DU MA MSc Statistics

Topic:- DU_J18_MA_STATS_Topic01

- 1) In analysis of variance problem involving 3 treatments with 10 observations each, SSE= 399.6. Then the MSE is equal to: [Question ID = 2313]
- 1. 14.8 [Option ID = 9252]
- 2. 133.2 [Option ID = 9249]
- 3. 30 [Option ID = 9251]
- 4. 13.32 [Option ID = 9250]

Correct Answer :-

• 14.8 [Option ID = 9252]

- 2) If the variability due to chance decreases, the value of F: [Question ID = 2309]
- 1. Decreases [Option ID = 9234]
- 2. Stay the same [Option ID = 9235]
- 3. Increases [Option ID = 9233]
- 4. Nothing can be said from given information [Option ID = 9236]

Correct Answer :-

- Increases [Option ID = 9233]
- 3) If an unbiased coin is flipped till a first Head occurs, then the sample space is: [Question ID = 2284]
- 1. $\{H, TH\}$ [Option ID = 9135]
- 2. $\{H,TH,TTH,TTTH,...\}$ [Option ID = 9136]
- 3. $\{TH\}$ [Option ID = 9134]
- 4. $\{H\}$ [Option ID = 9133]

Correct Answer:-

- $\{H, TH, TTH, TTTH,\}$ [Option ID = 9136]
- 4) The listing of elements in population with distinct identifiable number is classified as: [Question ID = 2305]
- 1. Regularity experimental frame [Option ID = 9219]
- 2. Frame for experiment [Option ID = 9220]
- 3. Direct experimental frame [Option ID = 9217]
- 4. Indirect experimental frame [Option ID = 9218]

Correct Answer:-

- Frame for experiment [Option ID = 9220]
- 5) When there is rough linearity between the principal variable Y and the auxiliary variable X, but there is no proportionality, the link between Y and X can be exploited to improve simple random sample estimator by using:

[Question ID = 2307]

- 1. Both Ratio estimator and Regression estimator [Option ID = 9227]
- 2. Combined estimator [Option ID = 9228]
- 3. Regression estimator [Option ID = 9226]
- 4. Ratio estimator [Option ID = 9225]

Correct Answer :-

- Regression estimator [Option ID = 9226]
- 6) In LSD with 5 treatments and one missing plot, the error degrees of freedom is: [Question ID = 2310]
- 1. 15 [Option ID = 9238]

```
2. 11 [Option ID = 9239]
3. 12 [Option ID = 9240]
4. 16 [Option ID = 9237]
Correct Answer :-
• 11 [Option ID = 9239]
7) In the context of characteristic function of a random variable, which one of the following statements is false? [Question ID = 2293]
1. It always exists. [Option ID = 9169]
2. It is uniformly continuous on R. [Option ID = 9170]
3. It is not independent of change of origin and scale. [Option ID = 9171]
4. If characteristic function of sum of two random variables is same as the product of their individual characteristic functions, then the variables are
  independent. [Option ID = 9172]
Correct Answer :-
• If characteristic function of sum of two random variables is same as the product of their individual characteristic functions, then the variables are
  independent. [Option ID = 9172]
8) The area under a normal curve between one standard deviation on either side of the mean is: [Question ID = 2285]
1. 95% [Option ID = 9138]
2. 68% [Option ID = 9139]
3. 60% [Option ID = 9140]
4. 99% [Option ID = 9137]
Correct Answer:-
• 68% [Option ID = 9139]
9) In case of two attributes A and B if (A) = 30, (B) = 40, N = 200, then for A and B to be negatively associated the frequency of the class
AB will be:
[Question ID = 2289]
1. 0 < (AB) < 6 [Option ID = 9155]
2. (AB) = 6 [Option ID = 9154]
3. (AB) = 0 [Option ID = 9153]
4. (AB) > 6 [Option ID = 9156]
Correct Answer :-
• 0 < (AB) < 6 [Option ID = 9155]
10) Suppose that there is a chance for a newly constructed building to collapse, whether the design is faulty or not. The chance that the
design is faulty is 10%. The chance that the building collapses is 95% if the design is faulty and otherwise it is 45%. If it is seen that the
building has collapsed, then the probability that it is due to faulty design is: [Question ID = 2277]
1. 0.95 [Option ID = 9108]
2. 0.19 [Option ID = 9106]
3. 0.45 [Option ID = 9107]
4. 0.1 [Option ID = 9105]
Correct Answer :-
• 0.19 [Option ID = 9106]
11) If ANOVA procedure is applied to the data obtained from 5 samples, where each sample contains 9 observations, then the degrees of
freedom for critical value of F are: [Question ID = 2312]
1. 5 and 9 [Option ID = 9245]
2. 4and 44 [Option ID = 9247]
3. 4 and 40 [Option ID = 9248]
4. 4 and 8 [Option ID = 9246]
```

• 4 and 40 [Option ID = 9248]

Correct Answer :-

12) The ages of 7 family members are 2, 5, 12, 18, 38, 40 and 60 years respectively. After 5 years a new member aged x years is added. If the mean age of the family now goes up by 1.5 years, then the value of x (in years) is: [Question ID = 2287]

```
1. 2 [Option ID = 9146]
```

^{2. 1 [}Option ID = 9145]

• 2 [Option ID = 9146]

Consider the 2³ factorial experiment in blocks of 4 plots, involving three fertilizers N, P, and K each at two levels.

	Replicate I		Replicate II		Replicate III
Block 1	np, npk,(1),k	Block 3	pk, nk, (1), np	Block 5	(1), npk, nk, p
Block 2	p, n, pk, nk	Block 4	np, npk, p, k	Block 6	n, npk, p ,k

[Question ID = 2311]

- 1. NK, NPK, PK [Option ID = 9244]
- 2. PK, NPK,PN [Option ID = 9243]
- 3. NP, NK, PK [Option ID = 9241]
- 4. NP, NPK, NK [Option ID = 9242]

Correct Answer :-

14) An urn contains 3 white and 4 black balls. A ball is drawn at random, its colour is noted and returned to urn along with two additional balls of the same colour. If a ball is drawn again from the urn, then the probability that the ball drawn is white, is:

[Question ID = 2274]

- 9 [Option ID = 9094]
 - 3
- . [Option ID = 9093]
- 3
- 3. 7 [Option ID = 9095]
 - 4
- 4. 7 [Option ID = 9096]

Correct Answer :-

- 3
- $\frac{-7}{7}$ [Option ID = 9095]

Let $A = \left(a_{ij}\right)$, where $a_{ij} = \begin{cases} 1, & i+j, \text{is even} \\ -1 & i+j, \text{is odd} \end{cases}$, be a square matrix of order $2k \times 2k$ and B be a column vector of order $2k \times 1$ with all elements as unity. Then the value of $B \mid AB$ is:

[Question ID = 2273]

- 1. O [Option ID = 9089]
- 2. 2k-1 [Option ID = 9091]
- 3. $4k^2$ [Option ID = 9092]
- 4. $2k^2$ [Option ID = 9090]

Correct Answer :-

• O [Option ID = 9089]

Let X be a single observation from truncated Poisson distribution having probability mass function $P(X = x) = \frac{e^{-\theta} \theta^x}{x!(1-e^{-\theta})}; x = 1, 2, 3, .$ The estimator $T = \begin{cases} 2, & x = 1,3,5,... \\ 0, & x = 2,4,6,... \end{cases}$ is

unbiased for:

[Question ID = 2302]

1.
$$1 + e^{-\theta}$$
 [Option ID = 9208]
$$\frac{1 - e^{-\theta} - e^{-2\theta}}{1 - e^{-\theta}}$$
2. [Option ID = 9205]

3.
$$\frac{1-e^{-\theta}}{1-e^{-\theta}}$$
 [Option ID = 9206] $1-2e^{-\theta}$

4.
$$\frac{1-2e}{1-e^{-\theta}}$$
 [Option ID = 9207]

Correct Answer:-

•
$$1 + e^{-\theta}$$
 [Option ID = 9208]
 $\frac{1 - e^{-2\theta}}{1 - e^{-\theta}}$

• $1 - e^{-\theta}$ [Option ID = 9206]

17) If v_r is the absolute moment of order r about origin zero of a distribution, then:

[Question ID = 2281]

$$v_r^{2r} = v_{r-1}^r v_{r+1}^r$$
 [Option ID = 9121]

none of the above [Option ID = 9124]

$$v_r^{2r} \ge v_{r-1}^r v_{r+1}^r$$
 [Option ID = 9122]

$$v_r^{2r} \le v_{r-1}^r v_{r+1}^r$$
 [Option ID = 9123]

Correct Answer :-

$$v_r^{2r} \le v_{r-1}^r v_{r+1}^r$$
 [Option ID = 9123]

Suppose that the five random variables $X_1, X_2, ..., X_5$ are independent and each has standard normal distribution. A constant c such that the random variable $\frac{c(X_1 + X_2)}{\left(X_3^2 + X_4^2 + X_5^2\right)^{\frac{1}{2}}}$ will have a t-distribution has value:

[Question ID = 2283]

1.
$$\frac{\frac{3}{2}}{\sqrt{3}}$$
 [Option ID = 9131]

2.
$$\sqrt{\frac{3}{2}}$$
 [Option ID = 9130]

3.
$$\sqrt{\frac{2}{3}}$$
[Option ID = 9132]
4. $\sqrt{\frac{3}{2}}$
[Option ID = 9129]

$$\sqrt{\frac{3}{2}}$$
 [Option ID = 9130

19) The two candidates A and B for the presidentship of a Students' Union were asked to rank 4 issues in the order of their perceived importance. Their responses are listed besides the issues.

ISSUE	Ranking by candidates		
	A	В	
Crime against girl students	1	2	
Corruption in sports	4	3	
Education system	3	4	
Unemployment	2	1	

Based on this data, Spearman's Rank Correlation Coefficient is:

[Question ID = 2291]

1.
$$\frac{1}{5}$$
 [Option ID = 9161]
2. $\frac{3}{5}$ [Option ID = 9163]
4. [Option ID = 9164]
4. [Option ID = 9162]

Correct Answer:-

$$\frac{3}{5}$$
 [Option ID = 9163]

20) If A is non-singular matrix of order 4×4 and determinant of Adj(A) is 4 then the value of |2Adj(3A)| is:

[Question ID = 2269]

1.
$$(3\sqrt{2})^{12}$$
 [Option ID = 9074]
2. $(2\sqrt{2})^{12}$ [Option ID = 9073]

3.
$$3^{12}$$
 [Option ID = 9075]

$$(3\sqrt{2})^{12}$$
 [Option ID = 9074]

Nine elements of which 4 are of one kind and 5 are of a different kind are arranged in a sequence. If R is the number of runs, then P(R=2) is equal to:

[Question ID = 2280]

1.
$$\frac{1}{126}$$
 [Option ID = 9118]

3.
$$\frac{56}{1}$$
 [Option ID = 9119]

4.
$$\frac{42}{4}$$
 [Option ID = 9120]

Correct Answer:-

$$\frac{1}{63}$$
 [Option ID = 9117]

22) Let X be a random variable with probability density function $f \in (f_0, f_1)$, where

$$f_0(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{otherwise.} \end{cases}, \quad f_1(x) = \begin{cases} 4x^3, & 0 < x < 1 \\ 0, & \text{otherwise.} \end{cases} \quad \text{and} \quad W_0 = \left\{x : x > c\right\} \quad \text{is the}$$

rejection region for testing null hypothesis H_0 : $f = f_0$ against H_1 : $f = f_1$, with level of significance α . Then power of the most powerful test is:

[Question ID = 2298]

1.
$$\alpha - 2\alpha^2$$
 [Option ID = 9191]

2.
$$2\alpha - \alpha^2$$
 [Option ID = 9189]

$$2(\alpha - \alpha^2)$$
 [Option ID = 9192]

4.
$$\alpha - \alpha^2$$
 [Option ID = 9190]

Correct Answer :-

$$2\alpha - \alpha^2$$
 [Option ID = 9189]

The estimator T_o is MVU estimator for $\gamma(\theta)$ and T_1 is any other unbiased estimator for $\gamma(\theta)$ with efficiency 0.0169, then correlation between T_o and T_1 is:

[Question ID = 2300]

- 1. 0.013 [Option ID = 9197]
- 2. 0.5 [Option ID = 9200]
- 3. 0.13 [Option ID = 9198]

• 0.13 [Option ID = 9198]

Let X follows exponential distribution with mean θ . For testing the null hypothesis $H_0: \theta=3$ against $H_1: \theta=5$, a test gives rejection region $W_0=\left\{x,\ x\geq 4.5\right\}$. The size of the type – II error is:

[Question ID = 2299]

1.
$$e^{-20}$$
 [Option ID = 9196]

2.
$$1 - e^{-20}$$
 [Option ID = 9194]

3.
$$1 - e^{-4.5}$$
 [Option ID = 9193]

Correct Answer :-

The area enclosed by curves $\,y^2=x$, $\,y^2=3x-1\,\text{where}\,\,0\leq x\leq\frac{1}{2}\,$ is:

[Question ID = 2267]

$$\frac{\sqrt{2}}{3}$$
 [Option ID = 9066]

$$\frac{\sqrt{2}}{}$$

$$2\sqrt{2}$$

Correct Answer :-

$$2\sqrt{2}$$

If A is a 3×3 matrix with Given values -1, 0 and 1 then value of 6A is:

[Question ID = 2265]

$$\begin{bmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
[Option ID = 9060]
$$\begin{bmatrix} 1 & 5 & 3 \end{bmatrix}$$

2.
$$\begin{bmatrix} 3 & 1 & 5 \end{bmatrix}$$
 [Option ID = 9058]

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
[Option ID = 9059]
$$\begin{bmatrix} -3 & 9 & 0 \\ 9 & -3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$
[Option ID = 9057]

Let $x_1 = 2.4$, $x_2 = 9.2$, $x_3 = 5.2$, $x_4 = 4.1$, $x_5 = 2.1$ and $x_6 = 3.1$ be the observed values of a random variable of size 6 from uniform distribution with parameters $(\theta - 2, \theta + 6)$ where $\theta > 0$ is unknown, then MLE of θ is:

[Question ID = 2295]

- 1. 3.5 [Option ID = 9178]
- 2. 4.5 [Option ID = 9179]
- 3. 9.2 [Option ID = 9180]
- 4. 2.5 [Option ID = 9177]

Correct Answer :-

- 3.5 [Option ID = 9178]
- Let $X_1, X_2, ..., X_n$ be a random sample from Cauchy distribution with location parameter θ and scale parameter 1. The Cramer Rao lower bound for unknown parameter θ , is:

[Question ID = 2303]

- 1. $\frac{2}{n}$ [Option ID = 9212]
- 2. 4/n [Option ID = 9211]
- 3. 1/n [Option ID = 9209]
- 4. 3/n [Option ID = 9210]

Correct Answer :-

- $\frac{2}{n}$ [Option ID = 9212]
- Suppose that p(x, y), the joint probability mass function (p.m.f.) of discrete random variables X and Y, is given by:

$$p(0,0) = 0.4$$
, $p(0,1) = 0.2$, $p(1,0) = 0.1$, $p(1,1) = 0.3$.

Then the conditional p.m.f. of X, given that Y=1, is:

[Question ID = 2290]

$$p_{X|Y}(0|1) = \frac{3}{5}, p_{X|Y}(1|1) = \frac{2}{5}$$
1. [Option ID = 9160]
$$p_{X|Y}(0|1) = \frac{2}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$
2. [Option ID = 9157]
$$p_{X|Y}(0|1) = \frac{4}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$
3. [Option ID = 9158]

$$p_{X|Y}(0|1) = \frac{2}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$

$$p_{X|Y}(0|1) = \frac{4}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$
 [Option ID = 9158]

$$p_{X|Y}(0|1) = \frac{1}{5}, p_{X|Y}(1|1) = \frac{2}{5}$$
(Option ID = 9159)

$$p_{X|Y}(0|1) = \frac{2}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$
 [Option ID = 9157

30) The frequency distribution of percentage of marks obtained by a group of 229 students is given below with two missing frequencies marked as f₁ and f₂:

+		¥2	18	
	Percentage	No. of students	Percentage	No. of students
	of marks	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of marks	
	10-20	12	50-60	\mathbf{f}_2
	20-30	30	60-70	25
	30-40	\mathbf{f}_1	70-80	18
	40-50	65		6

If the median of the distribution is 46, then the missing values of f_1 and f_2 are:

[Question ID = 2278]

1.
$$f_1 = 34$$
, $f_2 = 45$ [Option ID = 9109]

$$f_1 = 8$$
, $f_2 = 71$ [Option ID = 9111]

$$f_1 = 40, f_2 = 39$$
 [Option ID = 9112]

4.
$$f_1 = 66$$
, $f_2 = 13$ [Option ID = 9110]

Correct Answer:-

•
$$f_1 = 34$$
, $f_2 = 45$ [Option ID = 9109]

The equation whose roots are cubes of roots of equation $x^3 - x = 0$ is:

[Question ID = 2266]

1.
$$x^3 - 9x = 0$$
 [Option ID = 9061]

2.
$$x^3 + x = 0$$
 [Option ID = 9063]

3.
$$x^3 - x = 0$$
 [Option ID = 9064]

4.
$$x^3 + x^2 + x - 1 = 0$$
 [Option ID = 9062]

Correct Answer:-

•
$$x^3 - x = 0$$
 [Option ID = 9064]

Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\theta_1, 9\theta_2)$, then the estimate of (θ_1, θ_2) using the method of moments is:

[Question ID = 2296]

$$\left(\frac{1}{9n}\sum_{i=1}^{n} X_{i}, \frac{1}{2n}\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right)$$
 [Option ID = 9183]

$$(\frac{1}{2n}\sum_{i=1}^{n} X_{i}, \frac{1}{9}\sum_{i=1}^{n} (X_{i} - \overline{X})^{2})$$
[Option ID = 9182]

$$\left(\frac{1}{9}\sum_{i=1}^{n} X_{i}, \frac{1}{2n}\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right)$$
 [Option ID = 9184]

$$\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}, \frac{1}{9n}\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}\right)$$
 [Option ID = 918]

$$\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}, \frac{1}{9n}\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}\right)$$
 [Option ID = 9181]

33) If the observations recorded on five sampled items are 3, 4, 5, 6, 7, then the unbiased estimate of the population variance is:

[Question ID = 2276]

Correct Answer:-

The equation of tangents at origin to the curve $x^2(a^2-x^2)=y^2(a^2+x^2)$ is:

[Question ID = 2271]

$$y = \pm ax$$
 [Option ID = 9084]

$$y = \pm x$$
 [Option ID = 9083]

$$x = \pm ay$$
 [Option ID = 9081]

4.
$$y = \pm 2x$$
 [Option ID = 9082]

Correct Answer :-

$$y = \pm x$$
 [Option ID = 9083]

An urn contains 5 red and 3 black balls. Balls are drawn, one-by-one, with replacement till the 3rd red ball is drawn. The probability that 3rd red ball occurs at the 5th draw is:

[Question ID = 2292]

$$\frac{5^3}{8^5}$$
1. [Option ID = 9168]

$$\frac{6.5^3.3^2}{8^5}$$
 [Option ID = 9165]

$$5^3.3^2$$

3.
$$8^5$$
 [Option ID = 9166]

$$\frac{6.5^3}{8^5}$$
 [Option ID = 9167]

$$6.5^3.3^2$$

•
$$8^5$$
 [Option ID = 9165]

The slope of tangents at double point (x, y) to the curve f(x, y) = 0 is given by solution of the quadratic equation:

[Question ID = 2272]

$$\frac{\partial^2 f}{\partial x^2} \left(\frac{dy}{dx} \right)^2 + \frac{\partial^2 f}{\partial x \, \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial y^2} = 0$$

$$\frac{\partial^{2} f}{\partial y^{2}} \left(\frac{dy}{dx} \right)^{2} + \frac{\partial^{2} f}{\partial x \partial y} \left(\frac{dy}{dx} \right)^{2} + \frac{\partial^{2} f}{\partial x^{2}} = 0$$
[Option ID = 9087]
$$\frac{\partial^{2} f}{\partial y^{2}} \left(\frac{dy}{dx} \right)^{2} + \frac{\partial^{2} f}{\partial x \partial y} \left(\frac{dy}{dx} \right) + 2 \frac{\partial^{2} f}{\partial x^{2}} = 0$$
[Option ID = 9087]

$$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + \frac{\partial^2 f}{\partial x \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial x^2} = 0$$

$$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial x^2} = 0$$

Correct Answer :-

$$\frac{\partial^2 \mathbf{f}}{\partial \mathbf{y}^2} \left(\frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \mathbf{x}} \right)^2 + 2 \frac{\partial^2 \mathbf{f}}{\partial \mathbf{x} \, \partial \mathbf{y}} \left(\frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \mathbf{x}} \right) + \frac{\partial^2 \mathbf{f}}{\partial \mathbf{x}^2} = 0$$

137) Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\theta, \sigma^2)$, σ^2 is known, then pivotal statistics used to find $100(1-\alpha)\%$ confidence interval for θ is:

[Question ID = 2297]

$$2\left(\overline{X}-\theta\right)$$
 [Option ID = 9185]

$$X_{(n)}-\theta$$

$$X_{(1)} - \theta$$

$$\sqrt{n}\left(\overline{X}-\theta\right)$$

Correct Answer:-

$$\sqrt{n}\left(\overline{X}-\theta\right)$$

38) The variance of unbiased estimator T of θ satisfy:

[Question ID = 2301]

$$V_{\theta}\left(T\right) \ge \frac{1}{n E\left(\frac{\partial^{2} \log L}{\partial \theta^{2}}\right)}$$
[Option ID = 9203]

$$V_{\theta}\left(T\right) \geq \frac{1}{-nE\left(-\frac{\widehat{\mathcal{O}}^{2}\log L}{\widehat{\mathcal{O}}\theta^{2}}\right)}$$

$$V_{\theta}(T) \ge \frac{1}{n E\left(\frac{\partial \log L}{\partial \theta}\right)}$$

$$V_{\theta}\left(T\right) \geq \frac{1}{-E\left(-\frac{\partial^{2} \log L}{\partial \theta^{2}}\right)}$$

1. [Option ID = 9201

Correct Answer:-

$$V_{\theta}\left(T\right) \ge \frac{1}{-E\left(\frac{\partial^{2} \log L}{\partial \theta^{2}}\right)}$$
[Option ID = 920]

39) If the correlation coefficient between two variables X and Y is 0.6, then the correlation coefficient between two new variables

$$U = \frac{X+6}{6}$$
 and $V = \frac{Y-6}{-6}$

is:

[Question ID = 2286]

- 1. 0.6 [Option ID = 9143]
- 2. -0.1 [Option ID = 9142]
- 3. -0.6 [Option ID = 9144]
- 4. 0.1 [Option ID = 9141]

Correct Answer:-

• -0.6 [Option ID = 9144]

40) If
$$R = \frac{\sum_{i=1}^{n} (x_i - A)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
, $A \neq \overline{x}$, then R is:

[Question ID = 2279]

- 1. < 1 [Option ID = 9113]
- 2. $\neq 1$ [Option ID = 9116]
- 3. [Option ID = 9115]
- 4. > 1 [Option ID = 9114]

Correct Answer:-

• > 1 [Option ID = 9114]

If the area (under a normal density curve) to the left of the point x_1 is 0.4 and to the right of the point x_2 is 0.3, then x_1 and x_2 are such that:

[Question ID = 2288]

- none of these [Option ID = 9152]
- 2. $x_1 < x_2$ [Option ID = 9149]
- $x_1 = x_2$ [Option ID = 9151]
- $x_1 > x_2$ [Option ID = 9150]

Correct Answer:-

$$x_1 < x_2$$
 [Option ID = 9149]

The solution of the linear differential equation $2e^{3x}\frac{dy}{dx}=3e^{2y}$ with y(0)=0 is:

[Question ID = 2268]

- $_{1.} \; e^{3\,x} e^{-2\,y} = 0 \;\;_{\hbox{[Option ID = 9070]}} \;\;$
- $e^{3x} + e^{2y} = 0$ [Option ID = 9072]
- ${}_{3.} \ e^{3\,x} e^{2\,y} = 0 \ \ _{\hbox{[Option ID = 9071]}}$
- 4. $e^{-3x} e^{2y} = 0$ [Option ID = 9069]

Correct Answer :-

$$e^{3x} - e^{2y} = 0$$
 [Option ID = 9071]

43) An urn contains 2 white and 3 red balls. 15 balls are drawn one-by-one with replacement. The standard deviation of the number of white balls drawn is:

[Question ID = 2282]

- 1. 1 [Option ID = 9125]
- 2. $\sqrt{3.6}$ [Option ID = 9128]
- 3. ² [Option ID = 9126]
- 4. 3.6 [Option ID = 9127]

Correct Answer :-

•
$$\sqrt{3.6}$$
 [Option ID = 9128]

Variances of the sample mean under simple random sampling (V_{ran}) , under stratified sampling with proportional allocation (V_{prop}) and sampling with Neyman allocation (V_{opt}) obey which of the following order:

[Question ID = 2304]

- $V_{ran} \! \leq \! V_{opt} \! \leq \! \! V_{prop}$ [Option ID = 9216]
- $_{2}$. $V_{ran} \le V_{prop} \le V_{opt}$ [Option ID = 9215]
- $_{3.} V_{opt} \leq V_{ran} \leq V_{prop} \quad \text{[Option ID = 9213]}$

$$V_{opt} \leq V_{prop} \leq V_{ran} \quad \text{[Option ID = 9214]}$$

- 45) If events A and B are independent, consider the statements:
 - 1. A and B° are independent
 - 2. Ac and B are independent
 - 3. Ac and B are independent

Then:

[Question ID = 2275]

- only 1 is true [Option ID = 9097]
- 3. all 1, 2, and 3 are true. [Option ID = 9100]
- 4. only 1 and 2 are true [Option ID = 9098]

Correct Answer:-

. all 1, 2, and 3 are true. [Option ID = 9100]

The value of
$$\lim_{x\to 0} \frac{a^x b^x - b^x - a^x + 1}{x^2}$$
 is:

[Question ID = 2270]

- 1. log a log b [Option ID = 9078]
- $\log \frac{a}{b}$ 2. [Option ID = 9079]
- 3. [Option ID = 9080]
- 4. $-\log ab$ [Option ID = 9077]

Correct Answer:-

- log a log b [Option ID = 9078]
- In a trivariate distribution if $r_{12} = r_{23} = r_{31} = \rho \neq 1$, then the value of $R_{1,23}$ is

[Question ID = 2294]

$$\frac{\rho}{\sqrt{1+\rho}}$$
1. [Option ID = 9174]

$$\sqrt{1+\rho}$$
2. [Option ID = 9175]

$$\frac{1}{1+\rho}$$
 3. [Option ID = 9176]

$$\sqrt{2} \rho / \sqrt{1+\rho}$$
 [Option ID = 9173]

$$\sqrt{2} \rho / \sqrt{1+\rho}$$
 [Option ID = 9173]

48) If
$$\int\limits_{0}^{\infty} e^{-\left(a^2x^2+\frac{b^2}{x^2}\right)} dx = \frac{\sqrt{\pi}}{2a} e^{-2ab}$$
, then value of $\int\limits_{0}^{\infty} x^{-2} e^{-\left(a^2x^2+\frac{b^2}{x^2}\right)} dx$ is equal to:

[Question ID = 2264]

$$\begin{array}{c} \sqrt{\pi} \\ 2b \end{array} e^{-2ab} \\ 1. \quad \frac{\sqrt{\pi}}{2b} e^{-3ab} \\ 2. \quad \frac{\sqrt{\pi}}{2b} e^{-3ab} \\ 2. \quad [Option \ ID = 9055] \\ 3. \quad \frac{\sqrt{\pi}}{2b} e^{-4ab} \\ 3. \quad [Option \ ID = 9053] \end{array}$$

Correct Answer:-

4. 1 [Option ID = 9056]

$$\frac{\sqrt{\pi}}{2b} e^{-2ab}$$
 [Option ID = 9054]

49) Interviewing all members of a given population is called: [Question ID = 2306]

- 1. A census [Option ID = 9223]
- 2. A statistic [Option ID = 9224]
- 3. A Neilson audit [Option ID = 9222]
- 4. A sample [Option ID = 9221]

Correct Answer :-

• A census [Option ID = 9223]

50) Which one of the following statement is correct? [Question ID = 2308]

Systematic sampling is more precise than SRSWOR if heterogeneity of the whole

population is more than the heterogeneity within systematic sample
[Option ID = 9231]

If $\rho_{wst} > 0$, then systematic sampling is more precise than stratified sampling [Option ID = 9232] Systematic sampling may always yield unbiased estimates if there are periodic

3. features associated with the sampling interval. [Option ID = 9230]

4. Systematic sampling is not very efficient in the presence of linear trend. [Option ID = 9229]

Correct Answer :-

• Systematic sampling is not very efficient in the presence of linear trend. [Option ID = 9229]