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  MATHEMATICAL INDUCTION 

Michael Lambrou, University of Crete, for MATHEU project 
 
 
Section 1. Historical Introduction   
 
  In philosophy and in the applied sciences the term induction is used to describe the 
process of drawing general conclusions from particular cases. For Mathematics, on 
the other hand, such conclusions should only be drawn with caution, because 
mathematics is a demonstrative science and any statement must be accompanied by 
a rigorous proof. For example John Wallis (1616-1703) was criticized strongly by his 
contemporaries because in his Arithmetica Infinitorum (1656), after inspecting the six 
relations,   
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stated without any further justification that the general rule, namely,  
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follows “per modum inductionis”.  

  Although Wallis’ claim is correct, amounting to the familiar statement (known to 
Archimedes) that   
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3 6n 6
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it nevertheless needed proof.  

  One way to deal with this problem is with the so-called method of complete or 
mathematical induction. This topic, sometimes called just induction, is the subject 
discussed below.  

  Induction is a simple yet versatile and powerful procedure for proving statements 
about integers. It has been used effectively as a demonstrative tool in almost the 
entire spectrum of mathematics: for example in as diverse fields as algebra, 
geometry, trigonometry, analysis, combinatorics, graph theory and many others.  

  The principle of induction has a long history in mathematics. For a start, although 
the principle itself is not explicitly stated in any ancient Greek text, there are several 
places that contain precursors of it. Indeed, some historians see the following 
passage from Plato’s (427-347 BC) dialogue Parmenides (§147a7-c3) as the earliest 
use of an inductive argument:  
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Then they must be two, at least, if there is to be contact. - They must. - And if to the 
two terms a third be added in immediate succession, they will be three, while the 
contacts [will be] two. - Yes. - And thus, one [term] being continually added, one 
contact also is added, and it follows that the contacts are one less than the number of 
terms. For the whole successive number [of terms] exceeds the number of all the 
contacts as much as the first two exceed the contacts, for being greater in number 
than the contacts: for afterwards, when an additional term is added, also one contact 
to the contacts [is added].  - Right. - Then whatever the number of terms, the 
contacts are always one less. -True.  

  The previous passage is from a philosophical text. There are, however, several 
ancient mathematical texts that also contain quasi-inductive arguments. For instance 
Euclid (~330 - ~ 265 BC) in his Elements employs one to show that every integer is a 
product of primes.  

An argument closer to the modern version of induction is in Pappus' (~290-~350 AD) 
Collectio. There the following geometric theorem is proved.  

 Let AB be a segment and C a point on it. Consider on the same side of AB three 
semi-circles with diameters AB, AC and CB, respectively. Now construct circles Cn as 
follows: C1 touches the three semi-circles; Cn+1 touches Cn and the semicircles on AB 
and AC. If dn denotes the diameter of Cn and hn the distance of its centre from AB, 
then hn = ndn. 

  The way Pappus proves the theorem is to show geometrically the recurrence 
relation hn+1 /dn+1 = (hn + dn)/dn. Next, he invokes a result of Archimedes (287 - 212 
BC) from his Book of Lemma's (Proposition 6) which states that the conclusion of the 
theorem above is true for the case n = 1. Coupling this with the recurrence relation, 
he is able to conclude the case for the general n.  

  After the decline of Greek mathematics, the Muses flew to the Islamic world. 
Although induction is not explicitly stated in the works of mathematicians in the Arab 
world, there are authors who reasoned using a preliminary form of it. For example al - 
Karaji (953-1029) in his al-Fakhri states, among others, the binomial theorem and 
describes the so called Pascal triangle after observing a pattern from a few initial 
cases (usually 5). He also knew the formula 13 + 23 + ... + n3 = (1 + 2 + ... + n)2. 
About a century later we find similar traces of induction in al-Samawal's (~1130-
~1180) book al-Bahir, where the identity 12 + 22 + 32 + ... + n2 = n(n+1)(2n+1)/6 
appears. Subsequently Levi Ben Gershon (1288-1344), who lived in France, uses 
quasi-inductive arguments in his book Maasei Hoshev written in Hebrew.  

  The first explicit inductive argument in a source written in a western language is in 
the book Arithmeticorum Libri Duo (1575) of Francesco Maurolyco (1495–1575), a 
mathematician of Greek origin who lived in Syracuse. For instance it is shown 
inductively in this text that the sum of the first n odd integers is equal to the nth square 
number. In symbols, 1 + 3 + 5 + … + (2n – 1) = n2, a fact already known to the 
ancient Pythagoreans.     

  Another early reference to induction is in the Traité du Triangle Arithmetique of  
Blaise Pascal (1623–1662), where the pattern known to-day as 'Pascal’s Triangle' is 
discussed. There the author shows that the binomial coefficients nCk satisfy nCk : 
nCk+1 = (k + 1) : (n – k), for all n and k with 0 ≤ k < n. Here the passage from n to n + 1 
uses nCr = n-1Cr-1 + n-1Cr. 

   All the above authors used an intuitive idea about the concept of natural number. 
This is sufficient for our purposes here, and below we shall follow suit. A 
characteristic of modern mathematics, however, especially from the late 19th 
century, was to develop the theory axiomatically. In particular, this was accomplished 
for the natural numbers by Giuseppe Peano (1858-1932) who published the so called 
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'Peano's axioms' in 1889, in a pamphlet entitled Arithmetices principia, nova methodo 
exposita. The exact procedure need not concern us here. We only mention that one 
of the axioms was so designed as to incorporate induction as a method of proof. In 
other words, the intuitive way to deal with induction below is actually a legitimate 
technique.   

  In what follows, the theory is presented in short sections, each with its own 
problems. These are rather easy especially at the beginning, but those in the last 
paragraph are more challenging. Several questions can be solved by other means, 
but the idea is to use induction in all of them.   

 

Section 2. Basics 
  The principle of mathematical induction is a method of proving statements 
concerning integers. For example consider the statement "12 + 22 + 32 + ... + n2 = 
n(n+1)(2n + 1)/6", which we denote by P(n). One can easily verify this for various n, 
for instance 12 = 1 =1.(1+ 1)(2.1 + 1)/6, 12 + 22 = 5 = 2.(2 + 1)(2.2 + 1)/6,  12 + 22 + 32 

= 14 = 3.(3 + 1)(2.3 + 1)/6 and so forth. Here we verified the statement for the cases 
n = 1, n = 2 and n = 3 (in a while we shall see that the last two can be dispensed 
with) but assume that we have verified it up to the particular value n = k. The last 
statement means that we are certain that for this particular value k we have "12 + 22 + 
32 + ... + k2 = k(k + 1)(2k + 1)/6". But is the formula true for the case of the next 
integer n = k + 1? We claim that it is. To see this, making use of the fact that we have 
12 + 22 + 32 + ... + k2 = k(k + 1)(2k + 1)/6, we argue  

  12 + 22 + 32 + ... + k2 + (k + 1)2 = k(k + 1)(2k + 1)/6 + (k + 1)2                (by assumption) 
                                                                               = (k + 1)[k(2k + 1) + 6(k + 1)]/6 

                                                   = (k + 1)(k + 2)(2k + 3)/6, 

and this last is precisely the original claim for n = k + 1.  

  Let us recapitulate: We wanted to prove that the statement P(n) is true for all 
integers n ≥ 1. We first verified it for n = 1; then, assuming that it is true for n = k, we 
verified it for n = k + 1. In other words, reiterating our result, the validity of P(1) 
implies that of P(2); the validity of P(2) implies that of P(3); the validity of P(3) implies 
that of P(4), and so on for all integers n ≥ 1.  

  The schema we use in the proof can be summarised symbolically as 

                                                   P(1)   

                                                   P(k) ⇒ P(k +1) 

                                                 ____________________ 

                                                  ⇒  P(n) true for all n∈N 

 The step "P(k) ⇒ P(k +1)" in the proof is called the inductive step; the assumption 
that P(k) is true, is called the inductive hypothesis.  

Here is another example.  

Example 2.1 (Bernoulli's inequality). Show that if a is a real number with a > -1, then 
(1 + a)n ≥ 1 + na for all n∈N. 

Solution. For n = 1 it is a triviality (in fact we get an equality). Assume now validity of 
the inequality  for n = k; that is, assume (1 + a)k ≥ 1 + ka. This is our inductive 
hypothesis, and we are to show (1 + a)k+1 ≥ 1 + (k + 1)a. We have  

                             (1 + a)k+1 = (1 + a)(1 + a)k 
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                                             ≥  (1 + a)( 1 + ka)                (by the inductive hypothesis) 

                                             = 1 + (k + 1)a + ka2 

                                             ≥ 1 + (k + 1)a                      (since ka2 ≥ 0). 

This, by the principle of induction, completes the proof.  

  As a final remark, the above examples start from n = 1. This need not be always the 
case and there are cases (see problems) that induction may start at any another 
integer. The situation is self explanatory and there is no need to qualify it any further.  

  The next problems require the verification of a variety of formulae. None of these 
should present the reader with any difficulty and the problems are there only to 
familiarise him/her with the idea of induction. In fact, the reader should try to do 
several of these problems mentally.   

Problem  2.1.(Routine). Show inductively that each of the following formulae is valid 
for all positive integers n.  

a) 13 + 23 + 33 + … + n3 = n2(n + 1)2/4,  

b) 14 + 24 + 34 + … + n4 = n(n + 1)(2n + 1)(3n2 + 3n – 1)/30,  

c) 15 + 25 + 35 + … + n5 =  n2(n + 1)2(2n2 + 2n – 1)/12,  

d) 
1 1 1 1 n... ,

1 2 2 3 3 4 n(n 1) n 1
+ + + + =

⋅ ⋅ ⋅ + +
 

e) 
1 1 1 n(n 3)... ,

1 2 3 2 3 4 n(n 1)(n 2) 4(n 1)(n 2)
+

+ + + =
⋅ ⋅ ⋅ ⋅ + + + +

 

f) 2 2 2 2 2 2 2 2 2

3 5 7 2n 1 n(n 2)... ,
1 2 2 3 3 4 n (n 1) (n 1)

+ +
+ + + + =

+ +
 

g) (n + 1)(n + 2)...(2n – 1)(2n) = 2n .1.3.5....(2n –1),  

h) 
n n

k
k 1 k 1

(2k)! 1 3 5 ... (2k 1),
k!2= =

= ⋅ ⋅ ⋅ ⋅ −∑ ∑  

i) n nx x(x 1) x(x 1)...(x n 1) (x 1)(x 2)...(x n)1 ... ( 1) ( 1) ,
1! 2! n! n!

− − − + − − −
− + − + − = −  

j) (cosx)(cos2x)(cos4x)(cos8x)...(cos2n - 1x) = 
n

n

sin 2 x
2 sin x

  (for x∈R with sinx ≠ 0), 

k) 
n

k 1

sin 2nxcos(2k 1)x ,
2sin x=

− =∑   (for x∈R with sinx ≠ 0), 

l) n 1

n radicals

2 2 ... 2 2 2cos
2 +

π
+ + + + = , 

m) (15 + 25 + 35 + … + n5) + (17 + 27 + 37 + … + n7) = 2(1 + 2 + 3 + … + n)4, 

n) 
1 1 1 1 1 1 1 1... 1 ... .

n 1 n 2 2n 2 3 4 2n 1 2n
+ + + = − + − + + −

+ + −
 

Problem 2.2. If a sequence (an) satisfies  

       a) an+1 = 2an + 1 (n∈N), show that an + 1 = 2n-1(a1 + 1).  
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       b) a1 = 0 and an+1 = (1 - x)an + nx (n∈N), where x ≠ 0, show that  

                                           an+1 = [nx - 1 + (1 - x)n]/x. 

Problem 2.3. Let (an) be a given sequence. Define new sequences (xn), (yn) by x1 = 1, 
x2 = a1, y1 = 0,  y2 = 1 and, for n ≥ 3, xn = an xn-1 + xn-2, yn = an yn-1 + yn-2. Show that  

 xn+1yn - xnyn+1 = (-1)n . 

Problem 2.4. If each of a1, a2, … , an, is a sum of two perfect squares, show that the 
same is true for their product.  

Problem 2.5. Show that 2n5/5 + n4/2 – 2n3/3 - 7n/30 is an integer for all n∈N. 

Problem 2.6. Show that if x ≠ y, then the polynomial  x – y divides xn – yn. 

Problem 2.7. Show that a convex n-gon has ½ n(n – 3) diagonals (n ≥ 3).  

Problem 2.8. Prove the binomial theorem inductively. Namely, show that  

                                               
n

n n k n k
k

k 0
(a b) C a b −

=

+ =∑  

where n
k

n!C .
k!(n k)!

=
−

 You may use n+1Ck = nCk -1 + nCk (1 ≤ k ≤ n). (The binomial 

theorem was known to the Arabs. They did not have a complete proof, but after 
verifying it for few small n they stated the general form using in a quasi-inductive 
argument. Later the theorem was rediscovered by Isaac Newton (1654-1705), who 
included it in his celebrated Philosophiae Naturalis Principia Mathematica (1687). For 
the proof he used a combinatorial argument. The first inductive proof was by Jakob 
Bernoulli (1654-1705), published posthumously in his Ars Conjectandi (1713) ). 

Problem 2.9. It is easy to see that the number n(2 3)+  can be written in the form 

n na b 3+ . Show a) inductively and b) without induction, that the numbers n na , b  
satisfy 2 2

n na 3b 1− =  (n∈N). 

Problem 2.10. Show that the number 22 1
n

−  is divisible by at least n distinct primes. 

Problem 2.11. If Fn = 
n2a 1+  is the nth Fermat number (n = 0, 1, 2, …), show that  

Fn – 2 = (a – 1)F0F1… Fn -1 (n∈N).  

Problem 2.12. Prove by induction that n! > 3n for n ≥ 7. 

Problem 2.13. If a0, a1, a2, … is a sequence of positive real numbers satisfying a0 = 1 
and 2

1 2n n na a a+ +> (n = 0, 1, 2, …), show that 1/ 2 1/3 1/ 4 1/
1 2 3 4 ... ...n

na a a a a> > > > > > . 

Problem 2.14. A result of Ramanujan (whose proof is beyond the scope of this book) 

states that 1 2 1 3 1 4 1 5 1 ...+ + + + + = 3. Use Ramanujan’s result to show that 

for all n∈N,  1 n 1 (n 1) 1 (n 2) 1 (n 3) 1 ... n 1.+ + + + + + + + = +  

 

Section 3. Patterns  
    One of the disadvantages of the method of induction, as reflected by some of the 
examples portrayed above (especially in Problem 1), is that one needs to know 
beforehand the formula describing the situation considered. It is only then that one 



 6

may embark on proving it. But this need for foreknowledge can often be remedied by 
detecting patterns after judicial evaluation of special cases. In practice it means that 
one needs to conjecture the underlying rule, and then verify whether it is, indeed, 
correct. In other words, we have to do some guessing. The following examples 
elucidate this point. 

Example 3.1. For what values on n is 2n + 1 a multiple of 3?  

Solution. By checking small values of the integer n one realizes that 2n + 1 is a 
multiple of 3 for n equals 1, 3, 5 and 7, but fails to be so when n equals 2, 4, 6 or 8. It 
seems reasonable to guess that 2n + 1 a multiple of 3 precisely when n is odd. This 
turns out to be correct, and the following inductive argument can be used (how?) to 
verify the claim: Write an = 2n + 1. Then an + 2 = 2n + 2 + 1 = 4(2n + 1) – 3 = 4an – 3, 
which is a multiple of 3 precisely when an is.    

Example 3.2.  If f(x) = 2x + 1, guess a formula for the nth term of the sequence f1 = 
f(x), f2 = f(f(x)), f3 = f(f(f(x))), f4 = f(f(f(f(x)))), … and then prove it by induction.  

Solution. By direct calculation one verifies that f2 = 4x + 3, f3 =  8x + 7, f4 = 16x + 15 
and so on. If these examples are not adequate to guess the pattern, the reader 
should  continue with further iterations of f. Sooner or later one suspects that fn = 2nx 
+ 2n -1. It turns out that the guess is correct, as the reader should supply the missing 
portions of the following inductive argument that settles the matter: fn+1 = f(fn(x)) = 
f(2nx + 2n -1) = 2(2nx + 2n-1) + 1 = 2n+1x + 2n+1-1.  

Example 3.3. By considering the numerical sequence  
                2 – 1, 3  –  (2 – 1), 4 – (3  –  (2 – 1)), 5 – (4 – (3  –  (2 – 1))), …  
guess and then prove inductively the numerical value of  
                      n – (n – 1 – ( n – 2 – (n – 3 – (…–  (3  –  (2 – 1))...))).  

Solution. The first few expressions simplify to 1, 2, 2, 3, 3 and 4 respectively. One 
may guess that the general pattern is  

n – (n – 1 – ( n – 2 – (n – 3 – (…–  (3  –  (2 – 1))...))) = 
n / 2 if n is even

(n 1) / 2 if n is odd
⎧
⎨ +⎩

 

  This is easy to verify inductively and the details are left to the reader, who should 
consider separately the cases n even and n odd.   

  A word of caution is necessary here: No matter how many initial cases we check in 
a particular situation, a pattern that seems to emerge is not sufficient to draw 
conclusions. A proof must always follow our guess and failure to devise such a proof 
may indicate that our conjecture is, perhaps, wrong. There are several examples 
showing that even first rate mathematicians were deceived by a few special cases. 
The great Fermat, for example, after observing that  ,312

02 =+  ,512
12 =+  

,1712
22 =+  25712

32 =+  and 6553712
42 =+  are prime numbers, thought that 

122 +
n

 is a prime for each n. This turned out to be false, and the first counterexample 
was given by Euler who found that .670041764112

52 ×=+   

Sometimes the first counterexample to what might appear to be a pattern is very far 
away. For instance, the numbers n17+9 and (n+1)17+9 are relatively prime for n =1, 2, 
3, . . . successively, and for a very long time after that. But is this always the case? 
No, and the first counterexample is for  

            n = 8424432925592889329288197322308900672459420460792433. 

  There are two delightful articles by Richard Guy, entitled The Strong Law of Small 
Numbers (American Mathematical Monthly, (1988) 697-711) and The Second Strong 
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Law of Small Numbers (Mathematics Magazine, 63 (1990) 3 - 20) with numerous   
examples of sequences that seem to follow a pattern. But in some cases the reality 
is, against all intuition, very different. It is worth also looking at the web page 

               http://primes.utm.edu/glossary/page.php?sort=LawOfSmall   

where the previous example appears.  

  Here are some problems along the above lines, where the reader is invited either (i) 
to discover a pattern and then prove his/her hypothesis correct, or (ii) to find a 
counterexample that contravenes the pattern that appears at first sight.  

Problem 3.1. After guessing an appropriate formula by testing a few first values of n, 
use an inductive argument to find the following sums. 

a) 12 – 22 + 32 –  … + (– 1) n - 1 n2,  

b) 1 ⋅ (1!) + 2 ⋅ (2!) + 3 ⋅ (3!) + … + n ⋅ (n!),  

c) n2 – [(n – 1)2 – [(n – 2)2 – [(n – 3)2 – […–  [32  –  (22 – 12)]...]]]], 

d) 
1 1 1 1... .

x(x 1) (x 1)(x 2) (x 2)(x 3) (x n 1)(x n)
+ + + +

+ + + + + + − +
 

Problem 3.2. It is given that the sum 16 + 26 + 36 + … + n6  can be simplified in the 
form n(n + 1)(2n + 1)(An4 + Bn3 – 3n + 1)/42, where A and B are constants 
independent of n. Guess appropriate values of A and B and then verify that they lead 
to a valid formula.  

Problem 3.3. If (pn) is the sequence of primes starting from p1 = 2, show that the 
sequence of numbers p1 + 1, p1 p2 + 1, p1 p2 p3 + 1, ... , p1 p2 p3 ... pn  + 1, used by 
Euclid in a proof in his Elements, consists of prime numbers for n = 1, 2, 3, 4, 5 but 
not for n = 6. 

Problem 3.4. Given n points on the circumference of a circle, where n is successively 
1, 2, 3, 4,... , draw (in separate figures) all chords joining them. For this make sure 
that the points are "in general position" in the sense that no three chords are 
concurrent. Now, count the regions into which each circle is partitioned by the 
chords. You will find that they are, successively 1, 2, 4, 8, 16, ... What pattern seems 
to emerge? Is the next answer 32? Show that it is not!  

Problem  3.5. Guess the general term of the sequence (an) if a0 = 1, an = 2 and for n 

≥ 1, n 1 n n 1a a 6 a .+ −= +  

Problem  3.6. Guess the general term of the sequence (an) if a0 = 1, and for n ≥ 1 we 

have 1
1 2 n n2a a ... a (n 1) a .+ + + = +  

 

Section 4. Divisibility  

The method of induction can be applied to an abundance of situations, not just 
proving formulae as, perhaps, most of the above examples suggest. In what follows 
we shall see some of these different circumstances. We start with a fairly easy 
situation, the case of divisibility of integers, of which we have already seen some 
problem s in Section 2. We shall use the notation a | b to signify that an integer a 
divides, or is a factor of, an integer b.  

Example 4.1. Show that for each positive integer n we have 9 | 52n + 3n –1; that is, 9 
divides the number 52n + 3n –1.  
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Solution. Let an = 52n + 3n – 1. It is clear that a1 = 27 is divisible by 9. Assume now 
that for n = k, the number an is divisible by 9, that is, 52k + 3k –1 = 9M for some 
integer M. We have to show that ak + 1 = 52(k + 1) + 3(k + 1) –1 = 25.52k + 3k + 2 is also 
divisible by 9. The idea is to somehow use our inductive hypothesis, and this can be 
done as follows:  

                                         ak + 1 = 25 ⋅52k + 3k + 2  

                                                  = 25 ⋅ (52k + 3k –1) – 72k + 27  

                                                  = 25 ⋅9M – 9(8n – 3)   (by the inductive hypothesis) 

i.e.  ak + 1 is a multiple of 9. 

Therefore by the principle of induction 9 | an for all positive integers n.   

Problem  4.1. Redo the previous example more elegantly by considering ak + 1 - 25ak 
in place of ak + 1 alone.  

Example 4.2. Show that all numbers in the sequence 1003, 10013, 100113, 
1001113,… and so on, are divisible by 17.  

Solution. We have 1003 = 17×59, moreover, the difference between two consecutive 
numbers of the sequence is of the form 9010…0, which is also a multiple of 17 (note 
901 = 17×53). With this information the reader should be able to fill the details of a 
full inductive argument.   

Problem 4.2. Show that for each n∈N, 72n – 48n – 1 is a multiple of 2304. 

Problem 4.3. Show that for each n∈N, 3 ⋅5 2n+1 + 23n+1 is a multiple of 17. 

Problem 4.4. Show that the sum of cubes of any three consecutive integers is 
divisible by 9.  

 

Section 5. Inequalities.  

We have seen an inequality, Bernoulli's inequality (Example 2.1), that depends on a 
natural number n. This particular one was proved using induction and, sure enough, 
many inequalities that depend on n can be dealt with by induction. For instance the 
following generalisation of Bernoulli's inequality can be shown by a minor 
modification of the proof given above.   

Example 5.1 (Weierstrass inequality). If an (n∈N) are real numbers that are either all 
positive or all in [-1, 0] then  

                                                

n n

k k
k 1k 1

(1 a ) 1 a
==

+ ≥ +∑∏
   

Proof. As mentioned, the proof follows closely that of Bernoulli's inequality given 
above, and the details are left to the reader: For the inductive step then one only 
needs to multiply both sides by the positive number (1 + an+1), but some care must be 
taken when all an are in [-1, 0], in which case the term involving the summation sign 

is negative but 
n

n 1 k
k 1

a a+
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ positive.  

There are several inequalities in the text and in the problems of what follows, but 
here is a preliminary set. 

Problem  5.1. Prove by induction that a) 2n > n2 for n ≥ 5, b) 2n > n3 for n ≥ 10.  

Problem  5.2. Prove by induction that 2!4!…(2n)! > [(n + 1)!]n (n∈N). 
Problem  5.3. Prove that (2n)!(n + 1) > 4n(n!)2  for all n > 1. 
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Problem  5.4. Prove for all integers n > 1 the inequality 

                                          
1 1 1... 2 n 1 2
1 2 n
+ + + > + − . 

Problem  5.5. Prove that if ak satisfies 0 < ak < 1 for 1≤ k ≤ n, then  

                 (1 – a1)(1 – a2)…(1 - an) > 1 – (a1 + a2 + … + an). 

Problem  5.6. Prove that if ak satisfies 0 ≤ ak ≤ 1 for 1 ≤ k ≤ n, then  

                               2n-1(1 + a1 a2 …an) ≥ (1 + a1)(1 + a2)…(1 + an). 

 

Section 6. Variations of induction 

  Up to now the proof of a statement P(n) for all positive integers n, proceeded by 
verifying P(1) and then P(k +1) from the assumption that P(k) is true. There are 
variants of the inductive argument as will be shown in the following paragraphs. 

  a) Jumps: In this method we prove the validity of a statement P(n) by proceeding, 
say, 2 steps at a time. In other words, the inductive step establishes the validity of   
P(k + 2) from the assumption that P(k) is true. If, in addition, we verify that P(1) and 
P(2) are true, then we reach our goal as we clearly have the implications P(1) ⇒ P(3) 
⇒ P(5) ⇒ P(7) ⇒ … and P(2) ⇒ P(4) ⇒ P(6) ⇒ P(8) ⇒ … which, collectively, cover 
all cases of P(n). Similarly we may proceed in jumps of any fixed t∈N. This requires 
showing the validity of P(k) ⇒ P(k + t) and of P(1), P(2), …, P(t).   

Example 6.1. Show that each n∈N, the equation  a2 + b2 = cn has a solution in 
positive integers.  

Solution. We work using jumps of 2: The cases for n = 1 and 2 are clear. Now, if  
2 2
1 1 1

ka b c+ =  is a particular positive integer solution of the given equation for n = k, 
then a solution for the case n = k + 2 is obtained from 2 2 2

1 1 1 1 1( ) ( ) .kc a c b c ++ =   

Example 6.2. It is clear that a square can be divided into subsquares by drawing 
segments parallel to the sides. Show that it can be divided into n squares (of not 
necessarily equal size) whenever n ≥ 6.  

Solution. The figures below show how to divide the square into 6, 7 or 8 subsquares. 
Since a square can be further divided into four smaller ones, application of this 
operation increases the total number of squares in a subdivision by three (4 new 
ones and one lost). So we can use (how?) an inductive argument, jumping in 3's, to 
complete the proof.  

 
Note that the leaps need not be constant. Here is an example. 



 10

Example 6.3. Show that there exists an infinite number of triangular numbers that are 
perfect squares. (Recall, triangular numbers are the integers of the form Tn = 1 + 2 + 
… + n = ½ n(n + 1) ).  

Solution. T1 = 1 = 12. Suppose now that the triangular number Tk is a perfect square. 
Our problem is to utilize this information and find a bigger one that is also a perfect 
square. Somehow Tk+1, Tk+2 etc. do not seem to work and we need to do better than 
that. A moment’s reflection gives us a better choice: T4k(k+1) = 4k(k + 1)[4k(k + 1) + 
1]/2 = 4(4k2 + 4k + 1) Tk = 4(2k + 1)2Tk is clearly a perfect square along with Tk.  

Problem  6.1. Use an inductive argument in jumps of 2 to show that for all n∈N,  

       12 – 22 + 32 – 42 + … + (-1)n - 1 n2 = (-1)n - 1( 1 + 2 + … + n).  

Problem  6.2. (Eötvös Competition 1901). Use an inductive argument in jumps of 4 to 
show that 1n + 2n + 3n + 4n is divisible by 5, if and only if n is not divisible by 4. 

Problem  6.3. Use an inductive argument in jumps of 3 to show that no number of the 
form 2n + 1 is a multiple of 7.    

Problem 6.4. After verifying the simple equations 2 2 2 2 2 2
1 1 1 1 1 1
2 2 2 3 3 6

1,+ + + + + =  

2 2 2 2 2 2 2
1 1 1 1 1 1 1
2 2 2 4 4 4 4

1+ + + + + + =  and 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1
2 2 2 3 3 7 14 21

1,+ + + + + + + =  show using 

an inductive argument with jumps of 3 that for every n ≥ 6 there exist integers a1, a2, 

… , an such that 2 2 2
1 2 n

1 1 1... 1.
a a a

+ + + =  

Problem 6.5. (Erdös-Suranyi theorem). After verifying the simple equations 1 = 12,    
2 = -12 - 22 - 32 + 42 , 3 = - 12 + 22  and  4 = - 12 - 22 + 32 show that for each natural 
number N there is an n and an appropriate choice of + and - signs (which we write as 
± in short) such that N = ± 12 ± 22 ± 32 ± … ± n2.     

  b) Strong induction: In Euclid’s Elements it is shown that every integer k > 1 is a 
product of (one or more) primes. His proof is essentially the following. The statement 
is clearly true for k = 2. Suppose now that we have proved that all integers up to and 
including k are products of primes. Then for k+1 we can argue that it is either a prime 
number, in which case we are done, or a product of two smaller numbers. But each 
of these two smaller numbers are, by assumption, products of primes and hence so 
is k+1. By iterating the argument we conclude the corresponding property for k+2, 
k+3, etc, and eventually for all integers. 

  In other words, Euclid’s argument is a stronger version of induction where a) we 
verify P(1) and b) prove statement P(k+1) by assuming that all of P(1), P(2), … , P(k) 
are true (not just the last one P(k)). The inductive schema we invoke is then  the 
validity of the implications P(1) ⇒ [P(1) and P(2)] ⇒ [P(1) and P(2) and P(3)] ⇒ [P(1) 
and P(2) and P(3) and P(4)], and so on, finally covering all P(n).  

A simpler version of strong induction is to prove P(k+1) from the validity of  P(k-1) 
and P(k) (and not utilizing still smaller integers). In other words we first verify the 
validity of P(1), P(2) and then of the implication [P(k-1) and P(k)] ⇒ [P(k+1). Note that 
here we proceed, essentially, by the steps [P(1) and P(2)] ⇒ [P(2) and P(3)] ⇒ [P(3) 
and P(4)], and so on.  

Of course there are further variations, such as proving P(k+1) from the validity of  
P(k-2), P(k-1) and P(k), after verifying the statement for small n. 

  The following paradigms exemplify these ideas. 
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Example 6.4. A sequence (an) satisfies a1 = a2 = 4 and an+1an-1 = (an – 6)(an – 12)  for 
n = 2, 3, ... . Show that it is constant. 

Solution. Of course we expect the constant to be 4, the common value of a1 and a2. 
We assume then that ak-1 = ak = 4. Using now both these assumptions, we conclude 
from the recursion that 4ak+1 = (4 – 6)(4 – 12) = 16, so that ak+1 = 4. Since by 
assumption a1 = a2 = 4, it is easily seen that, for all n, we have an = 4.  

Example 6.5. Recall that the natural numbers satisfy 
n n

3 2

k 1 k 1
k ( k)

= =

=∑ ∑  for all n∈N. 

Show that, conversely, if an > 0 is a sequence of real numbers such that  
n n

3 2
k k

k 1 k 1
a ( a )

= =

=∑ ∑  for all n∈N, then an = n (n∈N). 

Solution. The case n = 1 gives =3 2
1 1a a , so that a1 = 1 (as an > 0). Assume now that for 

all values of  k up to m we have ak = k, in other words a1 = 1, ... ,  am = m. This is our 
strong inductive hypothesis and we are going to use every bit of it. For n = m + 1 we 
have, by assumption, 

   13 + 23 + ... + m3 + 3
m 1a +  = (1 + 2 + ... + m + am+1)2 

                                                                = (1 + 2 + ... + m )2  + 2(1 + 2 + ... + m)am+1 + 2
m 1a +  

so clearly 3
m 1a +  = m(m + 1)am+1 + 2

m 1a +  and so  am+1(am+1 + m )(am+1 - m  - 1) = 0, from 
which the claim follows.   

Problem  6.6. For the Fibonacci sequence, defined by F1 = F2 = 1, Fn+2 = Fn+1 + Fn, 
show that a) FnFn+1 - Fn-2Fn-1 = F2n-1 , b) Fn+1Fn+2 - FnFn+3 = (-1)n.  

Problem  6.7. Let (an) be the sequence of Example 6.4 with the only difference that a1 
= 2 and a2 = 20. Show that an = 9n2 – 9n + 2 (n∈N).  If, instead, we had a1 = 2 and a2 
= 5, show an = 4 + (- ½)n-2.  

Problem  6.8. Given an angle a, define x by x + 1/x = 2cosa. Show that xn + 1/xn = 
2cos na (n∈N). 

Problem  6.9. Show that if a, b satisfy a + b = 6 and ab = 1, then the number an + bn  
a) is always an integer and b) is never divisible by 5.  

Problem 6.10. Let an = (3 5) (3 5)n n+ + − . Show that an is an integer and that 2n|an.  

Problem 6.11. Prove the statement of Pascal in his Traité du Triangle Arithmetique 
referred to in Section 1 above.  

Problem 6.12. Let a1, a2, a3, … be positive integers chosen such that a1 = 1 and an < 
an+1 ≤ 2an (n∈N). Show that every positive integer can be written as a sum of distinct 
an’s.  

Problem 6.13. Let a sequence (bn) satisfy b1 = 1, b2n = bn and b2n+1 = b2n + 1. Show 
that bn equals the number of ones in the binary representation of n.  

  c) Double induction: There are cases where the proof of the inductive step 
requires, in its own right, an inductive argument. The following examples illustrate 
this point. 

Example 6.6. Show that for each n∈N, 2 ⋅7n + 3 ⋅5n – 5 is a multiple of 24.  
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Solution. Writing an = 2 ⋅7n + 3 ⋅5n – 5, the claim is clear for n = 1. Assuming it true for 
n = k then as ak+1 = 7 ⋅ak – 6 ⋅5k + 30, the inductive argument would be complete if we 
could prove that 6 ⋅5k – 30 is always a multiple of 24. We can now start a new 
inductive argument to prove the last statement, an easy task left to the reader.   

  d) Two dimensional induction: So far we have considered statements P(n) 
depending on a single integer n. But sometimes we meet statements depending on 
two (or more) integers. A useful inductive way to deal with such a statement, for 
simplicity call it P(m,n), is to proceed in stages, intermingling the m's and n's. For 
instance, we can prove the validity of a) P(1,1), then  b) of  P(2,1) and P(1,2), then c) 
of P(3,1), P(2,2) and P(1,3), and so on. This particular description moves, so to 
speak, 'diagonally'. Any other way which covers all (m,n) in stages, is just as 
acceptable.  

Example 6.7. (IMO 1972). Prove that (2m)!(2n)! is a multiple of m!n!(m+n)! for any 
non-negative integers m and n.  

Solution. We are to show that C(m, n) = (2m)!(2n)!/(m!n!(m+n)!), for m, n ≥ 0, is 
integral. This is certainly the case for C(m, 0) = (2m)!/(m!m!) (we leave this to the 
reader: one way to see it is to recognize it as a binomial coefficient). Finally it is easy 
to verify that C(m, n)  = 4C(m, n – 1) - C(m + 1, n – 1), from which, using the 
previous, we can in turn verify that C(m,1) is integral for all m, then C(m, 2) for all m, 
C(m, 3) for all m, and so on.          

Problem 6.14. Prove inductively that the product of r consecutive integers is divisible 
by r!  

Problem 6.15. If (Fn) denotes the Fibonacci sequence, prove that 2 2
n n 1 2n 1F F F+ ++ =  

and 2
n n 1 n 1 2n 22F F F F+ + ++ = . (Hint: Let P(n) be the first identity and Q(n) the second. 

Induction proceeds via  P(1) ⇒ Q(1) ⇒ P(2) ⇒ Q(2) ⇒ P(3) ⇒ ... ).  

e) Back and forth: This variant of the usual inductive procedure is in two steps. First 
one shows  P(1) ⇒ P(n1) ⇒ P(n2)  ⇒ P(n3)  ⇒ … for some chosen but fixed 
sequence 1 < n1 < n2 < n3 < …   . Then shows the backward step P(k) ⇒ P(k-1). A 
moment's reflection shows that the backward step fills the gaps between the 
numbers 1, n1 , n2 , n3 , … left unattended in the first step, completing the proof. Here 
is an example of such a proof of the AM-GM inequality. The first step uses the 
sequence 1 < 2 < 22 < 23 < … .  

Example 6.8. Show that for any sequence (an) of positive numbers we have  

                                          
n

1 2 n
1 2 n

a a ... a a a ... a
n

+ + +⎛ ⎞ ≥ ⋅ ⋅⎜ ⎟
⎝ ⎠

     (n ∈N) 

Solution. The case for n = 1 is trivial. Assuming validity of P(k) for all sequences (an) 
of positive numbers, verification of P(2k) is as follows: Apply P(k) to the sequence     
((a2n-1 + a2n)/2 ). We get  
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k
3 41 2 2k 1 2k

3 41 2 2k 1 2k

a aa a a a... a aa a a a2 2 2 ...
k 2 2 2

−

−

++ +⎛ ⎞+ + +⎜ ⎟ ++ +
≥ ⋅ ⋅ ⋅⎜ ⎟

⎜ ⎟
⎝ ⎠

 

                                                                         1 2 3 4 2k 1 2ka a a a ... a a−≥ ⋅ ⋅ ⋅  

which is easily rewritten as P(2k), namely  

                                           
2k

1 2 2k
1 2 2k

a a ... a a a ... a .
2k

+ + +⎛ ⎞ ≥ ⋅ ⋅⎜ ⎟
⎝ ⎠

 

So we now know the inequality for the cases P(1), P(2), P(22), P(23),  … .  

For the backward step, we assume P(k) and derive P(k-1). For this purpose, by P(k) 
applied to the k numbers a1, a2, …, ak-1 and  (a1+ a2 + …+ ak-1 )/(k-1) , we have           

       

k
1 2 k 1

1 2 k 1
1 2 k 1

1 2 k 1

a a ... aa a ... a a a ... ak 1 a a ... a
k k 1

−
−

−
−

+ + +⎛ ⎞+ + + +⎜ ⎟ + + +− ≥ ⋅ ⋅ ⋅⎜ ⎟ −⎜ ⎟
⎝ ⎠

 

which is easily seen to reduce to statement P(k-1) after collecting terms.  

Problem 6.16. Redo the step P(k) ⇒ P(2k) in the proof of Example 6.7 by making use 

of the equality 2k k k
1 2 2k 1 2 k k 1 k 2 2ka a ... a a a ... a a a ... a+ +⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ , thereby giving a 

slightly different proof of the AM-GM inequality. 

Problem  6.17. (Jensen's inequality). If f : I → R, where I ⊆ R is an interval, is a 

concave function, then 1 2 n 1 2 na a ... a f (a ) f (a ) ... f (a )f
n n

+ + + + + +⎛ ⎞ ≥⎜ ⎟⎝ ⎠
 for all a1, a2, 

…, an in I. The reverse inequality is true for convex functions. (Recall, concave 

functions satisfy 
x y f (x) f (y)f

2 2
+ +⎛ ⎞ ≥⎜ ⎟⎝ ⎠

 and convex ones the reverse inequality).   

 f) Strengthening: The following example illustrates this curious technique, which 
will be explained  immediately after.  

Example 6.9. Show that for n ≥ 2,  2 2 2

1 1 1 3... .
2 3 4

+ + + ≤
n

 

Solution. Here the inductive step does not work, so will modify our approach. We 

show instead the stronger inequality P(n): 2 2 2

1 1 1 3 1... .
2 3 n 4 n

+ + + ≤ −   
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The case n = 2 is immediate, and for the inductive step we can clearly argue along 

the lines 2 2 2 2 2

1 1 1 1 3 1 1 3 1... ,
2 3 k (k 1) 4 k (k 1) 4 k 1

+ + + + ≤ − + ≤ −
+ + +

 which completes 

the proof.  

The curiosity is that although we failed to prove a statement, we managed to prove a 
stronger one! The mystery clarifies if we realize that proof of the inductive step the 
second time was based on a stronger hypothesis. So it is not surprising that the 
conclusion was also stronger. In the failed attempt, the inductive hypothesis was too 
weak to prove the full statement.  

Problem  6.18. Prove the inequality 
2 2 2

2 2 2

1 3 (2n 1) 1... .
2 4 (2n) 3n

−
⋅ ⋅ ⋅ <   

Problem  6.19. Prove the inequality 
1 1 1... 2.

2 1 3 2 (n 1) n
+ + + <

+
 

Problem  6.20. Show that 3 3 3

1 1 1(1 )(1 ) ... (1 ) 3.
2 3 n

+ + ⋅ ⋅ + ≤  

The technique of strengthening has so far been used only to prove inequalities. One 
should not draw the conclusion that this is the only place that it can be used. Here is 
an example.   

Example 6.10. Show that for every n there exist n distinct divisors of n! whose sum is 
n! 

Solution. Before enunciating which exactly is the strengthened statement, let us 
attempt an inductive proof: The case n = 1 is clear. Assuming that there are k distinct 
divisors d1, d2, …, dk of k! whose sum is k!, we seek k + 1 distinct divisors of (k + 1)! 
whose sum is (k + 1)!. Consider (k + 1)d1, (k + 1)d2, … , (k + 1)dk. They are divisors 
of (k + 1)!, they are distinct, they sum up to (k + 1)! but the problem is that they are 
only k of them. If we replace (k + 1)d1 by kd1 and d1, we have k + 1 numbers but now 
one of them, namely kd1, may not be a divisor of (k + 1)!. There is a way out of this 
difficulty, and this is by taking d1 = 1, but are we allowed to do this?  The answer is 
yes if we start all over again, but this time we strengthen our original statement to 
showing that "for every n there exist n distinct divisors of n! whose sum is n! and 
such that one of the divisors is 1". The procedure is now clear and the details are left 
to the reader.   

 
Section 7. Subtleties 

  At the beginning of this chapter we talked about the versatility of induction as a 
proving device. With the examples below we will see more clearly the diversity and 
adaptability of the versatile tool we are discussing. Here the application of the 
inductive hypothesis will be slightly more intricate.  

  Before coming to the first example, recall that so far the variable n to which we 
applied an inductive argument was pretty clear from the premises of the problem. 
There are, however, some interesting cases where the choice of the variable with 
which we chose to work, is rather subtle.  
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Example 7.1. Show that for any set {a1, a2,…, an} of nonnegative integers, the 

expression X = 1 2 n

1 2 n

(a a ... a )!
a !a !...a !
+ + +

 is an integer.    

Solution. Induction will not be on n but rather on the number N = a1 + a2 +…+ an. If N 
= 1, in which case (without loss of generality) a1 = 1, a2 = … = an = 0, the result is 
trivial. Suppose now that for some k ≥ 1, X is an integer whenever the sum a1 + a2 
+…+ an = k. We show the same thing for n nonnegative integers whose sum is k + 1. 
Note that we may assume that aj ≥ 1 for all 1 ≤ j ≤ n (if some aj = 0, it gives no 
contribution in X, so we may delete it). 

Let then a1 + a2 +…+ an = k + 1. By the inductive hypothesis applied to the numbers 
a1 – 1, a2, … , an, we have that  

                                 1 1 2 n

1 2 n 1 2 n

a X (a 1 a ... a )!
a a ... a (a 1)!a !...a !

− + + +
=

+ + + −
  

is an integer. Similarly a2X/(a1 + a2 +…+ an), … , anX/(a1 + a2 +…+ an) are also 
integers, and hence so are their sum  

                                            
n

j

j 1 1 2 n

a X
X .

a a ... a=

=
+ + +∑   

Problem 7.1. Give another proof of Example 7.1 using the identity 
(a b ... c)! ((a b) ... c)! (a b)!.

a!b!...c! (a b)!... c! a!b!
+ + + + + + +

= ⋅
+ ⋅

 

In the next two examples we apply our inductive hypothesis in a more dexterous way. 

Example 7.2. Let A be any subset of {1, 2, 3, ... , 2n - 1} with n elements, where n∈N. 
Show that there are elements x and y of A (not necessarily distinct) with x + y = 2n.  

Solution. For n = 1 the result is clear. Assume the conclusion true for n = k and 
consider now a subset A of {1, 2, 3, ... , 2k + 1} with  k + 1 elements. We are to show 
that there exist x and y in A with x + y = 2(k + 1). If 1 and 2k + 1 are both in A, we are 
done, so we may assume that at least one of the two is missing. Delete from A the 
other. What remains is a set A' of at least k elements such that A' ⊆{2, 3, ... , 2k}. 
Subtract 1 from each element of A', to get a subset of {1, 2, 3, ... , 2k -1} with (at 
least) k elements. We apply our inductive hypothesis to this last set: Thus there are x 
and y in A such that (x - 1) + (y - 1) = 2k, and so x + y = 2(k + 1).   

Problem  7.2. (Hermite’s identity) If n is a positive integer and x a real number, prove 
that  

                       
1 2 1[ ] [ ] [ ] ... [ ] [ ],nx x x x nx
n n n

−
+ + + + + + + =  

where [.] denotes ‘integer part’. (Hint: induction is not on n but rather on the unique 
k∈N with k/n ≤ x < (k+1)/n ). 

Problem  7.3. There are n fuelling stations on a circular track and the total gas among 
them is just enough for a car to complete the circuit. Show that there is a fuelling 
station from which the car can start and manage to complete the circuit. The car is 
allowed to use only the gas provided at the fuelling stations, which it can collect only 
as it goes along.  

 

Section 8. Harder Questions 



 16

 

Problem 8.1. If x is a real number not of the form n + ½ for an integer n, let {x} denote 

the nearest integer to x (so that for example {e} = {π} = 3). Show 
2n n n

2

k 1 k 1
{ k} 2 k .

+

= =

=∑ ∑  

Problem 8.2. Let n be an integer. Consider all points (a,b) of the plane with integer 
co-ordinates such that 0 ≤ a, 0 ≤ b, a + b ≤ n. Show that if these points are covered 
by straight lines then there are at least n + 1 such lines.  

Problem 8.3. Given a positive integer N perform the following operation to obtain a 
new integer s(N): First write N in its decimal form as N = n n 1 0a a ...a−  and then set s(N) 

= 2
ka∑ . Show that repeated application of this operation will eventually lead to the 

number 1 or to the cycle 4, 16, 37, 58, 89, 145, 42, 20. (Remark: One can check by 
hand the validity of the claim for all three figure numbers, a fact which you may take 
for granted. Induction on N starts thereafter.)    

Problem 8.4. Show that every member of the sequence defined by a1 = a2 = a3 = 1 
and 

an +3 = (1 + an+1a n+2 )/an (n ≥ 1) is an integer.  

Problem 8.5. If m and n are positive integers, show that so is m

(mn)! .
m!(n!)

  

Problem 8.6 (Chebychev inequality). Let a1 ≥ a2 ≥ ... ≥ an ≥ 0 and b1 ≥ b2 ≥ ... ≥ bn ≥ 0. 

Show that  
n n n

k k k k
k 1 k 1 k 1

1 1 1( a ). ( b ) ( a b ).
n n n= = =

≤∑ ∑ ∑  What is the corresponding inequality if  

0 ≤ a1 ≤ a2 ≤ ... ≤ an and 0 ≤ b1 ≤ b2 ≤ ... ≤ bn ?  

Problem 8.7. (Putnam 1968, slightly differently worded). Let S be a set of n elements 
and let P be the set of all subsets of S. Show that we can label the elements of P as 
A1, A2, ... , A2

n so that A1 = ∅ and such that any two consecutive sets in this labeling 
differ by exactly one element of S.  

Problem 8.8. (Putnam 1956, slightly differently worded). Given any 2n points (n ≥ 2) 
that are joined by n2 + 1 segments, show that at least one triangle is formed from 
these segments. 

Problem 8.9. Let A be a subset of {1, 2, … , 2n} with n + 1 elements. Show 
inductively that there exist x, y in A such that x divides y.  

Problem 8.10. Show that for any n > 1 there exists a finite set An of points on the 
plane such that for any x∈An there are points x1, x2, …, xn in An each of which is at a 
distance 1 from x.   

Problem 8.11. (Adapted from IMO 1997). Show that there exist infinitely many values 
of n for which we can find an n×n matrix whose entries come from the set S = {1, 2, 
... , 2n-1} and, for each k = 1, 2, ... , n, its kth row and kth column together contain all 
elements of S.  

 

 


