
EUROGRAPHICS Workshop on ... (200x)
N.N. and N.N. (Editors)

Light Propagation Maps on Parallel Graphics Architectures

A. Gruson1, A. Hakke Patil2, R. Cozot1, K. Bouatouch1, S. Pattanaik2

1IRISA, Rennes, France
2UCF, Orlando, United States

Abstract

Light going through a participating medium like smoke can be scattered or absorbed by every point in the medium.
To accurately render such a medium we must compute the radiance resulting at every point inside the medium
because of these physical effects, which have been modeled by the radiative transfer equation. Computing the
radiance at any point inside a participating medium amounts to numerically solving this radiative transport equa-
tion. Discrete Ordinate Method (DOM) is a widely used solution method. DOM is computationally intensive.
Fattal [Fat09] proposed Light Propagation Maps (LPM) to expedite DOM computation. In this paper we propose
a streaming based parallelization of LPM to run on SIMD graphics hardware. Our method is fast and scalable.
We report more than 20× speed improvement by using our method as compared to Fattal’s original method. Using
our approach we are able to render 64×64×64 dynamic volumes with multiple scattering of light at interactive
speed on complex lighting, and are able to render volumes of any size independent of the GPU memory capability.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional—
Graphics and Realism I.3.3 [Computer Graphics]: Picture/Image—Generation

1. Introduction

Physically based rendering problems are challenging for re-
search because of the complexity of computation, in partic-
ular, the rendering of participating media where light inter-
acts with all the medium. Over the last few years progress in
GPU technology has made a lot of parallel computing power
accessible to us at a very low cost. Developers in every field
have become interested in porting their algorithms to GPU to
accelerate the computation. The main hurdle to this porting
is that, GPUs are based on a SIMD architecture, and hence
to run the ported algorithms efficiently, the CPU algorithms
must be carefully transformed to take the best advantage of
this SIMD architecture.

Light transport inside the participating medium has been
modeled by the radiative transfer equation [Cha50]. There
are several categories of numerical techniques to solve this
equation. A particular category of techniques that is of in-
terest to us is Discrete Ordinate Methods (DOM), which re-
lies on the discretization of the volume and the directions,
and solves the problem iteratively through local interactions.
This approach is GPU friendly because GPU is efficient on
regular and finite data.

In this paper we propose a GPU based DOM approach to
solving the radiative transfer equation and rendering. Our
work is based on Fattal’s [Fat09] light propagation maps
(LPM) approach. LPM is an efficient approach to solv-
ing light transport equation. However, because of the vari-
ous constraints posed by GPU (for e.g.: parallel execution,
branching condition, etc.), the LPM approach as proposed
by Fattal cannot be directly ported to GPU. Using a novel
data organization we transform the LPM approach to make
it amenable to GPU implementation. Moreover, with a novel
streaming mechanism we make the resulting algorithm scal-
able and hence capable of processing volumes of any size on
a GPU independent of its memory capability.

This article is organized as follows. In section 2, we re-
view existing methods on participating media rendering. In
section 3 we examine the RTE equation, establish the nota-
tion and describe Fattal’s approach. In section 4, we present
our work on this technique. In the last sections, we show our
results and discuss them.

c© The Eurographics Association 200x.

A. Gruson, A. Hakke Patil, R. Cozot, K. Bouatouch, S. Pattanaik / Light Propagation Maps on Parallel Graphics Architectures

2. Previous works

There are several categories of numerical techniques to solve
the RTE equation. We can find a survey on participating
media rendering techniques as well as a classification in
[CPCP∗05, PCPS97]. Two main approaches exist for ren-
dering with multiple scattering: deterministic and stochas-
tic methods. In this paper we focus only on deterministic
methods and particularly on the Discrete Ordinate Methods
(DOM) [SH01].

Discrete Ordinate Methods These methods rely on the 3D
discretization of space and direction. They solve the RTE
iteratively through local interactions. However, the DOM
techniques suffer from artifacts named false scattering and
ray effect. Several techniques have been proposed to re-
duce these shortcomings. For example, the technique pro-
posed by Languenou et al. [LBC94] uses ray casting to solve
the boundary condition and to compute single scattering.
Then, they use local interactions between voxels to compute
the multi-scattering component. Fattal proposes another ap-
proach [Fat09] based on a fine sampling of the light propaga-
tion directions and a coarse sampling of the radiance stored
for each voxel. We will explain that method in more detail in
Section 3.

GPU-based algorithms Zhou et al. [ZRL∗08] developed a
technique achieving real-time animated smoke rendering in-
cluding multiple scattering. Their approach is based on the
decomposition of the input smoke animation into a sequence
of points with a radial basis function and a residual field.
They use low ordered harmonic spherics to store the lighting
information. They handle real-time manipulation of view-
point, smoke attribute and lighting. But they can not achieve
fast smoke simulation due to the high preprocessing time
needed to build their representation.

Multiple scattering can also be approximated by diffusion
equation [Ish78] which consist of a 2 coefficient spherical
harmonic expansion of the radiance field. This method was
introduced in computer graphics by Stam [Sta95]. Bernabei
et. al [BHPB∗12] implemented a parallel lattice-boltzmann
[GRWS04] solution of the diffusion equation for render-
ing heterogeneous refractive media. Szirmay-Kalos et. al
[SKLU∗09] accelerated the iterative solution to the diffusion
equation by making an initial guess based on a homogeneous
medium assumption. This method has been further extended
in [SKLU∗11]. Wang et. al [WWH∗10] also implemented a
parallel solution to diffusion equation however they used a
tetrahedral mesh instead of cubic grids for representing the
volume, allowing them to render arbitrarily shaped objects.

Englhardt et al. [END10] presented a very promising
method which is based on the instant radiosity technique.
They use VPL to compute single scattering and multiple
scattering as well. Moreover, they need to clamp the VPL
contribution to remove some artifacts. So, they use a com-
pensation bias step to correct the clamping and to get good

looking results. Their technique is fast and can allow a
surface to contribute to the radiance of the participating
medium. However, it does not handle complex light sources
such as environmental maps.

3. Light transport in Participating media

The radiative transport equation (RTE) Eq. 1 models all the
light interactions with a participating media. Light can be
absorbed and/or scattered at every point in the volume:

(ω ·5)L(p,ω)=Ka(p)Le(p,ω)−(Ka(p)+Ks(p))L(p,ω)+

Ks(p)
4π

∫
S2

L(p,ωi)ρ(ω,ωi)dωi (1)

where L(p,ω) is the radiance (W ·m−2 ·sr−1) leaving a point
p in direction ω. Le(p,ω) is the emitted radiance, and is zero
for non-self-emitting media. Ka(p) and Ks(p) are the ab-
sorption and scattering coefficients that characterize the vol-
ume. The right most term corresponds to multiple scattering
where all the incoming directions are scattered in direction
ω. ρ(ω,ωi) is the phase function that describes the angular
distribution of radiance scattered along direction ω around a
point when illuminated from a specific direction ωi.

3.1. Fattal’s algorithm

In [Fat09], Fattal proposed Light Propagation Map as a solu-
tion to the RTE equation. This method falls into the category
of Discrete Ordinates Methods (DOM).

As done in most DOM methods, Fattal’s method samples
the spatial domain D into voxels Cxyz such that

⋃
Cxyz = D

where (x,y,z) are the voxel index. It also samples the unit
sphere S2 around the center of the voxel into a set of di-
rections Ω

d so that the union of the solid angles around the
sampled directions

⋃
|Ωd | = S2. The goal of this technique

is to approximate the radiance L(p,ω) (Eq. 2) by an average
scattered radiance Id

xyz in each voxel Cxyz.

Id
xyz ≈ (V d

xyz)
−1∫

Cxyz

∫
Ωd

Ksxyz

4π

∫
ω′∈S2

L(p,ω′)ρ(ω,ω′)dω
′dωd p (2)

where Id
xyz is the radiance in the voxel xyz along the direc-

tion Ω
d . V d

xyz = ∆V |Ωd | is the product of the volume of the
voxel Cxyz and |Ωd | the solid angle. In this representation,
the emission, absorption and scattering coefficients are as-
sumed to be constant in each cell.

The main problem with the DOM techniques is that they
suffer from two main shortcomings, namely false scattering
and ray effect. The common solution to reduce these two
artifacts is to increase the space and direction discretization
resolution. However, this approach requires huge amount of
memory and hence limits the method practically.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Gruson, A. Hakke Patil, R. Cozot, K. Bouatouch, S. Pattanaik / Light Propagation Maps on Parallel Graphics Architectures

Figure 1: The unit sphere S2 is discretized into a set of m
or n directions Ω

i. For each voxel, Fattal computes the scat-
tered radiance for m directions with m << n, n being the
number of propagation directions. An LPM is an array of
point elements, each emitting light in n directions sampling
solid angle 4π

6 of the sphere S2.

To overcome this problem, Fattal proposes fine sampling
of space and direction for the iterative light propagation and
coarse sampling for storage. For the high resolution propa-
gation, he uses 2D ray maps called Light Propagation maps,
each of which is of high spatial resolution and represents a
subset of the finely sampled propagation directions (Fig. 1).
Starting with a face of the coarse grid (3D grid of voxels rep-
resenting the medium), this 2D map propagates step by step
in one voxel plane at a time and the propagation results are
stored at the center of the voxels. So the LPM is basically a
high resolution 2D array, each of its element (r,s) stores a
set of rays originating at (r,s) and having directions sampled
from the unit sphere S2.

The propagation process must compute the interaction be-
tween the currently propagated LPM and the volume. For the
first propagation, the energy carried by each ray is initial-
ized with the boundary conditions. The boundary conditions
correspond to the incoming radiance arriving at the volume
boundary. Then the rays are marched using a grid march-
ing algorithm along their directions. When a ray leaves the
medium at the boundary point A, then a new ray of the same
direction with zero radiance is generated from an opposite
point B as shown in Fig. 2. The aim is to have the same
number of rays in each part of the volume.

Let Li,t
r,s be the radiance of a ray originating at a point (r,s)

of the LPM in direction Ω
i at the pth propagation step from

all the faces back and forth, t being the intersection number
of the ray with the faces of the current traversed voxel. Let
the voxel (x,y,z) be the tth voxel encountered by the ray. The

A

B

Li,0r,s

Li,1r,s

Li,2r,s

Li,3r,s

Li,4r,s

Li,5r,s

Li,6r,s

Li,3r,s

Opposite
Face

Figure 2: Li,t
r,s is the ray radiance at the (r,s) element of the

LPM, i the ray direction defined by Ω
i and t the number of

the voxel traversed by the ray.

radiance Li,t
r,s leaving the tth voxel is given by

Li,t
r,s = Li,t−1

r,s e−4lq(Kaxyz+Ksxyz)/ω
n
z

+Ud,p
xyz × (1− e−4lq(Kaxyz+Ksxyz)/ω

n
z)/(Kaxyz +Ksxyz) (3)

where Ud,p
xyz is the stored unscattered radiance for direction

d (equal to the closest propagation direction i), p is the pth

propagation (Scattering order).4lq is the distance traversed
by the ray in the voxel.

Given a propagation direction, when a ray adds its radi-
ance contribution to the currently traversed voxel, this con-
tribution must be scattered into all directions. Fattal stores
the current scattering contribution in a variable named U that
is used in future propagation steps. As we mentioned earlier,
Fattal chooses different sampling frequency for I and U but
for the reason of clarity, in the rest of the paper we will as-
sume that they are the same. U and I are updated as:

R = (V d
xyz)
−1Ar,sF i,dLi,t

r,s(1− e−4lqKsxyz)/ω
n
z)

Id
xyz = R (Eq.2) (4)

Ud
xyz = R,

where Ar,s is the area of the (r,s) LPM sample. F i,d is pre-
computed as:

F i,d =
1

4π

∫
Ωi

∫
Ωd

ρ(ω,ω′)dωdω
′ (5)

where superscripts i and d are for the propagation direction
and storage direction respectively, "d” being the direction
closest to the direction represented by "i".

Recall that one iteration represents the light propagation
from each element (r,s) of the LPMs. It corresponds to one
scattering while multiple iterations correspond to multiple
scattering. Fattal proposes to terminate the iteration process
when the unscattered light is low in every voxel. I and U
are initialized with self-emission radiance (if any) of each
voxel. Moreover in pratice, we keep only two U buffers, the

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Gruson, A. Hakke Patil, R. Cozot, K. Bouatouch, S. Pattanaik / Light Propagation Maps on Parallel Graphics Architectures

(p−1)th and the pth U buffers and use a swap mechanism
to reuse them.

Fattal’s method is summarized by Algorithm 1.

Algorithm 1 Fattal’s original algorithm
// p is iteration number (scattering order)
Initialize pprev to 0, the index of the previous iteration
Initialize Ud,pprev

xyz and Id
xyz with medium emitted light

while maxxyz|Ud,pprev
xyz |< ε && p>0 do

// Initialisation U buffer of the pcur
th iteration

pcur = (pprev +1)%2 // Current iteration index
Initialize Ud,pcur

xyz to 0
for each LPM do

for each propagation direction i do
for each element (r,s) of the current map do

if p == 0 then
Initialize Li,0

r,s with the boundary conditions
else

Set Li,0
r,s to 0

end if
for each intersected voxel t do

Update the ray radiance Li,t
r,s from Ud,pprev

xyz
(Eq. 3)
Update Ud,pcur

xyz and Id
xyz (Eq. 4)

end for
end for

end for
end for
pprev = pcur

end while

4. New Method: Parallel and Scalable LPM

4.1. Parallelization

A simple strategy to parallelize Fattal’s algorithm would be
to assign a computation thread to each ray of the LPM. How-
ever, multiple rays affect the values stored in a voxel (see
Fig. 3). So, this creates a synchronization problem. It may
be possible to create synchronization barriers on the writable
information and continue with the original simple approach.
However, the algorithm will be less efficient because the la-
tency, needed for the synchronization, will be significant as
compared to the computation time.

In CUDA, updating the I and U voxel values could be
performed using atomic operations on data of floating point
type. However, using atomic operations has a significant cost
because of the branching condition and the multiple global
memory transactions (rather than cache accesses as in our
approach thanks to data locality), as shown in Fig. 8.

We address this synchronization related problem by divid-
ing the original propagation step into two steps: the propaga-
tion step and then the collecting step. These steps are illus-
trated in Fig. 4. In the propagation step, we group together

t0

t0

t1

t1

t2

t2
t3

t0

t0

t0

t1

t1

t1

t1
t2

t2

t2

t3

t3

t3

t3

t4

t4

t4

t5

t5

t5

Figure 3: On the left, we have the original Fattal’s algo-
rithm where we put one thread per ray. The problem is that
it produces synchronization problem for writing into the grey
voxel. On the right, we only propagate rays having the same
direction, thus guarantee only one ray write per voxel.

all the rays of same propagation direction. Thus we guaran-
tee that each voxel is traversed by only one ray at a time. So
we create a temporary buffer to store the radiance brought
by a ray when it goes through a voxel. In the collecting step,
we use all the temporary buffers to update the Ud,p

xyz and Id
xyz

values. In order to simplify the discussion, we assume that
the LPM spatial resolution is the same as the volume face
spatial resolution.

Figure 4: Summary of the GPU algorithm. Each Block in
the propagation step manages one temporary buffer. Then,
in the collecting step, each voxel read temporary buffers to
update I and U.

We create two GPU kernels: one for the propagation step
and the other for the collecting step. One propagation step
corresponds to one LPM propagation and requires propaga-
tion of multiple blocks. Each block corresponds to all the
elements of the LPM and to only one propagation direction.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Gruson, A. Hakke Patil, R. Cozot, K. Bouatouch, S. Pattanaik / Light Propagation Maps on Parallel Graphics Architectures

There are as many blocks as directions. We assign a thread
to each element (r,s) of the LPM. In this way, there is no ex-
ecution divergence between threads in the same block. The
role of a thread is to trace a ray with origin (r,s) and direc-
tion i and to compute its contribution to the traversed voxels.
This contribution is stored into a temporary buffer. The ray
contribution can be expressed as:

T i
xyz+= Li,t

r,s(1− e−4lqKsxyz/ω
n
z), (6)

where T i
xyz is the temporary buffer value for the direction i in

the voxel (x,y,z).

As for the collecting step, we create only one block rep-
resenting all the volume (the whole participating medium).
Each thread of this block is assigned to one voxel. It collects
the result of the propagation step for all the directions.

Algorithm 2 Our algorithm
Initialize pprev to 0, the index of the previous iteration
Initialize Ud,pprev

xyz and Id
xyz with self emitted radiance if any

// p = iteration number
for p ∈ [0,Niterations[do

// Initialisation U buffer of the pcur
th iteration

pcur = (pprev +1)%2 // Current iteration index
Initialize Ud,pcur

xyz to 0
for each LPM do

parallel for each blocks i do
parallel for each thread (r,s) do

Create ray and initialize Li,0
r,s

for each intersected voxel t
Compute Li,t

r,s from Ud,pprev
xyz (Eq. 3)

Store ray contribution into T i
xyz (Eq. 6)

end for
end for

end for
end for
Synchronize_blocks()
// Collecting step
parallel for each voxels (xyz) do

for each direction i
Update Ud,pcur

xyz and Id
xyz with T i

xyz (Eq. 4)
end for

end for
pprev = pcur

end for

4.2. Streaming

Memory limitation of GPUs severely restricts the size of
volume we can handle at a time. Particularly, to run Algo-
rithm 2 on a 2563 volume with 25 propagation directions per
one LPM face requires 3.8 GB memory. Maximum memory
available on most of the GPUs is much less than this size. A
solution is to stream portions of the volume to the GPU.

To this end, we split the volume V into sub-volumes Bi jk
defined as

Bi jk = {Cxyz| x ∈ [i×Nsub,(i+1)×Nsub],

y ∈ [j×Nsub,(j+1)×Nsub],

z ∈ [k×Nsub,(k+1)×Nsub],}

where Cxyz is a voxel at the spatial position (x,y,z) and
Nsub the size of a sub-volume such that

⋃
Bi jk = V . Then

we group together sub-volumes into slices. This grouping
is based on the orientation of the LPM face. For example,
for an LPM face perpendicular to the Z axis, we group to-
gether sub-volumes into a slice Sl = {Bi jk|i ∈ [0, Imax], j ∈
[0,Jmax],k = l}. In this way, the propagation iteration con-
sists in Zmax

Nsub
steps where Zmax is the maximum value of coor-

dinate z. Instead of applying Algorithm 2 to the whole vol-
ume, we apply it to one slice at a time. That means propa-
gation and collection for one slice must complete before the
next slice is processed by the GPU. The radiance propagated
from the LPM through a slice is stored at the outgoing face
of the slice and this stored radiance is in turn propagated
through the next slice, and so on.

The subdivision into sub-volumes make efficient transfer
of slices from the CPU memory to the GPU memory as ex-
plained in the next section.

S0

S2

S3

U0
d,p+1 I0

d

TempRays

U1
d,p

U1
d,p+1 I1

d

CPU

U2
d,p I2

d

Download

Upload

Compute

Use

S1

U2
d,p+1

Temporary
buffers

Use

GPU BlocksGPU Memory

Figure 5: Si is the ith slice with Ui and Ii the associated
data. TempRays is the buffer which stores the radiance at
the outgoing face of the previous slice S0. This radiance are
propagated within slice S1 and finally deposited at the out-
going face of slice S1. We use two streams represented by
green and blue arrows. The green stream is in charge of up-
load/download data from the GPU memory to the CPU. The
blue stream is in charge of the computation of the multiple
scattering solution for the slice S1. The orange buffers are
the buffers that are kept in the GPU. Recall that d is the di-
rection number and p the propagation iteration number.

CUDA offers concurrent kernels execution and concur-
rent data transfers on modern GPU. We exploit this mecha-

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Gruson, A. Hakke Patil, R. Cozot, K. Bouatouch, S. Pattanaik / Light Propagation Maps on Parallel Graphics Architectures

nism by creating two streams: one to manage the GPU-CPU
transfer, another to compute the multiple scattering solution
for one entire slice (Fig 5). A stream is a FIFO queue of
tasks. The role of the computation stream is to estimate the
scattered light within slice Si, while the transfer stream is
in charge of downloading from the GPU the data (I,U) com-
puted for the previous slice Si−1. The computation and trans-
fer streams run in parallel. As soon as the transfer stream
completes downloading, its starts uploading the necessary
data (I,U) for the next slice Si+1.

In case our solution cannot fit the GPU memory, we split
the slice into sub-slices and we stream each sub-slice to the
GPU.

5. Implementation and Results

We used CUDA to implement our algorithm. We think that
implementing it with OpenCL would be straightforward. We
used two graphics cards: GTX 560M with 4 multiprocessors
and 2 GB of memory, and GTX 580 with 16 multiprocessors
and 1.5 GB of memory. We also implemented the original se-
quential version of Fattal’s algorithm on a CPU i7 -2630QM
running at 2GHz.

In our implementation, the user can specify the number
of propagation directions for one LPM. Moreover, in case of
isotropic phase function, the average radiance I is expressed
for 1 direction while the unscattered radiance U is computed
for 6 directions. However, in case of anisotropic phase func-
tion, the user can specify the number of directions for I and
U.

The complexity of our algorithm is equal to 2spn3, where
s is the scattering order, p the number of propagation di-
rections and n3 the number of voxels. Regarding the mem-
ory occupation, the complexity in bytes is equal to 4 ∗
nbSpect ∗ ((1 + 2U + I)n3 + pn2 + pn3) without stream-
ing and 4 ∗ nbSpect ∗ ((1+ 2U + I)Sn2 + Spn2 + pn2) with
streaming. U and I are the number of unscattered radiance
directions and average radiance directions respectively. S is
the slice width along the propagation direction and nbSpect
the number of wavelengths (RGB in our case).

In order to guarantee only one thread per voxel, all the
rays of same direction managed by a same block have to be
synchronized whenever they leave their current voxel (Fig.
3). This is made possible by using a "__syncthreads()" in-
struction in their respective threads.

Note that the number of threads in one block is limited
due to the number of registers available on a multiproces-
sor. This is why we reduce the size of a block by bringing
down the resolution of one coordinate (r or s) of LPM, which
increases the number of blocks for one propagation direc-
tion. Consequently, as several blocks may propagate light in
a same direction, a voxel, lying at the frontier between two
contiguous subsets Ri and R(i+1) of elements (r,s) of the cur-
rent LPM, may be traversed by at least two rays, one coming

LP
M

Block B1

Block B2

Block B3

Block B4

R1

R2

R3

R4

1
2

Figure 6: Each block Bi is in charge of propagating rays
from a subset Ri of elements (r,s) of a LPM. The rays of same
directions at the border of the subset Ri and originating from
two contiguous subset Ri may traverse at the same time a
same voxel (for example rays 1 and 2).

from Ri and the another from R(i+1) (Fig. 6). Each subset
Ri is assigned one block Bi. Once again, to guarantee only
one thread per voxel, we launch in parallel blocks B2i then
blocks B(2i+1). In this way, we avoid to launch contiguous
blocks.

8

16

32

64

128

256

512

1024

2048

4096

0 256 512 768 1024

M
e

m
o

ry
 n

e
e

d
e

d
 (

M
B

)

Volume Size

No Streaming

Streaming

Figure 7: GPU memory requirement for a 25 propagation
directions, 6 storage directions (U and I). For the streamed
technique, it is don’t hit the memory bound of the GPU. Note
that without streaming it is impossible to apply the algorithm
on volume sizes larger than 2563. For the streaming based
technique we are far below the available amount of GPU
memory. We must point to the fact that the memory require-
ment of streaming technique does increase with volume size
(at a much slower rate though).

In case the LPM resolution is N times higher than that of
the voxel grid, to avoid the synchronization problem (due to
the traversal of a same voxel by multiples rays) we divide
the LPM into N smaller sub-LPM Sli and propagate each Sli
one after the other.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Gruson, A. Hakke Patil, R. Cozot, K. Bouatouch, S. Pattanaik / Light Propagation Maps on Parallel Graphics Architectures

Using 16× 16× 16 voxels per sub-volume and 16× 16
sub-volumes per slice, the memory needed by our algorithm
is far below the available GPU memory (Fig. 7).

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

Sp
e

e
d

u
p

Volume Size

GTX 560M

GTX 580

GTX 560M Atomic

GTX 580 Atomic

Figure 8: Summary of the speedup between the original
CPU algorithm and our implementation on 2 GPUs: GTX
560M and GTX 580. The green and red plots have been ob-
tained with our parallel approach, while the blue and purple
ones with atomic operations. We can observe that the ob-
tained speedup increases with the volume size. This is due
to the fact that a large number of blocks are created dur-
ing the propagation step, which makes the GPU computing
resources more and more busy. Note the efficiency of our ap-
proach compared to an atomic operation-based version.

Furthermore, we use pinned memory as a buffer zone to
speedup the data transfer between the CPU and the GPU.
When the resulting data are downloaded from the GPU to
the CPU, only one transaction is necessary to transfer all the
data to the pinned memory. Next, we use memcpy operation
to update sub-volumes on the CPU memory. Uploading the
data onto the GPU memory is performed similarly.

For a volume of 643 voxels, 25 propagation directions and
3 bounce multiple scattering, our algorithm takes 417 mil-
liseconds while the Fattal’s algorithm running on the CPU
takes 47 seconds. We see in Fig. 8 that the speedup grows
with the volume resolution. This can be explained by the
fact that the more the blocks, the better is the balancing of
the multiprocessors loads. Examples of rendered images are
given in Fig. 9, 10. Other results are shown in the accompa-
nying video.

To validate our GPU-based parallel algorithm, we have
computed the RMSE error between the CPU-based solution
and our method. We found an RMSE of about 0.005.

6. Conclusions & Further works

We proposed a novel parallel algorithm to render participat-
ing media with multiple scattering. It is a parallel version
of Fattal’s algorithm. Compared to CPU based Fattal’s algo-
rithm, we obtained a speedup of 1 to 2 orders of magnitude.

Figure 9: Result of a 1283 participating medium lit by a sky
light source. It took 2291 ms to compute 3 scattering orders
with 25 propagation directions.

Figure 10: Result of a 1283 participating medium lit by an
environmental map. It took 2291 ms to compute 3 scattering
orders with 25 propagation directions.

Our algorithm is capable of interactively rendering volumes
of 643 voxels. We proposed a novel streaming technique
based on the concept of sub-volume, slices, and sub-slices
to handle any large size volume.

As a future work, our approach could use a hierarchical
representation of participating media to handle huge vol-
umes more efficiently. Moreover, a compression approach
would allow to reduce the time needed for transferring data
from the CPU to the GPU and vice versa. Finally, it would
be interesting to extend our approach to handle solid objects
inside participating media.

Acknowledgement

This work is partially supported by US National Science
Foundation grant IIS-1064427.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A. Gruson, A. Hakke Patil, R. Cozot, K. Bouatouch, S. Pattanaik / Light Propagation Maps on Parallel Graphics Architectures

References
[BHPB∗12] BERNABEI D., HAKKE-PATIL A., BANTERLE

F., BENEDETTO M. D., GANOVELLI F., PATTANAIK S.,
SCOPIGNO R.: A parallel architecture for interactively render-
ing scattering and refraction effects. IEEE Computer Graphics
and Applications 32 (2012), 34–43.

[Cha50] CHANDRASEKHAR S.: Radiative Transfer. Dover, 1950.

[CPCP∗05] CEREZO E., PEREZ-CAZORLA F., PUEYO X.,
SERON F., SILLION F.: A survey on participating media ren-
dering techniques. the Visual Computer (2005).

[END10] ENGELHARDT T., NOVAK J., DACHSBACHER C.: In-
stant multiple scattering for interactive rendering of heteroge-
neous participating media. Technical paper (2010).

[Fat09] FATTAL R.: Participating media illumination using light
propagation maps. ACM Trans. Graph. 28, 1 (2009), 1–11.

[GRWS04] GEIST R., RASCHE K., WESTALL J., SCHALKOFF
R. J.: Lattice-boltzmann lighting. In Proceedings of the 15th Eu-
rographics Workshop on Rendering Techniques, Norköping, Swe-
den, June 21-23, 2004 (2004), Keller A., Jensen H. W., (Eds.),
Eurographics Association, pp. 355–362.

[Ish78] ISHIMARU A.: Wave propagation and scattering in ran-
dom media. Academic Press, New York :, 1978.

[LBC94] LANGUENOU E., BOUATOUCH K., CHELLE M.:
Global illumination in presence of participating media with gen-
eral properties. Proceedings du 5th Eurographics Workshop on
Rendering (1994).

[PCPS97] PEREZ-CAZORLA F., PUEYO X., SILLION F. X.:
Global Illumination Techniques for the Simulation of Participat-
ing Media. In Proceedings of the Eighth Eurographics Workshop
on Rendering (Saint Etienne, France, 1997).

[SH01] SIEGEL R., HOWELL J. R.: Thermal Radiation Heat
Transfer, 4th Revised edition. Taylor & Francis Inc, 2001.

[SKLU∗09] SZIRMAY-KALOS L., LIKTOR G., UMENHOFFER
T., TÓTH B., KUMAR S., LUPTON G.: Parallel solution to the
radiative transport. In EGPGV (2009), Debattista K., Weiskopf
D., Comba J., (Eds.), Eurographics Association, pp. 95–102.

[SKLU∗11] SZIRMAY-KALOS L., LIKTOR G., UMENHOFFER
T., TOTH B., KUMAR S., LUPTON G.: Parallel iteration to the
radiative transport in inhomogeneous media with bootstrapping.
IEEE Transactions on Visualization and Computer Graphics 17,
2 (Feb. 2011), 146–158.

[Sta95] STAM J.: Multiple scattering as a diffusion process. In In
Eurographics Rendering Workshop (1995), pp. 41–50.

[WWH∗10] WANG Y., WANG J., HOLZSCHUCH N., SUBR K.,
YONG J.-H., GUO B.: Real-time rendering of heterogeneous
translucent objects with arbitrary shapes. Computer Graphics
Forum (Proceedings of Eurographics 2010) (2010).

[ZRL∗08] ZHOU K., REN Z., LIN S., BAO H., GUO B., SHUM
H.-Y.: Real-time smoke rendering using compensated ray
marching. ACM Trans. Graph. 27, 3 (2008), 36.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

