
White Paper April 2014

How to Avoid Common Pitfalls

in MISRA Compliance

How to Avoid Common Pitfalls in MISRA Compliance | 1

Background: The Most Popular
Language Faces New Tests

In embedded development, C remains an extremely
popular choice of language. Although other languages,
such as Ada, C++, and Java are used in some circum-
stances, and model-driven development is becoming
more popular in specific domains, about 50% of the
code running on embedded systems is still hand-
written C.

C is a great language in many respects. It is easy to use
for interfacing with hardware devices. It is readily avail-
able for almost every processor. It is flexible enough to
allow an author to write very tight and efficient code.

Unfortunately, C is also an extremely hazardous lan-
guage. Its very flexibility means that it is easy for a
programmer to make mistakes. Because the standard
of what constitutes a valid C program is very liberal,
compilers are bad at detecting many different kinds of
errors. Further, it is riddled with ambiguities, so code
that works perfectly well with one compiler may fail
when a different compiler is used because each compil-
er has a different valid interpretation of the standard.

These challenges make C programs quite susceptible to
serious memory-access defects such as buffer overruns,
null pointer exceptions, and many others. Other classes
of errors, such as resource leaks, use of uninitialized
memory, and use-after-free errors are also endemic and
abundant in C programs. And when concurrency is
used, defects such as data races and deadlocks are easy
to introduce but difficult to detect in development.

Why Are Organizations Moving to MISRA C:2012
for Embedded Applications?

In the face of these challenges, developers must be
extremely careful about using C. Thorough testing, of
course, is paramount, and the use of advanced static
analysis tools such as CodeSonar has taken off in re-
cent years because they have proven to be effective at
finding some of these defects.

An additional way of reducing the risk of C is to restrict
the use of the language by prohibiting some of the
more unsafe practices used in programming with it.
There are several coding standards in popular use that
attempt to do this, but the most mature and widely
accepted of these is MISRA C.

How to Avoid Common Pitfalls in MISRA Compliance | 2

GrammaTech White Paper

Three Critical Factors
Every Development Team
Should Understand About
MISRA C:2012

1. Use the latest standard.

This latest edition brings substantial improvements
from the previous standard, and organizations that
have not yet switched to this version are exposing
their products and customers to considerable risk.

2. Pay special attention to Rule 1.3
 and Directive 4.1.

Rule 1.3 There shall be no occurrence of
undefined or critical unspecified behavior.

Directive 4.1 Run-time failures shall be minimized.

Many of the most serious bugs in C arise from un-
defined behavior. These bugs include:

Buffer overruns and underruns

Invalid pointer direction

Double close

Data races

Division by zero

Use of uninitialized memory

3. Adopt an automated static analysis
 tool.

MISRA C recommends the use of an automated
static analysis tool to find violations of the standard.

Avoid lightweight tools, which can find super-
ficial syntactic violations but are generally not
capable of finding the deeper defects. A clean
report from a lightweight tool can give you a
false sense of security while missing serious
defects.

Look for a tool that can find both violations of
the syntactic rules as well as bugs such as the
ones listed above, which have deep semantic
knowledge of the entire program.

MISRA C is a standard developed by the Motor Indus-
try Software Reliability Association, and aims to foster
safety, reliability, and portability of programs written in
ISO C for embedded systems. Since the introduction of
the first edition in 1998 and a subsequent revision in
2004, its use has grown steadily and is now used wide-
ly in domains beyond automotive including aerospace,
medical devices, industrial control, and others.

The latest edition is MISRA C:2012, which extended
coverage to C99 (while maintaining applicability to
C90) and eliminated many of the inconsistencies of
previous editions. It is widely considered to be a great
improvement over the previous standard. Because of
this, it is very hard to recommend that organizations
continue to use any of the previous versions.

All subsequent references to rule numbers in this paper
are with respect to the MISRA C:2012 standard.

The guidelines are separated into 143 rules that are
intended to be statically checkable, and 16 “directives”
that address development policy and process. The rules
are mostly prohibitions on using certain code con-
structs or practices, and range from the superficial to
the deep.

MISRA C:2012 and Advanced Static Analysis:
The Embedded Game Changer

One of the most important aspects of MISRA C is
its support of automated static analysis tools to find
violations of the standard. Because tool support is so
important, it is helpful to understand the kinds of prop-
erties that static analysis tools can detect. Some tools
can only reason about superficial syntactic properties of
the code, whereas the more advanced tools have deep
semantic knowledge of the entire program.

To understand why this distinction is important, it is
useful to look at some rules. For example, rule 15.1
states, “The goto statement should not be used.” The
presence of a goto statement is clearly a simple syn-
tactic property of the code, and as such, violations are
easily found. A tool only has to be able to parse the
syntax of the compilation unit to be able to find goto
statements.

Rule 5.2 states, “Identifiers declared in the same scope
and name space shall be distinct.” This is also a fairly
simple syntactic rule, but a tool that detects a violation

GrammaTech White Paper

How to Avoid Common Pitfalls in MISRA Compliance | 3

must have a symbol table of the compilation unit
so that it can reason about the identifiers and their
scopes. It is fair to say that this rule is a little harder to
enforce than the one that forbids gotos, but not by
much.

On the other hand, there are some rules that require a
very sophisticated analysis if violations are to be found.
MISRA C:2012 labels each rule with an assessment of
how amenable the rule is to static analysis. Rules are
labeled single translation unit if a tool can find the
violation by looking at only the compilation unit, or
labeled system if the analyzer must look at all compi-
lation units that contribute to the program in order to
flag a violation.

Rules that are marked single translation unit are fairly
easy to enforce, and in fact many compilers now have
a mode where they can report such violations as warn-
ings. An analyzer capable of finding violations of rules
labeled system is said to be whole program.

A more important aspect of the rule is its decidability.
A rule that is labeled decidable means that it is possible
for a static analysis tool to find all such violations with
no false positives; most of the superficial syntactical
rules are marked as such.

In contrast, a rule that is labeled undecidable means
that it is in general provably impossible for a static
analysis tool to find all violations without any false
positives. This is not to say that static analysis is not
recommended for such rules — it just means that tools
may fail to find some violations and may also report
some false positives.

One such example is rule 2.2, “There shall be no dead
code.” Dead code is defined as any operation whose
result does not affect the behavior of the program. It is
easy to see how this is a hard property to detect — an
analysis tool must be able to understand the semantics
of all possible executions of the program and to be
able to tell what portions of that code have no effect.
Although there may be some instances that are easily
detectable, finding all instances with no false positives
is infeasible.

Although static analysis tools cannot detect all viola-
tions of undecidable rules, it is critically important that
tools be used to detect as many violations as possible
because that is where the most critical bugs are likely

to hide. There are two clauses in the standard that are
particularly relevant here — one rule and one directive.

Rule 1.3 “There shall be no occurrence of undefined or
critical unspecified behavior.”

Directive 4.1 “Run-time failures shall be minimized.”

These are arguably the two most important clauses
in the entire standard. Between them, they target the
Achilles heel of C programs. Undefined behavior is
explicitly discussed in the ISO standard for C (Annex J
in the C99 document), and covers a broad range of
aspects of the language. It often comes as a surprise to
C programmers to learn that according to the stan-
dard, if a C program invokes undefined behavior, it is
perfectly legal for that program to do anything at all.
This is sometime facetiously referred to as the “catch
fire” semantics, because it gives the compiler liberty to
set your computer on fire.

Of course, since most compiler writers are not pyro-
maniacs, compilers usually try to do the most sensible
thing in the face of undefined behavior. If the unde-
fined behavior is detectable by the compiler, then the
sensible thing is to have the compiler emit a compila-
tion error. However, if the undefined behavior is not
detectable by the compiler, then a compiler writer has
essentially no choice but to assume it cannot happen.

Undefined behavior is not a rarely-encountered niche;
the C99 standard lists 191 different varieties, and it
turns out that even some apparently benign things are
classified as undefined behavior. Consequently, it can
be hard for even the most careful programmer to avoid
undefined behavior.

Unspecified behavior is less hazardous, but has its own
pitfalls. In this case, the standard specifies a set of legal
behaviors, but leaves it to the compiler writer to choose
which to use. This gives the compiler writer latitude
to choose the interpretation that has the best perfor-
mance, but it means that code can have different se-
mantics when compiled by different compilers, or even
when the same compiler is used in a different way.

Undefined behavior is almost always something that
a programmer should be concerned about. Many of
the most serious bugs are those that arise because of
undefined behavior, for example, buffer overruns and
underruns, invalid pointer indirection, use after free,

GrammaTech White Paper

How to Avoid Common Pitfalls in MISRA Compliance | 4

double close, data races, division by zero, and use of
uninitialized memory.

None of these defects are specifically singled out as for-
bidden in the MISRA standard, but are instead covered
under the umbrella of Rule 1.3 and Directive 4.1. None-
theless, every such bug is a violation of the standard.

Static Analysis Tools for MISRA Compliance:
All Tools Are Not Created Equal

Although lightweight static analysis tools can detect
some of the more obvious instances of these bugs, only
the most advanced static-analysis tools are capable of
finding the more subtle occurrences. When choosing
a static analysis tool to enforce MISRA C compliance,
the best choice is a tool that can find violations of the
superficial syntactic rules as well as bugs such as the
above.

To understand why advanced static analysis tools are
capable of finding these bugs, it is useful to explain a
little about how they work.

All static analysis tools work by creating a model of the
program and then performing queries on that model to
find anomalies. An advanced static analysis tool creates
a model by parsing the code and then creating a set of
representations that capture the important aspects of
the semantics of the program.

These representations are very similar to those used
by compilers, and include abstract syntax trees (ASTs),
symbol tables, control-flow graphs (CFGs), type hierar-
chies, and the call graph. While superficial properties
of the code can be computed by doing lightweight
pattern matching on the AST or the CFG, finding
deeper semantic bugs requires sophisticated algorithms
that mimic a real execution of the program, but which
instead of maintaining concrete values for variables,
maintain a set of equations that model the abstract
state of the program.

An advanced static analysis tool capable of finding se-
rious defects is more than capable of finding violations
of the syntactic rules as well. However it is important
to note that the converse is not true — most of the
lightweight static analysis tools available that can find
the syntactic violations are generally not capable of
finding the deeper defects. A clean bill of health from a
lightweight tool can give a false sense of security when
the serious defects are missed.

A static analysis tool, of course, is useless if nobody
uses it, so a successful deployment is one that fits into
the development process and that makes it easy for
teams of engineers to analyze their code and collabo-
rate on correcting any detected defects.

The most appropriate architecture is a client-server
model. This allows engineers to spin up analyses on
their own workstations, and have the results sent to a
centralized permanent repository where they can be tri-
aged, marked up, and assigned to engineers for reme-
diation. The same architecture makes it easy to set up
regularly-scheduled analyses or analyses automatically
triggered by change commits.

For managers, the client-server model makes it possible
to create reports. These can be used to monitor prog-
ress and quality, but more importantly, to demonstrate
compliance with applicable standards.

What should my static
analysis tool provide?

The model is precise.

The tool can parse code exactly the same way the
compiler parses it. All compilers are different, and
analysis tools that don’t take this into account can
provide false results.

It does a whole-program analysis.

The tool can track how information flows between
procedures and across compilation unit boundaries.

The analysis is flow-, context-, and path-sensitive.

The tool can be precise about finding and reporting defects.

Infeasible path elimination.

The tool uses this to cut down on the number of false-
positive results reported. The best tools use advanced
techniques such as SMT solvers.

MISRA C:2012 native checkers.
The tool uses native MISRA C:2012 checkers to assure
compliance to the standard. Use of partnerships or com-
pliance only to previous versions of the standards will not
provide adequate performance.

GrammaTech White Paper

How to Avoid Common Pitfalls in MISRA Compliance | 5

Conclusion: Effective MISRA Compliance Means
Detecting Both Simple and Complex Violations

Modern embedded software development organiza-
tions must be equipped to identify not only the viola-
tions of superficial syntactic rules, but also serious bugs
arising from undefined behavior, as proscribed by the
MISRA C:2012 standard.

Although lightweight static analysis tools can detect
some of the more obvious instances of both, only the
most advanced static-analysis tools are capable of find-
ing the more subtle occurrences.

Our experience deploying static analysis at hundreds of
organizations involved in all kinds of software devel-
opment has demonstrated that there are additional
properties of a tool that are critical if it is to be used
effectively.

First, it must integrate with the build system.

Second, the analysis must be fast enough to not get
in the way. This is important so that programmers get
feedback on their changes quickly.

Third, the algorithms must be incremental so that
when small changes are made to the code, the analysis
does not have to recompute everything from scratch.

And finally, the algorithms must be scalable to large
programs because it’s not uncommon for embedded
systems to consist of millions of lines of code.

GrammaTech White Paper

How to Avoid Common Pitfalls in MISRA Compliance | 6

About GrammaTech

GrammaTech’s tools are used by software developers worldwide, spanning a myriad of embedded software industries in-
cluding avionics, government, medical, military, industrial control, and other applications where reliability and security are
paramount. Originally spun out of Cornell’s computer science labs, GrammaTech is now both a leading research center for
software security and a commercial vendor of software-assurance tools and advanced cyber-security solutions. With both
static and dynamic analysis tools that analyze source code as well as binary executables, GrammaTech continues to advance
the science of superior software analysis, providing technology for developers to produce safer software. To learn more about
GrammaTech, visit www.grammatech.com.

For more information:

www.grammatech.com

Email: info@grammatech.com

GrammaTech, Inc. Headquarters

531 Esty Street

Ithaca, NY 14850

U.S. sales: (888)695-2668

International Sales: +1-607-273-7340

Email: sales@grammatech.com

© 2014 GrammaTech, Inc. All rights reserved. GrammaTech and CodeSonar are registered trademarks of GrammaTech, Inc.

