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PREFACE

In this Memorandum the author presents a number of

results in the theory of finite two-person games-a theory

that has been found to have significant applications to a

variety of conflict situations. Much of the material

presented here has been derived from the following earlier

Memoranda (by the same author): RM-641, RM-1I42, PIJ-I145,

RM-1598, RM-2476, and RM-3026; in almost every case,

however, new results have been included.



SUMMARY

This Memorandum consists of several loosely--related

essays on the theory of finite, two-person games. The

topics covered are, in brief, (1) the block decomposition

of symmetric games, (2) saddlepoints in matrices having

submatrices with saddlepoints, (3) generalized saddlepoints

and "order matrices," (4) the existence of values in games

with almost-perfect information, and (5) the nonconvergence

of "ficitious play" in non-zero-sum games. Throughout,

there is an emphasis on features of the theory that depend

only on the ordering of the payoffs, as opposed to their

numerical values.
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SOME TOPICS IN TWO-PERSON GAMES

INTRODUCTION

This Memorandum reports on half-a--dozen loosely

related excursions into the theory of finite, two-person

games, both zero-sum and non-zero-sum. The connecting

thread is a general predilection for theorems and examples

that do not depend upon the full linear structure of the

real numbers. Thus, many of the results we present are

invariant under order-preserving transformations applied

to the payoff spaces, while those in Sec. 1 are invariant

under the group of transformations that commute with

multiplication by -1.

We should make it clear that we are not studying

"ordinal" utility, as such, but rather the ordinal

properties of "cardinal" utility. The former would

demand some conceptual reorientation, which we do not

wish to undertake here. Nevertheless, the ordinalist may

find useful ideas in this paper.

We shall not summarize the whole paper here, but

merely sample a few items; for a more synoptic view the

reader is invited to consult the table of contents.

Consider first the matrix game shown in the 0 1 2 -1

right-hand margin. The solution is easily -1 C 1 -2
2-1 0 1

found as soon as we recognize that the game 1 -2 -i 0

is symmetric in the players. Indeed, if we
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map each player's i-th strategy into the other's i+l-st

(mod 4), we merely reverse the signs of the payoffs.

It follows that the value is 0 and that there is a solution

of the form (a,b,a,b), (b,a,b,a). (See Sec. 1.)

Next, consider the class of matrix games in which

the payoffs are ordered like those in the matrix at left.

10 0 8 Curiously, in all these games, player I's third

19 7 strategy is never playable, although it is not

23 6

3 4 5 dominated in the usual sense. To verify this,
observe that if the value of the 2-by--2 subgame

in the upper left corner is greater than "3" the third

row is dominated by a linear combination of the first two

rows, while if it is less than "7" the third column can be

dropped, and then the third row. (See Sec. 3.)

Finally, consider the non--zero--sum game with outcome

matrix as shown at right. Player I rates the A C B

outcomes A > B > C; player II rates them B A C

C B A
B > A > C. If we apply the algorithm of

"ficitious play" to this game, a strange thing happens.

Rather than converging to the unique equilibrium point

(at which all probabilities are equal), the sequence of

mixed-strategy pairs generated by the algorithm oscillates

around it, keeping a finite distance away. (See Sec. 5.)

The five main sections of this paper are essentially

independent, both logically and topically. Our excuse

for putting .them into a single report is the expectation
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that they will appeal to a single audience. Much of this

work has already appeared in short RAND Memoranda (see

Ref. [15] at the end of the paper), and some of it has

been cited in the published literature ([5],[11]). In

reworking this material, however, we have added many new

results.
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1. SYMMETRIC GAMES

1.1. Discussion

It is easy to see that a two-person zero-su-m game

can be symmetric in the players without having a skew-

symmetric payoff matrix. "Matching Pennies" is a simple

example; another is shown at the right; 1 1 -1

another is given in the Introduction.
-- i 1 1

The point is, of course, that an

automorphism of the game that permutes the players can

simultaneously shuffle the labels of the pure strategies.

It would be interesting to know something about the abstract

structure of such automorphisms.*

As a first step, we shall show that the matrix of a

symmetric game can be decomposed into an array of square

blocks in such a way that (a) each block has constant

1 3 2 diagonals (in one direction), (b) the array

11 -l 1 as a whole is skew-symmetric in a certain

3 -1 1 1

2 -1 -1 0 sense, and (c) the size of each block is a

power of 2. This is illustrated at left

.for the 3-by--3 example given above.

The "power of 2" property, (c), is quite interesting.

It tells us, for example, that the 6-by--6 game illustrated

below, which is obviously symmetric and has constant

*The narrow "skew-symmetric" definition is most often
seen in the literature (e.g., [19], [10], [71). But Nash
uses the more general form in [13]; see also [19], p. 166.



-6-

diagonals, can nevertheless be decomposed into smaller

blocks. The 4-by-4 and 8--by-8 analogues of this matrix,

on the other hand, do not decompose.

2 5 3 6 4 1
1 2 3 -3 -2 -1 1 2 -2 3 -1 -3 1

-1 1 2 3 -3 -2 4 -2 2 -1 3 1 -3

--2-1 1 2 - -> 2 1 -3 2 -2 3 -1

-3 -2 -1 1 2 3 5 --3 1 -2 2--1 3
3 -3 -2 --l 1 2 3 -1 3 1 -3' 2 -2

2 3 -3 -2 -1 1 6 3 -1 -3 1 -2 2

1.2. The Main Theorem

Let A, B,... denote n-by-n game matrices (n fixed

throughout), and let P, Q, R,... denote permutation

matrices of the same size. Primes will denote transposition,

which is equivalent to inversion for permutation matrices.

We make the following definitions:

equivalent: A = B <= > A = PBQ' for some P, Q.

symmetric: A e Z <-> A =--A'.

conjugate: P f Q <= > P = RQR' for some R.

Certain subclasses of E will be of interest:

A E E(PQ) <= > B = -PB'Q' for some B •-A.

These subclasses exhaust Z, but are not disjoint.

Lemma 1. If PQ F RS then E(P,Q) = E(R,S).

Proof. Given PQ = TRST' and A -PA'Q', we require

B A such that B = -RB'S'. As it happens, B = T'AP'TR
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serves the purpose. Indeed, since P'= QTS'R'T', wc have

B = T'(-PA'Q')(QTS'R'T')TR

= -T'PA'TS'

-- -- (T'AP'T) 'S'

= -RB'S'.

Note that E(P,Q) depends only on PQ. If we define

E(P) = E(PI), where I is the identity, then Lemma 1

may be restated:

Lemma 1'. If P w Q then E(P) = E(Q).

It can be shown that the converse is valid. Since

two permutations are conjugate if and only if their cyclic

factors have matching periods, there is thus a one-to-one

correspondence between the classes E(P) and the partitions

of n. This stronger result is not needed in what follows,

however.

Lemma 2. If Q is an odd power of P then

E(Q) E E(P).

Proof. Suppose A =--PA'. We must show that

A e Z(P 2k+l) for all k > 0. But A = -P(-PA')' = PAP';

hence A = PkAp'k =- pk+lA'p'k Therefore

A E (pk+l, pk) = E(p2k+l

Theorem 1.1. Every symmetric game A E E is

equivalent to a game B satisfying B =--RB' for some

permutation R, the order of which is a power of 2.
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Proof. Let A e Z(P). The order of P can be

represented in the form c 2 k, with c odd. Then the

order of pC will be 21. By Lemma 2, A e E(PC). Thus

pC will serve as the R of the theorem. Q.E.D.

1.3. Block Decomposition

The decomposition into blQcks can now be described.

By proper choice of B, we can give R the form:

R = (1 2 3 ... Xi)(%i+l 1 i+ %2) ... (. n),

where the periods X are powers of 2. B now breaks

up into a square array of P-by-X V blocks B , and

the equation B =--RB' implies (and is implied by) the

structure set forth in the following theorem.

Theorem 1.2. Let X = min(%., X ). Then B v has

constant diagonals, in the sense that numbers X

exist such that for TI in that block,

bij Ph if i - j = h(mod X).

X (Iff X V , then B V breaks up into identical square

sub-blocks of size X.) In the symmetrically located

block B the same numbers appear; we have

bij = -- X--h+l if i - j = h(mod Q.

In particular, along the main diagonal of the array ([ = v),

we have

Ph - X--h+l "
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Proof. Theorem 1.

Corollary 1. Indecomposable symmetric n-by-n games

exist only for n a power of 2.

Corollary 2. Every symmetric game of odd size has

a zero in its payoff matrix.

1.4. Solutions

To solve a symmetric game we (a) replace the B v

by their average values, (b) solve the resulting skew-
*

symmetric matrix, and (c) distribute the mixed-strategy

probabilities for each block equally among its constituent

pure strategies. Not every solution of the original can

be obtained in this way, however. In the game at the

right, for example, (0, 2/3, 1/3, 0) 1 -1 2 -2

is one of the basic optimal strategies -1 1-2 2

2 -2 4 -4
of each player. -2 21-4 4

1.5. Symmetric Nonzero-sum Games

There is a direct extension to nonzero-sum games.

Let us call the matrix pairs (A1 , A2 ) and (B1 ,B 2 )

equivalent if, for some P, Q, both A1 = PBIQ' and

A2 = PB2 Q'. Let us call (A1 , A2 ) symmetric if (A1 , A2 )

and (A', A') are equivalent. Then the following counterpart

to Theorem 1.1 can be established by essentially the same

proof:

jee Kaplansky [10] and Gale, Kuhn, and Tucker [7].
See Gale, Kuhn, and Tucker [8], application (e),

pp. 94-94.
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Theorem 1.3. Every symmetric nonzero-sum game

(AI, A2) is equivalent to a game of the form of (B1 , B2)

= (RB', RB{) for some permutation R of order power of 2.

The description of the block decomposition remains

much as before, though the "main diagonal" loses some of

its special significance. Corollary 1 remains valid, but

not Corollary 2.

2. SOME THEOREMS ABOUT SADDLEPOINTS

2.1. A Condition for the Existence of a Saddlepoint

Theorem 2.1. If A is the matrix of a zero-sum two--,

person game, and if every 2-by-2 submatrix of A has a

saddlepoint, then A has a saddlepoint.

Proof. Let val[A] = v. Let j be the index of

a column having the minimum number, 7, of entries greater

than v. Suppose 7 > 0; then, for some i we have

aij > v. Then we must have aij, • v for some j'. But

the column indexed by j' has at least 17 entries

greater than v, too many to be paired off against the

7r-1 remaining entries > v of the other column. Thus,

for some i' we have ailj,> v _ aij. Since the

2-by-2 submatrix:

i > v •V

SI V > V



clearly has no saddlepoint, the assumption U > 0 was

incorrect. Hence there is a column with no entries

greater than v. Similarly there is a row with no entries

less than v. Q.E.D.

2.2. Detached Rows and Columns

The hypothesis of Theorem 2.1 actually imposes a

very special structure on the matrix A. Let us say

that the p--th row of A is detached if

max a . < max min a.ij
j PJ- i~p j

Similarly, the q-th column is detahe.d if

min a. min max a...
iq- jzq i '3

Detachment obviously implies domination. For 2--by--2

matrices, the existence of a detached row or column is

equivalent to the existence of a saddlepoint.

Theorem 2.2. If every 2-by--2 submatrix of A has

a saddlepoint, then A has a detached row or column.

Pro By Theorem 2.1, both A and A' (its

transpose) have saddlepoints. Hence there is a column

of A with no entries greater than val[A], as well as

a column of A (row of A') with no entries less than

val[A'J. If val[A] < val[A'], then these columns are

distinct, and the latter is a detached column. Similarly,
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if val[A] > val[A'], there is a detached row. If

val[A] = val[A'] = v, then there is either a detached

row or column, or a saddlepoint p-• common to both A

and A'. In the latter case, apj m a. v, all i,j,

and we can use the fact that the submatrix obtained by

deleting row p and column q has a saddlepoint to show

that either p or q is detached, depending on whether

the value of the submatrix is > v or < v. Q.E.D.

2.3. A Generalization

Theorem 2.1 can be generalized, after a fashion.

Let us say that a matrix is "in general position" if no

two collinear entries are equal.

Theorem 2.3. Let A be an m-by-n matrix in general

position, and let 2 ! r • m, 2 • s • n. If every r-by-s

submatrix of A has a saddlepoint, then A has a

saddlepoint.

Proof. it suffices to prove the case where

r = m ' 2 and s = n-l 2; the rest will follow by

induction and symmetry. Let Aq denote A with the

q-th column deleted. Let i qjq be the location of the

saddlepoint of Aq (which is unique, since A is in

general position). If all of the jq's are distinct, for

q = 1,...,n, then every column of A will contain one

of the points W .lq* Since each aiqjp is a column
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maximum, one of them will be the maximum of the whole

matrix. On the other hand, it must also be the (unique)

minimum of its row in Aq, which contains at least two

entries. This impossibility implies that the jq's are

not all distinct. Let jq = jr' q + r. Then it is

apparent that the point 'qIq 'rIr is a saddlepoint

of A. Q.E.D.

At right we illustrate what can happen if two

collinear entries are equal. Every 1 0 -1

3-by--2 submatrix has a saddlepoint, -2 0 2

but not the full matrix. 2 -1 3

3. ORDER MATRICES

3.1. Definitions: The Saddle

By a line of a matrix we shall mean either a row

or a column. Two numerical matrices of the same size

will be called order equivalent if the elements of

corresponding lines are ordered alike. An order matrix,

a , is an equivalence class of order-equivalent

numerical matrices. Abstractly, it may be regarded as

a partial ordering < on the set I(6-) of all index

pairs ij, with the property that collinear points are

always comparable while noncollinear points are never

comparable, except as required by transitivity.

If K c I(4?) is a set of index pairs, we shall

write K1 for the set of first members, K2 for the set
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of second members, and K for KI x K2 . In other words,

K1 is the smallest set of rows, K(2 the smallest set

of columns, and K the smallest submatrix, that covers

K. If K = K then K is rectangular.

A generalized saddle point (GSP) of an order matrix

1is a rectangular set K c (1Z0) such that (1) for

each i ý K1 there is a p E K1  with pj > ij for all
/

j e K2 , and (2) for each j ý K2  there is a q e K2

with iq < ij for all i e K1 . (Note the strict

inequalities.) A GSP that contains no other GSP is

called a saddle.

Theorem 3.1. Every order matrix has a unique saddle.

The proof consists in showing that the intersection

of two GSP's is a GSP. Let K and L be two GSPs of

Then certainly K n L + 0, since K and L must

both carry the optimal mixed strategies of any numerical

matrix belonging to a.* It will suffice to show that

for each i ý K1 there is a p in K1 fn L1 with

p- > ij for all j c K2 n L2 . But we can find a

p e K1 with that property, since K is a GSP. If

p' • LI, then we can find a p" c LI with p"j > p'j

for all j E K2 n L2 . If p" ý Kl' then p"t E K1 can

Compare [5], p. 41-42.

Bass in [1) showed how to prove that K n L + 0
without making use of the concept of optimal strategies.
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be found bearing the same relation to p", etc. The

strict inequalities ensure that the sequence terminates.

That is, there is a row in K1 n L1 that majorizes row

i on K2 n L2 . Q.E.D.

The saddle of (Z will be denoted by S(a). It

contains everything relevant to the solutions of the

numerical games A belonging to a . In particular,

it contains Bohnenblust's "essential" submatrix and the

Shapley-Snow "kernels.""

We may define a weak GSP by using nonstrict inequalities

The intersection of two weak GSP's need not be a

weak GSP. However, as Bass has shown, the intersection

of a weak GSP with the saddle is a weak GSP.

3.2. Residuals

A one-element saddle is an ordinary (strict) saddlepoint,

and is easy to find even in a very large matrix. Identification

of the saddle in general may be more tedious. The next

theorem, based on an ingenious idea of Harlan Mills,

provides a rapid method of generating points in the

saddle, and thereby reduces the search problem substantially.

Lemma 1. (Mills) Let a1 be an order matrix with at

least two columns, let pq- be maximal with respect to

< , and let 0,q be obtained from a. by deleting column q.

Then S(aq) a S(,L).

See [2], p. 52; also [9], p. 44.

See [17], p. 32.

In conversation.
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Proof. Write S for S(L%) and Sq for

SI X (S 2 - (q}). If q J $2, then Sq is at once seen

to be a GSP of q If q $S2, then p c S1  by

maximality. To show that Sq is a GSP of aq, note that

the row condition is satisfied for Sq, just as for S,

while the column condition fails only if column q was

used (in 6Z ) to minorize some column outside S2 . But

this is impossible, by the maximality of -p-. Thus Sq

is always a GSP of 2,q. Hence S(dq) c Sq c S.

A similar lemma holds concerning the deletion of

rows containing minimal elements.

The following lemma is easily established; we omit

the proof.

Lemma 2. If ,8 is obtained from (Z by deletion of

a strictly majorized row or a strictly minorized column,

then S(Z ) C S(0,).

Now consider a sequence of nonvoid order matrices

a L(I), C-(2) each obtained from the preceding

by deleting a column containing a maximal point, or a

row containing a minimal point, or a strictly majorized

row, or a strictly minorized column. If 0. is an mr-by-n

matrix, then 0(m~n-2) is l-by-l. The point so defined

is called a residual of a. Let R(6) denote the set

of all residuals of t . Our lemmas, together with the

fact that the saddle is rectangular, give us the following

result:
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Theorem 3.2. R(a-) C R(a1) c S(cZ).

3.3. Examples

Let us illustrate the residual concept.

(a) In the order matrix of "Matching Pennies"

(at right), every entry is either maximal or 1 -I

minimal. By the maximality of 11 we can strike -I 1

out the first column, and then the first row,

and obtain 22 as a residual. The three other possible

sequences give us TI, I-, and 21 as residuals. Thus

R(a-) = R--&7 = S(a-) = I(aL).

(b) More generally, let Z be a square matrix with

a "detached" diagonal; for example, let 1117 be maximal

for all i. Then for each i, we can delete all columns

except i by maximality, and then by row deletions obtain

U as a residual. Hence (J = S(6Z) = I(cz).

(c) We first conjectured [15b] that deletions of

the first type (Lemma 1) would always suffice to determine

the saddle. This was disproved by Bass [1] with the 4-by-4

example at right, which has no residuals © @ 2 !

"of the first type" in the top row. But 0 6) 14

if, for example, we strike out column 3, d
then row 3 goes by domination (Lemma 2),

and the resulting 3-by-3 game has a detached diagonal,

making iT a residual by (b) above. (In the diagram we

have circled all residuals.)
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(d) Thus, a new counterexample is needed to show

that R(O2) ý S(ci) is possible. It is provided by the

example in the Introduction, which we have reproduced

i @here with residuals circled. As we shall

see later, it is no coincidence that the
2 36005 residuals avoid the "unplayable" third row.

3.4. Minimax and Maximin Points

A minimax point of a numerical matrix is a column

maximum of smallest value. A maximin point is a row

minimum of largest value. Since noncollinear comparisons

may be involved, these terms are usually not well defined

for order matrices. Nevertheless, we have the following:

Theorem 3.3. The minimax and maximin points of any

numerical matrix A e 0, are residuals of , .

Proof. Let p- be a minimax point of some A E a.
If A has more than one column, then it will have a

maximum in some column other than q, and the corresponding

location in 0, will be maximal. Delete this column and

pq is still minimax. Thus we may strip the matrix down

to just the single column q, and then by row deletions

obtain p- as a residual. The proof for maximin points

is similar.

Bass [1] has shown that every weak GSP contains a

minimax point and a maximin point.
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3.5. An Algorithm

The following method for determining the saddle was

suggested by Mills (see [l], p. 3): Start with any

submatrix K0 known to be contained in the saddle (for

example, a single residual). For h = 0, 1,..., construct

Kh+i from Kh by adjoining either (a) a row outside

Ki that is not strictly majorized on h by any other
h 2

row of a , or (b) a column outside K0 that is not

strictly minorized on K, by any other column of d0.1

Then it is easily seen that K+ c s(a). If neither

(a) nor (b) is possible, then K = S(a).

3.6. The Center

Let CI(A) denote the set of "active" strategies

for the first player in A, i.e., those that appear with

positive probability in some solution. Similarly, C2 (A)

for the second player. Let C(A) = CI(A) x C2 (A). Then

the set

C(a) = U C(A)
AeO

will be called the center of a.* The

center is contained in the saddle. It

is not necessarily rectangular, as may

be seen from the example at the right

(center shaded).

C(A) is the "essential" submatrix of A in the
sense of [9] and [2].
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Example (d) of 3.3 suggests the proposition that a

point that never occurs in optimal play cannot be a

residual, i.e., R(cZ) c C(La). This is not quite true,

0 Q as the example at left shows (center shaded,

residuals circled). The equality of the two

l"s accounts for this exception, as the next theorem shows,,

Theorem 3.4. If (Z is in general position, then

R C c(Z).

(We recall that a is "in general position" if no two

collinear elements are equal.) The rest of this section

will be devoted to the proof of Theorem 3.4.

Lemma 3. If p-q c C(A), then every neighborhood of

A contains a B having a unique solution and such that

p- e CG(B).

Proof. If p- e C(A) then a "basic" (extremal)
(0 00 0

solution (xO, yO) of A exists with xp > 0, yq > 0.

We may assume that val[A] = v + 0. By the Shapley-Snow

theorem on basic solutions [17], a nonsingular submatrix

Acan be found for which (ko, 50) is an "equalizer":

k = vl.

(Dots indicate suppression of indices not appearing in

A; I is a vector of l's.) Given c > 0, define

B A= - (C/v)A2. If e is sufficiently small, we can

invert B, as follows:
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B + (C/v)i + 0(e2

Then B has an equalizer solution proportional to (ko, ýo) +

e(l, i) + 0(E 2 ). This is all-positive for small e, and

hence unique.

We now replace A by B in the original matrix. Since

the value and solution of B differ only slightly from those

of A, it is easy to perturb the rows and columns outside

the submatrix so as to make them irrelevant. The full matrix

now has a unique solution, and p and q are still active.

Q.E.D.

Lemma 4. Let A have at least two columns, let

Aq result from A by deleting column q, and let A(w)

result from A by adding w to the entry at pq. Then

lim val[A(w)] = val[Aq].
W-+M

Proof. Let x° be optimal in Aq. Given e > 0,

choose x such that lix- x0 11 < e and xp > 0. Then

xA(w) :ý (v--ea, v--ca,...,--a+wx , ... ,v--ea),

(q-th component)

where v = val[Aq] and a = maxijlaiji. Thus, for w large,

x guarantees the first player at least v - ca in the game

A(w). Hence we have
v - ca < val[A(w)] < v. Q.E.D.

Another B, suggested by 0. Gross, is given by

bij = aij - Ei.*iaij - Ej j aij + 2 Z ijEjE jaij

with (*, *) all-positive but close to (0o o0).
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Lemma 5. Let a, be in general position, let p-

be maximal in a , and let Zq result from a -

deleting column q. Then C(Oq) c C(a ).

Proof. Take rý-s in the center of 0q. Using

Lemma 3 and the fact that a. is in general position, find

A c 0 such that Aq has a unigqe solution (x*, y*) with

xr > 0 and ys > 0. Define the functions

f(x) = min Zi g(y) = max Z yj
j q a i j q

Since f(x) is polyhedral (piecewise linear) and has a

unique maximum at x , there exists a > 0 such that

(3.1) f(x) < val[Aq] - a jix - x1l

for all mixed-strategy vectors x. Similarly, there exists

P > 0 such that

(3.2) g(y) _ val[Aq] + p lY* -_ Yl1

for all mixed-strategy vectors y wJith yq = 0.

Now let A(w) be obtained from A by adding w > 0

to the element apq, and let (x(w), y(w)) be any solution

of A(w). Then certainly val[A(w)] _ f(x(w)), and we

have by (3.1)

alix* - x(w)lI ý val[Aq] - val[A(w)].

By Lemma 4, x(w) - x as w - =; hence xr(w) is positive

for large w.



-23-

The corresponding statement for ys(w) is a bit

harder to prove. First we observe that

Ejapjyj(w) + Wyq (w) _ val A(w) _ a,

where a = maxiji aijj. Hence

yq(w) • 2a/w

Then we have

val[A(w)] = max i Ej aij (w)yj (w) - maxi Zj aij yj (w)

maxi,: aijyj (w) + aj5yq(w) + (a. - aiq)yq(w)]Jiq

max.[Z a. .y.(w) + a y (w)] - 2ay (w)- j4q iJ yj is q q

> g(y'(w)) - 4a 2/w,

where y'(w) is like y(w) except for y'q (w) = 0 and

Y'(W) = Ys (w) + yq(w). Hence, by (3.2),

val[A(w)] ý val[Aq] + p 1I Y -_ Y'(w) - 4a2/w,

and y'(w) converges to y , by Lernma 4. Since yq(W) - 0,

we have ys(W) - y > 0. Thus both r and s are active

in A(w) for large w. But A(w)e LZ for all positive w.

Hence r-s e C(O5). Q.E.D.

Lemma 6. If S is obtained from a- by the deletion

of a strictly majorized row or a strictly minorized column,

then C($) c C(a).
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Proof. A strictly dominated strategy can never be

active.

Theorem 3.4 now follows directly from Lemma 5 (and

its "row" counterpart), Lemma 6, and the definition of

"residual. "

Equality need not hold in Theorem 3.4; for example,

in (d) above we have !-I e C(6-) -- R( a). But no general-

position counterexample has been found to the proposition

R(0, -C(-a.

3.7. The Antisaddle

We close with a simple result concerning antisaddlepoints,

i.e., saddlepoints of the negative matrix.

Theorem 3.5. A strict antisaddlepoint of a
cannot be in the center, unless CZ is l-by--l.

Proof. Suppose S(-a-) = i} _c C(a). Take A c

such that p- e C(A), and let A be the submatrix of A

defined by C(A). Then A has an equalizer solution,

which solves -A as well. But -A has a strict saddlepoint

at p-•, and hence a unique, pure-strategy solution.

Therefore A is l-by-l and pq is a saddlepoint of A

as well as of -A, strict in both cases. This is possible

only if A is l-by-l. Q.E.D.
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Weak antisaddlepoints are sometimes found in the

center. as shown (starred) in the accompanying examples.

The smaller matrix has a

saddlepoint; the larger one

(which is symmetric in the sense of Sec. 1) 1 -)-1 0

does not.

Similar reasoning can be used to establish the

following more general result, which applies however only

to numerical matrices:

Theorem 3.6. If S(A) C C(-A) then S(A) = C(-A).

4. INSTANTANEOUS GAMES

4.1. Games of Almost--perfect Information

There is a class of games of timing, typified by the

so-called "noisy duels" (see [5], p. 128-134; also [ii],

Vol. II), in which the payoff depends discontinuously

upon the order in which certain actions occur, but is a

continuous function of the occurrence times, given the

sequence of events. The (finite) set of actions available

to a player at any moment may depend on what has gone

before; in any case the players are informed at all times

of all previous history. But for the possibility of

simultaneous action, a solution in pure strategies would

thus be indicated. This possibility, however, not only

makes mixed strategies necessary in general, but even

affects the existence of a value. Indeed, there are
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some surprisingly simple indeterminate (valueless) games

of this type, perhaps worthy of a place beside the examples

of Ville ([5], p. 115) and of Sion and Wolfe ([18]).

(See below, Fig. 1.)

Simultaneity is not a serious problem in the middle

of the game, since either player can avoid it at negligible

cost by altering his timing by a small random amount. But

this tactic may not work at the beginning or end of the

game, since the random displacement would be in a fixed

direction. In order to focus on the problem of determi-

nateness, in games of timing with almost-perfect information,

we shall assume that there is a "critical instant" at the

beginning of the game. The players will be motivated

(by the payoffs) to take some action either at t = 0

or immediately thereafter. We thereby reduce the infinite

game in extensive form to an essentially finite, "instantaneous"

game, whose payoffs are defined by the values of the subgames

that result after the first action, or pair of simultaneous

actions.

One of our results (Theorem 4.4) states that an

instantaneous game has a value provided that the payoff

in the event of simultaneous actions always lies between

the payoffs for the same actions performed singly. Another

result (Theorem 4.5) shows how to assign a formal value

to the game when the true value does not exist.
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4.2. Some Indeterminate Noisy Duels

Two gunfighters are crouched behind barriers, where

they can neither see nor be seen. If they stand up at

the same instant, we may assume that their chances are

equal if they both shoot at once, or if they both hold

their fire. If only one fires, that one wins. If one

stands up without shooting, and finds the other still

down, then he can take control of the situation, and

eventually win. But if the one under cover hears the

other stand up shooting, then he can step out and take

control before his opponent has time to reload.

This (with apologies to the real world!) is an example

of an indeterminate noisy duel. The critical moment is

at the beginning of the time interval, since to wait an

appreciable amount of time is definitely bad strategy.

The situation at t = 0 can be represented by the

following matrix:

Stand up Stand up Wait
Shooting Quiet

Stand up. 0 +1 -1
ShootingJ

Stand up 1 0 +1
Quiet I

Wait +1 -R

Here "®" is meant to suggest "repeat" or "replay," as

in a recursive game (see Sec. 4.4 below).
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Let us test for a value. In the minorant game,

in which player I openly commits himself to a particular

(mixed) strategy, the outcome @ is worth no more than

-1, because player II, knowing the probable duration of

the other's "waif," will almost always succeed in acting

first. Setting ' = -1 and solving, we find that the

value is -1/9. By symmetry, the value of the majorant

game is +1/9. Hence the duel is indeterminate.

An even simpler example is shown at right. The

minorant value is zero; the majorant value is 1 -1I

1/3. Any matrix order-equivalent to this one

(see Sec. 3) also represents a game without a

value if we interpret "®" as a number between 0 and 1

in determining order equivalence.

The above can be viewed as a game on two unit squares,

with discontinuities along the diagonals (Fig. 1).

-17 
+1/

+1 -1
0 V 0

I

Figure 1.
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4.3. The General Case

Let M(p) denote the following m+l-by-n+l array:

"act" "wait"

all an ai0
"act"

aml amn amO

"wait ' a() a;n a

Here cp is either a real number or the symbol ®. The

game represented by M(@) is said to be instantaneous

if

(4.1) ain < max a.
j 0 j i+0 10

This condition puts a premium on immediate action. Without

it, at least one player would be willing to delay, and

other elements of the original game of timing (from which

we assume the data in M(@) to have been drawn) would

become significant in the selection and timing of the

first action. We shall be concerned henceforth only with

the instantaneous case.

The minorant and majorant games have the matrices

SM(min a0 j) and M2 = M(max ai 0 ),
0 2 1+0

respectively. Let their values be v, and v2 , and their.

sets of optimal strategies X1 and X2 (for player I)
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and YI and Y2  (for player II). Obviously,

(4.2) min a vI < v2  < max a.,j +0 aOj -- -- --V i 0 ai 0 "

If vI < v 2  the game is indeterminate; if vI = v 2 the

game is determinate and the optimal strategies for the

two players correspond exactly to the elements of X, and

Y2, respectively.

Theorem 4.1. A necessary and sufficient condition

for the instantaneous game M(() to be determinate is

that X

Proof. Necessity. Any strategy guaranteeing v1  to

player I in M1 will guarantee him at least as much in

M2 . Therefore, v1 = v 2 implies X1 E X2 . Similarly,

Y2 C YI"

Sufficiency. Let X1 C X2, Y2 E Y1 0 and suppose

Vi < v 2 . Take x e XI. Then, since x is optimal in

M2 , we have

m
Z xia.ij 2 j v 2,...,n.

i=0

Hence no j + 0 can be active in MI. Hence Y1

consists of the single strategy "wait." The same holds

for Y2, by inclusion, and for X2 and X,, by

symmetry. Hence M1  and M2 have saddlepoints at

"wait-wait," contradicting (4.1). Q.E.D.
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Theorem 4.2. A necessary condition for the

instantaneous game M(®) to be determinate is that

"wait" is unplayable (i.e., not active) for at least one

player in at least one of MV, M2

Proof. Let vI = v 2 , and take x E y Y Y2 "

Then x c X2 and y e YI, by Theorem 4.1, and we have

= . .. (max a - miino o)
o = v2 - vI = xM2Y - xMly x0 Y0 ia0 ai 0  j0 a 0 j .

By (4.1), x0 y0 = 0. Since x and y may be chosen

independently, it follows that either x0 vanishes

identically for x E XI, or y0  vanishes identically for

Y G Y2" Q.E.D.

Theorem 4.3. A sufficient condition for the

instantaneous game M(®) to be determinate is that

"wait" is unplayable for both players in at least one of

Ml$ M2•

Proof. Under the hypothesis, val[M(a)] is

independent of a.

The conditions given so far are somewhat impractical,

since the values of the games Ml, M2  are at least as

easy to find as the optimal strategies. The condition in

the next theorem is free from this drawback, and it also

has a simple heuristic interpretation, namely: if two

actions occur simultaneously, the result is intermediate
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in value between the results of either action performed

separately.

Theorem 4.4. If (4.1) holds, and if, for all

i + 0, j + 0,

(4.3) min(ai 0 , a 0 j) :< aij _ max(ai 0 , a0 j),

then M(®) is determinate.

Proof. Let i , j be such that ai*0 = maxi0O

a0j= min a 0 j" Let I be the set of i + 0 such that
j+O

ai 0 >a and J the set of j + O such that
-o Oj*J

a0 j _i i*o0 . Then by (4.1), i*e I and j*cJ, so that

neither I nor J nor their complements are empty.

Take jEJ and iEl. If i ý 0 then we have

aiO < a0j o a0 j :< ai*0,

by the definitions of I, j*, and J, respectively.

Applying the "betweenness" condition (4.3) twice, we

obtain

aij _ a 0 j _ ai~j.

Thus, for every iý I (including i = 0), aij < aiK j

holds for all jEJ. Similarly, for every j•J, aij >aij

holds for all icI. This means that IxJ is a weak generalized

saddlepoint of M(a) (see Sec. 3.1). Hence val[M(a)] is

independent of a. Q.E.D.
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4.4. A Way of Resolving the Indeterminacy

One may wish to assign a formal value to the

instantaneous game M(@) when no true value exists.

A way to do this-perhaps the only "fair" way- is to

pursue the analogy with stochastic or recursive games

[163, [6], and attempt to solve the equation

(4.4) a = val[M(a)].

In effect, we replace the time continuum by a discrete,

well-ordered set of points, making simultaneity after

t = 0 a significant possibility. We shall wee that

condition (4.1), which characterizes "instantaneous"

games, is intimately related to the existence of a unique

solution to (4.4).

Theorem 4.5. If M((j) is an instantaneous game,

then (4.4) has a unique solution a = v, and we have

vl , v • v2•

Proof. Uniqueness. Let (4.4) have two solutions

v < v. Let x be optimal in M(V) for player I and

let y be optimal in M(7) for player II. Then

xM(v)y > v and xM(V)y < V. Subtracting, we obtain

v - V < x (M ) - M (V))y = x0 Y0•- C ).

Hence x0 = y 0 = 1, and x and y are pure. Thus, for

all i + 0, + t 0,
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aOj > v > v_> aio*

This contradicts (4.1).

Existence. The function F(a) = val[M(a)] is

monotonic nondecreasing. Hence, by (4.2), we have

F (mn ao) < F(vI);

in other words, v -1 F(vl) ! 0. Similarly, v2 - F(v 2 ) > 0.

But a - F(a) is continuous; hence it has a zero in

[vI, v 2 1. Q.E.D.

Corollary. In the determinate case, v is equal

to the true value.

We note that if (4.1) is not satisfied, then all

values in the interval [max ai 0 , min a0 j ] are solutions

of (4.4), and no others.

From the fact that F(a) and a - F(a) are both

monotonic nondecreasing functions, it follows that the

sequence b, F(b), F(F(b)),... (b arbitrary) converges

monotonically to a solution of (4.4). This can be useful

in making sharper numerical estimates; e.g., we have

F(vI) • V • F(v 2 ), etc.

In the first indeterminate game of Sec. 4.2 we have

S=0, by symmetry. -In the second example we also have

7 = 0; thus, the first player's advantage, such as it is,

disappears if time is made discrete. This feature (which

carries over to the order-equivalent variants) shows
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that strict inequality need not hold in Theorem 4.5

for indeterminate games.

5. FICTITIOUS PLAY IN NOIN-ZERO--SUM GAMES

5.1. Discussion

The method of fictitious play (FP) resembles a multi-

stage learning process. At each stage, it is assumed that

the players choose a strategy that would yield the optimum

result if employed against all past choices of their

opponents. Various conventions can be adopted with regard

to the first move, indifferent alternatives, simultaneous

vs. alternating moves, and weighting of past choices.

The method can meaningfully be applied to any finite game,

and to many infinite games as well. (See [3], [4], [5],

pp. 82-85, and [14].)

It was once conjectured that the mixed strategies

defined by the accumulated choices of the players would

always converge to the equilibrium point of the game, or,

in the event of nonuniqueness, to a set of mutually

compatible equilibrium points. This is the natural

generalization of Robinson's theorem [14] for the zero-sum

two-person case; it was recently verified by Miyasawa [121

for the special case of two players with two pure strategies

apiece.

The trouble begins, as we shall see, as soon as we

add a third strategy for each player. It appears,

intuitively, that this size is necessary to produce enough
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variety; if FP is to fail, the game must contain elements

of both coordination and competition. Our counterexamples

include a whole class of order-equivalent games, and thus

do not depend on numerical quirks in the payoff matrices;

nor are they sensitive to the minor technicalities of the

FP algorithm. It is clear that games with more players,

or with more strategies per player, can exhibit the same

kind of misbehavior.

5.2. A Class of Nonconvergent Examples

We shall elaborate slightly on the game described in

the Introduction, to eliminate any question of "degeneracy."

The payoff matrices are shown at right. a7 c2 .-5 y

We assume that ai > bi > ci and b1 a 2 c3 a2 P2 Y2

a i > Pi > yi, for i = 1, 2, 3. This cl b 2 a 3  Y3 '3 P3

implies, among other things, that the I-s payoff II's payoff

game is not constant-sum. It is easy

to show, by considering submatrices, that there is a unique

equilibrium point.

For simplicity, we shall assume that the FP choices

are made simultaneously, and that the first choice pair

is IT. Consider any occurrence of lIT in the FP sequence.

The next choice of player I will certainly be 1 again,

since that strategy has actually improved in value.

Player II will either stay with 1 or shift to 3. Eventually,

in fact, he must shift to 3, since a1 > PI" Thus, after

each run of IT we will find a run of 1-3. By a similar
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argument, this will be followed by a run of ý3-3, and then

runs of 37-, _Z, 1, -IT,..., in a never-ending cycle.

Suppose that a run of 1T is just about to begin.

Let X represent the current 'ccumulated-choices" vector

for player I (thus, Xi is the number of times he has

chosen row i), and let Y be the same for player II.

Let H denote the current "comparative-payoffs" vector

for player I (thus, HI = YIaI + Y2 c2 + Y3 b3 , etc.).

Since he is about to choose 1, we have

HI = max(Hl, H2, H3)-

Let there occur rll choices of IT, followed by r 1 3

choices of 13. Then his new comparative payoffs are

H = H
1 

+ r
1 1

aI + rlb

= 2 + r1 1b + 33

SH1 = H3 + r1 1c1 + r 1 3 a3 .

Since he shifts to 3 at this point, we must have

HI H{. But H13 H 1; hence H3 -33 3Ž H1 - H1 , and

we have

1I -- c 1

r!3 a3 b 3 ll"

Let r 3 3  be the length of the 7 run that follows.

By analogous reasoning, we have

r i -- Y Ir
r 3 3 3 1 3 13"
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Repeating the argument four times more, we obtain

S f 3 (ai -- ci)(ai -- yi)

(5.1) rll Ž ( 3 (a. -b.(5 - (al -b h)(t (•

where rl' denotes the length of the next IT- run.

Since the constant in (5.1) is greater than 1, the runs

of fT increase in length exponentially (or faster).

The same rate of increase occurs for the other choice

pairs. Hence the ratios Xi/Xj, Yi/Yj, i + j, do not

converge. In particular, the normalized strategy vectors

x = X/E Xi, y = Y/E Yi do not converge to the unique

equilibrium point strategies.

It can be shown that x and y, in their respective

strategy spaces, approach limit cycles which do not contain

the equilibrium point strategies. Hence there is no

convergence to an equilibrium point even through subsequences.

The argument we have given is independent of the tie-

breaking rule. With minor modifications it can also

handle the case of alternating moves, as well as the case

of nonintegral run lengths. The latter implies that the

differential-equation version of FP (see [3]) will also

fail to converge to the solution.

5.3. An Example

We have computed the limit cycles for the numerical

example shown at right. The payoffs 1 0 0 0 0 1

do not satisfy the strict inequal- 0 1 0 1 0 0
0 01 0 10

ities assumed in the preceding proof,
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and the constant in (5.1) is not greater than 1. A

more refined analysis, however, shows that the run lengths

do increase ex•ponentially; in fact, the ratio of r'l to

rnl tends in the limit to e6, where e s 1.466 is the

real root of e3 -_ 2 = I.

The limit cycles in the separate strategy spaces are

illustrated in Fig. 2. In the product space they form a

hexagon, with typical vertices

(1, a4, e2 ; 03 , e3 , e)/C = 0

(e 4 , e4 , e2 ; e5, $3, e)/CG, etc.,

where C is the appropriate normalizing constant. The

unique equilibrium point is

(1, 1, 1; 1, 1, 1)/3 = o.
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mprefers 3') (1 prefers 1)

Z(fIprefers I') (Jlprefefs 2') 2 (1prefers 2) (1 prefers 3)

I's strategy space If's strategy space

Figure 2.
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