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Abstract
Geometric Algebra is considered as a very intuitive tool to deal with geometric problems and

it appears to be increasingly efficient and useful to deal with computer graphics problems. The

Conformal Geometric Algebra includes circles, spheres, planes and lines as algebraic objects,

and intersections between these objects are also algebraic objects. More complex objects such

as conics, quadric surfaces can also be expressed and be manipulated using an extension of the

conformal Geometric Algebra. However due to the high dimension of their representations in

Geometric Algebra, implementations of Geometric Algebra that are currently available do not

allow efficient realizations of these objects.

In this thesis, we first present a Geometric Algebra implementation dedicated for both low and

high dimensions. The proposed method is a hybrid solution that includes precomputed code

with fast execution for low dimensional vector space, which is somehow equivalent to the state-

of-the-art method. For high dimensional vector spaces, we propose runtime computations with

low memory requirement. For these high dimensional vector spaces, we introduce new recursive

scheme, and we prove that associated algorithms are efficient both in terms of computational and

memory complexity. Furthermore, some rules are defined to select the most appropriate choice,

according to the dimension of algebra and the type of multivectors involved in the product. We

will show that the resulting implementation is well suited for high dimensional spaces (e.g. al-

gebra of dimension 15) as well as for lower dimensional spaces.

The next part presents an efficient representation of quadric surfaces using Geometric Algebra.

We define a novel Geometric Algebra framework, the Geometric Algebra of R9,6 to deal with

quadric surfaces where an arbitrary quadric surface is constructed by merely the outer product

of nine points. We show that the proposed framework enables us not only to intuitively repre-

sent quadric surfaces but also to construct objects using Conformal Geometric Algebra. In the

proposed framework, the computation of intersection of quadric surfaces, the normal vector, and

the tangent plane of a quadric surface are provided. Finally, a computational framework of the

quadric surfaces will be presented with the main operations required in computer graphics.

Keywords: Geometric Algebra, Algorithmic structure, Trees, Quadric surfaces
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Résumé
L’algèbre géométrique est un outil permettant de représenter et manipuler les objets géométriques

de manière générique, efficace et intuitive. A titre d’exemple, l’Algèbre Géométrique Conforme

(CGA), permet de représenter des cercles, des sphères, des plans et des droites comme des objets

algébriques. Les intersections entre ces objets sont inclus dans la même algèbre. Il est possi-

ble d’exprimer et de traiter des objets géométriques plus complexes comme des coniques, des

surfaces quadriques en utilisant une extension de CGA. Cependant due à leur représentation

requérant un espace vectoriel de haute dimension, les implantations de l’algèbre géométrique,

actuellement disponible, n’autorisent pas une utilisation efficace de ces objets.

Dans ce manuscrit, nous présentons tout d’abord une implantation de l’algèbre géométrique

dédiée aux espaces vectoriels aussi bien basses que hautes dimensions. L’approche suivie est

basée sur une solution hybride de code pré-calculé en vue d’une exécution rapide pour des es-

paces vectoriels de basses dimensions, ce qui est similaire aux approches de l’état de l’art. Pour

des espaces vectoriels de haute dimension, nous proposons des méthodes de calculs ne nécessi-

tant que peu de mémoire. Pour ces espaces, nous introduisons un formalisme récursif et prou-

vons que les algorithmes associés sont efficaces en terme de complexité de calcul et complexité

de mémoire. Par ailleurs, des règles sont définies pour sélectionner la méthode la plus appro-

priée. Ces règles sont basées sur la dimension de l’espace vectoriel considéré. Nous montrons

que l’implantation obtenue est bien adaptée pour les espaces vectoriels de hautes dimensions

(espace vectoriel de dimension 15) et ceux de basses dimensions.

La dernière partie est dédiée à une représentation efficace des surfaces quadriques en utilisant

l’algèbre géométrique. Nous étudions un nouveau modèle en algèbre géométrique de l’espace

vectoriel R9,6 pour manipuler les surfaces quadriques. Dans ce modèle, une surface quadrique

est construite par l’intermédiaire de neuf points. Nous montrerons que ce modèle permet non

seulement de représenter de manière intuitive des surfaces quadriques mais aussi de construire

des objets en utilisant les définitions de CGA. Nous présentons le calcul de l’intersection de sur-

faces quadriques, du vecteur normal, du plan tangent à une surface en un point de cette surface.

Enfin, un modèle complet de traitement des surfaces quadriques est détaillé.

Mots clés: Algèbre Géométrique, Structure algorithmique, Arbres, Surfaces quadriques
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Introduction

Geometric Algebra provides useful and, more importantly, intuitively understandable tools to

represent, construct and manipulate geometric objects. Intensively explored by physicists, Ge-

ometric Algebra has been applied in classical mechanics, quantum mechanics and electromag-

netism [19, 44, 48, 58, 40, 58, 79, 53]. Geometric Algebra has also found some interesting ap-

plications in data manipulation for Geographic Information Systems (GIS), see [63, 86, 84, 10].

Furthermore, it turns out that Geometric Algebra can be applied even in computer graphics, ei-

ther to basic geometric primitive manipulations [83, 57, 51, 75, 50, 81, 47] or to more complex

illumination processes as in [69] where spherical harmonics are substituted by Geometric Alge-

bra entities. Other works [27] and [25] show that Geometric Algebra can be used to express and

transform some more complex objects such as conics and quadrics. These works on computer

graphics can sometime be extended to some applications in virtual reality for object collision de-

tection [75]. Even if Geometric Algebra literature lacks of least square estimations, it can also still

find application in computer vision, particularly in the representation of camera model [80, 55].

Geometric Algebra can also find some more unexpected applications such as in deep learning

with “Clifford neurons” [9, 52, 62].

There already exist numerous Geometric Algebra implementations, and most of the program-

ming languages or famous mathematical frameworks can find a Geometric Algebra library well

suited for a comfortable use. However, very few of these libraries can handle computations in

high dimensional vector spaces, i.e. dimension where the memory storage of the multivector

becomes problematic, usually dimension 12. In addition, more and more Geometric Algebra

applications focus on high dimensional spaces. It started with Conformal Geometric Algebra

(CGA) which is certainly one of the most studied [73]. CGA is built from 5 dimensional vector

space, and includes 25 = 32 basis vectors. Although some people consider 32 components per

multivector to be already high, some studies are conducted to explore even higher dimensions.

Easter and Hitzer [27] represent some quartics and quadrics 3-d shapes using a double conformal

geometry of R3. Extending this process to a triple conformal geometry would lead to a 15 dimen-

sional algebra containing 215 = 32, 768 elements. For such geometry, the memory requirement
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for optimized libraries explodes far beyond consumer grade hardware capabilities. More regular

approaches lead to very long processing time.

Contributions

These issues are the initial motivation to create a new library called Garamon (Geometric Algebra

Recursive and Adaptive Monster), a library generator written in C++ programming language

and producing specialized Geometric Algebra (GA) libraries also in C++. We propose a flex-

ible, portable, and computationally efficient Geometric Algebra implementation dedicated for

both low and high dimensions. More precisely, the proposed method combines pre-computation

of products of Geometric Algebra for low dimensions with a method using efficient recursive

formulas for high dimensions. The proposed approach includes new computationally efficient

Geometric Algebra recursive scheme. The first method is based on binary trees and is specifi-

cally dedicated to parallel algorithm. The performance of the method is evaluated in terms of

time complexity. This leaded to the publication of [5]. The second method is based on automa-

ton structure. Again, a complexity study both in terms of time and memory is presented. Our

paper [6] detailed the integration of this hybrid method as a plug-in into Gaalop [12], which is

a very advanced optimizing code generator. Finally, the third method is based on prefix tree

structure. We explain

Thanks to the fact that the resulting implementation allow comfortable use of Geometric Alge-

bra for high dimensional space, Garamon allowed us to perform some tests of high dimensional

model. These tests were the base for the development of our proposed Geometric Algebra frame-

work.

This framework, referred to as Quadric Conformal Geometric Algebra (QCGA), is an extension

of CGA, specifically dedicated to quadric surfaces. Through generalizing the conic construction

in R2 by Perwass [73], we prove that QCGA can construct quadric surfaces using either control

points or implicit equations. Moreover, QCGA can compute the intersection of quadric surfaces,

the surface tangent, and normal vectors for a quadric surface point. QCGA can be the support for

computing transformations. This contribution led to the publication of [7]. Finally, we propose

and detail a computational framework of the quadric surfaces using geometric Algebra.
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In practice, this PhD. manuscript is divided into three main parts. The first part is a brief intro-

duction to Geometric Algebra where we define the most important notions starting with Grasm-

mann algebra to finish with Clifford Algebra. Then the second part is dedicated to the proposed

library of Geometric Algebra. Finally, the third part focuses on the representation and manipula-

tion of quadric surfaces using Geometric Algebra.
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Introduction (in French)

L’algèbre géométrique est un outil mathématique de représentation et de manipulation d’objets

géométriques initialement conceptualisé par Hermann Grassmann en 1844. À la même époque,

Wiliam Rowan Hamilton (1805-1865) développait l’algèbre des quaternions utilisée pour les rota-

tions 3D. Enfin William Kingdon Clifford (1845-1879) produisit une algèbre permettant d’englober

toutes les algèbres (Grassmann, quaternion, ...). Leurs travaux n’ont été repris seulement qu’à la

fin du XXe siècle grâce à l’avènement de l’informatique. David Hestenes a remis au goût du jour

cette algèbre en résolvant des problèmes de mécanique quantique avec l’algèbre géométrique.

Au début du XXIe siècle, l’algèbre géométrique s’est développée, et ainsi d’autres intéressantes

applications sont apparues, notamment dans la manipulation de données pour les systèmes

d’information géographique (GIS), voir [63, 86, 84]. Malgré le fait que la littérature en algèbre

géométrique manque de contenu pour l’estimation au sens des moindres carrés, des applications

en vision par ordinateur ont émergé. La représentation des modèles d’appareil photographique

par l’algèbre géométrique occupe une grande partie de ces applications, par exemple [80, 55].

Enfin, d’autres applications récentes s’intéressent à l’apprentissage profond par l’utilisation de

”Clifford neurons” [9]. Pour un historique plus complet et plus d’applications, se référer à [23]

ou [55].

Tout comme l’algèbre linéaire usuellement utilisée pour représenter les objets géométriques, cette

algèbre est définie à partir d’un espace vectoriel. Sa spécificité est de pouvoir représenter des

objets géométriques par des sous-espaces vectoriels engendrés par des opérateurs de l’algèbre.

Voici quelques exemples d’opérations typiques que l’on peut rencontrer en algèbre géométrique.

Dans l’espace usuel de dimension 3, considérons 4 points représentés par 4 vecteurs x1, x2, x3, x4

de l’algèbre, il est possible de calculer la sphère S passant par ces 4 points de la manière suivante:

S = x1 ∧ x2 ∧ x3 ∧ x4 (0.0.1)

Avec le même opérateur et à partir de trois points dont les vecteurs sont x5, x6, x7 et un point à

l’infini de vecteur e∞ (similaire à la coordonnée homogène en géométrie projective), on détermine
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le plan Π passant par ces trois points par la formule suivante:

Π = x5 ∧ x6 ∧ x7 ∧ e∞ (0.0.2)

Enfin avec un deuxième opérateur étant une extension du produit scalaire de l’algèbre linéaire

appelé contraction et noté c, on calcule le cercle C obtenu par l’intersection entre le plan Π et la

sphère S:

C = ΠcS (0.0.3)

Enfin, une droite est simplement obtenue par 2 points x7, x8 et un point à l’infini:

L = x7 ∧ x8 ∧ e∞ (0.0.4)

mais aussi par l’intersection de deux plans Π1, Π2:

L = Π1cΠ2 (0.0.5)

Ces exemples illustrent la capacité de compacité des expressions de l’algèbre géométrique pour

la définition de primitives géométriques, points, sphères, plans, droites, cercles. Par ailleurs,

les calculs effectifs produits par ces opérateurs sont, à l’image du produit vectoriel de R3, ex-

trêmement compacts. Tout ceci fait de l’algèbre géométrique un outil pratique et efficace pour la

résolution des problèmes géométriques.

L’expression et le traitement d’objets plus complexe, telle que les coniques, les surfaces quadriques

est également possible en utilisant une extension de l’algèbre utilisée pour les sphères. Cepen-

dant due à leur représentation requérant un espace vectoriel de haute dimension, les implanta-

tions actuels de l’algèbre géométrique n’autorisent pas une utilisation efficace de ces objets.

En effet, il existe un certain nombre d’implantations d’algèbre géométrique qui couvrent un

large spectre de langage de programmation et d’applications. La plupart des modèles d’algèbre

géométrique peut être traitée de manière confortable grâce aux implantations existantes. Cepen-

dant, très peu de ces librairies sont capables de traiter des calculs nécessitant des espaces vec-

toriels de hautes dimensions, c.a.d. supérieures à 12. La taille des sous-espaces générés par ces

espaces vectoriels de hautes dimensions induit des calculs très couteux. Les calculs effectués

deviennent ainsi lents.
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Plus précisément, les implantations existantes peuvent être classifiées en deux groupes. Le pre-

mier groupe correspond aux générateurs de code. Ces générateurs de code optimisent l’algèbre

géométrique par génération de code bas niveau et effectuent des optimisations symboliques en

terme d’algèbre. Dans cette catégorie, Gaalop [12] est une des librairies les plus avancée de

cette catégorie. Cette librairie utilise des opérations symboliques écrites en CLUCalc [72] et peut

produire un code optimisé soit en C++, OpenCL, CUDA or LaTeX. Les optimisations choisies

résultent en un code optimisé pour une tâche spécifique. Cependant ces optimisations ne sont

pas bien adaptées pour des cas où les calculs ne sont pas décidés à l’avance. Par ailleurs, le code

source généré doit être intégré manuellement dans l’application de l’utilisateur, ce qui fait perdre

en flexibilité.

Le deuxième groupe correspond aux générateurs de librairies définis à partir d’une spécification

de l’algèbre. Dans ce type d’implantation, le produit entre les objets de l’algèbre géométrique

ayant une structure particulière est défini à l’avance. Gaigen [23, 33], présenté par Daniel Fonti-

jne, a été la première et la plus aboutie dans cette catégorie. Gaigen signifie Geometric Algebra

Implementation GENerator et cette librairie peut générer du code source C++,C,C# et Java, im-

plantant une algèbre géométrique de dimension de l’espace vectoriel et de métrique fixées. Les

objets de cette algèbre n’ayant pas une structure bien définie sont associés à des classes générales

présentant de faibles niveaux d’optimisation. Finalement, ce générateur de librairie est limité en

terme de dimension de l’espace vectoriel. Plus précisément, les optimisations limitent la librairie

d’être utilisée pour des algèbres dont la dimension de l’espace vectoriel dépasse 10.

Toutes ces approches présentent d’intéressantes propriétés. Cependant, des améliorations doivent

être apportées pour faire en sorte que ces librairies présentent une facilité d’utilisation, mais aussi

de meilleures performances en terme de mémoire et de temps de calcul.

Ces derniers points ont été notre motivation initiale pour créer un générateur de librairies d’algèbre

géométrique, appelée Garamon (Geometric Algebra Recursive and Adaptive Monster). Nos be-

soins pour cette librairie ont été tout d’abord d’être capable de supporter le traitement et la

représentation de surfaces quadriques en algèbre géométrique. Par ailleurs, cette librairie doit

présenter un confort d’utilisation permettant d’effectuer des opérations dans des algèbres à es-

paces vectoriels aussi bien basses que hautes dimensions. La première partie de cette thèse est

dédiée à la présentation de cette implantation. Plus précisément, nous proposons, dans cette

partie, une implantation performante en terme de mémoire et de temps de calcul.
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Dans cette partie, nous proposons tout d’abord une structure de données encodant la structure

de l’algèbre géométrique. En effet, pour un espace vectoriel de dimension d, les informations

qui peuvent être stockées pour représenter les éléments de l’algèbre linéaire (vecteurs et matri-

ces) diffèrent des de ceux utilisés en algèbre géométrique. En algèbre linéaire, la complexité en

algèbre linéaire est en O(d2) alors que cette complexité est de O(2d) pour l’algèbre géométrique.

Cette différence influence leur respective structure de données. Par conséquent, les implanta-

tions d’algèbre linéaire représentent fréquemment toutes les données composant un vecteur ou

une matrice. En contraste, les implantations de l’algèbre géométrique essaient de faire en sorte de

ne stocker que les éléments non nuls. Une façon de prendre en compte cette contrainte passe par

l’utilisation d’une liste chaînée. Nous proposons une structure de données à base de dictionnaire

et permettant d’obtenir une complexité proportionnelle à la taille d’un sous espace de l’algèbre

et plus en 2d.

Il est ensuite question de l’implantation des opérateurs de l’algèbre géométrique. Nous pro-

posons une méthode hybride consistant à effectuer les pré-calculs en basse dimension et à utiliser

des méthodes efficaces de calculs pour des espaces vectoriels de haute dimension. Pour ces es-

paces de basses dimensions, cela consiste à utiliser des fonctions contenant tous les calculs à

effectuer pour tout type d’objets de l’algèbre. Pour des espaces vectoriels de haute dimension,

nous proposons de nouvelles méthodes récursives à base d’arbre. Plus précisément, les méth-

odes de calcul des produits de l’algèbre géométrique ont une complexité de calcul en O(d× 4d).

Ce qui pose problème pour des algèbres de hautes dimensions. Pour résoudre ce problème, nous

présentons plusieurs méthodes de calcul permettant de réduire cette complexité à O(3d). Nous

montrerons que la méthode choisie permet d’effectuer dans le pire des cas exactement 3d opéra-

tions. Ceci fait de notre méthode, une approche adaptée aux hautes dimensions. Par ailleurs,

une nouvelle méthode de calcul dans les bases non orthogonales sera explicitée. Cette méthode

permet de solutionner les problèmes de robustesse induit par un changement de base en algèbre

géométrique.

Nous présenterons la méthode permettant la transition entre l’approche pour les espaces vecto-

riels de basse dimension et la méthode pour les espaces vectoriels de haute dimension. Briève-

ment, le critère se base sur la taille des sous-espaces générés impliqués dans le produit con-

sidéré. Finalement, cette dernière implantation nous a ouvert de nouvelles perspectives, tout

particulièrement dans l’étude d’un modèle de représentation à haute dimension des surfaces

quadriques en algèbre géométrique.
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Ce modèle sera l’objet de la seconde partie de ce manuscrit de thèse. Tout d’abord, l’algèbre

géométrique de l’espace vectoriel Rp,q est symbolisé par Gp,q, où p est le nombre de vecteurs

de base dont le carré vaut 1, et q est celui dont le carré vaut −1. Différents modèles d’algèbre

géométrique sont dédiées à la représentation de coniques. G5,3 [73] permet d’exprimer de manière

élégante les coniques de R2. Les coniques de R2 peuvent aussi être exprimé dans G6,2, voir [27].

Il existe également différens modèles d’algèbres géométriques dédiés à la représentation de sur-

faces quadriques. Un premier modèle développé par Zamora [85] autorise la construction de

quadriques à partir de points de contrôle. Cependant cette dernière approche ne traite que les

quadriques centrées et alignées. Se représentation n’inclut donc pas toute forme de quadriques,

appelées quadriques générales par la suite.

Il existe deux approches générales permettant de traiter les quadriques générales. Première-

ment, DCGA [27] (Double Conformal Geometric Algebra) avec G8,2, défini par Easter et Hitzer,

construit les surfaces quadriques et certaines quartiques à partir des coefficients de leur forme

implicite. Ce modèle permet de représenter des surfaces et d’effectuer des transformations sur

ces objets. Cependant, ce modèle ne permet pas de calculer l’intersection entre deux quadriques

générales et donc ne construit pas de quadriques à partir de points de contrôles.

La deuxième approche a été introduite par Parkin [70] puis développée par Goldman et al. [38]

et enfin finalisée par Du et al. [26] utilise l’algèbre G4,4. Cette algèbre consiste en une duplica-

tion de la géométrie projective de R3 et est donc nommé Double Projective Geometric Algebra,

appelée dans cette thèse DPGA. DPGA permet de traiter les intersections entre quadriques et les

coniques. Cette approche permet également d’effectuer des transformations sur des quadriques.

Cependant, elle ne permet pas de construire des quadriques à partir de points de contrôle.

Nous présentons dans cette partie Quadric Conformal Geometric Algebra (QCGA). Brièvement,

il s’agit d’une extension de CGA, présenté dans [21]. Par une généralisation de [73], nous prou-

verons que QCGA est capable de construire les quadriques générales à partir de points de con-

trôle mais également à partir de la forme implicite de la quadrique. Nous proposerons une

méthode permettant de calculer l’intersection de quadriques. Par ailleurs, nous prouverons qu’il

est possible de représenter un plan tangent, un vecteur normal à une quadrique générale à partir

d’un point de cette quadrique. Une partie sera dédiée à la représentation des transformations

dans QCGA, typiquement nous montrerons que les translations peuvent être représentées de

manière intuitive dans QCGA. Nous prouverons finalement que le modèle proposé inclut les
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approches de l’état de l’art, ce qui permettra d’aboutir à un modèle général efficace de représen-

tation des surfaces quadriques.
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Chapter 1

Construction of Geometric Algebra

In applications such as computer vision and computer graphics, a typical operation consists in

having representation of geometric objects and intersect these objects. In Linear Algebra, one

has a list of operations to deal with these kinds of problems, that are performed in an efficient

way. However, they are some limitations that come from the fact that the solution is expressed

with respect to coordinates and ”low level” operations. For example, the intersection of two lines

involves the representation of lines. A line l is expressed as the coordinates (x, y, z) that satisfy:

x = x1 + t(x1 − x2)

y = y1 + t(y1 − y2)

z = z1 + t(z1 − z2)

(1.0.1)

where, (x1, y1, z1) and (x2, y2, z2) are the coordinates of two points that lie on the considered line.

Then the intersection of two lines consists in solving a linear system leading to a list of opera-

tions. This is completely sufficient to just have this list of operations. However, this becomes

unintuitive and cumbersome, when one has to deal with geometric problems that require high

level of abstractions. In fact, the geometric natures of the operations and representations are lost.

This restrains the user of the algebra to think the problems in terms of coordinates operations

instead of objects.

In contrast, Geometric Algebra is designed to be generic and to offer operators that are able to

compute the considered geometric operations for any geometric objects of the algebra and in any

dimension. As an example, in an algebra, with only one operator called outer product, noted

as ∧, and the entity representing a point, it is possible to construct in a very intuitive a set of

geometric objects. For example, a line can be expressed as:

l = x1 ∧ x2 (1.0.2)
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And the intersection between two lines involves the same operator and in a very compact way.

This intersection operation is not limited to lines but also to any geometric objects of this algebra.

Moreover, the operators involved in the computation of the intersection remain the same what-

ever the geometric object is. This leads to very intuitive and ”geometric object" thinking oriented

Algebra.

1.1 The battle of Vector Algebra

Despite these powerful features, this Geometric Algebra did not develop as expected. This sec-

tion gives some historical elements to understand why. More precisely, we focus on the reason

why so few researchers know Geometric Algebra compared to the Vector Algebra, please refer

to Figure 1.1 for a quick view of some of the main contributors of Vector Algebra.

In the history of Vector Algebra, William Rowan Hamilton extended the complex numbers to

3-dimensional space and produced the quaternions in 1843 [42]. These quaternions succeeded

in representing 3D rotations. Meanwhile, raised Hermann Günther Grassmann extensive alge-

bra [39] seen as the first contributor to the Geometric Algebra. The key point of his research is to

develop an algebra that could be used to as “a universal instrument for geometric research”, as

stated in [43]. He developed a high dimensional vector algebra whose entities and products have

geometric interpretations. But partly due to the fact that the major paper was full of philosophical

statements, Grassmann extensive algebra did not develop that much.

Then, Josiah Willard Gibbs defined the 3—dimensional space vector along with two products,

namely the cross product and the dot product. These products have the advantage to be simple to

use. These products also helped to express the four differential equations which were published

in a developed form in 1873 [66]. This tended to develop much more Gibbs work than Geometric

Algebra.

However, with the arrival of special relativity, physicists needed a framework that handles 4-

dimensional space. This leaded to the work of Minkowski algebra [67], which can also be easily

derived from Geometric Algebra.

In 1878, William Kingdon Clifford unified the work of Grassmann and Hamilton into a whole

framework, namely Geometric Algebra. However, the development of this algebra stopped. In-

deed, Clifford died at the age of 34 which is only 1 year after the publication of his paper on
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W.R. Hamilton H.G. Grassmann J.W. Gibbs
1843 1844 1890

W.K. Clifford D. Hestenes
1878 1961

FIGURE 1.1: Some of the main contributors to the vector algebras

Applications of Grassmann’s Extensive Algebra [13]. Despite this, some other algebras were cre-

ated and can be derived from Geometric Algebra, for example Pauli algebra, Dirac algebra [18].

Geometric Algebra stayed almost undeveloped until the 1960s. David Hestenes rescued Geomet-

ric Algebra for physics applications, as relativity [46] and in classical mechanics [45]. Geometric

Algebra is now in the process of catching up in engineering, video game and physics compared

to Gibbs vector.

One might consider for example [11, 15] for a more detailed history. Let us now take a further

look at Geometric Algebra.

1.2 Vectors of Geometric Algebra

Geometric Algebra is an algebra over a field. We will only consider the real field, R. Vectors

of Geometric Algebra are denoted with bold font lower case letter, e.g. a, b are two vectors.

Gibbs vectors are usually denoted as column of numbers. Whereas, it is more convenient to note

vectors of Geometric Algebra as linear combination according to some basis vectors (e.g.e1, e2).

Coefficients of vectors are symbolized with italic lower-case letters(a1, x, y2, · · · ). For example, a
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3-dimensional vector a ∈ R3 of Geometric Algebra:

a = a1e1 + a2e2 + a3e3 (1.2.1)

For any d—dimensional space, a vector is thus defined as follows:

a =
d

∑
i=1

aiei (1.2.2)

As we consider a vector space, we can compute the multiplication of a vector by a scalar. We

represent scalars using lower-case default text font (constant scalar r). The scalar multiplication

is distributive thus ∀a ∈ Rd and ∀r ∈ R:

ra = r
d

∑
i=1

aiei =
d

∑
i=1

raiei (1.2.3)

Finally the addition of two vectors can also be computed. Still, with a ∈ Rd and b ∈ Rd, we get:

a + b =
d

∑
i=1

(ai + bi)ei (1.2.4)

1.3 First major product of Geometric Algebra

There are several products of Geometric Algebra and one of the major products of Geometric

Algebra is the outer product, also called wedge product. The outer product of two vectors a and

b is written as a ∧ b and read as a “wedge” b. This product has a geometric meaning. Indeed,

the outer product of a ∈ Rd and b ∈ Rd expresses the oriented surface spanned by a and b. An

example is shown in Figure 1.2.

FIGURE 1.2: Geometric meaning of the outer product between two vectors.

The main properties of the outer product are as follows:
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scalar product: r∧ a = ra ∀a ∈ Rd, r ∈ R

associativity: (a ∧ b) ∧ c = a ∧ (b ∧ c) ∀a, b, c ∈ Rd

anti-commutativity: a ∧ b = −b ∧ a ∀a, b ∈ Rd

a ∧ a = 0 ∀a ∈ Rd

distributivity: a ∧ (b + c) = (a ∧ b) + (a ∧ c) ∀a, b, c ∈ Rd

scaling: a ∧ (rb) = r(a ∧ b) ∀a, b ∈ Rd, r ∈ R

Note that the anti-commutativity property is an essential property. Furthermore, this property

is geometrically intuitive. Indeed, the resulting oriented area formed by a and itself is zero (see

Figure 1.2) and the oriented area spanned by a and b is the opposite of the oriented area spanned

by b and a.

1.3.1 2-blades

The outer product of two vectors forms a subspace, called a 2-blade. This 2-blade is expressed

in a new basis, namely the basis of 2-blades or bivectors. For example in R2, the outer product

between two vectors a and b is expressed as:

a ∧ b = (a1e1 + a2e2) ∧ (b1e1 + b2e2)

= (a1b1)(e1 ∧ e1) + (a1b2)(e1 ∧ e2)

+ (a2b1)(e2 ∧ e1) + (a2b2)(e2 ∧ e2)

= (a1b2 − a2b1)(e1 ∧ e2)

= (a1b2 − a2b1)e12

(1.3.1)

For sake of clarity, one notes the basis e1 ∧ e2 as e12. This 2-blade e12 forms the basis of 2-blades

in R2. In Rd, we define the pseudo-scalar as I = e1 ∧ e2 ∧ · · · ∧ ed = e12···d. Therefore, in R2, the

2-blade e12 is also I.

In R3, the outer product between two vectors is as follows:

a ∧ b = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= (a1b2 − a2b1)e12 + (a1b3 − a3b1)e13 + (a2b3 − a3b2)e23

(1.3.2)
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The spanned 2-blades basis is now e12, e13, e23.

Furthermore, by a slight rewriting of the above equation as:

a ∧ b = (a1b2 − a2b1)e12 + (a3b1 − a1b3)e31 + (a2b3 − a3b2)e23 (1.3.3)

This formula looks like the cross product, indeed the cross product between two Gibbs vectors is:

a× b = (a1b2 − a2b1) e3 + (a3b1 − a1b3) e2 + (a2b3 − a3b2) e1 (1.3.4)

However the outer product is:

• actually defined in any dimension

• associative (a ∧ b) ∧ c = a ∧ (b ∧ c)

1.3.2 3-blades

In R3, it is also possible to build higher dimensional subspace, namely three-dimensional sub-

space. It is formed by the outer product of 3 vectors, e.g. the outer product of a, b, c ∈ R3 is

as:

a ∧ b ∧ c =
(

c3(a1b2 − a2b1) + c2(a1b3 − a3b1) + c1(a2b3 − a3b2)
)

e123 (1.3.5)

The geometric meaning of this outer product between three vectors is the oriented volume spanned

by the three vectors a, b, c, as shown in Figure 1.3.

FIGURE 1.3: Geometric meaning of the outer product between three vectors a, b, c
of R3.

Note that the outer product between three vectors of R3 has only one component. Thus, by

regrouping the basis subspaces spanned along with scalar component, we get the new basis:

(
1︸︷︷︸

scalars

, e1, e2, e3︸ ︷︷ ︸
vector space

, e12, e13, e23︸ ︷︷ ︸
bivector space

, e123︸ ︷︷ ︸
trivector space

)
(1.3.6)
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Let us also introduce two other very useful and powerful properties of the outer product. By

considering 3 vectors x, a, b, we can verify that:

x ∧ a = 0 ⇔ x = ra r ∈ R

x ∧ a ∧ b = 0 ⇔ x = ra + sb r, s ∈ R

(1.3.7)

1.3.3 Higher dimensional subspaces

For higher dimensional spaces, higher graded subspaces are spanned. This leads to the notion of

k-blades. An entity of the algebra is a k-blade (by bold capital letters) if and only if it is factoriz-

able into the outer product of k vectors, for example:

A = e12 + e13 − e23 (1.3.8)

Indeed, a factorization of this entity into outer product of vectors is found as follows:

a = (e1 + e3) ∧ (e2 + e3) (1.3.9)

In contrast, the entity:

B = 2e12 + 3e34 (1.3.10)

in a 4-dimensional vector space, cannot be factorized as the outer product of two vectors. These

entities are called k-vector (by nonbold capital letters). The set of k-blades is included in the set

of k-vectors. This relation is illustrated in Figure 1.4.

k-vectors

k-blades

FIGURE 1.4: Relation between k-vectors and k-blades
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In the term k-blade and k-vector, k is called the grade. As an example, the construction of the

basis of the algebra of 4-dimensional vector along with the grade information are as follows:

(1) grade 0

(e1, e2, e3, e4) grade 1

(e12, e13, e14, e23, e24, e34) grade 2

(e123, e124, e134, e234) grade 3

(e1234) grade 4

For any k-dimensional subspace of a d-dimensional vector space, it is possible to compute the

number of k-basis blade as: (
d
k

)
=

d!
(d− k)!d!

(1.3.11)

Finally, using the binomial theorem, the total number of basis blades is computed as:

d

∑
i=0

(
d
i

)
= 2d (1.3.12)

The table 1.1 shows some values of the total number of basis for some vector space dimension.

Finally, we can form a sum of basis blades in a new vector space whose dimension is 2d. For

Dimension Number of independent vectors total
of each k-basis blade

3 1 3 3 1 8
4 1 4 6 4 1 16
5 1 5 10 10 5 1 32
...

...
...

10 1 10 45 120 210 252 210 120 45 10 1 1024
...

...
...

TABLE 1.1: Structure of a general entity of Geometric Algebra

example, it is possible to define a multivector a of a 3-dimensional vector space as:

A = r + a1e1 + a2e2 + a3e3 + a12e12 + a13e13 + a23e23 + a123e123 (1.3.13)

where r, a1, a2, a3, a12, a13, a23, a123 ∈ R
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1.4 Inner product

1.4.1 Metric vector space

To the algebra is assigned an inner product. The inner product between a and b, is denoted as

a · b. The inner product which maps two vectors to a scalar, that is to say Rd ×Rd → R, is also

called the scalar product. The properties of this product are:

Commutativity: a · b = b · a ∀a, b ∈ Rd

Linearity: a · (rb + sc) = r(a · b) + s(a · c) ∀a, b, c ∈ Rd, ∀r, s ∈ R

For two Euclidean vector a, b ∈ R3, the inner product a · b is as follows:

a · b = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3)

= (a1b1)(e1 · e1) + (a2b2)(e2 · e2) + (a3b3)(e3 · e3)

= (a1b1) + (a2b2) + (a3b3)

(1.4.1)

Note that the inner product of two Euclidean vectors ei · ej = 0, if i 6= j. Using this inner product,

it is possible to define the signature of the vector space. Note that we do not assume positive def-

initeness of the inner product. For a vector space, the signature is defined as the triplet (p, q, r).

More precisely, this means that:

ei · ei =


+1 for i = 1, · · · , p

−1 for i = p + 1, · · · , p + q

0 for i = p + q + 1, · · · , p + q + r

(1.4.2)

We will use the common notation of Rp,q,r for a vector space with the signature (p, q, r). For

example, we can define the Minkowski space as the vector space R3,1,0 or equivalently R1,3,0.

Note that this is defined up to change of basis.

To express the inner product of vectors, we will also use the metric matrix defining ei · ej, ∀(i, j) ∈

[1, d]2. The simplest metric matrix is the Euclidean metric, it is simply a identity matrix whose

rank is the dimension of the vector space. A metric matrix that is used especially in relativity is

the metric matrix associated with the vector space R1,3. This is the diagonal metric matrix given
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as follows:

M =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(1.4.3)

1.4.2 Between blades of different grade

We defined the inner product between vectors. This section aims at defining it also between

blades of different grades.

1-blade · m-blade: The inner product of a vector a with a m-blade B in a d-dimensional space

(d ≥ l) is defined as:

a · B = a · (b1 ∧ b2 ∧ · · · ∧ bm)

= (a · b1)b2 ∧ · · · ∧ bm − (a · b2)b1 ∧ b3 · · · ∧ bm + · · ·

+(−1)m+1(a · bm)b1 ∧ · · · ∧ bm−2 ∧ bm−1

(1.4.4)

Note that the grade of the result is m− 1.

m-blade · 1-blade: The inner product of two vectors is commutative. By definition, the inner

product between a vector and a m-blade results in:

a · B = a · (b1 ∧ b2 ∧ · · · ∧ bm)

= (−1)m−1(b1 ∧ b2 ∧ · · · ∧ bm) · a

= (−1)m−1B · a

(1.4.5)

k-blade ·m-blade: Now, we consider the inner product between a k-blade A and m-blade B. A ·B

is defined as follows:

A · B = (a1 ∧ a2 ∧ · · · ∧ ak) · (b1 ∧ b2 ∧ · · · ∧ bm)

=

(
a1 ·

(
a2 ·

(
· · · ·

(
ak · (b1 ∧ b2 ∧ · · · ∧ bm)

)))) (1.4.6)

Thus, the grade of the result is |m− k|. Note that when m = k, the result of the inner product is a

scalar.
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m-blade · k-blade: Using the same blade A and B, we also deduce:

A · B = (a1 ∧ a2 ∧ · · · ∧ ak) · (b1 ∧ b2 ∧ · · · ∧ bm)

= (−1)k(m+1)(b1 ∧ b2 ∧ · · · ∧ bm) · (a1 ∧ a2 ∧ · · · ∧ ak)

= (−1)k(m+1)(B ·A)

(1.4.7)

1.4.3 Reverse and squared norm of blades

The reverse of a k-blade A, is noted as Ã. As A is a k-blade, it can then be written as:

A = a1 ∧ a2 ∧ · · · ∧ ak (1.4.8)

Then the reverse of A can be defined as:

Ã = ak ∧ ak−1 ∧ · · · ∧ a1

= (−1)k(k−1)/2(a1 ∧ a2 ∧ · · · ∧ ak)

= (−1)k(k−1)/2A

(1.4.9)

Note the reverse operation does not change the grade of blade. Finally, the squared norm of a

k-blade A is defined as:

‖A‖2 = A · Ã

= (a1 ∧ a2 ∧ · · · ∧ ak) · (ak ∧ ak−1 ∧ · · · ∧ a1)
(1.4.10)

Note that the result is a scalar. As an example, let us compute the norm of the blade e124 in the

Euclidean vector space R4,0,0:

‖e124‖2 = e124 · ẽ124 (1.4.11)

By application the definition of the reverse, we get:

‖e124‖2 = e124 · e421 (1.4.12)
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Then, applying the inner product definition between two blades results in:

‖e124‖2 = e124 · e421

= e1 ·
(

e2 ·
(

e4 · (e4 ∧ e2 ∧ e1)
))

= e1 ·
(

e2 ·
(
(e4 · e4)e2 ∧ e1)− (e4 · e2)e4 ∧ e1

+(e4 · e1)e4 ∧ e2)
))

= e1 ·
(

e2 ·
(

e2 ∧ e1

))
(1.4.13)

By reitering the same algorithm, we get:

‖e124‖2 = e1 ·
(

e2 ·
(

e2 ∧ e1

))
= e1 ·

(
(e2 · e2)e1 − (e2 · e1)e2

))
=

(
e1 · e1

)
= 1

(1.4.14)

1.5 Geometric product and Geometric Algebra

Up to now, we introduced the Grassmann’s outer product as well as the metric vector space Rp,q,r

and the inner product between blades. We are now left to define the Geometric Algebra Gp,q,r

(d = p + q + r). We use the vector space Rp,q,r along with a geometric product according to the

multiplication rule:

eiej = ei · ej + ei ∧ ej i, j = 1, · · · , d (1.5.1)

The geometric product between two vectors is a multivector and is the sum of a scalar and bivec-

tor.

It is convenient for the following to use the notation of the grade projection of a multivector a as

〈a〉k. This denotes the grade k part of a. Then, the geometric product of two vectors a and b can

be defined as:

ab = 〈ab〉0 + 〈ab〉2 (1.5.2)

Note that this definition only holds when a and b are vectors.

The properties of this geometric product are as follows:
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Associativity a(bc) = (ab)c ∀a, b, c ∈ Rd

Distributivity over + a(b + c) = (ab) + (ac) ∀a, b, c ∈ Rd

Linearity a(rb + sc) = r(ab) + s(ac) ∀a, b, c ∈ Rd, ∀r, s ∈ R

Note that this product is not necessarily commutative. Below are some geometric products that

are worth mentioning when we use orthogonal basis vectors:

eiei = ei · ei

eiej = ei ∧ ej = eij for i 6= j

eiej = −ejei for i 6= j

(1.5.3)

Note that these results are verified for any metric vector space Rp,q,r.

Commutator product

Formula 1.5.3 slightly changes when one considers the geometric product between a bivector A

and a k-vector (k > 1) B:

AB = A · B + A ∧ B + A× B (1.5.4)

Where A× B denotes the commutator product between A and B.

1.6 Complex numbers and Hamilton algebra included

In the Geometric Algebra G2,0,0, the only bivector of this algebra raised to the power of 2 is

defined as:

(e12)
2 = e12e12 = −1 (1.6.1)

Furthermore, let us consider the even components of this algebra. The basis vectors associated

is:

1, e12 (1.6.2)

A multivector A can be expressed as:

A = ar + aie12 (1.6.3)

And the geometric product between two multivectors A and B are determined as:

AB = (ar + aie12)(br + bie12)

= (arbr − aibi) + (arai + aiar)e12

(1.6.4)
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The result is also part of the even components of G2,0,0. This results in a sub-algebra of G2,0,0

and this sub-algebra, as an algebra, is isomorphic to the complex number C. Indeed, e12 has the

properties of i in C.

To go further, when one consider the Geometric Algebra G3,0,0 (also noted G3), then the geometric

product of bivectors is:

(e1e2)(e1e2) = −1

(e1e3)(e1e3) = −1

(e2e3)(e2e3) = −1

(1.6.5)

We can also compute the geometric products:

(e23e31) = −e12

(e31e12) = −e23

(e31e12) = −e13

(1.6.6)

Thus, the extraction of the even sub-algebra of G3,0,0 with the basis:

1,−e12,−e13,−e23 (1.6.7)

is isomorphic to the quaternions H with the basis:

1, i, j, k (1.6.8)

1.7 Pauli matrices included

We stay with the Geometric Algebra G3 (G3,0,0) and the same basis as before. Let us of flush out

our list of properties of G3 by rewriting:

2e123e3 = 2e12

= (e1e2 − e2e1) (1.7.1)

Repeating the same computation for the remaining vectors, we get:

2e123e2 = 2e31

= (e3e1 − e1e3) (1.7.2)



1.7. Pauli matrices included 25

Finally:

2e123e1 = 2e23

= (e2e3 − e3e2) (1.7.3)

Using the pseudoscalar I = e123 of G3, we obtain the three equalities:

Ie1 = e23

Ie2 = e31

Ie3 = e12

(1.7.4)

If we now consider two basis vector ei and ej, the inner product ei · ej can be defined as follows:

ei · ej = δi,j (1.7.5)

where, δi,j is the Kronecker symbol, for i = j, δi,j = 1, and if i 6= j, δi,j = 0. Furthermore, for three

equalities previously defined, we get:

ei ∧ ej = Iεijkek (1.7.6)

Where εijk denotes the Levi-Civita symbol in 3-dimensional space defined as:

εijk =


+1 if (i, j, k) is (1, 2, 3) or (2, 3, 1) or (3, 1, 2)

−1 if (i, j, k) is (3, 2, 1) or (1, 3, 2) or (2, 1, 3)

0 for i = j, or j = k, or k = i

(1.7.7)

Finally, the geometric product eiej yields:

eiej = δi,j + Iεijkek (1.7.8)

If we rename all the e into σ in the equations previously defined, we verify that σ satisfy the

Pauli matrices properties, see [47].
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1.8 Inverse and dual

It is possible to invert a blade using the geometric product. The definition of the inverse of a

k—blade a is:

A−1 =
Ã
‖A‖2 (1.8.1)

Let us check this definition with a very simple example, namely if a is a vector then:

a−1 =
a

a · a (1.8.2)

Then, if a · a 6= 0, the computation of a−1a results in:

a−1a =
1

a · a aa

=
1

a · a (a · a + a ∧ a)

=
1

a · a (a · a + 0)

= 1

(1.8.3)

Using the inverse, it is possible to define the dual of a k-blade A. It is denoted as A∗ and defined

as:

A∗ = AI−1 =
AĨ
I · Ĩ

(1.8.4)

Where, I = e12···d is the pseudoscalar of the considered Geometric Algebra. Intuitively, this

corresponds to the basis blades contained in A but not contained in the pseudoscalar I

As an example, let us compute the dual of the vector a = 2e1 + 3e2 in G3. Tn this algebra,

I = e123 and:

I · Ĩ = e123 · ẽ123

= e123 · e321

= 1

(1.8.5)

Using the definition of the geometric product, the computation of the dual results in:

a∗ = (2e1 + 3e2) · e321 (1.8.6)

From the linearity of the inner product, we get:

a∗ = (2e1 · e321) + (3e2 · e321)

= −2e23 + 3e13

(1.8.7)
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From [48], we have the useful duality between outer and inner products of non-scalar blades A

and B in Geometric Algebra:

(A ∧ B)∗ = A · B∗,

A ∧ (B∗) = (A · B)∗,

A ∧ (BI) = (A · B)I,

(1.8.8)

which indicates the two major properties, namely:

 A ∧ B = 0 ⇔ A · B∗ = 0,

A · B = 0 ⇔ A ∧ B∗ = 0.
(1.8.9)

1.8.1 Intersections

Let us consider two blades corresponding to dual objects A∗ and B∗. Assuming that the two

objects are linearly independent, i.e., A∗ and B∗ are linearly independent, we consider the outer

product C∗ of these two objects:

C∗ = A∗ ∧ B∗. (1.8.10)

If an entity x lies on C∗, then

x · C∗ = x · (A∗ ∧ B∗) = 0. (1.8.11)

The inner product definition develops (1.8.11) as follows:

x · C∗ = (x ·A∗)B∗ − (x · B∗)a∗ = 0. (1.8.12)

The assumption of linear independence between A∗ and B∗ implies that (1.8.12) holds if and only

if x ·A∗ = 0 and x · B∗ = 0, i.e. the entity x lies on both entities represented by A∗ and B∗. Thus,

C∗ = A∗ ∧ B∗ represents the intersection of the linearly independent objects A∗ and B∗, and an

entity x lies on this intersection if and only if x · C∗ = 0. This is a major property of Geometric

Algebra that is very useful to define intersections between geometric objects.

1.9 Products from geometric product

All the products of Geometric Algebra can be defined from the geometric product. Below are

some products that are worth mentioning and defining from the geometric product between a

k-blade A and a l-blade B (more explanations at [22]).

Left contraction
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It is noted as c and defined as:

AcB =

 〈AB〉l−k if l ≥ k

0 else
(1.9.1)

Right contraction

It is noted as b and defined as:

AbB =

 〈AB〉k−l if l ≤ k

0 else
(1.9.2)

Scalar product

It is noted as a ∗ and defined as:

A ∗ B = 〈AB〉0 (1.9.3)

Or equivalently as:

A ∗ B =

 〈AB〉0 if k = l

0 else
(1.9.4)

Fat dot product

It is noted as • and defined as:

A • B = 〈AB〉|k−l| (1.9.5)

Hestenes inner product

It is noted as a •H

A •H B =

 〈AB〉|k−l| if k, l 6= 0

0 else
(1.9.6)

Below is a useful relation between these inner products, see [23]:

A • B + A ∗ B = AbB + AcB (1.9.7)

Some other useful relations can be extracted for different configurations (also [23]) of k and l,

typically:
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For k < l AcB = A • B

AbB = 0

A∗B = 0

For k = l AcB = A ∗ B

AbB = A ∗ B

A∗B = A • B

For k > l AcB = 0

AbB = A • B

A∗B = 0

For the following, the use of the dot · for the inner product will denote the computation of the

fat dot product, see Equation 1.9.5.

1.10 Transformations

1.10.1 Reflections and rotations

The projection of one vector x onto a another vector a using the inner product is defined as

follows:

x‖ = (x · a)a−1 (1.10.1)

The rejection of the same vector onto a is:

x⊥ = x− x‖ = (x ∧ a)a−1 (1.10.2)

These definitions of projections and rejection are the support to define reflections and so more ad-

vanced transformations. The computation of the reflection of x onto the vector a merely consists

in computing x‖ − x⊥. This yields:

x‖ − x⊥ = (x · a)a−1 − (x ∧ a)a−1 (1.10.3)

Due to the anti-commutativity of the outer product, the commutativity of the inner product over

the vectors and the distributivity of the geometric product, we get:

x‖ − x⊥ = (a · x + x ∧ a)a−1 (1.10.4)
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Finally, this yields:

x‖ − x⊥ = axa−1 (1.10.5)

This formula is the definition of the reflection. Now if we choose another vector b (see Figure 1.5)

and if we compute the reflection of the reflected entity axa−1, the result is as follows:

b(axa−1)b−1 (1.10.6)

Since the geometric product is associative, the above formula can be rewritten as follows:

(ba)x(a−1b−1) = (ba)x(ba)−1 (1.10.7)

This results in the rotation of x along the vector normal to the plane spanned by a and b and the

rotation angle is twice (mod 2π) the angle between a and b. More generally, the product of an

even number of reflections is a rotation, leading to the definition of a versor.

FIGURE 1.5: Reflection to rotation (from gaviewer [35])

1.10.2 Versors

In a Geometric Algebra Gp,q,r, a versor is defined as a product expression composed of invertible

vectors, it is factorizable under the geometric product as follows:

V = v1v2 · · · vk (1.10.8)

The conjugate of a versor is defined as:

V† = (−1)kV−1

= (−1)kv−1
k v−1

k−1 · · · v
−1
1

(1.10.9)

Transformations of geometric objects can be performed as follows:

V(· · · )V† (1.10.10)
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Note that a property of this product is that it preserves the outer product, namely:

a′1 ∧ a′2 ∧ · · · ∧ a′m = (−1)kV(a′1 ∧ a′2 ∧ · · · ∧ a′m)V
† (1.10.11)

Some examples of transformations using versors will be shown in the next section.

1.11 Conformal Geometric Algebra

Up to now, we defined the main operators of Geometric Algebra. This section introduces a pow-

erful and intuitive application called Conformal Geometric Algebra, noted in short CGA.

1.11.1 basis and metric

CGA of R3 is G4,1 thus a 5-dimensional vector space. The base vectors of the space are basically

divided into three groups: {e1, e2, e3} (corresponding to the Euclidean vectors in R3), but also

{eo}, and {e∞}. The inner products between them are defined in Table 1.2.

TABLE 1.2: Inner product between QCGA basis vectors.

e0 e1 e2 e3 e∞
e0 0 0 0 0 −1
e1 0 1 0 0 0
e2 0 0 1 0 0
e3 0 0 0 1 0
e∞ −1 0 0 0 0

The basis previously defined was generated with the Geometric Algebra G4,1. A generator of

this Geometric Algebra can be first the Euclidean basis {e1, e2, e3} along with the basis vector e+

which squared to +1 and the basis vector e− which squared to −1. This basis corresponds to the

diagonal metric matrix. The transformation from the defined basis to the diagonal metric basis

can be defined as follows:  e∞ = e+ + e−

e0 = 1
2 (e− − e+)

(1.11.1)

The dual definition of Equation 1.8.4 applied to this Geometric Algebra are now computed. First,

the pseudo-scalar is the 5-blade:

I = e0 ∧ e1 ∧ e2 ∧ e3 ∧ e∞ (1.11.2)
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Its inverse:

I−1 = −I (1.11.3)

The dual a vector a is thus:

a∗ = −aI (1.11.4)

1.11.2 Point of CGA

In this space, it is possible to define a point whose Euclidean vector is xε = xe1 + ye2 + ze3 as:

x = e0 + xε +
1
2
‖xε‖2 e∞ (1.11.5)

The major property is the inner product between two points x1 and x2.

x1 · x2 =
1
2
‖xε2 − xε1‖2 (1.11.6)

This corresponds to squared Euclidean distance between the two points. This is very useful to

define objects.

1.11.3 CGA objects

Firstly the objects defined in CGA include circles, lines, spheres, planes and each defined object

can be intuitively defined. Firstly a circle is merely constructed as the outer product of 3 points

p1, p2, p3 as:

C = p1 ∧ p2 ∧ p3 (1.11.7)

Then sending one of the points of c at infinity flatten the circle and this yields a line l. The

definition of the line in CGA is not more complicated than replacing one of the point in c by the

point at infinity e∞, namely:

L = p1 ∧ p2 ∧ e∞ (1.11.8)

Then, by incrementing the dimensions of objects by 1, a sphere S can be obtained by the outer

product of four points.

S = p1 ∧ p2 ∧ p3 ∧ p4 (1.11.9)

Finally, sending one of the point at infinity will flatten the sphere and results in a plane π defined

as:

Π = p1 ∧ p2 ∧ p3 ∧ e∞ (1.11.10)
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This leads to very efficient and intuitive way to define geometric objects using Geometric Alge-

bra. The Figure 1.6 describes the definition of some geometric objects from control points with

CGA.

p1•

p2•

p3•

p1•

p2•

p3•

p4
•

Circle: C = p1 ∧ p2 ∧ p3 Sphere: S = p1 ∧ p2 ∧ p3 ∧ p4

p1•

p2•

p1

p2

p3

Line: L = p1 ∧ p2 ∧ e∞ Plane Π = p1 ∧ p2 ∧ p3 ∧ e∞

FIGURE 1.6: definition of some geometric primitives from control points

Note that a sphere S may also be dually represented using its radius r and centre point xc as

follows:

S∗ = xc −
1
2

r2e∞, (1.11.11)

Then, a point x lies on the dual sphere if and only if x · s∗ = 0. By developing this latter equation,

we find:
x · S∗ = 0

⇔ x · xc − 1
2 r2x · e∞ = 0

⇔ x · xc +
1
2 r2 = 0

⇔ − 1
2 ‖xε − xcε‖2 + 1

2 r2 = 0

⇔ ‖xε − xcε‖2 = r2

(1.11.12)

Thus, corresponding to the equation of a sphere whose centre point is xc and radius r.

A circle can also be obtained by the intersection of two spheres. Finally, a point pair can be

obtained as the outer product of two points.

A plane can also be obtained dually as.

Π∗ = n + he∞ (1.11.13)
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In a similar way, a point x lies on the dual plane if and only if x ·Π∗ = 0. By developing this

latter equation, we find:

x ·Π∗ = 0

⇔ x · (n + he∞) = 0

⇔ x · n− h = 0

(1.11.14)

The above equation corresponds to the Hessian form of the plane of normal n with orthogonal

distance h from the origin.

1.11.4 Intersection in CGA

The major point with the intersection in CGA is that the algebraic object resulting from the in-

tersection exists even for two objects whose intersection is empty. Furthermore, some properties

can even be interpreted from this object. This case is illustrated in the two figures of 1.7.

When we consider two objects that span the whole space, there even exists some very efficient

way to know whether one sphere S∗ and object A∗ intersect. This consists in computing the

intersection as follows:

C = S∗ ∧A∗ (1.11.15)

Then check the radius of the circle using:

( C
C · e∞

)2 ?
≥ 0 (1.11.16)

If the radius is higher than zero then this means that the intersection is real. This is a very simple

and efficient way to know if two objects intersect.

When we consider two objects that do not span the whole space, the dual in (1.11.15) has to be

defined with respect to the spanned subspace. For example, in the space, the join of two parallel

lines or two intersecting lines L1,L2 is the plane Π that is spanned by these two lines. Then, the

definition of the dual of the line L1 ( and L2) is taken with respect to the spanned plane as follows:

L∗1 = L1

(
join(L1, L2)

)−1
, (1.11.17)

and not the pseudoscalar I. For more details, please refer to [23].
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(A)

(B)

FIGURE 1.7: Two intersection are computed, one between the circle and the sphere
and the other between the sphere and the plane. The intersections exist in (A) but
do not in (B). But in both cases, this results in a Geometric Algebra entity, and we

can interpret the results.

1.11.5 Transformations

The last section shows definition of a versor. Table 1.3 defines and summarizes all the transfor-

mations that can be performed using CGA versors.

TABLE 1.3: Transformations handled in CGA

reflector reflexion by plane Π N = Π

with unit normal n N† = −Π

translator translation by t Tt = 1− 1
2 te∞

T†
t = 1 + 1

2 te∞

rotor rotation in the plane τ R = cos θ
2 + τ sin θ

2
of angle θ R† = cos θ

2 − τ sin Ω
2

dilator dilation by e
γ
2 D = cosh γ

2 + e0∞ sin γ
2

around the origin D† = cosh γ
2 − e0∞ sin γ

2
motor rotation R followed M = TtR

by translation t M† = R−1T−1
t
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1.11.6 Properties of CGA objects

As a transition with the next chapter, let us look further to the multivector structure of the geo-

metric objects defined previously. Let us consider a multivector a in G4,1. This multivector may

have up to 32 non-zero elements and may be organized as follows:

a = •• • • • •• • • • • • • • ••• • • • • • • • ••• • • • ••

grade 0 1 2 3 4 5

However, the multivector representing geometric objects are much sparser. Below is the real

occupation of the more common geometric objects in CGA:

vector: ◦ • • • ◦ point: • • • • •

plane: • • • • ◦ sphere: • • • • •

line: • • • • • • ◦ ◦ ◦◦ circle: • • • • • • • • ••

We remark the lengthiest object has only 10 elements over 32 for a full multivector. It is also

worth mentioning that each object has a fixed grade, they are called homogeneous multivectors.

Furthermore, we observe that within the subspace of grade k, all the components of the homo-

geneous multivector representing the object of grade k may be non-null. For example, the grade

of a circle is 3 and all the basis blades of grade 3 may be non-null. A similar observation can be

done for spheres and points.
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Part I

Implementation of Geometric

Algebra
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Chapter 2

Design

2.1 Introduction

There exist various implementations of Geometric Algebra, and most of the programming lan-

guages or famous mathematical frameworks can find a Geometric Algebra library well suited

for a comfortable use. However, very few of these libraries can handle computations in high

dimensional vector spaces, i.e. dimension where the memory storage of the multivector becomes

problematic, usually dimension 12. In addition, more and more Geometric Algebra applications

focus on high dimensional spaces. It started with Conformal Geometric Algebra (CGA) which

is certainly one of the most studied [73]. CGA is built from 5 dimensional vector space, and in-

cludes 25 = 32 basis vectors. Although some people consider 32 components per multivector

to be already high, some studies are conducted to explore even higher dimensions. Easter and

Hitzer [27] represent some quartics and quadrics 3-d shapes using a double conformal geometry

of R3. Extending this process to a triple conformal geometry would lead to a 15—dimensional

algebra containing 215 = 32, 768 elements. For such geometry, the memory requirement for

optimized libraries explodes far beyond consumer grade hardware capabilities. More regular

approaches lead to very long processing time.

2.1.1 State of the art

In the wide range of Geometric Algebra implementations, we find first specialized software ded-

icated to 3D visualization for scientific and/or educational aims. For performing some tests

using Matlab, Stephen Mann and Leo Dorst et al. developed a Geometric Algebra package [64].

GAViewer [35] developed by Fontijne et al. allows interactive representation and manipula-

tion of objects in the Conformal Geometric Algebra. CLUCalc [72], conceived and written by

Christian Perwass handles more general Geometric Algebras. Some other libraries are com-

puter algebra software specifically designed for symbolic computations, such as GAlgebra [8]
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in Python,GALua [71] for Lua, or the library CLIFFORD [2, 1] developed by Rafal Ablamowicz

and Bertfried Fauser, based on Maple. Steve Sangwine and Eckhard Hitzer developed a Mul-

tivector Toolbox [76] for Matlab. Maxima also finds its Clifford Algebra implementation [74]

presented by Dimiter Prodanov. We also find some Geometric Algebra implementation specif-

ically dedicated to specialized Geometric Algebra, these are developed to perform numerical

computations. Among these, GluCat [60] is using real matrix representation for Clifford alge-

bra [59] and a dedicated version of fast Fourier transform to improve Clifford product. GluCat

was benchmarked and found its performance to be similar to CLU [32]. Versor [14] developed by

Pablo Colapinto is a very advanced C++ library. It uses C++ meta-programming techniques like

expression templates to define types representing expressions to be computed at compile time.

Thus, expressions are computed only when needed to produce efficient code. Finally, Gaalet [78]

proposed by Florian Seybold, standing for Geometric Algebra ALgorithms Expression Template,

is also a C++ library and uses expression templates and meta-programming techniques.

All these libraries present a comfortable use in their dedicated framework or programming lan-

guage and are very well suited for experimentations in Geometric Algebra. Some other libraries

expressly focus on computation and memory performance for different algebras. These imple-

mentations can be classified into two groups, namely code generators and library generators.

2.1.1.1 Code generators

Code generators optimize Geometric Algebra by means of low-level source code generation and

some symbolic optimizations in terms of algebra. One of the most advanced program in this

category is Gaalop [49, 12] developed by Dietmar Hildenbrand et al. Gaalop, standing for Geo-

metric Algebra Algorithms Optimizer. It supposes that a program is written in CLUCalc. A first

compilation stage is performed to produce C++, C++ AMP (Accelerated Massive Parallelism),

OpenCL, CUDA, CLUCalc or LaTeX optimized output. Then a second compilation stage is re-

quired by the output language compiler to produce the target object. GMac [30, 31] developed

by Ahmad Hosny Eid is the other optimized library for Geometric Algebra. GMac stands for

Geometric MACro, and is closely coupled with .NET languages like C++, C#, VB.NET, F#, and

IronPython. GMac presents advanced conception and implementation. These compilation opti-

mizations produce a very optimized code dedicated for a specific task, however they are not well

suited for runtime computation where the operations are not decided in advance. Furthermore,

the generated code has to be manually integrated into the application of the user which can be-

come annoying when investigating some algebra equations.
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2.1.1.2 Library generators

A more flexible way to use Geometric Algebra consists in generating libraries defined from an

algebra specification. In such kind of implementation, the product between some multivectors

with defined structure are optimized. This is the case for Gaigen [23, 33] presented by Daniel

Fontijne. Gaigen stands for Geometric Algebra Implementation GENerator and can produce

C++, C, C# and Java source code which implements a Geometric Algebra with a specified di-

mension and metric. The Geometric Algebra products are computed at run time using high com-

plexity products. Exotic multivectors (part of non-homogeneous multivectors) are computed

with a general class that presents a much lower optimization level. Finally, this generator is lim-

ited in terms of vector space dimension. More precisely, the optimizations limit the library to be

used for algebra whose vector space dimensions are higher than 10.

All these approaches present some interesting properties, however some improvements can be

achieved to make such libraries easier to use, to have better memory requirements and to range

over wider dimension spaces for applications of [3, 4] for example. These points are the initial

motivation to create the proposed library, called Garamon.

2.1.2 Expression of needs

In order to construct a generic, efficient library, we consider the needs to be expressed according

to both theoretic and practical criteria as follows:

1. Flexibility:

(a) Be able to use different metrics and basis without code changes,

(b) Be able to use simultaneously different algebras without code changes,

2. Computationally efficient:

(a) Efficient for the computations in a wide range of Geometric Algebra vector space di-

mensions,

3. Memory efficient

(a) The consumption of the data structures has to be as low as possible,

(b) The binary file size also has to be low,

4. Numerically stable

(a) The implementation has to be numerically robust, including for the change of basis,
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5. Portability:

(a) has to be multi-platform,

This includes Windows, Linux, and MacOs operating system.

6. Installability:

(a) The implementation has to be easily installable.

(b) The number of dependency of the implementation has to be as low as possible.

7. Readability

(a) has to have a clear and concise structure

(b) has to be well documented and commented

These needs are our initial motivations to create Garamon.

2.1.3 Library generator

Garamon is a C++ template library generator dedicated to Geometric Algebra. The generator

itself runs in C++ and generates optimized C++ code. These generated GA libraries are dedicated

to fulfilling the needs previously described.

The generated libraries are built from a short configuration file describing the targeted alge-

bra. This configuration file specifies the algebra signature, the name of the basis vectors and some

optimization options. This file is restricted to the minimum information such it can be filled very

easily.

2.1.3.1 Efficient

The generated GA libraries handles both “low dimensional” (base vector space of dimension

roughly up to 10) and “high dimensional”, with a hard-coded limit to dimension 31. The “low

dimensional” operations are precomputed, whereas the “high dimension” computations run on

a new recursive scheme based on a prefix tree multivector representation. This prefix tree rep-

resentation presents some very effective optimization in term of time complexity, as well as the

property to encode easily the dual of the considered multivector. The transition from “low di-

mensional” to “high dimensional” is smooth, such that “high dimensional” GA libraries still

include some precomputed instructions for some products.
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2.1.3.2 User friendly

The generated libraries are dedicated to be very easy to install and to use. They are multi-

platform, run and compile with only one dependency, i.e. the header only library eigen [41].

Any generated library contains its own dedicated installation file (cmake), as well as a dedicated

sample code. The generated libraries handle any arbitrary Geometric Algebra signature, such

that the user does not have to care about basis change. The embedded basis change takes a spe-

cial care about numerical stability. Moreover, since all the generated libraries are identified by a

namespace, multiple GA libraries can be used together.

2.2 What to store

One of the main way to meet the memory and efficiency needs 3a and 2a is by a proper use of

the multivector data structure.

2.2.1 Requirements

For a d dimensional vector space, the potential amount of information that could be stored to

represent fundamental elements of linear algebra (vectors and matrices) strongly differs from

the information represented in GA (multivectors). For linear algebra, it is of order O(d2) whereas

for it is of order O(2d) for GA, as seen in Equation 1.3.12. This difference usually influences their

respective implementation. Hence, linear algebra implementations are frequently expressing and

storing all the data composing a vector or a matrix (except if they are known to be sparse) whereas

GA implementations are mostly trying to only store non-zero elements. More precisely, as seen in

the last chapter, most object represented with Geometric Algebra are blades. Indeed, each object

occupies most of the elements of the k-vector. Thus, an efficient data structure used for Geometric

Algebra has to take advantage of such properties. This means that an efficient multivector data

structure has to have efficient storage for each homogeneous multivector. Efficient means:

1© fast access time to a homogeneous multivector,

2© fast access time to each element of a homogeneous multivector (aligned data),

3© low memory consumption for the storage of multivectors.
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2.3 Multivector and linked list

One way to implement these constraints is to use a linked list of non-zero elements as in many

Geometric Algebra implementations [34, 78, 14]. This data structure is well suited for low num-

ber of elements since the memory is allocated for only non-zero elements. However, this latter

data structure presents some major drawbacks. First, the access time to an element is in O(n) or

linear to the number of elements, thus the constraints 1© and 2© are not fulfilled. Second, for a

full multivector, the required memory is twice the price of the data itself (includes data and the

pointer).

2.4 Multivector and arrays

In contrast, some other implementations like the code generator of Gaalop [12] use full size static

arrays (2d elements) to store multivectors in the generation process. This structure has the great

advantage to haveO(1) access time to one element (constant time), meaning that the both access

time to a homogeneous multivector and to an element of a homogeneous multivector are fast.

The major drawback of this structure is in terms of memory consumption. For any kind of multi-

vector, 2d elements will be allocated in memory. For example, if the considered object is a point.

The multivector associated to this point in CGA has at most 5 non-null elements over a total of

25 = 32 elements. This means that 27 elements, or roughly 84% of the elements will be useless. In

computer graphics or image processing or in digital geometry, one might want to store and use

a cloud of points of approximately 106 points. In this case, this number of useless zero becomes

27 millions of useless elements which can be costly in terms of memory. Thus, the constraint 3©
is not met.

2.5 Per-grade data structure

We follow a different approach by storing multivector elements by grade. A multivector is con-

sidered as a set of arrays, all dedicated to a specific grade. This set contains only arrays related

to grades explicitly expressed by the represented multivector, but still, an array may contain zero

values, as depicted in figure 2.1. Again, this choice is motivated by the fact that most GA entities

consist in homogeneous multivectors. In this situation, the array dedicated to the specific grade

of an arbitrary object is likely to be full and thus much more effective than a linked list. In fact, for

such a structure, the time access to a homogeneous vector is in O
(

log(d)
)

and the time access

to an element of this vector is in O(1). Finally, only homogeneous vector elements are allocated.



2.5. Per-grade data structure 45

0 3 0 0

0 0 2 0 0 0

1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

FIGURE 2.1: Data structure, example with x = 3e2 + 2e14 in a 4-dimensional vector
space. The column on the left denotes the grade

Hence, this structure meet the three constraints of the data structure 1©, 2© and 3©. Another

example of our data structure for the definition of a sphere in CGA is shown in Figure 2.2

−1.0 −3.0 2.0 −1.0 −5.0

1

eo e1 e2 e3 e∞

eo1 eo2 eo3 eo∞ e12 e13 e1∞ e23 e2∞ e3∞

eo12 eo13 eo1∞ eo23 eo2∞ eo3∞ e123 e12∞ e13∞ e23∞

eo123 eo12∞ eo13∞ eo23∞ e123∞

eo123∞

FIGURE 2.2: Data structure, example with the initialization of a sphere of CGA
(5-dimensional vector space). This sphere has a radius of 2 and its center point at

coordinates (1, 2, 3). Note that there are no useless zeros stored

In practice, storing this GA elements as per grade arrays is also motivated by some code opti-

mization using SIMD registers. In that case, even storing some zero often does not affect the

computation speed since the SIMD registers process several multivector product operations si-

multaneously.
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2.6 What to compute?

As mentioned in section 2.2.1, GA implementation aims to avoid to store zero data. In practice,

GA implementations of products also tend to avoid manipulation of zeros. To be more exhaus-

tive, we define 3 types of zeros that can be encountered in GA operations. Let consider the

example:

C = a ∧ b

with

a = 0 0 3 2 0 0 0 0

1 e1 e2 e3 e12 e13 e23 e123

b = 0 0 0 0 4 2 1 0

1 e1 e2 e3 e12 e13 e23 e123

C = 0 0 0 0 0 0 0 2

1 e1 e2 e3 e12 e13 e23 e123

The naive double loop over the elements of a and b would encounter different types of zeros.

Considering that GA objects usually have limited different grade elements, these zero can be

listed as:

1. structural zero: when an operation leads to zero due to the nature of the product indepen-

dently of the coefficients (i.e. 3e2︸︷︷︸
a

∧ 4e12︸︷︷︸
b

).

2. object zero: when a and b are homogeneous GA objects, computing products with ele-

ments of grade not related to the object is useless (i.e. 3e2︸︷︷︸
a

∧ 0e1︸︷︷︸
b

).

3. data zero: when not all the components of grade k are used to express a GA object of grade

k (i.e. 0e1︸︷︷︸
a

∧ 1e23︸︷︷︸
b

).

4. computational zero: when an element should theoretically be zero but is numerically non-

zero due to numerical errors.

In any cases, “computational zeros” are very difficult to handle. Indeed, a program will hardly

identify if a value x = 10−9 is an expectable value in the considered problem or a numerical error

(like in x = 0.1f− 0.1L ' 10−9 in C/C++ language). In list above, the most interesting useless

product is the “structural zeros” that seems unavoidable. How to avoid this product without

checking the compatibility of the two basis vectors involved in the operation? The answer is a

consequent part of this thesis.
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2.7 Naive methods to compute the products

2.7.1 Inside the products

The geometric product, the inner product and the outer product between 2 multivectors a and

b are distributive over the addition and can conceptually be computed by iterating over the

components of both a and b. For this conciseness purpose, we limit our description to the outer

product, but the overall method remains true for the geometric product and the inner product.

As we saw in the previous chapter, the outer product C = a ∧ b can be expressed as:

C =
2d−1

∑
k=0

ckEk =

(
2d−1

∑
i=0

aiEi

)
∧
(

2d−1

∑
j=0

bjEj

)
(2.7.1)

where Ei refers to a basis vector, i.e Ei ∈ {1, e1, e2, e3, e12, ...}. Each pair {ai, bj} leads to a com-

puted element that contributes to the final value of c, and should be assigned to the adequate

basis vector of c, namely Ek = ± Ei ∧ Ej. This assignment can be decided either by a precom-

puted table that requires some memory space or by a function that requires some additional

processing time.

2.7.2 Table based methods

An efficient way to compute the Geometric Algebra products is to use precomputed 2D-tables

indicating the result of the products between any basis blades. This approach is used by a plugin

of Gaalop. A product between two multivectors a and b consists of a loop over each basis blades

present in the two multivectors. For each couple {ai, bj}, the program refers to a table to know

where to put the result. Although this approach is simple and effective, it includes some useless

operations. Indeed, the outer product between dependent basis blades (e.g. e1 ∧ e12) requires a

table access and are discarded if the table says so. The pseudo-code of this approach is presented

on Algorithm 1.

The two main drawbacks of this approach are:

• the memory consumption of the table that grows exponentially with d

• structural zero are not avoided

Each basis blade product is a constant time algorithm. However, as the size of the multivector

components increases, the cost of this structural zero will become costly.

Concerning the memory consumption, a table should include all the basis vectors of the algebra
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Algorithm 1: Product using the table based method.
Input: multivectors: A and B,

Table: T and S,
Dimension of the algebra: d

Output: resulting multivector: C
1 for i from 0 to 2d − 1 do
2 if A[i] non-zero blade then
3 for j from 0 to 2d − 1 do
4 if B[j] non-zero blade then
5 index ← T[i, j]
6 if index 6= null then // i.e. aei ∧ bej 6= 0
7 sign← S[i, j]
8 C[index] += sign× A[i]× B[j]

in the table, leading to a 2d × 2d = 4d size table, where d is the dimension of the algebra. Each

element of the table is composed of an index on where to put the result and a sign (sometimes,

the result is negative). Moreover, Geometric Algebra involves at least 3 products (geometric,

outer and inner products), leading to at least 3 tables. If we assume that the sign and index are

stored in a signed integer of 6 bits, then the size of the tables would be 25× 25× 6× 3 ≈ 18 Kbits.

However, this would be a lower bound. Indeed, a geometric product between two basis blades

might result in a sum of basis blades, as encountered in Conformal Geometric Algebra. Thus,

in practice, the tables contain a structure element that may enclose more than one index and

sign. In order to estimate the precise memory requirement of the table-based methods, we ran

a profiler on Gaalop. In a 5-dimensional space, the table-based approach of Gaalop requires

1.1 MB of memory and requires 710 MB for dimension 10. According to the progression of a

O(4d) memory complexity, we can infer that for a dimension 11, the table size will occupy more

than 2 GB memory and for a dimension 15, it would be around 360 GB. This memory requirement

becomes a critical issue for high dimensional spaces.

2.7.3 Function based methods

During the product between a and b, the access to a table can be replaced by a call of a function

that specifies where to put the result of a product between an element of a and an element of

b. In practice, this approach just changes lines 5 and lines 7 of Algorithm 1. Gaigen [23, 33]

propose this kind of functions, based on logical operations on a binary representation of the

basis vectors. Another function, also based on binary operators, is required to specify the sign of

a product contribution. The pseudo-code of the computation of the sign is shown on Algorithm 2

as presented in [32].
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Algorithm 2: Sign computation knowing the binary representation of the two considered
blades.

Input: binary representation of blades: A and B,
Dimension of the algebra: d

Output: resulting sign: sign
1 sign← 1
2 A← A >> 1 // corresponds to a bit shifting
3 while A 6= 1 do
4 sign← sign+ hammingWeight(A&B)
5 A← A >> 1

6 if sign&1 = 0 then
7 sign← 1
8 else
9 sign← −1

10 return sign

In one hand, the function hammingWeight() of Algorithm 2 computes the Hamming weight (num-

ber of 1-bits in its argument). This function can be computed in constant time without the storage

of a huge size table, see [29]. Moreover, the loop over all non zero elements of A has a complexity

proportional to the dimension, O(d).

Algorithm 1 shows that the sign computation is repeted in the worst case 4d. Thus, the complex-

ity of such algorithm is in O(d× 4d).

2.7.4 Complexity issue

To conclude, these algorithms are computationally expensive for both low and high dimensions.

This latter point suggests to explicitly compute the product for any kind of grades of the two

multivectors and use these products when required. This way, the sign along with the resulting

blades would not have to be recomputed. Again, this holds for low dimensions but not for high

dimensions.





51

Chapter 3

Products in Low dimensional space

In low dimensional vector spaces, it is neither necessary to use tables nor any logical operations

that are computationally expensive.

3.1 Per grade products

Considering the per grade data structure defined in section 2.2.1, the most efficient way to process

any product is to pre-compute it in advance. Since the outer, inner and geometric products

are distributive over the addition, each “per grade product” can be extracted and computed

independently. Let 〈X〉k be the part of the multivector X of grade k, and DX = {〈X〉i 6= 0, i ∈

0, · · · , d} be the set of all k-vector 〈X〉k of any grade present in x. Then, most of the products �

between the multivectors A and B can be computed by the double loop algorithm as presented in

algorithm 3, (geometric product is a special case). Note that the function find_grade(�, kA, kB)

is a constant time algorithm and merely consists in computing:

• kA + kB for the outer product,

• kB − kA for the left contraction,

• kA − kB for the right contraction,

• |kA − kB| for the inner product,

Algorithm 3: Per grade loop
input : multivectors A and and B,

a product � distributive over the addition
output: multivector: C = A� B

1 foreach k-vector 〈A〉kA ∈ DA do
2 foreach k-vector 〈B〉kB ∈ DB do
3 kc = find_grade(�, kA, kB)
4 〈C〉kC = product_kA_kB(�, A, B)

5 return C
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In practice, these two loops are likely to contain only one call, in the case where A and B are ho-

mogeneous multivectors. Moreover, each product called product_kA_kB in the Algorithm can be

precomputed in advance, according to the specified GA signature. An example of the generated

codes for the outer product can be found in A.

As for the geometric product, Algorithm is 3 is slightly different. In fact, the grade of the geomet-

ric product between one multivector whose grade is kA and another whose grade is kB, ranges

from |kA − kB| (inner product) to kA + kB (outer product). Thus, a loop over possible grades of C

is added to the Algorithm 3. The resulting pseudo-code is shown in Algorithm 4

Algorithm 4: Per grade geometric product
input : multivectors A and and B
output: multivector: C = A� B

1 foreach k-vector 〈A〉kA ∈ DA do
2 foreach k-vector 〈B〉kB ∈ DB do
3 for kC = |kA − kB| , |kA − kB|+ 2, · · · , kA + kB − 2, kA + kB do
4 〈C〉kC = geometric_product_kC_kA_kB(A, B)

5 return C

3.2 SIMD instructions

As presented in Algorithm 3, a multivector product is divided in sub-products of homogeneous

grade. Each sub-product 〈C〉kC = 〈A〉kA � 〈B〉kB consists in a list of atomic basic contributions

of the form cl+=wambn where cl , w, am and bm are elements of the base field used to build the

algebra. These instructions are easily converted to C++ code but the conversion to SIMD is not

straightforward since some low level memory constraints should be considered. First, “writing”

a new value in a variable is more costly than just reading it. Second, dealing with consecutive

array elements should be highly preferred. Moreover, a specific care must be given to data cache

transfer minimization.

For a given product, all the atomic instructions cl+=wambn are sorted according to first the

resulting k-vector element index l, then if necessary according to the left and right operand index

n and m. In the current version of Garamon, the SIMD instructions uses only mavx intrinsics and

avoid mavx2 functions such that it can run on almost any computer. In case of incompatibility, the

SIMD instructions can just be disabled such the program automatically use instead the default

C++ functions.
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In practice, the SIMD implementations of GA products are actually not as impressive as ex-

pected and leads to roughly the same performances as the regular C++ version compiled with

-02 option. However, further investigations may lead to a more consequent speed up.

3.3 Dual computation

For any full-rank GA signature, the dual multivector computation can be optimized in advance.

By definition the dual of a multivector is given by:

A∗ = A · I−1 =
A · Ĩ
I · Ĩ

(3.3.1)

This expression requires the computation of two inner products, a reverse and a scalar division,

that can be precomputed in advance. Due to the symmetry property of the Pascal’s triangle, a

k-vector A and its dual A∗ both have the same number of elements. In the array based data

structure of section 2.2.1, computing the dual of a k-vector thus just consists in changing the

“grade label” of the corresponding array from k to d − k (for a vector space of dimension d),

permuting some array elements and eventually multiplying them by some constant according to

the metric of the algebra. Extending this method to a multivector means to apply it to all non-

null blades of the multivector. Concerning the implementation, the dual is merely computed by

pre-computing both an array that stores the required permutation for each array and a vector

that stores the coefficients to apply to each resulting array.





55

Chapter 4

Products in high dimensional space

Section 2.7.1 describes the state of the art of common optimizations of GA products used in

most of the GA libraries. These products fail in high dimension space, due to memory overload

or to complexity issue. Indeed, using tables is too memory expensive (O(4d)) and using bits

based algorithms is too computationally expensive (O(d × 4d)). In order to meet the need of

computational efficiency 2a, we are seeking for an approach which has:

• low memory complexity

• low computational complexity

In this thesis, we propose some approaches based on [36] developed by Fuchs and Théry. In

this latter approach, each product is explicitly defined using recursive definitions. The approach

of Fuchs and Théry leads to efficient computation of products. However, this method does not

handle parallel algorithm implementations. The next section presents a first approach to fix this

latter issue.

4.1 Recursive scheme

The first method that we proposed consists in restructuring the recursive functions of [36] such

that the products can be specialized according to the grade or a particular coefficient of the re-

sulting multivector. The proposed approach yields to parallel algorithms. The next sections start

by explaining the approach followed [36] and finish by presenting our first proposed approach.

4.1.1 Definitions and Notations

We start with the notations used for the sequel. Similarly to previous sections lower-case bold

letters will denote basis blades and multivectors (multivector A). Lower-case letters refer to

multivector coordinates. For example, ai is the ith coordinate of the multivector A. Lower-case
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and Frakture letters denote multivector expressed over a tree structure. For example, a represents

a multivector over a tree structure. This notion is presented in the next subsection. Finally, the

vector space dimension is denoted by 2d, where d is the number of basis blades ei of grade 1.

4.1.2 Recursive form of Geometric Algebra

Fuchs and Théry [36] presented a recursive formalism to deal with Geometric Algebra multivec-

tor and operators. As our approach is based on this recursive formalism, it is worth presenting

this framework. Let us first present the recursive construction of multivector.

4.1.2.1 Binary Trees and Multivectors

A multivector A is represented as a sum of basis blades weighted by coefficients ai, i.e.:

A =
2d−1

∑
i=0

aiEi (4.1.1)

where Ei denotes a basis blade whose grade ranges from 0 to d (i.e. E7 = e123 with d = 3).

The approach [36] proposed a recursive representation of multivectors over binary trees. This

binary tree is recursively defined as follows:

an = (an+1
1 , an+1

0 )n (4.1.2)

where n is the depth of recursion. This depth may vary from 0 (root level) to d (leaf level). In this

representation, each node of the binary tree a is considered as multivector which contributes to

the construction of the multivector a. Each depth of the binary tree corresponds to a basis vector

(of grade 1). This basis vector contributes to the construction of the multivector of upper grades.

A binary tree (an+1
1 , an+1

0 )n is thus interpreted as (en ∧ a1) + a0 at each depth n, that is to say an is

divided into two sub-trees, namely the tree a1 containing en and a0 which does not, as shown on

Figure 4.1. Considering that a leaf represents a basis blade, a multivector is defined by the map-

ping between these leaves and the multivector coefficients (see coefficients ai on Figure 4.1). For

the following, we define a node an as a multivector composed of basis blades whose maximum

grade is n.
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a

a1

e123

a7

e3

e12

a6

e2

e13

a5

e3

e1

a4

e1

a0

e23

a3

e3

e2

a2

e2

e3

a1

e3

1

a0

FIGURE 4.1: Binary tree of a, representing a multivector in a 23-dimensional space.
There is a mapping between the coefficients ai of the multivector and the leaves of

the tree.

4.1.2.2 Outer product

In this section, we consider the computation of the outer product in any d-dimensional space.

Let c = a ∧ b be the outer product between two multivectors a and b, then we have:

C =
2d−1

∑
k=0

ckEk =
2d−1

∑
i=0

aiEi ∧
2d−1

∑
j=0

bjEj (4.1.3)

The distributivity of the outer product leads to:

C =
2d−1

∑
i=0

2d−1

∑
j=0

aibj Ei ∧ Ej (4.1.4)

Finally a coefficient ck of c can be expressed as:

ck = ∑
i,j such that
Ei∧Ej=sijEk

sij aibj (4.1.5)

where sij is −1 or 1 according to parity of the number of permutations required to change Ei ∧ Ej

in Ek. In order to extract each coefficient ck, one may think of computing each product Ei ∧ Ej, as

performed by the non-specialized form of Gaigen. In this case, some products will lead to useless

operations where Ei ∧ Ej = 0, for example where i = j. General multivectors a and b may have

up to 2d non-zero coefficients, leading to 2d × 2d = 4d products. This number of operations can

be reduced by avoiding useless products.
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In [36], each product is explicitly defined using a recursive definition over binary trees. The

outer product between a and b is defined as follows:

an ∧ bn = (an+1
1 , an+1

0 )n ∧ (bn+1
1 , bn+1

0 )n

if n < d , an ∧ bn =
(
an+1

1 ∧ bn+1
0 + a0

n+1 ∧ bn+1
1 , an+1

0 ∧ bn+1
0
)n

if n = d , an ∧ bn = ad ∧ bd

(4.1.6)

where a expresses the anti-commutativity of the outer product. The outer product of two mul-

tivectors consists in developing the hereabove formula from the root to the leaves. From this

formula, we may derive that for each depth n, the number of recursive calls is multiplied by 3.

Thus, the total number of recursive calls for a d-dimensional space is:

d

∑
i=1

3i =
3
2
(
3d − 1

)
(4.1.7)

Therefore, the number of recursive calls is thus inO(3d) which is less thanO(d4d) corresponding

to the complexity of the naive method.

4.2 Geometric Algebra operators as a recursive construction of

lists

4.2.1 Outer product as a recursive construction of lists

To reduce the number of products of Equation (4.1.4) and to use parallel optimizations, we

present a rewriting of the recursive functions. The contributions of our method are:

• to extract all products aibj for a considered coefficient ck, and the sign associated with each

product,

• to determine the products involved in c knowing the grade of a and b.

4.2.2 Binary trees labelling

We first define a label for each node of the binary tree, derived from Huffman labelling, as illus-

trated in Figure 4.2. The label of a leaf provides the path from this leaf to the root. For example,
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c

c1

c11

c111 c110

c10

c101

1

c100

0

1

c0

c01

c011 c010

c00

c001 c000

FIGURE 4.2: Labelling of a binary tree c in a 3-dimensional space.

the path that connects the leaf labelled 101 to the root is (left, right, left), as shown in red Fig-

ure 4.2.

4.2.2.1 From trees to lists

We know, from Equation 4.1.5, that each leaf ck is expressed as a sum of products aibj. In order

to compute these products, we want to identify the lists ai and bj involved in the computation of

each coefficient ck. For example, the computation of c5 will be based on the extraction of the list

(a5, a4, a1, a0) and (b0, b1, b4, b5), see Table 4.1.

TABLE 4.1: Outer product table in a 3-dimensional space.

e123 e12 e13 e1 e23 e2 e3 1
c7 c6 c5 c4 c3 c2 c1 c0

a7b0 a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0
a6b1 a4b2 a4b1 a0b4 a2b1 a0b2 a0b1
−a5b2 −a2b4 −a1b4 −a1b2
a4b3 a0b6 a0b5 a0b3
a3b4
−a2b5
a1b6
a0b7

In order to identify these products for any dimension and for any coefficient ck, we transform the

recursive functions. More precisely, instead of reducing a set of products to a base case (recursive

function), we start with a base case (root node), then we build some sequences forward from

the base case. To achieve this, we use the labelling on Equation 4.1.6 to identify each node by a

word u. A binary tree an can be expressed as an
u, with its left child rewritten as an+1

u1 and its right

child as an+1
u0 .
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Using this labelling, we can also rearrange the recursive definition of the outer product (Equa-

tion 4.1.6) as follows:

an
u ∧ bn

v = (an+1
u1 , an+1

u0 )n ∧ (bn+1
v1 , bn+1

v0 )n

if n < d , an
u ∧ bn

v =
(
an+1

u1 ∧ bn+1
v0 + au0

n+1 ∧ bn+1
v1 , an+1

u0 ∧ bn+1
v0
)n

if n = d , an
u ∧ bn

v = ad
u ∧ bd

v

(4.2.1)

In order to identify the components ai and bj involved in the computation of each coeffi-

cient ck, we extract a construction of labels of a and b from Equation (4.2.1). Let Alist and Blist

be these recursive constructions for labels of a and b respectively. In the following, we will only

consider the construction of labels of a. We can prove by induction that labels of b are the labels

of a in reverse order. The recursive definition of this Alist is the following:

if n < d ,
{

Alistn} =
({

Alist(1)n+1, Alist(0)n+1 },
{

Alist(0)n+1})
if n = d ,

{
Alistn} =

{
Alist

} (4.2.2)

where
{

. , .
}

denotes the merge of two lists of labels, and Alist(r) indicates that the elements of

the list are suffixed by the letter r. The resulting tree of dimension 23 is depicted on Figure 4.3.

Alist

{1 + 0}

{11 + 10 + 01 + 00}

{111 +
110+
101+
100+
011+
010+
001+
000 }

{110 +
100+
010+
000 }

{10 + 00}

{101 +
100+
001+
000 }

{100 +
000 }

{0}

{01 + 00}

{011 +
010+
001+
000 }

{010 +
000 }

{00}

{001 +
000 }

{000 }

FIGURE 4.3: Recursive definition of Alist pushed down to the leaves.
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4.2.2.2 Construction of Alist

The recursive construction of the Alist provides the number p of products associated to a label u

of c:

p = 2h(u) (4.2.3)

where h(u) denotes the Hamming weights of u (i.e. the number of ones in a binary word u).

We now introduce an approach to determine the evolution of the labels of a involved in the

computation of each leaf c. The recursive function (4.2.2) shows that each left sub-tree is both

suffixed by 0 and 1, meaning a duplication of the number of elements of the list, whereas the

right sub-tree is only suffixed by 0. From this result, an algorithm to construct Alist at only one

level is extracted. In this algorithm, Alist is represented by a list of binary sequences. A binary

sequence is an integer representing a label. Algorithm 5 gives pseudo-code for the method.

Algorithm 5: Outer product recursive construction of the list of contributions of a.

1 Function oneLevelOuterProduct
Input: list: list of binary sequences

b: bit of a label
2 tmpList← { }
3 if b == 1 then
4 tmpList.push

(
addBitList(list, 1, 0)

)
5 else
6 tmpList.push

(
addBitList(list, 0)

)
7 return tmpList

8

9 Function addBitList(list, bit)
10 listRes← { }
11 foreach label u of list do
12 listRes.push(concat(u, bit))

13 return listRes

14

// Overload the function above

15 Function addBitList(list, bitA, bitB)
16 listRes← { }
17 foreach label u of list do
18 listRes.push(concat(u, bitA))
19 listRes.push(concat(u, bitB))

20 return listRes

As an example, let us consider the Alist for the node c101. This construction is equivalent

to computing each product aibj for the leaf c5 (for example 5(10) = 101(2)). The computa-

tion of the Alist for the coefficient c101 is described Table 4.2. In this table, the binary words

(000, 001, 100, 101) correspond to the coefficients (a0, a1, a4, a5) in table 4.1.
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TABLE 4.2: Alist computed at the node c101.

bit subtree Alist
Beginning root ε

1 left subtree (0, 1)
↓

0 right subtree (00, 10)
↓

1 left subtree (000, 001, 100, 101)

Algorithm 6: Outer product corresponding to a coefficient ck

Data:
a, b: multivectors
Alist: sequence of binary words
k: label of a coefficient of the multivector c
d: dimension

Result: ck: kth coefficient of the multivector c = a∧ b
1 Alist← { }
2 Sign← { }
3 SignOuter(Sign, 1, 1, d) // refer to Algorithm 8

4 foreach bit ki of k do
5 Alist← oneLevelOuterProduct(Alist,ki)

6 ck ← 0
7 i ← 0
8 foreach label u of Alist do
9 ck ← ck + Sign[i] · au · breverse(u,d)

10 i ← i + 1

Algorithm 6 shows the pseudo-code of our method for a considered coefficient of c. The function

reverse(binaryWord, dimension) computes the operation (2d − 1− binaryWord), in order to com-

pute the Blist coefficients from a Alist. Thus, Algorithm 6 enables us to compute any coefficients

of c independently. Therefore, the algorithm can be used to compute different coefficients of c in

parallel.

The latter algorithm can be further improved when the grade of the two multivectors are known.

Let M be the grade of a, N the grade of b and L the grade of a ∧ b. Then the grade of a ∧ b is

L = M + N. Thus, the computation of the outer product is equivalent to identifying and com-

puting each coefficient ck whose grade is L. The labelling of the binary tree enables to efficiently

extract the leaves of c whose grade is L. An algorithm is produced and consists in traversing the

binary tree of c. At each depth of this tree, if the grade of the label of c is L then the products at

this label can be computed and the children of this node don’t have to be traversed. This enables

us to efficiently compute the products. The algorithm used is shown in Algorithm 7. This algo-

rithm is used to implement a per-grade specialization of our implementation.

Finally, note that the considered label is enough to compute the Alist elements. Firstly, the binary
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Algorithm 7: Outer product of two multivectors, with a known resulting grade
Data:
Sign: Sequence of signs
a, b: multivectors in tree form

1 Function perGradeOuterP
Input:

Alist: sequence of binary words
ck: node of c = a∧ b
L: grade of c
d: dimension
lPathNum: number of ones in the label of the node of c
depth: depth of the current node

Result: c = a∧ b
// lPathNum represents the grade of the node

2 if lPathNum == L then
3 i← 0
4 foreach label u of Alist do
5 v← 2d−depth · u // from node to leaf

6 ck ← ck + Sign[i] · av · breverse(v,d)
7 i← i + 1

8 else
9 list← { }

10 depth← depth + 1
11 if ck is not a leaf then
12 list← oneLevelOuterProduct(Alist,1)
13 perGradeOuterP(list, ck1, L, d, lPathNum + 1,depth)
14 list← oneLevelOuterProduct(Alist,0)
15 perGradeOuterP(list, ck0, L, d, lPathNum, depth)
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0 is in this list. Then the other elements can be defined by the list of binary words whose length

is d such that the logical AND operator between this binary word and the label is non-zero. This

method is derived from the Hamming expression of Equation (4.2.3).

4.2.3 Complexity of this method

The performance of our method is estimated from Algorithm 6. The cost of the function oneLevel-

OuterProduct() in Algorithm 6 is linear to the size of the list and more precisely proportional to

the hamming weight of the coefficient of the node. Thus, this operation is repeated d times. The

latter computation is repeated 2d times in the worst case (2d non-zero coefficients) which leads to

a complexity proportional to 3d. The performance of this approach is thus asymptotically equiv-

alent to the cost of the previous approach [36].

4.2.4 Sign computation

The sign of each product aubv is now computed. This computation might be the most time-

consuming part of the outer product. The first method that we explored consisted in a “convolu-

tion” between the considered label in Alist and in Blist in a similar way to [23]. The convolution

consists of right-shifting each bit of the label in Alist until the label is zero. At each iteration, we

count the number of ones in common between the shifted label and the other label. The sign is

obtained by raising −1 to the power of the number of ones.

The performance of this approach is estimated by computing the total number of right-shifting

in a∧ b. For a label a in Alist, the maximum number of right-shifting is blog2(a)c. As mentioned

in the previous subsection, the occurrence of a label a in the computation of the outer product

is given by 2d−h(a), with h the hamming weight of a. Instead of computing the leading formula,

we give an upper bound to the number of total right-shifting. From the Equation 4.1.1, an upper

bound to the coefficient is 2d. Therefore, for any label a ≥ 1, the upper bound of the maximum

number of right-shifting is blog2(2d)c = d. Thus, the number of right-shifting for the total num-

ber of occurrences of the label a is bounded as follows:

2d−h(a) · blog2(a)c ≤ d · 2d−h(a) (4.2.4)
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The total number of right-shifting is obtained by summing over the number of coefficients in a

multivector:
2d−1

∑
a=1

2d−h(a) · blog2(a)c ≤
2d−1

∑
a=1

d · 2d−h(a) (4.2.5)

Due to the linearity of the summation, we can rearrange the upper bound by extracting the

dimension the following way:

2d−1

∑
a=1

2d−h(a) · blog2(a)c ≤ d ·
2d−1

∑
a=1

2d−h(a) (4.2.6)

Here, the Hamming weight h(a) is ranging from 1 to d. The number of coefficients whose ham-

ming weight is k, is
(

n
k

)
. Hence, the upper bound can be rewritten as ∑d

k=1

(
n
k

)
2k. From the

binomial theorem, the upper bound is thus proportional to d · 3d.

We now introduce our method to reduce this number of arithmetic operations. The key point of

the method lies in the fact that the sequence of signs over the binary tree remains the same for any

coefficient c. This is explained by the structure of the recursive definition of the sign explained

in [36]. The recursive definition of the sign is as follows:

if n < d , au
n =

(
− au1

n+1, au0
n+1)

if n = d , an = a
(4.2.7)

This formula combined with the recursive definition of the outer product Alist is the following:

if n < d ,
{

Alistn} =({
Alist(1)n+1, Alist(0)

n+1 }
,
{

Alist(0)n+1})
if n = d ,

{
Alistn} =

{
Alist

} (4.2.8)

From Equation (4.2.8), the sequence of signs is left unchanged for each right sub-tree. Therefore,

the sequence of signs is completely determined by the sequence of signs of the far-left leaf of c.

Thus, we only have to compute the sequence of signs for the far-left leaf and store the sequence.

Then for each leaf, the outer product algorithm goes through the elements of this sequence. Al-

gorithm 8 gives pseudo-code for our method.
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Algorithm 8: Computation of the sequence of signs

1 Function SignOuter
Input:

Sign: list to store the resulting signs
currentSign: sign
comp: complementary operator
depth: depth of the current node
d: dimension

2 if depth == d then
3 Sign.push(currentSign)
4 else
5 SignOuter(comp× currentSign, comp, depth + 1, d)
6 SignOuter(currentSign,−comp, depth + 1, d)

In this algorithm, the variable comp enables the flip of sign. From this algorithm, the number of

operations to be performed is 2d for a d-dimensional space. Therefore, using this algorithm in

the computation of the outer product takes 3d proportional time, thus in O(3d).

4.2.5 Geometric product as a recursive construction of lists

4.2.5.1 Euclidean space

We now consider the computation of the geometric product of two multivectors a and b in an

Euclidean space. We first describe the geometric product in an Euclidean space and then in an

non-Euclidean space. We denote the geometric product between a and b by c = a ∗ b. The overall

method is equivalent to the method described in Section 4.2.2.1. The labelled recursive equation

of the geometric product gives:

an
u ∗ bn

v = (an+1
u1 , an+1

u0 )n ∗ (bn+1
v1 , bn+1

v0 )n

if n < d , an
u ∗ bn

v =

(an+1
u1 ∗ b

n+1
v0 + an+1

u0 ∗ b
n+1
v1 , an+1

u1 ∗ b
n+1
v1 + an+1

u0 ∗ b
n+1
v0 )n

if n = d , an
u ∗ bn

v = ad
u ∗ bd

v

(4.2.9)

The development of this recursive formula in a 3-dimensional space is presented in Table 4.3,

where the sign of each product is computed with a equivalent method used for the outer product,

see Algorithm 9.

As for the outer product, we extract a recursive construction of the set of labels of a and b. Alist

and Blist are again these recursive constructions of labels. The recursive definitions of Alist and
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TABLE 4.3: Geometric product table in a 3-dimensional space.

e123 e12 e13 e1 e23 e2 e3 1
c7 c6 c5 c4 c3 c2 c1 c0

a7b0 a7b1 -a7b2 -a7b3 a7b4 a7b5 -a7b6 -a7b7
a6b1 a6b0 a6b3 a6b2 -a6b5 -a6b4 -a6b7 -a6b6
-a5b2 -a5b3 a5b0 a5b1 a5b6 a5b7 -a5b4 -a5b5
a4b3 a4b2 a4b1 a4b0 a4b7 a4b6 a4b5 a4b4
a3b4 a3b5 -a3b6 -a3b7 a3b0 a3b1 -a3b2 -a3b3
-a2b5 -a2b4 -a2b7 -a2b6 a2b1 a2b0 a2b3 a2b2
a1b6 a1b7 -a1b4 -a1b5 -a1b2 -a1b3 a1b0 a1b1
a0b7 a0b6 a0b5 a0b4 a0b3 a0b2 a0b1 a0b0

Alist are the following:

If n < d ,
{

Alistn} =({
Alist(1)n+1, Alist(0)n+1 },

{
Alist(0)n+1, Alist(1)n+1 })

If n = d ,
{

Alistn} =
{

Alist
} (4.2.10)

If n < d ,
{

Blistn} =({
Blist(0)n+1, Blist(1)n+1 },

{
Blist(0)n+1, Blist(1)n+1 })

If n = d ,
{

Blistn} =
{

Blist
} (4.2.11)

4.2.5.2 Iterative construction of Alist and Blist

In order to extract a construction, an analysis of these recursive definitions is performed. Fig-

ures 4.4 and 4.5 shows the development of these recursive formula in a 3-dimensional space.

Let us now analyze these formulas. Firstly, for any recursion level on Alist and Blist, the

number of labels is multiplied by 2. Hence, the number p of products for a d—dimensional space

is the following:

p = 2d (4.2.12)

Moreover, we observe that each sub-tree is suffixed by the same binary word. We also observe,

and we can show that the obtained labels are composed of the binary words whose length n is

ranging from (00 · · · 00︸ ︷︷ ︸
n

) to (11 · · · 11︸ ︷︷ ︸
n

) that is to say from 0 to 2d − 1.

Finally, the construction of labels of Alist is extracted from Equation (4.2.10). We first define a
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Alist

{1 + 0}

{11 + 10 + 01 + 00}

{111 +
110+
101+
100+
011+
010+
001+
000 }

{110 +
111+
100+
101+
010+
011+
000+
001 }

{10 + 11 + 00 + 01}

{101 +
100+
111+
110+
001+
000+
011+
010 }

1

{100 +
101+
110+
111+
000+
001+
010+
011 }

0

1

{0 + 1}

{01 + 00 + 11 + 10}

{011 +
010+
001+
000+
111+
110+
101+
000 }

{010 +
011+
000+
001+
110+
111+
100+
101 }

{00 + 01 + 10 + 11}

{001 +
000+
011+
010+
101+
100+
111+
110 }

{000 +
001+
010+
011+
100+
101+
110+
111 }

FIGURE 4.4: Alist development in a 3—dimensional space.

Blist

{0 + 1}

{00 + 01 + 10 + 11}

{000 +
001+
010+
011+
100+
101+
110+
111 }

{000 +
001+
010+
011+
100+
101+
110+
111 }

{00 + 01 + 10 + 11}

{000 +
001+
010+
011+
100+
101+
110+
111 }

1

{000 +
001+
010+
011+
100+
101+
110+
111 }

0

1

{0 + 1}

{00 + 01 + 10 + 11}

{000 +
001+
010+
011+
100+
101+
110+
111 }

{000 +
001+
010+
011+
100+
101+
110+
111 }

{00 + 01 + 10 + 11}

{000 +
001+
010+
011+
100+
101+
110+
111 }

{000 +
001+
010+
011+
100+
101+
110+
111 }

FIGURE 4.5: Blist development in a 3-dimensional space.

list of labels Rlist, composed of consecutive binary words whose length is n and ranging from

(00 · · · 00︸ ︷︷ ︸
n

) to (11 · · · 11︸ ︷︷ ︸
n

). Therefore, the labels of Alist are determined by the bitwise XOR logical

operation (⊕ operator) between elements of Rlist and the binary word of the considered node.

For example, the construction of Alist for the node 101 is presented in Figure 4.6.

The method to construct the geometric product leads to Algorithm 9. The computation of the

sign is adapted from Algorithm 8 and shown in Algorithm 9.
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Algorithm 9: Geometric product corresponding to a coefficient ck

Data: a, b, c: multivectors,
Alist, Blist: sequences of binary words,
k: label of a coefficient of the multivector c,
d: dimension
Result: ck: kth coefficient of the multivector c = a ∗ b

1 Alist← { }
2 Blist← { }
3 for binaryWords from 0 to 2d − 1 do
4 Alist.push(binaryWords⊕ k)
5 Blist.push(binaryWords)

6 Sign← SignGeo(1, 0, k, d, 1) ck ← 0
7 i← 0
8 foreach label u, v of Alist and Blist do
9 ck ← ck + Sign[i] · au · bv

10 i← i + 1

11

12 Function SignGeo
Input:

CurrentSign: sign
level:Integer
k:coefficient
d: dimension
comp: Integer

Result: Sign: sequence of signs
13 if level==d then
14 Sign = Sign.push(CurrentSign)
15 else
16 b← levelth bit of k
17 if b==1 then
18 SignGeo(comp ∗ currentSign, level + 1, k, d , comp)
19 SignGeo(currentSign, level + 1, k, d , −comp)
20 else
21 SignGeo(comp ∗ currentSign, level + 1, k, d , −comp)
22 SignGeo(currentSign, level + 1, k, d , comp)
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Rlist k Alist
000 101 101 ⊕ 000 = 101
001 101 101 ⊕ 001 = 100
010 101 101 ⊕ 010 = 111
011 101 101 ⊕ 011 = 110
100 101 101 ⊕ 100 = 001
101 101 101 ⊕ 101 = 000
110 101 101 ⊕ 110 = 011
111 101 101 ⊕ 111 = 010

FIGURE 4.6: Construction of Rlist and Alist for the node 101.

4.2.5.3 Non-Euclidean space

In this section, we show the construction of the geometric product for a non-Euclidean space.

We assume that the basis used is orthogonal. If non-orthogonal basis is needed, then a change of

basis can be performed, similarly to what is explained in [23]. In order to construct the geometric

product, the quadratic form φ is required. The representation of the quadratic used in the sequel

is picked up from [36]. The values of this quadratic form are represented with d-tuple. We aim

now at determining the construction of the geometric product with this quadratic form. In [36],

Fuchs and Théry define the geometric product with the quadratic form as follows:

an
u ∗ bn

v = (an+1
u1 , an+1

u0 )n ∗ (bn+1
v1 , bn+1

v0 )n

if n < d , an
u ∗ bn

v =

(an+1
u1 ∗ b

n+1
v0 + an+1

u0 ∗ b
n+1
v1 , an+1

u0 ∗ b
n+1
v0 + φn+1a

n+1
u1 ∗ b

n+1
v1 )n

if n = d , an
u ∗ bn

v = ad
u ∗ bd

v

(4.2.13)

where φn+1 = φ(en+1, en+1) denotes the (n + 1)th element of this quadratic form, and represents

the squared of en+1.

The sequence of labels of a and b remain the same. Therefore, we determine the sequence of φ

in the binary tree. Let φlist denote this construction. This construction is computed with a list of

elements of φ in an equivalent way as the sequence of labels. It is extracted from Equation (4.2.13)
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and defined as follows:

If n < d ,
{

φlistn} =({
φlistn+1, φlistn+1 },

{
φlistn+1, φn+1.φlist(1)n+1 })

If n = d ,
{

φlistn} =
{

φlist
} (4.2.14)

Algorithm 10 shows the pseudo-code for the construction of this sequence. This construction is

inserted in the implementation of the geometric product.

Algorithm 10: Geometric product corresponding to a coefficient ck

1 Function quadraticForm
Input:

currentCoe f : coefficient
metric: list of coefficients
level: Integer
k: coefficient
d: dimension

Result: seq: sequence of metric elements for a leaf ck
2 if level==d then
3 seq.push(CurrentCoe f )
4 else
5 φ← levelth element of metric
6 b← levelth bit of k
7 if b==1 then
8 quadraticForm(currentCoe f , metric, level + 1, k , d)
9 quadraticForm(currentCoe f , metric, level + 1, k , d)

10 else
11 quadraticForm(φ ∗ currentCoe f , metric, level + 1, k , d)
12 quadraticForm(currentCoe f , metric, level + 1, k , d)

4.2.6 Discussions

These sections presented our first method to compute Geometric Algebra products, defined in

any dimension. We show that the proposed method has algorithms to compute elements in par-

allel. These algorithms have better complexity than state-of-the-art Geometric Algebra methods,

namely in O(3d) instead of O(d× 4d). However, there are major drawbacks.

Firstly, some recursive calls are useless in the construction of these lists. This is due to the fact

that the binary tree and the binary tree list do not encode the graded structure of the Geometric

Algebra very well. In fact, at the same depth of the tree, one might have nodes whose grade
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ranges from 0 to the dimension d.

Secondly, these products use list and new data structures. To use these lists, memory allocations

have to be performed. Furthermore, these memory allocations are in O(2d).

To fix this second issue, we propose a second approach presented in the next paragraph.

4.3 Automata speed up

The multivectors product takes the following form:

a∧ b =
(
a1, a0

)
∧
(
b1, b0

)
(4.3.1)

where the subscript a0 or a1 respectively refers to the right and left sub-tree of a. The recursive

outer product starts with the iteration n = 0 and is defined as:

if n < d, an ∧ bn =
(
an+1

1 ∧ bn+1
0 + a0

n+1 ∧ bn+1
1 , an+1

0 ∧ bn+1
0
)n

if n = d, an ∧ bn = ad ∧ bd
(4.3.2)

where a expresses the anti-commutativity of the outer product. As previously showed , this

method avoids useless products like outer product between dependent basis blade, resulting in

a complexity ofO(3d) instead ofO(d4d). This complexity enhancement has a huge effect in high

dimensional spaces.

To handle sparse multivectors, Fuchs and Théry proposed to use unbalanced binary trees where

the subtrees leading to leaves with coefficient set to 0 are removed. A recursive call leading to

nodes without sub-trees is immediately discarded, as presented in Algorithm 11.

Algorithm 11: Recursive outer product (unbalanced binary tree)

1 Function wedge
Input: C: resulting binary tree, A, B: binary tree

2 if A is a leaf then
3 C += A× B // (× is the product of scalars)
4 else
5 if A.hasLeftChild() and B.hasRightChild() then
6 wedge(C.leftChild,A.leftChild,B.rightChild)

7 if A.hasRightChild() and B.hasLeftChild() then
8 wedge(C.leftChild,A.rightChild,B.leftChild)

9 if A.hasRightChild() and B.hasRightChild() then
10 wedge(C.rightChild,A.rightChild,B.rightChild)
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Note that for clarity purpose, Algorithm 11 omits sign computations.

4.3.1 Recursive method revisited

This section focuses on the recursive method and more specifically on how to minimize the num-

ber of conditionals in the recursive products. Indeed, a recursive call from a recursion level to the

next involves some tests on the existence of sub-trees, i.e. line 5, 7 and 9 of Algorithm 11 for the

outer product. We express this set of conditions as a deterministic finite automaton with boolean

transitions according to the existence of left subtree a1 and right subtree a0 of the current node a

(respectively for b). As an example, the automaton of the outer product is depicted in Figure 4.7.

To each final state of the automaton, or equivalently to each element of {5,6,8,9,10}, of the au-

tomaton in Figure 4.7, is associated a subset of the set of products of equation (4.3.2), except for

state 5 where no product is required. Let us list this subset of products for each final state. As

1start 2

3 5

4

7

6

8

9 10

a0.b0 a0.b1 a1.b0

a0.b1

a0

a0

b0

b0

b0 b1

a1

b1 a1

b1

a1

b0

FIGURE 4.7: Automaton of the set of products of the outer product from an recur-
sion level to the next.

previously stated, no products are required for the final state 5. The product a0 ∧ b0 is required

for the states {6,9,10}. We need to compute a0 ∧ b1 for the states {8,9,10}. Finally, the product

a1 ∧ b0 is needed for the state {10}.

We remark that in the worst case four conditionals are required but less in the average case. For

example, if we consider that a0 and b0 are non-null binary tree whereas a1 and b1 are null binary

sub-trees, then the control flow will be formed of two conditionals instead of four.



74 Chapter 4. Products in high dimensional space

4.3.2 Discussion

Compared to the first presented method, this approach does not require the storage of any lists.

Moreover, the complexity obtained is also in O(3d). However, this approach presented draw-

backs:

• as seen in Algorithm 11, the two multivectors have to be binary trees. Hence, the data struc-

ture used for the multivectors have to be binary trees. To be consistent with the presented

data structure, this would require converting back and forth between binary tree and per-

grade data structure. This latter computation is computationally expensive, more precisely

in O(2d).

• furthermore, the Algorithm 11 does not depend on the structure of the multivector (grade

of each multivector).

In order to fix these two issues and the issues presented at the end the last section, we proposed

new algorithms presented in the next paragraphs.
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4.4 Prefix tree approach

In the previous sections, we first presented some parallel algorithms to compute the products

of Geometric Algebra. We then detailed how a binary tree can represent efficiently multivector

components and lead to a recursive formulation of the products used in GA for high dimen-

sions.

In the following sections, we introduce a variation of this formulation, using a prefix tree [16]

that presents some interesting properties leading to very efficient optimization in recursive GA

products. Moreover, this prefix tree formulation also includes a natural dual multivector rep-

resentation well suited to an efficient dual computation algorithm, particularly useful for high

dimensions.

To summarize, our purposes for this prefix tree are

• to have complexity in O(3d) for the outer product and O(4d) for the geometric product

(instead of O(d4d) for the state-of-the-art method,

• to not require any additional data structure to store the products in order to be memory

efficient,

In the worst case,we proved in the last section that the number of recursive calls of the binary

tree products is:
d

∑
i=1

3i =
3
2
(
3d − 1

)
(4.4.1)

Due to the complexity, this approach avoids structural zero. However, it failed to efficiently

handling object zero. To fix this issue, we propose new recursive products over the prefix tree

structure previously defined. In practice, we aim at having 3d recursive calls in the worst case

instead of 3
2
(
3d − 1

)
.

4.4.1 Multivectors and prefix trees

As previously explained, a multivector can be represented by a binary tree. This approach can

be modified to represent a multivector with a prefix tree, where each node is associated to a basis

vector. More precisely, the nodes of depth k of the tree represent all the basis vector of grade

k. Thus, the root node, denoted by 1, represents the scalar part of a multivector, the children of

the root node correspond to the vectors contributions to the multivector, the children of those

nodes are the bivectors contributions to the multivector, and so on. Moreover, by nature of the
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prefix tree structure, each label of basis vector of the tree is prefixed by the labels its parents, as

illustrated in figure 4.8, where eijk stands for ei ∧ ej ∧ ek. Note that the scalar 1 is considered as

the prefix of all the other nodes.

000(1)

001(e1) 010(e2) 100(e3)

011(e12) 101(e13) 110(e23)

111(e123)

FIGURE 4.8: Prefix tree data structure. Each node of the tree is labelled by a binary
index representing a basis vector of the algebra, here in a 3-dimensional vector

space.

Each node of the tree is labelled by a binary word encoding the basis vector representing the

node. This binary labelling, where each bit represents a basis vector, is used in numerous GA im-

plementations [30, 12, 34]. Traversing a prefix tree representing a multivector can be achieved us-

ing an index called msb (most significant blade). This index represents the binary label of the basis

vector (of grade 1) following (canonical ordering of the basis) the last basis vector encountered

from the reached node. Thus, this index actually contains only a single bit to 1. Consequently,

the label of a child of a node with binary identifier u and index msb is computed by:

child_label(u, msb) = u+ msb (4.4.2)

where + is the binary addition. In this formulation, the contribution of msb corresponds to the

most significant bit of child_label(label, msb). Finally, note that the most significant bit of the

resulting label corresponds to the position of the 1-bit of msb.

Then, labels of the siblings of this child can be easily computed by means of left-shifting of msb.

This labelling is shown Figure 4.9.

We would like to express the operations of the algebra using this prefix tree representation. This

requires expressing two multivectors with the prefix tree representation. Just like we expressed
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u

u+ msb

· · ·
u+ 2msb u+ 2d

FIGURE 4.9: The labelling of the prefix tree at one depth

a multivector as a binary tree with recursive formalism, we seek for an expression of the Geo-

metric Algebra with prefix tree. We consider a multivector a in Gp,q where p + q = d, we note

a component of a at index u in the prefix tree formulation as au. The children of au in the prefix

tree formulation are shown in Figure 4.10.

au

au+msb

· · ·
au+2msb au+2d−1

FIGURE 4.10: Multivector prefix tree representation.

For clarity purpose, we will also use the compact notation as follows:

(
au, (au+msb, au+2msb, · · · , au+2d−1

))
, (4.4.3)

Definition 4.4.1.

Let au be a node of the prefix tree. Let us assume that the basis vector associated with msb is ei,

i ∈ 1, · · · , d. Then, the interpretation of the prefix tree au into Geometric Algebra multivector is:

au + ei ∧ au+msb + ei+1 ∧ au+2msb + · · ·+ ed ∧ au+2d−1 (4.4.4)

As an example, the compact notation of the prefix tree in a 3-dimensional vector space and at

one recursion depth results in: (
a000, (a001, a010, a100

))
(4.4.5)

The development after a recursive depth of d = 3 yields:

(
a000,

(
a001,

(
a011,

(
a111

)
, a101

)
,
(
a010,

(
a110

))
, a100

))
(4.4.6)
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Using the interpretation of the tree given in Equation (4.4.4) results in:

a000 + e1 ∧
(
a001 + e2 ∧

(
a011 + e3 ∧ (a111)

)
+ e3 ∧ a101

)
+ e2 ∧

(
a010 + e3 ∧ a110

)
+e3 ∧ a100

= a000 + a001e1 + a011e1 ∧ e2 + a111e1 ∧ e2 ∧ e3 + a101e1 ∧ e3 + a010e2 + a110e2 ∧ e3

+a100e3

(4.4.7)

This corresponds to a general multivector in a 3-dimensional vector space.

Definition 4.4.1 is the support for us to define a mapping between the prefix tree and the binary

tree frameworks defined bellow.

Definition 4.4.2. Let ψ be the mapping associating a prefix tree multivector:

(
au, (au+msb, au+2msb, · · · , au+2d−1

))
(4.4.8)

to its counterpart in the binary tree framework as the labelled binary tree:

(
au+msb,

(
au+2msb,

(
· · · (auu+2d−1 , au)

)))
(4.4.9)

Proposition 4.4.3. The interpretation of the binary tree given in Equation 4.4.9 results in interpretation

of Equation 4.4.4.

Proof. Let us consider the pair: (
au+msb, a

)
, (4.4.10)

where

a =
(
au+2msb,

(
· · · (auu+2d−1 , au) · · ·

))
(4.4.11)

Assumption of Definition 4.4.1 denotes that the basis vector associated with msb is i, i ∈ 1, · · · , d.

The interpretation of Section 3 of [36] means that the pair composed of au+msb as a left sub-tree

can be written as:

ei ∧ au+msb + a (4.4.12)

By reitering the same computation for the nested pairs in x yields:

ei ∧ au+msb + ei+1 ∧ au+2msb + · · ·+ ed ∧ au+2d−1 + au (4.4.13)

This corresponds to Equation 4.4.4.
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We are now left to recursively define the vector space operations by starting with the defini-

tion of the recursive formula of the addition between two prefix tree multivector.

Proposition 4.4.4. Let us consider two multivectors a and b whose recursive construction are respec-

tively: (
au, (au+msb, au+2msb, · · · , au+2d−1

))
, (4.4.14)

and (
bu, (bu+msb, bu+2msb, · · · , bu+2d−1

))
. (4.4.15)

The recursive construction of the addition of these two multivectors can be computed as:

(
cu, (cu+msb, cu+2msb, · · · , cu+2d−1

))
=

(
au, (au+msb, au+2msb, · · · , au+2d−1

))
+
(
bu, (bu+msb, bu+2msb, · · · , bu+2d−1

))
=

(
au + bu, (au+msb + bu+msb, au+2msb + bu+2msb, · · · , au+2d−1 + bu+2d−1

)) (4.4.16)

Proof. We use the interpretation of the prefix tree defined in Equation 4.4.4. The operation to be

performed is:

au + ei ∧ au+msb + ei+1 ∧ au+2msb + · · ·+ ed ∧ au+2d−1 + bu + ei ∧ bu+msb

+ ei+1 ∧ bu+2msb + · · ·+ ed ∧ bu+2d−1

(4.4.17)

The distributive property of the outer product yields:

au + bu + ei ∧ (au+msb + bu+msb) + ei+1 ∧ (au+2msb + bu+2msb) + · · ·+ ed ∧ (au+2d−1 + ei ∧ bu+msb

+ ei+1 ∧ bu+2msb + · · ·+ ed ∧ bu+2d−1

(4.4.18)

Finally, by identification, the above formula is the interpretation of the prefix tree multivector:

(
au + bu, (au+msb + bu+msb, au+2msb + bu+2msb, · · · , au+2d−1 + bu+2d−1

))
(4.4.19)

Proposition 4.4.5. The recursive construction of the multiplication of one multivector a by a scalar λ ∈ R

can be computed as: (
cu, (cu+msb, cu+2msb, · · · , cu+2d−1

))
= λ

(
au, (au+msb, au+2msb, · · · , au+2d−1

))
=

(
λau, (λau+msb, λau+2msb, · · · , λau+2d−1

)) (4.4.20)
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Proof. Once more, we use the interpretation of the prefix tree defined in Equation 4.4.4. The

operation to be performed is:

λ
(
au + ei ∧ au+msb + ei+1 ∧ au+2msb + · · ·+ ed ∧ au+2d−1

)
(4.4.21)

The distributive property of both the scalar multiplication and the outer product yields:

λau + ei ∧ λau+msb + ei+1 ∧ λau+2msb + · · ·+ ed ∧ λau+2d−1 (4.4.22)

Thus, by identification, this results in:

(
λau, (λau+msb, λau+2msb, · · · , λau+2d−1

))
(4.4.23)

We can note that this tree representation is not very well suited for an efficient data storage

due to the difficulty to cut useless parts of the tree. Therefore, we include a mapping from the

tree representation to the array structure defined in section 2.2.1. This mapping consists in two

precomputed lookup tables that extract both the grade and position on the array of a given label.

Note that the size of this lookup table is 2d.

In terms of pseudo-code, the traversal of this structure is defined in the Algorithm 12.

Algorithm 12: Recursive traversing of a multivector a whose grade is ka

1 Function traverse
Input: a: the multivector to be traversed,

f: function,
ka: the grade of the multivector.
labela: the recursive position on each tree.

2 if grade(labelc) == kc then // end of recursion
3 f[labela]
4 else // recursive calls
5 msba = labelToMsb(labela)
6 foreach msb such that gradeKReachable(ka, msb)== true do
7 label = labela + msb

8 if gradeKReachable(ka, msb) then
9 traverse(a, ka, labela + msb)

In this pseudo-code, labelToMsb(label) computes the most significant bit from the considered

label. The function gradeKReachable(grade, msb) indicates whether at least a child of a node

reached by reading the basis vector ‘msb’ can reach the grade ‘grade’. This function is used to
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avoid several recursive calls, as shown on Figure 4.11. Furthermore, as the dimension grows, this

number of useless recursive calls grows exponentially.
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1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

(A)

1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

(B)

1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

(C)

1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

(D)

FIGURE 4.11: Tree structure for some resulting multivectors of grade 4 (A), grade
3 (B), grade 2 (C), grade 1 (D) in a 4-dimensional vector space. Useless branches
are depicted in green dashed arrows above the targeted multivector and in blue
below. The targeted nodes are surrounded by a black rectangle. We can remark
that over 15 theoretic traversals, 11 useless traversals are ignored in (A), 6 useless
traversals are ignored in (B), 6 useless traversals are ignored in (C) and 11 useless

traversals are ignored in (D).
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Let us consider:

• a label called label that is to say a node of the prefix tree

• a label called msb that represents the index of the last traversed basis vector

• an integer k representing the considered grade (might be different from the grade of label)

By definition, at each recursive depth, the grade is incremented. Furthermore, if label+ msb

corresponds to the first child of the current node. After 2 recursive calls, the label of the new

node is lower bounded by (left-most child):

label+ msb + 2msb, (4.4.24)

and the grade was increased. The grade of the label is grade(label) + 2 and the index of the last

traversed vector is simply 2msb. After 3 recursive calls, this label is lower bounded by

label+ msb + 2msb + 4msb (4.4.25)

and the grade was again increased. The grade of the label is grade(label) + 3 and the index of

the last traversed vector is 4msb. There seems to be a general formula for the lower bound of the

label of the children after l recursive calls as:

label+
l−1

∑
i=0

2imsb (4.4.26)

This can be also rewritten as:

label+ msb
n−1

∑
i=0

2i, n ∈ [1, d] (4.4.27)

The grade of the label seems to be grade(label) + n and the index of the last traversed vector is

2n−1msb.

Let us prove it by induction.

The base case holds. In fact, after one recursive call the child of the label has label:

label+ msb = label+ msb
0

∑
i=0

2i (4.4.28)

This corresponds to the first child thus to a lower bound. The grade of the label is grade(label) + 1

and the index of the last traversed vector is msb, as seen in the definition.

Let us assume that the formula 4.4.27 holds for a number of recursive calls noted m. Thus, the
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label of the children of the current node is lower bounded by:

label+ msb
m−1

∑
i=0

2i (4.4.29)

By definition of the child of a node, the last traversed vector is 2mmsb. Thus the left-most child of

the node after m recursive traversals is defined as:

label+ msb
m−1

∑
i=0

2i + 2mmsb (4.4.30)

This can be rewritten as:

label+ msb
(m+1)−1

∑
i=0

2i (4.4.31)

As the grade after m recursive calls is grade(label) + m and we computed the child of this label

thus the grade was incremented and the grade of the leading node is grade(label) + m + 1.

Thus, the formula 4.4.27 holds for a m + 1 recursive calls. Finally, by induction, this formula

holds for any number of recursive calls.

Furthermore, the term ∑
(m+1)−1
i=0 2i is known to be geometric series whose first term is 1 and its

common ratio is 2. The general formula of such geometric series is given as:

∑
(m+1)−1
i=0 2i=

1− 2n

1− 2
= 2n − 1

(4.4.32)

Finally, the formula 4.4.27 can be rewritten as:

label+ msb(2n − 1) (4.4.33)

Note that this computation can be computed in a constant time O(1).

Furthermore, we know the upper bound of the labels in a d-dimensional vector space. This sim-

ply corresponds to the label 11 · · · 1 or equivalently to the pseudo-scalar. Thus, in a d-dimensional

space, all labels are upper bounded by the label:

2d (4.4.34)

This means that if the lower bound label+ msb(2n − 1) exceeds this upper bound of the labels

then this is not a label of the vector space, meaning that we have a constant time function to know
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whether after n-recursive, there exists a child of the current node in the vector space labels.

Furthermore, a node label whose grade is grade(label) will require exactly k− grade(label) to reach

a node whose grade is k. And this will require exactly, k− grade(label) recursive calls. This latter

result along with the upper bound of formula 4.4.34 and the lower bound formula 4.4.33 yields

to the following inequality:

label+ msb(2k−grade(label) − 1) < 2d (4.4.35)

Formula 4.4.35 is a way to know whether there exists a child of label with k as a grade which is

reachable. The associated function gradeKReachable(k, label, msb) is defined by Algorithm 13.

Algorithm 13: check whether it exists one child of the node label whose grade is k.

1 Function gradeKReachable
Input: label: the recursive position

msb: a label of the last traversed vector
k: the considered grade.

2 labelChildK← label+ msb(2k−grade(label) − 1)
3 return labelChildK < 2d

With this Algorithm, some branches of the trees can be left unvisited. The formula can be com-

puted in constant time. Indeed, the computation of 2k−grade(label) − 1 only requires bit shifting

(constant time), one integer multiplication and 3 additions. And when the dimension increases,

this number of operations remains the same thus the algorithm is constant time.

Furthermore the decision only depends on grades and label, and does not require any allocation

thus is also constant in terms of memory complexity.

4.4.2 Anti-commutativity recursive operator

In order to efficiently compute permutation required for some Geometric Algebra operators, we

define the anti-commutativity operator denoted as an overline. This operator is recursively de-

fined over the prefix tree.

4.4.2.1 Recursive formula

Proposition 4.4.6. Let us consider one multivector a whose recursive construction is:

(
au, (au+msb, au+2msb, · · · , au+2d−1

))
, (4.4.36)
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The recursive construction of the anticommutativity of this multivector can be computed as:

(
cu, (cu+msb, cu+2msb, · · · , cu+2d−1

))
=

(
au, (au+msb, au+2msb, · · · , au+2d−1

))
=

(
au, (−au+msb,−au+2msb, · · · ,−au+2d−1

)) (4.4.37)

Proof. The method followed here consists in proving that the commutative diagram of the anti-

commutative operator shown in (4.4.38) holds.

(
cu, (cu+msb, cu+2msb, · · · , cu+2d−1

)) (
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 , cu)

)))

(
cu, (cu+msb, cu+2msb, · · · , cu+2d−1

)) (
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 , cu)

)))

ψ

· ·

ψ

(4.4.38)

On one hand, mapping the prefix tree c of Equation (4.4.37) in the binary tree using ψ of Equa-

tion (4.4.9) results in:

(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 , cu)

)))

=

(
− au+msb,

(
− au+2msb,

(
· · · (−au+2d−1 , au

))) (4.4.39)

On the other hand, the recursive formula of the anti-commutativity defined in [36] as:

(
cu+msb, cu

)
=

(
− au+msb, au

) (4.4.40)

After developing this formula at one recursion depth, this formula becomes:

(
cu+msb,

(
cu+2msb, cu

))

=

(
− au+msb,−

(
au+2msb, au

)) (4.4.41)
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After further developing this formula, we find:

(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 , cu)

)))

=

(
− au+msb,

(
− au+2msb,

(
· · · − au+2d−1 , au)

))) (4.4.42)

Equations (4.4.42) and (4.4.39) are equivalent, thus the commutative diagram holds.

4.4.3 Outer product

In the following, we consider the outer product C = A∧ B. The grades of A, B, C are respectively

kA, kB, kC. The outer products can be computed recursively in efficiently traversing the prefix

tree of A, B and C.

4.4.3.1 Recursive formula

Proposition 4.4.7. Let us consider two multivectors A and B whose recursive constructions are respec-

tively: (
au, (au+msb, au+2msb, · · · , au+2d−1

))
, (4.4.43)

and (
bu, (bu+msb, bu+2msb, · · · , bu+2d−1

))
. (4.4.44)

The recursive construction of the outer product of these two multivectors can be computed as:

(
cu, (cu+msb, cu+2msb, · · · , cu+2d−1

))
=

(
au, (au+msb, au+2msb, · · · , au+2d−1

))
∧
(
bu, (bu+msb, bu+2msb, · · · , bu+2d−1

))
=

(
au ∧ bu, (au+msb ∧ bu + au ∧ bu+msb, au+2msb ∧ bu + au ∧ bu+2msb, · · · ,

au+2d−1 ∧ bu + au ∧ bu+2d−1
))

(4.4.45)

Proof. Again, we aim at proving that commutative diagram of the outer product holds. On the



88 Chapter 4. Products in high dimensional space

one hand, mapping the prefix tree c of Equation (4.4.45) in the binary tree using ψ of Equa-

tion (4.4.9) results in:

(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 , cu)

)))

=

(
au+msb ∧ bu + au ∧ bu+msb,

(
au+2msb ∧ bu + au ∧ bu+2msb,

(
· · ·

(au+2d−1 ∧ bu + au ∧ bu+2d−1 , au ∧ bu)
)))

(4.4.46)

On the other hand, the recursive formula of the outer product between two multivectors in the

binary tree framework is the pair:

(
cu+msb, cu

)
=

(
au+msb ∧ bu + au ∧ bu+msb, au ∧ bu

)
(4.4.47)

After developing this formula at one recursion depth, this formula becomes:

(
cu+msb,

(
cu+2msb, cu

))

=

(
au+msb ∧ bu + au ∧ bu+msb,

(
au+2msb ∧ bu + au ∧ bu+2msb, au ∧ bu

)) (4.4.48)

After further developing this formula, we find:

(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 , cu)

)))

=

(
au+msb ∧ bu + au ∧ bu+msb,

(
au+2msb ∧ bu + au ∧ bu+2msb,

(
· · ·

(au+2d−1 ∧ bu + au ∧ bu+2d−1 , au ∧ bu)
)))

(4.4.49)

Equations (4.4.49) and (4.4.46) are equivalent, thus the commutative diagram holds.

This recursive formula is the base to develop the pseudo-code of the outer product. As a

reminder, the recursive formula is defined as:

(
cu, (cu+msb, cu+2msb, · · · , cu+2d−1

))
=

(
au ∧ bu, (au+msb ∧ bu + au ∧ bu+msb, au+2msb ∧ bu + au ∧ bu+2msb, · · ·,

au+2d−1 ∧ bu + au ∧ bu+2d−1
)) (4.4.50)

We highlight the main parts of the recursive formula and their equivalent in the pseudo-code

shown in Algorithm 14.
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Algorithm 14: Recursive outer product C = A ∧ B

1 Function outer
Input: A, B: two multivectors,

C: resulting multivector,
kA, kB and kC: the respective grade of each multivector.
labelA, labelB, labelc: the recursive position on each tree.
sign: a recursive sign index.
complement: is at -1 when a flip of sign has to be performed at the next depth.

2 if grade(labelc) == kc then // end of recursion
3 c[labelC]+ = sign× A[labelA]× B[labelB]
4 else // recursive calls
5 msbA = labelToMsb(labelA)
6 msbB = labelToMsb(labelB)
7 msbC = labelToMsb(labelC)
8 foreach msb such that gradeKReachable(kC, msb, labelC)== true do
9 label = labelC + msb

10 if gradeKReachable(kA, msb, labela) then
11 outer(A, B, C, kA, kB, kC, labelA + msb, labelB, label, sign×

complement, complement)

12 if gradeKReachable(kB, msb, labelB) then
13 outer(A, B, C, kA, kB, kC, labela, labelb + msb, label, sign,−complement)

4.4.4 Complexity

This paragraph to study the complexity of the outer product. At each depth of the tree, the

number of recursive calls is multiplied by 2. Furthermore, to a considered depth corresponds

the same grade and thus the same number of recursive calls. Finally, the number of nodes of the

same grade k is given by (d
k) and in the worst case the depth may vary from 0 to d. Thus, the

number of recursive calls is upper bounded by:

d

∑
i=0

(
d
k

)
2i (4.4.51)

From the binomial theorem this formula can be rewritten as:

d

∑
i=0

(
d
k

)
2i = 3d (4.4.52)

Thus the number of recursive calls is upper bounded by 3d which is lower than the number of

recursive calls obtained with the two previous methods presented up to now in:

d

∑
i=1

3i =
3
2
(
3d − 1

)
(4.4.53)
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4.4.5 GA products using metric

4.4.5.1 Left, right contractions and inner product

We defined the outer products with recursive products over the prefix tree, but we did not yet

define products and algorithms that depend on the metric. To achieve this, we assume that a

diagonal metric diagMetric is stored as a vector whose size is the dimension d. This vector is such

that:
diagMetric(0) = e1 · e1

diagMetric(1) = e2 · e2
...

diagMetric(d− 1)= ed · ed

(4.4.54)

This means that we add another parameter to the recursive functions called metricCoe f f icient.

We assume also that diagMetric is given. The definition of the left contraction is shown in Algo-

rithm 15.

Algorithm 15: Recursive left contraction product C = AcB
1 Function leftcont

Input: A, B: two multivectors,
C: resulting multivector,
kA, kB and kC: the respective grade of each multivector.
labelA, labelB, labelC: the recursive position on each tree.
sign: a recursive sign index.

2 complement: is at -1 when a flip of sign has to be performed at the next depth.
3 metricCoefficient: coefficient for handling the metric in the recursive

formula.
4 if grade(labelB) == kB then // end of recursion
5 C[labelC]+ = metricCoefficient× sign× A[labela]× B[labelB]
6 else // recursive calls
7 msbA = labelToMsb(labelA)
8 msbB = labelToMsb(labelB)
9 msbC = labelToMsb(labelC)

10 foreach msb such that gradeKReachable(kB, msb, labelB)== true do
11 label = labelB + msb

12 if gradeKReachable(kA, msb, labelA) then
13 leftcont(A, B, C, kA, kB, kC, labelA + msb, label, labelC, sign×

complement,−complement, metricCoefficientdiagMetric(grade(labelB)))

14 if gradeKReachable(kc, msb, labelc) then
15 leftcont(A, B, C, kA, kB, kC, labelA, label, labelC +

msb, sign,−complement, metricCoefficient))

The right contraction is simply obtained due to its similarities with the left contraction. The

resulting pseudo-code is shown 16
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Algorithm 16: Recursive right contraction product C = AbB
1 Function rightcont

Input: A, B: two multivectors,
C: resulting multivector,
kA, kB and kCs: the respective grade of each multivector.
labelA, labelB, labelC: the recursive position on each tree.
sign: a recursive sign index.

2 complement: is at -1 when a flip of sign has to be performed at the next depth.
3 metricCoefficient: coefficient for handling the metric in the recursive

formula.
4 if grade(labelB) == kB then // end of recursion
5 C[labelC]+ = metricCoefficient× sign× A[labelA]× B[labelB]
6 else // recursive calls
7 msbA = labelToMsb(labelA)
8 msbB = labelToMsb(labelB)
9 msbC = labelToMsb(labelC)

10 foreach msb such that gradeKReachable(kA, msb, labelA)== true do
11 label = labelA + msb

12 if gradeKReachable(kB, msb, labelB) then
13 rightcont(A, B, C, kA, kB, kC, label, labelC + msb, labelC, sign×

complement,−complement, metricCoefficientdiagMetric(grade(labelC)))

14 if gradeKReachable(kC, msb, labelC) then
15 rightcont(A, B, C, kA, kB, kC, label, labelB, labelC +

msb, sign,−complement, metricCoefficient))

Knowing both the left and the right contractions, it is not difficult to deduce the inner product.

4.4.5.2 Geometric product

The last product to define is the major one, namely the geometric product. In a similar way as

for the outer product, we define and try to prove the recursive formula of the product.

4.4.5.2.1 Recursive products

Proposition 4.4.8. Let us consider two multivectors A and B whose recursive constructions are respec-

tively: (
au, (au+msb, au+2msb, · · · , au+2d−1

))
, (4.4.55)

and (
bu, (bu+msb, bu+2msb, · · · , bu+2d−1

))
. (4.4.56)
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The recursive construction of the geometric product of these two multivectors can be computed as:

(
cu, (cu+msb, cu+2msb, · · · , cu+2d−1

))
=

(
au, (au+msb, au+2msb, · · · , au+2d−1

))
∗
(
bu, (bu+msb, bu+2msb, · · · , bu+2d−1

))
=

(
au ∗ bu + diagMetric(msb)au+msb ∗ bu+msb + diagMetric(2msb)au+2msb ∗ bu+2msb + · · ·

+diagMetric(2d−1)au+2d−1 ∗ bu+2d−1 , (au+msb ∗ bu + au ∗ bu+msb, au+2msb ∗ bu + au ∗ bu+2msb, · · · ,

au+2d−1 ∗ bu + au ∗ bu+2d−1
))

(4.4.57)

Note that as in the presentation of the geometric product over binary tree, we use the operator ∗

to denote the geometric product.

Proof. We follow a similar approach as with the recursive outer product. On one hand, mapping

the prefix tree c of Equation (4.4.57) in the binary tree using ψ of Equation (4.4.9) results in:

(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 , cu)

)))

=

(
au+msb ∗ bu + au ∗ bu+msb,

(
au+2msb ∗ bu + au ∗ bu+2msb,

(
· · ·

(au+2d−1 ∗ bu + au ∗ bu+2d−1 , au ∗ bu + diagMetric(msb)au+msb ∗ bu+msb

+diagMetric(2msb)au+2msb ∗ bu+2msb + · · ·+ diagMetric(2d−1)au+2d−1 ∗ bu+2d−1)
)))

(4.4.58)

On the other hand, the recursive formula of the geometric product between two multivectors in

the binary tree framework can be the pair:

(
cu+msb, cu

)
=

(
au+msb ∗ bu + au ∗ bu+msb, au ∗ bu + diagMetric(msb)au + msb ∗ bu+msb

) (4.4.59)

After developing this formula at one recursion depth and having in mind the recursive structure

of the binary tree, the above formula becomes:

(
cu+msb,

(
cu+2msb, cu

))

=

(
au+msb ∗ bu + au ∗ bu+msb,

(
au+2msb ∗ bu + au ∗ bu+2msb, au ∗ bu

+diagMetric(msb)au + msb ∗ bu+msb + diagMetric(2msb)au + 2msb ∗ bu+2msb

))
(4.4.60)
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After further developing this formula, we find:

(
cu+msb,

(
cu+2msb,

(
· · · (cuu+2d−1 , cu)

)))

=

(
au+msb ∗ bu + au ∗ bu+msb,

(
au+2msb ∗ bu + au ∗ bu+2msb,

(
· · ·

(au+2d−1 ∗ bu + au ∗ bu+2d−1 , au ∗ bu + diagMetric(msb)au+msb ∗ bu+msb

+diagMetric(2msb)au+2msb ∗ bu+2msb + · · ·+ diagMetric(2d−1)au+2d−1 ∗ bu+2d)
)))

(4.4.61)

Equations (4.4.61) and (4.4.58) are equivalent, thus the commutative diagram holds for the geo-

metric product.

4.4.5.2.2 Algorithm: This recursive formula is the base to develop the pseudo-code of the ge-

ometric product. As a reminder, the recursive formula is defined as:

(
cu, (cu+msb, cu+2msb, · · · , cu+2d−1

))
=

(
au ∗ bu + diagMetric(msb)au+msb ∗ bu+msb + diagMetric(2msb)au+2msb ∗ bu+2msb + · · ·

+diagMetric(2d−1)au+2d−1 ∗ bu+2d−1 , (au+msb ∗ bu + au ∗ bu+msb, au+2msb ∗ bu + au ∗ bu+2msb, · · ·,

au+2d−1 ∗ bu + au ∗ bu+2d−1
))

(4.4.62)

We highlight the main parts of the recursive formula and their equivalent in the pseudo-code

shown in Algorithm 17.

4.4.6 Complexity

Concerning the left and right contractions, the number of recursive calls is the same as the recur-

sive outer product. Hence, these two recursive products require 3d recursive calls in the worst

case. Again, this is a lower complexity than state of the art methods. As for the geometric prod-

uct, we note that the computation of the sign is performed by a constant time operation. By an

operation similar to the computation of the complexity of the outer product, we prove that the

number of recursive calls of the geometric product is 4d. Again, the number of recursive calls is

lower than for the two other recursive methods.
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Algorithm 17: Recursive geometric product C = AB

1 Function geometric
Input: a, b: two multivectors,

c: resulting multivector,
ka, kb and kc: the respective grade of each multivector.
labela, labelb, labelc: the recursive position on each tree.
sign: a recursive sign index.
complement: is at -1 when a flip of sign has to be performed at the next depth.
metricCoefficient: coefficient for handling the metric in the recursive
formula.
depth: current depth in the prefix tree structure.

2 if grade(labelB) == kB and grade(labelA) == kA then // end of recursion
3 C[labelC]+ = metricCoefficient× sign× A[labelA]× B[labelB]
4 else
5 msbA = labelToMsb(labelA)
6 msbB = labelToMsb(labelB)
7 msbC = labelToMsb(labelC)

8 for i in 2depth, 2depth+1, · · · , 2d−1 do
9 if gradeKReachable(kB, i, labelB) then

10 if gradeKReachable(kA, i, labelA) then
11 geometric(A, B, C, kA, kB, kC, labelA + i, labelB + i, labelC, sign×

complement,−complement, metricCoefficient×
diagMetric(i), depth + 1))

12 if gradeKReachable(kA, i, labelA) then
13 geometric(A, B, C, kA, kB, kC, label, labelB, labelC + msb, sign×

complement, complement, metricCoefficient, depth + 1))

14 if gradeKReachable(kB, i, labelB) then
15 geometric(A, B, C, kA, kB, kC, labelA, labelB + i, labelC +

i, sign,−complement, metricCoefficient), depth + 1)
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4.4.7 Dual and prefix tree

Given a multivector A, the nodes at depth k of the prefix tree represent the components of A of

grade k. Hence, the root of the tree is always the scalar component, and the deepest leave cor-

responds to the pseudoscalar component of A. It is noteworthy to observe that this formulation

also implicitly describes the dual A∗ of A by reading the tree from the pseudoscalar leave to the

scalar root, as shown in figure 4.12. This dual “upside down” representation of the prefix tree

1 /−e∗123

e1 /−e∗23 e2/e∗13 e3/−e∗12

e12/e∗3 e13/−e∗2 e23/e∗1

e123/1∗

FIGURE 4.12: Primal form of a tree data structure of an Euclidean 3 dimensional
vector space, and its dual counterpart in red

involves some basis sign changes adjustments. Moreover, some nodes of the dual prefix tree are

affected by the metric of the specified algebra. To include these coefficient changes, both the sign

and the metric coefficients can be stored in a single array of size 2d, where d is the dimension of

the vector space supporting the algebra.

In practice, the dual tree traversal requires a function to indicate the children of a given node.

This function corresponds to a dual version of Eq. (4.4.2) and is derived from the binary labelling

of the nodes, by:

dual_child_label(label, msb) = label− msb (4.4.63)

Note that the label of the root is now the binary label (1 << d)− 1 where << is the left shift

operator that shifts on the left the digits of a label.

Then, the pseudo-code of the traversal of such dual tree is shown in Algorithm 18.

The dual and primal prefix tree representations are the support of an efficient recursive expres-

sion of GA products, coupled with the per grade data structure of section 2.2.1. As for the primal

prefix tree, the dual prefix tree is just a support for the recursive products, the data are staying
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stored into the “per grade” data structure of section 2.2.1. The main goal of this dual prefix tree is

to compute some products between dual multivectors without computing the costly multivector

dualization.

Algorithm 18: Recursive traversing of the dual of a multivector A whose grade is kA

1 Function traverse
Input: A: the multivector to be traversed,

f: function,
kA: the grade of the multivector.
labelA: the recursive position on each tree.

2 if grade(labelC) == (d− kC) then // end of recursion
3 f[labelA]
4 else // recursive calls
5 msbA = labelToMsb(labelA)
6 foreach msb such that gradeKReachable(kA, msb)== true do
7 label = labelA − msb

8 if gradeKReachable(kA, msb) then
9 traverse(A, kA, label)

4.4.8 Products with dual multivectors

A recursive product where one or both of the operands are dual multivectors can be optimized

by an extension of Algorithm 14 adapted to the dual tree defined in Section 4.4.7. In a certain

sense, it is like if the recursive product algorithm is dualized instead of the multivectors. In this

situation, potential costly dualizations can be avoided.

In more details, let us consider the following product:

C = A ∧ B∗ (4.4.64)

First we assume that a coefficient is associated to each element of the per grade data structure of

2.2.1. This coefficient contains the basis coefficients changes adjustments. As an example, the Fig-

ure 4.13 shows the coefficients that are stored using C3GA: We call this structure dualCoefficients.

Then the outer product between A and B∗ is based on the following:

C = A ∧ B∗ = (A · dualCoefficients · B)∗ (4.4.65)

dualCoefficients is here due to the fact that

(B∗)∗= (±B · I)∗

= (B · I−1) · I−1

= B · I−2

(4.4.66)
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eo123 eo12∞ eo13∞ eo23∞ e123∞

eo123∞

FIGURE 4.13: The Data structure shown in Section 2.2.1, this structure includes the
coefficients to traverse any dual multivector.

thus dualCoefficients embeds this coefficient.

We already have a recursive method to compute the inner product as well as a method to tra-

verse the dual prefix tree of the resulting multivector C using the structure dualCoefficients. The

resulting pseudo-code is shown in Algorithm 19 when the grade of A is lower than the grade of

B. When the grade of B is higher than the grade of A then the algorithm is very similar (extracted

from the right contraction algorithm).

4.4.9 Discussion

We presented a new approach based on recursive products over prefix tree for high dimensional

space. This prefix tree has a per-grade structure. Thus, the recursive products well encode the

per-grade structure of the data structure presented in the previous section. This latter approach

has the lowest number of recursive calls compared with binary tree recursive products. The prod-

ucts neither require memory allocation of costly lists nor the computation of a costly function to

interface with the data structure. Thus, this is a good support to meet requirements 2a,3a, 3b.

Up to now, we described the approach followed for high dimensional spaces and the approach

for low dimensional space. We explain now the transition from the low to the high dimensional

called Hybridization.
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Algorithm 19: Recursive outer product between a primal multivector and the dual of
another multivector: C = A ∧ B∗

1 Function outerPrimalDual
Input: A, B: two multivectors,

C: resulting multivector,
kA, kB and kC: the respective grade of each multivector.
labelA, labelB, labelC: the recursive position on each tree.
sign: a recursive sign index.

2 complement: is at -1 when a flip of sign has to be performed at the next depth.
3 metricCoefficient: coefficient for handling the metric in the recursive

formula.
4 if grade(labelB) == kB then // end of recursion
5 dualCoefficients(labelC)× C[labelC]+ =

dualCoefficients× sign× A[labelC]× B[labelB]
6 else // recursive calls
7 msbA = labelToMsb(labelA)
8 msbB = labelToMsb(labelB)
9 msbC = labelToMsb(labelC)

10 foreach msb such that gradeKReachable(kB, msb, labelB)== true do
11 label = labelB + msb

12 if gradeKReachable(kA, msb, labelA) then
13 outerPrimalDual(A, B, C, kA, kB, kC, labelA + msb, label, labelC, sign×

complement,−complement, metricCoefficientdiagMetric(grade(labelB)))

14 if gradeKReachable(kC, msb, labelC) then
15 outerPrimalDual(A, B, C, kA, kB, kC, labelA, label, labelC −

msb, sign,−complement, metricCoefficient))

4.4.10 Hybridization

For high dimension GA, the generated libraries include a soft transition between precomputed

products and recursive products. The criteria for a product to be implemented either with pre-

computed functions or recursively is defined by a user defined threshold on the size of the two

k-vectors involved in the product. With this approach, a GA library over a 10 dimension vector

space can entirely be implemented in precomputed functions and a GA library over a 15 di-

mension vector space will have at least the products of vectors implemented with precomputed

functions.

4.5 Non orthogonal metric

For ergonomic purposes, any optional basis changes required by an arbitrary metric are auto-

matically handled by the generated library. This basis change is included in the precomputed

functions during the pre-computation process and is explicitly computed for the recursive prod-

ucts before and after the recursive calls. The library generator first checks if the metric is a valid

symmetric matrix. If the matrix is identity, all the generated products are left unchanged. If the
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matrix is a diagonal matrix (but not identity), the metric coefficients are inserted in the products.

In any other cases, we follow a similar approach as [31] and proceed to a basis change.

4.5.1 Numerical robustness preprocessing

However we also add some numerical robustness preprocessing. As an example, let us consider

the Conformal Geometric Algebra of R2 with metric M and its eigen decomposition M = PDP−1:

M =



0 0 0 −1

0 1 0 0

0 0 1 0

−1 0 0 0


=



0.707 0.707 0 0

0 0 0 1

0 0 1 0

−0.707 0.707 0 0





1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1





0.707 0 0 −0.707

0.707 0 0 0.707

0 0 1 0

0 1 0 0


(4.5.1)

For such very common metrics, an eigen decomposition leads to square roots in the eigen vector

components. For a better numerical robustness, we automatically up-scale the matrix P such that

it is composed of integers and downscale accordingly its inverse P−1:

M =



0 0 0 −1

0 1 0 0

0 0 1 0

−1 0 0 0


=



1 1 0 0

0 0 0 1

0 0 1 0

−1 1 0 0





1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1





0.5 0 0 −0.5

0.5 0 0 0.5

0 0 1 0

0 1 0 0


(4.5.2)

Then, all the components of the resulting matrices are subject to a numerical clean up, by ad-

justing each value to the nearest integer, inverse power of two or decimal. Thus, this clean up

removes the numerical errors generated by the eigen decomposition and is validated if the result-

ing decomposition still results in the original metric. In all the GA we encountered, this process

removes all the numerical approximations. This latter result is a good support for fulfilling the

need 4a.

4.5.2 Computing transformation matrices

The final stage consists in the generation of both transformations and inverse transformation

matrices for any grade of the algebra. In practice, these transformation matrices are very sparse

and are stored in the efficient eigen sparse matrices [41]. The algorithm followed to achieve this

is explained in the following section.
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4.5.2.1 Algorithm

We explain the computation of the transformation matrix Pk that maps any k—basis vector in

the non-orthogonal basis to the k-basis vector in the orthogonal basis. First, let us consider the

orthogonal basis (e1, · · · , ed)
> and the non-orthogonal basis as (n1, · · · , nd)

>. We assume that

P(i) denotes the i-th line of P and pij represents the element of the i-th line and j-th column of P.

The transformation matrix P maps these basis vectors as follows:



e1

e2
...

ed


=



p11 p12 · · · p1d

p21 p22 · · · p2d
...

...
. . .

...

pd1 pd2 · · · pdd





n1

n2
...

nd


=



P(1)

P(2)
...

P(d)





n1

n2
...

nd


, (4.5.3)

Thus, by definition:

ei = P(i)



n1

n2
...

nd


, ∀i ∈ [1, d] , (4.5.4)

For a k—basis blade defined as:

epqr···u = ep ∧ eq ∧ er ∧ · · · ∧ eu, (4.5.5)

Using formula 4.5.4, this yields:

epqr···u = P(p)



n1

n2
...

nd


∧ P(q)



n1

n2
...

nd


∧ P(r)



n1

n2
...

nd


∧ · · · ∧ P(u)



n1

n2
...

nd


, (4.5.6)

Hence, the main point of determining the transformation matrices lies in computing the outer

product between lines of the vector transformation matrix. The resulting pseudo-code is shown

in Algorithm 20.
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Algorithm 20: Compute the k-vector transformation matrix from the vector transforma-
tion matrix P
1 Function computeKvectorTransformationMatrix

Input: P: the vector transformation matrix,
d: vector space dimension,
k: the grade of the transformation matrix to be computed.

2 Pk ←transformation matrix
3 foreach epqr···u, idx in k-basis blades do // idx:index of the blade in the k basis blades
4 P<k>(idx)← vector whose dimension is (d

k)

5 mv← P(p)(n1, n2, · · · , nd)
>

6 foreach ev in eqr···u do

7 mv← mv ∧
(

P(v)(n1, n2, · · · , nd)
>
)

8 Pk(idx)← mv

9 return P<k>

4.5.2.2 Data structure to use

As stated in the last section, the obtained transformation matrices are sparse. An example of the

transformation matrix P<3> of 3-basis blades is shown below:

P<3> =



0 0 0 0 −1 0 0 −1 0 0

0 0 0 0 0 −1 0 0 −1 0

0 0 −2 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0

−2 0 0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 −1 0 0

0 0 0 0 0 1 0 0 −1 0

0 0 0 −1 0 0 1 0 0 0



(4.5.7)

We remark that for over a total of 10× 10 = 100 elements, only 16 elements are non-null, giving to

this matrix a sparsity score of
84

100
= 0.84. This score tends to be stable for extension of conformal

Geometric Algebra in higher dimension. That is why, we use sparse matrix data structure of

Eigen.

Note also that the inverse transformation matrices can be computed using the same process as

with the transformation matrices. The only difference will be in the vector transformation matrix

used as input. In this case, we will use the inverse of the vector transformation matrix. All the

remaining algorithm remains the same.
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Finally, in the case of non-full-rank metrics, the process remains unchanged, however the dual

functions are not generated.
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Garamon

5.1 Resulting library

The resulting implementation is a C++ template library generator dedicated to Geometric Alge-

bra. The generator itself runs in C++ and generate optimized C++ code. These generated GA

libraries are dedicated to be user-friendly and efficient both in term of computation speed and

memory consumption.

The generated libraries are built from a short configuration file describing the targeted algebra.

This configuration file specifies the algebra signature, the name of the basis vectors and some

optimization options. This file is restricted to the minimum information such it can be filled very

easily. The Listing 5.1 is an example of such configuration file for CGA.

LISTING 5.1: Configuration file of C3GA using Garamon

<namespace>

c3ga

</namespace>

# dimension of the algebra vector space (grade 1)

<dimension>

5

</dimension>

# inner product of basis vectors (grade 1)

# It should be a symmetric matrix.

# delimiter are spaces

<metric>

0 0 0 0 -1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

-1 0 0 0 0

</metric>

# name of each basis vector (grade 1). They will be prefixed by the symbol

# 'e' in the library.
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# supported characters : letters and numbers that are compatible with C++

# variable naming.

# for hig dimensions, add a '_' at the end of the name to avoid ambiguities

# (e114 : 11,4 or 1,14 ? => e11_4_)

# example: "0 1 2 3 i" will generate e0 e1 e2 e3 ei e01 e02 ... e0123i

<basis vector name>

0 1 2 3 i

</basis vector name>

Any generated library contains its own dedicated installation file (cmake), as well as a ded-

icated sample code. The generated libraries handle any arbitrary Geometric Algebra signature,

such that the user do not have to care about basis change. The Listing A.1 shows a example of

some operations in CGA using our library:

LISTING 5.2: Code example in CGA with Garamon

#include <iostream>

#include <cstdlib>

#include <c3ga/Mvec.hpp>

int main(){

c3ga::Mvec<double> mv1;

mv1[c3ga::scalar] = 1.0;

mv1[c3ga::E0] = 42.0;

std::cout << "mv1 : " << mv1 << std::endl;

c3ga::Mvec<double> mv2;

mv2[c3ga::E0] = 1.0;

mv2[c3ga::E1] = 2.0;

mv2 += c3ga::I<double>() + 2*c3ga::e01<double>();

std::cout << "mv2 : " << mv2 << std::endl << std::endl;

// some products

std::cout << "outer product : " << (mv1 ^ mv2) << std::endl;

std::cout << "inner product : " << (mv1 | mv2) << std::endl;

std::cout << "geometric product : " << (mv1 * mv2) << std::endl;

std::cout << "left contractiont : " << (mv1 < mv2) << std::endl;

std::cout << "right contractiont: " << (mv1 > mv2) << std::endl;

std::cout << std::endl;

// some tools

std::cout << "grade : " << mv1.grade() << std::endl;

std::cout << "norm : " << mv1.norm() << std::endl;

mv1.clear();

if(mv1.isEmpty()) std::cout << "mv1 is empty: ok" << std::endl;

return EXIT_SUCCESS;

}

Finally, since all the generated libraries are identified by a namespace, multiple GA libraries can

be used together as shown in Listing 5.3.
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LISTING 5.3: Code example with Garamon using both space time algebra and
algebra of a 3-dimensional vector space

#include <iostream>

#include <cstdlib>

#include <st3ga/Mvec.hpp>

#include <e3ga/Mvec.hpp>

int main(){

st3ga::Mvec<double> mv1 = ...;

e3ga::Mvec<double> mv2 = ...;

return EXIT_SUCCESS;

}

For example, one can think of checking that space-time bivectors of the space-time algebra

are isomorphic to vectors of a Euclidean space Geometric Algebra.

This latter thing yields a very flexible implementation. Indeed, flexibility requirements 1b, 1a are

fulfilled.

The organization of the generated library is simple. The generated code contains only header

files, including a Multivector class Mvec, as well as header files to compute the products of Ge-

ometric Algebra. Other header files are used for the storage of useful constants, namely Con-

stants.hpp. These classes’ configuration are shown Figure 5.1

Additional functionalities, including an implementation of the considered library can be seen in

the folder sample/. In this folder, one may find demonstration of some of the main functionalities

of the considered library as well as some tests. The folder doc/ contains all the files to generate

documentation of the library. Finally, note that the libraries are open source and the MIT license.

All this functionalities enable to fulfil the reading requirements 7a and 7b.

5.2 Performances

We conducted some tests on high quality consumer grade hardware over several platforms

(Ubuntu-16.04, MacOs-10.12 and Windows-10), with gcc-5.4, clang-9.0 and MinGW-7.2 compil-

ers. The compilers just need to be compatible with C++14. These tests mainly concern the speed

of the products, the size of the binary file, the size of the stored data and the dimension range. To

get a better understanding of the results, we compared Garamon with some of the most efficient

existing GA libraries in C++, Gaigen [34] and Versor [14].
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garamon_nameAlgebra

doc

src

nameAlgebra

BasisTransformations.hpp

Constants.hpp

DualCoefficients.hpp

Geometric.hpp

GeometricExplicit.hpp

Inner.hpp

InnerExplicit.hpp

Mvec.hpp

Outer.hpp

OuterExplicit.hpp

Utility.hpp

sample

LICENSE.txt

FIGURE 5.1: Garamon library directory tree

5.2.1 High dimensions

In this section, the term dimension d refers to the dimension of the vector space used to build a

GA composed of 2d elements. As stated in [34], the maximum dimension supported by Gaigen

is dimension 12. The tests we conducted on Versor showed that a single vector product could

run in an Euclidean GA at most in dimension 10, due to compilation memory overloads. This

maximum dimension falls to dimension 7 when the program tested involves various grades of

k-vectors and various associated products.

Garamon is designed to be compatible with high dimension algebras. Due to some technical

choices, Garamon has a hard-coded limit of dimension 31. However, in practice, while gener-

ating a library based on an Euclidean algebra of dimension 20 takes few seconds, generating a

library based on a conformal vector space (including basis changes) of the same dimension 20

may requires hours.

For practical applications, we conducted some tests on both Double Projective Geometric

Algebra of R4,4 [26] and Triple Conformal Geometric Algebra of R9,3 [28]. For higher dimen-

sional algebra, we tested Garamon on the Quadric Conformal Geometric Algebra [7] built over a

15—dimensional vector space for real-time applications.
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5.2.2 Speed computation

The speed computation tests were conducted on basic operations like outer products C = A ∧ B,

inner products C = A · B, or some combinations D = (A ∧ B) · C. For more complex operations,

we expect Gaalop [12] to provide some efficient code reduction such it becomes the best solution

every time.

For Gaalop, we followed its standard usage and generated a set of functions with general

signature like “void myProduct(A, B, C)”, that are clearly efficient since no memory allocation nor

memory copy are required. However, these functions are far from easy to use when combining

several products. For the other tested libraries, we used the already defined functions, such

as C = A∧ B. In most of the implementations, these operations require a memory allocation to

locally store the result, and a copy to the final variable.

For each tested libraries, the speed performance can vary according to the platform, the

compiler and the algebra dimension. However, the trend of these benchmarks tends to show

that Gaalop and Versor are almost every time the fastest. Garamon presents the same perfor-

mances as Gaigen, and surprisingly performs sometimes better that Gaalop on products such as

D = (A ∧ B) · C.

The code profiling shows that a large part of the product in Garamon is actually used for

the memory allocation. This situation is especially true when the result of a product has sev-

eral grades, like is some geometric products where the memory allocation is performed for all

independent grades and not once, like in Gaigen. The memory handling of Garamon, how-

ever, presents some good property when manipulating a large amount of data, as described in

the section 5.2.3. Finally, in a future version of Garamon, we may consider including meta-

programming, like in Versor, to speed up some computations in low dimensions.

5.2.3 Memory consumption

The data memory consumption tests were conducted by generating both a large number of ran-

dom vectors and bivectors. Let d be the dimension of the vector space supporting the algebra,

Table 5.1 and 5.2 show that the per-grade arrays has a memory storage roughly linear in d when

the full multivector has a memory complexity of O(2d).

TABLE 5.1: Memory requirement (in MB) to store 5.104 random vectors.

dimension 5 6 7 8 10 15
Gaigen 12.8 25.6 51.2 102.4 409.6 −
Versor 4.6 5.0 5.5 6.3 − −

Garamon 2.1 2.5 2.9 3.4 4.3 6.4
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TABLE 5.2: Memory requirement (in MB) to store 5.104 random bivectors.

dimension 5 6 7 8 10 15
Gaigen 12.8 25.6 51.20 102.4 409.6 −
Versor 7.9 11.8 16.6 22.1 − −

Garamon 5.3 7.9 11.2 15.3 24.7 57.6

In term of binary file size and as an indication, Garamon weights 2.6 MB in dimension 5 and

7.8MB in dimension 18. This binary includes a pre-compiled version for float and double.

5.3 Partial conclusion

We presented a Geometric Algebra library generator synthesizing C++ libraries implementing

Geometric Algebras of low and high dimensions for any arbitrary metrics. Our purpose is to

be as user-friendly as possible, without too much computation speed repercussions, and to have

a good behaviour in term of memory consumption. The libraries are generated from a simple

specification file. The “per grade” data structure used in Garamon is an efficient compromise be-

tween data storage, computation efficiency and user-friendliness. According to the base vector

space dimension, the generated specialized libraries are implemented either with full precom-

puted operations or also based on a new recursive scheme following a prefix tree multivector

representation for higher dimensions. An “upside down” reading of the prefix tree leads to re-

cursive products of the dual mutivector without any explicit dualization. Finally, Garamon can

handle any arbitrary algebra signatures with a numerically robust basis change implementation.

We consider the resulting library as an efficient tool to easily test and investigate GA algorithms.

Furthermore, due to both the flexibility and its computation efficiency, we could investigate and

test a new framework to represent and manipulate quadric surfaces in a 15-dimensional vector

space, namely Quadric Conformal Geometric Algebra. This new model is presented in the next

chapter. All these features of Garamon ensure that all the needs expressed at the beginning of

this chapter are fulfilled.
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Part II

Geometric algebra and quadrics
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The development of the library Garamon opened some lock, such that one could easily ex-

plore some computations in vector spaces whose dimension is higher than 12. We decided to

investigate new models to represent and manipulate quadric surfaces. Some Geometric Algebra

like the well-defined Conformal Geometric Algebra (CGA) constructs lines, circles, planes, and

spheres from control points just by using the outer product. As an example, a sphere in CGA is

expressed as the Geometric Algebra element S and 4 control points x1, x2, x3, x4 as:

S = x1 ∧ x2 ∧ x3 ∧ x4 (5.3.1)

There exist some Geometric Algebras to handle quadric surfaces, however, none of them build

general quadric surfaces from control points, in a similar way as Equation 5.3.1. In this part,

we present a novel Geometric Algebra framework, the Geometric Algebra of R9,6, to deal with

quadric surfaces where an arbitrary quadric surface is constructed by the outer product of points.

The proposed framework enables us not only to intuitively represent quadric surfaces but also

to construct objects using Conformal Geometric Algebra. Our proposed framework also pro-

vides the computation of the intersection of quadric surfaces, the normal vector, and the tangent

plane of a quadric surface. Models of Versor are discussed. Although the use of such high

dimensional space might appear computationally inefficient compared to other Geometric Al-

gebra framework, we prove that some operations are computationally more efficient using the

algebra of R9,6 than others in lower dimension. We go further in that direction by proposing a

mapping between the main Geometric Algebra models that makes computationally efficient the

main computer graphics operations required for quadrics.
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Chapter 6

Introduction

Following the Conformal Geometric Algebra (CGA) of G4,1
∗, and its well-defined properties [23],

the Geometric Algebra community recently started to explore new frameworks that work in

higher dimensional spaces. The motivation for this direction is to investigate the representa-

tion and manipulation of wider range of objects in an intuitive way. In particular, G3,3 can be

the support to define either a 3D projective geometry, as introduced by Dorst [21] or line geom-

etry defined by Klawitter [56]). Conics in R2 can be represented by the conic space defined by

Perwass [73] with G5,3. Conics in R2 may also be defined by the Double Conformal Geometric

Algebra (DCGA) with G6,2 introduced by Easter and Hitzer [27].

The possibility to construct surfaces as outer products of points pays particular attention.

In Geometric Algebra, this construction requires even higher dimensional vector space than for

conics. Briefly, a general quadric has 10 coefficients and 9 degrees of freedom. Therefore, 9 points

are enough to construct a general quadric surface. If we assume that a point is represented as a

1-vector, then the construction of a general quadrics Q using control points similarly as CGA is

constrained by the facts that one has to:

1. compute outer product between these 9 points,

2. check if a point lies in the resulting entity, meaning x ∧Q = 0.

Constraint 1 implies that 9-dimensional subspace has to be part of the algebra. Constraint 2 adds

one more subspace. It means that the dimension of the vector space is at least a 10-dimensional

space. Furthermore, one might want that the inner product between two points represents the

distance between the two points. This adds again extra null-basis vectors. This leads to a high

dimensional vector space.

Two major problems arise with these high dimensional vector spaces. These problems are in-

herent to the fact that the dimension of the algebra generated by any d-dimensional vector spaces
∗As a reminder the Geometric Algebra of Rp,q is denoted by Gp,q where p is the number of basis vectors squared

to +1 and q is that of basis vectors square to −1
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grows exponentially as they have 2d basis elements. The first problem is the lack of implemen-

tation that can be used to handle such algebras. This latter point was discussed in the previous

part and results in an efficient implementation of high dimensional vector space. The second

problem lies in the fact that the use of an algebra with 2d, d > 10 elements results in at least 1024

basis elements. Represent a general quadric with only 10 coefficients in a 1024-dimensional basis

vectors does not seem very efficient.

6.1 Contributions

This is our motivation for the development of a new model referred as Quadric Conformal Geo-

metric Algebra (QCGA). This model is an extension of CGA, specifically dedicated to quadric sur-

faces. The idea is to represent the objects in low dimensional subspaces of the algebra. QCGA is

capable of constructing quadric surfaces either using control points or implicit equations. More-

over, QCGA can compute the intersection of quadric surfaces, as well as, the surface tangent

and normal vectors at a point that lies in the quadric surface. We prove that some operations of

this model are computationally more efficient using QCGA than other frameworks of lower di-

mensions. We go further in that direction by proposing a mapping between the main Geometric

Algebra models that makes computationally efficient operations required for the manipulation

of quadrics.

This second part of the thesis is organized as follows. The first chapter presents the main state-

of-the-art methods to deals with quadric surfaces in Geometric Algebra. In addition, a study of

complexity is carried to compare the different frameworks. Then, we present QCGA, a study of

complexity is also performed. Finally, a new efficient framework is presented that is well suited

for the representation and manipulation of quadric surfaces.
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Chapter 7

Models of quadric surfaces with

Geometric Algebra

This chapter presents the main Geometric Algebra models to represent and manipulate quadric

surfaces. Furthermore, we aim at determining the most efficient Geometric Algebra model for

each of the main operations required in computer graphics. The purpose is to propose a Geomet-

ric Algebra model that allows to efficiently handle quadrics.

The considered operations over the surfaces are:

• checking if a point lies in a quadric surface,

• intersecting quadric and line,

• computing the normal vector (and tangent plane) of a surface at a given point.

One of the applications of such operations is to compute precise visualizations using ray-tracer [37].

A first framework to handle quadric surfaces was introduced thanks to the pioneering work of

Zamora [85]. This framework constructs a quadric surface from control points in G6,3. In this

model, an axis-aligned quadric q can be defined as:

Q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 (7.0.1)

The major drawback of this model is that it supports only axis-aligned quadric surfaces. Due to

this fact, we will not further detail this model.

There exist three main Geometric Algebra frameworks to manipulate general quadric sur-

faces. First, DCGA (Double Conformal Geometric Algebra) with G8,2 defined by Easter and

Hitzer [27]. Second, a framework of G4,4 as firstly introduced by Parkin [70] and developed

further by Du et al. [26]. The last one is our contribution, introduced in [7] and is a model of G9,6.
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7.1 Complexity estimation model

In order to compare the operations for these different frameworks, we need a computational

model. This requires to be able to determine the complexity of operations in each framework.

Using the complexity of the operations explained in the last part of this manuscript is well suited

when one wants to compare different methods to compute the products. Instead, our complexity

estimation is made through two simplifying assumptions.

First, let us consider the outer product between one homogeneous multivector whose number

of components is u and another homogeneous multivector whose number of components is v,

u, v ∈ N. We assume that an upper bound to the number of required products is at most uv

products, as shown in Equation 2.7.1.

The general Equation 1.4.6 is our base for the second assumption. Furthermore, we need to use

this formula for inner products between 1-vector and 2-vector as well as inner product between

two 1-vector. The first multivector has u non-zero components, and the second has v non-zero

components. Then using Equation 1.4.6, the inner product between two 1—vectors will result in

uv products. Whereas, the inner product between 1—vectors and 2-vectors requires two inner

products for each pair of components of the two multivectors. Thus, this inner product requires at

most 2uv products. These models will be used for determining the complexity of each operation.

Let us now explain in more details these models, we start with DCGA.

7.2 DCGA of G8,2

DCGA was presented by Hitzer and Easter [27] and aims at having entities representing both

quartic surfaces and quadric surfaces.

Basis and metric

In more details, the DCGA G8,2 is defined over a 10-dimensional vector space. The base vectors of

the space are basically divided into two groups: {eo1, e1, e2, e3, e∞1}, corresponding to the CGA

vectors defined in Chapter 1, and a copy of this basis {eo2, e4, e5, e6, e∞2}. The inner products

between them are defined in Table 7.1. Note that we highlighted in grey the two models of CGA

that are included in DCGA.

Point of DCGA

A point of DCGA whose Euclidean coordinates are (x, y, z) is defined as the outer product of two
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TABLE 7.1: Inner product between DCGA basis vectors.

eo1 e1 e2 e3 e∞1 eo2 e4 e5 e6 e∞2
eo1 0 0 0 0 −1 0 0 0 0 0
e1 0 1 0 0 0 0 0 0 0 0
e2 0 0 1 0 0 0 0 0 0 0
e3 0 0 0 1 0 0 0 0 0 0

e∞1 −1 0 0 0 0 0 0 0 0 0
eo2 0 0 0 0 0 0 0 0 0 −1
e4 0 0 0 0 0 0 1 0 0 0
e5 0 0 0 0 0 0 0 1 0 0
e6 0 0 0 0 0 0 0 0 1 0

e∞2 0 0 0 0 0 −1 0 0 0 0

CGA points with coordinates (x, y, z). By defining this two points x1 and x2 as:

x1 = eo1 + xe1 + ye2 + ze3 +
1
2 (x2 + y2 + z2)e∞1

x2 = eo2 + xe4 + ye5 + ze6 +
1
2 (x2 + y2 + z2)e∞2

(7.2.1)

The embedding of a DCGA point is defined as follows:

X = x1 ∧ x2 (7.2.2)

The development of this operation results in:

X = x2e1 ∧ e4 + y2e2 ∧ e5 + z2e3 ∧ e6 + xy(e1 ∧ e5 + e2 ∧ e4)

+xz(e1 ∧ e6 + e3 ∧ e4) + yz(e2 ∧ e6 + e3 ∧ e5)

+x(eo1 ∧ e4 + e1 ∧ eo2) + y(eo1 ∧ e5 + e2 ∧ eo2) + z(eo1 ∧ e6 + e3 ∧ eo2)

+eo1 ∧ eo2 +
1
2 (x2 + y2 + z2)(eo1 ∧ e∞2 + e∞1 ∧ eo2)

+ 1
2 x(x2 + y2 + z2)(e1 ∧ e∞2 + e∞1 ∧ e4) +

1
2 y(x2 + y2 + z2)(e2 ∧ e∞2 + e∞1 ∧ e5)

+ 1
2 z(x2 + y2 + z2)(e3 ∧ e∞2 + e∞1 ∧ e6) +

1
4 (x2 + y2 + z2)2e∞1 ∧ e∞2

(7.2.3)

This high number of components is due to the fact that the representation of a point of DCGA

was designed to not only define quadric surfaces but also quartic surfaces. To illustrate this, we

highlight the components that contribute to construct quadrics in red. The other components are

dedicated to the construction of quartics.

Quadrics

A general quadric merely consists in defining some operators that extract the components of X.

For a general quadric defined as:

ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + iz + j = 0 (7.2.4)
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This means that 4 operators are defined for the quadratic part:

Tx2= e4 ∧ e1 Ty2= e5 ∧ e2

Tz2= e6 ∧ e3 T1 = −e∞1 ∧ e∞2

(7.2.5)

along with the 3 operators for the linear part:

Tx = 1
2

(
e1 ∧ e∞2 + e∞1 ∧ e4

)
Ty = 1

2

(
e2 ∧ e∞2 + e∞1 ∧ e5

)
Tz = 1

2

(
e3 ∧ e∞2 + e∞1 ∧ e6

) (7.2.6)

and 3 operators for the cross terms:

Txy = 1
2

(
e5 ∧ e1 + e4 ∧ e2

)
Txz = 1

2

(
e6 ∧ e1 + e4 ∧ e3

)
Tyz = 1

2

(
e5 ∧ e3 + e6 ∧ e2

) (7.2.7)

Then, for example,

Tyz · X = yz (7.2.8)

A general quadric is defined as the bivector QDCGA with the following formula:

QDCGA = aTx2 + bTy2 + cTz2 + dTxy + eTyz + fTxz + gTx + hTy + iTz + jT1 (7.2.9)

Finally, we check that a point x is in a quadric if and only if:

qDCGA · X = 0 (7.2.10)

DCGA not only supports the definition of general quadrics but also some quartic surfaces like

Torus, cyclides (Dupin cyclides...).

Quadrics intersection

Plane tangent to a quadric

The tangent plane was defined using differential operators in DCGA. Let us consider a point X
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whose Euclidean coordinates are (x, y, z) and a DCGA quadric QDCGA defined as:

QDCGA = aTx2 + bTy2 + cTz2 + dTxy + eTyz + fTxz + gTx + hTy + iTz + jT1 (7.2.11)

The differential operators along the axis are defined as:

Dx= (e1 ∧ e∞1 + e4 ∧ e∞2)

Dy= (e2 ∧ e∞1 + e5 ∧ e∞2)

Dz= (e3 ∧ e∞1 + e6 ∧ e∞2)

(7.2.12)

Then, using the commutator product, noted as × and defined in Chapter 1, the following prop-

erties hold:
Dx ×QDCGA= 2aTx + dTy + eTz + gT1

Dy ×QDCGA= 2bTy + dTx + fTz + hT1

Dz ×QDCGA = 2cTz + eTx + fTy + iT1

(7.2.13)

This latter formula defines the normal vector to the quadric surface at any point of the surface. It

is computed using the normal vector n1 defined in the first copy CGA and n2 along the second

copy of the CGA basis vectors. n1 at the considered point can be defined as follows:

n1 = ((Dx ×QDCGA) · X)e1 + ((Dy ×QDCGA) · X)e2 + ((Dz ×QDCGA) · X)e3 (7.2.14)

Similarly, the normal vector n2 is:

n2 = ((Dx ×QDCGA) · X)e4 + ((Dy ×QDCGA) · X)e5 + ((Dz ×QDCGA) · X)e6 (7.2.15)

Now, the definition of the plane from normal vector is:

π = (n1 + de∞1) ∧ (n2 + de∞2) (7.2.16)

where d represents the orthogonal distance between the plane and the origin. Finally, the com-

putation of the orthogonal distance can be simply performed as follows:

d = n1 · x1 (7.2.17)

Where x1 is the point used to form the DCGA point x.

Quadric-line intersection
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DCGA also supports the construction of the intersection pp of a quadric qDCGA and a line l. A

line in DCGA can be defined as:

L = l1 ∧ l2 (7.2.18)

Where these two entities l1 and l2 can be expressed using the direction of the unit vector in CGA1

d1 and CGA2 d1 and a point of this line expressed in CGA1 x1 and CGA2 x2 as:

l1 = d1I−1
ε − (x1 · (d1I−1

ε1 )) (7.2.19)

and:

l2 = d2I−1
ε − (x2 · (d2I−1

ε1 )) (7.2.20)

Both d1Iε1 and d2Iε1 are 2-vectors, therefore, l is a 4-vector. Note that a line can similarly be

obtained by the intersection of two DCGA planes as:

l = π1 ∧π2 (7.2.21)

Finally, the intersection is computed as:

pp = qDCGA ∧ l (7.2.22)

Complexity of some major operations of DCGA

Let us first evaluate the computational cost of checking whether a point is on a quadric using the

model of 7.1. qDCGA has a total of 10 basis bivector components. For each basis bivector, at most

3 inner products (bivector ∧ bivector) are performed, please refer to the formula of the inner of

Chapter 1. Finally, the number of point component is 25. Thus, the product qDCGA · x require

25× 3× 10 = 750 products.

The cost of the computation of the tangent plane to a quadric corresponds to the cost of, first, the

normal vector n1 and second the tangent plane. Firstly, the normal vector is defined as:

n1 = ((Dx × qDCGA) · x)e1 + ((Dy × qDCGA) · x)e2 + ((Dz × qDCGA) · x)e3 (7.2.23)

Equation (7.2.13) defined Dx, Dy, Dz, and the commutator product of these operators with the

quadric results in a 7-component bivector. Indeed, the extractions operators Tx, Ty, Tz are 2-

components operator while T1 is a single component extraction operator. Each inner product
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with x then has a computational cost of 7× 25 = 175 products. This latter computation is re-

peated for each axis thus this results in 175× 3 = 525 products.

Second, the tangent plane is obtained by using the normal vector and the orthogonal distance

from the origin. The orthogonal distance is computed as:

d = n1 · x1 (7.2.24)

Thus, this requires the computation of 3 inner products. Finally, the tangent plane is the results

of the outer product:

Π = (n1 + de∞1) ∧ (n2 + de∞2) (7.2.25)

Both (n1 + de∞1) and (n2 + de∞2) are 4-components 1-vector. Thus, the computational cost of

the outer product is 4× 4 = 16. Hence, the total cost of the computation of the tangent plane is

525 + 16 = 541 products.

The cost of the computation of the intersection between a quadric and a line consists in evaluating

the cost of the outer product between a DCGA line L and the quadric of DCGA QDCGA. In the

previous section, we defined a line L as the 4-vector entity obtained by the outer product of the

planes as follows:

L = Π1 ∧Π2 (7.2.26)

A plane in DCGA is obtained as the outer product of two CGA planes whose number of com-

ponents is 4. The result of the outer product between the two CGA planes may have non-zero

components along the following components:

(e14, e15, e16, e1∞2, e24, e25, e26, e2∞2, e34, e35, e36, e3∞2, e∞14, e∞15, e∞16, e∞14, e∞1∞2) (7.2.27)

Then, computing the outer product between two planes may have some results along the follow-

ing basis quadvectors:

(e1245, e1246, e124∞2, e1256, e125∞2, e126∞2, e1345, e1346, e134∞2, e1356, e135∞2,

e136∞2, e1∞145, e1∞146, e1∞14∞2, e1∞156, e1∞15∞2, e1∞16∞2, e2345, e2346, e234∞2,

e2356, e235∞2, e236∞2, e2∞145, e2∞146, e2∞14∞2, e2∞156, e2∞15∞2, e2∞16∞2, e3∞145,

e3∞146, e3∞14∞2, e3∞156, e3∞15∞2, e3∞16∞2)

(7.2.28)
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This latter 4-vector has thus 36 components. Then, the outer product between this quadvector l

and the quadric can be performed as:

QDCGA ∧ L (7.2.29)

As the number of components of QDCGA is 25 and the number of components of L is 36. Then

the cost of the outer product is 25 × 36 = 900 products. The following table summarizes the

computational cost of the three features computed so far for DCGA.

TABLE 7.2: Computational features in number of Geometric Algebra operations
for DCGA

Feature DCGA

point is on a quadric 725

tangent plane 541

quadric line intersection 900

7.3 DPGA of G4,4

DPGA was adapted from the approach of Parkin [70] in 2012 and firstly introduced in 2015 by

Goldman and Mann [38] and further developed by Du and Goldman and Mann [26].

Basis and metric

DPGA G4,4 is defined over a 8-dimensional vector space. In a similar way to DCGA, the base

vectors of the space are divided into two groups: {w0, w1, w2, w3} (corresponding to the pro-

jective Geometric Algebra vectors), and a copy of this basis {w∗0 , w∗1 , w∗2 , w∗3} such that wiw∗i =

0.5 + wi ∧w∗i , ∀i ∈ {0, 1, 2, 3}. To have more details, we show the inner products between any

basis vectors in Table 7.3.

TABLE 7.3: Inner product between DPGA basis vectors.

w0 w1 w2 w3 w∗0 w∗1 w∗2 w∗3
w0 0 0 0 0 0.5 0 0 0
w1 0 0 0 0 0 0.5 0 0
w2 0 0 0 0 0 0 0.5 0
w3 0 0 0 0 0 0 0 0.5
w∗0 0.5 0 0 0 0 0 0 0
w∗1 0 0.5 0 0 0 0 0 0
w∗2 0 0 0.5 0 0 0 0 0
w∗3 0 0 0 0.5 0 0 0 0

Point of DPGA
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In DPGA, the entity representing a point whose Euclidean coordinates are (x, y, z) has two defi-

nitions, namely a primal and dual. Both definitions are the base to construct quadrics by means

of sandwiching product. The definitions of the points are:

p = xw0 + yw1 + zw2 + ww3

p∗ = xw∗0 + yw∗1 + zw∗2 + ww∗3
(7.3.1)

Note that the dual definition denotes the fact that:

wi ·w∗j =
1
2

δi,j ∀i, j = 0, · · · 3 (7.3.2)

Where δi,j = 1 if i = j, else 0. This corresponds to the condition of the dual stated in Section 11

of [20].

Quadrics

Again, for a general quadric defined as:

ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + iz + j = 0 (7.3.3)

A quadric in DPGA is the bivector QDPGA defined as follows:

QDPGA =4aw∗0 ∧w0 + 4bw∗1 ∧w1 + 4cw∗2 ∧w2 + 4jw∗3 ∧w3 + 2d(w∗0 ∧w1 + w∗1 ∧w0)

+2e(w∗0 ∧w2 + w∗2 ∧w0) + 2f(w∗1 ∧w2 + w∗2 ∧w1) + 2g(w∗0 ∧w3 + w∗3 ∧w0)

+2h(w∗1 ∧w3 + w∗3 ∧w1) + 2i(w∗2 ∧w3 + w∗3 ∧w2)

(7.3.4)

Finally, a point (x, y, z) is in the quadric QDPGA if and only if

p ·QDPGA · p∗ = 0 (7.3.5)

Let us call fDPGA = p · QDPGA · p∗. Then to investigate numerical properties of the quadric

computation, we develop the formula p ·QDPGA · p∗:

fDPGA = p · qDPGA · p∗

=
(

2axw0 + dxw1 + exw2 + gxw3 + 2byw1 + dyw0 + fyw2 + hyw3

+2czw2 + ezw0 + fzw1 + izw3 + 2jw3 + gw0 + hw1 + iw2

)
· p∗

=
(
(2ax + dy + ez + g)w0 + (2by + dx + fz + h)w1

+(2cz + ex + fy + i)w2 + (iz + gx + hy + 2j)w3)
)
· p∗

(7.3.6)
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The last inner product results in:

fDPGA = p · qDPGA · p∗

= ax2 + 0.5dxy + 0.5exz + 0.5gx + by2 + 0.5dxy + 0.5fyz + 0.5hy

+cz2 + 0.5exz + 0.5fyz + 0.5iz + 0.5iz + 0.5gx + 0.5hy + j

= ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j

(7.3.7)

This latter development is the base to determine the number of operations in the computation

of p ·QDPGA · p∗.

Plane tangent to a quadric

In a similar way as CGA, DPGA supports the computation of the tangent plane π∗ to a quadric

QDPGA at a dual point p∗ as follows:

π∗ = QDPGA · p∗ (7.3.8)

Quadric-line intersection

DPGA also supports the quadric-line intersection. Given a line defined as the primal and dual

L = x1 ∧ x2 and L∗ = x∗1 ∧ x∗2 and the quadric bivector QDPGA. The intersection bivector called

Pp is defined as follows:

Pp = (l∗ ∧ qDPGA ∧ l) · I (7.3.9)

where I is the pseudoscalar of G4,4 defined as:

I = w0 ∧w1 ∧w2 ∧w3 ∧w∗0 ∧w∗1 ∧w∗2 ∧w∗3 (7.3.10)

Complexity of some major operations of DPGA

QDPGA has a total of 16 basis bivector components. For each basis bivector, 2 inner products

are performed. Thus, the first product p ·QDCGA will require 4× 2× 16 = 128 inner products.

As previously seen, the resulting entity is a vector with 4 components. Hence, the second inner

product requires 4× 4 = 16 products. This results in 144 products.

Let us now evaluate the cost of the intersection between a quadric qDPGA and a line L and L∗. The

line L∗ is obtained by the outer product of two points x1 and x2 whose number of components is



7.3. DPGA of G4,4 125

4. Thus, a line L has 6 components along the bivector basis:

(w0 ∧w1, w0 ∧w2, w0 ∧w3, w1 ∧w2, w1 ∧w3, w2 ∧w3) (7.3.11)

and a line L∗ has the following bivector basis components:

(w∗0 ∧w∗1 , w∗0 ∧w∗2 , w∗0 ∧w∗3 , w∗1 ∧w∗2 , w∗1 ∧w∗3 , w∗2 ∧w∗3) (7.3.12)

The number of components of the quadric is 16 and the number of components of the line is 6.

Then, the computational cost of the outer product l∗ ∧QDPGA is 6× 16 = 96 outer products. The

result is a 4-vector and may have components along the quadvector basis:

(w∗0 ∧w∗1 ∧w∗2 ∧w0, w∗0 ∧w∗1 ∧w∗2 ∧w1, w∗0 ∧w∗1 ∧w∗2 ∧w2, w∗0 ∧w∗1 ∧w∗2 ∧w3

w∗0 ∧w∗1 ∧w∗3 ∧w0, w∗0 ∧w∗1 ∧w∗3 ∧w1, w∗0 ∧w∗1 ∧w∗3 ∧w2, w∗0 ∧w∗1 ∧w∗3 ∧w3

w∗0 ∧w∗2 ∧w∗3 ∧w0, w∗0 ∧w∗2 ∧w∗3 ∧w1, w∗0 ∧w∗2 ∧w∗3 ∧w2, w∗0 ∧w∗2 ∧w∗3 ∧w3

w∗1 ∧w∗2 ∧w∗3 ∧w0, w∗1 ∧w∗2 ∧w∗3 ∧w1, w∗1 ∧w∗2 ∧w∗3 ∧w2, w∗1 ∧w∗2 ∧w∗3 ∧w3)

(7.3.13)

Thus, the resulting entity has 16 components. Furthermore, the line l has 6 components. Hence,

the cost of the final outer product is 16× 6 = 96 outer products. Finally, the total operation cost

is thus 96 + 96 = 192 products.

The cost of the computation of the tangent plane at a point p is the cost of the following product:

π∗ = QDPGA · p∗ (7.3.14)

Considering the fact that the number of components of p∗ is 4 and the number of components of

QDPGA is 16. Then the computational cost of the computation of the tangent plane is 16× 4 = 64

products.

The following table summarizes the computational cost of the three features computed so far for

DPGA.

TABLE 7.4: Computational features in number of Geometric Algebra operations
for DPGA

Feature DPGA

point is on a quadric 144

tangent plane 64

quadric line intersection 192
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Chapter 8

Quadric conformal Geometric

Algebra

Our proposed framework, referred to as Quadric Conformal Geometric Algebra (QCGA) here-

after, is an extension of CGA, specifically dedicated to quadric surfaces. Through generalizing

the conic construction in R2 by Perwass [73], QCGA is capable of constructing quadric surfaces

using either control points or implicit equations. Moreover, QCGA can compute the intersection

of quadric surfaces, the surface tangent, and normal vectors for a quadric surface point.

8.1 QCGA definition

This section introduces QCGA. We specify its basis vectors and give the definition of a point.

8.1.1 QCGA basis and metric

A first advantage of this algebra is to construct general quadric as the outer product of control

points. Algebraically, a quadric surface requires at least a 10-dimensional space as stated in

Section 6. In a similar way as CGA, we add some null basis vectors such that the blades and

operators of this algebra have geometrical meanings. The result is QCGA G9,6, defined over a

15-dimensional vector space. The base vectors of the space are divided into three groups: {e1,

e2, e3}, corresponding to the Euclidean vectors in R3, {eo1, eo2, eo3, eo4, eo5, eo6}, and {e∞1, e∞2,

e∞3, e∞4, e∞5, e∞6}. These basis vectors are the support for bringing geometric intuitions to the

algebra. The inner products between them are defined in Table 8.1.

As stated in Section 4.5, a diagonal metric matrix is useful in order to implement the algebra.

The algebra G9,6 generated by the Euclidean basis {e1, e2, e3}, and 6 basis vectors {e+1, e+2, e+3,

e+4, e+5, e+6} each of which is squared to +1 along with six other basis vectors {e−1, e−2, e−1,

e−4, e−5, e−6} each of which is squared to −1 corresponds to a diagonal metric matrix. The
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TABLE 8.1: Inner product between QCGA basis vectors. The dots denote some
inner products that result to 0.

e1 e2 e3 eo1 e∞1 eo2 e∞2 eo3 e∞3 eo4 e∞4 eo5 e∞5 eo6 e∞6
e1 1 0 0 · · · · · · · · · · · ·
e2 0 1 0 · · · · · · · · · · · ·
e3 0 0 1 · · · · · · · · · · · ·

eo1 · · · 0 −1 · · · · · · · · · ·
e∞1 · · · −1 0 · · · · · · · · · ·
eo2 · · · · · 0 −1 · · · · · · · ·

e∞2 · · · · · −1 0 · · · · · · · ·
eo3 · · · · · · · 0 −1 · · · · · ·

e∞3 · · · · · · · −1 0 · · · · · ·
eo4 · · · · · · · · · 0 −1 · · · ·

e∞4 · · · · · · · · · −1 0 · · · ·
eo5 · · · · · · · · · · · 0 −1 · ·

e∞5 · · · · · · · · · · · −1 0 · ·
eo6 · · · · · · · · · · · · · 0 −1

e∞6 · · · · · · · · · · · · · −1 0

transformation from the original basis to this diagonal metric can be defined as follows:

e∞i = e+i + e−i eoi =
1
2
(e−i − e+i) i ∈ {1, · · · , 6} (8.1.1)

To simplify the computations, we define the null basis vector e∞ representing the point at infinity:

e∞ = 1
3 (e∞1 + e∞2 + e∞3) (8.1.2)

as well as the null basis vectors:

eo = eo1 + eo2 + eo3 (8.1.3)

note that e∞ · eo = −1 and e2
∞ = e2

o = 0.

To define geometric primitives, we introduce the following 6-blades:

I∞= e∞1 ∧ e∞2 ∧ e∞3 ∧ e∞4 ∧ e∞5 ∧ e∞6,

Io = eo1 ∧ eo2 ∧ eo3 ∧ eo4 ∧ eo5 ∧ eo6

(8.1.4)

the following 5-blades:

IB∞= (e∞1 − e∞2) ∧ (e∞2 − e∞3) ∧ e∞4 ∧ e∞5 ∧ e∞6

IBo = (eo1 − eo2) ∧ (eo2 − eo3) ∧ eo4 ∧ eo5 ∧ eo6

(8.1.5)



8.1. QCGA definition 129

These blades have very useful properties that will be highlighted in the sequel of this chapter.

We also define the pseudo-scalar of R3:

Iε = e1 ∧ e2 ∧ e3 (8.1.6)

and the pseudo-scalar:

I = Iε ∧ I∞ ∧ Io (8.1.7)

The inverse of the pseudo-scalar results in:

I−1 = −I (8.1.8)

As stated in the first chapter, the dual of a multivector indicates division by the pseudo-scalar,

e.g., A∗ = −AI, A = A∗I. From [48] and in Equation (1.19) of [54], we have the useful duality

between outer and inner products of non-scalar blades A and B in Geometric Algebra:

(A ∧ B)∗ = A · B∗, A ∧ (B∗) = (A · B)∗, A ∧ (BI) = (A · B)I (8.1.9)

which indicates that

A ∧ B = 0 ⇔ a · b∗ = 0, A · B = 0 ⇔ A ∧ B∗ = 0 (8.1.10)

8.1.2 Point in QCGA

The construction of the Geometric Algebra element representing a point x of QCGA is specifically

designed to both define quadric surfaces and reproduce the convenient geometric properties of a

CGA point. Namely, the element corresponding to the Euclidean point xε = xe1 + ye2 + ze3 ∈ R3

is defined as

x = xε +
1
2 (x2e∞1 + y2e∞2 + z2e∞3) + xye∞4 + xze∞5 + yze∞6 + eo (8.1.11)

The null vectors eo4, eo5, eo6 are not present in the definition of the point. This is to keep the con-

venient properties of CGA points, namely, the inner product between two points is proportional
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to the squared distance between them. Let x1 and x2 be two points, their inner product is

x1 · x2 =
(

x1e1 + y1e2 + z1e3 +
1
2

x2
1e∞1 +

1
2

y2
1e∞2 +

1
2

z2
1e∞3+

x1y1e∞4 + x1z1e∞5 + y1z1e∞6 + eo

)
·(

x2e1 + y2e2 + z2e3 +
1
2

x2
2e∞1 +

1
2

y2
2e∞2 +

1
2

z2
2e∞3+

x2y2e∞4 + x2z2e∞5 + y2z2e∞6 + eo

)
(8.1.12)

from which together with Table 8.1, it follows that

x1 · x2 =
(

x1x2 + y1y2 + z1z2 −
1
2

x2
1 −

1
2

x2
2 −

1
2

y2
1 −

1
2

y2
2 −

1
2

z2
1 −

1
2

z2
2

)
= −1

2
‖x1ε − x2ε‖2 (8.1.13)

We see that the inner product is equivalent to the minus half of the squared Euclidean distance

between x1 and x2.

8.1.3 Normalization

It is worth mentioning that the properties previously obtained requires that the three components

eo1, eo2, eo3 are normalized, or equivalently the eo component has to be normalized. This also

means that any scaled point has to represent the same point.

To fulfil this requirement, we define the normalization of the entity representing points.

Proposition 8.1.1. For QCGA point x, the normalization is merely computed through an averaging of

eo1, eo2, eo3 components thus of eo component, namely as:

− x
x · e∞

(8.1.14)

Proof. A scale α on x acts the same way on all null basis vectors of x:

αx = αxε +
1
2 α(x2e∞1 + y2we∞2 + z2e∞3) + xyαe∞4 + xzαe∞5 + yzαe∞6

+αeo1 + αeo2 + αeo3

(8.1.15)
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The metric of QCGA indicates (see Table 8.1):

αx · e∞1 = −α

αx · e∞2 = −α

αx · e∞3 = −α

(8.1.16)

Thus, if α 6= 0 :
−3αx

αx · (e∞1 + e∞2 + e∞3)
· e∞1 = −−3αx

−3α · e∞1

= x · e∞1 = −1
(8.1.17)

A similar result is obtained with e∞2 and e∞3:

−3αx
αx · (e∞1 + e∞2 + e∞3)

· e∞2 = x · e∞2 = −1 (8.1.18)

−3αx
αx · (e∞1 + e∞2 + e∞3)

· e∞3 = x · e∞3 = −1 (8.1.19)

Thus, we checked that for any scaled points x1, x2:

x1

x1 · e∞
· x2

x2 · e∞
= −1

2
‖x1ε − x2ε‖2 (8.1.20)

8.1.4 Embedded of CGA points

Proposition 8.1.2. CGA points are included in the QCGA points. Indeed, the outer product between a

QCGA point x with IB∞ and IBo can be rewritten as an equivalent of the CGA point. In other words:

x ∧ IB∞ ∧ IBo =
(

xε +
1
2 x2

εe∞ + eo

)
∧ IB∞ ∧ IBo (8.1.21)

Proof. First the outer product between x and IB∞ removes all the e∞4, e∞5, e∞6 components, namely:

x ∧ IB∞ ∧ IBo =
(

xε +
1
2
(

x2e∞1 + y2e∞2 + z2e∞3
)
+ eo

)
∧ IB∞ ∧ IBo (8.1.22)

Then, on one hand, focusing on the 1
2
(

x2e∞1 + y2e∞2 + z2e∞3
)
∧ IB∞ ∧ IBo part, results in:

1
2
(

x2e∞1 + y2e∞2 + z2e∞3
)
∧ IB∞ ∧ IBo = 1

2
(
x2 + y2 + z2)e∞1 ∧ e∞2

∧e∞3 ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo
(8.1.23)
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On the other hand:

1
2
(

x2 + y2 + z2) 1
3
(
e∞1 + e∞2 + e∞3

)
∧ IB∞ ∧ IBo = 1

2
(
x2 + y2 + z2)e∞1 ∧ e∞2

∧e∞3 ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo
(8.1.24)

Thus, this results in:

x ∧ IB∞ ∧ IBo =
(

xε +
1
2 x2

εe∞ + eo

)
∧ IB∞ ∧ IBo (8.1.25)

Finally, the outer product between a point of QCGA with both IB∞ and IBo can be replaced by

an equivalent of a CGA point xC as:

xC =
(

xε +
1
2 x2

εe∞ + eo

)
∧ IB∞ ∧ IBo (I

B
∞ ∧ IBo )

−1 (8.1.26)

Note that the subscript C symbolizes the fact that it is an equivalent of a CGA point.

8.2 Round objects of QCGA

As seen a CGA point is well embedded in QCGA, thus the objects defined in CGA are also

defined in QCGA. We define round objects in an equivalent way as in CGA using points xC in

the primal.

8.2.1 Sphere

8.2.1.1 Primal representation of a sphere

As in CGA, we define a sphere S using four points as the following 14-blade:

S = x1 ∧ x2 ∧ x3 ∧ x4 ∧ IB∞ ∧ IBo (8.2.1)

Using Equation (8.1.21), this can be rewritten as:

S = xC1 ∧ xC2 ∧ xC3 ∧ xC4 ∧ IB∞ ∧ IBo (8.2.2)
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The development of the above Equation with respect to xC4 yields:

S = xC1 ∧ xC2 ∧ xC3 ∧
(1

2
(x2

4εe∞)IB∞ ∧ IBo − 3IB∞ ∧ Io + x4εIB∞ ∧ IBo
)

(8.2.3)

Then, the development with xC3 gives:

S =xC1 ∧ xC2 ∧
(

x3ε ∧ x4εIBo ∧ IB∞ + 3(x3ε − x4ε)Io ∧ IB∞+ (8.2.4)

1
2
‖x4ε‖2 x3εI∞ ∧ IBo −

1
2
‖x3ε‖2 x4εI∞ ∧ IBo + 3

2 (‖x4ε‖2 − ‖x3ε‖2)Io ∧ I∞

)

Again, we remark that the resulting entity has similarities with point pair of CGA. More precisely,

let cε be the Euclidean midpoint between the two entities x3 and x4, dε be the unit vector from

x3 to x4, and r be the half of the Euclidean distance between the two points in the exactly same

fashion as Hitzer et al in [54], namely:

2r = |x3ε − x4ε| , dε =
x3ε − x4ε

2r
, cε =

x3ε + x4ε

2
. (8.2.5)

Then, (8.2.4) is rewritten by

S =xC1 ∧ xC2∧ (8.2.6)

2r
(

dε ∧ cε IBo ∧ IB∞ + 3dε Io ∧ IB∞ +
1
2
(
(c2

ε + r2)dε − 2cεcε · dε

)
I∞ ∧ IBo

)

The bottom part corresponds to a point pair, as defined in [54], that belongs to the round object

family. Applying the same development to the two points x1 and x2 still results in round objects:

S = −1
6

(
‖xcε‖2 − r2

)
Iε ∧ I∞ ∧ IBo + e123 ∧ IB∞ ∧ Io + (xcεIε) ∧ I∞ ∧ Io. (8.2.7)

Note that xcε corresponds to the center of the sphere and r to its radius. It can be further simplified

into:

S =
(
xC −

1
2

r2e∞
)
I (8.2.8)

which is dualized to

S∗ = xC −
1
2

r2e∞ (8.2.9)

Proposition 8.2.1. A point x lies on the sphere s iff x ∧ S = 0.
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Proof. Since the components e∞4, e∞5 and e∞6 of x are removed by the outer product with s in

(8.2.4), we ignore them to obtain

x ∧ S = x ∧ (S∗I) = x · S∗ I (8.2.10)

=
(
xε + eo +

1
2

x2e∞1 +
1
2

y2e∞2 +
1
2

z2e∞3
)
·
(
x′c −

1
2

r2e∞
)
I,

which is rewritten by

x ∧ s =

(
xxc + yyc + zzc −

(
1
2 x2

c − 1
6 r2
)
−
(

1
2 y2

c − 1
6 r2
)
−
(

1
2 z2

c − 1
6 r2
)

− 1
2 x2 − 1

2 y2 − 1
2 z2
)

I = 0
(8.2.11)

Which is equivalent to

xxc + yyc + zzc − 1
2 x2

c − 1
2 y2

c − 1
2 z2

c = − 1
2 r2

⇔ − 1
2 (x− xc)2 + (y− yc)2 + (z− zc)2 = 1

2 r2
(8.2.12)

Thus resulting in the implicit equation of a sphere as:

(x− xc)
2 + (y− yc)

2 + (z− zc)
2 = r2 (8.2.13)

8.2.1.2 Dual representation of a sphere

The dualization of the primal sphere s gives:

S∗ = x′c −
1
2

r2e∞ (8.2.14)

Proposition 8.2.2. A point x lies on the dual sphere S∗ iff x · s∗ = 0.

Proof. Consequence of the relations between the outer, inner and dualization as explained in

Equation (8.1.10).

Now that we studied the round objects, let us expose the definition of the plane, the line, and

the sphere to show the similarities between these flat objects in CGA and their counterparts in

QCGA.
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8.3 Flat objects

As defined in Chapter 1, flat objects can be seen as round objects with one point sent at infinity,

thus replaced by the e∞. This also holds for QCGA.

Proposition 8.3.1. To achieve this in QCGA, we use the fact that:

e∞ ∧ IB∞ ∧ IBo = I∞ ∧ IBo (8.3.1)

Proof. Using the definition (8.1.2) of e∞ and the distributivity of the outer product results in:

e∞ ∧ IB∞ ∧ IBo = 1
3 (e∞1 + e∞2 + e∞3) ∧ IB∞ ∧ IBo

= 1
3 (3e∞1 ∧ e∞2 ∧ e∞3) ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo

= e∞1 ∧ e∞2 ∧ e∞3 ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo

= I∞ ∧ IBo

(8.3.2)

8.3.1 Plane

8.3.1.1 Primal representation of a plane

A plane π in QCGA is computed using outer product from 3 linearly independent points x1, x2,

x3 on the plane and a point at infinity as:

Π = x1 ∧ x2 ∧ x3 ∧ e∞ ∧ IB∞ ∧ IBo (8.3.3)

This construction will be reproduced for the other elements representing geometric objects.

The multivector Π corresponds to the primal form of a plane in QCGA, with grade 14 and com-

posed by six components. The last three components have the same coefficient and thus can be

combined, resulting in a form defined with four coefficients xn, yn, zn and h. These coefficients

have geometric meanings that are now highlighted. The development of the formula then results

in:

Π =
(

xne23 − yne13 + zne12

)
I∞ ∧ Io

− h
3

e123I∞ ∧
(

eo2o3 − eo1o3 + eo1o2

)
∧ eo4o5o6. (8.3.4)

Proposition 8.3.2. A point x with Euclidean coordinates xε lies on the plane Π iff x ∧Π = 0.
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Proof.

x ∧Π =
(

xe1 + ye2 + ze3 +
1
2

x2e∞1 +
1
2

y2e∞2 +
1
2

z2e∞3

+ xye∞4 + xze∞5 + yze∞6 + eo

)
∧
(
(xne23 − yne13 + zne12)I∞ ∧ Io

− h
3

e123I∞ ∧ (eo2o3 − eo1o3 + eo1o2) ∧ eo4o5o6

)
. (8.3.5)

Using the distributivity and the anti-commutativity of the outer product, we obtain

x ∧Π =
(
xxn + yyn + zzn −

1
3

h(1 + 1 + 1)
)

I

=
(
xxn + yyn + zzn − h

)
I

= (xε · nε − h) I, (8.3.6)

which corresponds to the Hessian form of the plane of Euclidean normal nε = xne1 +yne2 + zne3

with orthogonal distance h from the origin.

8.3.1.2 Dual representation of a plane

The dualization of the primal form of the plane is

Π∗ = nε +
1
3

h(e∞1 + e∞2 + e∞3) (8.3.7)

Proposition 8.3.3. A point x with Euclidean coordinates xε lies on the dual plane Π∗ iff x ·Π∗ = 0.

Proof. Consequence of the relations between the outer, inner and dualization as explained in

Equation (8.1.10).

Because of (8.1.13), a plane can be also obtained as the bisection plane from the difference of two

points x1 and x2 in a similar way as in CGA.

Proposition 8.3.4. The dual plane

Π∗ = x1 − x2 (8.3.8)

is the dual orthogonal bisecting plane between the points x1 and x2.

Proof. From Proposition 8.3.3, a point x on Π∗ satisfies x ·Π∗ = 0.

x · (x1 − x2) = x · x1 − x · x2 = 0 (8.3.9)
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As seen in (8.1.13), the inner product between two points results in the squared Euclidean dis-

tance between the two points. We thus have

x · (x1 − x2) = 0 ⇔ ‖xε − x1ε‖2 = ‖xε − x2ε‖2 (8.3.10)

This corresponds to the equation of the orthogonal bisecting dual plane between x1ε and x2ε.

8.3.2 Line

Primal representation of a line

A primal line L is a 13-vector constructed from two linearly independent points x1 and x2 and a

point at infinity in a similar way as in CGA:

L = x1 ∧ x2 ∧ e∞ ∧ IB∞ ∧ IBo (8.3.11)

Equations (8.3.1) and (8.1.21) yields:

l = xC1 ∧ xC2 ∧ I∞ ∧ IBo (8.3.12)

Furthermore, the outer product between the 6−vector I∞ and the two points xC1 and xC2 remove

all their e∞i components (i ∈ {1, · · · , 6}). For the clarity purpose, (8.3.12) is simplified “in

advance” as:

L = xC1 ∧ xC2 ∧ I∞ ∧ (eo1 − eo2) ∧ (eo2 − eo3) ∧ eo4o5o6

= xC1 ∧
(

xε2 ∧ (eo1 − eo2) ∧ (eo2 − eo3) + 3eo1 ∧ eo2 ∧ eo3

)
∧ I∞ ∧ eo4 ∧ eo5 ∧ eo6

=
(
3eo1 ∧ eo2 ∧ eo3 ∧ (xε2 − xε1) + xε1 ∧ xε2 ∧ (eo1 − eo2) ∧ (eo2 − eo3)

)
∧ I∞ ∧ eo4 ∧ eo5 ∧ eo6 (8.3.13)

Letting m = xε2 − xε1 and n = xε1 ∧ xε2 gives

L =
(
3eo1 ∧ eo2 ∧ eo3 ∧m + n ∧ (eo1o2 − eo1o3 + eo2o3)

)
∧ I∞ ∧ eo4o5o6

= −3 m I∞ ∧ Io + n I∞ ∧ IBo (8.3.14)

Note that m and n correspond to the 6 Plücker coefficients of a line in R3. More precisely, m is

the support vector of the line and n is its moment.

Proposition 8.3.5. A point x with Euclidean coordinates xε lies on the line L iff x ∧ L = 0.
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Proof.

x ∧ L = xC ∧ (−3 m I∞ ∧ Io + n I∞ ∧ IBo )

= −3xε ∧m I∞ ∧ Io + xε ∧ n I∞ ∧ IBo + n I∞ ∧
(
(eo1 + eo2 + eo3) ∧ IBo

)
= −3(xε ∧m− n) I∞ ∧ Io + xε ∧ n I∞ ∧ IBo (8.3.15)

The 6-blade I∞ ∧ Io and the 5-blade I∞ ∧ IBo are linearly independent. Therefore, x∧ L = 0 yields

x ∧ L = 0⇔

 xε ∧m= n

xε ∧ n = 0
(8.3.16)

As xε, m and n are Euclidean entities, (8.3.16) corresponds to the Plücker equations of a line as

mentioned in [55].

Dual representation of a line

Dualizing the entity l consists in computing with duals:

L∗ = (−3 m I∞ ∧ Io + n I∞ ∧ IBo )(−I)

= 3 m Iε + (e∞3 + e∞2 + e∞1) ∧ n Iε (8.3.17)

Proposition 8.3.6. A point x lies on the dual line L∗ iff x · L∗ = 0.

Proof. Consequence of the relations between the outer, inner and dualization as explained in

Equation (8.1.10).

Note that a dual line L∗ is also constructed by the intersection of two dual planes as follows:

L∗ = Π∗1 ∧Π∗2 (8.3.18)

8.4 Quadric surfaces

This section describes how QCGA handles the quadric surface. All the QCGA objects defined in

Section 8.2 are associated with basis blades in a similar way as CGA with flat point. Going further

in this direction and replacing null basis blades by points results in other geometric objects. We

can then obtain general quadric surfaces.
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8.4.1 Primal representation of a quadric surface

The implicit formula of a quadric surface in R3 is

F(x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0 (8.4.1)

A quadric surface is constructed as the outer product of points. This consists in replacing the

blade IB∞ in Equation 8.2.3 by 5 points. In other words, it consists in computing the outer product

of 9 points and filling the 6 remaining vectors with null basis vectors as follows:

Q = x1 ∧ x2 ∧ · · · ∧ x9 ∧ IBo (8.4.2)

The multivector q corresponds to the primal form of a quadric surface with grade 14 and 12

components. Again 3 of these components have the same coefficient and can be combined into

the form defined by 10 coefficients a, b, ..., j:

Q = e123

((
2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6

)
· I∞

)
∧ Io

+
(
ge1 + he2 + ie3

)
e123 I∞ ∧ Io +

j
3

e123 I∞ ∧
(
(e∞1 + e∞2 + e∞3) · Io

)
=

(
−
(
2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6

)
+
(
ge1 + he2 + ie3

)
− j

3
(
e∞1 + e∞2 + e∞3

))
I = q∗I, (8.4.3)

where in the second equality we used the duality property. The expression for the dual vector is

therefore

Q∗ = −
(
2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6

)
+
(
ge1 + he2 + ie3

)
− j

3
(e∞1 + e∞2 + e∞3). (8.4.4)

Proposition 8.4.1. A point x lies on the quadric surface Q iff x ∧Q = 0.
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Proof.

x ∧Q = x ∧ (Q∗I) = (x ·Q∗)I

=

(
x · −

(
2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6

)
+
(
ge1 + he2 + ie3

)
− j

3
(e∞1 + e∞2 + e∞3)

)
I

=
(
ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j

)
I. (8.4.5)

This corresponds to the formula representing a general quadric surface.

8.4.2 Representation of a primal axis-aligned quadric surface

Up to now, we defined general quadrics using the outer product of 9 points. For simplicity

purpose, one might prefer to define axis-aligned quadrics from points. The equation of an axis-

aligned quadric is as follows:

F(x, y, z) = ax2 + by2 + cz2 + gx + hy + iz + j = 0. (8.4.6)

On the one hand, this equation has 7 coefficients and 6 degrees of freedom. An axis-aligned

quadric can then be constructed by computing the outer product of 6 points.

On the other hand, one has to remove the cross terms xy, xz, yz in the representation of points

to satisfy Equation 8.4.6. To achieve this, our solution is to compute the outer product with

e∞4, e∞5, e∞6. Indeed, one can remark that any point x satisfy:

x ∧ e∞4 ∧ e∞5 ∧ e∞6 =
(

eo + xε +
1
2
(
x2e∞1 + y2e∞2 + z2e∞3

))
∧ e∞4 ∧ e∞5 ∧ e∞6 (8.4.7)

Thus, one can consider that an axis aligned quadric is somehow a general quadric where 3 points

are sent at infinity the following way (highlighted in red ):

Q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo (8.4.8)

This multivector Q corresponds to the primal form of a quadric surface with grade 14, outer

product of 6 points with 3 e∞ basis vectors and the 5-vector IBo and this quadric has 9 compo-

nents. For the same reason as in the construction of the general quadric, we can combine three

components which have the same coefficient. Furthermore, computing the outer product with

the basis vectors e∞4, e∞5, e∞6 removes the components e∞4, e∞5, e∞6 of each singular point. By
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combining the outer product of such points with null basis vectors results in the form defined by

the 7 coefficients a, b, c, g, h, i, j as:

Q = e123

(
(2aeo1 + 2beo2 + 2ceo3) · I∞

)
∧ Io

+(ge1 + he2 + ie3)e123I∞ ∧ Io +
j
3 I∞ ∧

(
(e∞1 + e∞2 + e∞3) · Io

) (8.4.9)

Proposition 8.4.2. A point x lies on a axis-aligned quadric Q iff. x ∧Q = 0:

Proof.

x ∧Q = x ∧ (Q∗I) = (x ·Q∗)I

=

(
x ·
(
−
(
2aeo1 + 2beo2 + 2ceo3

)
+
(
ge1 + he2 + ie3

)
− j

3
(e∞1 + e∞2 + e∞3)

))
I

=
(
ax2 + by2 + cz2 + gx + hy + iz + j

)
I. (8.4.10)

This corresponds to the formula representing an axis-aligned quadric surface.

Then, it is very easy to construct axis aligned quadrics by properly choosing the points that

lie on the chosen axis-aligned quadric. The next sections present some examples of chosen axis-

aligned quadric, with some chosen points that lie on these quadrics.

Representation of a primal axis-aligned paraboloid

We can construct the axis-aligned ellipsoid using six points that lie on it. For example the points:

x1(0.0, 0.0, 0.0), x2(−0.39, 0.1, 0.33), x3(0.0,−0.41, 0.5),

x4(0.0, 0.23, 0.17), x5(0.47, 0.0, 0.45), x6(0.29,−0.27, 0.4)

lie on a axis-aligned paraboloid. The result of Equation 8.4.8 applied to these points is shown

Figure 8.4

Representation of a primal axis-aligned hyperbolic paraboloid

Using the same equation, and replacing the points by some that lie on an axis-aligned hyperbolic

paraboloid:

x1(0.0, 0.0, 0.0), x2(0.45,−0.01, 0.2), x3(0.34,−0.37,−0.17),

x4(−0.47,−0.18, 0.15), x5(−0.36, 0.12, 0.1), x6(0.18, 0.13, 0.0)

results in the axis-aligned hyperbolic paraboloid shown in Figure 8.2
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FIGURE 8.1: Result of one paraboloid from six points

FIGURE 8.2: Result of one hyperbolic paraboloid from six points

Representation of a primal axis-aligned cylinder

An axis-aligned cylinder is an axis-aligned quadric where one of the squared components is

removed with respect to the axis of the cylinder.

On one hand, this supposes that an axis-aligned cylinder can be constructed using only 5 points.

On the other hand, this means that the considered component of each point taken to construct

the quadric has to be removed. In a QCGA point, the squared components lie in the e∞1, e∞2,

e∞3 components.

Thus, replacing one point of Equation (8.4.8) by the point at infinity with respect to the right axis

define the wanted axis-aligned cylinder. For example, one can define an axis-aligned cylinder

along the z-axis from only 5 points. From Equation (8.4.8), this means replacing a point of the

above formula by a point at infinity, namely e∞3 for a z-axis aligned centered cylinder. For ex-

ample, with the five following points:

x1(−0.2, 0.1, 0.3), x2(0.4, 0.1, 0.2), x3(0.1, 0.4, 0.1),
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x4(0.1,−0.2, 0.4), x5(0.1,−0.2,−0.4),

and the outer product between these points as:

Q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ e∞3 ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo (8.4.11)

The cylinder whose axis is the (Oy) axis can be constructed in as the above equation by replacing

e∞3 by e∞2 as:

Q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ e∞2 ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo (8.4.12)

And finally, the cylinder whose axis is the (Ox) axis is obtained by replacing e∞3 by e∞1 as:

Q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ e∞1 ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo (8.4.13)

The Figure 8.3 shows 3 cylinders, one along (Ox),another along (Oy) and the third one along

(Oz).

FIGURE 8.3: Construction of three cylinders along (Ox, Oy, Oz). Each cylinder is
constructed from 5 points and has the same diameter

Representation of a primal axis-aligned elliptic cylinder

As 5 points are enough to uniquely define a cylinder, 5 points define also an axis-aligned elliptic

cylinder whose axis is given by the null basis vector replacing the sixth point. An axis-aligned

elliptic cylinder whose axis is (Oz) can be defined with the five points lying of it:

x1(−0.44, 0.0, 0.0), x2(0.0,−0.2, 0.0), x3(0.3, 0.15, 0.15),

x4(0.0, 0.2, 0.3), x5(0.44, 0.0, 0.4).

The result is represented in Figure 8.4.
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FIGURE 8.4: Construction of one elliptic cylinder from five points

Representation of a primal axis-aligned spheroid

A spheroid is characterized as an ellipsoid having two of its axes whose length is equal. Again,

this property supposes that an axis-aligned spheroid can be constructed from 5 points. Further-

more, one has to constrain each point such that the squared components along the two axis has

equal length. This is achieved by the outer of the points and the vector e∞i − e∞j, i and j define

the two equal length axis. This 1-vector can be geometrically seen as the bisecting plane at infin-

ity along the two considered axis, see (8.3.8), leading to some new geometric interpretations in

the algebra. Thus we can construct a spheroid, having equal Ox and Oy axis, as:

x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ (e∞1 − e∞2) ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo (8.4.14)

Note that the sixth point is replaced by (e∞1 − e∞2). As an example, we constructed the axis-

aligned prolate (elongated in the z-axis) spheroid passing by the five following points that lie on

the prolate spheroid:

x1(−0.26, 0.0, 0.0), x2(0.03, 0.22, 0.24), x3(−0.2,−0.1,−0.23),

x4(0.0, 0.26, 0.0), x5(0.0, 0.0, 0.45)

The resulting surface is shown Figure 8.5.

Note that the construction of all these surfaces is available using the plugin qc3ga.hpp on the

github repository presented last chapter.

8.4.3 Representation of a dual quadric surface

The dualization of a primal quadric surface leads to the 1-vector dual quadric surface Q∗ of

(9.4.5).
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FIGURE 8.5: Construction of an axis-aligned prolate spheroid from 5 points

Proposition 8.4.3. A point x lies on the dual quadric surface Q∗ iff x ·Q∗ = 0.

Proof. Consequence of (8.1.10).

The interesting thing is that this dualization enables to define axis-aligned quadric surfaces

merely using their implicit equations.

8.4.4 Some examples

This subsection presents the construction of some specific quadrics.

Representation of a dual axis-aligned ellipsoid

First, an axis-aligned ellispoid can be computed as follows:

Q∗ = − 2
a2 eo1 −

2
b2 eo2 −

2
c2 eo3 −

1
3
(e∞1 + e∞2 + e∞3) (8.4.15)

where a, b, c are the semi axis parameters of the ellipsoid. This construction is illustrated in

Figure 8.6.

FIGURE 8.6: Construction of an axis-aligned ellipsoid.
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Representation of a dual axis-aligned cylinder

Another example of quadric is a cylinder. Axis-aligned cylinder are easily defined. A cylinder

whose axis is (Oz) and whose radius is r is defined as follows:

Q∗ = − 2
a2 eo1 −

2
b2 eo2 −

r2

3
(e∞1 + e∞2 + e∞3) (8.4.16)

Note that non-axis aligned can be constructed as the outer product of 9 points as shown in fig-

ure 8.7.

FIGURE 8.7: Construction of a generalized cylinder from nine points.

Representation of a dual axis-aligned hyperbolic paraboloid

Another example of axis-aligned quadric is the hyperbolic paraboloid, also called saddle. It can

be defined as:

Q∗ = − 2
a2 eo1 +

2
b2 eo2 − e3 (8.4.17)

An axis-aligned cone can be computed with qcga as follows:

Q∗ = − 2
a2 eo1 −

2
b2 eo2 +

2
c2 eo3 (8.4.18)

Representation of a dual axis-aligned hyperboloid

An axis-aligned hyperboloid of one sheet can be constructed as follows:

Q∗ = − 2
a2 eo1 −

2
a2 eo2 +

2
c2 eo3 +

1
3
(e∞1 + e∞2 + e∞3) (8.4.19)

An example of such quadric is shown in Figure 8.8 The definition of an axis-aligned hyperboloid

of two sheets is the following:

Q∗ = − 2
a2 eo1 −

2
a2 eo2 +

2
c2 eo2 −

1
3
(e∞1 + e∞2 + e∞3) (8.4.20)
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FIGURE 8.8: Construction of a dual hyperboloid of one sheet.

Representation of a dual axis-aligned elliptic paraboloid

An axis-aligned elliptic paraboloid can be defined as:

Q∗ = − 2
a2 eo1 −

2
b2 eo2 +

2
c

eo3 (8.4.21)

Representation of a dual axis-aligned degenerate quadrics

As previously seen, degenerate quadrics can also be defined. For example, a pair of planes can

be defined as:

Q∗ = −2eo1 + 2eo2 (8.4.22)

An illustration of pair of planes using QCGA is shown on Figure 8.9 The tables 8.2 and 8.3

FIGURE 8.9: Construction of a axis-aligned pair of planes.

summarize the dual definition of CGA objects, as well as axis-aligned quadrics and degenerate

quadrics.

The table 8.4 details the main class of objects that can be handled using QCGA.
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TABLE 8.2: Definition of dual CGA objects using QCGA.

Geometric objects Dual definition

Sphere S∗ = x′c − 1
6 r2(e∞1 + e∞2 + e∞3)

Plane Π∗ = nε +
1
3 h(e∞1 + e∞2 + e∞3)nε +

1
3 h(e∞1 + e∞2 + e∞3)

Line L∗ = 3 m Iε + (e∞3 + e∞2 + e∞1) ∧ n Iε

L∗ = Π∗1 ∧Π∗2

Circle C∗ = S∗1 ∧ S∗2
C∗ = S∗ ∧Π

Point pair P∗p = S∗ ∧ L∗

P∗p = C∗1 ∧ C∗2

TABLE 8.3: Definition of dual axis-aligned quadric surfaces using QCGA.

Geometric objects Dual definition

Ellipsoids Q∗ = − 2
a2 eo1 +

2
b2 eo2 − 2

c2 eo3 − 1
3 (e∞1 + e∞2 + e∞3)

Cones Q∗ = −2aeo1 − 2beo2 + 2ckeo3, k ∈ R

Paraboloids Q∗ = − 2
a2 eo1 +

2
b2 eo2 − 2

c2 eo3 − 1
3 (e∞1 + e∞2 + e∞3)

Cylinders Q∗ = −2eo1 − 2eo2 − r2

3 (e∞1 + e∞2 + e∞3)

Elliptic paraboloids Q∗ = − 2
a2 eo1 − 2

b2 eo2 +
2
c eo3

Hyperboloids

one sheet Q∗ = − 2
a2 eo1 − 2

a2 eo2 +
2
c2 eo2 +

1
3 (e∞1 + e∞2 + e∞3)

two sheets Q∗ = − 2
a2 eo1 − 2

a2 eo2 +
2
c2 eo2 − 1

3 (e∞1 + e∞2 + e∞3)

Parallel planes Q∗ = −2eo1 + 2eo2

TABLE 8.4: Definition of primal geometric objects using QCGA.

Round objects (Sphere,circle) Q = x1 ∧ x2 ∧ · · · ∧ IB∞ ∧ IBo

Flat objects (plane,line,· · · ) Q = x1 ∧ x2 ∧ · · · ∧ e∞ ∧ IB∞ ∧ IBo

Axis aligned quadrics Q = x1 ∧ x2 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ e∞4 ∧ e∞5 ∧ e∞6 ∧ IBo

General quadrics q = x1 ∧ x2 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ IBo

Table 8.5 summarizes some primal definitions of QCGA axis-aligned objects with points.



8.5. Normals and tangents 149

TABLE 8.5: Definition of some primal axis-aligned quadric surfaces using QCGA.

Ellipsoids

Q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ e∞4∞5∞6 ∧ IBoParaboloids

Hyperbolic paraboloids

Spheroids Q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ (e∞1 − e∞2) ∧ e∞4∞5∞6 ∧ IBo

Cylinders
Q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ e∞3 ∧ e∞4∞5∞6 ∧ IBo

Elliptic cylinders

8.5 Normals and tangents

This section presents the computation of the normal Euclidean vector nε and the tangent plane

Π∗ of a point x (associated to the Euclidean point xε = xe1 + ye2 + ze3) on a dual quadric surface

Q∗. The implicit formula of the dual quadric surface is considered as the following scalar field:

F(x, y, z) = x ·Q∗. (8.5.1)

The normal vector nε of a point x is computed as the gradient of the implicit surface (scalar field)

at x:

nε = ∇F(x, y, z) =
∂F(x, y, z)

∂x
e1 +

∂F(x, y, z)
∂y

e2 +
∂F(x, y, z)

∂z
e3. (8.5.2)

Since the partial derivative with respect to the x component is defined by

∂F(x, y, z)
∂x

= lim
h 7→0

F(x + h, y, z)− F(x, y, z)
h

, (8.5.3)

we have

∂F(x, y, z)
∂x

= lim
h 7→0

xh ·Q∗ − x ·Q∗
h

=
(

lim
h 7→0

x2 − x
h

)
·Q∗, (8.5.4)

where xh is the point obtained by translating x along the x-axis by the value h. Note that xh − x

represents the dual orthogonal bisecting plane spanned by xh and x (see Proposition 8.3.4). The

computation of xh − x results in:

xh − x =
(

eo +
1
2
(
(x + h)2e∞1 + y2e∞2 + z2e∞3

)
+ (x + h)ye∞4 + (x + h)ze∞5

+yze∞6 + (x + h)e1 + ye2 + ze3

)
−
(

eo +
1
2
(
x2e∞1 + y2e∞2 + z2e∞3

)
+ xye∞4

+xze∞5 + yze∞6 + xe1 + ye2 + ze3

)
= 1

2
(
2xh + h2)e∞1 + hye∞4 + hze∞5 + he1

(8.5.5)
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Dividing by h yields:

xh − x = 1
2
(
2x + h

)
e∞1 + ye∞4 + ze∞5 + e1 (8.5.6)

Finally, the limit results in:

lim
h 7→0

xh − x
h

= lim
h 7→0

1
2
(
2x + h

)
e∞1 + ye∞4 + ze∞5 + e1

h
= 1

2
(
2x
)
e∞1 + ye∞4 + ze∞5 + e1

= xe∞1 + ye∞4 + ze∞5 + e1

(8.5.7)

Thus, we have

lim
h 7→0

xh − x
h

= xe∞1 + ye∞4 + ze∞5 + e1

= (x · e1)e∞1 + (x · e2)e∞4 + (x · e3)e∞5 + e1. (8.5.8)

This argument can be applied to the partial derivative with respect to the y and z components.

Therefore, we obtain:

nε =
((

(x · e1)e∞1 + (x · e2)e∞4 + (x · e3)e∞5 + e1
)
·Q∗

)
e1+((

(x · e2)e∞2 + (x · e1)e∞4 + (x · e3)e∞6 + e2
)
· q∗

)
e2+((

(x · e3)e∞3 + (x · e1)e∞5 + (x · e2)e∞6 + e3
)
·Q∗

)
e3. (8.5.9)

On the other hand, the tangent plane at a surface point x can be computed from the Euclidean

normal vector nε and the point x. Since the plane orthogonal distance from the origin is h, the

tangent plane π∗ is obtained by

Π∗ = nε +
1
3
(
e∞1 + e∞2 + e∞3

)
h. (8.5.10)

Note that h can be very easily be computed with the following formula:

h = xε · nε. (8.5.11)

Finally, we get the full definition of the tangent plane as follows:

Π∗ = nε +
1
3
(
e∞1 + e∞2 + e∞3

)
(xε · nε). (8.5.12)
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8.6 Intersections

Let us consider two geometric objects corresponding to dual quadrics∗ a∗ and b∗. Assuming that

the two objects are linearly independent, i.e., A∗ and B∗ are linearly independent, we consider

the outer product C∗ of these two objects:

C∗ = a∗ ∧ b∗. (8.6.1)

If a point x lies on C∗, then

x · C∗ = x · (A∗ ∧ B∗) = 0. (8.6.2)

The inner product definition develops (8.6.2) as follows:

x · C∗ = (x ·A∗)B∗ − (x · B∗)A∗ = 0. (8.6.3)

Our assumption of linear independence between a∗ and b∗ indicates that (8.6.3) holds if and

only if x · A∗ = 0 and x · B∗ = 0, i.e. the point x lies on both quadrics. Thus, C∗ = A∗ ∧ B∗

represents the intersection of the linearly independent quadrics A∗ and B∗, and a point x lies on

this intersection if and only if x · C∗ = 0.

8.6.1 Quadric-Line intersection

In computer graphics, making a Geometric Algebra compatible with a raytracer requires only to

be able to compute a surface normal and a line to object intersection. This section defines the line

to quadric intersection.

Similarly to (8.6.1), the intersection x± between a dual line L∗ and a dual quadric Q∗ is com-

puted by L∗ ∧ Q∗. Any point x lying on the line L defined by two points x1 and x2 can be

represented by the parametric formula xε = α(x1ε − x2ε) + x2ε = αmε + x2ε (see Section 8.2).

Note that mε is computed using only the inner product between the dual line L∗ and the null

basis vectors. Any point x2 ∈ L can be used, especially the closest point of L from the origin,

i.e. x2ε = (nε ×mε)/(mε ·mε). Accordingly, computing the intersection between the dual line

L∗ and the dual quadric Q∗ becomes equivalent to finding α such that x lies on the dual quadric,

i.e., x ·Q∗ = 0, leading to a second degree equation in α, as shown in (8.4.1). In this situation, the

problem is reduced to computing the roots of this equation. However, we have to consider four

cases: the case where the line is tangent to the quadric, the case where the intersection is empty,

the case where the line intersects the quadric into two points, and the case where one of the two

∗The term “quadric” (without being followed by surface) encompasses quadric surfaces and conic sections.
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points exists at infinity. To identify each case, we use the discriminant δ defined as:

δ = β2 − 4(x ·Q∗)
6

∑
i=1

(m · eoi)(Q∗ · e∞i), (8.6.4)

where

β =2m · (a(x2ε · e1)e1 + b(x2ε · e2)e2 + c(x2ε · e3)e3)+

d
(
(m ∧ e1) · (x2ε ∧ e2) + (x2ε ∧ e1) · (m ∧ e2)

)
+

e
(
(m ∧ e1) · (x2ε ∧ e3) + (x2ε ∧ e1) · (m ∧ e3)

)
+

f
(
(m ∧ e2) · (x2ε ∧ e3) + (x2ε ∧ e2) · (m ∧ e3)

)
+ Q∗ ·mε. (8.6.5)

If δ < 0, the line does not intersect the quadric (the solutions are complex). If δ = 0, the line and

the quadric are tangent. If δ > 0 and ∑6
i=1(m · eoi)(q∗ · e∞i) = 0, we have only one intersection

point (linear equation). Otherwise, we have two different intersection points x± computed by

x± = m(−b±
√

δ)/
(

2
6

∑
i=1

(m · eoi)(Q∗ · e∞i)
)
+ x2ε. (8.6.6)

8.7 Transformations

8.7.1 Translation

We consider 3D projective transformations acting on points and quadrics. We first focus on

translation of points x and quadrics Q∗ over :

t = τe1, τ ∈ R (8.7.1)

The versor Vτ for the translation t is:

Vτ =
(

1− 1
2

τe3 ∧ e∞5

)(
1− 1

2
τe2 ∧ e∞4

)(
1− 1

2
τe1 ∧ e∞1

)
(8.7.2)

As a geometric product of versor, this entity is also a versor and its inverse is:

Vτ−1 =
(

1 +
1
2

τe1 ∧ e∞1

)(
1 +

1
2

τe2 ∧ e∞4

)(
1 +

1
2

τe3 ∧ e∞5

)
(8.7.3)

Proposition 8.7.1. The translation of x is given as follows:

xτ = VτxV−1
τ (8.7.4)
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This rotor has to translate the point at the origin defined as:

o = eo1 + eo2 + eo3 (8.7.5)

to the point:

oτ = eo1 + eo2 + eo3 +
1
2

τ2e∞1 + τe1 (8.7.6)

Using the distributivity of the geometric product results in:

oτ= VτoV−1
τ

= Vτeo1V−1
τ + Vτeo2V−1

τ + Vτeo3V−1
τ

(8.7.7)

To develop this formula, we use the following property:

(
1− 1

2 τej ∧ e∞k

)
eoi

(
1 + 1

2 τej ∧ e∞k

)
= eoi +

1
2 τ
(

eoiej ∧ e∞k − ej ∧ e∞keoi

)
− 1

4 τ2
(

ej ∧ e∞keoiej ∧ e∞k

)
=

 eoi If i 6= k, ∀j ∈ {1, 2, 3} ,

eoi + τej +
1
2 τ2e∞k If i = k, ∀j ∈ {1, 2, 3} .

(8.7.8)

along with the following more general property:

(
1− 1

2 τej ∧ e∞k

)
eu

(
1 + 1

2 τej ∧ e∞k

)
= eu +

1
2 τ
(

euej ∧ e∞k − ej ∧ e∞keu

)
− 1

4 τ2
(

ej ∧ e∞keuej ∧ e∞k

)

=


eu If eu · ej = 0 and eu · e∞k = 0,

eu + τe∞k If eu · ej 6= 0,

eu + τej +
1
2 τ2e∞k If eu · e∞k 6= 0.

(8.7.9)

Applying 8.7.9 in 8.7.7 results in:

oτ = Vτeo1V−1
τ + eo2 + eo3

= eo1 + τe1 +
1
2 τ2e∞1 + eo2 + eo3

(8.7.10)

Thus corresponding to the point at the origin translated by the vector t = τe1.

Now for general point:

x = xε +
1
2 (x2e∞1 + y2e∞2 + z2e∞3) + xye∞4 + xze∞5 + yze∞6 + eo1 + eo2 + eo3. (8.7.11)
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We prove that the versor Vτ translates x with a vector t = τe1. Once more, we use the distribu-

tivity of the geometric product over the addition resulting in:

xτ=VτxεV−1
τ + 1

2 (x2Vτe∞1V−1
τ + y2Vτe∞2V−1

τ + z2Vτe∞3V−1
τ ) + xyVτe∞4V−1

τ

+xzVτe∞5V−1
τ + yzVτe∞6V−1

τ + Vτ(eo1 + eo2 + eo3)V−1
τ

(8.7.12)

Using 8.7.9, the product of the Euclidean part of x with the versor results in:

VτxεV−1
τ = (xε + xτe∞1 + yτe∞4 + zτe∞5) (8.7.13)

In a similar way, 8.7.9 yields:

Vτ(eo1 + eo2 + eo3)V−1
τ = eo1 + eo2 + eo3 + τe1 +

1
2 τ2e∞1 (8.7.14)

Still using 8.7.9, the versor product Vτe∞iV−1
τ = e∞i.

Finally, the transformed point is given as:

xτ=xε + xτe∞1 + yτe∞4 + zτe∞5 +
1
2 (x2e∞1 + y2e∞2 + z2e∞3) + xye∞4

+xze∞5 + yze∞6 + eo1 + eo2 + eo3 + τe1 +
1
2 τ2e∞1

=(x + τ)e1 + ye2 + ze3 +
1
2

(
(x2 + 2xτ + τ2)e∞1 + y2e∞2 + z2e∞3

)
+(xy + yτ)e∞4 + (xz + zτ)e∞5 + yze∞6 + eo1 + eo2 + eo3

=(x + τ)e1 + ye2 + ze3 +
1
2

(
(x + τ)2e∞1 + y2e∞2 + z2e∞3

)
+(x + τ)ye∞4 + (x + τ)ze∞5 + yze∞6 + eo1 + eo2 + eo3

(8.7.15)

This latter entity is the point x translated by the vector τe1.

Note that this can be reproduced for the translation vector t = τe2 and t = τe3 resulting in

translation over any axis.

8.7.2 Other transformations

The translation is found however, we still have to find versors for the remaining transformations.

If we consider the situation where we want to handle transformations of QCGA lines, spheres,

circles, planes, then a solution is merely to use CGA versors. Indeed, due to the property of rotors

and the fact that a CGA point is embedded in QCGA then standard CGA rotors can transform

all embedded round and flat objects of QCGA.
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To find versors that transform non-CGA entities, we want to find the reflections at non-parallel

planes and over concentric spheres. To achieve this, we would investigate in more details the

versors that involves terms similar to Equation (8.1.5). More generally, we would also study

the possible versors that could be computed using QCGA. We aim at finding also projective

transformations.

8.8 Discussion

8.8.1 Limitations

The construction of quadric surfaces by the outer product of points presented in Sections 8.2

and 8.4 is a distinguished property of QCGA that is missing in DPGA and DCGA. However,

QCGA also faces some limitations. Some properties possessed by different frameworks for Geo-

metric Algebra are summarized in Table 8.6.

TABLE 8.6: Comparison of properties between DPGA, DCGA, and QCGA. The
symbol • stands for “capable”, ◦ for “incapable” and � for “unknown”.

Framework DPGA [26] DCGA [27] QCGA

dimensions 8 10 15

construction from outer product of points ◦ ◦ •
quadrics intersection ◦ ◦ •

quadric plane intersection • • •
versors • • �

Darboux cyclides ◦ • ◦

First, we have not yet proved whether objects in QCGA can be transformed using versors. We

computed the versor of the translation however not yet the versor of the rotation nor for non-

isotropic scale. In contrast, DPGA and DCGA are known to be capable of transforming objects.

Second, the 15 dimensions of the QCGA vector space have 215(' 32, 000) elements for a full

multivector. Though it is elegant to construct quadrics as the outer product of 9 nine points,

some components are likely to be multiplied at the power of 9 thus this requires some numerical

care in computation.
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8.8.2 Implementations

There exist many implementations of Geometric Algebra; however, very few can handle dimen-

sions higher than 8 or 10. This is because higher dimensions bring a large number of elements

of the multivector used, resulting in expensive computation; in many cases, the computation be-

comes impossible in practice. QCGA has 15 dimensions and hence requires some specific care

during the computation.

We conducted our tests with Garamon which was presented in the Section 2.1.3. We remark

that most of the products involved in our tests were the outer products between 14-vectors and

1-vectors, revealing one of the less time-consuming products of QCGA. Indeed, QCGA with

dimension of 15 has 215 elements and this number is 1,000 times as large as that of elements for

CGA with dimension of 5 (CGA with dimension of 5 is needed for the equivalent operations

with QCGA with dimension of 15). The computational time required for QCGA, however, did

not achieve 1,000 times but only 70 times of that for CGA. This means that the computation of

QCGA runs in reasonable time on the enhanced version of Breuils et al. [5, 6]. Figure 8.10 depicts

a few examples generated with our OpenGL renderer based on the outer product null-space

voxels and our ray-tracer.

FIGURE 8.10: Example of our construction of QCGA objects. From left to right: a
dual hyperboloid built from its equation, an ellipsoid built from its control points
(in yellow), the intersection between two cylinders, and a hyperboloid with a

sphere (the last one was computed with our ray-tracer).
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8.8.3 Complexity of some major operations of QCGA

Let us evaluate the computational cost of checking whether a point is on a quadric. q∗ has a

total of 12 basis vector components. For each basis vector, at most 1 inner product is performed,

please refer to the Equation (1.4.6). Finally, the number of point component is 12. Thus, the

product x · q∗ requires at most 12× 12 = 144 products.

The computation of the tangent plane is performed by first the computation of the normal vector

as:

nε =
((

(x · e1)e∞1 + (x · e2)e∞4 + (x · e3)e∞5 + e1
)
·Q∗

)
e1+((

(x · e2)e∞2 + (x · e1)e∞4 + (x · e3)e∞6 + e2
)
·Q∗

)
e2+((

(x · e3)e∞3 + (x · e1)e∞5 + (x · e2)e∞6 + e3
)
·Q∗

)
e3. (8.8.1)

This computation required the inner product between a vector with 12 components and another

vector with 4 components. This computation is repeated for each Euclidean basis vector thus the

computation of the normal vector requires 3× 4× 12 = 144 inner products.

Then, the tangent plane is computed using the normal vector as follows:

Π∗ = nε +
1
3
(
e∞1 + e∞2 + e∞3

)√
−2(eo1 + eo2 + eo3) · x. (8.8.2)

This computation requires the computation of an inner product of a vector with 3 components

(e1, e2, e3) with a 12 component-vector. This means 12× 3 = 36 products. Thus, the total number

of inner products required in the computation of the tangent plane is 144 + 36 = 180 products.

The final computational feature is the quadric-line intersection. In QCGA, this simply consists in

computing the outer product:

C∗ = Q∗ ∧ L∗ (8.8.3)

The number of components of Q∗ is 12 as already seen. In QCGA, we defined a line with the 6

Plücker coefficients as:

L∗ = 3 m Iε + (e∞3 + e∞2 + e∞1) ∧ n Iε. (8.8.4)

The number of components of both m and n is 3. The outer product (e∞3 + e∞2 + e∞1) ∧ n Iε

yields a copy of the 3 components of n along e∞1, e∞2, e∞3 basis vectors. Thus, the number of

components of l∗ is 3× 3 + 3 = 12. Finally, the cost of the outer product between Q∗ and L∗ is
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12× 12 = 144 products.

The table 8.7 summarizes the computational features of the proposed framework compared to

DPGA and DCGA. We remark that the computation of the tangent plane is more efficient using

TABLE 8.7: Comparison of the computational features between QCGA, DCGA,
DPGA in number of Geometric Algebra operations

Feature DPGA DCGA QCGA

point is on a quadric 144 750 144

tangent plane 64 541 180

quadric line intersection 192 300 144

DPGA whereas the intersection between a quadric and a line requires less computations using

QCGA. Furthermore, some versors are not defined in some models.

Now, in order to obtain an efficient model of quadrics using Geometric Algebra, that:

• is efficient for the main computer graphics operations,

• inherits the elegance of CGA (objects can be constructed as the outer product of points),

• is capable of transforming any general quadrics,

we propose a mapping between the three models. It is merely based on the fact that it is not hard

to extract the components of the quadrics in the three models. The following chapter focusses on

this mapping.
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Chapter 9

Mapping

As a practical application, it might be interesting to construct a quadric from 9 points then ro-

tating this quadric. For the moment, QCGA is the only approach, in Geometric Algebra, that

can construct quadric from 9 points, but it does not yet support all the transformations. Further-

more, the last chapter shows that some operations are worth doing in a certain framework. These

points are our motivation for defining new operators that convert quadrics surfaces between the

three presented frameworks.

The key idea is that for any entities representing quadric surface in QCGA,DCGA and DPGA, it

is possible to convert the entity such that all the coefficients of the quadrics:

ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + iz + j = 0, (9.0.1)

can be extracted easily.

9.1 DCGA reciprocal operators

This means defining reciprocal operators for DCGA:

Tx2
= e1 ∧ e4 Ty2= e2 ∧ e5

Tz2
= e3 ∧ e6 T1 = eo1 ∧ eo2

(9.1.1)
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along with the 6 following:

Tx =
(

e1 ∧ eo2 + eo1 ∧ e4

)
Ty =

(
e2 ∧ eo2 + eo1 ∧ e5

)
Tz =

(
e3 ∧ eo2 + eo1 ∧ e6

)
Txy =

(
e1 ∧ e5 + e2 ∧ e4

)
Txz =

(
e1 ∧ e6 + e3 ∧ e4

)
Tyz =

(
e3 ∧ e5 + e2 ∧ e6

)
(9.1.2)

These reciprocal operators verify the following properties:

Tx2 · Tx2= 1, Ty2 · Ty2= 1, Tz2 · Tz2= 1, Txy · Txy= 1, Txz · Txz= 1,

Tyz · Tyz= 1, Tx · Tx = 1, Ty · Ty = 1, Tz · Tz = 1, T1 · T1 = 1
(9.1.3)

Then, given qDCGA the entity representing a quadric of DCGA, any coefficients of this quadric (9.0.1)

can be extracted as:

Tx2 ·QDCGA= a, Ty2 ·QDCGA= b, Tz2 ·QDCGA= c, Txy ·QDCGA= d, Txz ·QDCGA= e,

Tyz ·QDCGA= f, Tx ·QDCGA = g, Ty ·QDCGA = h, Tz ·QDCGA = i, T1 ·QDCGA = j
(9.1.4)

9.2 DPGA reciprocal operators

In a similar way, let us note W reciprocal operators for DPGA

Wx2
= w∗0 ∧w0 Wy2

= w∗1 ∧w1

Wz2
= w∗2 ∧w2 Wxy= 2w∗1 ∧w0

Wxz= 2w∗2 ∧w0 Wyz= 2w∗2 ∧w1

Wx = 2w∗3 ∧w0 Wy = 2w∗3 ∧w1

Wz = 2w∗3 ∧w2 W1 = W∗3 ∧w3

(9.2.1)

Again, the following properties hold:

Wx2 ·Wx2= 1, Wy2 ·Wy2= 1, Wz2 ·Wz2= 1, Wxy ·Wxy= 1, Wxz ·Wxz= 1,

Wyz ·Wyz= 1, Wx ·Wx = 1, Wy ·Wy = 1, Wz ·Wz = 1, W1 ·W1 = 1
(9.2.2)
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Then, given qDPGA the entity representing a quadric of DPGA, any coefficients of this quadric (9.0.1)

can be extracted as:

Wx2 ·QDPGA= a, Wy2 ·QDPGA= b, Wz2 ·QDPGA= c, Wxy ·QDPGA= d, Wxz ·QDPGA= e,

Wyz ·QDPGA= f, Wx ·QDPGA = g, Wy ·QDPGA = h, Wz ·QDPGA = i, W1 ·QDPGA = j
(9.2.3)

9.3 QCGA reciprocal operators

For QCGA, quadrics can be either representing using the primal form or the dual form. We define

the reciprocal operators for the dual form. Indeed, if one considers the primal form, then this

would consist in computing the dual of the primal and apply the following reciprocal operators:

Qx2
= 1

2 e∞1 Qy2
= 1

2 e∞2

Qz2
= 1

2 e∞3 Qxy= e∞4

Qxz= e∞5 Qyz= e∞6

Qx = e1 Qy = e2

Qz = e3 Q1 = eo1 + eo2 + eo3

(9.3.1)

Given a general quadric q∗ whose coefficients are (a, b, c, · · · , j), the properties of these operators

are as follows:

Qx2 ·Q∗= a, Qy2 ·Q∗= b, Qz2 ·Q∗= c, Qxy ·Q∗= d, Qxz ·Q∗= e,

Qyz ·Q∗= f, Qx ·Q∗ = g, Qy ·Q∗ = h, Qz ·Q∗ = i, Q1 ·Q∗ = j
(9.3.2)

9.4 Test

We tested this approach by defining an ellipsoid from 9 points using QCGA. Then we rotate it us-

ing DPGA and back-convert the rotated ellipsoid into QCGA framework. In terms of Geometric

Algebra computations, first we compute the quadric:

Q∗ = (x1 ∧ x2 ∧ · · · ∧ x9 ∧ IBo )
∗ (9.4.1)
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Then, we apply the extraction operators of QCGA to convert the QCGA quadric to DPGA quadric.

QDPGA =4(Qx2 · q∗)w∗0 ∧w0 + 4(Qy2 · q∗)w∗1 ∧w1 + 4(Qz2 · q∗)w∗2 ∧w2

+4(Q1 · q∗)w∗3 ∧w3 + 2(Qxy · q∗)(w∗0 ∧w1 + w∗1 ∧w0)

+2(Qxz · q∗)(w∗0 ∧w2 + w∗2 ∧w0) + 2(Qyz · q∗)(w∗1 ∧w2 + w∗2 ∧w1)

+2(Qx · q∗)(w∗0 ∧w3 + w∗3 ∧w0) + 2(Qy · q∗)(w∗1 ∧w3 + w∗3 ∧w1)

+2(Qz · q∗)(w∗2 ∧w3 + w∗3 ∧w2)

(9.4.2)

The rotation is now performed as follows:

QDPGA = RQDPGAR−1 (9.4.3)

The rotor R is defined as:

R = exp(
1
2

θwiw∗j ) (9.4.4)

where i 6= j

The final step is to back-convert the resulting quadric to the QCGA framework. It is merely

computed using the QCGA extraction operators as follows:

Q∗ = −
(
2(Wx2 ·QDPGA)eo1 + 2(Wy2 ·QDPGA)eo2 + 2(Wz2 ·QDPGA)eo3

+ (Wxy ·QDPGA)eo4 + (Wxz ·QDPGA)eo5 + (Wyz ·QDPGA)eo6
)

+
(
(Wx ·QDPGA)e1 + (Wy ·QDPGA)e2 + (Wz ·QDPGA)e3

)
− (W1 ·QDPGA)

3
(e∞1 + e∞2 + e∞3). (9.4.5)

Note that the program can be found in the plugin folder of the git repository previously shown.

9.5 Potential computational framework

In order to implement and convert easily quadrics from different frameworks, it is not necessary

to generate each framework independently. This is equivalent with seeking for a framework that

encompasses the other framework.

First, G8,2 can not be the support for such a mapping due to the fact that it does not embed G4,4.

Whereas G9,6 include both G4,4 and G8,2. The next paragraphs show the way we embed the two

frameworks using QCGA.

As for DCGA and if we consider the vector space composed of first the Euclidean vector space
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{e1, e2, e3} along with the null basis vector space {eo1, eo2, eo3, eo4, eo5} and finally {e∞1, e∞2, e∞3, e∞4, e∞5}.

Note that these are QCGA basis vectors. Then using the following basis transformation:

e4 = eo3 − 1
2 e∞3,

e5 = eo4 − 1
2 e∞4,

e6 = eo5 − 1
2 e∞5,

(9.5.1)

and using the new {e1, e2, e3, eo1, e∞1, eo2, e∞2, e4, e5, e6} basis, it is possible to compute DCGA

points (x, y, z) as:

PDCGA = (eo1 + xe1 + ye2 + ze3 +
1
2 (x2 + y2 + z2)e∞1)

∧(eo2 + xe4 + ye5 + ze6 +
1
2 (x2 + y2 + z2)e∞2)

(9.5.2)

Concerning DPGA, if we consider the vector space group {eo1, eo2, eo3, eo4, e∞1, e∞2, e∞3, e∞4} of

QCGA. Then it is possible to define the new DPGA basis w0, w1, w2, w3 as follows:

wi = −eoj

w∗i = 1
2 e∞j

(9.5.3)

where i = 0, 1, 2, 3 and j = i + 1. Then, the following properties hold:

wi ·w∗i = 0.5

wi ·wi = 0
(9.5.4)

The resulting metric corresponds to the metric shown in Table 7.3 and a DPGA point can be

simply defined as follows:

pDPGA = xw0 + yw1 + zw2 + ww3

p∗DPGA = xw∗0 + yw∗1 + zw∗2 + ww∗3
(9.5.5)

Using this method, all the computations can be performed using the same algebra, namely G9,6.
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Conclusion and perspectives

This part concludes this thesis. We first summarize our main contribution and finish with our

future works. This thesis includes both practical and theoretic works.

As practical work, we proposed a new Geometric Algebra implementation called Garamon, a

library generator written in C++ programming language and producing specialized Geometric

Algebra (GA) libraries also in C++. This library was designed to be a flexible, portable, and

computationally efficient Geometric Algebra implementation dedicated for both low and high

dimensions. The proposed approach includes new computationally efficient Geometric Algebra

algorithms. We showed that these resulting algorithms have lower complexity than the state

of the methods. More precisely, we proposed a recursive formalism such that the outer prod-

uct and inner product can be computed in the worst case in 3d products instead of 4d products

for the state-of-the-art methods. Experimental results showed the memory and computational

performances of the library.

The resulting library opened some lock, such that one could easily explore some computations

in vector spaces whose dimension is higher than 12. We thus decided to investigate new models

to represent and manipulate quadric surfaces.

This lead to a new Geometric Algebra framework, Quadric Conformal Geometric Algebra (QCGA),

that handles the construction of quadric surfaces using the implicit equation and/or control

points. We showed that QCGA naturally includes CGA objects and generalizes some dedicated

constructions and naturally embed other framework.

The intersection between objects in the QCGA space is merely computed using the outer prod-

uct. This manuscript also details the computation of the tangent plane and the normal vector at

a point on a quadric surface. Although, the dimension of the vector space is considered as high,

the representation of geometric objects use only low dimensional subspaces of the algebra. We

even proved that some operations of this model are computationally more efficient using QCGA
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than other frameworks of lower dimensions. Therefore, QCGA can be used for numerical com-

putations in applications such as computer graphics. We proved that QCGA can be the support

for computing translations.

Finally, we proposed a mapping between the main Geometric Algebra models that makes com-

putationally efficient operations required for the manipulation of quadrics in Geometric Algebra.

Future works

As future works, we plan to first understand what the transformations look like in the Quadric

Conformal Geometric Algebra, as discussed with Joan Lasenby and Leo Dorst. In particular,

we want to know if whether versors for all the projective transformations can be defined. This

would include rotations, shears, non-isotropic scales. We would also investigate the distance

computation in this framework.

The resulting framework could be the base for a discrete geometry model using Geometric Al-

gebra, see [68, 77] and we could try to apply it to [24]. We want also to study in more details

the intersection of quadrics. Ideally, we would like to show that there is a Geometric Algebra

object for each kind of intersection. Other interesting works that we would like to perform is

the extension of QCGA for cubics and quartics. More generally, we would study the intuitive

expression and manipulation of surfaces using such high dimensional spaces. Again, this would

mean extending the dimension of the vector space however we would still use low dimensional

subspaces of the algebra. In a similar way, a complexity study would be developed leading to a

general framework that could be used a Geometric Algebra model to handle surfaces. A com-

parison with linear algebra methods would be worth performing both in terms of computational

and memory complexity. Finally, we would like to develop a certification of the construction of

such surfaces. To achieve this, [65] along with [36] would be our base.

As for Garamon, it is in process to fine tune some optimization and to integrate a meta-programming

approach. Moreover, a binding with Python programming language is among works in progress.

The idea of this binding is to facilitate the prototyping work of implementing new approaches

using high dimensional Geometric Algebras. Finally, we aim at extending Garamon for Geo-

graphical Information Science and very high dimensional space. We would develop new al-

gorithms to compute only required products at runtime. To achieve this, cache-oblivious [17]

of Geometric Algebra operators will be developed. These algorithms will be based on the prefix
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tree approach. In order to compute as low products as possible we would also base our approach

on stochastic acceptance [61] of the products of Geometric Algebra with respects to the products

computed by the user. Another interesting work that would be performed is the formalization

of Clifford Algebra in COQ using the resulting approach based on [36]. These results along with

our approach of Geometric Algebra on surfaces could be the base for the certification of surfaces

manipulation [82] using Geometric Algebra.
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Appendix A

Garamon sample

This appendix presents the functions generated for the computation of any outer products in the

Conformal Geometric Algebra space.

LISTING A.1: Code example in CGA with Garamon

// Copyright (c) 2018 by University Paris-Est Marne-la-Vallee

// OuterExplicit.hpp

// This file is part of the Garamon for c3ga.

// Authors: Stephane Breuils and Vincent Nozick

// Contact: vincent.nozick@u-pem.fr

//

// Licence MIT

// A a copy of the MIT License is given along with this program

/// \file OuterExplicit.hpp

/// \author Stephane Breuils, Vincent Nozick

/// \brief Explicit precomputed per grades outer product.

#ifndef C3GA_OUTER_PRODUCT_EXPLICIT_HPP__

#define C3GA_OUTER_PRODUCT_EXPLICIT_HPP__

#pragma once

#include <Eigen/Core>

#include "c3ga/Mvec.hpp"

#include "c3ga/Outer.hpp"

/*!

* @namespace c3ga

*/

namespace c3ga {

template<typename T> class Mvec;

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 0) and mv2 (grade 0).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 0 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 0 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 0

template<typename T>

void outer_0_0(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(0);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 0) and mv2 (grade 1).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 0 represented as an Eigen::VectorXd
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/// \param mv2 - the second homogeneous multivector of grade 1 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 1

template<typename T>

void outer_0_1(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1.coeff(0)*mv2;

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 0) and mv2 (grade 2).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 0 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 2 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 2

template<typename T>

void outer_0_2(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1.coeff(0)*mv2;

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 0) and mv2 (grade 3).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 0 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 3 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 3

template<typename T>

void outer_0_3(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1.coeff(0)*mv2;

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 0) and mv2 (grade 4).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 0 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 4 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 4

template<typename T>

void outer_0_4(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1.coeff(0)*mv2;

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 0) and mv2 (grade 5).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 0 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 5 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 5

template<typename T>

void outer_0_5(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1.coeff(0)*mv2;

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 1) and mv2 (grade 0).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 1 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 0 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 1

template<typename T>

void outer_1_0(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1*mv2.coeff(0);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 1) and mv2 (grade 1).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 1 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 1 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 2

template<typename T>

void outer_1_1(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(1) - mv1.coeff(1)*mv2.coeff(0);

mv3.coeffRef(1) += mv1.coeff(0)*mv2.coeff(2) - mv1.coeff(2)*mv2.coeff(0);

mv3.coeffRef(2) += mv1.coeff(0)*mv2.coeff(3) - mv1.coeff(3)*mv2.coeff(0);

mv3.coeffRef(3) += mv1.coeff(0)*mv2.coeff(4) - mv1.coeff(4)*mv2.coeff(0);
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mv3.coeffRef(4) += mv1.coeff(1)*mv2.coeff(2) - mv1.coeff(2)*mv2.coeff(1);

mv3.coeffRef(5) += mv1.coeff(1)*mv2.coeff(3) - mv1.coeff(3)*mv2.coeff(1);

mv3.coeffRef(6) += mv1.coeff(1)*mv2.coeff(4) - mv1.coeff(4)*mv2.coeff(1);

mv3.coeffRef(7) += mv1.coeff(2)*mv2.coeff(3) - mv1.coeff(3)*mv2.coeff(2);

mv3.coeffRef(8) += mv1.coeff(2)*mv2.coeff(4) - mv1.coeff(4)*mv2.coeff(2);

mv3.coeffRef(9) += mv1.coeff(3)*mv2.coeff(4) - mv1.coeff(4)*mv2.coeff(3);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 1) and mv2 (grade 2).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 1 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 2 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 3

template<typename T>

void outer_1_2(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(4) - mv1.coeff(1)*mv2.coeff(1) + mv1.coeff(2)*mv2.coeff(0);

mv3.coeffRef(1) += mv1.coeff(0)*mv2.coeff(5) - mv1.coeff(1)*mv2.coeff(2) + mv1.coeff(3)*mv2.coeff(0);

mv3.coeffRef(2) += mv1.coeff(0)*mv2.coeff(6) - mv1.coeff(1)*mv2.coeff(3) + mv1.coeff(4)*mv2.coeff(0);

mv3.coeffRef(3) += mv1.coeff(0)*mv2.coeff(7) - mv1.coeff(2)*mv2.coeff(2) + mv1.coeff(3)*mv2.coeff(1);

mv3.coeffRef(4) += mv1.coeff(0)*mv2.coeff(8) - mv1.coeff(2)*mv2.coeff(3) + mv1.coeff(4)*mv2.coeff(1);

mv3.coeffRef(5) += mv1.coeff(0)*mv2.coeff(9) - mv1.coeff(3)*mv2.coeff(3) + mv1.coeff(4)*mv2.coeff(2);

mv3.coeffRef(6) += mv1.coeff(1)*mv2.coeff(7) - mv1.coeff(2)*mv2.coeff(5) + mv1.coeff(3)*mv2.coeff(4);

mv3.coeffRef(7) += mv1.coeff(1)*mv2.coeff(8) - mv1.coeff(2)*mv2.coeff(6) + mv1.coeff(4)*mv2.coeff(4);

mv3.coeffRef(8) += mv1.coeff(1)*mv2.coeff(9) - mv1.coeff(3)*mv2.coeff(6) + mv1.coeff(4)*mv2.coeff(5);

mv3.coeffRef(9) += mv1.coeff(2)*mv2.coeff(9) - mv1.coeff(3)*mv2.coeff(8) + mv1.coeff(4)*mv2.coeff(7);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 1) and mv2 (grade 3).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 1 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 3 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 4

template<typename T>

void outer_1_3(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(6) - mv1.coeff(1)*mv2.coeff(3) + mv1.coeff(2)*mv2.coeff(1) - mv1.coeff(3)*mv2.coeff(0);

mv3.coeffRef(1) += mv1.coeff(0)*mv2.coeff(7) - mv1.coeff(1)*mv2.coeff(4) + mv1.coeff(2)*mv2.coeff(2) - mv1.coeff(4)*mv2.coeff(0);

mv3.coeffRef(2) += mv1.coeff(0)*mv2.coeff(8) - mv1.coeff(1)*mv2.coeff(5) + mv1.coeff(3)*mv2.coeff(2) - mv1.coeff(4)*mv2.coeff(1);

mv3.coeffRef(3) += mv1.coeff(0)*mv2.coeff(9) - mv1.coeff(2)*mv2.coeff(5) + mv1.coeff(3)*mv2.coeff(4) - mv1.coeff(4)*mv2.coeff(3);

mv3.coeffRef(4) += mv1.coeff(1)*mv2.coeff(9) - mv1.coeff(2)*mv2.coeff(8) + mv1.coeff(3)*mv2.coeff(7) - mv1.coeff(4)*mv2.coeff(6);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 1) and mv2 (grade 4).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 1 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 4 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 5

template<typename T>

void outer_1_4(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(4) - mv1.coeff(1)*mv2.coeff(3) + mv1.coeff(2)*mv2.coeff(2) - mv1.coeff(3)*mv2.coeff(1)

+ mv1.coeff(4)*mv2.coeff(0);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 2) and mv2 (grade 0).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 2 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 0 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 2

template<typename T>

void outer_2_0(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1*mv2.coeff(0);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 2) and mv2 (grade 1).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 2 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 1 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 3

template<typename T>

void outer_2_1(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){
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mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(2) - mv1.coeff(1)*mv2.coeff(1) + mv1.coeff(4)*mv2.coeff(0);

mv3.coeffRef(1) += mv1.coeff(0)*mv2.coeff(3) - mv1.coeff(2)*mv2.coeff(1) + mv1.coeff(5)*mv2.coeff(0);

mv3.coeffRef(2) += mv1.coeff(0)*mv2.coeff(4) - mv1.coeff(3)*mv2.coeff(1) + mv1.coeff(6)*mv2.coeff(0);

mv3.coeffRef(3) += mv1.coeff(1)*mv2.coeff(3) - mv1.coeff(2)*mv2.coeff(2) + mv1.coeff(7)*mv2.coeff(0);

mv3.coeffRef(4) += mv1.coeff(1)*mv2.coeff(4) - mv1.coeff(3)*mv2.coeff(2) + mv1.coeff(8)*mv2.coeff(0);

mv3.coeffRef(5) += mv1.coeff(2)*mv2.coeff(4) - mv1.coeff(3)*mv2.coeff(3) + mv1.coeff(9)*mv2.coeff(0);

mv3.coeffRef(6) += mv1.coeff(4)*mv2.coeff(3) - mv1.coeff(5)*mv2.coeff(2) + mv1.coeff(7)*mv2.coeff(1);

mv3.coeffRef(7) += mv1.coeff(4)*mv2.coeff(4) - mv1.coeff(6)*mv2.coeff(2) + mv1.coeff(8)*mv2.coeff(1);

mv3.coeffRef(8) += mv1.coeff(5)*mv2.coeff(4) - mv1.coeff(6)*mv2.coeff(3) + mv1.coeff(9)*mv2.coeff(1);

mv3.coeffRef(9) += mv1.coeff(7)*mv2.coeff(4) - mv1.coeff(8)*mv2.coeff(3) + mv1.coeff(9)*mv2.coeff(2);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 2) and mv2 (grade 2).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 2 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 2 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 4

template<typename T>

void outer_2_2(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(7) - mv1.coeff(1)*mv2.coeff(5) + mv1.coeff(2)*mv2.coeff(4) + mv1.coeff(4)*mv2.coeff(2)

- mv1.coeff(5)*mv2.coeff(1) + mv1.coeff(7)*mv2.coeff(0);

mv3.coeffRef(1) += mv1.coeff(0)*mv2.coeff(8) - mv1.coeff(1)*mv2.coeff(6) + mv1.coeff(3)*mv2.coeff(4) + mv1.coeff(4)*mv2.coeff(3)

- mv1.coeff(6)*mv2.coeff(1) + mv1.coeff(8)*mv2.coeff(0);

mv3.coeffRef(2) += mv1.coeff(0)*mv2.coeff(9) - mv1.coeff(2)*mv2.coeff(6) + mv1.coeff(3)*mv2.coeff(5) + mv1.coeff(5)*mv2.coeff(3)

- mv1.coeff(6)*mv2.coeff(2) + mv1.coeff(9)*mv2.coeff(0);

mv3.coeffRef(3) += mv1.coeff(1)*mv2.coeff(9) - mv1.coeff(2)*mv2.coeff(8) + mv1.coeff(3)*mv2.coeff(7) + mv1.coeff(7)*mv2.coeff(3)

- mv1.coeff(8)*mv2.coeff(2) + mv1.coeff(9)*mv2.coeff(1);

mv3.coeffRef(4) += mv1.coeff(4)*mv2.coeff(9) - mv1.coeff(5)*mv2.coeff(8) + mv1.coeff(6)*mv2.coeff(7) + mv1.coeff(7)*mv2.coeff(6)

- mv1.coeff(8)*mv2.coeff(5) + mv1.coeff(9)*mv2.coeff(4);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 2) and mv2 (grade 3).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 2 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 3 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 5

template<typename T>

void outer_2_3(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(9) - mv1.coeff(1)*mv2.coeff(8) + mv1.coeff(2)*mv2.coeff(7) - mv1.coeff(3)*mv2.coeff(6)

+ mv1.coeff(4)*mv2.coeff(5) - mv1.coeff(5)*mv2.coeff(4) + mv1.coeff(6)*mv2.coeff(3) + mv1.coeff(7)*mv2.coeff(2)

- mv1.coeff(8)*mv2.coeff(1) + mv1.coeff(9)*mv2.coeff(0);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 3) and mv2 (grade 0).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 3 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 0 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 3

template<typename T>

void outer_3_0(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1*mv2.coeff(0);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 3) and mv2 (grade 1).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 3 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 1 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 4

template<typename T>

void outer_3_1(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(3) - mv1.coeff(1)*mv2.coeff(2) + mv1.coeff(3)*mv2.coeff(1) - mv1.coeff(6)*mv2.coeff(0);

mv3.coeffRef(1) += mv1.coeff(0)*mv2.coeff(4) - mv1.coeff(2)*mv2.coeff(2) + mv1.coeff(4)*mv2.coeff(1) - mv1.coeff(7)*mv2.coeff(0);

mv3.coeffRef(2) += mv1.coeff(1)*mv2.coeff(4) - mv1.coeff(2)*mv2.coeff(3) + mv1.coeff(5)*mv2.coeff(1) - mv1.coeff(8)*mv2.coeff(0);

mv3.coeffRef(3) += mv1.coeff(3)*mv2.coeff(4) - mv1.coeff(4)*mv2.coeff(3) + mv1.coeff(5)*mv2.coeff(2) - mv1.coeff(9)*mv2.coeff(0);

mv3.coeffRef(4) += mv1.coeff(6)*mv2.coeff(4) - mv1.coeff(7)*mv2.coeff(3) + mv1.coeff(8)*mv2.coeff(2) - mv1.coeff(9)*mv2.coeff(1);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 3) and mv2 (grade 2).
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/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 3 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 2 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 5

template<typename T>

void outer_3_2(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(9) - mv1.coeff(1)*mv2.coeff(8) + mv1.coeff(2)*mv2.coeff(7) + mv1.coeff(3)*mv2.coeff(6)

- mv1.coeff(4)*mv2.coeff(5) + mv1.coeff(5)*mv2.coeff(4) - mv1.coeff(6)*mv2.coeff(3) + mv1.coeff(7)*mv2.coeff(2)

- mv1.coeff(8)*mv2.coeff(1) + mv1.coeff(9)*mv2.coeff(0);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 4) and mv2 (grade 0).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 4 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 0 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 4

template<typename T>

void outer_4_0(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1*mv2.coeff(0);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 4) and mv2 (grade 1).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 4 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 1 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 5

template<typename T>

void outer_4_1(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3.coeffRef(0) += mv1.coeff(0)*mv2.coeff(4) - mv1.coeff(1)*mv2.coeff(3) + mv1.coeff(2)*mv2.coeff(2) - mv1.coeff(3)*mv2.coeff(1)

+ mv1.coeff(4)*mv2.coeff(0);

}

/// \brief Compute the outer product between two homogeneous multivectors mv1 (grade 5) and mv2 (grade 0).

/// \tparam the type of value that we manipulate, either float or double or something.

/// \param mv1 - the first homogeneous multivector of grade 5 represented as an Eigen::VectorXd

/// \param mv2 - the second homogeneous multivector of grade 0 represented as a Eigen::VectorXd

/// \param mv3 - the result of mv1^mv2, which is also a homogeneous multivector of grade 5

template<typename T>

void outer_5_0(const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv1, const Eigen::Matrix<T, Eigen::Dynamic, 1>& mv2, Eigen::Matrix<T, Eigen::Dynamic, 1>& mv3){

mv3 += mv1*mv2.coeff(0);

}

template<typename T>

std::array<std::array<std::function<void(const Eigen::Matrix<T,Eigen::Dynamic,1> &,

const Eigen::Matrix<T, Eigen::Dynamic,1>&, Eigen::Matrix<T,Eigen::Dynamic,1>&)>,6>,6> outerFunctionsContainer={{

{{outer_0_0<T>,outer_0_1<T>,outer_0_2<T>,outer_0_3<T>,outer_0_4<T>,outer_0_5<T>}},

{{outer_1_0<T>,outer_1_1<T>,outer_1_2<T>,outer_1_3<T>,outer_1_4<T>,{}}},

{{outer_2_0<T>,outer_2_1<T>,outer_2_2<T>,outer_2_3<T>,{},{}}},

{{outer_3_0<T>,outer_3_1<T>,outer_3_2<T>,{},{},{}}},

{{outer_4_0<T>,outer_4_1<T>,{},{},{},{}}},

{{outer_5_0<T>,{},{},{},{},{}}}

}};

}/// End of Namespace

#endif // C3GA_OUTER_PRODUCT_EXPLICIT_HPP__
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