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These notes are based on a course given to Masters students in Cambridge. Their
scope is the basic theory of Schramm–Loewner evolution, together with some underlying
and related theory for conformal maps and complex Brownian motion. The structure
of the notes is influenced by our attempt to make the material accessible to students
having a working knowledge of basic martingale theory and Itô calculus, whilst keeping
the prerequisities from complex analysis to a minimum.
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1 Riemann mapping theorem

We review the notion of conformal isomorphism of complex domains and discuss the ques-
tion of existence and uniqueness of conformal isomorphisms between proper simply con-
nected complex domains. Then we illustrate, by a simple special case, Loewner’s idea of
encoding the evolution of complex domains using a differential equation.

1.1 Conformal isomorphisms

We shall be concerned with certain sorts of subset of the complex plane C and mappings
between them. A set D ⊆ C is a domain if it is non-empty, open and connected. We say
that D is simply connected if every continuous map of the circle {|z| = 1} into D is the
restriction of a continuous map of the disc {|z| 6 1} into D. A convenient criterion for
a domain D ⊆ C to be simply connected is that its complement in the Riemann sphere
C ∪ {∞} is connected. A domain is proper if it is not the whole of C. The open unit disc
D = {|z| < 1}, the open upper half-plane H = {Re(z) > 0}, and the open infinite strip
S = {0 < Im(z) < 1} are all examples of proper simply connected domains.

A holomorphic function f on a domain D is a conformal map if f ′(z) 6= 0 for all z ∈ D.
We call a bijective conformal map f : D → D′ a conformal isomorphism. In this case, the
image D′ = f(D) is also a domain and the inverse map f−1 : D′ → D is also a conformal
map. Every conformal map is locally a conformal isomorphism. The function z 7→ ez is
conformal on C but is not a conformal isomorphism on C because it is not injective. We
note the following fundamental result. A proof may be found in [1].

Theorem 1.1 (Riemann mapping theorem). Let D be a proper simply connected domain.
Then there exists a conformal isomorphism φ : D → D.

We shall discuss ways to specify a unique choice of conformal isomorphism φ : D → D
or φ : D → H in the next two sections. In general, there is no usable formula for φ in
terms of D. Nevertheless, we shall want to derive certain properties of φ from properties
of D. We shall see that Brownian motion provides a useful tool for this.

1.2 Möbius transformations

A Möbius transformation is any function f on C ∪ {∞} of the form

f(z) =
az + b

cz + d
(1)

where a, b, c, d ∈ C and ad − bc 6= 0. Here f(−d/c) = ∞ and f(∞) = a/c. Möbius
transformations form a group under composition. A Möbius transformation f restricts to
a conformal automorphism of H if and only if we can write (1) with a, b, c, d ∈ R and
ad− bc = 1. For θ ∈ [0, 2π) and w ∈ D, define Φθ,w on D by

Φθ,w(z) = eiθ
z − w
1− w̄z .
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Then Φθ,w is a conformal automorphism of D and is the restriction of a Möbius transfor-
mation to D. Define Ψ : H→ D by

Ψ(z) =
i− z
i+ z

.

Then Ψ is a conformal isomorphism and Ψ extends to a Möbius transformation. The
following lemma is a basic result of complex analysis. We shall give a proof in Section 2.

Lemma 1.2 (Schwarz lemma). Let f : D → D be a holomorphic function with f(0) = 0.
Then |f(z)| 6 |z| for all z. Moreover, if |f(z)| = |z| for some z 6= 0, then f(w) = eiθw for
all w, for some θ ∈ [0, 2π).

Corollary 1.3. Let φ be a conformal automorphism of D. Set w = φ−1(0) and θ =
arg φ′(w). Then φ = Φθ,w. In particular φ is the restriction of a Möbius transformation to
D and extends to a homeomorphism of D̄.

Proof. Set f = φ ◦ Φ−1
0,w. Then f is a conformal automorphism of D and f(0) = 0. Pick

u ∈ D \ {0} and set v = f(u). Note that v 6= 0. Now, either |f(u)| = |v| > |u| or
|f−1(v)| = |u| > |v|. In any case, by the Schwarz lemma, there exists α ∈ [0, 2π) such that
f(z) = eiαz for all z, and so φ = f ◦ Φ0,w = Φα,w. Finally, Φ′α,w(w) = eiα/(1 − |w|2) so
α = θ.

Corollary 1.4. Let D be a proper simply connected domain and let w ∈ D. Then there
exists a unique conformal isomorphism φ : D → D such that φ(w) = 0 and arg φ′(w) = 0.

Proof. By the Riemann mapping theorem there exists a conformal isomorphism φ0 : D →
D. Set v = φ0(w) and θ = − arg φ′0(w) and take φ = Φθ,v ◦ φ0. Then φ : D → D is
a conformal isomorphism with φ(w) = 0 and arg φ′(w) = 0. If ψ is another such, then
f = ψ◦φ−1 is a conformal automorphism of D with f(0) = 0 and arg f ′(0) = 0, so f = Φ0,0

which is the identity function. Hence φ is unique.

1.3 Martin boundary

The Martin boundary is a general object of potential theory1. We shall however limit our
discussion to the case of harmonic functions in a proper simply connected complex domain
D. In this case, the Riemann mapping theorem, combined with the conformal invariance
of harmonic functions, allows a very simple approach. Make a choice of conformal isomor-
phism φ : D → D. We can define a metric dφ on D by dφ(z, z′) = |φ(z) − φ(z′)|. Then
dφ is locally equivalent to the original metric but possibly not uniformly so. Say that a
sequence (zn : n ∈ N) in D is D-Cauchy if it is Cauchy for dφ. Since every conformal
automorphism of D extends to a homeomorphism of D̄, this notion does not depend on
the choice of φ. Write D̂ for the completion of D with respect to the metric2 and define
the Martin boundary δD = D̂ \ D. The set D̂ does not depend on the choice of φ and

1See for example [2]
2This is the set of equivalence classes of D-Cauchy sequences z = (zn : n ∈ N), where z ∼ z′ if

(z1, z
′
1, z2, z

′
2, . . . ) is also a D-Cauchy sequence.
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Figure 1: Two distinct points of δD and their images under ϕ.

nor does its topology. This construction ensures that the map φ extends uniquely to a
homeomorphism D̂ → D̄. It follows then that every conformal isomorphism ψ of proper
simply connected domains D → D′ has a unique extension as a homeomorphism D̂ → D̂′.
We abuse notation in writing φ(z) for the value of this extension at points z ∈ δD. Write
∂D for the boundary of D as a subset of C, that is the set of limit points of D in C,
which in general is not identifiable with δD. For b ∈ δD, we say that a simply connected
subdomain N ⊆ D is a neighbourhood of b in D if {z ∈ D : |z − φ(b)| < ε} ⊆ φ(N) for
some ε > 0.

A Jordan curve is a continuous injective map γ : ∂D → C. Say D is a Jordan domain
if ∂D is the image of a Jordan curve. It can be shown in this case that any conformal
isomorphism D → D extends to a homeomorphism D̄ → D̄, so we can identify δD with ∂D.
On the other hand, a sequence (zn : n ∈ N) in H is H-Cauchy if either it converges in C or
|zn| → ∞ as n→∞. Thus we identify δH with R∪{∞}. For the slit domain D = H\(0, i]
and, for z ∈ [0, i), the sequences (z + (1 + i)/n : n ∈ N) and (z + (−1 + i)/n : n ∈ N)
are D-Cauchy but are not equivalent, so their equivalence classes z+ and z− are distinct
Martin boundary points.

Corollary 1.5. Let φ be a conformal automorphism of H. If φ(∞) =∞, then φ(z) = σz+µ
for all z ∈ H, for some σ > 0 and µ ∈ R. If φ(∞) =∞ and φ(0) = 0, then φ(z) = σz for
all z ∈ H, for some σ > 0.

Proof. Set µ = φ(0) and σ = φ(1)− φ(0). Since Ψ ◦ φ ◦Ψ−1 is a conformal automorphism
of D, we know by Corollary 1.3 that φ is a Möbius transformation of H, so φ(z) = (az +
b)/(cz + d) for all z ∈ H, for some a, b, c, d ∈ R with ad− bc = 1. This formula extends by
continuity to δH = R ∪ {∞}. So we must have c = 0, µ = b/d and σ = a/d > 0.

Corollary 1.6. Let D be a proper simply connected domain and let b1, b2, b3 ∈ δD, ordered
anticlockwise. Then there exists a unique conformal isomorphism φ : D → H such that
φ(b1) = 0, φ(b2) = 1 and φ(b3) =∞.
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Proof. By the Riemann mapping theorem there exists a conformal isomorphism φ0 : D →
D. Set θ = π − arg φ0(b3) and take φ1 = Ψ−1 ◦ Φθ,0 ◦ φ0. Then φ1 : D → H is a conformal
isomorphism, and Φθ,0 ◦ φ0(b3) = −1 so φ1(b3) = ∞. Now φ1(b1) < φ1(b2) so there exist
σ ∈ (0,∞) and µ ∈ R such that σφ1(b1)+µ = 0 and σφ1(b2)+µ = 1. Set φ(z) = σφ1(z)+µ
then φ : D → H is a conformal isomorphism satisfying the given constraints. If ψ is another
such then f = ψ ◦ φ−1 is a conformal automorphism of H with f(0) = 0, f(1) = 1 and
f(∞) =∞. Hence f(z) = z for all z ∈ H and so φ is unique.

Note that in both Corollary 1.4 and Corollary 1.6, we obtain uniqueness of the conformal
map by the imposition of three real-valued constraints.

1.4 SLE(0)

This section and the next are for orientation and do not form part of the theoretical
development. Consider the (deterministic) process (γt)t>0 in the closed upper half-plane H̄
given by

γt = 2i
√
t.

This process belongs to the family of processes (SLE(κ) : κ ∈ [0,∞)) to which these notes
are devoted, corresponding to the parameter value κ = 0. Think of (γt)t>0 as progressively
eating away the upper half-plane so that the subdomain Ht = H \Kt remains at time t,
where Kt = γ(0, t] = {γs : s ∈ (0, t]}. There is a conformal isomorphism gt : Ht → H given
by

gt(z) =
√
z2 + 4t

which has the following asymptotic behaviour as |z| → ∞

gt(z) = z +
2t

z
+O(|z|−2).

In particular gt(z)− z → 0 as |z| → ∞. As we shall show in Proposition 4.3, there is only
one conformal isomorphism Ht → H with this last property. Thus we can think of the
family of maps (gt)t>0 as a canonical encoding of the path (γt)t>0.

Consider the vector field b on H̄ \ {0} defined by

b(z) =
2

z
=

2(x− iy)

x2 + y2
.

Fix z ∈ H̄ \ {0} and define

ζ(z) = inf{t > 0 : γt = z} =

{
y2/4, if z = iy

∞, otherwise.

Then ζ(z) > 0, and z ∈ K̄t if and only if ζ(z) 6 t. Set zt = gt(z). Then for t < ζ(z)

żt =
2√

z2
t + 4t

= b(zt) (2)
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and, if ζ(z) < ∞, then zt → 0 as t → ζ(z). Thus (gt(z) : z ∈ H̄ \ {0}, t < ζ(z)) is
the (unique) maximal flow of the vector field b in H̄ \ {0}. By maximal we mean that
(zt : t < ζ(z)) cannot be extended to a solution of the differential equation on a longer
time interval.

1.5 Loewner evolutions

Think of SLE(0) as obtained via the associated flow (gt)t>0 by iterating continuously a
map gδt, which nibbles an infinitesimal piece (0, 2i

√
δt] of H near 0. Charles Loewner, in

the 1920’s, studied complex domains Ht = H \ γ(0, t] for more general curves (γt)t>0, by a
similar continuous iteration of conformal maps, obtained now by considering the flow of a
time-dependent vector field H̄ of the form

b(t, z) =
2

z − ξt
, t > 0, z ∈ H.

Here, (ξt : t > 0) is a given continuous real-valued function, which is called the driving
function or Loewner transform of the curve γ. We shall study this flow in detail below,
showing that it always provides a construction of a family of domains (Ht : t > 0), and
sometimes also a path γ. Note that the flow lines (gt(z))t>0 for SLE(0) separate, left
and right, each side of the singularity at 0, with the path (γt)t>0 growing up between the
left-moving flow lines and the right-moving ones. In the general case, assuming that the
qualitative picture remains the same, when we move the singularity point ξt to the left, we
may expect that some left-moving flow lines are deflected to the right, so the curve (γt)t>0

turns to the left. Moreover, the wilder the fluctuations of (ξt)t>0, the more convoluted we
may expect the resulting path (γt)t>0 to be.

Oded Schramm, in 1999, realized that for some conjectured conformally invariant scal-
ing limits (γt)t>0 of planar random processes, with a certain spatial Markov property, the
process (ξt)t>0 would have to be a Brownian motion, of some diffusivity κ. The asso-
ciated processes (γt)t>0 were at that time totally new and have since revolutionized our
understanding of conformally invariant planar random processes.
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2 Brownian motion and harmonic functions

We first prove a conformal invariance property of complex Brownian motion, due to Lévy.
Then we prove Kakutani’s formula relating Brownian motion and harmonic functions, and
deduce from this the maximum principle for harmonic functions and the maximum modulus
principle for holomorphic functions. This used to prove the Schwarz lemma.

2.1 Conformal invariance of Brownian motion

Theorem 2.1. Let D and D′ be domains and let φ : D → D′ be a conformal isomorphism.
Fix z ∈ D and set z′ = φ(z). Let (Bt)t>0 and (B′t)t>0 be complex Brownian motions starting
from z and z′ respectively. Set

T = inf{t > 0 : Bt 6∈ D}, T ′ = inf{t > 0 : B′t 6∈ D′}.

Set T̃ =
∫ T

0
|φ′(Bt)|2dt and define for t < T̃

τ(t) = inf

{
s > 0 :

∫ s

0

|φ′(Br)|2dr = t

}
, B̃t = φ(Bτ(t)).

Then (T̃ , (B̃t)t<T̃ ) and (T ′, (B′t)t<T ′) have the same distribution.

Figure 2: A Brownian motion stopped upon leaving the unit square, and its image under
a conformal transformation

Proof. Assume for now that D is bounded and φ has a C1 extension to D̄. Then T < ∞
almost surely and we may define a continuous semimartingale3 Z and a continuous adapted

3Here and below, where we use notions depending on a choice of filtration, such as martingale or
stopping time, unless otherwise stated, these are to be understood with respect to the natural filtration
(Ft)t>0 of (Bt)t>0.
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process A by setting4

Zt = φ(BT∧t) + (Bt −BT∧t), At =

∫ T∧t

0

|φ′(Bs)|2ds+ (t− (T ∧ t)).

Moreover, almost surely, A is an (increasing) homeomorphism of [0,∞), whose inverse
is an extension of τ . Denote the inverse homeomorphism also by τ . Write φ = u + iv,
Bt = Xt + iYt and Zt = Mt + iNt. By Itô’s formula, for t < T ,

dMt =
∂u

∂x
(Bt)dXt +

∂u

∂y
(Bt)dYt, dNt =

∂v

∂x
(Bt)dXt +

∂v

∂y
(Bt)dYt

and so, using the Cauchy–Riemann equations,

dMtdMt = |φ′(Bt)|2dt = dAt = dNtdNt, dMtdNt = 0.

On the other hand, for t > T ,

dMt = dXt, dNt = dYt, dMtdMt = dt = dAt = dNtdNt, dMtdNt = 0.

Hence (Mt)t>0, (Nt)t>0, (M2
t −At)t>0, (N2

t −At)t>0 and (MtNt)t>0 are all continuous local
martingales. Set M̃s = Mτ(s) and Ñs = Nτ(s). Then, by optional stopping, (M̃s)s>0,

(Ñs)s>0, (M̃2
s − s)s>0, (Ñ2

s − s)s>0 and (M̃sÑs)s>0 are continuous local martingales for
the filtration (F̃s)s>0, where F̃s = Fτ(s). Define (Z̃s)s>0 by Z̃s = M̃s + iÑs. Then, by

Lévy’s characterization of Brownian motion, (Z̃s)s>0 is a complex (F̃s)s>0-Brownian motion
starting from z′ = φ(z). Now B̃t = Z̃t for t < T̃ and, since φ is a bijection, T̃ = inf{t > 0 :
Z̃t 6∈ D′}. So we have shown the claimed identity of distributions.

In the cases where D is not bounded or φ fails to have a C1 extension to D̄, choose a
sequence of bounded open sets Dn ↑ D with D̄n ⊆ D for all n. Set D′n = φ(Dn) and set

Tn = inf{t > 0 : Bt 6∈ Dn}, T ′n = inf{t > 0 : B′t 6∈ D′n}.

Set T̃n =
∫ Tn

0
|φ′(Bt)|2dt. Then T̃n ↑ T̃ and T ′n ↑ T ′ almost surely as n→∞. Since φ is C1

on D̄n, we know that (T̃n, (B̃t)t<T̃n) and (T ′n, (B
′
t)t<T ′n) have the same distribution for all n,

which implies the desired result on letting n→∞.

Corollary 2.2. Let D be a proper simply connected domain. Fix z ∈ D and let (Bt)t>0

be a complex Brownian motion starting from z. Set T (D) = inf{t > 0 : Bt 6∈ D}. Then
Pz(T (D) <∞) = 1.

Proof. There exists a conformal isomorphism φ : D → D. By conformal invariance of
Brownian motion (φ(Bt) : t < T (D)) is a time-change of Brownian motion run up to the
finite time when it first exits from D. Hence |φ(Bt)| > 1/2 eventually as t ↑ T (D). But
(Bt)t>0 is neighbourhood recurrent so visits the open set {z ∈ D : |φ(z)| < 1/2} at an
unbounded set of times almost surely. Hence T (D) <∞ almost surely.

4Whereas Itô calculus localizes nicely with respect to stopping times, and we exploit this, Lévy’s
characterization of Brownian motion is usually formulated globally. The extension of Z and A beyond the
exit time T exploits the robustness of Itô calculus to set up for an application of Lévy’s characterization
without localization.
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2.2 Kakutani’s formula and the circle average property

A real-valued function u defined on a domain D ⊆ C is harmonic if u is twice continuously
differentiable on D with

∆u =

(
∂2

∂x2 +
∂2

∂y2

)
u = 0

everywhere on D. Harmonic functions can often be recovered from their boundary values
using Brownian motion.

Theorem 2.3 (Kakutani’s formula). Let u be a harmonic function defined on a bounded
domain D and having a continuous extension to the closure D̄. Fix z ∈ D and let (Bt)t>0

be a complex Brownian motion starting from z. Set T (D) = inf{t > 0 : Bt 6∈ D}. Then

u(z) = Ez(u(BT (D))).

Proof. Suppose for now that u is the restriction to D of a C2 function on C. Denote this
function also by u. Define (Mt)t>0 by the Itô integral

Mt = u(z) +

∫ t

0

∇u(Bs)dBs.

Then (Mt)t>0 is a continuous local martingale. By Itô’s formula, u(Bt) = Mt for all t 6 T .
Hence the stopped process MT is uniformly bounded and, by optional stopping,

u(z) = M0 = Ez(MT ) = Ez(u(BT (D))).

For each n ∈ N, the restriction of u to Dn = {z ∈ D : dist(z, ∂D) > 1/n} has a C2

extension to C, regardless of whether u itself does. The preceding argument then shows
that u(z) = Ez(u(BT (Dn))) for all z ∈ Dn. Now T (Dn) ↑ T (D) < ∞ as n → ∞ almost
surely. Since B is continuous and u extends continuously to D̄, we obtain the desired
identity by bounded convergence on letting n→∞.

In fact, the validity of Kakutani’s formula, even just in the special case where D is a
disc centred at z, turns out to be a useful characterization of harmonic functions. We will
use the following result in Section 3. A proof may be found in [2].

Proposition 2.4. Let D be a domain and let u : D → [0,∞] be a measurable function.
Suppose that u has the following circle average property: for all z ∈ D and any r ∈
(0, d(z, ∂D)), we have

u(z) =
1

2π

∫ 2π

0

u(z + reiθ)dθ.

Then, either u(z) =∞ for all z ∈ D, or u is harmonic.

11



2.3 Maximum principle

Kakutani’s formula implies immediately that a harmonic function u on a bounded domain
D, which extends continuously to D̄, cannot exceed the supremum of its values on the
boundary ∂D. Moreover, as we now show, a harmonic function cannot achieve a maximum
value on its domain, unless it is constant.

Theorem 2.5 (Maximum principle). Let u be a harmonic function defined on a domain
D. Suppose there exists a point z ∈ D such that u(w) 6 u(z) for all w ∈ D. Then u is
constant.

Proof. It will suffice to consider the case where u has a finite supremum value m, say, on
D. Consider the set D0 = {z ∈ D : u(z) = m}. Then D0 is relatively closed in D, since
u is continuous. On the other hand, if z ∈ D0, then for ε > 0 sufficiently small, the disc
B(z, ε) of radius ε and centre z is contained in D. So, by Kakutani’s formula

m = u(z) =
1

2π

∫ 2π

0

u(z + εeiθ)dθ.

Since u is continuous and bounded above by m, this implies that w ∈ D0 whenever |w−v| =
ε. Hence D0 is open. Since D is connected, D0 can only be non-empty if it is the whole of
D.

By the Cauchy–Riemann equations, the real and imaginary parts of a holomorphic
function are harmonic. Hence, if f is holomorphic on a bounded domain D and extends
continuously to D̄, then f may be recovered from its boundary values, just as in Kakutani’s
formula: for all z ∈ D

f(z) = Ez(f(BT (D)))

and we have the estimate
|f(z)| 6 sup

w∈∂D
|f(w)|.

Then a small variation on the argument for the maximum principle leads to the following
result.

Theorem 2.6 (Maximum modulus principle). Let f be a holomorphic function defined on
a domain D. Suppose there exists a point z ∈ D such that |f(w)| 6 |f(z)| for all w ∈ D.
Then f is constant.

We can now prove Lemma 1.2.

Proof of the Schwarz lemma. Let f : D → D be a holomorphic function with f(0) =
0. Consider the function g(z) = f(z)/z. By Taylor’s theorem, g is analytic and hence
holomorphic in D. Fix z ∈ D and r ∈ (|z|, 1). Then

|g(z)| 6 sup
|w|=r
|g(w)| 6 1

r
.
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Letting r → 1, we get |g(z)| 6 1 and hence |f(z)| 6 |z| for all z ∈ D. If |f(z)| = |z| for
some z 6= 0, then |g(z)| = 1, say g(z) = eiθ. Then g is constant on D by the maximum
modulus principle, so f(w) = eiθw for all w ∈ D.
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3 Harmonic measure and the Green function

3.1 Harmonic measure

Harmonic measures are objects of potential theory. Here, we will consider harmonic mea-
sures in the particular context of planar domains, introducing them through their interpre-
tation as the hitting distributions of Brownian motion. We further confine our attention
to the case of proper simply connected domains. Let D be such a domain and let δD be
its Martin boundary. Let (Bt)t>0 be a complex Brownian motion starting from z ∈ D and
consider the first exit time T = T (D) as in Section 2.2. We have shown that T < ∞
almost surely. In the case D = D and z = 0, we know that Bt converges in D̄ as t ↑ T ,
with limit BT uniformly distributed on the unit circle. In general, there exists a conformal
isomorphism φ : D → D taking z to 0. Then, by conformal invariance of Brownian motion,
as t ↑ T , Bt converges in D̂ to a limit B̂T ∈ δD. Denote by hD(z, .) the distribution of B̂T

on δD. We call hD(z, .) the harmonic measure for D starting from z. By the argument
used for Kakutani’s formula, if u is a harmonic function on D which extends continuously
to D̂, then we can recover u from its boundary values by5

u(z) = Ez(u(B̂T )) =

∫
δD

u(s)hD(z, ds).

We can compute hD(z, .) as follows. By conformal invariance of Brownian motion, for
s1, s2 ∈ δD and θ1, θ2 ∈ [0, 2π) with θ1 6 θ2 and φ(s1) = eiθ1 and φ(s2) = eiθ2 , we have

hD(z, [s1, s2]) = Pz(B̂T ∈ [s1, s2]) = P0(BT (D) ∈ [eiθ1 , eiθ2 ]) =
θ2 − θ1

2π
.

We often fix an interval I ⊆ R and a parametrization s : I → δD of the Martin boundary.
We may then be able to find a density function hD(z, .) on I such that∫ t2

t1

hD(z, t) dt = hD(z, [s(t1), s(t2)])

If we determine θ as a continuous function on I such that eiθ(t) = φ(s(t)), then6

hD(z, t) =
1

2π

dθ

dt
.

The following two examples are not only for illustration but will also be used later.

Example 3.1. Take D = D and parametrize the boundary as (eit : t ∈ [0, 2π)). Fix
w = x+ iy ∈ D and recall from Section 1.3 the conformal automorphism Φ0,w on D taking

5This is not Kakutani’s formula, unless D is a Jordan domain. For example, if D = H \ (0, i], then
the requirement that u extend continuously to D̂ imposes that u have a limit at ∞ but allows different
boundary values on each side of the slit [0, i).

6Note that the function θ on I is determined uniquely by D and s up to an additive constant.
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w to 0. The boundary parametrizations are then related by eiθ = (eit − w)/(1− w̄eit). On
differentiating with respect to t, we find an expression for dθ/dt, and hence obtain

hD(w, t) =
1

2π

1− |w|2
|eit − w|2 =

1

2π

1− x2 − y2

(cos t− x)2 + (sin t− y)2
, 0 6 t < 2π.

Example 3.2. Take D = H with the obvious parametrization of the boundary by R. Fix
w = x+ iy ∈ H and consider the conformal isomorphism φ : H→ D taking w to 0 given by
φ(z) = (z−w)/(z−w̄). The boundary parametrizations are related by eiθ = (t−w)/(t−w̄),
so

hH(w, t) =
1

π
Im

(
1

t− w

)
=

y

π((t− x)2 + y2)
, t ∈ R.

3.2 An estimate for harmonic functions (?)

We will mark with (?) some sections and proofs which might be omitted on a first reading.
The following lemma allows us to bound the partial derivatives of a harmonic function in
terms of its supremum norm. In conjunction with the Cauchy–Riemann equations, this
will later allow us to deduce estimates on a holomorphic function starting from estimates
on its real part. We present it here to illustrate how explicit calculations of harmonic
measure can be used as a tool to obtain general estimates.

Lemma 3.3. Let u be a harmonic function in D and let z ∈ D. Then∣∣∣∣∂u∂x(z)

∣∣∣∣ 6 4‖u‖∞
π dist(z, ∂D)

.

Proof. It will suffice to show that, for all ε > 0, the estimate holds with 4 replaced by
4(1 + ε). Fix ε > 0. By scaling and translation, we reduce to the case where z = 0 and
dist(0, ∂D) = 1 + ε. Then u is continuous on D̄ so, for z ∈ D,

u(z) =

∫ 2π

0

u(eiθ)hD(z, θ)dθ.

On differentiating the formula for the harmonic density obtained in Example 3.1, we see
that ∇hD(·, θ) is bounded on a neighbourhood of 0, uniformly in θ, with ∇hD(0, θ) =
(cos θ, sin θ)/π. Hence we may differentiate under the integral sign to obtain

∇u(0) =
1

π

∫ 2π

0

u(eiθ)(cos θ, sin θ)dθ.

Then ∣∣∣∣∂u∂x(0)

∣∣∣∣ 6 ‖u‖∞π
∫ 2π

0

| cos θ|dθ =
4‖u‖∞
π

=
4(1 + ε)‖u‖∞
π dist(0, ∂D)

.
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3.3 Dirichlet heat kernel and the Green function

We give a probabilistic definition of these two functions associated to a domainD and derive
some of their properties. This will be used later in our discussion of the Gaussian free field.
It will be convenient to have the following regularity property for exit probabilities of the
Brownian bridge.

Proposition 3.4. Define for t ∈ (0,∞) and x, y ∈ D

πD(t, x, y) = P (Xs ∈ D for all s ∈ [0, t])

where (Xs)06s6t be a Brownian bridge from x to y in time t. Then πD symmetric in its
second and third arguments and is jointly continuous in all three.

Proof. (?) A simple scaling and translation allows us to vary the time and endpoints of
the Brownian bridge. Thus, from a single Brownian bridge (Ws)06s61 in R2 from 0 to 0 in
time 1, we can realise (Xs)06s6t with explicit dependence on t, x and y by

Xs = (1− (s/t))x+ (s/t)y +
√
tWs/t, 0 6 s 6 t.

This makes clear that πD(t, x, y) = πD(t, y, x), since (Ws)06s61 is time-reversible.
Fix ε ∈ (0, 1/2) and define

D(ε) = {z ∈ D : dist(z, ∂D) > ε}, π
(ε)
D (t, x, y) = P (Xs ∈ D for all s ∈ [εt, (1− ε)t]) .

Note that

π
(ε)
D (t, x, y) =

∫
D2

πD((1− 2ε)t, x′, y′)ρ(ε)(x′, y′)dx′dy′

where ρ(ε) is the joint density of (Xεt, X(1−ε)t). Then, for all sequences tn → t, xn → x,
and yn → y, with obvious notation, we have

|Xn
stn −Xst| 6 |xn − x|+ |yn − y|+ |

√
tn −

√
t| sup

06s61
|Ws|

and ρ
(εn)
n → ρ(ε) in L1(D2), where εn ∈ (0, 1/2) is determined by (1 − 2εn)tn = (1 − 2ε)t

for n sufficiently large. Hence

lim inf
n

πD(tn, xn, yn) > πD(ε)(t, x, y)

and
lim sup

n
πD(tn, xn, yn) 6 lim

n
π

(εn)
D (tn, xn, yn) = π

(ε)
D (t, x, y).

But πD(ε)(t, x, y) → πD(t, x, y) and π
(ε)
D (t, x, y) → πD(t, x, y) as ε → 0. Hence πD is

continuous as claimed.
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Define the Dirichlet heat kernel pD on (0,∞)×D ×D and the Green function GD on
D ×D by

pD(t, x, y) = p(t, x, y)πD(t, x, y), GD(x, y) =

∫ ∞
0

pD(t, x, y)dt (3)

where p(t, x, y) = (2πt)−1e−|x−y|
2/(2t). Note that πD(t, x, x)→ 1 as t→ 0, so GD(x, x) =∞

for all x ∈ D. The Green function is related directly to Brownian motion as an expected
occupation density: thus, for all x ∈ D and all non-negative measurable functions f on D,
we have ∫

D

GD(x, y)f(y)dy = Ex
∫ T (D)

0

f(Bt)dt. (4)

This follows from the definition using Fubini’s theorem and is left as an exercise.
Extend GD by 0 outside D × D. Then, for any sequence of domains Dn ↑ D, we

have GDn(x, y) ↑ GD(x, y) for all x, y ∈ D. This follows from the definition by monotone
convergence and is left as an exercise.

We say that a domain D is Greenian if GD(x, y) <∞ for some x, y ∈ D.

Proposition 3.5. Every bounded domain is Greenian. Moreover, for any Greenian domain
D, the Green function GD is finite and continuous on {(x, y) ∈ D ×D : x 6= y}.

Proof. (?) For D bounded, there is a constant λ > 0 such that πD(1, x, y) 6 e−λ for all
x, y ∈ D. Then, by the Markov property, πD(t, x, y) 6 e−λ(t−1) for all t, so pD(t, x, y) 6
eλt−1e−λte−δ

2/(2t) whenever |x − y| > δ. Then, by Proposition 3.4 and dominated conver-
gence, GD is finite and continuous away from the diagonal. In particular D is Greenian.

Fix y ∈ D and choose a sequence of probability density functions fn, with fn supported
in {z ∈ D : |z − y| 6 1/n}. Set gn(x) =

∫
D
GD(x, z)fn(z)dz. Then gn is a finite non-

negative measurable function on D and gn → GD(., y) as n → ∞ locally uniformly on
D \ {y} by continuity. Moreover, using the identity (4) and the strong Markov property,
gn has the circle average property on {z ∈ D : |z − y| > 1/n}. Hence GD(., y) has the
circle average property on D \ {y}.

Now take any domain D, fix y ∈ D and choose bounded domains Dn ↑ D. Then GDn ↑
GD so, by monotone convergence, GD(., y) has the circle average property on D\{y}. Hence
GD(., y) is either identically infinite or harmonic on D \ {y}. Then, if D is Greenian, we
can use symmetry to see that GD is finite and continuous on {(x, y) ∈ D×D : x 6= y}.

Conformal invariance of Brownian motion leads to a simple conformal invariance prop-
erty for the Green function.

Proposition 3.6. Let φ : D → φ(D) be a conformal isomorphism of planar domains.
Then

Gφ(D)(φ(x), φ(y)) = GD(x, y), x, y ∈ D.
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Proof. Since GDn ↑ GD for Dn ↑ D, it will suffice to consider the case where D and φ(D)
are bounded when we know that GD and Gφ(D) are finite and continuous away from the
diagonal. Fix x ∈ D and a non-negative measurable function f on D. Set g = (f ◦ φ)|φ′|2.
Then, by the Jacobian formula,∫

D

Gφ(D)(φ(x), φ(y))g(y)dy =

∫
φ(D)

Gφ(D)(φ(x), w)f(w)dw

= Eφ(x)

∫ T (φ(D))

0

f(Bt)dt = Ex
∫ T (D)

0

g(Bτ )dτ =

∫
D

GD(x, y)g(y)dy.

Hence Gφ(D)(φ(x), φ(y)) = GD(x, y) for all y ∈ D.

For the upper half-plane, we can calculate explicity using the reflection principle

pH(t, x, y) = p(t, x, y)− p(t, x̄, y), x, y ∈ H.

Then the integral (3) can be evaluated, using the formula e−a/t − e−b/t = t−1
∫ b
a
e−x/tdx

and Fubini, to obtain

GH(x, y) =
1

π
log

∣∣∣∣y − x̄y − x

∣∣∣∣ .
Then, by conformal invariance, every proper simply connected domain is Greenian. Also,
by a suitable choice of φ, we get the following simple formula for the Green function of the
unit disc

GD(0, y) = − log |y|
π

, y ∈ D.
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4 Compact H-hulls and their mapping-out functions

A subset K of the upper half-plane H is called a compact H-hull if K is bounded and
H = H \K is a simply connected domain. We shall associate to K a canonical conformal
isomorphism gK : H → H, the mapping-out function of K. At the same time we associate
to K a real constant aK , which we will identify later, in Section 6.2, as the half-plane
capacity of K. These are all basic objects of Loewner’s theory, or more precisely of its
chordal variant, where we consider evolution of hulls in a given domain towards a chosen
boundary point. We shall see later that the theory has a property of conformal invariance
which allows us to reduce the general case to the study of the special domain H with ∞
as the boundary point, which is mathematically most tractable.

K

H = H \K

Figure 3: A compact H-hull.

4.1 Extension of conformal maps by reflection

We start by explaining how a conformal isomorphism φ : D → H can be extended analyt-
ically to suitably regular parts of the boundary ∂D. We have already seen that φ extends
continuously to the Martin boundary but now we want more regularity. The idea is to
reflect the domain across the boundary. Given a proper simply connected domain D ⊆ H,
define

D0 = {x ∈ R : D is a neighbourhood of x in H}, D∗ = D ∪D0 ∪ {z̄ : z ∈ D}.

More generally, for any open set U ⊆ D0, define

D∗U = D ∪ U ∪ {z̄ : z ∈ D}.

As U varies, the sets D∗U are exactly the open sets which are invariant under conjugation
and whose intersection with H is D. Say that a function f ∗ : D∗U → C is reflection-invariant
if

f ∗(z̄) = f ∗(z), z ∈ D∗U .
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Given a continuous function f on D, there is at most one continuous, reflection-invariant
function f ∗ on D∗U extending f . Then f ∗ is the continuous extension by reflection of f .
Such an extension f ∗ exists exactly when f has a continuous extension to D ∪ U which
is real-valued on U . Any continuous extension by reflection of a holomorphic function is
holomorphic, by an application of Morera’s theorem. This is called the Schwarz reflection
principle.

Proposition 4.1. Let D ⊆ H be a simply connected domain. Let I be a proper open subin-
terval of R with I ⊆ D0 and let x ∈ I. Then there exists a unique conformal isomorphism
φ : D → H which extends to a homeomorphism D ∪ I → H ∪ (−1, 1) taking x to 0. In
particular I is naturally identified with an interval of the Martin boundary δD. Moreover
φ extends further to a reflection-invariant conformal isomorphism φ∗ : D∗I → H∗(−1,1).

Proof (?). Note thatD∗I and H∗(−1,1) are proper simply connected domains. By the Riemann
mapping theorem, there exists a unique conformal isomorphism φ∗ : D∗I → H∗(−1,1) with

φ∗(x) = 0 and arg(φ∗)′(x) = 0. Define ρ : D∗I → H∗(−1,1) by ρ(z) = φ∗(z̄). Then ρ is

a conformal isomorphism with ρ(x) = 0 and arg ρ′(x) = 0. Hence ρ = φ∗ and so φ∗ is
reflection-invariant. Then φ∗(I) ⊆ (−1, 1) and (φ∗)−1(−1, 1) ⊆ I, so φ∗(I) = (−1, 1). Now
φ∗(D) is connected and does not meet (−1, 1). Since arg(φ∗)′(x) = 0, by considering a
neighbourhood of x, we must have φ∗(D) ⊆ H. The same argument shows that (φ∗)−1(H) ⊆
D, so φ∗(D) = H. Hence φ∗ restricts to a conformal isomorphism φ : D → H with the
required properties.

On the other hand, any map ψ with these properties has a continuous extension ψ∗ by
reflection to D∗I , which is a bijection to H∗(−1,1) and is holomorphic by the Schwarz reflection

principle. Moreover ψ∗(x) = 0, and arg(ψ∗)′(x) = 0 since ψ∗(I) = (−1, 1). Hence ψ∗ = φ∗

and so ψ = φ.

Proposition 4.2. Let D ⊆ H be a simply connected domain and let φ : D → H be a
conformal isomorphism. Suppose that φ is bounded on bounded sets. Then φ extends by
reflection to a conformal isomorphism φ∗ on D∗.

Proof (?). Fix x ∈ D0 and a bounded open interval I ⊆ D0 containing x. Write φx,I for
the conformal isomorphism obtained in Proposition 4.1. Then f = φ ◦ φ−1

x,I : H → H is a
Möbius transformation which is bounded, and hence continuous, on a neighbourhood of
(−1, 1) = φx,I(I) in H. Hence φ = f ◦φx,I extends by reflection to a conformal isomorphism
φ∗I = f ∗ ◦ φ∗x,I on D∗I . The maps φ∗I must be consistent, and hence extend to a conformal
map φ∗ on D∗. Now φ∗ can only fail to be injective on D0 but, as a conformal map, can
only fail to be injective on an open set in C. Hence φ∗ is a conformal isomorphism.

4.2 Construction of the mapping-out function

Given any compact H-hull K, we now specify a particular conformal isomorphism g = gK :
H \ K → H. This will give us a convenient way to encode the geometry of K. We get
uniqueness by requiring that gK looks like the identity at ∞.
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Theorem 4.3. Let K be a compact H-hull and set H = H \ K. There exists a unique
conformal isomorphism gK : H → H such that gK(z) − z → 0 as |z| → ∞. Moreover
gK(z)− z is bounded uniformly in z ∈ H. Moreover, for some aK ∈ R, we have

gK(z) = z +
aK
z

+O(|z|−2), |z| → ∞. (5)

Moreover gK extends by reflection to a conformal isomorphism g∗K on H∗.

The notation gK will be used throughout. The function gK takes H\K to the standard
domain H, so K no longer appears as a defect of the domain. Thus we call gK the
mapping-out function of K. The condition gK(z) − z → 0 at ∞ which makes gK unique
is sometimes called the hydrodynamic normalization. The constant aK , which we will see
later is non-negative, is the half-plane capacity.

Proof. Set D = {z : −z−1 ∈ H}. Then D ⊆ H is a simply connected domain which is
a neighbourhood of 0 in H. Choose a bounded open interval I ⊆ D0 containing 0. By
Proposition 4.1, there exists a conformal isomorphism φ : D → H which extends to a
reflection-invariant conformal isomorphism φ∗ on D∗I , with φ∗(0) = 0 and arg(φ∗)′(0) = 0.
Consider the Taylor expansion of φ∗ at 0. Since φ∗ maps I into R, the coefficients must all
be real. So, as z → 0, we have

φ∗(z) = az + bz2 + cz3 +O(|z|4)

for some a ∈ (0,∞) and b, c ∈ R. Define gK on H by gK(z) = −aφ(−z−1)−1 − (b/a). It
is a straightforward exercise to check that gK is a conformal isomorphism to H and that
gK has the claimed expansion at ∞, with aK = (b/a)2 − (c/a). In particular, gK(z) − z
is bounded near ∞. Now φ∗ is a homeomorphism of neighbourhoods of 0, so gK can only
take bounded sets to bounded sets. Hence gK(z)− z is uniformly bounded on H and, by
Proposition 4.2, gK extends by reflection to a conformal isomorphism on H∗.

Finally, if g : H → H is any conformal isomorphism such that g(z)−z → 0 as |z| → ∞,
then f = g ◦ g−1

K is a conformal automorphism of H with f(z)− z → 0 as |z| → ∞. Then
f(∞) = ∞, so f(z) = σz + µ for some σ ∈ (0,∞) and µ ∈ R by Corollary 1.5, and then
f(z) = z for all z, showing that g = gK .

The mapping-out function has a simple form for the half-disc D̄ ∩ H and for the slit
(0, i] = {iy : y ∈ (0, 1]}:

g D̄∩H(z) = z + 1/z, g(0,i](z) =
√
z2 + 1 = z + 1/(2z) +O(|z|−2). (6)

4.3 Properties of the mapping-out function

The following scaling and translation properties may be deduced from the defining char-
acterization of the mapping-out function. The details are left as an exercise.
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Proposition 4.4. Let K be a compact H-hull. Let r ∈ (0,∞) and x ∈ R. Set

rK = {rz : z ∈ K}, K + x = {z + x : z ∈ K}.

Then rK and K + x are compact H-hulls and we have

grK(z) = rgK(z/r), gK+x(z) = gK(z − x) + x.

Nested compact H-hulls K0 ⊆ K may be encoded by the composition of mapping-out
functions.

Proposition 4.5. Let K0 and K1 be compact H-hulls. Set K = K0 ∪ g−1
K0

(K1). Then K is
a compact H-hull K containing K0 and we have

gK = gK1 ◦ gK0 , aK = aK0 + aK1 . (7)

Moreover we obtain all compact H-hulls K containing K0 in this way.

Proof. Set H0 = H\K0 and H = H\K. We can define a conformal isomorphism g : H → H
by g = gK1 ◦ gK0 . In particular H is a simply connected domain. Consider a sequence of
points (zn) in H0 with |zn| → ∞. Then gK0(zn)/zn → 1 and |gK0(zn)| → ∞. Hence there
exists N such that for all n > N we have gK0(zn) 6∈ K1 and then

zn(g(zn)− zn) = zn(gK1(gK0(zn))− gK0(zn)) + zn(gK0(zn)− zn)→ aK1 + aK0 .

Hence K is bounded and g = gK and aK = aK0 + aK1 .
On the other hand, suppose K is any compact H-hull containing K0. Define K1 =

gK0(K \K0) and H1 = gK0(H\K). Then K = K0∪ g−1
K0

(K1) and H1 = H\K1. Also, K1 is
bounded and H1 is a simply connected domain, so K1 is a compact H-hull, as required.
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5 Estimates for the mapping-out function

5.1 Boundary estimates

Recall from Section 3.1 the Brownian limit B̂T (H) which is a random variable in the Martin
boundary δH. Recall also that gK extends to a homeomorphism from δH to δH = R∪{∞}.
Proposition 5.1. Let S ⊆ δH be measurable. Then

lim
y→∞, x/y→0

πyPx+iy(B̂T (H) ∈ S) = Leb(gK(S)). (8)

Proof. Write gK(x+iy) = u+iv. Then u/y → 0 and v/y → 1 as y →∞ with x/y → 0. By
conformal invariance of Brownian motion, and using the known form (3.2) for the density
of harmonic measure in H, we have

Px+iy(B̂T (H) ∈ S) = Pu+iv(BT (H) ∈ gK(S)) =

∫
gK(S)

v

π((t− u)2 + v2)
dt

On multipying by πy and letting y →∞ and x/y → 0 we obtain the desired formula.

For an interval (a, b) ⊆ H0, we can take S = (a, b) and x = 0 in Proposition 5.1 to
obtain

gK(b)− gK(a) = lim
y→∞

πyPiy(BT (H) ∈ (a, b)). (9)

On the other hand, we can also take S = δH \H0 to obtain

lim
y→∞

πyPiy(BT (H) ∈ K) = lim
y→∞

πyPiy(BT (H) 6∈ H0) = Leb(R \ gK(H0)). (10)

Here we used the fact that ∂H \ (K ∪H0) is countable for the first equality.

Proposition 5.2. Let K be a compact H-hull and let x ∈ R. Suppose that the interval
[x,∞) does not intersect K̄. Then gK(x) > x. If also K ⊆ D and x ∈ (1,∞), then
gK(x) 6 x+ 1/x.

Proof. For b > x and y > rad(K), we have

Piy(BT (H) ∈ (x, b)) 6 Piy(BT (H) ∈ (x, b)).

Multiply by πy and let y → ∞, using Proposition 5.1, to obtain gK(b) − gK(x) 6 b − x.
Subtract b and let b→∞ to see that gK(x) > x. If K ⊆ D and x ∈ (1,∞), then also

Piy(BT (H\D̄) ∈ (x, b)) 6 Piy(BT (H) ∈ (x, b)).

Multiply by πy and let y →∞, using Proposition 5.1 again and the known form (6) of the
mapping-out function for D̄ ∩H, to obtain

(b+ 1/b)− (x+ 1/x) 6 gK(b)− gK(x).

Then subtract b and let b→∞ to see that gK(x) 6 x+ 1/x.

23



5.2 Continuity estimate

Define
rad(K) = inf{r > 0 : K ⊆ rD̄ + x for some x ∈ R}.

Proposition 5.3. Let K be a compact H-hull. Then

|gK(z)− z| 6 3 rad(K), z ∈ H. (11)

Proof. By a scaling and translation argument, using Proposition 4.4, it will suffice to
consider the case where K ⊆ D̄ and rad(K) = 1. Fix z ∈ H and consider a complex
Brownian motion (Bt)t>0 starting from z. For t < T = T (H), set Gt = gK(Bt). By
conformal invariance of Brownian motion, Gt converges almost surely as t ↑ T to a limit
GT ∈ R. Moreover GT ∈ gK(H0) if and only if BT ∈ H0, and then GT = gK(BT ).

Recall that gK(z) − z is a bounded holomorphic function on H. For t < T , set Mt =
gK(Bt)−Bt = Gt −Bt. Then (Mt)t<T is a continuous and bounded local martingale, and
Mt → GT −BT as t ↑ T . Hence, by optional stopping,

gK(z)− z = Ez(GT −BT ). (12)

Note that {|x| > 1} ⊆ H0 and {|x| > 2} ⊆ gK({|x| > 1}). If |BT | > 1, then BT ∈ H0,
so, by Proposition 5.2, |GT − BT | = |gK(BT ) − BT | 6 1/|BT | 6 1. On the hand, if
|BT | 6 1, then GT 6∈ gK({|x| > 1}), so |GT | 6 2. In any case |GT − BT | 6 3. Hence
|gK(z)− z| 6 3.

5.3 Differentiability estimate

The expansion (5) at ∞ for mapping-out functions states that, for every compact H-hull
K, there are constants C(K) <∞ and R(K) <∞ such that,∣∣∣gK(z)− z − aK

z

∣∣∣ 6 C(K)

|z|2 , |z| > R(K).

The next result strengthens this estimate, stating that, if K ⊆ D̄, then we can take
C(K) = CaK and R(K) = 2, where C <∞ does not depend on K.

Proposition 5.4. There is an absolute constant C <∞ with the following properties. For
all r ∈ (0,∞) and all ξ ∈ R, for any compact H-hull K ⊆ rD̄ + ξ,∣∣∣∣gK(z)− z − aK

z − ξ

∣∣∣∣ 6 CraK
|z − ξ|2 , |z − ξ| > 2r. (13)

Proof. We shall prove the result in the case r = 1 and ξ = 0, when K ⊆ D̄. The general
case then follows by scaling and translation. Let D = H \ D̄ = {z ∈ H : |z| > 1}. Write
T = T (H) and define for θ ∈ [0, π]

a(θ) = Eeiθ(Im(BT )).
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For z ∈ D, using (12) and then the strong Markov property, we have

Im(z − gK(z)) = Ez(Im(BT )) =

∫ π

0

hD(z, θ)a(θ)dθ.

Consider the conformal isomorphism g : D → H given by g(z) = z + z−1. Note that
g(eiθ) = 2 cos θ. Then, for z ∈ D and w = g(z),

hD(z, θ) = hH(w, 2 cos θ)
d

dθ
g(eiθ) = Im

(
1

2 cos θ − w

)
2 sin θ

π

by the chain rule. Hence

Im(z − gK(z)) =

∫ π

0

Im

(
1

2 cos θ − w

)
2 sin θ

π
a(θ)dθ.

Set

a =

∫ π

0

2 sin θ

π
a(θ)dθ. (14)

Consider the holomorphic function f on H∗ \ {0} given by

f(z) = g∗K(z)− z − a/z,

and set v(z) = Im(f(z)). Observe that there is a constant C < ∞ such that, for all
|z| > 3/2 and θ ∈ [0, π],∣∣∣∣ 1

w − 2 cos θ
− 1

z

∣∣∣∣ =
|2 cos θ − z−1|

|z||z + z−1 − 2 cos θ| 6
C

|z|2 .

and hence, for z ∈ H with |z| > 3/2,

|v(z)| 6
∫ π

0

∣∣∣∣ 1

w − 2 cos θ
− 1

z

∣∣∣∣ 2 sin θ

π
a(θ)dθ 6

Ca

|z|2 .

Since v(z̄) = −v(z), the same bound holds without the restriction z ∈ H. Then, for |z| > 2,
we can apply Lemma 3.3 in the domain Dz = {w ∈ C : |w| > (3/4)|z|} to obtain, for a
new constant C <∞, ∣∣∣∣∂v∂x(z)

∣∣∣∣ , ∣∣∣∣∂v∂y (z)

∣∣∣∣ 6 Ca

|z|3 .

By the Cauchy–Riemann equations, the same bound holds for |f ′(z)| for all |z| > 3/2.
Now f(z)→ 0 as |z| → ∞ so, for |z| > 2 we have,

|f(z)| =
∣∣∣∣∫ ∞

1

f ′(tz)zdt

∣∣∣∣ 6 Ca

|z|2
∫ ∞

1

t−3dt =
Ca

|z|2 . (15)

Hence zf(z)→ 0 as |z| → ∞, so a = aK and (15) is the desired estimate.
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6 Capacity and half-plane capacity

We discuss two notions of capacity for compact H-hulls and study their properties. The
second of these plays a key role in Loewner’s theory.

6.1 Capacity from ∞ in H (?)

Define for a compact H-hull K the capacity from ∞ in H by

cap(K) = lim
y→∞

πyPiy(BT (H) ∈ K).

The existence of this limit was shown in (10). It is clear from the definition that

cap(K) 6 cap(K ′) whenever K ⊆ K ′.

We use (10) together with known properties of mapping-out functions to obtain

cap(D̄ ∩H) = 4, cap((0, i]) = 2

and, for r ∈ (0,∞) and x ∈ R,

cap(rK) = r cap(K), cap(K + x) = cap(K).

Proposition 6.1. Let K be a compact H-hull such that K̄ is connected. Then

rad(K) 6 cap(K) 6 4 rad(K).

Proof. Set r = rad(K). Then K ⊆ rD̄ ∩ H + x for some x ∈ R. So (without using
connectedness)

cap(K) 6 cap(rD̄ ∩H + x) = 4r.

By translation and scaling we may assume that r = 1 and that there exist s ∈ (0, 1] and
c ∈ [0, 1] such that s2 + c2 = 1 and is ∈ K and either c ∈ K̄ or −c ∈ K̄. Set

K0 = (0, is], ρ(K) = {−x+ iy : x+ iy ∈ K}, σ(K) = K ∪ ρ(K).

Fix y ∈ (1,∞) and consider a complex Brownian motion B starting from iy. Note that B
cannot hit S = K0 ∪ [−c, c] without first hitting σ(K). Hence, by symmetry,

Piy(BT (H0) ∈ S) 6 2Piy(BT (H) ∈ K̄) = 2Piy(BT (H) ∈ K).

If c > 0 then gK0(±c) = ±
√
s2 + c2 = ±1, whilst if c = 0 then gK0(0±) = ±1. Hence, by

Proposition 5.1, in both cases, on multiplying by πy and letting y →∞, we obtain

2 6 2 cap(K).
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Proposition 6.2. Let A and K be disjoint compact H-hulls. Then

cap(gA(K)) 6 cap(K).

Proof. Write gA(iy) = u+ iv and recall that v/y → 1 and u→ 0 as y →∞. By conformal
invariance of Brownian motion, we have

Pu+iv(B hits gA(K) before R) = Piy(B hits K before A ∪ R) 6 Piy(B hits K before R).

Now multiply by πy and let y →∞, using Proposition 5.1, to obtain the desired inequality.

6.2 Half-plane capacity

There is a second notion of capacity for a compact H-hull K. Define the half-plane capacity
by

hcap(K) = lim
y→∞

yEiy(Im(BT (H)).

To see that this limit exists, recall from Theorem 4.3 that, as |z| → ∞,

z(gK(z)− z)→ aK ∈ R

and, from (12), for all z ∈ H, we have

gK(z)− z = Ez(GT −BT ),

where T = T (H) and GT = gK(B̂T ) ∈ R. So, taking z = iy, we obtain

yEiy(Im(BT (H))) = −y ImEz(GT −BT ) = Re(z(gK(z)− z))→ aK .

So the limit not only exists but equals the constant aK associated to K via its mapping-out
function.

From the explicitly known mapping-out functions (6), we deduce that

hcap(D̄ ∩H) = 1, hcap(0, i] = 1/2.

The following two propositions allow us to relate the half-plane capacities of different
compact H-hulls. They follow from Propositions 4.4 and 4.5 and are left as exercises.

Proposition 6.3. For r ∈ (0,∞) and x ∈ R, we have

hcap(rK) = r2 hcap(K), hcap(K + x) = hcap(K).

Proposition 6.4. Let K and K ′ be compact H-hulls with K ⊆ K ′. Set K̃ = gK(K ′ \K).
Then

hcap(K) 6 hcap(K) + hcap(K̃) = hcap(K ′).

27



We deduce that, for K ⊆ rD, we have hcap(K) 6 hcap(rD̄ ∩ H) = r2. Hence, for all
compact H-hulls K,

hcap(K) 6 rad(K)2.

Note from the proof of Proposition 3.3 the formula (14)

hcap(K) =
2

π

∫ π

0

Eeiθ(Im(BT (H))) sin θdθ

which shows that hcap(K) > 0 for all non-empty compact H-hulls.
The next result is deeper, relying on Beurling’s estimate, which is proved below as

Theorem 16.3. It may be considered as a continuity estimate for half-plane capacity.

Proposition 6.5. (?) Suppose K ⊂ K ′ are two compact H-hulls, and that dist(z, ∂K∪R) 6
ε for all z ∈ ∂K ′ and some ε > 0. Then

hcap(K ′) 6 hcap(K) +
16

π
rad(K ′)3/2ε1/2.

Proof. We reduce to the case where K ′ ⊆ D by scaling and translation. Let B be a complex
Brownian motion starting from z ∈ H ′. Write T = T (H) and T ′ = T (H ′) and note that
T > T ′. By Beurling’s estimate, for z ∈ ∂K ′ and r > 0,

Pz(|BT − z| > r) 6 Pz(T > T (z + rD)) 6 2
√
ε/r

so, using the strong Markov property at T ′, for z = eiθ and θ ∈ (0, π), we have

Peiθ(|BT −BT ′ | > r) 6 2
√
ε/r.

Now | Im(BT )− Im(BT ′)| 6 |BT −BT ′| ∧ 1, so

Eeiθ | Im(BT )− Im(BT ′)| =
∫ 1

0

Peiθ(|BT −BT ′ | > r)dr 6 4
√
ε.

Then, using (14),

hcap(K ′) =

∫ π

0

Eeiθ(Im(BT ′))
2 sin θ

π
dθ

6
∫ π

0

Eeiθ(Im(BT ))
2 sin θ

π
dθ +

∫ π

0

4
√
ε

2 sin θ

π
dθ = hcap(K) +

16

π

√
ε.
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7 Chordal Loewner theory I

We establish a one-to-one correspondence between continuous real-valued paths (ξt)t>0 and
increasing families (Kt)t>0 of compact H-hulls having a certain local growth property. The
null path ξt ≡ 0 corresponds to Kt = (0, 2i

√
t]. For smooth paths (ξt)t>0 starting from 0, it

is known that Kt = {γs : 0 < s 6 t} for some continuous simple path (γt)t>0 in H̄ starting
from 0 and such that γt ∈ H for all t > 0. In the absence of smoothness, the situation
can be more complicated, as we shall see later. In this chordal version of the theory, the
boundary point ∞ plays a special role as the point towards which the hulls evolve. In the
alternative radial theory, which we will not discuss, an interior point of the domain plays
this special role instead.

7.1 Local growth property and Loewner transform

Let (Kt)t>0 be a family of compact H-hulls. Say that (Kt)t>0 is increasing if Ks is strictly
contained in Kt whenever s < t. Assume that (Kt)t>0 is increasing. Set Kt+ = ∩s>tKs

and, for s < t, set Ks,t = gKs(Kt \Ks). Say that (Kt)t>0 has the local growth property if

rad(Kt,t+h)→ 0 as h ↓ 0 uniformly on compacts in t.

This is a type of continuity condition for the growth of (Kt)t>0 but note that Kt \Ks can
be large even when Ks,t is small. See Figure 4 for an illustration.

Kt

Kt+h \Kt

gKt

Kt,t+h

ξt

Figure 4: The local growth property and the Loewner transform.

Proposition 7.1. Let (Kt)t>0 be an increasing family of compact H-hulls having the local
growth property. Then Kt+ = Kt for all t. Moreover, the map t 7→ hcap(Kt) is continuous
and strictly increasing on [0,∞). Moreover, for all t > 0 there is a unique ξt ∈ R such
that ξt ∈ Kt,t+h for all h > 0, and the process (ξt)t>0 is continuous.

Proof. Set Kt,t+ = gKt(Kt+ \Kt). For all t > 0 and h > 0, we have

hcap(Kt+h) = hcap(Kt) + hcap(Kt,t+h).

Now hcap(Kt,t+) 6 hcap(Kt,t+h) 6 rad(Kt,t+h)
2. Hence, by the local growth property,

t 7→ hcap(Kt) is continuous and hcap(Kt,t+) = 0, so Kt,t+ = ∅ and so Kt+ = Kt. On the
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other hand Kt,t+h 6= ∅ so hcap(Kt,t+h) > 0 and so t 7→ hcap(Kt) is strictly increasing on
[0,∞).

For fixed t > 0, the sets Kt,t+h are compact and decreasing in h > 0 so, using the
local growth property, they have a unique common element ξt ∈ R. For t > 0 and h > 0,
choose z ∈ Kt+2h \ Kt+h and set w = gKt(z) and w′ = gKt+h(z). Then w ∈ Kt,t+2h and
w′ ∈ Kt+h,t+2h, with w′ = gKt,t+h(w). Hence

|ξt − w| 6 2 rad(Kt,t+2h), |ξt+h − w′| 6 2 rad(Kt+h,t+2h), |w − w′| 6 3 rad(Kt,t+h)

where we used (11) for the last inequality. Hence

|ξt+h − ξt| 6 2 rad(Kt+h,t+2h) + 3 rad(Kt,t+h) + 2 rad(Kt,t+h)→ 0

as h→ 0, uniformly on compacts in t.

The process (ξt)t>0 is called the Loewner transform of (Kt)t>0. We shall see in the next
two subsections that the family of compact H-hulls (Kt)t>0 can be reconstructed from its
Loewner transform.

We shall sometimes be presented with a family of compact H-hulls parametrized not
by [0,∞) but by [0, T ) for some T ∈ (0,∞). The preceding definitions and results transfer
immediately to this case. The following result is left as an exercise.

Proposition 7.2. Let T, T ′ ∈ (0,∞] and let τ : [0, T ′)→ [0, T ) be a homeomorphism. Let
(Kt)t∈[0,T ) be an increasing family of compact H-hulls having the local growth property and
having Loewner transform (ξt)t∈[0,T ). Set K ′t = Kτ(t) and ξ′t = ξτ(t). Then (K ′t)t∈[0,T ′) is an
increasing family of compact H-hulls having the local growth property and having Loewner
transform (ξ′t)t∈[0,T ′).

By Proposition 7.1, the map t 7→ hcap(Kt)/2 is a homeomorphism on [0, T ). On choos-
ing τ as the inverse homeomorphism we obtain a family (K ′t)t∈[0,T ′) such that hcap(K ′t) = 2t
for all t. We say in this case that (K ′t)t∈[0,T ′) is parametrized by half-plane capacity. The 2
is standard in the literature and is present because of a relation with the radial Loewner
theory, which we will not discuss.

7.2 Loewner’s differential equation

We now come to Loewner’s crucial observation: the local growth property implies that the
mapping-out functions satisfy a differential equation.

Proposition 7.3. Let (Kt)t>0 be an increasing family of compact H-hulls, satisfying the
local growth property and parametrized by half-plane capacity, and let (ξt)t>0 be its Loewner
transform. Set gt = gKt and ζ(z) = inf{t > 0 : z ∈ Kt}. Then, for all z ∈ H, the function
(gt(z) : t ∈ [0, ζ(z))) is differentiable, and satisfies Loewner’s differential equation

ġt(z) =
2

gt(z)− ξt
. (16)

Moreover, if ζ(z) <∞, then gt(z)− ξt → 0 as t→ ζ(z).
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Proof. Let 0 6 s < t < ζ(z) and set zt = gt(z). Note that hcap(Ks) + hcap(Ks,t) =
hcap(Kt), so hcap(Ks,t) = 2(t − s). Also, gKs,t(zs) = zt and Ks,t ⊆ ξs + 2 rad(Ks,t)D̄. We
apply Propositions 5.3 and 5.4 to the compact H-hull Ks,t to obtain

|zt − zs| 6 6 rad(Ks,t) (17)

and, provided |zs − ξs| > 4 rad(Ks,t),∣∣∣∣zt − zs − 2(t− s)
zs − ξs

∣∣∣∣ 6 4C rad(Ks,t)(t− s)
|zs − ξs|2

. (18)

We use (17) and the local growth property to see that (zt : t ∈ [0, ζ(z))) is continuous. Then
t 7→ |zt − ξt| is positive and continuous on [0, ζ(z)), and so is locally uniformly positive.
Then (18) and the local growth property show that (zt : t ∈ [0, ζ(z))) is differentiable with
żt = 2/(zt − ξt). Finally, if ζ(z) < ∞, then for s < ζ(z) < t we have z ∈ Kt \ Ks, so
zs ∈ Ks,t, so |zs − ξs| 6 2 rad(Ks,t), and so by the local growth property |zs − ξs| → 0 as
s→ ζ(z).

7.3 Understanding the Loewner transform

This section is for orientation and aims to develop understanding of how the geometry of
a curve (γt)t>0 is reflected in the Loewner transform (ξt)t>0 of the hulls (Kt)t>0 given by
Kt = γ((0, t]). Anticipating Section 8.1, where we shall see that the transform determines
the hulls, this also sheds some light on how a given choice of transform affects the geometry
of any resulting curve. Fix α ∈ (0, π/2) and take γ(t) = r(t)eiα, where r(t) is chosen so
that hcap(Kt) = 2t. Note that the scaling map z 7→ λz takes Ht to Hλ2t, so the mapping-
out functions gt = gKt satisfy gλ2t(z) = λgt(z/λ). Hence, by Loewner’s equation, we have
ξλ2t = λξt, so ξt = cα

√
t, where cα = ξ1. The value of cα is known, but we shall be content

to see that cα > 0. To see this, fix τ so that rad(Kτ ) = 1 and note that, given ε > 0, we
can find b > 1 such that gτ (b) 6 b + ε and gτ (−b) > −b − ε. Write δ− for the interval of
δHτ from −b to γτ and δ+ for the interval of δHτ from γτ to b. Then, for y > 1

Piy(B̂T (Hτ ) ∈ δ−) > Piy(B̂T (Hτ ) ∈ δ+).

This is left as an exercise. Now multiply by πy and let y → ∞. By Proposition 5.1, we
deduce that

gτ (γτ )− gτ (−b) > gτ (b)− gτ (γt).
Now gτ (γτ ) = ξτ = cα

√
τ , so 2cα

√
τ = 2ξτ > gτ (b) + gτ (−b) > 2ε. Since ε > 0 was

arbitrary, this implies that cα > 0. But we cannot have cα = 0, since this corresponds to
the case α = π/2. In fact, cα is decreasing in α with cα →∞ as α→ 0. Note the infinite
initial velocity required for the Loewner transform needed to achieve a “turn to the right”
with greater angle of turn for greater cα. For a “turn to the left”, we take ξt = −cα

√
t.

The term “driving function” is sometimes used for the Loewner transform, which may be
thought as referring not only to the fact that it drives Loewner’s differential equation (16),
but also to the fact that it is, literally, a function which indicates how to “turn the wheel”.
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8 Chordal Loewner theory II

Loewner’s differential equation offers the prospect that we might recover the family of
compact H-hulls (Kt)t>0 from its Loewner transform (ξt)t>0 by solving the equation, indeed
that we might construct such a family (Kt)t>0 starting from any continuous real-valued
function (ξt)t>0. We now show this is true.

8.1 Inversion of the Loewner transform

Fix a continuous real-valued function (ξt)t>0, which we call the driving function. Define
for t > 0 and z ∈ C \ {ξt}

b(t, z) =
2

z − ξt
=

2(z̄ − ξt)
|z − ξt|2

.

Note that b(t, .) is holomorphic on C \ {ξt} and, for |z − ξt|, |z′ − ξt| > 1/n,

|b(t, z)− b(t, z′)| 6 2n2|z − z′|.

The following proposition is then a straightforward application of general properties of dif-
ferential equations. For reasons that will become clear later, while we are mainly interested
in solving the differential equation in the upper half-plane, it is convenient to solve it in
the entire complex plane.

Proposition 8.1. For all z ∈ C \ {ξ0}, there is a unique ζ(z) ∈ (0,∞] and a unique
continuous map t 7→ gt(z) : [0, ζ(z)))→ C such that, for all t ∈ [0, ζ(z)), we have gt(z) 6= ξt
and

gt(z) = z +

∫ t

0

2

gs(z)− ξs
ds (19)

and such that |gt(z) − ξt| → 0 as t → ζ(z) whenever ζ(z) < ∞. Set ζ(ξ0) = 0 and define
Ct = {z ∈ C : ζ(z) > t}. Then, for all t > 0, Ct is open, and gt : Ct → C is holomorphic.

The process (gt(z) : t ∈ [0, ζ(z))) is the maximal solution starting from z, and ζ(z) is
its lifetime. Define

Kt = {z ∈ H : ζ(z) 6 t}, Ht = {z ∈ H : ζ(z) > t} = H \Kt.

Fix z ∈ H and s 6 t < ζ(z), set ys = Im gs(z) and δ = infs6t |zs − ξs|. Then δ > 0 and
ẏs > −2ys/δ

2 so yt > e−2t/δ2y0 > 0. Hence gt(Ht) ⊆ H. Although we have defined the
functions ζ and gt on C and Ct respectively, it is convenient to agree from now on that
ζ and gt refer to the restrictions of these functions to H and Ht, except where we make
explicit reference to a larger domain. The family of maps (gt)t>0 is then called the Loewner
flow (in H) with driving function (ξt)t>0.

Proposition 8.2. The family of sets (Kt)t>0 is an increasing family of compact H-hulls
having the local growth property. Moreover hcap(Kt) = 2t and gKt = gt for all t. Moreover
the driving function (ξt)t>0 is the Loewner transform of (Kt)t>0.
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Proof. For t > 0 and w ∈ H, we have Im(b(t, w)) < 0, so Loewner’s differential equation
has a unique solution (ws : s ∈ [0, t]) in H with given terminal value wt = w. Then
ζ(w0) > t and gt(w0) = w and w0 is the unique point in H with these properties. Hence
gt : Ht → H is a bijection. We know that gt is holomorphic by Proposition 8.1, so gt is a
conformal isomorphism. In particular Ht is simply connected.

We next obtain some basic estimates for the Loewner flow. Fix T > 0 and set r =
supt6T |ξt − ξ0| ∨

√
T . Fix R > 4r and take z ∈ H with |z − ξ0| > R. Define

τ = inf{t ∈ [0, ζ(z)) : |gt(z)− z| = r} ∧ T.

Then τ < ζ(z) and, for all t 6 τ ,

|gt(z)− ξt| = |(gt(z)− z) + (z − ξ0) + (ξ0 − ξt)| > R− 2r

and

gt(z)− z =

∫ t

0

2

gs(z)− ξs
ds, z(gt(z)− z)− 2t = 2

∫ t

0

z − gs(z) + ξs
gs(z)− ξs

ds

so

|gt(z)− z| 6 2t

R− 2r
6
t

r
, |z(gt(z)− z)− 2t| 6 (4r + 2|ξ0|)t

R− 2r
.

If τ < T , then the first estimate implies that |gτ (z)− z| 6 τ/r < T/r 6 r, a contradiction.
Hence τ = T and then ζ(z) > T so z ∈ HT . Since we may choose R = 4r, this implies

|z − ξ0| 6 4r for all z ∈ KT (20)

so KT is bounded and hence is a compact H-hull. On the other hand, by considering the
limit R→∞ in the second estimate, and then letting T →∞, we see that z(gt(z)−z)→ 2t
as |z| → ∞, for all t > 0. In particular gt(z) − z → 0 as |z| → ∞, so gt = gKt and then
hcap(Kt) = 2t for all t.

It remains to prove the local growth property and identify the Loewner transform. Fix
s > 0. Define for t > 0

ξ̃t = ξs+t, H̃t = gs(Hs+t), K̃t = H \ H̃t, g̃t = gs+t ◦ g−1
s .

We can differentiate in t to see that (g̃t)t>0 is the Loewner flow driven by (ξ̃t)t>0, H̃t is the
domain of g̃t, and K̃t = gs(Ks+t \Ks) = Ks,s+t. The estimate (20) applies to give

|z − ξs| 6 4

(
sup

s6u6s+t
|ξu − ξs| ∨

√
t

)
for all z ∈ Ks,s+t. (21)

Hence (Kt)t>0 has the local growth property and has Loewner transform (ξt)t>0.
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8.2 The Loewner flow on R characterizes K̄t ∩ R (?)

By Proposition 4.3, for all t > 0, the map gt : Ht → H extends to a reflection-invariant
conformal isomorphism g∗t on the reflected domain H∗t . We now show that this is exactly
the extended Loewner flow gt from Proposition 8.1. Later analysis of properties of SLE
relies on this property, while the fact that requires proof has sometimes been overlooked.

For z ∈ C, define
ζ∗(z) = inf{t > 0 : z 6∈ H∗t }.

Proposition 8.3. We have ζ∗ = ζ on C. Moreover, H∗t = Ct and g∗t = gt on Ct for all
t > 0.

Proof. By taking complex conjugates in (19) and using uniqueness we see that ζ(z̄) = ζ(z)
on C and gt(z̄) = gt(z) for all z ∈ C and all t ∈ [0, ζ(z)). In particular Ct is invariant
under conjugation for all t, and gt : Ct → C is a holomorphic extension by reflection of its
restriction to Ht for all t. Hence Ct ⊆ H∗t and gt is the restriction of g∗t to Ct for all t.

It remains to show for t > 0 and x ∈ H0
t = H∗t ∩ R that ζ(x) > t. Note first that, for

z ∈ Ht and r < s 6 t, we have

|g∗r(z)− g∗s(z)| 6 3 rad(Kr,s) (22)

and this estimate extends to H0
t by continuity. We will show further that for x ∈ H0

t

inf
s6t
|g∗s(x)− ξs| > 0.

This then allows us to pass to the limit z → x with z ∈ Ht in (19), to see that (g∗s(x) : s 6 t)
satisfies (19), so ζ(x) > t.

Now, for x ∈ H0
t and s < t, we have g∗s(x) 6= ξs. To see this, note that x ∈ H0

s so g∗s is
conformal at x, and there is a sequence (wn) in Kt such that g∗s(wn)→ ξs; then g∗s(x) = ξs
would imply wn → x, which is impossible. The function s 7→ |g∗s(x)−ξs| is thus continuous
on [0, t] and positive on [0, t). It remains to show that it is also positive at t.

Write I for the interval of H0
t containing x. Then g∗t (I) is an open interval containing

g∗t (x). Consider the intervals

Js = ∩r∈[s,t]g
∗
r(I), s < t.

For s sufficiently close to t, by (22), Js contains a neighbourhood of g∗t (x). Hence, if
g∗t (x) = ξt, then for some s < t, we would have ξs ∈ Js, so ξs = g∗s(y) for some y ∈ H0

t ,
which we have shown is impossible.

An immediate corollary is the following characterization of the set of limit points of Kt

in R in terms of the lifetime ζ of the Loewner flow on R.

Proposition 8.4. For all x ∈ R and all t > 0, we have

x ∈ K̄t if and only if ζ(x) 6 t. (23)
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8.3 Loewner–Kufarev theorem

Write K for the set of all compact H-hulls. Fix a metric d of uniform convergence on
compacts for C(H,H). We make K into a metric space using the Carathéodory metric

dK(K1, K2) = d(g−1
K1
, g−1
K2

).

Write L for the set of increasing families of compact H-hulls (Kt)t>0 having the local
growth property and such that hcap(Kt) = 2t for all t. Then L ⊆ C([0,∞),K). We fix on
C([0,∞),K) a metric of uniform convergence on compact time intervals.

Theorem 8.5. There is a bi-adapted homeomorphism L : C([0,∞),R)→ L given by

L((ξt)t>0) = (Kt)t>0, Kt = {z ∈ H : ζ(z) 6 t}

where ζ(z) is the lifetime of the maximal solution to Loewner’s differential equation

żt = 2/(zt − ξt)

starting from z. Moreover,

K̄t ∩ R = {x ∈ R : ζ(x) 6 t}

where ζ(x) is the lifetime of the maximal solution to ẋt = 2/(xt − ξt) starting from x.
Moreover (ξt)t>0 is then the Loewner transform of (Kt)t>0, given by

{ξt} = ∩s>tKt,s, Kt,s = gKt(Ks \Kt) (24)

where gKt is the mapping-out function for Kt.

We call L the Loewner map. The proof that L and its inverse are continuous and
adapted is left as an exercise. The rest of the theorem recapitulates the results of the
preceding two sections.
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9 Schramm–Loewner evolutions

We review the arguments which led Schramm to use a Brownian motion as the driving
function in Loewner’s theory. Then we state the fundamental result of Rohde and Schramm
that associates to the resulting family of compact H-hulls a unique continuous path.

9.1 Schramm’s observation

We say that a random variable (Kt)t>0 in L is a Schramm–Loewner evolution7 if its Loewner
transform is a Brownian motion of some diffusivity κ ∈ [0,∞). We will refer to such a
random family of compact H-hulls as an SLE(κ). The Loewner–Kufarev theorem allows
us to construct SLE(κ) as Kt = {z ∈ H : ζ(z) 6 t}, where where ζ(z) is the lifetime of the
maximal solution to Loewner’s differential equation

żt = 2/(zt − ξt)

starting from z, and where (ξt)t>0 is a Brownian motion of diffusivity κ.
Schramm’s revolutionary observation was that these processes offered the unique possi-

ble scaling limits for a range of lattice-based planar random systems at criticality, such as
loop-erased random walk, Ising model, percolation and self-avoiding walk. Such limits had
been conjectured but without a candidate for the limit object. Any scaling limit is scale
invariant. In fact it was widely conjectured that there would be limit objects, associated
to some class of planar domains, with a stronger property of invariance under conformal
maps. Moreover, the local determination of certain paths in the lattice models suggested
a form of ‘domain Markov property’.

There is a natural scaling map on L. For λ ∈ (0,∞) and (Kt)t>0 ∈ L, define Kλ
t =

λKλ−2t. Recall that hcap(λKt) = λ2 hcap(Kt). We have rescaled time so that (Kλ
t )t>0 ∈ L.

We say that a random variable (Kt)t>0 in L is scale invariant if (Kλ
t )t>0 has the same

distribution as (Kt)t>0 for all λ ∈ (0,∞).
There is also a natural time-shift map on L. For s ∈ [0,∞) and (Kt)t>0 ∈ L, define

K
(s)
t = gKs(Ks+t \Ks) − ξs. Then (K

(s)
t )t>0 ∈ L. We say that a random variable (Kt)t>0

in L has the domain Markov property if (K
(s)
t )t>0 has the same distribution as (Kt)t>0 and

is independent of Fs = σ(ξr : r 6 s) for all s ∈ [0,∞).

Theorem 9.1. Let (Kt)t>0 be a random variable in L. Then (Kt)t>0 is an SLE if and only
if (Kt)t>0 is scale invariant and has the domain Markov property.

Proof. Write (ξt)t>0 for the Loewner transform of (Kt)t>0 and note that (ξt)t>0 is contin-

uous. For λ ∈ (0,∞) and s ∈ [0,∞), define ξλt = λξλ−2t and ξ
(s)
t = ξs+t − ξs. Then

(Kλ
t )t>0 has Loewner transform (ξλt )t>0 and (K

(s)
t )t>0 has Loewner transform (ξ

(s)
t )t>0.

Hence (Kt)t>0 has the domain Markov property if and only if (ξt)t>0 has stationary in-
dependent increments. Also (Kt)t>0 is scale invariant if and only if the law of (ξt)t>0 is

7In Schramm’s papers, SLE stood for stochastic Loewner evolution. As usual, our default assumption
is that Brownian motion starts at 0.
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invariant under Brownian scaling. By the Lévy–Khinchin Theorem8 , (ξt)t>0 has both these
properties if and only if it is a Brownian motion of some diffusivity κ ∈ [0,∞), that is to
say, if and only if (Kt)t>0 is an SLE.

9.2 Rohde–Schramm theorem

A continuous path (γt)t>0 in H̄ is said to generate an increasing family of compact H-
hulls (Kt)t>0 if Ht = H \ Kt is the unbounded component of H \ γ[0, t] for all t, where
γ[0, t] = {γs : s ∈ [0, t]}. Rohde and Schramm proved the following fundamental and hard
result, except for the case κ = 8, which was then added by Lawler, Schramm and Werner.
We refer to the original papers [4, 5] for the proof.

Theorem 9.2. Let (Kt)t>0 be an SLE(κ) for some κ ∈ [0,∞). Write (gt)t>0 and (ξt)t>0 for
the associated Loewner flow and transform. The map g−1

t : H→ Ht extends continuously to
H̄ for all t > 0, almost surely. Moreover, if we set γt = g−1

t (ξt), then (γt)t>0 is continuous
and generates (Kt)t>0, almost surely.

We call (γt)t>0 an SLE(κ) path, or simply an SLE(κ), allowing the notation to signal
that we mean the path rather than the hulls.

9.3 SLE in a two-pointed domain

By a two-pointed domain we mean a triple D = (D, z0, z∞), where D is a proper simply
connected planar domain and z0 and z∞ are distinct points in the Martin boundary δD.
Write D for the set of all two-pointed domains. By a conformal isomorphism of two-pointed
domains (D, z0, z∞) → (D′, z′0, z

′
∞), we mean a conformal isomorphism φ : D → D′ such

that φ(z0) = z′0 and φ(z∞) = z′∞. We call any conformal isomorphism σ : D → (H, 0,∞)
a scale for D. By Corollary 1.6, such a scale σ exists for all D ∈ D. Moreover, for all
λ ∈ (0,∞), the map z 7→ λσ(z) is also a scale for D and, by Corollary 1.5, these are all
the scales for D.

Fix D = (D, z0, z∞) ∈ D and a scale σ for D. We call a subset K ⊆ D a D-hull if
D \ K is a simply connected neighbourhood of z∞ in D. Write K(D) for the set of all
D-hulls. Note that K(H, 0,∞) is simply the set K of compact H-hulls. The Carathéodory
topology on K is scale invariant. For each choice of scale σ, the map K 7→ σ(K) is
a bijection K(D) → K. We use this bijection to define the Carathéodory topology on
K(D), which is then independent of the choice of scale. Similarly, we extend to increasing
families of D-hulls the notion of the local growth property. Write L(D, σ) for the set
of increasing families (Kt)t>0 of D-hulls having the local growth property and such that
hcap(σ(Kt)) = 2t for all t. The set L defined in Section 8.3 corresponds to the case
D = (H, 0,∞) and σ(z) = z, to which we default unless D ∈ D and a scale σ on D are
explicitly mentioned. We use on L(D, σ) the topology of uniform convergence on compact
time intervals.

8From the Lévy-Khinchin representation, the only continuous Lévy processes are scaled Brownian
motions with constant drift, and the scaling invariance forces the drift to vanish.

37



For κ ∈ [0,∞), we say that a random variable (Kt)t>0 in L(D, σ) is an SLE(κ) in D of
scale σ if the Loewner transform (ξt)t>0 of(σ(Kt))t>0 is a Brownian motion of diffusivity κ.
We will write in this context Dt = D \Kt and gt = gσ(Kt) ◦ σ and Ft = σ(ξs : s 6 t). The
following result is a straightforward translation of the scaling property of SLE. The proof
is left as an exercise.

Proposition 9.3 (Conformal invariance of SLE). Let φ : D →D′ be a conformal isomor-
phism of two-pointed domains. Fix scales σ for D and σ′ for D′ and set λ = σ′ ◦φ ◦σ−1 ∈
(0,∞). Let (Kt)t>0 be an SLE(κ) in D of scale σ. Set K ′t = φ(Kλ−2t). Then (K ′t)t>0 is an
SLE(κ) in D′ of scale σ′.

In particular we see that any property of an SLE(κ) which is invariant under linear
change of time-scale is also insensitive to the choice of scale σ. The domain Markov
property can be put in a more striking form in the present context. The proof is again left
as an exercise. You will need to use the strong Markov property of Brownian motion.

Proposition 9.4 (Domain Markov property of SLE). Let (Kt)t>0 be an SLE(κ) in (D, z0, z∞)
of scale σ and let T be a finite stopping time. Set K̃t = KT+t \KT . Define σT : DT → H
by σT (z) = gT (z) − ξT , and define zT ∈ δDT by zT = g−1

T (ξT ). Then (DT , zT , z∞) ∈ D
and σT is a scale for (DT , zT , z∞). Moreover, conditional on FT , (K̃t)t>0 is an SLE(κ) in
(DT , zT , z∞) of scale σT .
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10 Bessel flow and hitting probabilities for SLE

We begin an analysis of the properties of SLE. This is achieved not directly but by es-
tablishing first some properties of the associated Loewner flow – an approach which will
recur below. Our goal in this section is to determine for which parameter values the SLE
path hits the boundary of its domain and, when it does, to calculate some associated
probabilities.

10.1 Bessel flow

Consider the Loewner flow (gt(x) : t ∈ [0, ζ(x)), x ∈ R \ {0}) on R associated to SLE(κ).
Recall that the Loewner transform (ξt)t>0 is a Brownian motion of diffusivity κ. Recall
also that, for each x ∈ R \ {0}, for all t ∈ [0, ζ(x)), we have gt(x) 6= ξt and

gt(x) = x+

∫ t

0

2

gs(x)− ξs
ds

with gt(x)− ξt → 0 as t→ ζ(x) whenever ζ(x) <∞. Set

a =
2

κ
, Bt = − ξt√

κ
, τ(x) = ζ(x

√
κ)

and for t ∈ [0, τ(x)) set

Xt(x) =
gt(x
√
κ)− ξt√
κ

.

Then (Bt)t>0 is a standard Brownian motion starting from 0. Moreover, for all x ∈ R\{0}
and t ∈ [0, τ(x)), we have Xt(x) 6= 0 and

Xt(x) = x+Bt +

∫ t

0

a

Xs(x)
ds (25)

with Xt(x) → 0 as t → τ(x) whenever τ(x) < ∞. This is the Bessel flow of parameter a
driven by (Bt)t>0.

We note two simple properties. First, by considering uniqueness of solutions in reversed
time, we obtain the following monotonicity property: for x, y ∈ (0,∞) with x < y, we have
τ(x) 6 τ(y) and Xt(x) < Xt(y) for all t < τ(x). Second, there is a scaling property. Fix
λ ∈ (0,∞) and set

B̃t = λBλ−2t, τ̃(x) = λ2τ(λ−1x), X̃t(x) = λXλ−2t(λ
−1x).

Then (B̃t)t>0 is a Brownian motion. Moreover the family of processes (X̃t(x) : t ∈
[0, τ̃(x)), x ∈ R \ {0}) is the Bessel flow of parameter a driven by (B̃t)t>0, and hence
has the same distribution as (Xt(x) : t ∈ [0, τ(x)), x ∈ R \ {0}).
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Proposition 10.1. Let x, y ∈ (0,∞) with x < y. Then

(a) for a ∈ (0, 1/4], we have
P(τ(x) < τ(y) <∞) = 1;

(b) for a ∈ (1/4, 1/2), we have

P(τ(x) <∞) = 1, P(τ(x) < τ(y)) = φ

(
y − x
y

)
where φ is given by

φ(θ) ∝
∫ θ

0

du

u2−4a(1− u)2a
, φ(1) = 1; (26)

(c) for a ∈ [1/2,∞), we have
P(τ(x) <∞) = 0

and moreover, for a ∈ (1/2,∞), we have Xt(x)→∞ as t→∞ almost surely.

Proof. Fix x > 0 and write Xt = Xt(x) and τ = τ(x). For r ∈ (0,∞) define a stopping
time

T (r) = inf{t ∈ [0, τ) : Xt = r}.
Fix r, R ∈ (0,∞) and assume that 0 < r < x < R. Write S = T (r) ∧ T (R). Note that
T (r) < τ on {τ < ∞}. Also, Xt > Bt + x for all t < τ , so T (R) < ∞ almost surely on
{τ =∞}. In particular, S <∞ almost surely.

Assume for now that a 6= 1/2. Set Mt = X1−2a
t for t < τ . Note that MS is uniformly

bounded. By Itô’s formula

dMt = (1− 2a)X−2a
t dXt − a(1− 2a)X−2a−1

t dt = (1− 2a)X−2a
t dBt.

Hence MS is a bounded martingale and by optional stopping

x1−2a = M0 = E(MS) = r1−2aP(XS = r) +R1−2aP(XS = R). (27)

Note that as r ↓ 0 we have {XS = R} ↑ {T (R) < τ} and so P(XS = R) → P(T (R) < τ).
Similarly, P(XS = r) → P(T (r) < ∞) as R → ∞. For a ∈ (0, 1/2), we can let r → 0 in
(27) to obtain

P(T (R) < τ) = (x/R)1−2a.

Then, letting R → ∞, we deduce that P(τ = ∞) = 0. For a ∈ (1/2,∞), we consider
the limit r → 0. Then (27) forces P(XS = r) → 0, so P(T (R) < τ) = 1 for all R and
hence P(τ = ∞) = 1. Now M is positive and, as a continuous local martingale, M is
also a time-change of Brownian motion. Hence Mt = X1−2a

t must converge almost surely
as t → ∞, and the total quadratic variation [M ]∞ = (2a − 1)2

∫∞
0
X−4a
t dt must be finite

almost surely. This forces Xt →∞ as t→∞ almost surely.

40



In the case a = 1/2, we instead set Mt = logXt and argue as above to obtain

log x = P(XS = r) log r + P(XS = R) logR.

The same argument as for a ∈ (1/2,∞) can then be used to see that P(τ =∞) = 1.
Assume from now on that a ∈ (0, 1/2). It remains to show for 0 < x < y that

P(τ < τ(y)) =

{
1, if a 6 1/4

φ(y−x
y

), if a > 1/4.

Define for θ ∈ [0, 1]

χ(θ) =

∫ 1

θ

du

u2−4a(1− u)2a
.

Note that χ is continuous on [0, 1] as a map into [0,∞], with χ(0) <∞ for a ∈ (1/4, 1/2)
and χ(0) =∞ for a ∈ (0, 1/4]. Note also that χ is C2 on (0, 1), with

χ′′(θ) + 2

(
1− 2a

θ
− a

1− θ

)
χ′(θ) = 0.

Fix y > x and write Yt = Xt(y). For t < τ , define Rt = Yt−Xt, θt = Rt/Yt and Nt = χ(θt).
By Itô’s formula

dRt = −aRtdt

XtYt
, dθt =

(
θt
Yt

)2(
1− 2a

θt
− a

1− θt

)
dt− θt

Yt
dBt

so

dNt = χ′(θt)dθt +
1

2
χ′′(θt)dθtdθt = −χ

′(θt)θtdBt

Yt
.

Hence (Nt : t < τ) is a local martingale. Now N is non-negative and is a time-change
of Brownian motion, so Nt must converge to some limit as t → τ . Since χ is strictly
decreasing, it follows that θt converges to some limit θτ as t→ τ .

If τ < τ(y), then θτ = 1 so Nτ = 0. On the other hand we claim that if τ = τ(y) then
θτ = 0 almost surely. Indeed, note that we necessarily have [N ]τ <∞ almost surely, and

[N ]t =

∫ t

0

χ′(θs)
2θ2
s

Y 2
s

ds.

If θτ > 0 then it follows that ∫ τ(y)

0

ds

Y 2
s

<∞.

Consider the random variables

A(x) =

∫ τ

0

1

X2
t

dt, An(x) =

∫ T (2−nx)

T (2−n+1x)

1

X2
t

dt, n > 1.
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By the strong Markov property (of the driving Brownian motion), the random variables
(An(x) : n ∈ N) are independent. By the scaling property, they all have the same distribu-
tion. Hence, since A1(x) > 0 almost surely, we must have A(x) =

∑
nAn(x) = ∞ almost

surely. We conclude that if τ = τy then θτ = 0.
In the case a ∈ (0, 1/4], τ = τy would thus imply that Nt = χ(θt) → ∞ as t ↑ τ , a

contradiction, so P(τ < τ(y)) = 1. On the other hand, for a ∈ (1/4, 1/2), the process N τ

is a bounded martingale so by optional stopping

χ

(
y − x
y

)
= N0 = E(Nτ ) = χ(0)P(τ = τ(y)).

A variation of the calculation for P(τ(x) < τ(y)) allows us to compute P(τ(x) < τ(−y)).

Proposition 10.2. Let x, y ∈ (0,∞). Then for a ∈ (0, 1/2) we have

P(τ(x) < τ(−y)) = ψ

(
y

x+ y

)
where ψ is given by

ψ(θ) ∝
∫ θ

0

du

u2a(1− u)2a
, ψ(1) = 1. (28)

Proof. Note that ψ is continuous and increasing on [0, 1] with ψ(0) = 0 and ψ(1) = 1. Also
ψ is C2 on (0, 1) with

ψ′′(θ) + 2a

(
1

θ
− 1

1− θ

)
ψ′(θ) = 0.

Write Xt = Xt(x) and Yt = −Xt(−y) and set T = τ(x)∧τ(−y). For t 6 T set Rt = Xt+Yt
and θt = Yt/Rt. Define a process Q = (Qt)t>0 by setting Qt = ψ(θT∧t). Then Q is
continuous and uniformly bounded. Note that θT = 1 if τ(x) < τ(−y) and θT = 0 if
τ(−y) < τ(x), and that QT = θT . By Itô’s formula, for t 6 T ,

dRt =
aRt

XtYt
dt, dθt =

a

R2
t

(
1

θt
− 1

1− θt

)
dt− dBt

Rt

so

dQt = ψ′(θt)dθt +
1

2
ψ′′(θt)dθtdθt = −ψ

′(θt)dBt

Rt

.

Hence Q is a bounded martingale. By optional stopping

P(τ(x) < τ(−y)) = P(θT = 1) = E(QT ) = Q0 = ψ(θ0) = ψ

(
y

x+ y

)
.
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10.2 Hitting probabilities for SLE(κ) on the real line

We translate the results for the Bessel flow back in terms of the path γ of an SLE(κ).

Proposition 10.3. Let γ be an SLE(κ). Then

(a) for κ ∈ (0, 4], we have γ[0,∞) ∩ R = {0} almost surely;

(b) for κ ∈ (4, 8) and all x, y ∈ (0,∞), γ hits both [x,∞) and (−∞,−y] almost surely,
and

P(γ hits [x, x+ y)) = φ

(
y

x+ y

)
, P(γ hits [x,∞) before (−∞,−y]) = ψ

(
y

x+ y

)
where φ and ψ are given by (26) and (28) respectively;

(c) for κ ∈ [8,∞), we have R ⊆ γ[0,∞) almost surely.

Proof. Fix x, y ∈ (0,∞) and t > 0. If γ[0, t] ∩ [x,∞) = ∅ then by compactness there is a
neighbourhood of [x,∞) in H disjoint from γ[0, t] which is then contained in Ht, so x 6∈ K̄t,
and so ζ(x) > t by Proposition 8.4. On the other hand, if γs ∈ [x,∞) for some s ∈ [0, t],
then γs ∈ K̄t so ζ(x) 6 ζ(γs) 6 t, also by Proposition 8.4. Hence

{γ[0, t] hits [x,∞)} = {ζ(x) 6 t}, {γ hits [x, x+ y)} = {ζ(x) < ζ(x+ y)}.
Recall that ζ(x) = τ(x/

√
κ), where τ is the lifetime of the Bessel flow of parameter a = 2/κ.

Thus

{γ hits [x,∞)} = {τ(x/
√
κ) <∞}, {γ hits [x, x+ y)} = {τ(x/

√
κ) < τ((x+ y)/

√
κ)}

and similarly

{γ hits [x,∞) before (−∞,−y]} = {τ(x/
√
κ) < τ(−y/√κ)}.

Hence, from Proposition 10.1 we deduce:

(a) if κ ∈ (0, 4] then a ∈ [1/2,∞), so P(γ hits [x,∞)) = 0;

(b) if κ ∈ (4, 8) then a ∈ (1/4, 1/2), so

P(γ hits [x,∞)) = 1, P(γ hits [x, x+ y)) = φ

(
y

x+ y

)
and

P(γ hits [x,∞) before (−∞,−y]) = ψ

(
y

x+ y

)
;

(c) if κ ∈ [8,∞) then a ∈ (0, 1/4), so P(γ hits [x, x+ y)) = 1.

Hence, in case (a),

P(γ hits R \ {0}) = lim
n→∞

P(γ hits (−∞,−1/n] ∪ [1/n,∞)) = 0

and, in case (c), we see that, almost surely, for all rationals x, y ∈ (0,∞), we have γt ∈
[x, x+ y) for some t > 0. Since γ is continuous, this implies that [0,∞) ⊆ γ[0,∞) almost
surely, and then R ⊆ γ[0,∞) almost surely by symmetry.
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11 Phases of SLE

Recall that one can scale a standard Brownian motion, either in time or space, to obtain
a Brownian motion of any diffusivity. Thus “all Brownian motions look the same”. In
contrast, as the parameter κ is varied, SLE(κ) runs through three phases where it exhibits
markedly different behaviour. The following results are proved in [4]. We will present
proofs below for some of the easier cases.

Theorem 11.1. Let (γt)t>0 be an SLE. Then |γt| → ∞ as t→∞, almost surely.

Theorem 11.2. Let (γt)t>0 be an SLE(κ). Then

(a) for κ ∈ [0, 4], (γt)t>0 is a simple path almost surely;

(b) for κ ∈ (4, 8), ∪t>0Kt = H almost surely, but for each given z ∈ H̄ \ {0}, (γt)t>0 does
not hit z almost surely;

(c) for κ ∈ [8,∞), γ[0,∞) = H̄ almost surely.

The behaviour in case (b) is called swallowing, while in (c) we see that (γt)t>0 is a
space-filling curve. We already saw in Proposition 10.3 that R ⊆ γ[0,∞) almost surely
when κ ∈ [8,∞) but will not prove the stronger statement (c) in these notes.

11.1 Simple phase

Proposition 11.3. Let (γt)t>0 be an SLE(κ), with κ ∈ (0, 4]. Then (γt)t>0 is a simple
path almost surely.

Proof. Recall the notation Ks,s+t = gs(Ks+t \Ks) and K
(s)
t = Ks,s+t − ξs. By the domain

Markov property, (K
(s)
t )t>0 is an SLE(κ). By the Rohde–Schramm theorem, almost surely,

for all rational s > 0 and all t > 0, g−1
Ks,s+t

extends continuously to H̄ and g−1
Ks,s+t

(z) →
γ

(s)
t + ξs as z → ξs+t with z ∈ H. By Proposition 10.3, since κ 6 4, almost surely, for all

such s and t, γ
(s)
t ∈ {0} ∪H. By Rohde–Schramm again

γs+t = lim
z→ξs+t,z∈H

g−1
s (g−1

Ks,s+t
(z)) = g−1

s (γ
(s)
t + ξs).

Since hcap(Kt) = 2t for all t > 0, almost surely, there is no non-degenerate interval on
which (γt)t>0 is constant. Let r, r′ > 0 with r < r′. Since (γt)t>0 is continuous, there exists

a rational s ∈ (r, r′) such that γs 6= γr. Take t = r′ − s. If γ
(s)
t = 0, then γr′ = γs. If

γ
(s)
t ∈ H, then γr′ ∈ Hs ⊆ Hr. In any case γr′ 6= γr.

Lemma 11.4. Let (γt)t>0 be a simple path in H ∪ {0} starting from 0. Write (ξt)t>0

and (gt)t>0 for the Loewner transform and flow associated to (γ(0, t])t>0, as usual. Fix
r ∈ (0, 1), set τ = inf{t > 0 : |γt − 1| = r} and suppose that τ <∞. Then

|gτ (1)− ξτ | 6 r.
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Proof. Write γτ = a + ib and consider the line segments I = (a, a + ib] and J = [a ∧ 1, 1].
Now gτ extends continuously to R\{0} and to γτ , with gτ (γτ ) = ξτ . So the image gτ (I∪J) is
a continuous path in H̄ joining ξτ and [gτ (1),∞). So, by conformal invariance of Brownian
motion,

Pgτ (iy)(BT (H) ∈ [ξτ , gτ (1)]) 6 Pgτ (iy)(BT (H\gτ (I)) ∈ gτ (I ∪ J))

= Piy(BT (Hτ\I) ∈ I ∪ J) 6 Piy(B̂T (H\I) ∈ I+ ∪ J)

where I+ denotes the right side of I. Note that gI(a + ib) = a and gI(a+) = a + b, and
gI(1) = a+ r when a 6 1, so Leb(gI(I

+ ∪ J)) 6 r. Recall that gτ (iy)− iy → 0 as y →∞.
Then, by Proposition 5.1, on multiplying by πy and letting y →∞, we obtain the desired
estimate.

Proposition 11.5. Let γ be an SLE(κ), with κ ∈ (0, 4). Then |γt| → ∞ as t→∞, almost
surely.

Proof. By Proposition 10.1, we know that inft>0(gt(1) − ξt) > 0 almost surely. So, by
the lemma, we must have, inft>0 |γt − 1| > 0 almost surely. We know that g1 extends
continuously to R \ {0} and that γ1 ∈ H. Set a± = limx↓0 g1(±x). Then a− < ξ1 =

g1(γ1) < a+. Set r± = inft>0 |γ(1)
t + ξ1 − a±| and set

N± = {z ∈ H1 : |g1(z)− a±| < r±}, N = N− ∪ γ(0, 1] ∪N+.

Then γt 6∈ N for all t > 0. By scaling and the Markov property, r± > 0 almost surely.
Since [0, 1]∪ γ(0, 1] and [−1, 0]∪ γ(0, 1] are simple paths, N is a neighbourhood of 0 in H.
Then lim inft→∞ |γt| is almost surely positive, and hence infinite, by scaling.

11.2 Swallowing phase

Proposition 11.6. Let (γt)t>0 be an SLE(κ), with κ ∈ (4, 8). Then (γt)t>0 is not a simple
curve, nor a space-filling curve, almost surely.

Proof. By Lemma 10.1, for any x > 0,

P(γ hits [x,∞)) = 1,

and

P(γ hits [x, y]) = P(ζ(x) < ζ(y)) = φ

(
y − x
y

)
∈ (0, 1).

Hence γζ(x) ∈ (x,∞) almost surely. Moreover, for y > x, we have {γζ(x) < y} = {ζ(y) >
ζ(x)} and {γζ(x) > y} = {ζ(y) = ζ(x)} and both events have positive probability. In
particular, we see that γ hits any given interval in R of positive length with positive
probability. Now if S1 is the set of all limit points of g1(∂K1 ∩H), then S1 is an interval of
positive length containing ξ1. Thus we can find a subinterval I ⊂ S1 such that d(ξ1, I) > 0.
Then by the above observation g1(γ(1,∞)) ∩ I is nonempty with positive probability. On
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the other hand, some topological considerations show that ∂K1 ∩ H ⊆ γ[0, 1], so γ has
double points with positive probability and hence almost surely by a zero-one argument
(see below).

On the other hand, on {γζ(x) > y}, there is a neighbourhood of [x, y] in H which does
not meet γ and dist([x, y], Hζ(x)) > 0. In particular, γ is not space-filling, with positive
probability, and then almost surely.

Here is an elaboration of the zero-one argument for double points. Define, for t > 0,
At = {γs = γs′ for some distinct s, s′ ∈ [0, t]}. Then the sets At are non-decreasing in t
and all have the same probability, p say, by scaling. But then p = P(∩tAt) and ∩tAt ∈ F0+,
where F0+ = ∩t>0 σ(ξs : s 6 t). But, by Blumenthal’s zero-one law, F0+ contains only null
sets and their complements. Hence p ∈ {0, 1}.

Proposition 11.7. Let (γt)t>0 be an SLE(κ), with κ ∈ (4, 8). Then dist(0, Ht) → ∞, in
particular |γt| → ∞, as t→∞, almost surely.

Proof. The set S of limit points of gζ(1)(z) as z → 0, z ∈ H is a compact (possibly empty)
subset of (−∞, ξζ(1)). Pick y < inf S. With positive probability, dist(S, gζ(1)(Hζ(y))) > 0,
so dist(0, Hζ(y)) > 0, so P(dist(0, Ht) > 0) = δ for some t > 0 and δ > 0. This extends to
all t by scaling, with the same δ. So P(dist(0, Ht) > 0 for all t > 0) = δ and then δ = 1 by
a zero-one argument. Finally dist(0, Ht) is non-decreasing and, for all r <∞, as t→∞,

P(dist(0, Ht) 6 r) = P(dist(0, H1) 6 r/
√
t)→ 0.
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12 Conformal transformations of Loewner evolutions

A conformal isomorphism φ of initial domains in H takes one family of compact H-hulls
(Kt)t>0 to another (φ(Kt))t<T , defined up to the time T when (Kt)t>0 leaves the initial
domain. We show that the local growth property is preserved under such a transformation,
and obtain formulae for the half-plane capacity and Loewner transform of (φ(Kt))t<T .

12.1 Initial domains

By an initial domain (in H) we mean a set N∪I where N ⊆ H is a simply connected domain
and I ⊆ R is an open interval, such that N is a neighbourhood of I in H. Thus I ⊆ N0

in the notation of Section 4.2. An isomorphism of initial domains is a homeomorphism
φ : N∪I → Ñ∪ Ĩ which restricts to a conformal isomorphism N → Ñ . By Proposition 4.1,
if I 6= R 6= Ĩ, then, given points x ∈ I and x̃ ∈ Ĩ, there is a unique such isomorphism with
φ(x) = x̃, which then extends to a reflection-invariant conformal isomorphism φ∗ : N∗I →
Ñ∗
Ĩ
. In this section, we suppose given an isomorphism of initial domains φ : N ∪ I → Ñ ∪ Ĩ

and a compact H-hull K with K̄ ⊆ N ∪ I. Write I = (x−, x+). Define

K̃ = φ(K), H̃ = H \ K̃, NK = gK(N \K), IK = (g∗K(x−), g∗K(x+)).

Note that H̃ is not the image of H = H \K under φ, nor is IK the image of I under g∗K .
Nevertheless, we now show that H̃ is simply connected and NK is a neighbourhood of IK
in H. You are advised to sketch an example as you follow the results in this section. The
proofs could be skipped in a first reading.

Proposition 12.1. The set K̃ is a compact H-hull with ¯̃K ⊆ Ñ ∪ Ĩ and the set NK ∪ IK
is an initial domain.

Proof (?). Since φ∗ is a homeomorphism and K̄ ⊆ N ∪ I, we have ¯̃K = φ∗(K̄) ⊆ Ñ ∪ Ĩ.
Since K̄ is compact, this also shows that K̃ is bounded.

Pick x ∈ I and consider the conformal isomorphism ψ : D → N∗I such that ψ(0) = x
and ψ′(0) > 0. Fix r ∈ (0, 1) and for θ ∈ [0, π] define p(θ) = ψ(reiθ). Then p = (p(θ) : θ ∈
(0, π)) is a simple curve in N and p(0), p(π) ∈ I. We can and do choose r so that p(θ) ∈ H∗
for all θ ∈ [0, π]. Then φ(p) and gK(p) are simple curves in H which each disconnect H
in two components. Write D0 for the bounded component of H \ gK(p) and D1 for the
unbounded component of H \ φ(p). Then D1 ∪ φ(p) is simply connected and D1 ⊆ H̃.
On the other hand D0 ∪ gK(p) is also simply connected and φ ◦ g−1

K is a homeomorphism
D0 ∪ gK(p)→ H̃ \D1. Hence H̃ = φ(g−1

K (D0)) ∪ φ(p) ∪D1 is simply connected.
Finally, given y−, y+ ∈ I \ K̄ with y− < y+ we can choose r so that p(0) > y+ and

p(π) < y−. Then D0 is a neighbourhood of (g∗K(y−), g∗K(y+)) in H. But D0 ⊆ NK . Hence
NK is a neighbourhood of IK in H.

Define ÑK̃ and ĨK̃ analogously to NK and IK and define φK : NK → ÑK̃ by

φK = gK̃ ◦ φ ◦ g−1
K .
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Proposition 12.2. The map φK extends to an isomorphism NK ∪IK → ÑK̃ ∪ ĨK̃ of initial
domains.

Proof (?). Write I− and I+ for the leftmost and rightmost component intervals of the open
set I \K̄ ⊆ R. Set J± = g∗K(I±) and J = J−∪J+. Define similarly J̃± and J̃ starting from
Ĩ and K̃. Then J ⊆ IK and IK \J is a compact subset of IK . A similar statement holds for
J̃ and ĨK̃ . Define ψ : (NK)∗J → (ÑK̃)∗

J̃
by ψ = g∗

K̃
◦ φ∗ ◦ (g∗K)−1. Then ψ is a holomorphic

extension of φK which takes J− to J̃− and J+ to J̃+. Since NK is a neighbourhood of IK

in H, we have IK ⊆ N̂K by Proposition 4.1, and similarly ĨK̃ ⊆ ˆ̃N K̃ . Write φ̂K for the

extension of φK as a homeomorphism N̂K → ˆ̃N K̃ . Then φ̂K = ψ on J , so we must have

φ̂K(IK) = ĨK̃ , and so φ extends to a homeomorphism NK ∪ IK → ÑK̃ ∪ ĨK̃ as required.

Recall from Proposition 6.3 the scaling property hcap(rK) = r2 hcap(K). This makes
it plausible, for a conformal isomorphism φ of some initial domain N ∪ I and for a small
hull K near ξ ∈ I, that φ′(ξ)2 hcap(K) is a good approximation for hcap(φ(K)). We now
prove such an estimate, in a normalized form.

Proposition 12.3. There is an absolute constant C <∞ with the following property. Let
φ : N ∪ I → Ñ ∪ Ĩ be an isomorphism of initial domains. Assume that 0 ∈ I and φ(0) = 0
and φ′(0) = 1. Let K ⊆ N be a compact H-hull. Suppose that for some 0 < r < ε < R <∞
we have

K ∪ φ(K) ⊆ rD, (εD) ∩H ⊆ N ∪ Ñ ⊆ RD.
Then

1− CrR/ε2 6
hcap(φ(K))

hcap(K)
6 1 + CrR/ε2.

Proof (?). It will suffice to prove the upper bound. The lower bound then follows by
interchanging the roles of N ∪ I and Ñ ∪ Ĩ. Recall the formula (14), valid for K ⊆ D,

hcap(K) =

∫ π

0

Eeiθ(ImBT (H))
2 sin θ

π
dθ.

Fix α > 1. Since K ⊆ rD, we can apply this to σ−1K for σ ∈ [r, αr] and use the scale
invariance of Brownian motion to obtain

σ hcap(K) =

∫ π

0

Eσeiθ(ImBT (H))
2σ sin θ

π
σdθ.

Next, integrate over σ to obtain

(α2 − 1)r2

2
hcap(K) =

∫
S(r,αr)

Ez(ImBT (H))
2 Im z

π
A(dz), (29)

where A(dz) denotes area measure and S(r, αr) is the half-annulus {z ∈ H : r 6 |z| 6 αr}.
Set ψ = φ−1. By conformal invariance of Brownian motion,

Ew(ImBT (H̃)) = Eψ(w)(Imφ(BT (H))).
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Apply the identity (29) to φ(K), replacing r by ρ > r and taking α = 2 to obtain

3ρ2

2
hcap(φ(K)) =

∫
S(ρ,2ρ)

Eψ(w)(Imφ(BT (H)))
2 Imw

π
A(dw)

=

∫
ψ(S(ρ,2ρ))

Ez(Imφ(BT (H)))
2 Imφ(z)

π
|φ′(z)|2A(dz) (30)

where we made the change of variable z = ψ(w) for the second equality.
We apply Cauchy’s integral formula to φ∗ and ψ∗ to see that, for |z| 6 1/2, we have

|φ′′(z)| 6 8R and |ψ′′(z)| 6 8R. Then, by Taylor’s theorem, using φ(0) = ψ(0) = 0,
φ′(0) = ψ′(0) = 1 and the fact that φ is real on I, we obtain for |z| 6 1/2

|φ′(z)| 6 1 + 8R|z|, Imφ(z) 6 (1 + 16|z|R) Im z, |ψ(z)− z| 6 4R|z|2.

Assume that 48rR 6 1 and take α = 2(1 + 48rR) then α 6 4. Note that r 6 2r− 4R(2r)2.
Set ρ = inf{s > r : r = s − 4Rs2}. Then ρ 6 2r 6 1/4. Hence, for z ∈ S(ρ, 2ρ), we
have |ψ(z)| > ρ − 4Rρ2 = r and |ψ(z)| 6 2ρ + 16Rρ2 = 2r + 24Rρ2 6 αr 6 4r 6 1/2 so
ψ(S(ρ, 2ρ)) ⊆ S(r, αr). A comparison of (29) and (30) then yields

hcap(φ(K)) 6 (1 + 16rR)(1 + 64rR)(1 + 32rR)2(1 + 192rR) hcap(K)

which in turns yields the claimed estimate for a suitable choice of the constant C.

More generally, for any isomorphism of initial domains φ : N ∪ I → Ñ ∪ Ĩ, any ξ ∈ I,
and any compact H-hull K ⊆ N , the preceding estimate can be applied to the map
φ̄(z) = φ′(ξ)−1(φ(z + ξ)− φ(ξ)) to obtain the estimate

(1− C̄rR/ε2)φ′(ξ)2 hcap(K) 6 hcap(φ(K)) 6 (1 + C̄rR/ε2)φ′(ξ)2 hcap(K) (31)

where C̄ = C max{φ′(ξ)2, φ′(ξ)−2}, whenever K ⊆ ξ + rD and φ(K) ⊆ φ(ξ) + rD and

ξ + (εD) ∩ H̄ ⊆ N ∪ I ⊆ ξ +RD, φ(ξ) + (εD) ∩ H̄ ⊆ Ñ ∪ Ĩ ⊆ φ(ξ) +RD.

The details are left as an exercise.

12.2 Loewner evolution and isomorphisms of initial domains

Let (Kt)t>0 be an increasing family of compact H-hulls with the local growth property.
Write (ξt)t>0 for the Loewner transform of (Kt)t>0. Let N ∪I and Ñ ∪ Ĩ be initial domains,
with ξ0 ∈ I and let φ : N∪I → Ñ∪ Ĩ be an isomorphism. Set T = inf{t > 0 : K̄t 6⊆ N∪I}.
For t < T , we consider the compact H-hull K̃t = φ(Kt) and other associated objects, as in
the preceding section, writing now

gt = gKt , g̃t = gK̃t , φt = φKt = g̃t ◦ φ ◦ g−1
t , ξ̃t = φt(ξt)

and
Nt = NKt , It = IKt , Ñt = ÑK̃t

, Ĩt = ĨK̃t .
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Proposition 12.4. The increasing family of compact H-hulls (K̃t)t<T has the local growth
property and has Loewner transform (ξ̃t)t<T .

Proof (?). Fix t0 ∈ [0, T ). Let ψ be as in the proof of Proposition 12.1 and choose r ∈ (0, 1)
so that Kt0 ⊆ ψ(rD). It will suffice to prove the proposition with N ∪ I replaced by
ψ(rD ∩ H̄), which is the bounded component of H̄ \ {ψ(reiθ) : θ ∈ [0, π]}, and with φ
replaced by its restriction to ψ(rD ∩ H̄). Hence we may assume without loss that N ∪ I
is the the bounded component of H̄ \ p, for some simple curve p = (p(θ) : θ ∈ [0, π]) with
p(0), p(π) ∈ R and p(θ) ∈ H for all θ ∈ (0, π), and that φ extends to a homeomorphism

N̄ → ¯̃N .
For t 6 t0 and z, z′ ∈ N \Kt, we have

|gt(z)− gt(z′)| 6 |gt(z)− z|+ |z − z′|+ |z′ − gt(z′)| 6 6 rad(Kt) + 2 rad(N) 6 8 rad(N).

Hence, using a similar estimate for Ñ and reflection symmetry, we have9

N∗t ⊆ ξt +RD, Ñ∗t ⊆ ξ̃t +RD. (32)

where R = 8 max{rad(N), rad(Ñ)} <∞. The maps

(t, θ) 7→ |g∗t (p(θ))− ξt|, (t, θ) 7→ |g̃∗t (φ(p(θ)))− ξ̃t|
are continuous and positive on [0, t0]× [0, π], hence are bounded below, by ε > 0 say. Then,
for all t 6 t0, we have

ξt + εD ⊆ N∗t , ξ̃t + εD ⊆ Ñ∗t . (33)

Since φ∗t : N∗t → Ñ∗t is a conformal isomorphism, it follows by Cauchy’s integral formula
that

|φ′t(z)| 6 2R/ε, z ∈ ξt + (ε/2)D ∩H. (34)

Now, for all r ∈ (0, ε/2], we can find h > 0 such that, for all t 6 t0, we have

Kt,t+h ⊆ ξt + rD (35)

and then, setting ρ = 2R/ε,

K̃t,t+h = φt(Kt,t+h) ⊆ ξ̃t + ρrD. (36)

Hence (K̃t)t6t0 has the local growth property and has Loewner transform (ξ̃t)t6t0 .

Proposition 12.5. For all t ∈ [0, T ), we have10

hcap(K̃t) =

∫ t

0

φ′s(ξs)
2d(hcap(Ks)). (37)

9Only one of the two inclusions in (32) and one of those in (33) are used in this proof. We shall need
all of them for the proof of Proposition 12.5.

10A shorter proof of this formula is possible using Proposition 6.5 to compare hcap(K̃t,t+h) and
hcap(φ′t(ξt)Kt,t+h), provided rad(Kt,t+h)5/2/ hcap(Kt,t+h) → 0 as h → 0 uniformly on compacts in t.
The estimate (21) shows this condition holds provided (ξt)t>0 is Hölder of exponent greater than 2/5,
so this covers the case of SLE. We have given the longer argument to avoid any spurious condition and
because it is also more elementary, in that it does not rely on Beurling’s estimate, used for Proposition
6.5.
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Proof (?). Fix t0 ∈ [0, T ) and follow the same reduction as in Proposition 12.4, introducing
constants R, ε and ρ = 2R/ε. For t 6 t0, from (34), we see that |φ′t(ξt)| 6 ρ. On the
other hand, by considering the inverse map ψ∗t : Ñ∗t → N∗t , we obtain similarly |φ′t(ξt)| =
|ψ′t(ξ̃t)|−1 > 1/ρ. Given δ ∈ (0, 1], choose r > 0 so that CrRρ3 6 ε2δ. There exists an
h > 0 such that, for all t 6 t0,

Kt,t+h ⊆ ξt + rD.

Then, using the estimates (32), (33), (35) and (36), for s ∈ (0, h), we can apply the estimate
(31) to the isomorphism φt : Nt ∪ It → Ñt ∪ Ĩt and the compact H-hull Kt,t+s to obtain

(1− δ)φ′t(ξt)2 hcap(Kt,t+s) 6 hcap(K̃t,t+s) 6 (1 + δ)φ′t(ξt)
2 hcap(Kt,t+s).

Now, for all n ∈ N, setting s = t0/n, we have

hcap(K̃t0) =
n−1∑
j=0

hcap(K̃js,(j+1)s).

For n > t0/h, we can apply the bounds just obtained with t = js and sum over j to obtain

(1− δ)
n−1∑
j=0

φ′js(ξjs)
2 hcap(Kjs,(j+1)s) 6 hcap(K̃t0) 6 (1 + δ)

n−1∑
j=0

φ′js(ξjs)
2 hcap(Kjs,(j+1)s).

Let n→∞ and then δ → 0 to obtain the claimed identity.

Proposition 12.6. The set S = {(t, z) : t ∈ [0, T ), z ∈ Nt∪ It} is open in [0,∞)× H̄. The
function (t, z) 7→ φt(z) on S is differentiable in t for all z, with derivative given by

φ̇t(z) =
2φ′t(ξt)

2

φt(z)− φt(ξt)
− φ′t(z)

2

z − ξt
, z ∈ Nt ∪ It \ {ξt} (38)

and
φ̇t(ξt) = −3φ′′t (ξt). (39)

Moreover, φ̇t is holomorphic on Nt ∪ It, with derivative given by

φ̇′t(z) = 2

(
− φ′t(ξt)

2φ′t(z)

(φt(z)− φt(ξt))2
+

φ′t(z)

(z − ξt)2
− φ′′t (z)

z − ξt

)
, z ∈ Nt ∪ It \ {ξt} (40)

and

φ̇′t(ξt) =
1

2

φ′′t (ξt)
2

φ′t(ξt)
− 4

3
φ′′′t (ξt). (41)

Proof. By Propositions 8.5 and 12.2, when reparametrized by hcap, (g̃t)t<T satisfies Loewner’s
equation driven by (ξ̃t)t<T . So, by Proposition 12.5, we obtain

˙̃gt(z) = 2φ′t(ξt)
2/(g̃t(z)− ξ̃t), z ∈ H̃t.
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Set ft = g−1
t and differentiate the equation ft(gt(z)) = z in t to obtain

ḟt(z) = −2f ′t(z)/(z − ξt), z ∈ H.

For z ∈ Nt we have φt(z) = g̃t(φ(ft(z))). By the chain rule, for t ∈ [0, T ) and z ∈ Nt, we
see that φt(z) is differentiable in t, with derivative given by (38), which is then holomorphic
in z with derivative given by (40). Note that the functions on the right hand sides of (38)
and (40) are continuous in z ∈ Nt∪It \{ξt}. It is straightforward to check using l’Hôpital’s
rule that they extend continuously to ξt with the values given in (39) and (41). Then for
x ∈ It and z ∈ Nt, the functions φs(z) and φ̇s(z) and φ̇′s(z) converge as z → x locally
uniformly for s near t. The result follows by standard arguments.
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13 SLE(6), locality and percolation

13.1 Locality

SLE(6) has a special invariance property called locality which can be understood informally
as meaning that, in its general formulation as a measure on chords in (D, z0, z1), it does
not know what domain it is in beyond the fact that, each time it hits the boundary δD, it
turns towards its endpoint z1, as it must do in order to satisfy the non-crossing property.
By Smirnov’s theorem SLE(6) is the scaling limit of critical site percolation on the planar
hexagonal lattice. Thus, if the upper half-plane is tiled with yellow and blue hexagons,
with the colours at each site independent and equally likely, and if we place blue hexagons
along the positive real axis and yellow ones along the negative real axis, then the unique
blue/yellow interface joining 0 and ∞ converges weakly to an SLE(6) in the limit of small
lattice spacing. The lattice model has its own obvious locality property, so the fact that
locality implies κ = 6 for SLE was an early clue towards Smirnov’s result.

Theorem 13.1. Let φ : N ∪ I → Ñ ∪ Ĩ be an isomorphism of initial domains with 0 ∈ I
and 0 = φ(0) ∈ Ĩ. Let (γt)t>0 be an SLE(6). Set

T = inf{t > 0 : γt 6∈ N ∪ I}, T̃ = inf{t > 0 : γt 6∈ Ñ ∪ Ĩ}.

Then (φ(γt))t<T in its canonical reparametrization has the same distribution as (γt)t<T̃ .

Proof. Write (Kt)t>0 for the family of compact H-hulls generated by (γt)t>0 and write
(ξt)t>0 for its Loewner transform, which is a Brownian motion of diffusivity 6. For t < T ,
set K̃t = φ(Kt) and φt = gK̃t ◦ φ ◦ (gKt)

−1. By Propositions 12.2 and 12.5, (K̃t)t<T is
a family of compact H-hulls having the local growth property, whose Loewner transform
(ξ̃t)t<T and half-plane capacity are given by

ξ̃t = φt(ξt), hcap(K̃t) = 2

∫ t

0

φ′s(ξs)
2ds.

The set S0 = {(t, x) : t ∈ [0, T ), x ∈ IKt} is open in [0,∞) × R and ξt ∈ IKt for all
t < T . By Proposition 12.6, the adapted random map (t, x) 7→ φt(x) : S0 → R is C1,2 with
φ̇t(ξt) = −3φ′′t (ξt) for all t < T . By the generalized Itô formula, we have

dξ̃t = φ̇t(ξt)dt+ φ′t(ξt)dξt +
1

2
φ′′t (ξt)dξtdξt.

Since dξtdξt = 6dt, the finite variation terms cancel and we see that (ξ̃t)t<T is a continuous
local martingale with quadratic variation [ξ̃]t = 3 hcap(K̃t). The canonical reparametriza-
tion (K̃τ(s))s<S of (K̃t)t<T and its Loewner transform (ηs)s<S are given by

hcap(K̃τ(s)) = 2s, hcap(K̃T ) = 2S, ηs = ξ̃τ(s).

Now (by optional stopping) (ηs)s<S is a continuous local martingale (in its own filtration)
and its quadratic variation is given by [η]s = [ξ̃]τ(s) = 6s. Hence, by Lévy’s characterization,
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(ηs)s<S extends11 to a Brownian motion (ηs)s>0 of diffusivity 6. Write γ̃ for the SLE(6)
driven by (ηs)s>0, then φ(γτ(s)) = γ̃s for s < S and S = inf{s > 0 : γ̃s 6∈ Ñ ∪ Ĩ}. Hence
(φ(γτ(s)))s<S and (γs)s<T̃ have the same distribution as required.

By an initial domain N ∪ I in a two-pointed domain (D, z0, z1) we mean a simply
connected subdomain N ⊆ D along with an interval I of δD \{z1} containing z0 such that
N is a neighbourhood of I in D. Note that, if we choose a conformal isomorphism φ from
(D, z0, z1) to (H, 0,∞), then φ(N) ∪ φ(I) is an initial domain in (H, 0,∞), which is just
an initial domain in H in the sense of Section 12.1 such that 0 ∈ I0. We can now give a
precise version of the informal account of locality which began this section.

Theorem 13.2. Let γ be an SLE(6) in (D, z0, z1) and let γ̃ be an SLE(6) in (D̃, z0, z̃1).
Suppose that (D, z0, z1) and (D̃, z0, z̃1) share an initial domain N0 ∪ I0. Then the stopping
times

T = inf{t > 0 : γt 6∈ N0 ∪ I0}, T̃ = inf{t > 0 : γ̃t 6∈ N0 ∪ I0}.
are parametrization-invariant and the chords (γt)t<T and (γ̃t)t<T̃ have the same distribu-
tion.

Proof. Choose conformal isomorphisms φ of (D, z0, z1) to (H, 0,∞) and φ̃ of (D̃, z0, z̃1) to
(H, 0,∞). Consider the initial domains N ∪ I = φ(N0)∪ φ(I0) and Ñ ∪ Ĩ = φ̃(N0)∪ φ̃(I0).
Then ψ = φ̃ ◦ φ−1 gives an isomorphism N ∪ I → Ñ ∪ Ĩ. By conformal invariance, φ(γ)
and φ̃(γ̃) are both SLE(6) in (H, 0,∞). So the claimed identity in distribution follows from
Theorem 13.1.

13.2 SLE(6) in a triangle

While physicists investigated critical percolation using nonrigorous methods, Cardy es-
tablished a formula for the limiting crossing probabilities of a rectan gle. Carleson ob-
served that this formula became considerably simpler on a triangle. The corresponding
formula can be stated as a theorem directly for SLE(6). In turn, since Smirnov proved
that Cardy’s formula holds in the limit for critical percolation, this provides another of
identifying SLE(6) as the uniqu e possible limit for the scaling limit of cluster interface
exploration process in critical percolation.

Let ∆ be the equilateral triangle with vertices a = 0, b = 1, c = eiπ/3.

Theorem 13.3. Let γ be SLE(6) in (∆, 0, 1), where ∆ denotes the triangle with vertices
0, 1, eπi/3. Then the point X at which γ hits the edge [1, eπi/3] is uniformly distributed.

Proof. The Schwarz–Christoffel transformation (H, 0, 1,∞)→ (∆, 0, 1, eπi/3) is given by

f(z) = c

∫ z

0

dw

w2/3(1− w)2/3
, c =

Γ(2/3)

Γ(1/3)2
.

11We know that T <∞ almost surely, so we can do this here without extending the probability space,
using (ξT+t − ξT )t>0.
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Consider the map z 7→ ϕ(z) = 1/(1−z). This is a conformal automorphism which cyclically
permutes 0, 1,∞. The map z 7→ g(z) = 1+e2iπ/3z is a conformal automorphism of ∆ which
cyclically permutes a, b, c. Thus

f(ϕ(z)) = g(f(z)),

by uniqueness of the Riemann map. Thus, composing by ϕ−1(z) = (z − 1)/z, we deduce

f(z) = 1 + e2iπ/3f((z − 1)/z)

for all z ∈ H. This identity extends by continuity when z → x ∈ H.
Let x ∈ [0, 1] and choose y so that f(y/(1 + y)) = x. Then, by conformal invariance

and Proposition 10.3,

P(X ∈ [1, 1 + xe2iπ/3]) = P(SLE(6) in (H, 0,∞) hits [1, 1 + y]) = φ

(
y

1 + y

)
= x.

Thus X is uniform on [1, eiπ/3].

13.3 Smirnov’s theorem

We now discuss Smirnov’s proof of Cardy’s formula for percolation on the triangular lat-
tice. Consider the lattice of edge length δ. Sites of the lattice are coloured black or white
independently with probability 1/2. Take any Jordan domain D with three distinct bound-

ary points a(1), a(τ), a(τ 2), ordered positively, where τ = e2πi/3 = −1
2

+
√

3
2
i. Write Φ for

the unique conformal isomorphism from D to the triangle ∆ with corresponding boundary
points 1, τ, τ 2. For z ∈ D and α ∈ {1, τ, τ 2}, write Qα(z) for the event that z is sepa-
rated from the boundary segment a(τα)a(τ 2α) by a simple black path from a(α)a(τα) to
a(τ 2α)a(α). Set Hα(z) = Hδ

α(z) = P(Qα(z)). By a black path we mean any path in the
lattice which visits only black points. The functions Hα(z) are constant in the interior of
lattice triangles with discontinuities at the edges. Let fα denote the unique affine function
on ∆ with fα(α) = 1 and fα(τα) = fα(τ 2α) = 0, and set hα = fα ◦ Φ.

Theorem 13.4 (Smirnov). For α = 1, τ, τ 2, Hδ
α converges uniformly on D to hα as δ → 0.

It follows, in particular, by taking z ∈ ∂D, that the asymptotic crossing probabilities for
this percolation model are indeed conformally invariant and are given by Cardy’s formula.

Before sketching the proof, we will describe a variant of the Cauchy–Riemann equations
and of conjugate harmonic functions, associated with the angle 2π/3. For α = 1, τ, τ 2, and
f analytic, set

fα = Re(f/α).

Then fα is harmonic and we can recover f by

αf = fα +
i√
3

(fατ − fατ2).
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Also, for any η ∈ C, the directional derivatives satisfy

∇ηfα(z) =
∂

∂ε
|ε=0 Re

(
f(z + εη)

α

)
= Re

(
f ′(z)η

α

)
= ∇τηfτα(z).

These are the 2π/3-Cauchy–Riemann equations, and (f1, fτ , fτ2) is the harmonic triple of
f .

Conversely, if we are given C1 functions f1, fτ , fτ2 such that, for α ∈ {1, τ, τ 2}, for all
η,

∇ηfα(z) = ∇τηfτα(z),

then f , defined by

f = f1 +
i√
3

(fτ − fτ2),

is holomorphic and fα = Re(f/α) for all α.

Sketch proof of Theorem 13.4. For z the centre of a lattice triangle in D and η a vector
from z to one of the three neighbouring triangle centres, for α ∈ {1, τ, τ 2}, the events
Q = Qα(z + η) \ Qα(z) and Q̃ = Qτα(z + τη) \ Qτα(z) have the same probability. To see
this, label the vertices of the triangle at z by X, Y, Z, where X is opposite to η and we
move anticlockwise around the triangle. Note that Q is the event that there exist disjoint
black paths from Y to a(ατ 2)a(α) and from Z to a(α)a(τα) and also a white path from
X to a(ατ)a(ατ 2). On the other hand, Q̃ is a similar event but where the path from Y
must be white, and that from X must be black. To see that P(Q) = P(Q̃), explore the
lattice from a(α) just as far as is needed to find suitable black paths (for Q) from Y and
Z. Supposing this done, the conditional probability of the required white path from X is
the same as if we required it to be black (and disjoint from the other paths). Hence Q and
Q̃ both have the same probability as the event of three disjoint black paths to the required
boundary segments.

Set Pα(z, η) = P(Q). We have shown that

Pα(z, η) = Pτα(z, τα). (42)

This is a discrete version of the 2π/3-Cauchy–Riemann equations for the triple (H1, Hτ , Hτ2).
The rest of the proof is analytic. We accept here without proof the following results

Lemma 13.5 (Hölder estimate). There are constants ε > 0 and C < ∞, depending only
on (D, a(1), a(τ), a(τ 2)), such that

|Hα(z)−Hα(z′)| 6 C(|z − z′| ∧ δ)ε.

Also, Hα(a(α))→ 1 as δ → 0.

The proof uses a a classical method for regularity estimates in percolation due to Russo,
Seymour and Welsh.
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Lemma 13.6. For any equilateral triangular contour Γ, of side length `, interpolating
neighbouring centres of lattice triangles, define the discrete contour integral∫ δ

Γ

H(z)dz = δ
∑
z∈A1

H(z) + δτ
∑
z∈Aτ

H(z) + δτ 2
∑
z∈Aτ2

H(z),

where Aα is the set of centres along the side parallel to α. (Make some convention at the
corners.) Then ∫ δ

Γ

Hα(z)dz =
1

τ

∫ δ

Γ

Hατ (z)dz +O(`δε).

The proof is an elementary, if complicated, resummation argument, using the identity

Hα(z + η)−Hα(z) = Pα(z, η)− Pα(z + η,−η)

and, from the preceding lemma, the estimate Pα(z, η) 6 Cδε for some stray terms.
The Hölder estimate implies that every sequence δn ↓ 0 contains a subsequence δnk such

that H
δnk
α converges uniformly on D for all α, and any such subsequential limits, hα say,

must have boundary values hα(a(α)) = 1 and hα(z) = 0 on a(ατ)a(ατ 2). Moreover, by
Lemma 13.6, we must have ∫

Γ

hα(z)dz =
1

τ

∫
Γ

hατ (z)dz.

Set h = h1 + (i/
√

3)(hτ − hτ2), then ∫
Γ

h(z)dz = 0

for all Γ, so h is holomorphic by Morera’s theorem, and hα = Re(h/α) is harmonic for all
α. Hence we obtain

∇ηhα = ∇ταhτα.

(This can be considered as the limiting form of the key observation on the discrete model
(42), but the limit has not been justified directly.) This relation implies that the directional
derivatives of h1 on a(τ 2)a(1) and a(τ)a(1) at an angle τ to the tangent are zero. Thus
we have a (conformally-invariant) Dirichlet-Neumann problem for h1. In the case D = ∆,
the affine function f1 is obviously a solution, and moreover it is the only solution. Hence
the functions Hδ

1 , H
δ
τ , H

δ
τ2 each have exactly one uniform limit point as δ → 0, given by

h1, hτ , hτ2 respectively, as required.
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14 SLE(8/3) and restriction

14.1 Brownian excursion in the upper half-plane

Let z = x + iy ∈ H̄. Let (Xt)t>0 be a Brownian motion in R, starting from x. Let
(Wt)t>0 be a Brownian motion in R3, starting from (y, 0, 0), and independent of (Xt)t>0.
Set Rt = |Wt|. Then (Rt)t>0 is a Bessel process of dimension 3 starting from y. Set
Et = Xt + iRt. The process (Et : t > 0) is called a Brownian excursion in H starting from
z. Whilst this process is of interest in its own right, we introduce it here primarily as a
means to study SLE(8/3), in particular using the following formula for the derivative of
the mapping-out function. For a compact H-hull A with 0 6∈ Ā, we write φA for the shifted
mapping-out function, given by

φA(z) = gA(z)− gA(0).

Proposition 14.1. Let A be a compact H-hull with 0 6∈ Ā. Let (Et)t>0 be a Brownian
excursion in H starting from 0. Then

P0((Et)t>0 does not hit A) = φ′A(0).

Proof. Let (Zt)t>0 be a complex Brownian motion starting from z = x + iy ∈ H \ A. Let
(Et)t>0 be a Brownian excursion in H, also starting from z. Write Zt = Xt + iYt. Define
for r > 0

Tr = inf{t > 0 : Yt = r}, TA = inf{t > 0 : Zt ∈ A}, Sr = inf{t > 0 : ImEt = r}.

Fix r > y and set Mt = y−1YT0∧Tr∧t. Then (Mt)t>0 is a bounded non-negative martingale
with M0 = 1 and with final value YT0∧Tr = (r/y)1{T0>Tr}. Define a new probability measure

P̃ by
dP̃/dP = YT0∧Tr .

Then P̃(T0 > Tr) = 1. Under P̃, the processes (Xt)t>0 and (Yt)t>0 remain independent and
(Xt)t>0 is a Brownian motion. Consider the process (Bt)t>0 given by

dBt = dYt −M−1
t dMtdYt = dYt − 1{t6Tr}Y

−1
t dt, B0 = 0.

Under P̃, by Girsanov’s theorem, (Bt)t>0 is a local martingale and hence, having the same
quadratic variation as (Yt)t>0, is a Brownian motion, by Lévy’s characterization. The
stochastic differential equation

dỸt = dBt + Ỹ −1
t dt, Ỹ0 = y

has a unique strong solution (Ỹt)t>0. Then Yt = Ỹt for t 6 Tr. By the Yamada–Watanabe
theorem (Ỹt)t>0 under P̃ has the same law as (Im(Et))t>0 under P. So (Xt+ iỸt)t>0 under P̃
has the same law as (Et)t>0 under P. Hence (Zt)t6Tr under P̃ has the same law as (Et)t6Sr
under P. Set

pr(z) = Pz((Et)t6Sr does not hit A).
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Then

pr(z) = P̃z((Zt)t6Tr does not hit A) = Ez(y−1YT0∧Tr1{TA>Tr}) = (r/y)Pz(Tr < T0 ∧ TA).

Now gA(z)− z → 0 as |z| → ∞ so, for r sufficiently large,

| Im gA(z)− r| 6 1 whenever Im(z) = r

and hence, by conformal invariance of Brownian motion,

Im gA(z)

r + 1
= PgA(z)(Tr+1 < T0) 6 Pz(Tr < T0 ∧ TA) 6 PgA(z)(Tr−1 < T0) =

Im gA(z)

r − 1
.

So
Pz((Et)t>0 does not hit A) = lim

r→∞
pr(z) = Im gA(z)/y.

Note that Im gA(z)/y → g′A(0) > 0 as z → 0 in H. Take now z = 0, fix ε > 0 with
A ∩ εD = ∅, and set

S = inf{t > 0 : |Et| = ε},
then |ES| = ε and ImES > 0 almost surely. Hence, by the strong Markov property of
(Et)t>0 and bounded convergence, as ε→ 0,

P0((Et)t>0 does not hit A) = E(Im gA(ES)/ Im(ES))→ g′A(0) = φ′A(0).

14.2 Restriction property of SLE(8/3)

We begin with a result for SLE(8/3) which is closely analogous to the result just proved
for the Brownian excursion.

Proposition 14.2. Let A be a compact H-hull with 0 6∈ Ā. Let (γt)t>0 be an SLE(8/3).
Then

P((γt)t>0 does not hit A) = φ′A(0)5/8.

Proof. Set Kt = {γs : s ∈ (0, t]} and T = inf{t > 0 : γt ∈ A}. The Loewner transform
(ξt)t>0 of (Kt)t>0 is a Brownian motion of diffusivity κ = 8/3. For t < T , set K̃t = φA(Kt)
and φt = gK̃t ◦ φA ◦ (gKt)

−1. Then φt : H \ gKt(A) → H is a conformal isomorphism and
φt(z)− z + gA(0)→ 0 as |z| → ∞, so φt is a shift of the mapping-out function for gKt(A).
Set Σt = φ′t(ξt). The set S0 = {(t, x) : t ∈ [0, T ), x ∈ IKt} is open in [0,∞)×R and ξt ∈ IKt
for all t < T . By Proposition 12.6, the adapted random map (t, x) 7→ φ′t(x) : S0 → R is
C1,2 and

φ̇′t(ξt) =
1

2

φ′′t (ξt)
2

φ′t(ξt)
− 4

3
φ′′′t (ξt)
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for all t < T . By the generalized Itô formula, we have

dΣt = φ̇′t(ξt)dt+ φ′′t (ξt)dξt +
1

2
φ′′′t (ξt)dξtdξt.

Since dξtdξt = κdt, this simplifies to give

dΣt = φ′′t (ξt)dξt +
1

2

φ′′t (ξt)
2

φ′t(ξt)
dt.

Fix α ∈ (0, 1] and set Mt = Σα
t . By Itô’s formula,

dMt = αΣα−1
t dΣt +

1

2
α(α− 1)Σα−2

t dΣtdΣt = αMtdYt,

where

dYt =
dΣt

Σt

+
1

2
(α− 1)

φ′′t (ξt)
2

Σ2
t

κdt =
φ′′t (ξt)

Σt

dξt +
1

2
(1 + (α− 1)κ)

φ′′t (ξt)
2

Σ2
t

dt.

We choose α = 5/8 so the final term vanishes. Then (Yt)t<T and hence also (Mt)t<T is a
continuous local martingale.

By Proposition 14.1, conditional on γ, we have

φ′t(ξt) = Pξt((Es)s>0 does not hit gKt(A)). (43)

In particular Mt ∈ [0, 1] for all t < T , so Mt has an almost sure limit, MT say, as t ↑ T
and then by optional stopping

E(MT ) = M0 = φ′A(0)5/8.

We shall show that MT = 1{T=∞} almost surely, so P(T = ∞) = E(MT ) = φ′A(0)5/8, as
required.

Consider first the case where T =∞. We want to show that

lim
t→∞

Pξt((Es)s>0 hits gKt(A)) = 0.

There exist connected compact H-hulls A− and A+ such that A ⊆ A−∪A+ and which (γt)t>0

does not hit. Hence we may reduce to the case where A is connected. By Propositions 6.2
and 6.1, we have

rad(gt(A)) 6 cap(gt(A)) 6 cap(A) 6 4 rad(A).

Fix x ∈ Ā ∩ R. By Proposition 10.1, we have |gt(x) − ξt| → ∞ as t → ∞. Hence, as
t→∞,

Pξt((Es)s>0 hits gKt(A)) 6 P0((Es)s>0 hits gKt(x)− ξt + 8rD̄)→ 0.

Consider now the case where T < ∞. Write A0 for the component of A containing
γT and assume for now that the boundary of A0 in H may be parametrized as a simple
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smooth curve (β(u) : u ∈ R), with β(0) = γT . By symmetry it will suffice to consider the
case where A0 is based on (0,∞). Write Ao0 for the interior of A0. Then

lim
t↑T

Pξt((Es)s>0 hits gKt(A0)) > PξT ((Es)s>0 hits gKT (Ao0)).

By Proposition 16.4,

lim inf
u↓0

Pβ(u)((Bs)s>0 hits γ(0, T ] on the left side) > 1/2.

Hence, by conformal invariance,

lim inf
u↓0

PgT (β(u))((Bs)s>0 hits R to the left of ξT ) > 1/2.

and so, since 1/3 < 1/2,

lim inf
u↓0

arg(gT (β(u))− ξT ) > π/3.

Then
PξT ((Es)s>0 hits gKT (Ao0)) > P0(Ω0)

where
Ω0 = ∩n∈N{arg(Es) ∈ (0, π/3) for some s ∈ (0, 1/n)}.

Recall the representation Es = Xs + i|Ws|, where (Xs)s>0 and (Ws)s>0 are Brownian
motions in R and R3 respectively. Then, by a scaling argument, P0(Ω0) > 0 and so
P0(Ω0) = 1 by Blumenthal’s zero-one law.

For general A, there is a sequence of compact H-hulls An ↓ A such that the boundary
in H of every component of every An is a simple smooth curve. Then, using Proposition
14.1,

P((γt)t>0 does not hit An) = P((Et)t>0 does not hit An)5/8

for all n. On letting n→∞ and using Proposition 14.1 again, we obtain the desired result
for A.

The proposition just proved leads by some general considerations to the following in-
variance property for SLE(8/3), called the restriction property. We defer the proof to the
next section in order to put it in a more general context.

Theorem 14.3. Let A be a compact H-hull with 0 6∈ Ā. Let (γt)t>0 be an SLE(8/3). Then,
conditional on the event {(γt)t>0 does not hit A}, the process (φA(γt))t>0 in its canonical
reparametrization is also an SLE(8/3).

Suppose α is a nonnegative integer and A is a compact H-hull such that 0 /∈ Ā∩R. Then
Φ′A(0)α is the probability that α independent Brownian excursions avoid A, by Proposition
14.1. Hence this is the probability that the hull generated by α independent Brownian
excursions does not intersect A. Thus one way to informally interpret the result of Theorem
14.2 is to say that the SLE(8/3) chord can be thought of as 5/8 of a Brownian excursion.
More precisely, we have the following result as an immediate corollary to Proposition 14.1
and Theorem 14.2:
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Theorem 14.4. The compact hull generated by 8 independent SLE(8/3) chords and the
compact hull generated by 5 independent Brownian excursions have the same distribution.

One of the particularly striking aspects of this result is that the curves themselves
(SLE(8/3) and Brownian excursions) are very different from one another.

14.3 Restriction measures

We shift attention from compact H-hulls to a different class of subsets in H. A filling is
any connected set K in H having 0 and ∞ as limit points in Ĥ and such that H \K is the
union of two simply connected domains D− and D+ which are neighbourhoods of (−∞, 0)
and (0,∞) in H respectively. Write S for the set of all such fillings. Write N for the set of
simply connected domains which are neighbourhoods of both 0 and ∞ in H. For D ∈ N ,
define SD = {K ∈ S : K ⊆ D}. Set A = {SD : D ∈ N} and write S for the σ-algebra on
S generated by A.

A random filling K (that is, an (S,S)-random variable) is said to have the restriction
property if, for any D ∈ N and for A = H \D, the conditional distribution of the random
filling φA(K) given K ⊆ D is equal to the distribution of K. Since A is a π-system
generating S, it is equivalent that these distributions agree on A, thus K has the restriction
property if and only if, for all pairs D,D′ ∈ N with D′ ⊆ D, we have

P(K ⊆ D′) = P(K ⊆ D)P(K ⊆ φA(D′)).

The law of K on (S,S) is then called a restriction measure.

Theorem 14.5. Let (γt)t>0 be an SLE(8/3) and set K = {γt : t ∈ (0,∞)}. Then K is a
random filling and K has the restriction property.

Proof. By Propositions 10.3, 11.3 and 11.5, K is a simple path in H with limit points 0
and ∞ in Ĥ. The sets {K ⊆ D} for D ∈ N are all measurable. Hence K is a random
filling.

For D′ ∈ N with D′ ⊆ D and for A = H \D and A′ = H \D′ and B = H \ φA(D′), we
have

φA′ = φB ◦ φA.
Then, by Proposition 14.2, we have

P(K ⊆ D′) = φ′A′(0)5/8 = φ′B(0)5/8φ′A(0)5/8 = P(K ⊆ D)P(K ⊆ φA(D′)).

Hence K has the restriction property.

Given a Brownian excursion (Et)t>0, consider the set K which is the union of K0 =
{Et : t ∈ (0,∞)} and all the bounded components of H \ K0. Then K is also a random
filling and, by Proposition 14.1 and the same argument just used, K also has the restriction
property. We have introduced restriction measures in order to consider SLE(8/3) in this
context. Much more is known in general than we have discussed.
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Proof of Theorem 14.3. Write S0 for the set of fillings in H of the form K = {γt : t ∈
(0,∞)}, where (γt)t>0 is a simple path in H̄ parametrized so that hcap(γ(0, t]) = 2t for all
t. It is straightforward to see that S0 is S-measurable and we shall show also that the map
θ : S0 → C([0,∞), H̄) given by θ(K) = γ is S-measurable. For (γt)t>0 an SLE(8/3) and
K = {γt : t ∈ (0,∞)}, for A a compact H-hull with 0 6∈ Ā and D = H \ A, we have

{(γt)t>0 does not hit A} = {K ⊆ D}

and on this event the canonical reparametrization (γ̃t)t>0 of (φA(γt))t>0 is given by θ(φA(K)).
Then, for B a measurable set in C([0,∞), H̄), the set θ−1(B) is S-measurable and we obtain

P((γ̃t)t>0 ∈ B|{(γt)t>0 does not hit A})
= P(φA(K) ∈ θ−1(B)|K ⊆ D) = P(K ∈ θ−1(B)) = P((γt)t>0 ∈ B).

We now complete the proof of the theorem by showing the measurability of the map θ.
For n > 0, write Ln for the dyadic lattice 2−n{j + ik : j ∈ Z, k ∈ Z+}. For each p ∈ Ln,
consider the set Q = Q(p) = p + {x + iy : x, y ∈ [0, 2−n]} and write NQ for the countable
set of domains D = H \ A ∈ N where A = A− ∪ A+ and A− and A+ are disjoint simple
paths which are unions of horizontal and vertical dyadic line segments, and which together
with some boundary interval I(D) of Q and some interval of R containing 0, form a simple
closed curve in H \Q. For D ∈ NQ, write K(D) for the hull whose boundary in H consists
of A− ∪ A+ ∪ I(D). For K ∈ S0, set γ = θ(K) and define

τQ(K) = inf{t > 0 : γt ∈ Q}, hQ(K) = hcap(γ(0, τQ(K)]), eQ(K) = γτQ(K).

By Proposition 6.5, given t > 0, we have hQ(K) < t if and only if K ⊆ D for some D ∈ NQ
with hcap(K(D)) < t. Also, given an open boundary interval I of Q, we have eQ(K) ∈ I
if and only if K ⊆ D for some D ∈ NQ with I(D) ⊆ I. Hence hQ : S0 → [0,∞] and
eQ : S0 → H̄ are both S-measurable. For each n > 0, choose an enumeration (pm : m > 0)
of Ln so that so that hm = hQ(pm)(K) is non-decreasing in m and set em = eQ(pm)(K).

Note that if hm = hm′ then em = em′ . Set hm = 2tm. Define a path (θ
(n)
t (K))t>0 by linear

interpolation of ((tm, em) : m > 0). Then θ(n) : S0 → C([0,∞), H̄) is measurable for all

n. Now θt(K) = θ
(n)
t (K) for all t ∈ T (n) = {tm : m > 0} and, since θ(K) is simple,

∪nM(n) is dense in [0,∞). Hence, by uniform continuity, the paths θ(n)(K) converge to
θ(K) uniformly on compacts, so θ is also measurable, as required.
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15 SLE(4) and the Gaussian free field

We define the planar Gaussian free field and review some of its properties. Then we prove
a relation with SLE(4) due to Schramm and Sheffield which suggests that SLE(4) can be
interpreted as a fracture line of this Gaussian process. Since the free field is distribution-
valued, we begin with a quick review of some classical material on function spaces and
distributions.

15.1 Conformal invariance of function spaces

Let D be a domain. A test-function on D is an infinitely differentiable function on D which
is supported on some compact subset of D. The set of all such test-functions is denoted
D(D). The set D(D) is made into a locally convex topological vector space12 in which
convergence is characterized as follows. A sequence fn → 0 in D(D) if and only if there is
a compact set K ⊆ D such that supp fn ⊆ K for all n and fn and all its derivatives converge
to 0 uniformly on D. A continuous linear map u : D(D)→ R is called a distribution13 on
D. Thus, the set of distributions on D is the dual space of D(D). It is denoted by D′(D)
and is given the weak-∗ topology. Thus un → u in D′(D) if and only if un(ρ) → u(ρ) for
all ρ ∈ D(D). In this context, we think of each ρ ∈ D(D) as specifying a suitably regular
signed measure on D, given by ρ(x)dx, and of each u ∈ D′(D) as a generalized function on
D, which can be viewed through its ‘averages’ u(ρ) with respect to test-functions. We will
freely identify ρ with the signed measure ρ(x)dx. Note that, since D(D) is separable, the
Borel σ-algebra on D′(D) is generated by the coordinate functions u 7→ u(ρ). We specialize
from this point on to the planar case, where we note the following result. The proof, which
is left as an exercise, rests on the fact that φ and all its derivatives are bounded on compact
subsets of D0, and φ−1 and all its derivatives are bounded on compact subsets of D.

Proposition 15.1. Let φ : D0 → D be a conformal isomorphism of planar domains. The
map f 7→ f ◦ φ−1 is a linear homeomorphism D(D0)→ D(D).

For ρ ∈ D(D), the image measure of ρ(x)dx by φ−1 is given by ρ0(x)dx, where ρ0 =
(ρ ◦ φ)|φ′|2. The map ρ 7→ ρ0 is a linear homeomorphism D(D)→ D(D0).

For u0 ∈ D′(D0), consider the distribution u on D given by u(ρ) = u0(ρ0). We write
formally u = u0 ◦ φ−1. The map u0 7→ u is a linear homeomorphism D′(D0)→ D′(D).

Let D be a proper simply connected domain. The Green function (GD(x, y) : x, y ∈ D)
was introduced in Section 3.3. Write MD for the set of Borel measures µ on D having
finite energy

ED(µ) =

∫
D2

GD(x, y)µ(dx)µ(dy).

The energy has a conformal invariance property which it inherits from the Green function.
The proof is left as an exercise.

12See [6] for more details.
13This conflicts with the usage of distribution to mean the law of a random variable but is standard and

should not cause confusion.
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Proposition 15.2. Let φ : D0 → D be a conformal isomorphism of proper simply con-
nected domains and let µ0 be a Borel measure on D0. Set µ = µ0 ◦ φ−1. Then

ED(µ) = ED0(µ0).

Consider now a bounded domain D and define for f, g ∈ D(D)

〈f, g〉H1(D) =
1

2

∫
D

〈∇f,∇g〉dx.

Then 〈., .〉H1(D) is an inner product on D(D). Write ‖.‖H1(D) for the associated norm.
Choose R ∈ (0,∞) so that |x| 6 R for all x ∈ D. For f ∈ D(D) and for r ∈ [0, R] and
|z| = 1, we have

|f(rz)|2 =

∣∣∣∣∫ R

r

〈z,∇f(tz)〉dt
∣∣∣∣2 6 ∫ R

r

|∇f(tz)|2dt.

So, by Fubini’s theorem, we obtain Poincaré’s inequality

‖f‖2
L2(D) =

∫
D

|f |2dx =

∫ 2π

0

∫ R

0

|f(reiθ)|2rdrdθ 6 R

2

∫
D

|∇f |2dx = R‖f‖2
H1(D).

Write L2(D) for the Hilbert space of square integrable functions on D, modulo almost
everywhere equality. By Poincaré’s inequality, for D bounded, we can complete D(D)
within L2(D) using ‖.‖H1(D) to obtain a Hilbert space, which is denoted H1

0 (D). The set of
distributions γ ∈ D′(D) such that |γ(ρ)| 6 C‖ρ‖H1 for all ρ ∈ D(D) is denoted H−1(D).

Proposition 15.3. Let φ : D0 → D be a conformal isomorphism of bounded planar
domains. Then the map f 7→ f ◦ φ−1 is a Hilbert space isomorphism H1

0 (D0)→ H1
0 (D).

Proof. Set ψ = φ−1. For f ∈ D(D0), by the Jacobian formula, we have

‖f ◦ ψ‖2
H1(D) =

∫
D

(|∇f |2 ◦ ψ)|ψ′|2dx =

∫
D0

|∇f |2dx = ‖f‖2
H1(D0).

Since D(D0) is dense in H1
0 (D0), this isometry property extends to the whole space.

We will use the following basic fact from partial differential equations. There is a
complete orthonormal system (fn : n ∈ N) in H1

0 (D) and a non-decreasing sequence
(λn : n ∈ N) in (0,∞) such that fn ∈ C∞(D) and −1

2
∆fn = λnfn for all n. See for

example [3]. Set en = λ
1/2
n fn. Then (en : n ∈ N) is a complete orthonormal system in

L2(D). To see this we use the fact that D(D) is dense in L2(D). We defined the heat
kernel pD and the Green function GD probabilistically in Section 3.3. So we have to work
a little to make the following connection with the spectrum of the Laplacian.
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Proposition 15.4. Let D be a bounded planar domain. For all n ∈ N, x ∈ D and t > 0,
we have

fn(x) = eλnt
∫
D

pD(t, x, y)fn(y)dy = λn

∫
D

GD(x, y)fn(y)dy.

Proof. The second equality follows from the first by integration. By scaling, it will suffice
to consider the case where D ⊆ (0, 1)2. Then there exists a Z2-periodic function f which
agrees with fn on D and vanishes on (0, 1]2 \D, with f ∈ L2(T) ∩H1(T). Set

F (x) = Ex
(

sup
s6t
|f(Bs)|2

)
, p(x) = Px(f(Bt)→ 0 as t→ T (D)).

Then, by Lemma 16.3, ∫
T
F (x)dx <∞,

∫
T
p(x)dx = 1.

Since p is harmonic in D, it is continuous, so p(x) = 1 for all x ∈ D. We will show that
also F (x) < ∞ for all x ∈ D. Set D0 = {y : |x − y| < δ} and choose δ > 0 so that
D0 ⊆ D. Now f is bounded on D0 so it will suffice to show that Ex(F (BT (D0)) <∞. For
some y ∈ D0, we have F (y) < ∞ so Ey(F (BT (D0)) < ∞. But the hitting density from x
on ∂D0 is constant and that from y is bounded below. Hence F (x) <∞.

Define
Mt = eλntfn(Bt)1{t<T (D)}, t > 0.

By Itô’s formula, (Mt : t < T (D)) is a continuous local martingale. We have shown further
that Mt → 0 as t → T (D) and Ex(sups6t |Ms|2) < ∞ for all t > 0. Hence (Mt)t>0 is a
continuous martingale. The desired equality then follows by optional stopping:

fn(x) = Ex(M0) = Ex(Mt∧T (D)) = eλntEx
(
fn(Bt)1{t<T (D)}

)
= eλnt

∫
D

pD(t, x, y)fn(y)dy.

For all t > 0 and x, y ∈ D, by the Markov property, we have

pD(t, x, y) =

∫
D

pD(t/2, x, z)p(t/2, z, y)dz.

Since pD is symmetric and pD(t, x, x) < ∞, we see that pD(t/2, x, .) ∈ L2(D). By Propo-
sition 15.4, ∫

D

p(t, x, y)en(y)dy = e−λnten(x)

so, by Parseval’s identity,

pD(t, x, y) =
∑
n

e−λnten(x)en(y).
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In particular, we deduce that ∫
D

pD(t, x, x)dx =
∑
n

e−λnt

and so, by Fubini, for α > 0,∫ ∞
0

∫
D

tα−1pD(t, x, x)dxdt =
∑
n

∫ ∞
0

tα−1eλntdt = Γ(α)
∑
n

λ−αn .

We note that the left side of this identity is increasing in the domain D. For D = (0, π)2

the eigenfunctions (fn : n ∈ N) are given explicitly, after normalization and reordering, by
sinmx sinny for x, y ∈ (0, π) and n,m ∈ N. Hence, for any domain D ⊆ (0, π)2 and all
α > 1, we have ∑

n

λ−αn 6
∑
m,n∈N

(m2 + n2)−α <∞.

Proposition 15.5. Let D be a bounded planar domain. Let µ ∈MD and let f ∈ H1
0 (D).

Then f is integrable with respect to µ and the map f 7→ µ(f) is a continuous linear
functional on H1

0 (D) of norm ED(µ)1/2.

Proof. The iden We have

ED(µ) =

∫
D×D

∑
n

fn(x)fn(y)µ(dx)µ(dy) =
∑
n

µ(fn)2.

Then, for f =
∑

n anfn ∈ H1
0 (D), by Cauchy–Schwarz,

µ(f) =
∑
n

anµ(fn) 6

(∑
n

a2
n

)1/2(∑
n

µ(fn)2

)1/2

= ‖f‖H1(D)ED(µ)1/2.

15.2 Gaussian free field

Let D be a Greenian planar domain. A random variable Γ in D′(D) is said to be a Gaussian
free field in D with zero boundary values if Γ(ρ) is a Gaussian random variable with mean
zero and variance ED(ρ) for all ρ ∈ D(D). In the case where D is simply connected,
recall from Section 1.3 the notion of the Martin boundary δD. Then, given a bounded
measurable function f on δD, we say that a random variable Γ in D′(D) is a Gaussian
free field on D with boundary value f if Γ = Γ0 + u for some Gaussian free field Γ0 on D
with zero boundary values, where u is the harmonic extension of f in D. Thus Γ(ρ) is a
Gaussian random variable of mean

HD(f, ρ) =

∫
δD×D

f(y)hD(x, dy)ρ(x)dx

and variance ED(ρ) for all ρ ∈ D(D). Note that Γ cannot simply be evaluated at a given
point in the boundary, nor anywhere where else for that matter.
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Theorem 15.6. Let D be a bounded planar domain. There exists a unique Borel probability
measure on D′(D) which is the law of a Gaussian free field on D with zero boundary values.

Proof. Let (Xn : n ∈ N) be a sequence of independent standard Gaussian random variables.
Set S =

∑
n λ
−2
n X2

n and define Ω0 = {S <∞}. Then E(S) =
∑

n λ
−2
n <∞, so P(Ω0) = 1.

Fix ρ ∈ D(D) and set an =
∫
D
fnρdx. Then∑

n

λ2
na

2
n =

∑
n

〈ρ, fn〉2H1(D) = ‖ρ‖2
H1(D) <∞,

∑
n

a2
n = ED(ρ)

and ‖ρ‖H1(D) → 0 as ρ→ 0 in D(D). Define

Γ(ρ) = 1Ω0

∑
n

anXn.

By Cauchy–Schwarz, the series converges absolutely on Ω0 with

|Γ(ρ)| 6
√
S‖ρ‖H1(D),

so Γ = (Γ(ρ) : ρ ∈ D(D)) is a random variable in D′(D). The series converges also in L2,
so Γ(ρ) is Gaussian, of mean zero and variance ED(ρ). Hence Γ is a Gaussian free field on
D with zero boundary values, as required.

On the other hand, for any Gaussian free field Γ on D with zero boundary values
and for any ρ = (ρ1, . . . , ρk) ∈ D(D)k, the characteristic function φ of the the random
variable Γ(ρ) = (Γ(ρ1), . . . ,Γ(ρk)) in Rk is given by φ(α) = exp{−ED(ρ̄)/2}, where ρ̄ =
α1ρ1 + · · · + αkρk ∈ D(D) and α = (α1, . . . , αk). This determines uniquely the law of
Γ(ρ) on Rk. Since the Borel σ-algebra on D′(D) is generated by the coordinate functions
u 7→ u(ρ), this further determines uniquely the law of Γ on D′(D).

The Gaussian free field inherits from the energy and harmonic measure a property of
conformal invariance. The proof is left as an exercise.

Proposition 15.7. Let φ : D → D′ be a conformal isomorphism of Greenian domains.
Suppose that Γ is a Gaussian free field on D with zero boundary values. Then Γ ◦ φ−1 is a
Gaussian free field on D′ with zero boundary values.

Suppose now that D is simply connected, and that Γ is a Gaussian free field on D with
boundary value f . Then Γ◦φ−1 is a Gaussian free field on D′ with boundary value f ◦φ−1.

As a corollary of this result and the Riemann mapping theorem, we see that the conclu-
sion of Theorem 15.6 remains valid under the hypothesis that D is the image of a bounded
domain under a conformal isomorphism, in particular whenever D is contained in a proper
simply connected domain.

We will prove two useful extension properties of Gaussian free fields. First, they can be
evaluated through less regular averages, in particular with respect to any measure of finite
energy. Write L2 for the Hilbert space of all square-integrable random variables modulo
almost sure equality. Write G0 for the closed subspace in L2 of zero-mean Gaussian random
variables.
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Proposition 15.8. Let D be a bounded planar domain and let Γ be a Gaussian free field on
D with zero boundary values. There is a unique Hilbert space isometry Γ̃ : H−1(D) → G0

such that Γ̃(ρ) = [Γ(ρ)] for all ρ ∈ D(D).

Proof. Note that [Γ(ρ)] ∈ G0 for all ρ ∈ D(D). Consider the space of test-functions D(D)
as a subspace of H−1(D) and note that ED(ρ) = ‖ρ‖2

H−1(D). Then D(D) is dense in H−1(D)

and the map ρ 7→ [Γ(ρ)] : D(D)→ G0 is an isometry, which therefore extends uniquely to
an isometry Γ̃ : H−1(D)→ G0.

Note that, while we can regard Γ̃(u) as a random variable for any u ∈ H−1(D), by
a choice of representative, there is no guarantee of a regular version of these random
variables as u varies, in contrast to the family (Γ(ρ) : ρ ∈ D(D)) which we know belongs
to D′(D) almost surely. Note also that, for D bounded and for u ∈ H−1(D), we have
u =

∑
n λnu(fn)fn in H−1(D), where (fn : n ∈ N) and (λn : n ∈ N) are as in Section 15.1.

Hence, by Doob’s L2 martingale convergence theorem,

Γ̃(u) =
∑
n

u(fn)Yn a.s.

where (Yn : n ∈ N) is the sequence of independent standard Gaussian random variables
given by Yn = λnΓ̃(fn). In particular, if Γ is constructed as in the proof of Theorem 15.6,
then Yn = Xn for all n almost surely.

Second, the free field may be regarded as a distribution on a larger domain.

Proposition 15.9. Let D be a subdomain of a proper simply connected domain D∗. Let Γ
be a Gaussian free field on D with zero boundary values. Then Γ extends uniquely almost
surely to a random variable Γ̄ in D′(D∗) such that Γ̄(ρ) is a Gaussian random variable of
mean zero and variance ED(ρ) for all ρ ∈ D(D∗).

Proof. By the Riemann mapping theorem and conformal invariance, we reduce to the
case where D∗ = D. We make a variation of the proof of Theorem 15.6. Write f̄n for
the extension of fn to D which vanishes identically on D \ D. Then (f̄n : n ∈ N) is an
orthonormal system in H1

0 (D). For ρ ∈ H1
0 (D), set ρn =

∫
D
fnρdx =

∫
D f̄nρdx. Then

λnρn = 〈ρ, f̄n〉H1(D),
∑
n

λ2
nρ

2
n 6 ‖ρ‖2

H1(D),
∑
n

ρ2
n = ED(ρ).

Set Ω0 = {∑n λ
−2
n Y 2

n <∞} and define

Γ̄(ρ) = 1Ω0

∑
n

ρnYn.

The same argument used in the proof of Theorem 15.6 now shows that Γ̄ = (Γ̄(ρ) : ρ ∈
D′(D)) is a random variable in D′(D) with the required properties. For any other such
random variable, Γ∗ say, we have Γ∗(ρ) = Γ̃(ρ1D) = Γ̄(ρ) almost surely for all ρ ∈ D′(D),
so Γ∗ = Γ̄ almost surely on D′(D) by continuity.
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The Gaussian free field has the following Markov property.

Proposition 15.10. Let D be a subdomain of a proper simply connected domain D∗. Let
Γ∗ be a Gaussian free field on D∗. Then Γ∗ has an almost surely unique decomposition
Γ∗ = Γ̄ + Φ as a sum of independent random variables in D′(D∗) such that Φ is harmonic
on D and Γ̄ restricts to a Gaussian free field on D with zero boundary values.

Proof. We reduce to the case where Γ∗ has zero boundary values by subtracting if necessary
the harmonic extension of its boundary values in D∗. We proceed as in the proof of
Proposition 15.9, with D∗ = D, but with Yn replaced by Y ∗n = Γ̃∗(−1

2
∆f̄n). Thus we define

a random variable Γ̄ in D′(D) by

Γ̄(ρ) =
∑
n

ρnY
∗
n

and Γ̄ restricts to a Gaussian free field on D with zero boundary values. Set Φ = Γ∗ − Γ̄.
For ρ ∈ D(D), we have ρ =

∑
n λnρnf̄n in H1

0 (D), so ∆ρ =
∑

n λnρn∆f̄n in H−1(D). Also∫
D(−1

2
∆ρ)f̄ndx = λnρn by integration by parts. Hence, almost surely,

Γ̄(−1
2
∆ρ) =

∑
n

λnρnY
∗
n = Γ∗(−1

2
∆ρ).

Then, by continuity, Φ(∆ρ) = 0 for all ρ ∈ D(D) almost surely, so Φ is harmonic in D.
Finally, for ρ∗ ∈ D(D), we have ρ∗ = ∆f for some f ∈ H1

0 (D) and then f = ρ0 + h with
f ∈ H1

0 (D) and h ∈ H1
0 (D) with ∆h = 0 on D. Then Φ(ρ∗) = Γ̃∗(∆h) and E(Γ̃∗(∆h)Y ∗n ) =

4〈h, f̄n〉H1(D) = 0 for all n. The Gaussian random variables Φ and Γ̄ are then orthogonal
and thus independent.

15.3 Angle martingales for SLE(4)

We study a family of martingales for SLE(4) and their relation to the Green function.
Then by integrating with respect to a test-function we obtain a splitting identity for the
characteristic function of a certain Gaussian free field in H.

Define s0 on δH by s0(±x) = ±1 for x ∈ (0,∞) and s0(0) = s0(∞) = 0. Write σ0 for
the harmonic extension of s0 in H. Then

σ0(z) =

∫
δH
s0(x)hH(z, dx) = 1− (2/π) arg(z), z ∈ H.

Let γ be an SLE(4). Write (gt(z) : z ∈ H, t < ζ(z)) and (ξt)t>0 for the associated Loewner
flow and Loewner tranform and set Ht = {z ∈ H : t < ζ(z)}. Define st(x) = s0(gt(x)− ξt)
for x ∈ δHt. The harmonic extension σt of st in Ht is then given by σt(z) = σ0(gt(z)− ξt).

Proposition 15.11. For all z ∈ H, the process (σt(z) : t < ζ(z)) is a continuous local
martingale and ζ(z) = ∞ almost surely. Moreover, for all w ∈ H \ {z}, the process
(σt(z)σt(w) + (4/π)GHt(z, w) : t < ζ(z) ∧ ζ(w)) is also a continuous local martingale.
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Proof. Write Zt = gt(z) − ξt and Wt = gt(w) − ξt. From Loewner’s equation, we have
dZt = (2/Zt)dt− dξt for t < ζ(z). Then, by Itô’s formula,

d logZt =
dZt
Zt
− d[Z]t

2Z2
t

= −dξt
Zt

+
(

2− κ

2

) dt

Z2
t

.

Since κ = 4, this shows that the real and imaginary parts of (logZt : t < ζ(z)) are
continuous local martingales. Now Zt → 0 as t → ζ(z) when ζ(z) < ∞, so log |Zt| =
Re logZt → −∞. This is impossible for a continuous local martingale, so ζ(z) = ∞
almost surely. Also σt(z) = 1 − (2/π) Im logZt, so (σt(z) : t < ζ(z)) is a continuous local
martingale, with

dσt(z) =
2

π
Im

(
1

Zt

)
dξt.

Then, for t < ζ(z) ∧ ζ(w),

d(σt(z)σt(w)) = dNt +
16

π2
Im

(
1

Zt

)
Im

(
1

Wt

)
dt

for a continuous local martingale (Nt : t < ζ(z) ∧ ζ(w)). On the other hand, by conformal
invariance of the Green function, for t < ζ(z) ∧ ζ(w),

GHt(z, w) = GH(gt(z), gt(w)) =
1

π
log

∣∣∣∣Zt − W̄t

Zt −Wt

∣∣∣∣ .
Now d(Zt −Wt) = 2(Zt −Wt)dt/(ZtWt), so

d log(Zt −Wt) =
2dt

ZtWt

, d log(Zt − W̄t) =
2dt

ZtW̄t

so

dGHt(z, w) = dRe

(
1

π
log

(
Zt − W̄t

Zt −Wt

))
= Re

(
2

πZt

(
1

W̄t

− 1

Wt

))
dt = − 4

π
Im

(
1

Zt

)
Im

(
1

Wt

)
dt.

Hence d(σt(z)σt(w)) + (4/π)dGHt(z, w) = dNt and the result follows.

Proposition 15.12. Set λ =
√
π/4. Write D− and D+ for the left and right components

of H \ γ∗. Then, for all ρ ∈ D(H), we have

exp

{
iλHH(s0, ρ)− EH(ρ)

2

}
= E

(
exp

{
iλρ(D+)− ED+(ρ)

2

}
exp

{
−iλρ(D−)− ED−(ρ)

2

})
.
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Proof. Fix ρ ∈ D(H) and set

Mt =

∫
H\γ∗

λσt(z)ρ(z)dz.

For z ∈ H\γ∗, the map t 7→ σt(z) is continuous on [0,∞) and |σt(z)| 6 1 so, by dominated
convergence, t 7→ Mt is continuous on [0,∞), almost surely. We know that γt → ∞ as
t→∞ almost surely, so σt → ±1 on D±, and so

Mt → λρ(D+)− λρ(D−).

By Fubini’s theorem, the trace γ∗ = {z ∈ H : ζ(z) <∞} has zero planar Lebesgue measure
almost surely. Also, GHt → GD± on D±×D± and GHt → 0 on D±×D∓ almost surely, so

EHt(ρ)→ ED−(ρ) + ED+(ρ).

For all z ∈ H, we have ζ(z) = ∞ almost surely. The local martingales identified in
Proposition 15.11 are uniformly bounded and so are true martingales. So, by Fubini’s
theorem, for s 6 t and A ∈ Fs,

E(Mt1A) =

∫
H
E(λσt(z)1A)ρ(z)dz =

∫
H
E(λσs(z)1A)ρ(z)dz = E(Ms1A).

and

E((M2
t + EHt(ρ))1A) =

∫
H2

E((λ2σt(z)σt(w) +GHt(z, w))1A)ρ(z)ρ(w)dzdw

=

∫
H2

E((λ2σs(z)σs(w) +GHs(z, w))1A)ρ(z)ρ(w)dzdw = E((M2
s + EHs(ρ))1A).

Hence (Mt : t > 0) and (M2
t +EHt(ρ) : t > 0) are continuous martingales. Thus (Mt : t > 0)

has quadratic variation process [M ]t = EH(ρ) − EHt(ρ). Set Et = exp {iMt − EHt(ρ)/2}.
By Itô’s formula, (Et : t > 0) is a local martingale, which is moreover bounded. So

E (exp {iMt − EHt(ρ)/2}) = E(Et) = E(E0) = exp {iM0 − EH(ρ)/2} . (44)

On letting t→∞, using bounded convergence, we obtain the claimed identity.

15.4 Schramm–Sheffield theorem

Proposition 15.12 can be interpreted in terms of the characteristic functions of certain
Gaussian free fields, and then implies immediately the following result of Schramm and
Sheffield, which expresses an identity in law for the corresponding fields. The constant λ
appearing in the theorem is affected by our choice of normalization for the Green function
so differs by a factor of

√
2 from the original paper.
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Figure 5: Coupling between Gaussian free field and SLE(4). Picture courtesy of S. Sheffield.

Theorem 15.13. Let γ be an SLE(4) and let D− and D+ be the left and right components
of H \ γ∗. Conditional on γ, let Γ− and Γ+ be independent Gaussian free fields with zero
boundary values, on D− and D+ respectively. Write Γ̄± for their extensions as random
variables in D′(H). Set λ =

√
π/4 and define

Γ = (Γ̄+ + λ1D+)− (Γ̄− + λ1D−)

Then Γ is a Gaussian free field on H with boundary values −λ and λ on the left and right
half-lines respectively.

Before giving the proof, here is a motivating argument, which is not rigorous. ‘Suppose
we can find a simple chord γ = (γt : t > 0) in (H, 0,∞), parametrized by half-plane capacity,
along which there is a cliff in Γ, with value λ to the right and −λ to the left. Indeed, suppose
we can find γ without looking at the values of Γ away from the cliff. Then, by the Markov
property and conformal invariance of the free field, conditional on Ft = σ(γs : s 6 t),
g̃t(Γ|Ht) has the original distribution of Γ, and so γ has the domain Markov property.
Moreover, by conformal invariance of the free field, γ is also scale invariant, so γ is an
SLE(κ) for some κ ∈ [0,∞). Consider the function φt(z) = E(Γ(z)|Ft). Then for fixed
t, φt must be the harmonic extension in Ht of the boundary values of Γ on δHt. Thus
φt = λσt(z). Now (φt(z) : t < ζ(z)) appears to be a martingale. Hence, as we saw in
the proof of Proposition 15.11, we must have κ = 4.’ Note that the theorem turns the
construction backwards and does not state that γ is a measurable function of Γ.

Proof of Theorem 15.13. By Proposition 15.12, for all ρ ∈ D(H),

E(exp{iΓ(ρ)}) = exp {iHH(λs0, ρ)− EH(ρ)/2}

73



so Γ(ρ) is Gaussian of mean HH(λs0, ρ) and variance EH(ρ) by uniqueness of characteristic
functions, and so Γ is a Gaussian free field on H with boundary value λs0, as required.

The finite-time identity (44) can be interpreted similarly. Conditional on (γs : s 6 t),
let Γt be a Gaussian free field on Ht with boundary value λst and let Γ̄t be its extension as
a random variable in D′(H). Then Γt is a Gaussian free field on H with boundary value
λs0.
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16 Appendix

We prove a result of Beurling which concerns the probability that complex Brownian motion
(Bt)t>0 starting from 0 hits a relatively closed subset A ⊆ D before leaving D. It states that
the probability does not increase if we replace A by its radial projection A∗ = {|z| : z ∈ A}.
For A = [ε, 1) we can compute the hitting probability exactly. This provides general source
of lower bounds for harmonic measure. We also prove a symmetry estimate, in the case
where A is a simple path, for the probability that Brownian motion hits a given side of A.
Finally, we prove a maximal inequality for H1 functions of Brownian motion.

16.1 Beurling’s projection theorem

Write TA for the hitting time of A given by

TA = inf{t > 0 : Bt ∈ A}.

Theorem 16.1. Let A be a relatively closed subset of D. Then

P0(TA∗ < T (D)) 6 P0(TA < T (D)).

The proof relies on the following folding inequality14. Define the folding map φ on C
by φ(x+ iy) = x+ i|y|.

Lemma 16.2. Let A be a relatively closed subset of D. Then

P0(Tφ(A) < T (D)) 6 P0(TA < T (D)).

Proof. We exclude the case where 0 ∈ A for which the inequality is clear. Consider the set
ρ(A) = A ∪ {z̄ : z ∈ A}, symmetrized by reflection. Set R0 = 0 and define, recursively for
k > 1,

Sk = inf{t > Rk−1 : Bt ∈ ρ(A) or Bt 6∈ D}, Rk = inf{t > Sk : Bt ∈ R}.

Then Sk and Rk are stopping times and Rk−1 6 Sk 6 Rk <∞ for all k, almost surely.
Set K = inf{k > 1 : Sk = Rk}, where we take inf ∅ =∞ as usual. On the event {K =

∞}, we have Rk−1 < Sk < Rk < TR\D < ∞ for all k, so the sequences (Sk : k > 1) and
(Rk : k > 1) have a common accumulation point T ∗ 6 TR\D. We can write (D\ρ(A))∩R as
a countable union of disjoint open intervals ∪nIn. By a straightforward harmonic measure
estimate, there is a constant C <∞ such that P0(Bt ∈ In for some t < TR\D) 6 C Leb(In)
for all n so, by Borel-Cantelli, almost surely, B visits only finitely many of the intervals In
before TR\D. Hence, on {K =∞}, almost surely BT ∗ = limk BSk = limk BRk is an endpoint

14Our proof of the folding inequality is new, though based on ideas from an argument of Oksendal.
Whereas Oksendal cuts up the events whose probabilities are to be compared into pieces where symmetry
can be invoked to make the comparison, we obtain the inequality from a global inclusion of events, using
stochastic calculus to obtain the needed symmetry.
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of one of the intervals In. But, almost surely, B does not hit any of these endpoints. Hence
K <∞ almost surely.

Set A+ = φ(A) ∩ A and A− = φ(A) \ A. Take a sequence of independent random
variables (εk)k>1, independent of B, with P(εk = ±1) = 1/2 for all k. Set ε̂k = δkεk, where
δk = ±1 according as BSk ∈ ρ(A±). Then (ε̂k)k>1 has the same distribution as (εk)k>1 and

is also independent of B. Write Bt = Xt + iYt and define new processes B̃, Ỹ and B̂ by
setting

B̃t = Xt + iỸt = Xt + iεkYt, B̂t = Xt + iε̂kYt, for Rk−1 6 t < Rk, k = 1, . . . K

and B̃t = Xt + iỸt = B̂t = Bt for t > RK . Then we have

Ỹt =

∫ t

0

(
K∑
k=1

εk1{Rk−16s<Rk} + 1{s>RK}

)
dYs

almost surely, where the right hand side is understood as an Itô integral in the filtration
(Ft)t>0 given by

Ft = σ(εk, Bs : k > 1, s 6 t).

Thus Ỹ is a continuous (Ft)t>0-local martingale with quadratic variation [Ỹ ]t = t. Morever
we have [X, Ỹ ] = 0. Hence B̃ is a Brownian motion by Lévy’s characterization, Similarly
B̂ is also a Brownian motion (in a different filtration). Note that, with obvious notation,
for all k,

T̃ (D) = T̂ (D) = T (D), S̃k = Sk, R̃k = Rk.

Suppose that B̃ hits φ(A) before T (D). Note that B̃ cannot hit φ(A) before S1 and, if
it does not hit φ(A) at Sk, then it cannot do so until Sk+1. Also, if RK < T (D), then
B̃RK ∈ ρ(A) ∩ R ⊆ φ(A). Hence the only possible values for Tφ(A) are S1, . . . , SK and RK .

Now, if Tφ(A) = Sk for some k 6 K, then either B̃Sk ∈ A+ so B̂Sk = B̃Sk ∈ A, or B̃Sk ∈ A−
so B̂Sk = ¯̃BSk ∈ A. On the other hand, if Tφ(A) = RK , then B̂RK = B̃RK ∈ ρ(A) ∩ R ⊆ A.

In all cases B̂ hits A before T (D). Hence {T̃φ(A) < T (D)} ⊆ {T̂A < T (D)} and the folding
inequality follows on taking probabilities.

Proof of Theorem 16.1. The map φ folds C along R and fixes the point i. Note that φ
preserves the class of relatively closed subsets of D. Set φ0 = φ and consider for n > 1 the
map φn which folds C along exp(2−nπi)R and fixes 1. Set ψn = φn ◦ · · · ◦φ0. For all n > 0,
by the folding inequality and rotation invariance,

P0(Tφn(A) < T (D)) 6 P0(TA < T (D))

and so by induction
P0(Tψn(A) < T (D)) 6 P0(TA < T (D)).

Consider the set
A(n) = {zeiθ : z ∈ A, |θ| 6 2−nπ}.
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Then A(n) is relatively closed and

A∗ = A(n)∗ ⊆ {xeiθ : x ∈ A∗, θ ∈ [0, 2−nπ]} = ψn(A(n))

so
P0(TA∗ < T (D)) 6 P0(Tψn(A(n)) < T (D)) 6 P0(TA(n) < T (D)).

On letting n→∞ we have TA(n) ↑ TA almost surely, so we obtain

P0(TA∗ < T (D)) 6 P0(TA 6 T (D)).

By scaling, the same inequality holds when D is replaced by sD for any s ∈ (0, 1) and the
result follows on taking the limit s→ 1.

Theorem 16.3 (Beurling’s estimate). Let A be a relatively closed subset of D and let
ε ∈ (0, 1). Suppose that A contains a continuous path from the circle {|z| = ε} to the
boundary ∂D. Then

P0(TA > T (D)) 6 2
√
ε.

Proof. By the intermediate value theorem, we must have [ε, 1) ⊆ A∗. Then, by Beurling’s
projection theorem, it will suffice to consider the case where A = [ε, 1). Consider the
conformal map D \ A→ H given by φ = φ4 ◦ φ3 ◦ φ2 ◦ φ1, where

φ1(z) = i
1− z
1 + z

, φ2(z) =
1 + ε

1− εz, φ3(z) =
√
z2 + 1, φ4(z) = az, a =

1− ε
2
√
ε
.

Then φ(0) = i and the left and right sides of A are mapped to the interval (−a, a). Then,
by conformal invariance of Brownian motion,

P0(TA > T (D)) = Pi(|BT (H)| > a) =
2

π
cot−1 a

and the claimed estimate follows using the bound sin x > 2x/π for x ∈ [0, π/2].

16.2 A symmetry estimate

The following symmetry estimate was used in the proof of the restriction property for
SLE(8/3).

Proposition 16.4. Let γ : R→ C be a simple curve, differentiable at 0 with γ(0) = 0 and
γ̇(0) 6= 0. Set A = γ((−∞, 0]) and D = D \ A, and assume that D is simply connected.
Write A± for the left and right sides of A∩D in δD. Then (using the notation B̂T (D) from
Section 3.1)

lim
t↓0

Pγt(B̂T (D) ∈ A+) = lim
t↓0

Pγt(B̂T (D) ∈ A−) = 1/2.
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Proof. By rotation invariance, it will suffice to consider the case where γ̇(0) ∈ (0,∞).
For r ∈ (0, 1], set τ(r) = inf{t > 0 : |γ(−t)| = r}. We deduce from the hypothesis
that D is simply connected that τ(1) < ∞ and |γ(−t)| > 1 for all t > τ(1). Given
ε > 0, there exists r0 ∈ (0, 1] such that, for all t ∈ (0, τ(r0)), we have | arg γ(t)| 6 ε
and | arg γ(−t) − π| 6 ε. Then there exists r ∈ (0, r0) such that |γ(−t)| > r for all
t ∈ [τ(r0), τ(1)). Define A(r) = γ((−τ(r), 0]) and D(r) = (rD) \ A(r). Then D(r) is
simply connected. Write A+(r) for the right side of A(r) in δD(r). Then, for t ∈ (0, r),

Pγt(B̂T (D) ∈ A+) > Pγt(B̂T (D(r)) ∈ A+(r))

and

lim inf
t↓0

Pγt(B̂T (D(r)) ∈ A+(r)) > Pe−2iε(B hits (−∞, 0] from above) =
1

2
− ε

π

where we used a scaling argument for the inequality and the fact that arg(B) is a local
martingale for the equality. By symmetry, and since ε > 0 was arbitrary, this proves the
result.

16.3 A Dirichlet space estimate for Brownian motion

Let B be a Brownian motion in Rd with B0 uniformly distributed on (0, 1]d. The projection
W of B on the torus T = Rd/Zd is then a Brownian motion in T, which has the property
of reversibility, that is, for all T > 0, if we set Ŵt = WT−t, then (Wt)06t6T and (Ŵt)06t6T

have the same distribution on C([0, T ],T).

Lemma 16.5. Let f ∈ L2(T) ∩H1(T). Then there exists a continuous random process X
such that, for all t > 0, we have Xt = f(Wt) almost surely and∥∥∥∥sup

s6t
|Xs|

∥∥∥∥
2

6 ‖f‖L2(T) + (5/
√

2)
√
t‖f‖H1(T).

Proof. Consider first the case where f ∈ C2(T). Fix T > 0 and write Ŵ for the time-
reversal from T as above. By Itô’s formula,

f(Wt) = f(W0) +Mt +
1

2

∫ t

0

∆f(Ws)ds, Mt =

∫ t

0

∇f(Ws)dWs.

On the other hand, Itô’s formula may be applied also to Ŵ to give

f(Wt) = f(ŴT−t) = f(Ŵ0) + M̂T−t +
1

2

∫ T−t

0

∆f(Ŵs)ds, M̂t =

∫ t

0

∇f(Ŵs)dŴs.

We subtract the corresponding formula for t = 0 to obtain

f(Wt) = f(W0) + M̂T−t − M̂T −
1

2

∫ t

0

∆f(Ws)ds.
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Then, by adding, we obtain the Lyons–Zheng decomposition

f(Wt) = f(W0) +
1

2
(Mt + M̂T−t − M̂T )

and hence the inequality

sup
t6T
|f(Wt)| 6 |f(W0)|+ 1

2

(
sup
t6T
|Mt|+ sup

t6T
|M̂t|+ |M̂T |

)
.

Now

E(|f(W0)|2) =

∫
T
|f(x)|2dx = ‖f‖2

L2(T)

and, by Doob’s L2-inequality, the Itô isometry and Fubini,

E
(

sup
t6T
|Mt|2

)
6 4E(|MT |2) = 4E

∫ T

0

|∇f(Wt)|2dt = 4T

∫
T
|∇f(x)|2dx = 8T‖f‖2

H1(T).

The same holds for M̂ . Hence we obtain∥∥∥∥sup
t6T
|f(Wt)|

∥∥∥∥
2

6 ‖f‖L2(T) + (5/
√

2)
√
T‖f‖H1(T).

We return to the general case, where f ∈ L2(T)∩H1(T). There exist functions fn ∈ C2(T)
such that ‖fn − f‖L2(T) + ‖fn − f‖H1(T) 6 2−n for all n. Set Xn

t = fn(Wt). The estimate
just obtained applies to the functions fn − fn+1 to show that

∞∑
n=1

∥∥∥∥sup
t6T
|Xn

t −Xn+1
t |

∥∥∥∥
2

<∞.

Hence, almost surely, and uniformly in t 6 T for all T > 0, the sequence (Xn
t ) is Cauchy,

and hence convergent, with continuous limit (Xt)t>0 say. Now

E(|fn(Wt)−f(Wt)|2) = ‖fn−f‖2
L2(T),

∥∥∥∥sup
t6T
|fn(Wt)|

∥∥∥∥
2

6 ‖fn‖L2(T)+(5/
√

2)
√
T‖fn‖H1(T).

On letting n → ∞, by Fatou’s lemma, we obtain E(|Xt − f(Wt)|2) = 0, so Xt = f(Wt)
almost surely, and we also obtain the desired estimate for ‖ supt6T |Xt|‖2.
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