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Abstract. We present a new proposal for a trapdoor one-way function, from which 
we derive public-key encryption and digital signatures. The security of the new con- 
struction is based on the conjectured computational difficulty of lattice-reduction 
problems, providing a possible alternative to existing public-key encryption algo- 
rithms and digital signatures such as RSA and DSS. 
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1 Introduction 

The need for public-key encryption and digital signatures is spreading rapidly today as 
more people use computer networks to exchange confidential documents, buy products and 
access sensitive data. In fact, several of these tasks are impossible to achieve without the 
availability of secure and efficient public-kcy cryptography. 

In light of the importance of public key cryptography, it is surprising that there are 
relatively few proposals of public key cryptosystems which have received any attention. 
Moreover, the source of security of these proposals almost always relics on the (appar- 
ent) computational intractability of problems in finite integer rings, specifically integer 
factorization (e.g., [20, 19, etc.]) and discrete logarithm computations (e.g.,[S, 9,7, etcl). 

In this paper we propose a new trapdoor one-way function relying on the computational 
difficulty of lattice rcduction problcms, in particular the problem of finding closest vectors 
in a lattice to a given point (CVP). From this trapdoor function, we then derive a public-key 
encryption and digital signature methods. 

These methods are asymptotically more efficient than the RSA and ElGamal encryption 
schemes, in that the computation time for encryption, decryption, signing, and verifying 
are all quadratic in the natural security parameter. The size of the public key, however, is 
longer than for these systems. Specifically, for security parameter k ,  the new system has 
public key of size O ( k 2 )  and computation time of O(k2) ,  compared to public key of size 
O ( k )  and computation time of O(k3)  for the RSA and ElGamal systems. We believe that, 
given today's technologies, the increase in size of the keys is more than compensated by 
the decrease in computation time. 
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Our trapdoorfinction. The idea underling our construction is that, given any basis for a 
lattice, it is easy to generate a vector which is close to a lattice point (i.e., by taking a 
lattice point and adding a small error vector to it). However it seems hard to return from 
this “close-to-lattice” vector to the original lattice point (given an arbitrary lattice basis). 
Thus, the operation of adding a small error vector to a lattice point can be thought of as a 
one-way computation. 

To introduce a trapdoor mechanism into this one-way computation, we use the fact that 
different bases of the same lattice seems to yield a difference in the ability to find close 
lattice points to arbitrary vectors in R” . Therefore the trapdoor information may be a basis 
of a lattice which allows very good approximation of the closest lattice point problem. Thus, 
we use two different bases of the same lattice. One basis is chosen to allows computing the 
function but not inverting it, while the other basis is chosen to allow computing the inverse 
function by permitting good approximation to the closet lattice vector problem (CVP). For 
the sake of the introduction, we simply call such a basis a reducedbasis. Below we give an 
informal description of our trapdoor one-way function which uses the above ideas. 

The parameters of the system includes the security parameter n (which is the dimension 
of the lattices that we work with) and a “threshold’ parameter u which determines the size 
of the error-vectors which we add to the lattice points. 

A particular function and its trapdoor information are specified by a pair of bases of 
the same (full rank) lattice in R”: A “non-reduced” basis B which is used to compute 
the function and a reduced basis R which serves as the trapdoor information and is used 
for inversion. The “reduced’ basis is selected “uniformly” and the “non-reduced’ basis is 
derived from it using a randomized unimodular transformation. 

The input to the function is a lattice point (which is specified by an integral linear 
combination of the columns of B )  and an error vector whose size is bounded by g. The 
value of the function on this input is just the vector sum of the two points. To invert 
the function, we use a reduced basis R in one of Babai’s nearest-vector approximation 
algorithms [4] to find a lattice point which is at most ~7 away from the given vector. 

The cryptanalytic problem underlying our scheme is to approximate the closest vector 
problem (CVP) in a lattice, given a “non-reduced’ basis for that lattice. A related problem 
is the problem of reducing the given public basis (since one obvious attack is to reduce 
the given basis and then use the result for inverting the function). See Section 2.1 for a 
description of these computational problems in lattices. 

From trapdoorfinction to encryption scheme. In order to use the above trapdoor function 
for public-key encryption, we need a way to embed the message in the arguments to this 
function, in such a way that no “partial information” about the message is leaked by the 
ciphertext (cf., [ 131). 

There are several ways to do that, and we discuss some of them in Section 4. One generic 
way is to use hard core bits of the trapdoor function to embed the bits of the message (e.g., 
[12]). This approach has the advantage of ensuring that the encryption scheme is as secure 
as the underlying trapdoor function, but it is inefficient in terms of message expansion. 

Another plausible way, which may be more efficient, is to map the message to a lattice 
point by taking the integer combinations of the public basis vectors which is “specified” by 
the message bits, and then add to the lattice point a “small error vector” chosen at random. 
To decrypt, we look for a lattice point which is close to the ciphertext. By using the private 
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basis, which is a reduced basis, the correct decryption is obtained with high probability. We 
remark that our encryption algorithm is similar in its algorithmic nature to a scheme based 
on algebraic coding that was suggested by McEliece’s in [ 181. 

A signature scheme. It is also possible to construct a signature scheme along similar lines: 
Regard the message as a n-dimensional vector over the reals. Then, a signature of such 
vector, is a lattice point which is “close” to it (where closeness is defined by a published 
threshold). The private basis is reduced so that finding “close” points is possible. Verifying 
correctness amounts to checking that a signature is indeed a lattice point and that the 
message is close to the signature. 

It is important to remark at the outset, that messages which are close to each other 
will have the same signature. When applying the method in a setting where this property is 
desirable (e.g., signing analog signals which may change a little in time), this feature may be 
of great benefit. However, to get secure signatures in the sense of [14], this property pause 
a significant problem. When applying the method to a message space where such property 
is undesirable, we propose to first hash the message and only then sign it. This is good 
practice also in case that the scheme is subject to a chosen message attack, as otherwise 
being able to obtain different signatures of two messages which are close to each other 
when viewed as points in R” will imply the ability to compute a small basis for the lattice 
which in turn will enable the attacker to find close vectors in a lattice and break the scheme. 
(Interestingly, a family of collision-free hash functions can be constructed assuming that 
Lattice-Reduction is hard on the worst-case, see [lo]). Due to lack of space, we do not 
discuss that construction in this extended abstract. 

1.1 Discussion 

Our work was inspired by a remarkable result of Ajtai [ 11 who introduced a function which 
is provably a one-way function if approximating the shortest non-zero vector (SVP) in a 
lattice is hard on lhe worst case. Ajtai’s work may be viewed as exhibiting a samplable 
distribution on lattices and proving that approximating the shortest non-zero vector in lattices 
chosen according to this distribution is as hard as the worst case instance of approximating 
the shortest non-zero vector in a lattice. Ajtai’s construction, however, does not provide a 
trapdoor function and thus does not provide a way of doing public-key encryption based 
on lattice problems. Constructing such a trapdoor function is the novelty and focus of our 
work. 

Independently of our work, Ajtai and Dwork [ 2 ]  suggested a public-key encryption 
scheme whose security is reducible to a variant of SVP. Although exhibiting a trapdoor 
Boolean predicate (which is sufficient for public-key encryption - see [ 13]), the Ajtai-Dwork 
construction does not provide a trapdoor function. That is, given the trapdoor information 
it is possible to decide whether the predicate evaluates to 0 or 1 but not known how to find 
an inverse. Also, the variant of SVP used in the security proof of [2], called the “poly(n)- 
unique shortest vector problem” seems to be considerably easier than the general SVP. 
Finally, we note that the Ajtai-Dwork construction is less efficient than ours, both in terms 
of the key-size and in terms of encryption time (0( n4) vs. O( n2) for both measures). Thus, 
it seems that their current construction is not really practical. 
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In retrospect, our encryption scheme bears much similarity to McEliece’s scheme [ 181. 
His scheme utilizes a pair of matrices over GF(2), which corresponds to two representations 
of the same linear code. The encryption method is probabilistic: one multiplies the public 
matrix by the message vector and adds a random noise vector to the resulting codeword. 
Thus in both McEliece and our encryption scheme, encryption amounts to a matrix-by- 
vector multiplication and the addition of a suitable random vector to the result. However, 
the domains in which these operations take place are vastly different and so is the algebra. 
Another difference is in the way the private-key is generated. In McEliece’s scheme the 
private-key is a random Goppa code and has structure essential for legitimate decoding. In 
our scheme the private-key can be chosen uniformly and thus is “structure-less” - legitimate 
decoding merely depends on a property of such random choices. In both schemes the public- 
key is obtained by a suitable random linear transformation of the private-key; however, in 
our scheme the choice of this transformation seems richer. In general, we believe that 
McEliece’s suggestion as well as ours deserve further investigation, especially due to the 
difference in computational complexity required from the legal sender and receiver in these 
schemes as compared with the factoringDLP based schemes. 

1.2 Evaluation of Security 

To provide some feeling for the security of our construction, we analyzed a few plausible 
attacks against it and evaluated their effectiveness. Our analysis, combined with extensive 
testing, indicate that the work-load of these attacks grows exponentially with the dimension 
of the lattice. In particular, according to our estimates these attacks should be intractable in 
practice for dimension 300 or so. 

1.3 Organization 

In Section 2 we review necessary material about lattices and lattice problems. In Section 3 
we describe our construction of a trapdoor function and discuss various parameters and 
attacks, and in Section 4 we describes our encryption scheme. In Section 5 we describe our 
experimental results. 

2 Lattices and Lattice Reduction Problems 

In the sequel we use the following conventions: We denote the set of real numbers by R and 
the set of integers by 2. We denote real numbers by small Greek letters (e.g., p, p ,  T etc.) 
and integers by one of the letters i, j ,  t ,  d ,  r n L ,  n. We denote vectors by bold-face lowercase 
letters ( e g ,  b, c ,  r etc.). We use capital letters (e.g., B ,  G, R, etc.) to denote matrices or 
sets of vectors. If /3 is a real number, we denote the integer closest to p by [PI and the 
smallest integer which is 2 J8 by [P I .  If b is a vector in R”, then [bl denotes the vector 
in Zn which is obtained by rounding each entry in b to the nearest integer. In this paper 
we only care about lattices of full rank, so the definitions below only deal with those. 

Definition 1. Given a set of PZ linearly independent vectors in ’A?’’, B = {b,, . . . , bn}, 
we define the lattice spanned by B as the set of all possible linear combinations of the b,’s 
with integral coefficients, namely L(B) gf {C,  k,h, : Ici E Z for all i} 
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We call B a basis of the lattice L(B) .  If the vector v belongs to the lattice L ,  then we say 
that v is a lattice-vector (or a lattice point), In the sequel we view a basis for a lattice in 
R" as an n x n non-singular matrix B whose columns are the basis vectors. Viewed this 
way, the lattice spanned by B is the set L( B )  = { Bv : v is an integral vector}. Below we 
briefly mention a few well-known facts about lattices. We note that there are many different 
bases for any lattice L.  In fact, if the set B = {bl , . . . , b,} spans some lattice then by 
taking any vector bi E B and adding to it any integral linear combination of the other 
vectors we obtain a different basis for the same lattice. An important fact about lattices is 
that all the bases of a given lattice have the same determinant (up to the sign). This fact 
follows since there is an integer matrix T such that BT = C and another integer matrix 
T-l such that CT-' = B. The notion of of the orthogonality defect of a basis, which was 
introduced by Schnorr in [21], plays a crucial role in the security of our schemes. 

Definition2. Let B be a real non-singular n x n matrix. The orthogonality defect of B 
is defined as orth-defect(B) def = F;t!z\!, where ((h;(( is the Euclidean norm of the i'th 
column in B. 

Clearly, orth-dcfect ( B )  = 1 if and only if the columns of B are orthogonal to one another, 
and orth-defect ( B )  > 1 otherwise. When comparing different bases of the same lattice in 
'R", we really only care about the product of the IlbZII's, since det(B) is the same for all 
of them (and serves just as a normalization factor). 

Another important notion in our scheme is the dual lattice. If B = bl , . . , b, is a 
basis for some lattice in R" (where we think of B as an n x n matrix whose columns are 
the ba's) then the dual lattice of L ( B )  is the lattice which is spanned by the rows of the 
matrix B-'. In Section 3.4 we show that when we use a basis €3 for a lattice I, = L( B )  
for our trapdoor function, the work-load which is associated with some natural attacks on 
the scheme is proportional to the orthogonality defect of the corresponding basis for the 
dual lattice. It would therefore be convenient for us to define the dual orthogonality defect 
for a matrix. 

Definition 3. Let B be a real nun-singular n x n matrix. The dual orthogonality defect of B 
is defined as orth-defect*(B) sf ~ ~ b ~ ~ ~ / ~ d e t ( B - l ~ )  = Idel(B)I . ni 116611, where 
b i  is the i'th row in B - l .  

2.1 Hard problems in lattices 

The security of our constructions is related to the (conjectured) intractability of a few 
computational problems in lattices. 

The Closest Vector Problem (CVP). In this problem we are given a basis B for a lattice in 
R" and another vector v E Rn, and our task is to find the vector in L( B )  which is closest 
to v (in some norm). The CVP was shown by van Emde Boas [6] to be Nip-hard for any 
l p  norm. Also, Arora et al. [3] proved that approximating the CVP to within any constant 
factor is also NP-hard. 

No polynomial-time algorithm is known for approximating the CVP in R" to within a 
polynomial factor in n. The best polynomial time algorithms for approximating CVP are 



117 

based on the LLL algorithm I173 and its variants. Babai 141 proved that the CVP in R’& can 
be approximated in polynomial time to within a factor of 2*la. This was later improved by 
Schnorr 1211 to a factor of (1 + E)”  for any E > 0. We note, however, that these bounds 
refer to worst-case instances, and these algorithms “typically” perform much better than 
the above upper-bounds. 

As we explain in Section 3, an attack against our trapdoor function amounts to finding 
an exact solution for some random instance of CVP. 

The Smallest Busis Problem (SBP). In this problcm, we are given a basis B for a lattice 
in R” and our goal is to find the “smallest” basis B’ for the same lattice. There are many 
variants of this problem, depending on the exact meaning of “smallest”. In the context 
of this paper, we care about bases with small orthogonality defect. Thus, we consider 
the version in which we look for the basis B’ of L( B )  which has smallest orthogonality 
defect. For this problem too there are no known polynomial-lime algorithms, and the best 
polynomial-time approximation algorithms for it are variants of the LLL algorithms, which 
achieve an approximation ratio of 2°(“2) in the worst case for SBP instances in 72”. 

In our public key constructions, finding the private-key from the public-key requires 
solving some random SBP instances. 

3 A Candidate Trapdoor Function 

In this section we define our candidate trapdoor function and analyze a few possible 
attacks against it. Informally, a collection of trapdoor functions consists of four algorithms, 
GENERATE, SAMPLE, EVALUATE and INVERT, where GENERATE outputs a description of a 
function and the associate trapdoor information, SAMPLE picks an element in the domain of 
the function, EVALUATE evaluates the function on that element and INVERT uses the trapdoor 
information to inverts the function. Below we describe our construction. 
GENERATE. On input I”, we generate two bases B and R of the same full-rank lattice 
in 2” and a positive real number u. We generate these bases so that R has a low dual- 
orthogonality-defect and B has a high dual-orthogonality-defect. We describe the generation 
process in details in Section 3.2. The bases B ,  K are represented by n x n matrices where 
the basis-vectors are the columns of these matrices. In the sequel we call B the “public 
basis” and R the “private basis”. We view ( B ,  u)  as the description of a function f~,,, 
and R as the trapdoor information. The domain of f ~ , ~  consists of some pairs of vectors 
v, e E R” (see below). 
SAMPLE. Given ( B ,  cr), we output vectors v ,  e E ’R” as follows: The vector v is chosen 
at random from a “large enough” cube in 2”. For example, we can pick each entry in v 
uniformly at random3 from the range {-n,  . . . , +n}. The vector e is chosen by setting 
each entry in it to either +u or -cr, each with probability i. (Alternatively, if we want 
e to have integral entries we can pick each entry as equal to f 1.1 each with probability 
p u  = s2’ and 0 with probability 1 - 2pa.) 

EVALUATE. Given B,  c7, v,  e, we compute c = ~ B , ~ ( Y ,  e)  = Bv + e.  

U 2  

r i  

We do not know if the size of this range has any influence on the security of the construction. The 
value n is rather arbitrary, and was only chosen to get integers of about 8 bits for the parameters 
which we work with. 
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INVERT. Given R and c, we use Babai's Round-off algorithm [4] to invert the function. 
Namely, we represent c as a linear combination on the columns of R and then round the 
coefficients in this linear combination to the nearest integers to get a lattice point. The 
representation of this lattice point as a linear combination on the columns of B is the vector 
v. Once we have v we can compute e. More precisely, denote T = B-l R, so we compute 
v + T [R-lcJ ande  + c - Bv. 

def 

3.1 The Inversion Algorithm 

In this section we show how u can be chosen so that the inversion algorithm is successful 
with high probability. Recall that the inversion algorithm succeeds in inverting the function 
on c if using the private basis R in Babai's Round-off algorithm results in finding the closest 
lattice-point to c. Below we suggest two different ways to bound the value of 0, based on 
the L1 norm and L ,  norm of rows in R-l.  Both bounds uses the following lemma. 

Lemma4. Let R be theprivate basis usedin the inversion of fB,n(v, e). Thenan inversion 
error occurs ifand onl,, if [ R-le] # 0. 

ProoJ Let T be the unimodular transformation matrix T = B-l R. Then the inversion 
algorithm is v = 7' [R-'c] and e = c - Bv. Obviously, if v is computed correctly then 
so is e.  Thus, let us examine the conditions under which this algorithm finds the correct 
vector v. Recall that c was computed as c = Bv + e,  so 

T [R-'cJ = T [R-'(BV + e ) ]  
= T [ K I B v  + R-le] = T [ ( B T ) - l B ~  + R-le] = T [T-lv + R-'e] 

But since Tis a unimodularmatrix (and therefore, so it T-I )  and since v is an integral vector, 
then T-lv is also an integral vector. Hence we have 1T- l~  + R-lel = T-'v+ rR-'e], 
and therefore 

T [R-lc] = T(  T-'v + [R-le] ) = v + T [R-'e] 

Thus the inversion algorithm succeeds if and only if rR-'el = 6. 0 

Theorems. Let R be the private basis used in the inversion of fs,a, and denote the 
maximum L1 norm of rhe rows in R-' b y  p. Then us long as u < 1 / ( 2 p ) ,  no inversion 
errors can OCCUK 

Proof omitted. 

Although Theorem 5 gives a sufficient condition to get the error-probability down to 0, we 
may choose to set a higher value for rn in order to get better security. The next theorem 
asserts a different bound on IT, which guarantee a low error probability. 

Theoremti. Let R be the private basis used in the inversion of fs,,,, and denote the 
maximum L ,  norm of the rows in R-' by Then the probability of inversiorz errors is fi' 
bounded by 

( 1 )  Pr [ inversion error using R ] 5 'Ln . exp 
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Proof We first introduce a few notations. We denote d %f R-le and denote the i’th 
entry in d and e by 6i and ti respectively. Also, we denote the i’th row in R-‘ by f i  and 
the i ,  j’th element in R-l by p i j .  We fix some i and evaluate Pr[l&I 2 $1. Recall that 

t, then all the random variables p i j c j  have zero mean and they are all limited to the interval 
[ - 3, + 31. Therefore we can use Hoeffding bound to conclude that 

6.  - - ri o e = cj pij c j .  Since for all j ,  lpij  I 5 y / f i  and c j  = &u, each with probability 

Using the union bound to bound the probability that any such i exists completes the proof. 
0 

Remark. The last theorem implies that to get the error probability below E it is sufficient to 

choose cr 5 (yd-) - I .  In fact, the above bound is overly pessimistic in that it 

only looks at the largest entry in R-l.  A more refined bound can be obtained by considering 
the few largest entries in each row separately and applying the above argument to the rest 
of the entries. 

Alternatively, we can get an estimate (rather that a bound) of the error probability by 
using Equation 1 as if all the entries in each row of R-’ have the same absolute value. In 
this case y is the maximum Euclidean norm of the rows in R-’ so we get an estimate of the 
error-probability in terms of the Euclidean norm of the rows in R-’ . This estimate is about 
the same as the one which we get by viewing each of the hi’s as a zero-mean Gaussian 
random variable with variance ( ~ [ l f i l l ) ~  (where llfill is the Euclidean norm ofthe i’th row 
in R-l). 

To get a feeling for the size of the parameters involved, consider the parameters 
n = 120, E = For a certain setting of the parameters which we tested (in 
which the entries in R were chosen from the range f4), the maximal Euclidean norm 
of the rows in R-l i s  about 1/30. Evaluating the expression above for y = 1/30 yields 

3.2 The GENERATE Algorithm 

In this section we discuss various aspects of the GENERATE algorithm. We described in 
Section 3.1 how the value of n can be computed once we have the private basis R. Now 
we suggest a few ways to pick R and B. Recall that R, B are two bases for some lattice 
in Zn, where R has small dual orthogonality defect and B has a large dual Orthogonality 
defect. Our high-level approach for generating the private and public bases is to choose at 
random n vectors in Zn to get the private basis and then to “mix” them so as to get the 
public one. There are two distributions to consider in this process 

- The choice of the private basis R induces a distribution on the lattices in Zn I 

- For any private basis R, the process of “mixing” R to get the public basis B induces 
some distribution on the bases of L( R).  



120 

To guide us through the choices of the various parameters, we relied on experimental results. 
Below we briefly discuss the various parameters which are involved in this process. 

Lattice dimension. The first parameter we need to set is the dimension of the lattice (the 
value of n). Clearly, the larger n is, we expect that our schemes will be more secure. On 
the other hand, both the space needed for the key pair and the running-time of function- 
evaluation and function-inversion grow (at lcast) as L?(n‘)). 

The lattice-reduction algorithm which we used for our experiments is capable of finding 
a basis with very small orthogonality defect as long as the lattice dimension is no more than 
60-80 (depending on other parameters). Beyond this point, the quality of the bases we get 
from this lattice reduction algorithm degrades rapidly with the dimensions. In particular, we 
found that in dimension 100, the bases we obtained had a high dial-orthogonality-defect. At 
the present time, the best “practical lattice-reduction algorithm” which we are aware of is 
Schnorr’s block-reduction scheme (which was used to attack the Chor-Rivest cryptosystem, 
see [22]). We speculate that working in dimensions about 250-300 should be good enough 
with respect to this algorithm. 

Distribution of the private bases. We considered two possible distributions for choosing 
the private basis. 

Choosing a “random lattice”: We choose a matrix R which is uniformly distributed in 
{ - i ,  . . . , +/}“x’z for some integer bound 1.  In our experiments, the value of 1 had almost 
no effect on the quality of the bases which we got. Therefore we chose to work with small 
integers (e.g., between k4). 
Choosing an “almost rectangular lattice ”: We start from the box k . I in R” (for some 
number k ) ,  and add “noise” to each of the box vectors. Namely, we pick a matrix R’ which 
is uniformly distributed in { - I ,  . . . ~ + l } , , , ,  and then compute R +- R’ + k1 .  The larger 
the value of k is, this process generates a basis with smaller dual orthogonality factor, so 
it may be possible to choose a larger value of u. On the other hand, it may also allow 
an attacker to obtain a basis with smaller dual orthogonality factor by reducing the public 
basis. Our experiments show that we get the best parameters when k is about fi. 1. 

Generating the public basis. Once we have the private basis R, we should pick the public 
basis B according to some distribution on the bases of the lattice L(R) .  We tested two 
methods for generating B from R: 
In thefirst method, we transform R into B via a sequence of many “mixing steps”, in which 
we take one basis vector and add to it a random integer linear combination of the other 
vectors. 

In our experiments, we went through the basis vectors one at a time, to make sure 
that we replace them all. The coefficients in the linear combination were chose at random 
from { - l , O ,  1) with a bias towards 0 (specifically, we used Pr[l] = Pi[-1] = 1/7). 
This was done so that the size of the numbers in the public basis will not grow too fast. 
Our experiments indicate that using 2n mixing steps was sufficient to prevent LLL from 
recovering the original basis. 
In the second method we multiply R by a few “random” unimodular matrices to get B,  
namely B = R . TI . T2 . . .. Each of these unimodular transformation matrices is chosen 
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as a product of and upper- and lower-triangular matrices, = Li C J i ,  where the diagonal 
entries in Li , Ui are & 1. In our experiments, we chose the other non-zero entries in Li , Ri 
from { - 1, 0,  l}. We found that we need to multiply R by at least four transformation 
matrices to prevent LLL from recovering the original basis. Also, our experiments show 
that this process generates public matrices with larger entries than using 2n mixing steps 
according to the previous method. Thus, we chose to use the first method for most of our 
experiments. 

3.3 Bases representation 

To make evaluating and inverting the function more efficient, we chose the following 
representation for the private and public bases. The public bases is represented by the integer 
matrix B whose columns are the basis-vectors, so that evaluating f ~ , ~  (v, e )  = Bv +e can 
be done in quadratic time. To invert f ~ , ~  efficiently, however, we do not store the private 
basis R itself. Instead, we store the matrix R-’ and the unimodular matrix 7‘ = B-’R. 
Then, to compute f, 1, ( c )  we set v = T [R-’ c ]  and e = c - Bv, both of which can be 
done in quadratic time. 

Representing B ,  T is easy since they arc integral matrices, but R-’ is not an integral 
matrix, so we need to consider how it should be represented. Although it is possible to 
store the exact values for R-l,  the entries in R-’ may have hundreds of bits of precision, 
which makes working with them rather inefficient. A different approach is to only keep a 
few bits of each entry in R- ’ . This, of course, may introduces errors. If we only keep ! bits 
per entry then we get an error of at most 2-e  in each entry of R-l. 

Clearly, this has no effect on the security of the system (since it only effects the 
operations done using the private basis), but it may increase the probability of inversion 
errors. Since we only perform linear operations on R-l,  it is rather straightforward to 
evaluate the effect of adding small errors to its entries. Denote the “error matrix” by 
E = (c i j ) .  That is, t i j  is the difference between the value which is stored for (R-’)ij 
and the real value of that entry. Then we have Ieij I < 2-‘ for all i, j .  When inverting the 

function, we apply the same procedure as above, but uses the matrix R’ ef R-’ + E 
instead of the matrix R- ’ itself. 

Recall that the value of the function is c = B v  + e, where v is an integer vector and 
e is the “error vector”. Thus the vector v’ computed by the (modified) inversion routine is 

v’ = T [R‘cl = T [{I?-’ + E)(Bv + c)] = v + T [R-le + E(Bv +e) ]  

where the last equality follows since R-lBv is an integral vector so we can take it out of the 
rounding operation and then we have TR-lBv = v .  Therefore, we invert correctly if and 
onlyif [R-le + E(Bv + e ) ]  = 0,whichmeansthatall theentriesinR-’e+E(Bv+e) 
are less lhan a f in absolute value. The size of the entries in the vector R-le is analyzed 
in Section 3.1, so here we only consider the vector E(Bv + e) .  

Recall that all the entries in E are less than 2-e in absolute value, and that the entries 
of error vector e are all &u (for our choice of parameters, we have u cz 3). Thus the 
contribution of the vector E e  can be ignored. To evaluate the entries in EBv,  assume that 
we represent each entry in the matrix B using k bits, and each entry in the vector v using 
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m bits. Then, each entry in the vector EBv must be smaller than 71 . 2k+m-e in absolute 
value. 

For example, if we work in dimension 200, use 16 bits for each entry in B and 8 bits 
for each entry in v, and keep only the 64 most significant bits of each entry in R-' then the 
entries in EBv will be bounded by 200 .  216+8-64 cz 2-32. Thus, a sufficient condition 
for correct inversion is that each entry in R-le is less than $ - 2-32 in absolute value (as 
opposed to less than f which we get when we store the exact values for I?-'). Clearly, this 
has almost no effect on the probability of inversion errors. 

3.4 Security Analysis 

In this section we provide some initial analysis for the security of the suggested trapdoor 
function by considering several possible attacks and trying to analyze their work-load. An 
obvious pre-processing step in just about every attack on our construction is to reduce the 
public basis B to get a better basis B' which can then be used for the attack. For the sake 
of simplicity, we therefore assume that the public basis itself is already reduced via a "good 
lattice-reduction algorithm". 

Our numerical estimates for the work-load of the various attacks are based on expen- 
ments reported in Section 5 .  In these experiments we used the implementation of the LLL 
lattice-reduction algorithm from the LiDIA project [ 161. The bottom line of our experiments 
is that all the attacks below become infeasible in dimensions above 150. We do not have 
data about the performance of these attack using better lattice-reduction algorithms (such 
as the ones described in [22]. We speculate that when using these better algorithms, the 
attacks will become infeasible in dimensions about 250-300. 

The Round-off Attack The most obvious attack on our scheme (other than a brute-force 
search for the error vector e) is to try and use thc public basis R for inverting the function 
in the same manner as we use the private basis R. Namely, given the output of the function 
c = B v  + e, we compute B-'c = v + R-' e.  Then we can do an exhaustive search for 
the vector d = B-le. Below we give an approximate analysis for the size of the search 
space that the attacker needs to go through before it finds the correct vector d. 

Denote the i'th entry in d and e by hi and ci respectively, the i'th row of B,l by & 
and the (i, j)'th element in B-' by Pij. Using these notations we can write 6i = bi o e = 

def 

cj &cj,and therefore E[&] = 0 and Var[c5,] = C j  ,B:jE[~5] = (gll&i11)2, where Il6ill 

is the Euclidean norm of the i'th row of R-' . 

To evaluate the size of this search space for d, we make the simplifying assumptions 
that each entry 6; in d is Gaussian, and that the entries are independent. Based on these 
simplifying assumptions, the size of the effective search space is exponential in the differ- 
ential entropy of the Gaussian random vector d. Recall that the differential entropy of a 
Gaussian random variable z with variance u2 is h ( z )  = 5 log(rea2). Since we assume 
that the hi's are independent, then the differential entropy of the vector d equals the sum of 
the differential entropies of the entries, so we get 
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so the size of the search space is 

Note that the term det ( B )  in the last expression depends only on the lattice and is indepen- 
dent of the actual basis B. 

Typical numeric values. In Subsection 5.2 we describe experiments which we performed 
in dimension 80 through 160. Upto dimension 80, the LLL algorithm is capable of recon- 
structing a “good” basis, so that the work-load of this attack is essentially 1. In higher 
dimensions, however, LLL fails to provide a good basis, and consequently the work load 
of the Round-off attack grows by a factor of about 8000 per dimension. Thus, already in 
dimension 100 this attack is worse than the trivial brute-force search for the error vector e .  

The Nearest-plane Attack One rather obvious improvement to the Round-off attack from 
above is to use a better approximation algorithm for the CVP. In particular, instead of 
using Babai’s Round-off algorithm we can use the Nearest-plane algorithm which was also 
described in [4]. On a high-level, the difference between the Round-off and the Nearest- 
plane algorithms is that in the Nearest-plane, the rounding in the different entries are done 
adaptively (rather that all at once). More precisely, the Nearest-plane algorithm works as 
follows: It is given a point c and an LLL reduced basis B = {bl , . . . , b,} (in the order 
induced by the LLL reduction). It then considers all the affine spaces 

for all k E 2, finds the hyperplane H k  which is closest to the point c, and projects the 
point c - kb, onto the (n - 1)-dimensional space which is spanned by {bl, . . . , b,-i}. 
This yields a new point c’ and a new basis B’ = {bl, . . . , b,-I}, and the algorithm now 
proceeds recursively to find a point p’ in this ( n  - 1)-dimensional lattice which is close to 
c’. Finally, the algorithm sets p = p’ + kb,. 

It was pointed to us by Don Coppersmith that the Nearest-plane attack can be improved 
in practice in several different ways: 

- Instead of picking the vectors by the order which was induced by LLL, we can pick 
them by the size of the Euclidean norm in the corresponding rows of B-’ . An analysis 
similar to Subsection 3.1 shows that this choice locally maximizes the probability 
that the hyperplane Hk is the correct one (this analysis is omitted from this extended 
abstract). 

- We can “peel off’ more than one vector in each level of the recursion, if there are 
several vectors for which the corresponding rows of B-‘ have small norm. 

- We can apply a lattice-reduction procedure to the remaining basis vectors in each level 
of the recursion. This improvement is particularly useful since the performance of the 
lattice-reduction algorithm improves rapidly as the dimension decreases. 

- If all the rows in B-I have a large Euclidean norm, we can apply an exhaustive search 
to the few entries which has the smallest Euclidean norm. That is, instead of just trying 
the closest H k ,  we can also try the second closest one, etc. 
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The work-load of the Nearest-plane attack can be analyzed and tested in a similar manner to 
that of the Round-off attack: We can describe this attack as consisting of an of[-line phase, 
in  which we construct from the public basis B another matrix B, and an on-line phase in 
which B used in a manner similar to the way B-’ is used in the Round-off attack. An 
estimate for the work-load of this attack can be computed from the Euclidean norm of the 
rows in B .  Due to lack of space, the analysis is omitted from this extended abstract. 

Experiments reported in Subsection 5.3 indicate that the Nearest-plane attack has a 
much lower work-load than the Round-off attack. Nonetheless, its work-load also grows 
exponentially with the dimension of the lattice. Our experiments show that when using 
LLL as our lattice-reduction algorithm, some amount of search is nccdcd starting from 
dimensions 110-120, and the attack becomes infeasible in dimensions 140-150. 

The Embedding Attack Finally, another heuristic which is often used to approximate 
CVP (and which was brought to our attention by Clause Schnorr and Don Coppersmith) is 
to embed the n basis-vectors and the point c for which we want to find a close lattice point 
in an ( n  + 1)-dimensional lattice like so 

Then we use a lattice reduction algorithm to search for the shortest non-zero vector in 
L(B’), in the hope that the first n entries in this vector will be the closest point to c. As 
opposed to the other attacks, we do not know how to use the output ofthis attack as a starting 
point for an exhaustive search (in the case where the output is not the “right lattice point”). 
Thus the only thing that we can measure about this attack is whether it works or not. Some 
experiments which we made with this attack (using LLL as our tool for finding shortest 
vectors) indicate that this heuristic works up to dimensions about 110-120. Recall that the 
Round-off attack becomes worse than the simple exhaustive search already in dimension 
100. 

4 Encryption Scheme 

Our public-key Encryption scheme is based on our candidate one-way trapdoor function 
in the usual way. That is, to encrypt a message we embed it inside the argument to the 
function, compute the function and the result is the ciphertext. To decrypt, we use the 
trapdoor information to invert the function and extract the message from the argument. 

Recall from Section 3 that our one-way trapdoor function takes a lattice vector and 
adds to it a small error vector. In the context of an encryption scheme, we can think of this 
process as ‘encrypting a lattice vector’ by adding to it a small error vector, and we can think 
of the resulting vector in Rn as the ciphertext. To encrypt arbitrary messages, we must 
specify an (easily invertible) encoding which maps messages into lattice vectors which are 
then encrypted as above. Describing such an encoding is the focus of this section. 

To obtain a scmantically secure encryption scheme [13], we need an encoding scheme 
such that seeing the ciphertext does not help a polynomial time adversary in getting “any 
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information” about the message. Other parameters which need to be considered (besides 
security) are the efficiency of encoding and decoding, and the message expansion. Below 
we describe two possible encoding methods. 

4.1 A Generic Encoding 

The first method is a generic one. Since we have a candidate for a trapdoor one-way function, 
we may use hard-core bits of this function as the message bits. In particular, we can use the 
general construction of Goldreich-Levin, [12]) which shows how and where to hide hard 
core bits in a pre-image of any one-way function. (This construction enables hiding log n 
bits in one function evaluation.) 

This approach has the advantage of being able to prove that it is impossible to even 
distinguish in polynomial time between any two messages, under the assumption that 
we started with a trapdoor function. The major drawback of this scheme is the message 
expansion, since we can only send log n bits at a time for one function evaluation. Moreover, 
since this approach is generic, it doesn’t provide us with any insight which we may exploit 
to increase the bandwidth. 

4.2 

Another approach is to embed the bits of the message directly in an integer vector v, and 
then compute the ciphertext as c = Bv + e,  where B is thc public basis and e is an error 
vector, 

The main problem with this approach is that the adversary can in fact use c to obtain an 
estimate on each entry in v. To see that, notice that B - l c  = v + B-’e, and so each entry 
in B-’c is equal to the corresponding entry in v plus some “noise” from B-le.  Below 
we denote d = B-’e. Also, the i’th entry in d is denoted by 6i and the i’th entry of v is 
denoted vi. 

We saw in Section 3. I that i f  the Euclidean norm of the row 6, in H-’ is small, then the 
variance of & will also be small (notice that the dual-orthogonality-defect of B may still be 
large because of other rows in B-’ that have much larger Euclidean norm). In particular, 
if (T . IlGill < 1 then there is a reasonable probability that I & /  < l /2 ,  in which case V, 
can be obtained simply by rounding the i’th entry in R- ’ c to the nearest integer. Thus, an 
attacker could focus on the rows of B-’ which have low Euclidean norm, and compute the 
corresponding entries in v. More generally, the adversary may view the i’th entry of B - l c  
as an estimate for vi (which is probably accurate up to allbill). 

Encoding via the low-order bits in v 

def 

Remark. Somewhat surprisingly, for the purpose of this attack - reducing the basis B does 
not seem to help (of course, as long as the resulting basis is not “reduced enough” to break 
the underlying trapdoor function). To see why, consider the unimodular transformation 
T’ between the original basis B and the reduced basis B’ (7’’ = (B’)-’B). Since c is 
computed using the original matrix B ,  then when trying to extract partial information using 
B’ we compute 

v’ = ( B ‘ ) - ‘ c  = (H‘)-’(BV + e )  = ( B ’ ) - ~ B V  + (B’ ) - ’ e  = T’V + (B’) - ’e  
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If (B’)- has rows with small Euclidean norm, then the attacker may be able to learn the 
corresponding entries in T’v, but this still does not seem to yield an estimate about any 
entry in v. This suggests that in this encryption scheme, it may be useful to publish public 
basis which is not LLL reduced. 

Embedding the message in the vector v. From the above discussion, it is clear that if we 
are to embed the message in the vector v itself, then it should be embedded in the least 
significant bits of v’s entries. Also, we should not put any bits of the message in entries 
of v which correspond to rows with small Euclidean norm in I?-’. We start by examining 
the simple case in which we only use the least-significant-bit of each entry (except for the 
“weak entries”), and pick all the other bits at random. Then, given an estimate Yi = vi -I- hi 
for the entry vi, the attacker should decide whether the number in that entry was even or 
odd (that is, whether the message bit is a 0 or 1). 

If we assume that each entry in iji can be approximated by a Gaussian random variable 
with mean v; and variance o2 I Ib; [ I 2  (which is reasonable since Y; is a sum of n independent 
random variable which are all “more or less the same”), then given the experimental value 
Gi, the statisticaladvantage IPr[v; is even I fii] - Pr[v; is odd I Yi]I isexponentially small 
in ollball. If the Euclidean norm of& is large enough, then the attacker, who knows f i i ,  gets 
only a small statistical advantage in guessing the corresponding bit of the message. If we 
have a row of B-‘ with very high Euclidean norm, we may be able to use the corresponding 
entry of v for 4! message-bits. It can be shown that the statistical advantage in guessing any 
of these bits is exponentially small in ollbi11/2‘. If the Euclidean norm of each individual 
row in B- is too small, we can represent each bit of s using several entries by making that 
bit the XOR of the least significant bit in all those entries. The statistical advantage then is 
exponentially small in u . xi llbill (where the sum is taken over the XOR’ed entries). 

4.3 Additional Properties 

Detecting decryption errors. One property of the above decryption procedure is that al- 
though there is a probability of error, it is still possible to verify when the message is 
decrypted correctly. This enables the legitimate user to identify decryption errors, so that 
it can take measures to correct them. Recall that we encrypt the lattice point p by adding 
to it a small error vector e, thus obtaining the ciphertext c = p + e .  When we decrypt c 
and find a lattice point p’ (which we hope is the same as p), we can verify that this is the 
right lattice point by checking that all the entries in the error vector e’ = c - p‘ are fg. 
Thus as long as the lattice does not contain a point in which all the entries are exactly f2a,  
decryption errors can always be detected. 

Plaintext Awareness. It seems that our scheme enjoys some weak notion of “plaintext 
awareness” in that thcre is no obvious way to generate from scratch a valid ciphertext 
(i.e., one which the decryption algorithm can decrypt) without knowing the corresponding 
lattice point. Still this plaintext awareness is limited, since after seeing one valid ciphertext 
e, it is possible to generate other valid ciphertexts without knowing the corresponding 
lattice-points (simply by adding any lattice point to c). 
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5 Experimental Results 

Throughout this work, we used experimental data to guide us through the choices of various 
parameters in our construction, and to help us evaluate the effectiveness of some of the 
attacks. In this section we describe our testing methods and sketch a few of the main results. 
A full report on these tests will be available in the full version of this paper. For these 
experiments we used the implementation of the LLL lattice-reduction algorithm from the 
LiDIA project [16]. 

5.1 

The tests which we performed to determine the parameters of the key-generation process 
are omitted from this extended abstract. These tests are described in the TR version of this 
work [ll].  

Choosing Parameters for the Key-Generation 

5.2 

We used the analysis from Subsection 3.4, in conjunction with our tests, to evaluate the 
performance of the Round-off attack in dimensions 80 through 160 (in increments of lo). 
We performed the following experiments: 

1. In each dimension n we generatedjve private bases. Each basis was chosen as Ri = 
4 [fl . I + rand(*$), where I is the identity matrix and r a n d ( f 4 )  is a square matrix 
whose entries are selected uniformly from the range { -4, . . . , $4). 

For each basis Ri we computed the value C T ~  (which is used for the error vector in our 
construction) as ui = (y; d-)-’, where y; is the Euclidean norm of the largest 
row in RT’, and 6 = lop5.  (By the Remark at the end of Subsection 3.1, we estimate that 
the probability of decryption errors using the private basis R, and this value of ai is about 

2. For each private basis Ri we generatedjve public bases. Each public basis Bij was 
generated by first applying 2n “mixing steps” to R, and then LLL-reducing the resulting 
basis. As explained in Subsection 3.4, we evaluated the work-load of the Round-off attack 
using the public basis Bij as 

Evaluation of the Round-Off Attack 

10-5.) 

3. We evaluated the work-load of the Round-off attack against the private basis Ri by 
the minimum of the work-loads for the corresponding private bases Bi,. Namely we set 
work-loadi = minj work-loadij . 
4. We evaluated the “typical work-load’ in dimension n, by the median of the work-loads 
for the five private bases in this dimension. 

The results of these tests in dimensions 80-160 are summarized in Figure 1. It can be 
seen in the figure that this attack falls apart once the dimension grows above 90, where the 
work-load increases by an amazing multiplicative factor of about 8000 per dimension (!!). 
Clearly, in dimensions 100 and above it is already easier to perform an exhaustive search 
for the value of the error vector e than to use the Round-off attack. 
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Fig. 1. Evaluation of the work-load of a Round-off attack in dimensions 80-160. 

5.3 Evaluation of the Nearest-plane Attack 

To evaluate the Nearest-plane attack, we used the same private bases R,; and public bases 
Bij as for the Round-off attack. For each of the public bases Bij , we carried out the off-line 
phase in the Nearest-plane attack, thereby generating the transformed matrices Bij . We 
then used the Bij’s to evaluate the work-luad of the attack. 

As before, the work-load for a private basis Ri is the minimum work-load for all the 
& j  ’s, and the “typical” work-load for dimension n is the median work-load of the private 
bases in this dimension. 

The results of our tests in dimensions 100-170 are summarized in Figure 2. As the figure 
clearly demonstrates, this attack is far better than the Round-off attack. Nonetheless, once 
the dimension grows above 110, the work-load monotonically increases by a multiplicative 
factor of about 4 per dimension. In dimensions 140-150 this attack is already infeasible. 
Extrapolating from this line, we estimate that in dimensions higher than 200, it would be 
easier to perform an exhaustive search for the value of the error vector e than to use the 
Nearest-plane attack. 
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Fig. 2. Evaluation of the work-load of a Nearest-plane attack in dimensions 100-170. 

5.4 Evaluation of the Embedding Attack 

As we said in Subsection 3.4, we do not know how to turn a failed run of the Embedding 
attack into a starting point for some exhaustive search, and so we cannot talk about the 
“work-load” of this attack. Instead, we only measured what is the maximum value of r~ (the 
bound on the error vector) for which this attack works. 

For these experiments we used the same private bases R; and public bases Bij as for 
the previous two attacks. We then used each public basis to evaluate the function on a few 
points using a few different values of u, and tested whether the Embedding attack recovers 
the encrypted message. 

In our experiments we tested several values of u between 1 and 3. For each setting of 
c, we encrypted five messages and declared the attack successful if it recovered at least 
one of them. For each private basis Ri we computed the highest value of r for which one 
of the Bij was successful. For any dimension R we then computed the median among the 
u values of the private bases in this dimension. 

In Figure 3 we draw these values of u for dimensions 80- 130. These value are compared 
to the values of c which we suggest to use in our construction to obtain a probability of 

for decryption errors. It can be seen from this figure that for this choice of u, the 
Embedding attack stops working around dimensions 1 10- 120. 
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Fig. 3. Performance of the Embedding attack in dimensions 100-130 

Acknowledgments. 

We thank Svetoslav Tzvetkov for participating in the implementation of the experiments 
reported in Section 5. We also thank Dan Boneh, Don Coppersmith, Claus Schnorr and 
Jacques Stren for several very helpful conversations. 

References 

1 .  M. Ajtai. Generating hard instances of lattice problems. In Proceedings of the 28rhAnnudACM 
Symposium on Theory of Computing, pages 99-108, 1996. 

2. M. Ajtai and C. Dwork. A Public-Key Cryptosystem with Worst-CaselAverage-Case Equiva- 
lence, In 29th ACM Symposium on Theory of Computing, pages 284-293, 1997. 

3. S. Arora, L. Babai, J. Stem, and Z. Sweedyk. The hardness of approximate optimia in lattices, 
codes, and systems of linear equations. In Journal of Computer and System Sciences, 54(2), 
pages 3 17-33 1, 1997. 

4. L. Babai, On Lovasz lattice reduction and the nearest lattice point problem. in Combinaforicu, 
vol. 6, 1986, pp. 1-13. 

5. M. Blum and S .  Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme which 
Hides All Partial Information. in Proceedings of CRYPT0 '84, Springer-Verlag, 1985, pp. 
289-299. 



131 

6. P. van Emde Boas, Another MP-complete problem and the complexity of computing short 
vectors in a lattice. Reprot 81-04, Mathematische Instituut, University of Amsterdam. 1981. 

7. Digital Signature Standard (DSS). FIPS PUB 186, 1994. 
8. W. Diffie and M.E. Hellman. New Directions In Cryptography. IEEE Transactions on Informa- 

tion Theory, Vol IT-22, 1976, pp. 644-654. 
9. T. El-Carnal. A Public Key Cryptosystem and a Signature Scheme Basedon Discrete Logarithms. 

IEEE Trans. Information Theory, vol. 31, 1985, pp. 469-472 
10. 0. Goldreich, S .  Goldwasser and S. Halevi Collision-Free Hashing from Lattice Problems. 

Theory of Cryptography Library: Record 96-09, Available from 
http://theory.lcs.mit.edu/-tcryptol/1996/96-09.html 

Problems. ECCC Report TR96-056. Available from 
http://www.eccc.uni-trier.de/eccc-local/Lists/TR-l996.html 

12. 0. Goldreich and L.A. Levin A Hard-core Predicate for All One-way Functions Proceedings 
of the 21st ACM Symposium on Theory of Computing, 1989, pp. 25-32 

13. S .  Coldwasser and S. Micali, Probabilistic Encryption. Journal of Computer and System Sci- 
ences, Vol. 28, 1984, pp. 270-299. 

14. S. Goldwasser, S. Micali and R.L. Rivest. A Digital Signature Scheme Secure Against Adaptive 
Chosen Message Attack. SIAM Journal on Computing, Vol. 17, no. 2, 1988, pp. 281-308. 

15. R. Kannan. Algorithmic Geometry of Numhers. in Annual Review of Computer Science, vol. 2, 
1987, Annual Reviews Inc. 

16. The LiDIA project software-package and user-manual. 
Available from h t t p :  / / w . i n f o r m a t i k .  th-darmstadt  .de/TI/LiDIA/ 

17. A.K. Lenstra, H.W. Lenstra, L. Lovisz. Factoring polynomials with rational coefficients. Math- 
ematische Annalen 261,515-534 (1982). 

18. R.J. McEliece, A Public-Key Cryptosystem Based on Algebraic Coding Theory. DSN Progress 
Report 42-44, Jet Propulsion Laboratory 

19. M.O. Rabin, Digital Signatures and Public-Key Functions as Intractable as Factorization. Tech- 
nical Report MITLCSRR-212, M.I.T., 1978. 

20. R.L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public- 
Key Cryptosystems. Communications ofthe ACM, Vol. 21, 1978, pp. 120-1 26. 

21. C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. in Theoretical 
Computer Science, vol. 5 3 ,  1987, pp. 201-224 

22. C.P. Schnorr and H.H. Homer, Attacking the Chor-Rivest Cryptosystem by Improved Lattice 
Reduction. in Proceedings of EUROCRYPT '95, Louis C .  Guillou and Jean-Jacques Quisquater, 
editors. Lecture Notes in Computer Science, volume 921, Springer-Verlag, 1995. pp. 1-12 

11. 0. Goldreich, S .  Goldwasser and S .  Halevi Public-Key Cryptosystems from Lattice Reductions 


