Management Plan (CMP) to strengthen 
efforts to protect human health and the environment from the risks of harmful chemicals, 
including those considered to be carcinogenic or those that pose reproductive or 
developmental hazards.  As a result of the CMP, 24 substances have been added to the 
Cosmetic Ingredient Hotlist and two existing Hotlist items have been amended to be more 
protective of health.  For more information, see: www.chemicalsubstanceschimiques.gc.ca/. 

                                           

9 Replacement, Refinement and Reduction of the use animals in laboratory procedures 

http://www.chemicalsubstanceschimiques.gc.ca/
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 Data are not requested at the time cosmetic products are notified to Health Canada.  
However, when notified product formulations contain ingredients that are subject to a Hotlist 
restriction or when incidents are reported, the following information may be requested: 

 

 Physicochemical properties (e.g. formulation pH, salivary peroxide levels) 

 Skin irritation (e.g. human patch tests) 

 Skin sensitization 

 Phototoxicity 

 Eye irritation 
 

 There are currently no policies/guidelines for the validation or acceptance of in silico models 
for cosmetic products, and Health Canada has not yet requested, received or accepted any 
such model. 
 
 

4.1.2 EUROPE  
 

 As mentioned before, animal testing of cosmetic ingredients is banned in Europe and testing 
must be replaced by alternative methods. The Directive 76/768/EEC, and as of 11 July 2013 
the Cosmetics Regulation ((EC) No 1223/2009), prohibits the testing of finished cosmetic 
products and cosmetic ingredients on animals (testing ban), and prohibits the marketing in 
the European Community, of finished cosmetic products and ingredients included in 
cosmetic products that were tested on animals (marketing ban). The testing/ marketing bans 
apply irrespective of the availability of alternative non-animal tests.  

 Besides the Cosmetics legislation, Article 7 of the Council Directive 86/609/EEC provides for 
the protection of animals used for experimental and other scientific purposes ‘an animal 
study shall not be performed if another scientifically satisfactory method of obtaining the 
result sought, not entailing the use of an animal, is reasonable and practically available’. 
Directive 86/609/EEC has been repealed as of 1 January 2013 and replaced by Directive  
2010/63/EU on the protection of animals used for scientific purposes, which in Article 4 
contains the principles of replacement, reduction and refinement (3Rs). 

 The toxicological endpoints that need assessing in a safety dossier in Europe include: 
 

- Acute toxicity (oral; inhalation; dermal) 
- Corrosivity and irritation (Skin corrosivity and skin irritation; Mucous membrane 

irritation, eye irritation) 
- Skin sensitisation  
- Dermal/ percutaneous absorption 
- Repeated dose toxicity 
- Mutagenicity/genotoxicity 
- Carcinogenicity 
- Reproductive toxicity 
- Toxicokinetic studies 
- Photo-induced toxicity (Phototoxicity (photoirritation) and photosensitisation; 

Photomutagenicity/ Photoclastogenicity) 
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4.1.3 JAPAN 

 Under the Japanese cosmetics regulation, the safety standards of cosmetic ingredients 
consist of both positive lists (only for antiseptics, ultraviolet absorbents and tar dyes) and 
negative lists. In addition, medicinal compounds, non-standardized biological materials, and 
any prohibited substances under other chemical related laws are forbidden.  

 Chemicals in the positive list and medicinal compounds may be allowed with restricted 
concentrations. Data on other substances is needed. 

 Some exemptions of the specific endpoints and some alternatives to in vivo tests due to 
scientific and/or ethical reasons may be permitted, although any official statement or 
assessment guidance about those issues has not been issued. 

 Regarding a quasi-drug, data on the list will be required as well as positive list, though some 
endpoints are can be omitted. 
 

 Phys-chem properties 

 Single dose toxicity 

 Repeated dose toxicity 

 Reproductive/ developmental toxicity 

 Skin irritation 

 Skin sensitization 

 Photo toxicity 

 Photo sensitization 

 Eye irritation 

 Genotoxicity 

 Human patch tests 

 ADME(Absorption, Distribution, Metabolism and Excretion) 

 

4.1.4 USA  

 Under the U.S. Federal Food, Drug, and Cosmetic Act (FD&C Act), cosmetic products and 
ingredients are not subject to FDA premarket approval authority, with the exception of color 
additives (other than those intended for use as coal tar hair dyes).  However, they must be 
safe for consumers under labeled or customary conditions of use.   

 In general, except for color additives and those ingredients which are prohibited or restricted 
from use in cosmetics by regulation, a manufacturer may use any ingredient in the 
formulation of a cosmetic provided that the ingredient and the finished cosmetic are safe, 
the product is properly labeled, and the use of the ingredient does not otherwise cause the 
cosmetic to be adulterated or misbranded under the laws that FDA enforces. 

 In addition, regulations prohibit or restrict the use of several ingredients in cosmetic products 
and require warning statements on the labels of certain types of cosmetics. Neither the 
law nor FDA regulations require specific tests to demonstrate the safety of individual 
products or ingredients.  Rather, FDA has consistently advised manufacturers to use 
whatever testing is necessary to ensure the safety of their products and ingredients. Firms 
may substantiate safety in a number of ways.  FDA has stated that "the safety of a product 
can be adequately substantiated through (a) reliance on already available toxicological test 
data on individual ingredients and on product formulations that are similar in composition to 
the particular cosmetic, and (b) performance of any additional toxicological and other tests 
that are appropriate in light of such existing data and information. 
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 More information on FDA Authority over Cosmetics is provided at: 
http://wcms.fda.gov/FDAgov/Cosmetics/GuidanceComplianceRegulatoryInformation/ucm07
4162.htm. Link to Product Testing: 
http://wcms.fda.gov/FDAgov/Cosmetics/ProductandIngredientSafety/ProductTesting/default.
htm. 

 

4.1.5 BRAZIL 

 The Brazilian cosmetics regulation states that cosmetics must be safe for consumers in 
normal or foreseeable conditions of use. To guarantee the quality of these products, the 
Brazilian Health Surveillance Agency (Anvisa) works at registration, notification, market 
inspection and post marketing surveillance. The Agency also creates norms and rules 
applicable to production processes, techniques, methods and use of those products by 
consumers. 

 Cosmetics products must comply with a set of lists that establishes which ingredients may or 
may not be used, or even some that may be used if they meet some specific restrictions and 
conditions (available at http://s.anvisa.gov.br/wps/s/r/lJp). These requirements undertake a 
systematic review of  ingredients  and  a battery of data of international benchmarks, such 
as European Union Directive, United States of America laws, and technical criteria 
recognized by the scientific community of Mercosur States Parties (Resolution GMC N° 
51/08 e Resolution GMC N.º133/96) 

 The Safety Evaluation Guidelines published by Anvisa (2nd edition published in 2013) 
recommends a wide variety of tests in the cosmetic ingredients and also in the final product. 
All the safety evaluation tests must be performed before the cosmetic is placed into the 
market. In addition, Anvisa's Affairs Law for cosmetics place responsibility on the 
manufacturer and/or importers of cosmetic products to ensure that their products are safe 
for the consumer when used as intended (RDC 04/2014). 

 In Brazil there are no guidelines for validation of in silico models and the respective 
acceptance criteria for regulatory agencies in the scientific and regulatory dimension. 
Nevertheless, we believe that knowledge about such premise can design regulatory actions 
and decision making in the context of in silico reports, in addition to promote the 
development of its predictive ability.  

Relevant data required include: 

- Acute toxicity  

- Skin corrosivity and skin irritation 

- Skin sensitisation  

- Dermal/ percutaneous absorption 

- Repeated dose toxicity 

- Mutagenicity/genotoxicity 

- Subacute and subchronic toxicity 

-  Eye irritation  

-  Mucous membrane irritation 

- Photo-induced toxicity (phototoxicity , genotoxicity, photosensitization) 

- Carcinogenicity 

- Reproductive toxicity 

- Toxicokinetic and toxicodynamic studies 

 

http://wcms.fda.gov/FDAgov/Cosmetics/GuidanceComplianceRegulatoryInformation/ucm074162.htm
http://wcms.fda.gov/FDAgov/Cosmetics/GuidanceComplianceRegulatoryInformation/ucm074162.htm
http://wcms.fda.gov/FDAgov/Cosmetics/ProductandIngredientSafety/ProductTesting/default.htm
http://wcms.fda.gov/FDAgov/Cosmetics/ProductandIngredientSafety/ProductTesting/default.htm
http://s.anvisa.gov.br/wps/s/r/lJp
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The above overview of the regulation of cosmetic related ingredients/products in the different 
ICCR jurisdictions shows that where there are specified requirements of safety data, they relate 
to physiochemical data and toxicological endpoints that range from a few simple acute 
endpoints (e.g. irritation/sensitisation of eye or skin) to more complex chronic endpoints (e.g. 
carcinogenicity, mutagenicity, developmental toxicity). This information is mapped in section 4.2 
and Annex-I to identify whether or not an in silico model or expert system is available that can 
be used to draw estimates on toxicity. It is, however, worth highlighting that it was outside the 
scope of this WG to develop new, validate, or provide recommendation for the use of a specific 
in silico method, model or system. The description of few selected (Q)SAR models and 
approaches provided in Annex-I is meant to be a general overview and as such must not be 
seen as an endorsement of quality or a recommendation for use. It is also recognised that there 
are other in silico models and tools not covered by this report but may be relevant to use in in 
silico assessment of cosmetic ingredients. 

 

4.2 THE CURRENT USE OF IN SILICO METHODS  

4.2.1 THE CURRENT USE OF IN SILICO METHODS – Europe 

4.2.1.1 JRC QSAR Model database 

The JRC QSAR Model Database (http://qsardb.jrc.ec.europa.eu/qmrf/) is a freely accessible 
web application that enables users to submit, publish, and search QMRF10 reports. Developers 
and users of QSAR models can submit to the dedicated mailbox information on QSARs by 
using the QMRF. A downloadable QMRF editor 
(http://sourceforge.net/projects/qmrf/files/QMRF%20Editor/2.0.0/) is used for this purpose. The 
JRC then performs a quality control (i.e. adequacy and completeness of the documentation) of 
the QMRF submitted. Properly documented QMRFs are included in the JRC QSAR Model 
Database. Inclusion of the model does not imply acceptance or endorsement by the JRC or the 
European Commission, and responsibility for use of the models lies with the end-users.  

4.2.1.2 Status of QMRFs in the JRC QSAR Model Database 

At the time of writing (October 2013), the JRC QSAR Model Database contains 70 QMRFs 
(Figure 1). A number of additional QMRFs will also be uploaded in a new version of the 
database that will be available soon from the same webpage. 

  

                                           

10 (Q)SAR Model Reporting Format (QMRF) is a QSAR model documentation format in line with the 

OECD principles. 

http://qsardb.jrc.ec.europa.eu/qmrf/
http://sourceforge.net/projects/qmrf/files/QMRF%20Editor/2.0.0/
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Figure 1. Status of QMRFs in the JRC QSAR Model Database 
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4.2.2 THE CURRENT USE OF IN SILICO METHODS - JAPAN 

The following two approaches have been developed in Japan with support from the Japanese 
government: 

 Hazard Evaluation Support System Integrated Platform (HESS) for assessment of 
repeated-dose toxicity 

 Combination Approach for assessment of mutagenicity 

 

Both applications are still at research stage, but the ‘Combination Approach’ will be used for 
prioritizing the existing chemicals within the occupational health area. 

4.2.2.1 The Hazard Evaluation Support System Integrated Platform – HESS: 

The project on ‘Development of hazard assessment techniques using structure-activity 
relationship methods (2007-2011)’, sponsored by New Energy and Industrial Technology 
Development Organization (NEDO) in Japan, led to the  development of ‘Hazard Evaluation 
Support System Integrated Platform (HESS)’ to provide decision support information to Experts 
for evaluation of the repeated dose toxicity of chemicals by the category approach. The HESS 
system has two main databases - the Toxicity Knowledge Information Database which contains 
repeated dose toxicity test results (>500 reports) and toxicity mechanism information, and 
Metabolism Knowledge Information Database which contains metabolic maps and kinetic 
information. HESS also includes support tools for establishing the chemical category for toxicity 
evaluation as the Category Approach Support Function. HESS is also designed to be 
compatible with the OECD (Q)SAR Application Toolbox. 

The system originally focused on supporting the evaluation of industrial chemical under the 
‘Chemical Substance Control Law’ in Japan. As the system can import additional toxicity test 
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results of other type of chemicals, the HESS would be applicable to the evaluation of cosmetic 
ingredients. 

4.2.2.2 The Combination Approach:  

Different (Q)SAR software systems may generate different evaluation for the same chemical, 
mainly due to different embedded evaluation rules and algorithms  - such as rule-based 
systems, discriminant-based systems, etc. It was therefore considered that in silico evaluation 
could be optimized by combining the evaluations from multiple systems. A project supported by 
the Health and Labour Sciences Research Grants Sensitivity, a ‘Combination Approach’ was 
developed in Japan for prediction of chemical mutagenicity. The system uses DEREK, 
MultiCASE, and ADMEWorks, to assesses chemical mutagenicity with increased overall 
predictively of the three in silico systems for a final decision on mutagenicity. This approach has 
been considered useful in prioritizing the chemicals for testing on the basis of potential 
mutagenicity among the large numbers of chemical that have no experimental data on 
mutagenicity. 

 

4.2.3 THE CURRENT USE OF IN SILICO METHODS – UNITED STATES 

FDA/CFSAN is currently using several commercial software programs to estimate the potential 
toxicities of organic chemicals, and to construct new QSAR models for toxicological endpoints 
not covered by the commercial models. These software programs and the commercial QSAR 
models have been available to FDA/CFSAN under Research Collaboration Agreements (RCAs) 
with the software vendors. Among these the following seven QSAR and/or rule-based in silico 
programs are routinely used at the FDA: 

 CASE-Ultra (Multicase Inc.) 

 Leadscope Model Applier (Leadscope, Inc.) 

 ADMET-Predictor (Simulations-Plus, Inc.) 

 Percepta (Advanced Chemistry Development, ACD, Inc.) 

 Symmetry (Prous Institute for Biomedical Research) 

 SciQSAR (SciMatics, Inc.) 

 Derek Nexus (Lhasa Ltd.) 

 

A brief description of the methods is provided in Annex I. 

 

4.2.4 THE CURRENT USE OF IN SILICO METHODS – CANADA 

Under the Chemicals Management Plan Substance Grouping Initiative, Health Canada and 
Environment Canada use the read-across approach to predict endpoint or property information 
for various substances. Additionally, modelled data may be generated through the use of 
quantitative structure-activity relationships (QSAR).  Such read-across and QSAR data are used 
both for ecological and human health assessments. 

However, in cases specific to cosmetic products, in silico approaches have thus far not been 
used.  Health Canada usually requests the highest trade level (e.g. manufacturer or importer) to 
provide data specifically for the product formulation, and that studies based on key ingredients 
in the product formulation, or using non-human subjects are not to be considered sufficient 
evidence of safety.  A project in currently underway to use the Threshold of Toxicological 
Concern (TTC) approach with repeated-dose dermal toxicity data (see Appendix for details). 
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4.2.5 THE CURRENT USE OF IN SILICO METHODS – BRAZIL 

As stated in the Brazilian regulations, the safety evaluation of cosmetic products is responsibility 
of the manufacturer’s. That means that Anvisa does not execute any tests by itself, but it is 
responsible for analyzing all the results provided by a company and to evaluate if they are valid. 

There is no specific regulation regarding the use of in silico methods for cosmetic products, and 
this approach has not been fully adopted by most of the companies in Brazil. Recently, the 
government has implemented some initiatives focused at the development of in silico tools (see 
Annex II), which may alter the way toxicological studies are conducted in Brazilian jurisdiction. 
The expectation is that these efforts will not only bring scientific benefits, but may also bring 
advances in the regulatory aspects. 

 

4.2.6 THE CURRENT USE OF IN SILICO METHODS – THE COSMETICS INDUSTRY 

A preliminary list of in silico methods most commonly used by cosmetics industry is provided 
below. These methods are primarily used by the industry for internal decision-making and 
screening purposes. Where in silico assessments are used for regulatory purposes, they form 
part of a larger WoE package. The preference is to use open source applications where the 
assumptions and algorithms are transparent and verifiable. Commercial packages are also used 
but generally only after extensive verification with historical information. 

 

Method Endpoint 

 Skin 
Sens. 

Skin 
Irritation 

Eye 
Irritation 

Acute 
Oral  

Repeat 
Dose 

Mutagenicity 
Genotoxicity 

Carc. Dev/ 
Repro 

ADME 

Public  

OECD 
Toolbox 

         

CAESAR 
(EU) 

         

Toxtree 
(JRC) 

         

TEST  
(US EPA) 

         

Commercial  

DEREK          

METEOR          

Topkat          

Multicase          

Academic & 
Misc 

 

Kasting 
Model 

         

TTC          
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* Does not include methods such as ACTOR (US EPA) used to gather relevant information from the literature or 

databases.  Also does not include applications such as AIM (US EPA) used to help identify common chemical 
domains or analogs (AIM).  

 

 

  
The availability of numerous models poses a question which model to use for a given query 
compound given that often the predicted values between models vary significantly. This is 
because different models use different statistical methodologies and molecular descriptors, and 
may have different predictive power towards the same toxicological endpoint. To circumvent 
arbitrary selection of model, one can combine predictions from several (Q)SAR models and or 
read-across approaches. Consensus, (or ensemble), modelling as it is sometimes called, takes 
multiple predictions (from different models) and yields a single prediction value. The theory 
behind such an approach is that the weaknesses (poor predictions) observed in one model are 
generally compensated for in another, resulting in a more robust and predictive consensus 
model. Therefore, combining multiple models is only beneficial when these models are 
sufficiently different from one another and adequately cover the chemical/biological space. 
Although reasonable predictive performance is still a prerequisite, models used in this manner 
should ideally complement each other, i.e. each showing excellent predictivity in unique areas of 
its applicability domain. Methods include bagging (Breiman, 1996) and boosting (Freund, 1996). 
In bagging, each model receives equal weighting, whereas in boosting, weighting are used to 
give more influence to the best performing models. One can also use hierarchical Bayesian 
models (Harol et al 2009). Numerous other studies have shown model combinations to be more 
successful than the use of a single model (Abshear et al., 2006; Khedkar et al., 2014). In 
addition to increased performance the combination of multiple predictions in this manner, forms 
a weight-of-evidence which can greatly improve the confidence in a correct prediction. 

Examples of the current use of combined (Q)SAR systems in ICCR jurisdictions include the use 
of The Combination Approach in Japan (section 4.2.2). A case study in this regard relates to the 
combined use of (Q)SAR models by Shiseido (Japan), who have developed a systemic way for 
in-house assessment of repeated-dose toxicity. This system is designed on the assumption that 
chemicals which have a chance of exposure to human are in scope of target. This scheme is 
described as follows:  

1. A target chemical is first checked for existing toxicological data using published data set and 
in-house dataset.  

2. The extent of exposure is considered in view of the product type (e.g., leave-on or rinse-off) 
and percutaneous absorption of the chemical.  

3. NOEL is calculated by using the in silico model. Shiseido has adopted an artificial neural 
network (ANN) analysis for calculating NOEL from chemical structure. Over 400 data were 
used for constructing the in silico model. Learning was implemented using QwikNet software 
ver. 2.23 (Craig Jensen, Sammamish, WA). 

4. At the same time, analogous chemicals are identified in the HESS dataset (section 4.2.2) 
and others. This is based on structural similarity, toxicological alert pattern from DEREK 
Nexus, intestinal absorption, etc. NOEL values of the analogous chemicals are obtained 
from HESS. 

5. NOEL of the target chemical is determined by referring not only to the calculated NOEL by 
the ANN model, but also to the NOELs of the analogous chemicals. 

6. Finally, MoS of the chemicals is calculated using the estimated NOEL and percutaneous 
absorption to determine overall safety. 
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On the (draft11) Guideline ‘assessment and control of DNA reactive (mutagenic) impurities in 
pharmaceuticals to limit potential carcinogenic risk’ under the ‘International Conference on 
Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use’ 
(ICH), an analysis of computational toxicology assessment was introduced in order to predict 
the mutagenicity of impurities in the new drug products, on which no experimental data was 
available.  

The guideline stated that two types of (Q)SAR prediction models should be applied. One model 
should be expert rule-based, and the second should be statistical-based. The used (Q)SAR 
models should conform to the validation principles published by the Organisation for Economic 
Co-operation and Development (OECD 2007). The absence of structural alerts from the two 
complementary (Q)SAR models is considered to be sufficient for confirming no concern of 
mutagenicity of impurities. In order to provide additional supportive evidence on relevance of 
any predictions and to elucidate underlying reasons in case of conflicting results, any results of 
computer-based analysis should be reviewed. 

Amongst the several published examples of the use of combined (Q)SAR systems is in the 
Integrated Testing Strategies (ITSs) developed to provide evidence from different information 
sources such as QSAR models, in vitro and in vivo test results in a WoE approach in the EU 
FP6 project ORISIS (Rorije et al., 2013). This approach was applied to skin sensitisation 
endpoint using Bayesian statistics to calculate the probability of the predictability to estimate the 
reliability of a conclusion on the skin sensitisation potential of a chemical. Rorije et al. (2013) 
concluded that the use of two or more positive predictions from QSAR models actually gave a 
higher probability. The calculated Bayesian probability that a substance will test positive in the 
LLNA test was 85.9%, when three models (DEREKfW, TIMES-SS and the SMARTs rules 
implemented in the OECD Toolbox) agreed with each other – i.e. either all three gave a positive 
result or a negative result (280 out of 522 compounds). For the remaining substances, the 
QSARs yielded conflicting predictions, preventing the WoE conclusion to reach the required 
80% or 90% probability, therefore needing additional information to make the WoE sufficient for 
the REACH regulatory framework. 

 

  
It is evident from the above overview that in silico methods and tools for assessment of 
chemical toxicity have gone through enormous progress over the past few decades. As a result, 
extensive structure-activity databases, data-mining algorithms, (Q)SAR models, expert systems, 
read-across methods, and other versatile in silico tools are now available in the form of 
commercial and free-access software platforms. As such, they offer a rapid, cost-effective, and 
ethical alternative for generating chemical toxicity estimates without the need to test on animals. 
The in silico models and systems currently available for assessment of chemical toxicity cover a 
wide range of structure-activity space and are equally relevant and valuable for generating 
toxicity estimates for cosmetic ingredients.  

There are a number of drivers for moving away from testing toxicity of cosmetic ingredients in 
animals – such as the improved predictivity, cost, time, and ethical implications – and for 
deriving data and estimates by alternative in vitro and in silico means. Availability of such 
alternative methods is more crucial in Europe where animal testing of cosmetic 

                                           

11 The draft document is expected to be finalized at the next ICH meeting in the beginning of June, 

and could be adopted by three authorities (EU, JP, US) as a final document. (The harmonized 
guideline moves to immediately to the regulatory implementation step.) Therefore, the word of 
(draft) may be removed from the document in July. 
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ingredients/products, and marketing of new cosmetic ingredients/products tested on animals, is 
now banned. However, despite the need and the drivers, the current use of in silico approaches 
is largely limited to internal decision making both at the industry and at the regulatory levels in 
most ICCR jurisdictions, and has still not been fully adopted as one of the mainstream methods 
for safety assessment of cosmetic ingredients. 

One likely reason is that only a handful of the currently available models and tools have been 
developed in line with the stringent quality and validation standards to merit their consideration 
for adoption as a routine alternative to in vivo testing for safety assessment. Also, different 
models and systems sometime tend to yield conflicting results, which makes it difficult for a user 
to choose a particular in silico system in preference to the others, and to rely on its predicted 
estimates in a safety assessment. This is because each model and system is generally built on 
a different dataset and algorithm(s), and therefore tends to decipher and interpret the chemical 
structure and toxicological information in a different way. Each model/system also reflects a 
different level of uncertainty and variability associated with the data used in developing it, and 
the modelling process itself, and may also have a different applicability domain within which the 
predicted estimates of toxicity are reliable. It practice, however, some of these limitations can be 
addressed through appropriate selection and use of the in silico systems. For example, in silico 
assessments may only be derived from those models and systems that meet the stringent 
quality and validation standards, and have clearly defined applicability domains. Although this 
may limit the number of workable in silico tools, it should provide more confidence in the 
predicted estimates. It may also be possible to add more confidence to in silico assessments 
through the use of a combination of appropriate (Q)SAR models, expert systems, and/or read-
across approaches, rather than relying on a single model/system. A ‘weight of evidence’ 
gathered this way should provide sufficient basis for a reliable in silico assessment of chemical 
toxicity for safety evaluation. 

In this regard, it also needs to be emphasised that the development and use of in silico methods 
require a thorough consideration of the quality of the data and the algorithms behind a system, 
the amount of testing/validation carried out, and the adequacy of the chemical structure and 
biological activity space covered by the model’s applicability domain. This inevitably requires 
expert knowledge and a degree of skilled approach based on a good understanding of 
toxicology and (bio)chemistry. Thus, despite the ease of use offered by certain advanced in 
silico platforms, the assessment of toxicity by in silico approaches must not be reduced to a 
‘black box’ routine. 

Further work in this area is recommended in relation to development of a uniform and 
standardised approach that allows the selection and use of appropriate in silico system(s), and 
interpretation of the results from a cosmetics safety assessment perspective. In addition, an 
appropriate framework also needs to be developed that allows integration of different in silico 
approaches in a consistent scheme that allows sufficient weight of evidence to be gathered 
against relevant toxicological endpoints for use in safety assessment of cosmetic ingredients.    
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3Rs  Refinement, Reduction, Replacement of the use of animals in 
laboratory procedures 

Alternative methods All those procedures which can completely replace the need for 
animal experiments, which can reduce the number of animals 
required, or which can reduce the amount of pain and stress to 
which the animal is subjected in order to meet the essential needs 
of humans and other animals [Rogiers and Beken, 2000] 

ECVAM    European Centre for the Validation of Alternative Methods 

EFSA    European Food Safety Authority 

In silico methods  Computational approaches that use (quantitative) structure-activity 
relationship modelling, and read-across between substances on 
the basis of structural or functional similarities. 

In vitro test methods  Biological method that uses organs, tissue sections and tissue 
cultures, isolated cells and their cultures, cell lines and subcellular 
fractions, or non-biological method that uses chemical interaction 
studies, receptor binding studies, etc [Rogiers and Beken 2000] 

LLNA     Local Lymph Node Assay 

OECD    Organisation for Economic Co-operation and Development 

QSAR    Quantitative Structure-Activity Relationship  

Read-across A method to derive biological activity (e.g. toxicity) values for a 
target chemical structure from experimental values on structurally- 
and/or functionally similar chemical analogues. 

REACH  Registration, Evaluation, Authorisation and restriction of Chemicals 

SAR    Structure-Activity Relationship  

SCCS     Scientific Committee on Consumer Safety 

WoE    Weight of Evidence 
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OECD QSAR TOOLBOX 

Methodology: Categorisation, Read-Across, (Q)SAR 

Area of Applicability: A wide range of chemicals 

Brief Description: The OECD QSAR Toolbox is a stand-alone software system intended to 
be used by governments, industry and other stakeholders to fill gaps in toxicity data needed 
for assessing the hazards of organic chemicals for environmental and human health 
endpoints. The Toolbox incorporates information and “tools” from various sources into a logical 
workflow. The Toolbox has multiple functionalities allowing the user to perform a number of 
operations (e.g., categorize large inventories of chemicals according to mechanisms of action, 
using or building QSAR models, read-across from structurally related analogous compounds 
that have already been tested). 

The primary function of the Toolbox is to place discrete organic substances into chemical 
categories for outcomes of regulatory interest and use data from tested category members to 
aid in filling data gaps for untested category members. It is designed to use 2D structures and 
chemical properties to group chemicals, including the query substance, into endpoint-specific, 
meaningful categories, which include tested compounds that are all “similar” in a transparent 
manner. Thus, a category is constructed on chemical and biological mechanistic information 
but data gaps are filled by using in vivo test data within the category. The Toolbox contains: 1) 
Databases with results from experimental studies; 2) Accumulated knowledge for structural 
characteristics (alerts) that can indicate the presence of hazards and other properties, and 3) 
Apparatus to estimate missing experimental values. 

It is important to remember that the 3 main features of Toolbox are: 1) Identification of relevant 
structural characteristics and potential mechanism or mode of action of a target chemical, 2) 
Identification of other chemicals that have the same structural characteristics and/or 
mechanism or mode of action, and 3) Use of existing experimental data to fill data gap(s). 

The Toolbox workflow is a sequence of modules; 1) input, 2) profiling, 3) endpoints, 4) 
category definition, 5) data gap filling, and 6) reporting. The aim of the module “Filling Data 
Gap” is to give access to three different data gap filling tools; 1) Read-across, 2) Trend 
analysis, and 3) QSAR models. Read-across and trend analysis both use the available results 
in the category data matrix to fill a data gap. QSAR models gives access to a library of QSAR 
models which have been integrated into the Toolbox. With the module “Report”, the user can 
generate reports on any of the predictions performed with the Toolbox. The Toolbox contains a 
number of predefined report templates as well as a template editor with which a user-defined 
template can be formatted. 

Version 3.2 of the Toolbox, released at the end phase 2 developments in November 2012, 
includes, in addition to a number of general improvements to previous versions, the ability for 
direct data exchange with IUCLID 5.5. The Toolbox provides a module for the applications of 
adverse outcome pathways (AOPs) to chemical category formation. This pathway approach is 
based on the concept that toxicity results from a chemical first reaching and then interacting 
with an initial key target (e.g., membrane, receptor) in the organism; this is defined as the 
primary molecular initiating event. Further from this primary interaction is a series of other key 
events; all such key events can be profiled in an AOP workflow within the Toolbox and linked 
to databases within the Toolbox which have data from test methods that quantify the AOP-
specific key events.  

Reference: www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm 

http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm
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CRAMER DECISION TREE 

Methodology: Expert System (decision tree) based on structural alerts and expert knowledge 

Area of Applicability: Food, drug, cosmetics, pesticides, biocides 

Brief Description: The Cramer decision tree is probably the most commonly used approach 
for classifying and ranking chemicals on the basis of their oral toxicity. It consists of 33 
questions. Each 'yes' or 'no' answer leads to a further question, or to the final classification into 
one of the three classes:  

Class I: Substances with simple chemical structures and for which efficient modes of 
metabolism exist, suggesting a low order of oral toxicity.  

Class II: Substances which possess structures that are less innocuous than class I 
substances, but do not contain structural features suggestive of toxicity like those substances 
in class III.  

Class III: Substances with chemical structures that permit no strong initial presumption of 
safety or may even suggest significant toxicity or have reactive functional groups. 

The logic of the sequential questions was based on the then available knowledge on toxicity 
and on how chemical structures are metabolised in mammalian metabolic pathways. The 
questions relate mostly to chemical structure, but natural occurrence in the body and in food 
are also taken into consideration. The decision tree is intended for use with all ingested, 
structurally-defined organic substances.  

Cramer Decision Tree was first described by Cramer et al (1978). It is now implemented in 
Toxtree and OECD QSAR Toolbox. The approach has been evaluated by JRC (Lapenna & 
Worth, 2011). It’s use is recommended by EFSA in its opinion on TTC, with the 
recommendation that Cramer class II compounds should be treated as class III  (EFSA 2012). 
It is also recommended by the European Commission’s non-food scientific committees in their 
opinion on TTC, again with the caveat that Cramer class II compounds should be treated as 
class III (EC, 2012). It is widely used for the assessment and prioritisation of low level 
contaminants that are not subject to regulatory reporting requirement (e.g. contaminants in 
food and drinking water, metabolites and degradates of pesticide actives, etc). 

Based on a survey of Toxtree/ Cramer users by the JRC (Lapenna et al., 2011), 
recommendations were made to address the following limitations: 

Many of the original Cramer rules are written in a confusing and interdependent way, which 
leads to difficulties in rationalisation of the predictions. They should be rewritten in a clearer 
way, possibly with modification and re-ordering. Two of the rules are not based on chemical 
features, but simply make reference to look-up lists of chemicals (Q1, normal body 
constituents; Q22, common food components). These two questions could either be omitted, 
or the lists of chemicals extended with e.g. recently authorised food additives after peer-
reviewing. The assessment of whether specified substances can be “generally regarded as 
safe” should be carried out at a different step in the overall TTC assessment scheme. Some 
rules make ambiguous references to chemical features (e.g. steric hindrance) which need to 
be clarified and revised. 
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BENIGNI-BOSSA RULE BASE 

Methodology: Expert System based on structural alerts and QSAR for genotoxicity and 
carcinogenicity 

Area of Applicability: Food, Drug, Cosmetics, Industrial Chemicals 

Brief Description: The Benigni-Bossa rule base makes generic predictions of both the 
genotoxic and non-genotoxic carcinogenicity potential of chemicals, based on the rules 
published in the EC report (Benigni et al., 2008: The Benigni/Bossa rulebase for mutagenicity 
and carcinogenicity – a module of Toxtree). The present list of structural alerts (over 30) refers 
mainly to genotoxic carcinogenicity, and also includes a number of structural alerts for 
potential non-genotoxic carcinogens. In addition to the alerts, the rule base includes optional 
QSAR models for: 

i) mutagenic activity in Salmonella typhimurium TA100 strain (Ames test) of aromatic 
amines (QSAR6), and alpha,beta-unsaturated aldehydes (QSAR13), and  

ii) carcinogenicity in rodents of aromatic amines (QSAR8).  

The underlying mechanism(s) for triggering of an alert for genotoxic carcinogenicity are not 
clearly defined, as these may include different possible mechanisms of genotoxicity (e.g. 
Ames mutagenicity, chromosomal aberration, chromosomal instability, etc.) which may be 
linked to carcinogenicity.  

The Benigni-Bossa rule base was first described in JRC report (Benigni et al., 2008). QMRF 
for the rule base are available in the JRC QSAR database 
(http://qsardb.jrc.ec.europa.eu/qmrf/). It is implemented in Toxtree and OECD QSAR Toolbox, 
and used in the Kroes et al TTC decision tree which is implemented in Toxtree. The rule base 
is evaluated by JRC in a study for EFSA (Worth et al, 2010a, 2010b). It has also been 
evaluated in scientific literature by Hillebrecht et al. (2011); and Bakhtyari et al. (2013). 
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CASE-ULTRA (VERSION 1.4.7.0) 

Methodology: Molecular fragment-based, QSAR expert system that generates predictive 
models automatically by using machine learning techniques from training data sets of non-
congeneric compounds associated with biological/toxicological data 

Area of Applicability: food, drug, cosmetics, pesticides, biocides 

Brief Description: CASE-Ultra (version 1.4.7.0) is the latest generation Windows based 
program from MultiCASE Inc. (www.multicase.com), which is mainly influenced by MCASE 
(Multiple Computer Automated Structure Evaluation) methodology (previously known as 
CASE, MC4PC and CaseTox). The program can be used to estimate the toxicities of organic 
chemicals, and to construct new QSAR models (modules). It is a molecular fragment-based, 
QSAR expert system that generates predictive models automatically by using machine 
learning techniques from training data sets of non-congeneric compounds associated with 
biological/toxicological data. - CASE-Ultra first examines SMILES codes of active chemicals in 
the training set and breaks them into all possible linear or branched (non-hydrogen) atom 
molecular fragments -, then identifies a set of structural alerts that are statistically related to 
the activity. These fragments are labelled as positive alerts or biophores. The positive alerts 
are the main building blocks of the QSAR model and are responsible for identifying active 
chemicals during prediction. The significance of each fragment towards activity is determined 
using a combination of two-objective criteria comprised of the Shannon’s entropy as a fitness 
measure and the number of the active training set molecules containing this fragment. A set of 
top fragments (based on the aforesaid two-objective criteria) is selected in order to cover all 
the active chemicals of the training set. In addition, deactivating alerts are also developed and 
selected using a similar process but by scanning inactive chemicals and finding fragments that 
occur mainly in inactive chemicals. CASE-Ultra then calculates various descriptors for the 
training set chemicals that include logP, water solubility, molar refractivity, surface area 
descriptors, vapour pressure, Gasteiger charges, E-State descriptors, fragment descriptors 
and others. Once the final sets of the positive and deactivating alerts are identified as well as 
QSAR descriptors are calculated, CASE-Ultra attempts to build separate local QSARs for each 
positive alert using a stepwise regression method in order to explain the variation in activity 
within the training set chemicals covered by that alert. It has a fully automated procedure for 
calculating the predictive performance of the QSAR models that computes LMO and LOO 
cross-validation statistics (Matthews and Contrera, 1998; Chakravarti et al., 2012; Saiakhov et 
al., 2013). 

During CASE-Ultra prediction from a particular model, a test chemical is scanned through the 
list of the model’s positive and deactivating alerts and if no positive alerts could be identified, 
the test chemical is considered to have no evidence of activity and is presumed to be inactive. 
The presence of a deactivating alert along with a positive alert also predicts the test chemical 
as inactive. In general, a test chemical is predicted active if it contains either one or more 
positive alerts. However, this active prediction can be changed if the local QSAR of the 
positive alert(s) modifies the prediction. On the contrary, if a test chemical contains a positive 
alert that is present in just one or two active training set chemicals (low statistical confidence 
and also no local QSAR); the prediction is considered as inconclusive. The program also 
identifies unusual features/fragments in test chemicals that do not match the training data 
(unknown structural fragments) and thus explains the domain of applicability (DoA) for overall 
model. A test chemical is considered as an out of the DoA if it has three or more unknown 
structural fragments. The prediction coverage of the test set is defined as the percentage of 
the test chemicals as predicted either an active or inactive (Chakravarti et al. 2012). CASE 
Ultra is used to predict a single test chemical or a very large test set chemicals (in batch 
mode) and the results can be exported in the form of a report with varying levels of details. 
This program provides the following information/options to the users: (i) details about the 
model, (ii) alerts – statistical significance, average activity, molecules containing particular alert 
and active molecules containing particular alert, (iii) QSAR equation(s), (iv) validation 

http://www.multicase.com/
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statistics, (v) training set chemicals – except proprietary chemicals, (vi) option to add more 
chemicals to the training set, reprocess, and revalidate the model, and so on. The current 
version of the CASE-Ultra has more than 450 modules that have been undergone internal 
validation. The models cover various areas of toxicology and pharmacology that includes the 
followings: Acute toxicity, ADME, Adverse effects in humans, allergies, antibacterial, anti-HIV, 
carcinogenicity, cytotoxicity, developmental toxicity, eco-toxicity, enzyme inhibition, genetic 
toxicity, teratogenicity, etc.  

CASE-Ultra has been evaluated in scientific literature (Saiakhov, et al. 2013; Chakravarti, et al. 
2012; Matthews, et al. 2008; Matthews and Contrera, 1998). 
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LEADSCOPE MODEL APPLIER (LSMA; VERSION 1.7.4-1) 

Methodology: Molecular fragment based QSAR system 

Area of Applicability: Food, drug, cosmetics, pesticides, biocides 

Brief Description: Leadscope Model Applier (LSMA; version 1.7.4-1) is a latest version 
Windows based and commercially available program of Leadscope, Inc. 
(www.leadscope.com). It is a molecular fragment based QSAR system that uses chemo-
informatics approach and 2D features to evaluate chemical compounds and their likelihood to 
associate with a modeled toxicity endpoint. It must be noted that this program is used only for 
the toxicity prediction from the pre-developed QSAR models already in the system and cannot 
be used to construct a QSAR model. However, QSAR models can be developed by using 
other program called the Leadscope Enterprise (LSE; version 3.1.1). LSE classifies chemical 
structures using a library of more than 27,000 predefined sub-structures (finger prints) that 
represent functional groups, heterocycles and pharmacophores organized in a chemical 
hierarchy that serves as a knowledge-base to facilitate compound grouping. LSE has a QSAR 
model builder that uses partial logistic regression (PLR) algorithm, 2D structural features and 
eight calculated molecular descriptors in order to develop classification models. It has a fully 
automated procedure for calculating the predictive performance of QSAR models in random 
LMO and LOO cross-validation experiments. The DoA of a QSAR model is defined by 
analyzing the similarity of structural features between the test chemical and the training data 
set chemicals (Cross et al., 2003; Yang et al., 2004; Matthews et al., 2008). 

The current version of the LSMA program provides more than 90 modules in various areas of 
toxicology that covered under following toxicity suites: developmental toxicity, genetic toxicity, 
human adverse cardiological effects, human adverse hepatobiliary effects, human adverse 
urinary effects, neurotoxicity, reproductive toxicity, rodent carcinogenicity, etc. During LSMA 
prediction from a particular model, program compares the structural features of the training 
data set with the features of test chemicals, and then identifies and reports the prediction for 
test chemicals including the number of test chemicals that cannot be predicted and are not 
within the DoA of the model. The prediction coverage of the test set is defined as the 
percentage of the test chemicals as predicted either an active or inactive. The LSMA program 
is used to predict a single test chemical or a very large test set chemicals (in batch mode) and 
the results can be exported in the form of a report with varying levels of details including 
prediction explanation. This program provides the following information of a particular model 
and about the test chemical prediction results to the users: (i) model descriptions including 
validation results, (ii) highlights the number of chemicals with a positive predicted probability of 
>= 0.5, (iii) 0/1 distribution of the training set i.e. percentage of training set chemicals having 
the feature that are zero and those that are one, (iv) probability distribution of model results for 
those training set chemicals having particular feature, (v) prediction calls for test chemical(s) 
including positive, negative, not-in-domain or missing descriptors, (vi) explanation of the 
prediction result(s), and so on. 

The programme has been evaluated in scientific literature (Matthews, et al. 2008; Frid and 
Matthews, 2010). 
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ADMET PREDICTORTM 6 (VERSION 6.5.0013) 

Methodology: In silico predictor for estimation of absorption, distribution, metabolism, 
elimination, and toxicity (ADMET) properties of molecules based on molecular structures and 
structural descriptors. 

Area of Applicability: Food, drug, cosmetics, pesticides, biocides 

Brief Description: ADMET Predictor
TM

 6 (version 6.5.0013) is the latest version of Windows 
program available commercially from Simulations Plus, Inc. (www.simulations-plus.com). 
ADMET Predictor is designed to estimate absorption, distribution, metabolism, elimination, and 
toxicity (ADMET) properties of molecules based on their molecular structures, employing 
individual models for specific ADMET endpoints. It is a molecular descriptor-based QSAR 
system that calculates 2D (and 3D, if 3D structures are input) molecular and atomic-level 
descriptors of test molecules and provides prediction of various ADMET endpoints that include 
(i) Physico-Chemical and Biopharmaceutical Module: ionization constants (pKa), human 
effective permeability in jejunum (Peff), MDCK apparent permeability (Papp), corneal 
permeability, human skin permeability, solubility, logP, logD, molal volume, blood-brain barrier 
permeation, human plasma protein binding, human volume of distribution, blood-to-plasma 
concentration ratio, inhibition of HIV integrase, etc., (ii) Metabolism Module: likely sites of 
metabolic attack by five CYP P450 enzymes, classification of a molecule whether it will be a 
substrate of one of the five CYP P450 enzymes, Michaelis-Menten kinetic (Km and Vmax) 
constants for hydroxylation reaction catalyzed by five CYP P450 enzymes, intrinsic clearance 
(CLint) resulting from metabolic activity of five CYP P450 enzymes, classification of a molecule 
whether it will be glucuronidated by one of the nine isoforms of the Uridine 5'-Diphosphate-
Glucuronosyl-transferase (UGT), etc., (iii) Toxicity Module: estrogen and androgen receptor 
toxicities (qualitative and quantitative), maximum recommended therapeutic dose (MRTD), 
acute toxicity, carcinogenicity, mutagenic chromosomal aberrations, phospholipidosis, 
reproductive/developmental toxicity, skin sensitization, hERG-encoded K+ channel affinity, 
human liver adverse effects of drugs, etc., (iv) Simulation Module: fraction absorbed in human 
(by simulation at 1 mg, 10 mg, 100 mg, and 1000 mg dose levels) and optimal dose in human 
(in mg) matching desired efficacious concentration in blood plasma, (v) Customizable ADMET 
Risk Filters: risk of low absorption from an oral dose, risk of mutagenicity, risk of overall 
toxicity, risk of metabolic liability, and global ADMET risk summarizing all available ADMET 
endpoints prediction in one score (ADMET Risk). The ADMET Predictor automatically 
determines whether a test compound is within the Domain of Applicability (DoA), or outside the 
DoA, of the model by incorporating minimum and maximum values of each of their descriptor 
in the training set plus a 10% tolerance. If a test molecule is outside the DoA of the molecular 
descriptors then the ADMET Predictor evaluates it as outside the DoA and color codes 
(magenta color) in the prediction. This result is also exported separately in terms of binary 
values (1s and 0s, where 1 represents outside the DoA and 0 represents within the DoA). 

ADMET-Predictor also has a sub-program called the ADMET Modeler™, which provides 
model-building functionality in order to create both classification and regression models using 
a collection of methodologies such as artificial neural network ensemble (ANNE) and support 
vector machine (SVM) are used for both the classification and regression analysis, while 
kernel partial least square (KPLS) and multiple linear regression (MLR) methods are used only 
for the regression analysis (Agoram et al., 2001; Bolger et al., 2009; Fraczkiewicz et al., 2009; 
Choi et al., 2013). 

The programme has been evaluated in scientific literature by Choi et al. (2013). 
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PERCEPTA 

Methodology: Molecular-descriptor and molecular-fragment based QSAR system that 
generates predictive models automatically by using Pharma Algorithms from training data sets 
of non-congeneric compounds associated with physical/ biological/toxicological data. 

Area of Applicability: Food, drug, cosmetics, pesticides, biocides 

Brief Description: Percepta is a Windows based computational program that is available 
commercially by Advanced Chemistry Development Labs, Inc. (ACD/Lab; www.acdlabs.com). 
It is a molecular-descriptor and molecular-fragment based QSAR system that is designed to 
estimate certain physicochemical and ADME properties, and toxicity endpoints using a 
collection of (Q)SAR modules. These modules have been built using the Algorithm Builder™ 
software developed by Pharma Algorithms (now merged with ACD Labs). Prediction modules 
of Percepta are actually a bundle of four suites such as ACD/Impurities Package for Toxicity, 
ACD/PhysChem Suite, ACD/ADME Suite, and ACD/Tox Suite. The program calculates 
fragment, molecular and atomic descriptors of test molecules using a variety of input 
parameters (e.g. name, 2D structure, or SMILES) and provides prediction results that include: 

 PhysChem Modules: Absolv (hydrogen bonding acidity, hydrogen bonding basicity, 
polarity/polarizability, partitioning coefficient between gas phase and hexadecane, 
McGowan volume and excessive molar fraction), aqueous solubility, boiling point, logP, 
logD, pKa, sigma, and other PhysChem descriptors (e.g. H-bond donors and acceptors, 
freely rotatable bonds, density, molar refractivity, molar volume, parachor, rule-of-5, 
surface tension, etc.); 

 ADME Modules: Blood-brain barrier permeation, cytochrome P450 inhibitors, cytochrome 
P450 substrates, distribution, maximum recommended daily dose, oral bioavailability, 
passive absorption, P-gp specificity, regioselectivity of metabolism; and 

 Toxicity Modules: Acute toxicity, aquatic toxicity, endocrine system disruption, 
genotoxicity, health effects, hERG inhibition, eye and skin irritation. 

Users can evaluate predictions either in a single structure or spreadsheet view. Spreadsheet 
view offers the additional capability to view predictions from all available modules in one 
screen, and a number of graphing, sorting, and filtering tools to rank compounds and aid 
evaluation. In this program, each module provides both a probability of the test chemical being 
active or inactive, as well as a reliability index (RI) for the prediction, which evaluates 
respective confidence in the prediction. The RI includes an assessment of the DoA as well as 
the relative confidence in the probability of the prediction (Lanevskij et al., 2009; Lanevskij et 
al., 2011; Reynolds et al., 2009). 

The programme has been evaluated in scientific literature (Lanevskij, et al. 2009; Reynolds, et 
al. 2009; Lanevskij, et al. 2011). 
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SYMMETRY® 

Methodology: Descriptors-based, QSAR system that generates predictive models 
automatically from training data sets of non-congeneric compounds associated with 
biological/toxicological data by using three different algorithms, such as, logistic regression, 
similarity regression and combined regression. 

Area of Applicability: Food, drug, cosmetics, pesticides, biocides 

Description: Symmetry® is the next-generation Windows-based QSAR software that replaces 
BioEpisteme® and is available from the Prous Institute for Biomedical Research, Barcelona, 
Spain (www.prousresearch.com).This program employs a bi-functional system that includes a 
module for test set predictions and a module for QSAR model development. For descriptor 
calculations, the program utilizes the FDA Mold2 descriptor package 
(http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/ucm144528.htm) that 
calculates a diverse set of 777 two-dimensional molecular descriptors from chemical structure 
information. Symmetry employs three different algorithms for the development of classification 
models, such as, logistic regression, similarity regression and combined regression. The 
combined algorithm works comparable well, which involves both the logistic regression and 
molecular descriptor similarity. The program utilizes three different methods for the selection of 
descriptors, such as, correlation-based feature selection (CFS), genetic algorithm for CFS, and 
wrapper descriptor selection. Duplicates are removed automatically from the training set, while 
outliers are eliminated at >3 inter-percentile range from lower and upper percentiles. 
Symmetry employs a synthetic minority over-sampling technique (SMOTE) that uses the 
molecular structures trained with the minority class to generate synthetic structures labeled 
with that class until the number of positives and negatives is equal. SMOTE method is useful 
when there are imbalances in the classes in the training data set (e.g., more negatives than 
positives) and therefore QSAR model development may either be very difficult or not possible. 
The program automatically performs 10-fold cross-validation and provides validation measures 
of the performance from the cross-validation, once the model is completed (Choi et al., 2013).  

Internal validation report provides details about the QSAR model(s), molecular descriptors 
used in constructing the model(s), ratio of positive and negative compounds with their 
individual percentage, graphical representation of the predicted molecules (true positive, true 
negative, false positive and false negative), model statistics (specificity, sensitivity, 
concordance, Matthews correlation coefficient, and so on), and comparison between 
prediction result and actual value for each of the training set compound. Once a model is built 
and found to have acceptable internal validation performance, the external validation 
experiment can be performed using a new or different data set (not available in the training 
set) to see the predictive ability of the model. Symmetry has two types of toxicological suites: 
(a) preclinical safety suite (62 models) includes rodent carcinogenicity, reproductive toxicity, 
fetal developmental toxicity, fetal survival toxicity, behavioral toxicity, genetic toxicity and (b) 
the human adverse effects/clinical suite (24 models) includes adverse cardiological effects, 
hepatobiliary effects and urinary system effects in humans. The other important models are 
the molecular mechanism of action (MOA) models that predict the interaction of molecular 
entities with molecular targets in the areas of type 2 diabetes, cancer, nervous system 
diseases and behaviour and mental disorders. Symmetry also has pharmacokinetics and 
disease-based models. 

The programme has been evaluated in scientific literature by Choi et al. (2013). 
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SCIQSAR 

Methodology: Descriptors-based, QSAR system that generates predictive models 
automatically from training data sets of non-congeneric compounds associated with 
biological/toxicological data by using six different algorithms. 

Area of Applicability: Food, drug, cosmetics, pesticides, biocides 

Description: SciQSAR (formerly MDL-QSAR) is Windows-based QSAR software that is 
currently available by SciMatics Inc. (www.scimatics.com). The program provides over 240 
physicochemical, electro-topological E-state, connectivity and other descriptors; a selection of 
6 different algorithms for structure similarity searching; a genetic algorithm for descriptor 
selection; and a variety of statistical tools including the capability to perform parametric and 
non-parametric discriminant analysis. The best SciQSAR model can be obtained by searching 
for the best subset of descriptors and optimization of the discriminant analysis parameters. 
The selection of the type and optimal parameters for a model with highest accuracy can be 
achieved by trying various combinations of model building parameters. The performance of a 
model is evaluated using an automated validation process within the program that calculates 
the prediction error rate in the training set (i.e., probabilities of misclassification) (Matthews et 
al., 2008; Contrera, 2013). 

The programme has been evaluated in scientific literature (Mathews, et al. 2008; Contrera, 
2013). 
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DEREK NEXUS 

Methodology: SAR; Expert System 

Area of Applicability: Food/ Drug/ Cosmetics/ Industrial Chemicals 

Brief Description: Derek Nexus is used to assess the toxicity of a wide range of chemical classes, 
including food, drug, cosmetic, and industrial chemicals, and the system provides predictions for 
over 50 toxicological endpoints, including mutagenicity, chromosome damage, carcinogenicity, skin 
sensitisation and reproductive toxicity.  

The broad applicability of Derek Nexus is supported by the wide range of organisations that 
currently use the software, including agrochemical, cosmetic, food and nutrition, petrochemical, 
pharmaceutical and tobacco companies. 

The performance of Derek has been evaluated, and in many cases these evaluations have been 
published in peer-reviewed journals. Examples include heat generated food contaminants [Cotterill 
et al], flavour chemicals [Ono et al], chemicals released from plastic food packaging [Rothenbacher 
and Schwack], pharmaceutical impurities [Sutter et al, Dobo et al], pharmaceuticals [Snyder, 
Mathews et al 2009], cosmetic ingredients [Goebel et al, Suarez-Rodriquez], pesticides [Crettaz 
and Benigni] and industrial chemicals [Hayashi et al, Rybacka et al]. 

Derek Nexus is a rule-based expert system for the prediction of toxicity. Its knowledge base is 
composed of alerts, examples and reasoning rules which may each contribute to the predictions 
made by the system. Each alert in Derek describes a chemical substructure believed to be 
responsible for inducing a specific toxicological outcome (often referred to as a toxicophore). Alerts 
are derived by experts, using toxicological data and information regarding the biological mechanism 
of action. Where relevant, metabolism data may be incorporated into an alert, enabling the 
prediction of compounds which are not directly toxicity but are metabolised to an active species. 
The derivation of each alert is described in the alert comments along with supporting references 
and example compounds where possible. By reporting this information to the user, Derek provides 
highly transparent predictions.  

There are currently over 800 alerts in Derek Nexus covering over 50 toxicological endpoints 
(including  mutagenicity, chromosome damage, carcinogenicity, reproductive toxicity and skin 
sensitisation). The system provides species-specific predictions for humans, other mammals and 
bacteria. 

When a query compound is submitted to Derek, its structure is analysed for any toxicophores which 
match alerts within the knowledge base. In addition, certain physicochemical properties (e.g. logKp) 
are calculated for the query structure and these values are checked against rules within the 
knowledgebase. The reasoning engine within Derek then assesses the matched alerts and 
reasoning rules to generate the likelihood of toxicity for a specified species [Judson et al 2003]. 
Likelihood in Derek is expressed using one of nine confidence levels [Judson et al 2013]. These 
are: certain, probable, plausible, equivocal, doubted, improbable, impossible, open and 
contradicted. If a query compound matches no alerts or reasoning rules in the knowledge base, the 
program displays a message of “nothing to report”. 

The use of Derek Nexus for the assessment of a range of toxicological endpoints is described in 
numerous publications, including those cited in this report. In addition, QSAR Model Reporting 
Format (QMRF) reports are available describing Derek’s methodology in specific relation to the 
endpoints of mutagenicity, chromosome damage, carcinogenicity and skin sensitisation. These 
reports are available in the Joint Research Centre (JRC) QSAR model database [JRC]. 

Limitations: As with other statistical models and expert systems, Derek Nexus predictions are 
restricted to chemicals that are structurally similar to those used to develop the model. In practice, if 
a query chemical activates an alert in Derek it can be considered to be within the ‘applicability 
domain’ of the model. With this in mind, in order to ensure that Derek is applicable to a wide range 
of chemicals, an effort is made to use all available public data when developing alerts. In addition, 
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whenever possible, proprietary data provided by Derek users are also used to develop alerts: this 
enables the system to describe the activity of chemical classes for which public data are not 
available. 

While Derek Nexus contains alerts for over 50 toxicological endpoints, these endpoints differ with 
respect to their level of development. The well-developed endpoints in Derek are mutagenicity, 
chromosome damage, carcinogenicity and skin sensitisation, each of which has more than 50 
associated alerts in the knowledge base. 

If a compound does not activate an alert or reasoning rule in Derek, a result of ‘nothing to report’ is 
presented to the user. This can be interpreted as a negative prediction or that the query compound 
is outside the domain of the model. Which of these is more appropriate may depend on the 
endpoint of interest. For the endpoints of mutagenicity and skin sensitisation, which feature multiple 
alerts believed to cover most of the mechanisms and chemical classes responsible for activity, 
‘nothing to report’ may be extrapolated to a negative prediction. For other endpoints, it is necessary 
for the user to use expert judgement on the potential inactivity of the query compound. 

Recognized in regulation: Lhasa Limited works closely with regulators to ensure that Derek 
Nexus continues to meet regulatory requirements for a variety of use-cases. Lhasa Limited is 
currently involved in collaborative research with the US Food and Drug Association (under a 
Research Collaboration Agreement) and the National Institute of Health Sciences (NIHS) in Japan. 

Derek Nexus predictions are accepted by major regulatory agencies, such as the FDA and the 
European Medicines Agency (EMA), for the assessment of genotoxic impurities. It is of note that 
under the draft ICH M7 guidelines for the assessment of pharmaceutical impurities, the results from 
two in silico systems may be used to negate the need for any further in vitro or in vivo testing [ICH 
M7 Draft Consensus Guideline]. 

Derek predictions for multiple toxicological endpoints may be used in support of regulatory 
submissions for the High Production Volume Challenge (HPV) Program and the Registration, 
Authorization and Evaluation of Chemicals (REACH) regulatory framework. The suitability of 
several in silico systems, including Derek Nexus, to support REACH submissions has recently been 
evaluated [Rybacka et al]. 

Validated in research publications: The performance of Derek has been evaluated by several 
regulatory agencies, including the FDA [Mathews et al, 2008, Mathews et al 2009] and the NIHS 
[Ono et al, Hayashi et al], along with various governmental organisations, commercial organisations 
and academic institutions. 

These validations have been performed for several toxicity endpoints using both public and 
proprietary datasets. Some recent studies are listed below, categorised according to the endpoint 
assessed. 

 Mutagenicity: Hansen et al, Hillebrecht et al, Snyder, Dobo et al, Valerio, Sutter et al, Ono et 
al, Judson et al 2013, Rybacka et al 

 Chromosome damage: Judson et al 2013 

 Carcinogenicity: Judson et al 2013, Mathews et al 2008, Cotterill et al, Crettaz and Benigni, 
Ryback et al 

 Skin sensitisation: Judson et al 2013, Teubner et al, Rorije et al, Goebel et al, Langton et al, 
Patlewicz et al 

 Hepatotoxicity: Greene et al, Mathews et al 2009 

 Reproductive toxicity: Rybacka et al 

Formal validation of individual alerts in Derek Nexus: For the endpoints of mutagenicity, 
chromosome damage, carcinogenicity and skin sensitisation, the positive predictivity (number of 
compounds correctly predicted as positive / total number of compounds predicted as positive) of 
individual alerts is analysed against appropriate datasets of experimental results and reported in the 
alert validation comments. This information allows the user to assess the robustness of an 
individual alert. 
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TOPKAT® 

Methodology: TOPKAT is a data driven system based on experimental data from open literature and 
statistically robust and validated QSAR relationships. 

Area of Applicability: General chemicals  

Brief Description: A statistically based program, TOPKAT® (Toxicity Prediction by Komputer Assisted 
Technology) is used in the assessment of acute and chronic systemic toxicity. The program is 
structure-based property-sensitive ‘similarity’ measure utilizing a set of descriptors includes Kier and 
Hall electrotopological states (e-states), shape, symmetry, molecular weight, and the octanol-water 
partition coefficient. Thus, the TOPKAT ® ‘similarity’ reflects similarity of descriptors between two 
molecules with respect to a specific property or endpoint. (Demchuk 2011) 

Available toxicological endpoints: (Accelrys web site)   

 Rodent Carcinogenicity (as a sex and species specific endpoint based on either the NTP 
dataset or the FDA dataset) 

 Weight of Evidence Carcinogenicity 

 Carcinogenic Potency TD50 

 Ames Mutagenicity 

 Developmental Toxicity Potential (DTP) 

 Rat Oral LD50 

 Rat Maximum Tolerated Dose 

 Rat Inhalational LC50 

 Rat Chronic Oral LOAEL 

 Skin Irritancy 

 Skin Sensitization (GPMT) 

 Ocular Irritancy 

 Aerobic Biodegradability 

 Fathead Minnow LC50 

 Daphnia magna EC50 

 VlogP 

TOPKAT modules provide qualitative (yes/ no) output for rodent carcinogenicity, Ames mutagenicity, 
developmental toxicity, skin sensitization, skin irritancy, ocular irritation, and aerobic biodegradability. 
The quantitative models provide point estimates for the lowest observed adverse effect level, oral rat 
lethal dose, lethal concentration, maximum tolerated dose, and octanol-water partition coefficient (V 
log P) along with 95% confidence limits for each.   

A number of studies have shown that TOPKAT gives reasonable predictions for a range of chemicals 
including pesticides and industrial chemicals (Lapenna, 2010).  

In 1996, the FDA’s Office of Cosmetics and Colors (OCAC) conducted a pilot project to evaluate 
toxicity predictions for a set of cosmetic ingredients, color additives, and food additive ingredients in six 
of the TOPKAT toxicity modules: carcinogenicity, mutagenicity, developmental toxicity potential, skin 
irritation, eye irritation, and oral LD50. For this, structurally-defined single ingredients were encoded via 
SMILES. Literature toxicity study data quality was assessed according to FDA “Redbook II” criteria for 
direct food additives and color additives, and only Red Book II “grade A” studies (i.e., those met at 
least 80% of the proposed guidelines for a particular toxicity test), were selected from the literature for 
inclusion in the evaluation test sets with TOPKAT prediction modules. It is worth mentioning that no 
Red Book II guidelines existed for skin or eye irritation.   

The experimental data were compared for concordance with the TOPKAT predictions, and 
determination of TOPKAT prediction module performance was assessed in terms of specificity and 
sensitivity. Confidence in the TOPKAT predictions was evaluated via chemical structure similarity 
search and degree of coverage in “Optimum Prediction Space (OPS)”.   
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FDA found that:  

 TOPKAT 1.5 and 3.0 software offers several toxicity prediction modules highly relevant to 
cosmetic ingredient safety assessment.  However, some chemical structure assessments 
(long-chain aliphatics, polymers and complex ring structures) were not well covered by certain 
TOPKAT modules.  

 Model-dependent TOPKAT predictions may be outside the OPS for one endpoint, but within 
the OPS for another. 

 Many of the chemicals selected from literature sources were found to be already present in the 
TOPKAT model databases, and TOPKAT predictions were often found to be outside the OPS. 

 FDA’s experience with TOPKAT 3.0 and 1.5 toxicity endpoint prediction modules were 
summarized in an internal OCAC “Beta Test Final Evaluation Report” (1998),  and a 1997 
publication (see, ATLA 25, 223.252, 1997). 

From this evaluation and other studies, the use of  TOPKAT, as with other computational methods, 
should primarily be for screening and internal decision-making, and any information generated by 
these methods should form part of a more comprehensive package in a ‘weight of evidence’ approach. 

References:  

 Silvia Lapenna, Mojca Fuart-Gatnik and Andrew Worth, “JRC Scientific and Technical Reports, 
“Review of QSAR Models and Software Tools for predicting Acute and Chronic Systemic Toxicity”, 
2010 

 Accelrys Inc. found at  http://accelrys.com/mini/toxicology/predictive-functionality.html) 

 Eugene Demchuk, Patricia Ruiz, Selene Chou, Bruce A. Fowler, “SAR/QSAR methods in public 
health practice”, Toxicology and Applied Pharmacology 254 (2011) 192–197 

http://accelrys.com/mini/toxicology/predictive-functionality.html
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TOXICITY ESTIMATION SOFTWARE TOOL (T.E.S.T.) V4.0 

Methodology: T.E.S.T is an Expert system that estimates toxicity values using an ensemble of 

QSARs. The user inputs the desired structure and the toxicity is estimated using one of seven 
available methodologies. The program requires no further external input as the required descriptors 
are calculated within the program. 

Area of Applicability: General chemicals  

Brief Description: The ensemble of QSARs within T.E.S.T are: 

 Hierarchical method: The toxicity for a given query compound is estimated using the weighted 
average of the predictions from several different models. The different models are obtained by 
using Ward’s method to divide the training set into a series of structurally similar clusters. A 
genetic algorithm based technique is used to generate models for each cluster. The models are 
generated prior to runtime. 

 FDA method: The prediction for each test chemical is made using a new model that is fit to the 
chemicals that are most similar to the test compound. Each model is generated at runtime. 

 Single model method: Predictions are made using a multilinear regression model that is fit to the 
training set (using molecular descriptors as independent variables) using a genetic algorithm 
based approach. The regression model is generated prior to runtime. 

 Group contribution method: Predictions are made using a multilinear regression model that is fit 
to the training set (using molecular fragment counts as independent variables). The regression 
model is generated prior to runtime. 

 Nearest neighbor method: The predicted toxicity is estimated by taking an average of the 3 
chemicals in the training set that are most similar to the test chemical. 

 Consensus method: The predicted toxicity is estimated by taking an average of the predicted 
toxicities from the above QSAR methods (provided the predictions are within the respective 
applicability domains). 

 Random forest method: The predicted toxicity is estimated using a decision tree which bins a 
chemical into a certain toxicity score (i.e. positive or negative developmental toxicity) using a set 
of molecular descriptors as decision variables. The random forest method is currently only 
available for the developmental toxicity endpoint. 

T.E.S.T allows to estimate the value for several toxicity end points: 

1. 96 hour fathead minnow LC50  

2. 48 hour Daphnia magna LC50 

3. 48 hour Tetrahymena pyriformis IGC50  

4. Oral rat LD50  

5. Bioaccumulation factor  

6. Developmental toxicity 

7. Ames mutagenicity 

T.E.S.T. also allows to estimate several physical properties, such as Normal boiling point; Density; 
Flash point; Thermal conductivity; Viscosity; Surface tension; Water solubility; Vapor pressure; 
Melting point. 

While each method has its own advantages and disadvantages, providing multiple prediction 
methodologies can provide higher confidence in estimates where predicted toxicities are fairly similar 
from different methods or alternatively allow the user to select estimates from methods the research 
may have more confidence based on personal experience. 

Validation results are provided for each end point against the seven methods utilized. (EPA 2102): 
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 The Rat LD50 the prediction was the weakest endpoint with no single model or group fitting 
the entire training set of 7413 chemicals. The authors suggest this may not be surprising 
since this endpoint has a higher degree of experimental uncertainty and has been shown to 
be more difficult to model than other endpoints. 

 In general, the prediction statistics for the physical properties were best and considered by 
the authors to be ‘excellent’.  

References:  

U.S. Environmental Protection Agency, User’s Guide for T.E.S.T. (version 4.1), 2012   
http://www.epa.gov/nrmrl/std/qsar/TEST-user-guide-v41.pdf 
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VEGA 

Methodology: A platform to provide (Q)SARs and other in silico tools for safety assessment of 
chemical substances  

Area of Applicability: General chemicals  

Brief Description:  

The VEGA platform has been developed by the Istituto di Ricerche Farmacologiche Mario Negri in 
Milan with a number of collaborating organisations and through a series of EU-funded projects. The 
models used in VEGA for carcinogenicity and mutagenicity originated in the EU project CAESAR, 
(www.caesar-project.eu/), with subsequent improvements and additions from contributing 
organisations. The models were developed in line with the OECD principles using high quality 
datasets with the aim to use them for regulatory purposes. VEGA platform also incorporates some of 
the models in the US-EPA Toxicity Estimation Software Tool; T.E.S.T 
(www.epa.gov/nrmrl/std/qsar/qsar.html).  

In addition to mutagenicity and carcinogenicity, VEGA also provides (Q)SAR models for 
developmental toxicity, skin sensitisation, as well as ecotox endpoints (e.g. Daphnia magna LC50 and 
Fathead minnow LC50), environmental endpoints (bioconcentration factor, ready biodegradability), 
and models for calculation of physicochemical parameters (logP).  

VEGA also allows user to build own (Q)SAR models using SARpy for classification models, and 
CORAL (CORrelation And Logic) for regression based models. In addition, it provides 
chemoinformatics tools for SMARTS matching, similarity calculation, etc.  

VEGA models generate transparent, reproducible, and verifiable results. The system comprises a 
series of tools that have been optimised so that the results obtained for a target compound can also 
be related to those for other structurally related compounds. VEGA also has a comprehensive 5-point 
validation system that allows the user to assess the reliability of predictions.  

 

Reference:  

The Vega Platform www.vega-qsar.eu. 

. 

 

 

 

 

 

 

  

http://www.epa.gov/nrmrl/std/qsar/qsar.html
http://www.vega-qsar.eu/
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THRESHOLD OF TOXICOLOGICAL CONCERN (TTC) 

Methodology: The Threshold of Toxicological Concern (TTC) approach is a structure-activity 
relationship (SAR) tool 

Area of Applicability: Food, drugs, cosmetics and industrial chemical. 

Brief Description: The Threshold of Toxicological Concern (TTC) approach is a structure-activity 
relationship (SAR) tool which originated as a “Threshold of Regulation” for the safety assessment of 
components of food-contact materials that pose a negligible risk and for which toxicological data are 
unavailable, whereby a substance of known chemical structure and for which valid intake (i.e. chronic 
exposure) estimates are available is compared to a group of structurally-related compounds. 

The compounds used for comparison are grouped in order of increasing toxicity potency in “Cramer 
classes” labelled I, II and III, and their classification is based on a detailed, 33-question “decision 
tree”.  Substances included in Class I have relatively simple chemical structures and possess well-
known metabolic pathways and innocuous end-products, thereby suggesting a low likelihood of 
toxicity.  Substances in Class II have intermediate structural complexity, may contain reactive 
moieties, but lack the structural attributes generally associated with toxicity.  Substances included in 
Class III have relatively complex chemical structures that permit no strong initial presumption of 
safety, or may even suggest significant toxicity (Cramer et al., 1978; Munro et al., 1996).  Heavy 
metals (e.g. arsenic, cadmium, lead and mercury), proteins, aflatoxin-like compounds, N-nitroso 
compounds, azoxy compounds, polyhalogenated-dibenzo-p-dioxins, -dibenzofurans and -biphenyls 
are explicitly excluded from the three classes used for TTC evaluations and require substance-
specific data (Kroes et al., 2004). 

Using the aforementioned classification method and the toxicological data for 613 substances, a TTC 
was defined for each Cramer structural class by plotting the cumulative distribution of the no-
observed-effect levels (NOELs) for the substances and by fitting a log-normal distribution (Munro et 
al., 1996).  The 5th percentile value for each NOEL distribution was chosen, because it provides a 
95% confidence that the NOEL of substances of unknown toxicity within the same Cramer class 
would be greater or equal to that of the 5th percentile and, therefore, of a lower toxicity potency.  The 
5th percentile values were divided by an uncertainty factor of 100 and then adjusted to a 60-kg body 
weight to determine TTC values for each Cramer class.  

TTC values are defined as the maximum oral doses for which there is no appreciable risk to human 
health following daily exposure over a lifetime.  Although the TTC concept was originally developed 
for the safety assessment of dietary chemical contaminants, it may also be suitable to assess or 
prioritize the requirement for toxicity testing and assessment for chemicals that are present in 
cosmetic ingredients or final formulations, including contaminants or degradation products (Kroes et 
al., 2007).  In fact, a preliminary analysis of the applicability of the TTC approach to cosmetic and 
personal care products has already been undertaken as part of the COSMOS project.  It was 
concluded that the current TTC approach is broadly applicable to cosmetics, but that improvements 
(e.g. quality control of core datasets, moderate alterations/additions of Cramer classification scheme, 
and development of clear guidance for its application) could be made (Worth et al., 2012). 

One possible in silico approach applicable to cosmetic products involves the use of ToxTree, an 
open-source software commissioned by the European Commission Joint Research Centre (JRC) 
which estimates toxic hazard of chemical substances, to rapidly estimate the Cramer class of the 
chemical structure of interest and to determine the associated TTC value.  The chronic systemic dose 
for this chemical can then be modelled (e.g. using ConsExpo), and the outcome of the chosen 
scenario can be compared to the TTC value.  If the chronic systemic dose is lower than the TTC 
value, toxicity can be excluded solely based on this assessment.  When the modelled chronic 
systemic dose is greater than the TTC value, toxicity cannot be excluded, and a higher tier approach 
is needed to refine the model.  Higher tier approaches are presented in other sections of this 
document.  

The robustness of the Threshold of Toxicological Concern (TTC) approach has been confirmed for 
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rodent carcinogens (Cheeseman et al., 1999).  The robustness of TTC values for various specific 
non-cancer endpoints has been reviewed in details by the European Food Safety Authority (EFSA, 
2012).  As for any modelling approach, both the selection of a suitable TTC value and the reliability of 
the structural alert scheme depend on the robustness and comprehensiveness of the underlying 
database (MST, 2011).  Theoretically, the TTC approach could be used to assess the safety of any 
chemical, if the chemical structure is known and human exposure can be accurately and robustly 
estimated. 

The TTC approach, initially introduced as a “Threshold of Regulation”, has gained broad international 
recognition (e.g. US EPA; Danish Ministry of the Environment (MST);  European Commission) and 
has been reviewed and improved through peer-reviewed scientific publications (e.g. Cheeseman et 
al., 1999; Cramer et al., 1978; Kroes et al., 2004, 2007; Munro et al., 1996). 
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EU1 - COSMOS 

Project description: 

The COSMOS project (http://www.cosmostox.eu/), jointly funded by the European Commission and 
Cosmetics Europe, is developing publicly available computational workflows based on the integrated use 
of open-access and open-source models for the prediction of repeated dose toxicity (Anzali et al, 2012). 
This includes: a) the establishment of an inventory of cosmetic substances (including identifiers and 
chemical structures) and a repeat dose toxicity database (including oral and dermal data); b) the 
development of novel ways of establishing thresholds of toxicological concern (TTC), based on innovative 
chemistry based prediction approaches and biokinetic modelling. 

Key reference: 

Anzali S, Berthold MR, Fioravanzo E, Neagu D, Péry A, Worth AP, Yang C, Cronin MTD & Richarz A-N 
(2012) Development of computational models for the risk assessment of cosmetic ingredients. IFSCC 
Magazine 15 (4): 249-255. Available at:  http://www.cosmostox.eu/publications/printed/ 

Timeframe:  January 2011-December 2015  

Contact:  Prof. Mark Cronin, Liverpool John Moores University, UK 

 

EU2 - ANTARES 

Project description: 

ANTARES (http://www.antares-life.eu/) was an EC (DG Environment) funded project which has assessed 
the validation characteristics of a range of (Q)SAR models for the ecotoxicological, toxicological and 
environmental endpoints that are relevant to REACH. Human health endpoints considered were acute 
oral toxicity (rodent LD50), mutagenicity (Ames test) and carcinogenicity (rodent bioassay). A wide range 
of software tools were evaluated, including both commercial and non-commercial tools, and taking 
applicability domain considerations into account wherever possible. 

Timeframe:  January 2010-December 2012  

Contact:  Prof. Emilio Benfenati, Mario Negri Institute, Milan, Italy 

 

Canada – Repeated-dose dermal toxicity  
 
Project description:  

The objective of this project was to determine whether the Cramer classification scheme can be applied 
to systemic toxicity resulting from dermal exposure.  For this purpose, a reference database containing 
NO(A)EL values for systemic toxicity subsequent to dermal administration in various mammalian models 
(i.e. rats, mice and rabbits) was assembled by Health Canada, whereby 52 of the 140 substances (37%) 
are known to be used in cosmetic products available on the Canadian market.  The project demonstrated 
that, although repeated-dose dermal toxicity data are not readily available, the robust relationship 
between oral and dermal NOAELs in the Cramer classification scheme supports the use of the oral 
Threshold of Toxicological Concern (TTC) for cosmetic products intended for dermal application.  
 
Key reference:  

Faith. M. Williams, A. Chiodini, G. Barrett, M.T.D, Cronin, R.H. Guy, N. Montiero-Riviere, J. Plautz, C. 
Roper, H. Rothe, D. Rua, J. Westerhout , C. Yang (in preparation).  Application of a decision tree with 
systemic exposure prediction to oral TTC for  the safety evaluation of cosmetic chemicals (tentative title). 

http://www.cosmostox.eu/
http://www.cosmostox.eu/publications/printed/
http://www.antares-life.eu/
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Timeframe:     Manuscript in preparation.  
Contact:         Gordon Barrett, Health Canada, Canada. 
 

BRAZIL – RENAMA 

Project description: 

The  National Network on Alternative Methods (RENAMA – Rede Nacional de Métodos Alternativos), 
created in 2012 by a Ministry of Science, Technology and Innovation act, promotes initiatives to develop 
the use of alternative methods in Brazil and efforts to validate then in the regulatory scenario. Recently, 
RENAMA worked with the Brazilian Biosciences National Laboratory (LNBio – Laboratório Nacional de 
Biociências) selecting proposals of in silico tests focused on the prediction of toxicological and 
pharmacokinetic properties of molecules to be used as drugs or cosmetics. These projects are still to be 
initiated, but represent a strong effort to promote the consolidation of in silico approaches in Brazil.  

 

Key Reference (Portuguese only): 

http://renama.org.br/ 

http://lnbio.cnpem.br/wp-content/uploads/2014/01/EDITAL-RENAMA_LNBio.pdf 

 


