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The obstruction to finding a boundary for an open
manifold of dimension greater than five

Laurence C. Siebenmann

Abstract For dimensions greater than five the main theorem gives nec-
essary and sufficient conditions that a smooth open manifold W be the
interior of a smooth compact manifold with boundary.

The basic necessary condition is that each end ε of W be tame. Tameness
consists of two parts (a) and (b):

(a) The system of fundamental groups of connected open neighborhoods of ε is
stable. This means that (with any base points and connecting paths) there
exists a cofinal sequence

G1 G2

f1!! . . .f2!!

so that isomorphisms are induced

Image(f1) Image(f2)
∼=!! . . .

∼=!! .

(b) There exist arbitrarily small open neighborhoods of ε that are dominated each
by a finite complex.

Tameness for ε clearly depends only on the topology of W . It is shown that
if W is connected and of dimension ! 5, its ends are all tame if and only if
W ×S1 is the interior of a smooth compact manifold. However examples of
smooth open manifolds W are constructed in each dimension ! 5 so that
W itself is not the interior of a smooth compact manifold although W ×S1

is.

When (a) holds for ε , the projective class group

K̃0(π1(ε)) = lim←−
j

Gj

is well defined up to canonical isomorphism. When ε is tame an invariant
σ(ε) ∈ K̃0(π1ε) is defined using the smoothness structure as well as the
topology of W . It is closely related to Wall’s obstruction to finiteness for
CW complexes (Annals of Math. 81 (1965) pp. 56-69).
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2 Laurence C. Siebenmann

Main Theorem. A smooth open manifold Wn , n > 5, is the interior of
a smooth compact manifold if and only if W has finitely many connected
components, and each end ε of W is tame with invariant σ(ε) = 0. (This
generalizes a theorem of Browder, Levine, and Livesay, A.M.S. Notices 12,
Jan. 1965, 619-205).

For the study of σ(ε), a sum theorem and a product theorem are established
for C.T.C. Wall’s related obstruction.

Analysis of the different ways to fit a boundary onto W shows that there
exist smooth contractible open subsets W of Rn , n odd, n > 5, and
diffeomorphisms of W onto itself that are smoothly pseudo-isotopic but
not smoothly isotopic.

The main theorem can be relativized. A useful consequence is

Proposition. Suppose W is a smooth open manifold of dimension > 5 and
N is a smoothly and properly imbedded submanifold of codimension k %= 2.
Suppose that W and N separately admit completions. If k = 1 suppose
N is 1-connected at each end. Then there exists a compact manifold pair
(W, N) such that W = IntW , N = IntN .

If Wn is a smooth open manifold homeomorphic to M × (0, 1) where M
is a closed connected topological (n − 1)-manifold, then W has two ends
ε− and ε+ , both tame. With π1(ε−) and π1(ε+) identified with π1(W )
there is a duality σ(ε+) = (−1)n−1σ(ε−) where the bar denotes a certain

involution of the projective class group K̃0(π1W ) analogous to one defined
by J.W. Milnor for Whitehead groups. Here are two corollaries. If Mm

is a stably smoothable closed topological manifold, the obstruction σ(M)
to M having the homotopy type of a finite complex has the symmetry
σ(M) = (−1)mσ(M). If ε is a tame end of an open topological manifold
Wn and ε1 , ε2 are the corresponding smooth ends for two smoothings of W ,
then the difference σ(ε1)−σ(ε2) = σ0 satisfies σ0 = (−1)nσ0 . Warning: In
case every compact topological manifold has the homotopy type of a finite
complex all three duality statements above are 0 = 0.

It is widely believed that all the handlebody techniques used in this thesis
have counterparts for piecewise-linear manifolds. Granting this, all the
above results can be restated for piecewise-linear manifolds with one slight
exception. For the proposition on pairs (W, N) one must insist that N be
locally unknotted in W in case it has codimension one.
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The obstruction to finding a boundary for an open manifold 3

Introduction

The starting point for this thesis is a problem broached by W. Browder, J.
Levine, and G. R. Livesay in [1]. They characterize those smooth open mani-
folds W w , w > 5 that form the interior of some smooth compact manifold W
with a simply connected boundary. Of course, manifolds are to be Hausdorff
and paracompact. Beyond this, the conditions are

(A) There exists arbitrarily large compact sets in W with 1–connected com-
plement.

(B) H∗(W ) is finitely generated as an abelian group.

I extend this characterization and give conditions that W be the interior of
any smooth compact manifold. For the purposes of this introduction let W w

be a connected smooth open manifold, that has one end – i.e. such that the
complement of any compact set has exactly one unbounded component. This
end – call it ε – may be identified with the collection of neighborhoods of ∞ of
W . ε is said to be tame if it satisfies two conditions analogous to (A) and (B):

(a) π1 is stable at ε.

(b) There exists arbitrarily small neighborhoods of ε, each dominated by a
finite complex.

When ε is tame an invariant σ(ε) is defined, and for this definition, no re-
striction on the dimension w of W is required. The main theorem states that
if w > 5, the necessary and sufficient conditions that W be the interior of a
smooth compact manifold are that ε be tame and the invariant σ(ε) be zero.
Examples are constructed in each dimension ! 5 where ε is tame but σ(ε) %= 0.
For dimensions ! 5, ε is tame if and only if W ×S1 is the interior of a smooth
compact manifold.

The stability of π1 at ε can be tested by examining the fundamental group
system for any convenient sequence Y1 ⊃ Y2 ⊃ . . . of open connected neighbor-
hoods of ε with ⋂

i

closure(Yi) = ∅.

If π1 is stable at ε, π1(ε) = lim←−π1(Yi) is well defined up to isomorphism in a
preferred conjugacy class.

Condition (b) can be tested as follows. Let V be any closed connected neighbor-
hood of ε which is a topological manifold (with boundary) and is small enough
so that π1(ε) is a retract of π1(V ) – i.e. so that the natural homomorphism
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4 Laurence C. Siebenmann

π1(ε) −→ π1(V ) has a left inverse. (Stability of π1 at ε guarantees that such
a neighborhood exists.) It turns out that condition (b) holds if and only if V
is dominated by a finite complex. No condition on the homotopy type of W
can replace (b), for there exist contractible W such that (a) holds and π1(ε) is
even finitely presented, but ε is, in spite of this, not tame. On the other hand,
tameness clearly depends only on the topology of W .

The invariant σ(ε) of a tame end ε is an element of the group K̃0(π1ε) of
stable isomorphism classes of finitely generated projective modules over π1(ε).
If, in testing (b) one chooses the neighborhood V of ε (above) to be a smooth
submanifold, then

σ(ε) = r∗σ(V )

where σ(V ) ∈ K̃0(π1V ) is up to sign C.T.C. Wall’s obstruction [2] to V having
the homotopy type of a finite complex, and r∗ is induced by a retraction of
π1(V ) onto π1(ε). Note that σ(ε) seems to depend on the smoothness struc-
ture of W . For example, every tame end of dimension at least 5 has arbitrarily
small open neighborhoods each homotopy equivalent to a finite complex (use
Theorem 8.6 and Theorem 6.5). The discussion of tameness and the definition
for σ(ε) is scattered in various sections. The main references are: Definitions
3.6, 4.2, Proposition 4.3, Definition 4.4, Lemma 6.1, Definition 7.7, §10, Corol-
lary 11.6.

The proof of the main theorem applies the theory of non-simply connected
handles bodies as expounded in Barden [31] and Wall [3] to find a collar for ε,
viz. a closed neighborhood V which is a smooth submanifold diffeomorphic with
BdV × [0, 1). In dimension 5, the proof breaks down only because Whitney’s
famous device fails to untangle 2–spheres in 4–manifolds (c.f. §5). In dimension
2, tameness alone ensures that a collar exists (see Kerekjarto [26, p. 171]).
It seems possible that the same is true in dimension 3 (modulo the Poincaré
Conjecture) – c.f. Wall [30]. Dimension 4 is a complete mystery.

There is a striking parallelism between the theory of tame ends developed here
and the well known theory of h–cobordisms. For example the main theorem
corresponds to the s–cobordism theorem of B. Mazur [34][3]. The relationship
can be explained thus. For a tame end ε of dimension ! 6 the invariant
σ(ε) ∈ K̃0(π1ε) is the obstruction to finding a collar. When a collar exists,
parallel families of collars are classified relative to a fixed collar by torsions
τ ∈ Wh(π1ε) of certain h–cobordisms (c.f. Theorem 9.5). Roughly stated, σ is
the obstruction to capping ε with a boundary and τ then classifies the different
ways of fitting a boundary on. Since Wh(π1ε) is a quotient of K1(π1ε) [17],
the situation is very reminiscent of classical obstruction theory.
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The obstruction to finding a boundary for an open manifold 5

A closer analysis of the ways of fitting a boundary onto an open manifold gives
the first counterexample of any kind to the conjecture that pseudo-isotopy of
diffeomorphisms implies (smooth) isotopy. Unfortunately open (rather than
closed) manifolds are involved.

§6 and §7 give sum and product theorems for Wall’s obstruction to finiteness for
CW complexes. Here are two simple consequences for a smooth open manifold
W with one end ε. If ε is tame, then Wall’s obstruction σ(W ) is defined and
σ(W ) = i∗σ(ε) where i : π1(ε) −→ π1(W ) is the natural map. If N is any
closed smooth manifold then the end ε×N of W ×N is tame if and only if ε
is tame. When they are tame

σ(ε×N) = χ(N)j∗σ(ε)

where j is the natural inclusion π1(ε) −→ π1(ε×N) = π1(ε)×π1(N) and χ(N)
is the Euler characteristic of N . Then, if χ(N) = 0 and W ×N has dimension
> 5, the main theorem says that W ×N is the interior of a smooth compact
manifold.

The sum and product theorems for Wall’s obstruction mentioned above have
counterparts for Whitehead torsion (§§6,7; [19]). Likewise the relativized theo-
rem in §10 and the duality theorem in §11 have counterparts in the theory of
h–cobordisms. Professor Milnor has pointed out that examples exist where the
standard duality involution on K̃0(π) is not the identity. In contrast no such
example has been given for Wh(π). The examples are for π = Z229 and Z257 ;
they stem from the remarkable research of E. E. Kummer. (See appendix.)

It is my impression that the P.L. (= piecewise-linear) version of the main result
is valid. This opinion is based on the general consensus that handlebody theory
works for P.L. manifolds. J. Stallings seems to have worked out the details for
the s–cobordism theorem in 1962–93. B. Mazur’s paper [35] (to appear) may
be helpful. The theory should be formally the same as Wall’s exposition [3]
with P.L justifications for the individual steps.

For the same reason it should be possible to translate for the P.L. category
virtually all other theorems on manifolds given in this thesis. However the
theorems for pairs Theorem 10.3–Theorem 10.10 must be re-examined since
tubular neighborhoods are used in the proofs and M. Hirsch has recently shown
that tubular neighborhoods do not generally exist in the P.L. category. For
Theorem 10.3 in codimension ! 3 it seems that a more complicated argument
employing only regular neighborhoods does succeed. It makes use of Hudson
and Zeeman [36, Cor. 1.4, p. 73]. It also succeeds in codimension 1 if one
assumes that the given P.L. imbedding Nn−1 −→ W n is locally unknotted

Geometry & Topology Monographs, Volume X (20XX)



6 Laurence C. Siebenmann

[36, p. 72]. I do not know if Theorem 10.6 holds in the P.L. category. Thus
Theorem 10.8 and Corollary 10.9 are undecided. But it seems Theorem 10.7
and Theorem 10.10 can be salvaged.

Professor J. W. Milnor mentioned to me, in November 1964, certain grounds
for believing that an obstruction to finding a boundary should lie in K̃0(π1ε).
The suggestion was fruitful. He has contributed materially to miscellaneous
algebraic questions. The appendix, for example, is his own idea. I wish to
express my deep gratitude for all this and for the numerous interesting and
helpful questions he has raised while supervising this thesis.

I have had several helpful conversations with Professor William Browder, who
was perhaps the first to attack the problem of finding a boundary [51]. I thank
him and also Jon Sondow who suggested that the main theorem (relativized)
could be applied to manifold pairs. I am grateful to Dr. Charles Giffen for his
assistance in preparing the manuscript.
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Some Notation

∼= diffeomorphism.

+ homotopy equivalence.

X ↪→ Y inclusion map of X into Y.

bS frontier of the subspace S.

Bd M boundary of a manifold M.

M(f) mapping cylinder of f.

X̃ universal covering of X.

χ Euler characteristic.

D the class of Hausdorff spaces with homotopy type of a CW complex

and dominated by a finite CW complex.

f.g. finitely generated.

K0(π) Grothendieck group of finitely generated projective modules

over the group π.

K̃0(π) the group of stable isomorphism classes of finitely generated projective

modules over the group π.

[P ] the stable isomorphism class of a module [P ].

• topological manifold : Hausdorff and paracompact topological manifold.

• proper map: continuous map such that the preimage of every compact
set is compact.

• nice Morse function: Morse function such that the value of critical points
is an increasing function of the index.
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8 Laurence C. Siebenmann

1 Ends in general

The interval (0, 1) has two (open) ends while [0, 1) has one. We must make
this idea precise. Following Freudenthal [5] we define the ends of an arbitrary
Hausdorff space X in terms of open sets having compact frontier. Consider
collections ε of subsets of X so that:

(i) Each G ∈ ε is a connected open non-empty set with compact frontier
bG = G−G;

(ii) If G,G′ ∈ ε, there exists G′′ ∈ ε with G′′ ⊂ G ∩G′ ;

(iii) ⋂{
G : G ∈ ε

}
= ∅.

Adding to ε every open connected non-empty set H ⊂ X with bH compact
such that G ⊂ H for some G ∈ ε, we produce a collection ε′ satisfying (i), (ii),
(iii), which we call the end of X determined by ε.

Lemma 1.1 With ε as above, let H be any set with compact frontier. Then
there exists G ∈ ε so small that either G ⊂ H or G ∩H = ∅.

Proof Since bH is compact, there exists G ∈ ε so small that G∩bH = ∅ (by
(ii) and (iii)). Since G is connected, G ⊂ H or else G∩H = ∅ as asserted.

It follows that if ε1 ⊃ ε also satisfies (i), (ii), (iii), then every member H of
ε1 contains a member G of ε, i.e. H ∈ ε′ . For, the alternative G ∩H = ∅ in
Lemma 1.1 is here ruled out. Thus ε′ ⊃ ε1 ⊃ ε, and so we can make the more
direct.

Definition 1.2 An end of a Hausdorff space X is a collection ε of subsets of
X which is maximal with respect to the properties (i), (ii), (iii) above.

From this point ε will always denote an end.

Definition 1.3 A neighborhood of an end ε is any set N ⊂ X that contains
some member of ε.

As the neighborhoods of ε are closed under intersection and infinite union, the
definition is justified. Suppose in fact we add to X an ideal point ω(ε) for

each end ε and let
{

Ĝ : G ∈ ε
}

be a basis of neighborhoods of ω(ε), where

Ĝ = G∪ {ω(ε′) : G ∈ ε′}. Then a topological space X̂ results. It is Hausdorff
because
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The obstruction to finding a boundary for an open manifold 9

Lemma 1.4 Distinct ends ε1 , ε2 of X have distinct neighborhoods.

Proof If G1 ∈ ε1 by Lemma 1.1, for all sufficiently small G2 ∈ ε2 , either
G1 ⊃ G2 or G1 ∩G2 = ∅. The first alternative does not always hold since that
would imply ε1 ⊃ ε2 , hence ε1 = ε2 .

Observation 1 If N is a neighborhood of an end ε of X , G ⊂ N for suf-
ficiently small G ∈ ε (by Lemma 1.1). Thus ε determines a unique end of
N .

Observation 2 If Y ⊂ X is closed with compact frontier bY and ε′ is an end
of Y , then ε′ determines an end of X . Further Y is a neighborhood of ε and
ε determines an end ε′ of Y as in Observation (1).

(Explicitly, if G ∈ ε′ is sufficiently small, the closure of G (in Y ) does not
meet the compact set bY . Then as a subset of X , G is non-empty, open and
connected with bG compact. Such G ∈ ε′ determine the end ε of X .)

Definition 1.5 An end of X is isolated if it has a member H that belongs to
no other end.

From the above observation it follows that H has one and only one end.

Example 1.1 The universal cover of the figure 8 has 2ℵ0 ends, none isolated.

Observe that a compact Hausdorff space X has no ends. For, as
⋂ {

G : G ∈ ε
}

=
∅, we could find G ∈ ε so small that G∩X = ∅ which contradicts ∅ %= G ⊂ X .
Even a noncompact connected Hausdorff space X may have no ends, for exam-
ple an infinite collection of copies of [0, 1] with all initial points identified.

Figure 1:
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10 Laurence C. Siebenmann

However according to Theorem 1.6 below, every noncompact connected mani-
fold (separable, topological) has at least one end. For example R has two ends
and Rn , n ! 2, has one end. Also a compact manifold minus k connected
boundary components N1, . . . , Nk has exactly k ends ε(N1), . . . , ε(Nk). The
neighborhoods of ε(Ni) are the sets

U −
k⋃

j=1

Nj

where U is a neighborhood of Ni in M .

Theorem 1.6 (Freudenthal [5]) A non-compact but σ–compact, connected
Hausdorff space X that is locally compact and locally connected has at least
one end.

Remark Notice that the above example satisfies all conditions except local
compactness.

Proof By a familiar argument one can produce a cover U1, U2, U3, . . . so that
Ui is compact, Ui is connected and meets only finitely many Uj , j %= i. Then⋂

n Vn = ∅ where Vn = Un ∪Un+1 ∪ . . . . Each component W of Vn apparently
is the union of a certain subcollection of the connected open sets Un, Un+1, . . . .
In particular W is open and bW ∩ Vn = ∅. Then bW is compact since it must
lie in X − Vn ⊂ U1 ∪ · · · ∪ Un−1 which is compact. Now bW %= ∅ or else W ,
being open and connected, is all of the connected space X . If bW %= ∅, some
Uj ⊂ W meets U1 ∪ · · ·∪Un . By construction this can happen for only finitely
many Uj . Hence there can be only finitely many components W in Vn . It
follows that at least one component of Vn – call it W – is unbounded (i.e. has
non-compact closure).

Now W ∩ Vn+1 is a union of some of the finitely many components of Vn+1 .
So, of these, at least one is unbounded. It is clear now that we can inductively
define a sequence

ε : W1 ⊃ W2 ⊃ W3 ⊃ . . . , (1)

where Wn is an unbounded component of Vn . Then ε satisfies (i), (ii), (iii) and
determines an end of X .

The above proof can be used to establish much more than Theorem 1.6. Very
briefly we indicate some
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Corollary 1.7 It follows that an infinite sequence in X either has a cluster
point in X , or else has a subsequence that converges to an end determined by a
sequence (1). Also, an infinite sequence of end points always has a cluster point.
Assuming now that X is separable we see X̂ is compact. One can see that every
end of X is determined by a sequence (1). Then the end points E = X̂−X are
the inverse limit of a system of finite sets, namely the unbounded components
of Vn , n = 1, 2, . . . . From Eilenberg and Steenrod [6, p. 254, Ex. B.1] it follows
that E is compact and totally disconnected.

With X as in Theorem 1.6 let U range over all open subsets of X with U
compact. Let e(U) denote the number of non-compact components of X − U ,
and let e denote the number of ends of X . (We don’t distinguish types of
infinity.) Using Freudenthal’s theorem it is not hard to show:

Lemma 1.8 lub e(U) = e.

Assume now that X is a topological manifold (always separable) or else a locally
finite simplicial complex. Let H∗

e (X) be the cohomology of singular cochains
of X modulo cochains with compact support. Coefficients are in some field.

Theorem 1.9 The dimension of the vector space H0
e (X) is equal to the num-

ber of ends of X or both are infinite.

The proof uses the above lemma. (See Epstein [7, Theorem 1, p. 110]).

The universal covering of the figure 8 is contractible, but for manifolds, infinitely
many ends implies infinitely generated homology.

Theorem 1.10 If W n is a connected combinatorial or smooth manifold with
compact boundary and e ends,

e " rankHn−1(W,Bd W ) + 1.

(Again we confuse types of infinity.)

Proof Let Ŵ be W compactified by adding the end points E (c.f. 1.7). From
the exact Čech cohomology sequence

"" H0(Ŵ ) "" H0(E) "" H1(Ŵ ,E) ""

we deduce
e = rankH0(E) " rankH1(Ŵ ,E) + 1,

Geometry & Topology Monographs, Volume X (20XX)



12 Laurence C. Siebenmann

since Ŵ is connected and E is totally disconnected. By a form of Alexander-
Lefschetz duality

H1(Ŵ ,E) ∼= Hn−1(W,Bd W ) (2)

with Čech cohomology and singular homology. This gives the desired result.

To verify this duality let U1 ⊂ U2 ⊂ . . . be a sequence of compact n–submanifolds
with Bd W ⊂ Ui , W =

⋃
i Ui . Let V̂n be Ŵ − IntUn . Then the following dia-

gram commutes:

H1(Ŵ , V̂i)

j∗

##

e
∼=

"" H1(Ui,Bd Ui)
P
∼=

"" Hn−1(Ui,Bd W )

i∗

##

H1(Ŵ , V̂i+1)
e
∼=

"" H1(Ui+1,Bd Ui+1)
P
∼=

"" Hn−1(Ui+1,Bd W )

where e is excision, P is Poincaré duality and i∗ , j∗ are induced by inclusion.
Now lim−→i

H1(Ŵ , V̂i+1) ∼= H1(Ŵ ,E) by the continuity of Čech theory [6, p. 261].
Also lim−→i

Hn−1(Ui,Bd W ) ∼= Hn−1(W,Bd W ). Thus (2) is established.

2 Completions, collars, and 0-neighborhoods

Suppose W is a smooth non-compact manifold with compact possibly empty
boundary BdW .

Definition 2.1 A completion for W is a some imbedding i : W −→ W of
W into a smooth compact manifold so that W − i(W ) consists of some of the
boundary components of W .

Now let ε be an end of the manifold W above.

Definition 2.2 A collar for ε (or a collar neighborhood of ε) is a connected
neighborhood V of ε which is a smooth submanifold of W with compact bound-
ary so that V ∼= Bd V × [0, 1) (∼= means “is diffeomorphic to”).

The following proposition is evident from the collar neighborhood theorem,
Milnor [4, p. 23]:

Proposition 2.3 A smooth manifold W has a completion if and only if Bd W
is compact and W has finitely many ends each of which has a collar.

Geometry & Topology Monographs, Volume X (20XX)



The obstruction to finding a boundary for an open manifold 13

Thus the question whether a given smooth open manifold W is diffeomorphic to
the interior of some smooth compact manifold is reduced to a question about
the ends of W , namely, “When does a given end ε of W have a collar?”
Our goal in §2 to §5 is to answer this question for dimension greater than 5.
We remark immediately that the answer is determined by an arbitrarily small
neighborhood of ε. Hence it is no loss of generality to assume always that ε is
an end of an open manifold (rather than a non-compact manifold with compact
boundary).

We will set up progressively stronger conditions which guarantee the existence
of arbitrarily small neighborhoods of ε that share progressively more of the
properties of a collar.

Remark “Arbitrarily small” means inside any prescribed neighborhood of ε,
or equivalently, in the complement of any prescribed compact subset of W .

Definition 2.4 A 0–neighborhood of ε is a neighborhood V of ε which is a
smooth connected manifold having a compact connected boundary and just one
end.

Remark We will eventually define k–neighborhoods for any k ! 0. Roughly,
a k–neighborhood is a collar so far as k–dimensional homotopy type is con-
cerned.

Theorem 2.5 Every isolated end ε of a smooth open manifold W has arbi-
trarily small 0–neighborhoods.

Proof Let K be a given compact set in W , and let G ∈ ε be a member
of no other end. Choose a proper Morse function f : W −→ [0,∞), Milnor
[8, p. 36]. Since

⋃
n f−1[0, n) = W there exists an integer n so large that

(K ∪ bG)∩ f−1[n,∞) = ∅. As f−1[0, n) is compact, one of the components Vn

of f−1[n,∞) is a neighborhood of ε. As Vn is connected, necessarily Vn ⊂ G,
and so Vn has just one end.

If Bd Vn is not connected, dim W > 1 and we can join two of the components of
Bd Vn by an arc D1 smoothly imbedded in Vn that meets Bd Vn transversely.
(In dimensions ! 3, Whitney’s imbedding theorem will apply. In dimension
2 one can use the Hopf-Rinow theorem, see Milnor [8, p. 62].) If we now
excise from Vn an open tubular neighborhood T of D1 in Vn and round off the
corners (see the note below), the resulting manifold V ′

n has one less boundary
component, is still connected with compact boundary and satisfies V ′

n ∩ K =
∅. Hence after finitely many steps we obtain a 0–neighborhood V of ε with
V ∩K = ∅.
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14 Laurence C. Siebenmann

Note 2.1 In the above situation, temporarily change the smoothness struc-
ture on Vn − T smoothing the corners by the method of Milnor [9]. Then let
h : Bd(Vn−T )× [0, 1) −→ (Vn−T ) be a smooth collaring of the boundary. For
any λ ∈ (0, 1), h[Bd(Vn−T )×λ] is a smooth submanifold of Int(Vn−T ⊂ W .
We define V ′

n = (Vn − T )− h[Bd(Vn − T )× [0,λ)]. Clearly V ′
n is diffeomorphic

to Vn−T (smoothed). And the old Vn−T ⊂ W is V ′
n with a topological collar

added in W .

If one wishes to round off the corners of Vn−T so that the difference of Vn−T
and V ′

n lies in a given neighborhood N of the corners there is an obvious way to
accomplish this with the collaring h and a smooth function λ : Bd(Vn−T ) −→
[0, 1) zero outside N and positive near the corner set.

Henceforth we assume that this sort of device is applied whenever rounding of
corners is called for.

3 Stability of π1 at an end

Definition 3.1 Two inverse sequences of groups

G1 G2
f1!! . . .f2!!

and

G1 G2
f ′

1!! . . .
f ′

2!!

are conjugate if there exist elements gi ∈ Gi so that f ′
i(x) = g−1

i fi(x)gi . (We
say f ′

i is conjugate to fi .)

By a subsequence of

G1 G2
f1!! . . .f2!!

we mean a sequence

Gn1 Gn2

f ′

1!! . . .
f ′

2!! ,

n1 < n2 < . . . , where f ′
i is the composed map Gni

←− Gni+1
from the first

sequence.

For two sequences

G : G1 G2
f1!! . . .f2!!
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and

G′ : G′
1 G′

2

f ′

1!! . . .
f ′

2!!

consider the following three possibilities. G and G′ are isomorphic; they are
conjugate; one is a subsequence of the other.

Definition 3.2 Conjugate equivalence of inverse sequences of groups is the
equivalence relation generated by the above three relations. Thus G is conjugate
equivalent to G′ if and only if there exist a finite chain G = G1,G2, . . . ,Gk = G′

of inverse sequences so that adjacent sequences bear any one of the above three
relations to each other.

Suppose X is a separable topological manifold and ε is an end of X . Let X1 ⊃
X2 ⊃ . . . , Y1 ⊃ Y2 ⊃ . . . be two sequences of path-connected neighborhoods of
ε so that

⋂
i Xi = ∅ =

⋂
i Yi . Choosing the base points xi ∈ Xi and base paths

xi+1 to xi in Xi we get an inverse sequence

G : π1(X1, x1) π1(X2, x2)!! . . .!! .

Similarly form

H : π1(Y1, y1) π1(Y2, y2)!! . . .!! .

Lemma 3.3 G is conjugate equivalent to H .

Proof This is easy if Xi = Yi , hence also if {Yi} is a subsequence of {Xi}.
For the general case we can find a sequence

Xr1 ⊃ Ys1 ⊃ Xr2 ⊃ Ys2 ⊃ . . . , r1 < r2 < . . . , s1 < s2 < . . . .

This sequence has the subsequence {Xri
} in common with {Xi} and the sub-

sequence {Ysi
} in common with {Yi}. The result follows.

Definition 3.4 An inverse sequence

G1 G2
f1!! . . .f2!!

of groups is stable if there exists a subsequence

Gr1 Gr2

f ′

1!! . . .
f ′

2!!

so that isomorphisms

Im(f ′
1) Im(f ′

2)
∼=!! . . .

∼=!!

are induced.
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16 Laurence C. Siebenmann

Remark If G1 ←− G2 ←− . . . is stable it is certainly conjugate equivalent to
the constant sequence

Im(f ′
1) Im(f ′

2)
∼=!! . . .

∼=!! .

The lemma below implies that conversely if G1 ←− G2 ←− . . . is conjugate
equivalent to a constant sequence

G G
id!! . . .id!!

then G1 ←− G2 ←− . . . is stable.

Let

G : G1 G2
f1!! . . .f2!! ,

G′ : G′
1 G′

2

f ′

1!! . . .
f ′

2!!

be two inverse sequences of groups.

Lemma 3.5 Suppose G is conjugate equivalent to G′ . If G is stable so is G′

and

lim←−G ∼= lim←−G′.

Proof If G is isomorphic to G′ or G is a subsequence of G′ or G′ of G , the
proposition is obvious. So it will suffice to prove the lemma when G is conjugate
to G′ . Taking subsequences we may assume that G induces isomorphisms

Im(f1) Im(f2)
∼=!! . . .

∼=!! .

And we still have f ′
i(x) = gifi(x)g−1

i for some gi ∈ Gi (= G′
i ). Now Im(f ′

1) =
g1Im(f1)g

−1
1 , and Im(f ′

2) = g2Im(f2)g
−1
2 . Clearly f1 is (1-1) on Im(f ′

2); so f ′
1

is also. But f1(Im(f ′
2)) = Im(f1) since f1(g2) ∈ Im(f1). Thus f ′

1(Im(f ′
2)) =

g1 Im(f1)g
−1
1 = Im(f ′

1). This establishes that f ′
1 induces

Im(f ′
1) Im(f ′

2)
∼=!! .

The same argument works for f ′
2, f

′
3 , etc. Then G′ is stable and

lim←−G = Im(f1) = Im(f ′
1) = lim←−G′.
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The obstruction to finding a boundary for an open manifold 17

Remark If G is conjugate equivalent to G′ , but not necessarily stable lim←−G
will in general not be equal to lim←−G′ . Here is a simple example contributed by
Professor Milnor. Consider the sequence

F1 ⊃ F2 ⊃ F3 ⊃ . . .

where Fn is free on generators xn, xn+1, . . . and y . The inverse limit (= inter-
section) is infinite cyclic. Now consider the conjugate sequence

F1 F2
f1!! F3

f2!! . . .f3!!

where fn(ξ) = xnξx−1
n . Each map is an imbedding; consequently the in-

verse limit is
⋂

n f1f2 . . . fnFn+1 ⊂ F1 . Now an element η ∈ F1 that lies in
f1f2 . . . fnFn+1 has the form x1x2 . . . xnξx−1

n . . . x−1
2 x−1

1 where ξ ∈ Fn+1 . As ξ
does not involve x1, . . . , xn the (unique) reduced word for η certainly involves
x1, . . . , xn or else is the identity. No reduced word can involve infinitely many
generators. Thus the second inverse limit is the identity.

Again let ε be an end of the topological manifold X .

Definition 3.6 π1 is stable at ε if there exists a sequence of path connected
neighborhoods of ε, X1 ⊃ X2 ⊃ . . . with ∩Xi = ∅ such that (with base points
and base paths chosen) the sequence

π1(X1) π1(X2)
f1!! . . .f2!!

induces isomorphisms

Im(f1) Im(f2)
∼=!! . . .

∼=!! .

Lemma 3.3 and Lemma 3.5 show that if π1 is stable at ε and Y1 ⊃ Y2 ⊃ . . . is
any path connected sequence of neighborhoods of ε so that ∩Yi = ∅, then for
any choice of base points and base paths, the inverse sequence

G : π1(Y1) π1(Y2)
g1!! . . .g2!!

is stable. And conversely if G is stable π1 is obviously stable at ε. Hence to
measure stability of π1 at ε we can look at any one sequence G .

Definition 3.7 If π1 is stable at ε, define π1(ε) = lim←−G for some fixed system
G as above.
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18 Laurence C. Siebenmann

By Lemma 3.3, π1(ε) is determined up to isomorphism. If G′ is a similar
system for ε, one can show that there is a preferred conjugacy class of isomor-
phisms lim←−G −→ lim←−G′ such that if V is any path connected neighborhood,
the diagram

lim←−G ""

j $$!!
!!

!!
!!

!
lim←−G′

j′%%""
""

""
""

"

π1(V )

commutes for suitably chosen j, j′ in the natural conjugacy classes determined
by inclusions. This shows for example that the statement that π1(ε) −→ π1(V )
is an isomorphism (or onto, or 1-1) is independent of the particular choice of G
to define π1(ε). The proof uses the ideas of Lemma 3.3 and Lemma 3.5 again.
I omit it.

Example 3.1 If G is

Z Z
×2!! Z

×2!! . . .×2!! ,

or

Z2 Z4
onto!! Z8

onto!! . . .onto!! ,

π1 cannot be stable at ε. The first sequence occurs naturally for the comple-
ment of the dyadic solenoid imbedded in Sn , n ! 4.

Example 3.2 If W is formed by deleting a boundary component of M from
a compact topological manifold W , then π1 is stable at the one end ε of W
since X1,X2, . . . can be a sequence of collars intersected with W . (See the
collar theorem of M. Brown [15].) Further π1(ε) ∼= π1(M) is finitely presented.
For M , being a compact absolute neighborhood retract (see [16]) that imbeds
in Euclidean space, is dominated by a finite complex. Then π1(M) is at least
a retract of a finitely presented group. But

Lemma 3.8 (Proved in Wall [2], Lemma 1.3) A retract of a finitely presented
group is finitely presented.

Let W be a smooth open manifold and ε an end of W .

Definition 3.9 A 1–neighborhood V of ε is a 0–neighborhood such that:

(1) The natural maps π1(ε) −→ π1(V ) are isomorphisms;

(2) Bd V ⊂ V gives an isomorphism π1(Bd V ) −→ π1(V ).
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Here is the important result of this section.

Theorem 3.10 Let W n be a smooth open manifold, n ! 5, and ε an isolated
end of W . If π1 is stable at ε and π1(ε) is finitely presented, then there exists
arbitrarily small 1–neighborhoods of ε.

Problem Is this theorem valid with n = 3 or n = 4?

Example 3.3 The condition that π1(ε) be finitely presented is not redundant.
Given a countable presentation {x : r} of a non-finitely presentable group G we
can construct a smooth open manifold W of dimension n ! 5 with one end so
that for a suitable sequence of path connected neighborhoods X1 ⊃ X2 ⊃ . . .
of ∞ with ∩Xi = ∅, the corresponding sequence of fundamental groups is

G G
id!! . . .id!! .

One simply takes the n–disk and attaches infinitely many 1–handles and 2–
handles as the presentation {x : r} demands, thickening at each step. (Keep
the growing handlebody orientable so that product neighborhoods for attaching
1–spheres always exist.) If we let Xi be the complement of the ith handlebody,
π1(Xi) −→ π1(W ) ∼= G is an isomorphism because to obtain W from Xi we
attach (dual) handles of dimension (n− 2), (n− 1), and one of dimension n.

Proof of Theorem 3.10 Let V1 ⊃ V2 ⊃ . . . be a sequence of 0–neighborhoods
of ε with ∩Vi = ∅ and Vi+1 ⊂ IntVi . Since π1 is stable at ε, after choosing a
suitable subsequence we may assume

π1(V1) π1(V2)
f1!! . . .f2!!

is such that if Hi = fiπ1(Vi+1) ⊂ π1(Vi) then the induced maps H1 ←− H2 ←−
. . . are isomorphisms.

Further if K is a prescribed compact set in W we may assume K ∩ V1 = ∅.
We will produce a 1–neighborhood V of ε with V ⊂ V1 .

Assertion 1 There exists a 0–neighborhood V ′ ⊂ V3 such that the image
π1 Bd V ′) −→ π1(V3) contains H3 (equivalently, the image of π1(Bd V ′) −→
π1(V2) contains H2 ).

Proof V ′ will be V4 modified by “trading 1–handles” along BdV4 . For conve-
nience we may assume that the base points for V1, . . . , V4 are all the one point
∗ ∈ Bd V4 . By a nicely imbedded, based 1–disk in V3 attached to Bd V4 we
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mean a triple (D,h, h′) consisting of an orientable smoothly imbedded 1–disk
D in IntV3 that meets Bd V4 in its two end points, transversely, and two paths
h, h′ in Bd V4 from ∗ to the negative and positive ends points of D .

Let {yi} be a finite set of generators for H3
∼= π1(ε). Clearly each yi can be

represented by a disk (Di, hi, h′
i) that is nicely imbedded except possibly that

IntDi meets Bd V4 in finitely many – say ri – points, transversely. But then
it is clear how to give r1 + 1 nicely imbedded 1–disks representing elements

u(1)
i , . . . , u(ri+1)

i in π1(V3) with yi = u(1)
i . . . u(ri+1)

i .

In this way we obtain finitely many nicely imbedded based 1–disks in V3 at-
tached to Bd V4 representing elements in π1(V3) which together generate a sub-
group containing H3 . Arrange that the 1–disks are disjoint and then construct
disjoint tubular neighborhoods {Tj} for them, each Tj a tubular neighborhood
in V4 or in V3 − IntV4 . If Tj is in V4 subtract the open tubular neighbor-

hood
o
Tj from V4 . If Tj is in V3 − IntV4 add Tj to V4 . Having done this for

each Tj , smooth the resulting submanifold with corners (c.f. the note following
Theorem 2.5) and call it V ′ . Apparently V ′ has the desired properties.

Assertion 2 There exists a 0–neighborhood V ⊂ Int V2 such that π1(Bd V ) −→
π1(V2) is (1-1) onto H2 ; and such V is a 1–neighborhood of ε.

Proof We begin with the last statement. Since

π1(Bd V ) "" H2
∼= "" H1 ⊂ π1(V1)

is (1-1) onto H1 , π1(Bd V ) −→ π1(V1 − IntV ) and π1(Bd V ) −→ π1(V ) are
both (1-1); so by Van Kampen’s theorem π1(V ) −→ π1(V1) is (1-1). But, since
Bd V ⊂ V , π1(V ) −→ π1(V1) is onto H1 . This establishes

(1) π1(V ) −→ π1(V1) is (1-1) onto H1

(2) π1(Bd V ) −→ π1(V ) is an isomorphism.

Choose k so large that Vk ⊂ V . Then as H1
∼=←− Hk , we see π1(Vk) −→ π1(V )

sends Hk (1-1) onto π1(V ) using (1). So

(1′ ) The map π1(ε) −→ π1(V ) is an isomorphism.

This establishes the second statement.

The neighborhood V will be obtained by trading 2–handles along BdV ′ , where
V ′ is the neighborhood of Assertion 1. The following lemma shows that

θ : π1(Bd V ′)
onto
−→ H2 ⊂ π1(V2)

will become an isomorphism if we “kill” just finitely many elements z1, . . . , zk

of the kernel.
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Lemma 3.11 Suppose θ : G −→ H is a homomorphism of a group G onto
a group H . Let {x : r} and {y : s} be presentations for G and H with |x|
generators for G and |s| relators for H . Then ker θ can be expressed as the
least normal subgroup containing (i.e. the normal closure of) a set of |x| + |s|
elements.

Proof Let ξ be a (suitably indexed) set of words so that θ(x) = ξ(y) in H .
Since θ is onto there exists a set of words η so that y = η(θ(x)) in H . Then
Tietze transformations give the following isomorphisms:

{y : s} ∼= {x, y : x = ξ(y), s(y)}
∼= {x, y : x = ξ(y), s(y), r(x), y = η(x)}
∼= {x, y : x = ξ(η(x)), s(η(x)), r(x), y = η(x)}
∼= {x : x = ξ(η(x)), s(η(x)), r(x)} .

Since θ is specified in terms of the last presentation by the correspondence
x −→ x, it is clear that ker θ is the normal closure of |x|+ |s| elements ξ(η(x))
and s(η(x)).

Returning to the proof of Assertion 2 we represent z1 by an oriented circle S
(with base path) imbedded in Bd V ′ . Since θ(z1) = 0 and Bd V ′ is 2–sided we
can find a 2–disk D imbedded in V1 so that D intersects Bd V ′ transversely,
in S = Bd D and finitely many circles in IntD .

If we are fortunate, D ∩ Bd V ′ = Bd D . Then take a tubular neighborhood T
of D in V ′ or in V2− IntV ′ depending on where D lies. If D is in V ′ subtract
◦
T from V ′ . If T is in V2 − IntV ′ add T to V ′ . Round off the corners and call
the result V ′

1 . For short we say we have traded D along Bd V ′ . Now we have
the commutative diagram

π1(Bd V ′)
j∗ ""

i∗

&&###########################
π1(Bd V ′)/(z1) = π1(Bd V ′ ∪D)

##

π1(Bd V ′)
j1∗!!

i1∗

''$$$$$$$$$$$$$$$$$$$$$$$$$$$

π1(V2)

where the maps are induced by inclusions and (z1) denotes the normal closure
of z1 . Since n ! 5, j1∗ is an isomorphism. Hence ker i1∗ is the normal closure
of qz2, . . . , qzk in π1(Bd V ′

1), where q = j−1
1∗ j∗ . Thus z1 has been killed and we

can start over again with V ′
1 .
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If we are not fortunate, IntD meets Bd V ′ in circles S1, . . . , S! and some pre-
liminary trading is required before z1 can be killed. Let S1 be an innermost
circle in IntD so that S1 bounds a disk D1 ⊂ IntD . Trade D1 along Bd V ′ .
This kills an element which, happily, is in ker θ , and changes V ′ so that it meets
D in one less circle. (D is unchanged.) After trading - times we have again
the more fortunate situation and D itself can finally be traded to kill z1 , or
more exactly, the image of z1 in the new π1(V ′).

When z1, . . . , zk have all been killed as above we have produced a manifold V
so that

π1(V ) −→ π1(V2)

is (1-1) onto H2 . This completes the proof of Assertion 2 and Theorem 3.10.

Here is a fact about 1–neighborhoods of the sort we will often accept without
proof.

Lemma 3.12 If V1, V2 are 1–neighborhoods of ε, V2 ⊂ IntV1 then with X =
V1 − IntV2 , all of the following inclusions give π1–isomorphisms: V2 ↪→ V1 ,
X ↪→ V1 , Bd V1 ↪→ X , Bd V2 ↪→ X .

Proof The commutative diagram

π1(V1) π1(V2)!!

π1(ε)

∼=

((

∼=

))%%%%%%%%%

shows that V2 ↪→ V1 gives a π1–isomorphism. The rest follows easily.

4 Finding small (n−3)-neighborhoods for a tame end

From this point we will always be working with spaces which are topological
manifolds or CW complexes. So the usual theory of covering spaces will apply.
X̃ will regularly denote a universal covering of X with projection p : X̃ −→ X .
If an inclusion Y ↪→ X is a 1–equivalence then p−1(Y ) is a universal covering Ỹ
of Y . In this situation we say Y ↪→ X is k–connected (k ! 2) if Hi(X̃, Ỹ ) = 0,
0 " i " k , with integer coefficients. If f : Y ′ −→ X is any 1–equivalence we
say that f is k–connected (k ! 2) if Y ′ ↪→M(f) is k–connected where M(f)
is the mapping cylinder of f . Note that, if f is an inclusion, the definitions
agree.
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Remark Homology is more suitable for handlebody theory than homotopy.
So we usually ignore higher homotopy groups.

Definition 4.1 A space X is dominated by a finite complex K if there are
maps

K
r ""

X
i

!!

so that r ·i is homotopic to the identity 1X . D will denote the class of spaces of
the homotopy type of a CW complex, that are dominated by a finite complex.

Let ε be an isolated end of a smooth open manifold W n , n ! 5, so that π1

is stable at ε and π1(ε) is finitely presented. By Theorem 3.10 there exist
arbitrarily small 1–neighborhoods of ε.

Definition 4.2 ε is called tame if, in addition, every 1–neighborhood of ε is
in D .

Remark It would be nice if tameness of the end ε were guaranteed by some
restriction of the homotopy type of W . If π1(ε) = 1, this is the case. The
restriction is that H∗(W ) be finitely generated (see Theorem 5.9). However in
§8 we construct contractible smooth manifolds W m , (m ! 8) with one end ε
so that π1 is stable at ε and π1(ε) is finitely presented and nevertheless ε is
not tame.

To clarify the notion of tameness one can prove, modulo a theorem of §6, the

Proposition 4.3 With W and ε as introduced for the definition of tameness,
there are implications (1) =⇒ (2) =⇒ (3) =⇒ (4) where (1),. . . , (4) are the
statements: (the reverse implications are obvious.)

(1) There exists an open connected neighborhood U of ε in D such that the
natural map i : π1(ε) −→ π1(U) has a left inverse r , with r ·i = 1. (Since
π1 is stable at ε, r will exist whenever U is sufficiently small.)

(2) One 1–neighborhood of ε is in D .

(3) Every 1–neighborhood of ε is in D .

(4) Every 0–neighborhood of ε is in D . More generally, if V is a neighbor-
hood of ε which is a topological manifold so that Bd V is compact and
V has one end, then V ∈ D .
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Proof Apply the following theorem. In proving (3) =⇒ (4) use a triangulation
of IntV + V such that a 1–neighborhood V ′ ⊂ IntV is a subcomplex, and recall
that every compact topological manifold is in D so that (IntV −IntV ′) ∈ D .

Theorem (Complement to the Sum Theorem 6.5). Suppose a CW complex X
is the union of two subcomplexes X1,X2 with intersection X0 .

(a) X0,X1,X2 ∈ D =⇒ X ∈ D ;

(b) X0,X ∈ D =⇒ X1,X2 ∈ D provided that π1(X1) −→ π1(X) and
π1(X2) −→ π1(X) have left inverses (i.e. π1(X1),π1(X2) are retracts
of π1(X)).

After the above proposition we can give a concise definition of tameness, which
we adopt for all dimensions.

Combined Definition 4.4 An end ε of a smooth open manifold W is tame
if

(1) π1 is stable at ε, viz. there is a sequence of connected open neighborhoods
X1 ⊃ X2 ⊃ . . . of ε with

⋂
i Xi = ∅ so that (with some base points and

base paths)

π1(X1) π1(X2)
f1!! . . .f2!!

induce isomorphisms

Im(f1) Im(f2)
∼=!! . . .

∼=!! .

(2) There is a connected open neighborhood V of ε in D so small that
V ⊂ X2 .

Notably, the hypothesis that π1(ε) be finitely presented is lacking. But as
V ⊂ X2 , π1(ε) ∼= Im(f1) is a retract of the finitely presented group π1(V )
hence is necessarily finitely presented by Lemma 3.8. Also, by Theorem 1.10,
V ∈ D has only finitely many ends. So ε must be an isolated end of W .

Suppose ε is an end of a smooth open manifold W , such that π1 is stable at ε.

Definition 4.5 A neighborhood V of ε is a k–neighborhood (k ! 2) if it is a
1–neighborhood and Hi(Ṽ ,Bd Ṽ ) = 0, 0 " i " k .

The main result of this section is:
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Theorem 4.6 If ε is a tame end of dimension ! 5, there exist arbitrarily
small (n− 3)–neighborhoods of ε.

Remark It turns out that a (n−2)–neighborhood V would be a collar neigh-
borhood, i.e. V ∼= Bd V × [0, 1). In the next section we show that, if V is an
(n−3)–neighborhood, Hn−2(Ṽ ,Bd Ṽ ) is a finitely generated projective module
over π1(ε) and its class modulo free π1(ε)–modules is the obstruction to finding
a collar neighborhood of ε.

Lemma 4.7 Let f : K −→ X be a map from a finite complex to X ∈ D that
is a 1–equivalence. Suppose f is (k − 1)–connected, with k ! 2. (This adds

nothing if k = 2). Then Hk(M̃(f), K̃) is a f.g. π1(X)–module.

Proof Let L = Kk−1 if k ! 3 or K2 if k = 2. Then L ↪→ K is a 1–

equivalence and (k − 1)–connected. Thus the composition f · i : L ⊂ K
f
−→ X

is (k − 1)–connected. Up to homotopy type we may assume f is an inclusion.
According to Wall [2, Theorem A] Hk(X̃, L̃) is f.g. over π1(X). But for the
triple (X̃, K̃, L̃) we have

Hk(X̃, L̃) −→ Hk(X̃, K̃) −→ Hk−1(K̃, L̃) = 0

which implies Hk(X̃, K̃) ∼= Hk(M̃(f), K̃) is f.g. over π1(X).

Proof of Theorem 4.6 Suppose inductively that the following proposition
Px holds with x = k − 1, 2 " k " n− 3. (Notice that P1 is Theorem 3.10).

Px : There exist arbitrarily small x–neighborhoods of ε.

Given a compact set C we must construct a k–neighborhood that does not
meet C . Choose a (k − 1)–neighborhood V with V ∩ C = ∅. By Lemma 4.7,
Hk(Ṽ ,Bd Ṽ ) is a f.g. π1(ε)–module. So we can take a finite generating set
{x1, . . . , xm} with the least possible number of elements. We will carve m
thickened k–disks from V to produce a k–neighborhood.

Definition 4.8 A nicely imbedded based k–disk representing x ∈ Hk(Ṽ ,Bd Ṽ )
is a pair (D,h) consisting of a smoothly imbedded oriented k–disk D ⊂ V that
intersects Bd V in Bd D , transversely, and a path h from the base point to
D , so that the lift D̃ ⊂ Ṽ of D by h represents x. (Since D̃ is a smoothly
imbedded oriented k–disk in Ṽ with Bd D̃ ⊂ Bd Ṽ , this makes good sense.)

Fundamental Lemma 4.9 If V is a (k − 1)–neighborhood, 2 " k " n − 3,
Pk−1 implies that there is a nicely imbedded k–disk representing any given
x ∈ Hk(Ṽ ,Bd Ṽ ).
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Assuming Lemma 4.9, we complete the proof of Theorem 4.6. Let (D,h) rep-
resent x1 , take a tubular neighborhood of D in V , subtract the open tubular
neighborhood from V rounding the corners, and call the result V ′ . We may
suppose V ′ ⊂ IntV so that V − IntV ′ = U has Bd V ∪ D as deformation
retract.

First note that V ′ is at least a 1–neighborhood. For V has V ′ ∪ D′ as de-
formation retract where D′ is a (n − k)–disk of T transverse to D . Since
(n − k) ! 3 π1(V ′) −→ π1(V ) is an isomorphism so that π1(ε) −→ π1(V ′)
is too. Further Bd V ′ ↪→ U and Bd V ↪→ U gives π1–isomorphisms. (When
k = 2 D is trivially attached). This easily implies π1(Bd V ′) −→ π1(V ′) is an
isomorphism.

Next we establish that V ′ is really better than V . H∗(Ũ ,Bd Ṽ ) = Zπ1(ε),
and (D,h) represents a generator x1 such that i∗x1 = x1 , i : (Ũ ,Bd Ṽ ) ↪→

(Ṽ ,Bd Ṽ ). From the sequence of (Ṽ , Ũ ,Bd Ṽ ) we see that H∗(Ṽ , Ũ) ∼= H∗(Ṽ ′,Bd Ṽ ′)
is zero in dimensions < k and in dimension k is generated by the (m−1) images
of x2, . . . , xm under j∗ , j : (Ṽ ,Bd Ṽ ) ↪→ (Ṽ , Ũ ).

Thus V ′ is a (k− 1)–neighborhood and H∗(Ṽ ′,Bd Ṽ ′) has (m− 1) generators.
After exactly m steps we obtain a k–neighborhood. This establishes Pk and
completes the induction for Theorem 4.6

Proof of Fundamental Lemma 4.9 We begin with

Assertion There exists a (k − 1)–neighborhood V ′ ⊂ Int V so small that x is
represented by a cycle in Ũ mod Bd Ṽ , where U = V − Int V ′ .

Proof x is represented by a singular cycle and the singular simplices all map
into a compact set C ⊂ Ṽ . There exists a (k − 1)–neighborhood V ′ ⊂ Int V
so small that the projection of C lies in U = V − IntV ′ . Then Ũ contains C
and the assertion follows.

Now the exact sequence of (Ṽ , Ũ ,Bd Ṽ ) shows that Bd V ↪→ U is (k − 2)–
connected. Hence there exists a nice Morse function f and a gradient-like
vector field ξ on the manifold triad c = (U ; Bd V,Bd V ′) with critical points
of index λ, max(2, k − 1) " λ " n − 2 only. See Wall [3, Theorem 5.5, p.24].
In other words c = ck−1ck . . . cn−3cn−2 where cλ = (Uλ;Bλ, Bλ+1) is a triad
having critical points of index λ only and Bλ is a level manifold of f . Also
ck−1 is a product if k = 2.

We recall now some facts from handlebody theory using the language of Milnor
[4]. For each critical point p of index λ a “left hand” λ–disk DL(p) in Uλ is
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formed by the ξ–trajectories going to p, and a “right hand” (n−λ)–disk DR(p)
in Uλ is formed by the ξ–trajectories going from p. According to Milnor [4, p.
46] we may assume that in Bλ each left hand sphere Bd DλL(p) = SL(p) meets
each right hand sphere Bd Dλ−1

R (q) = SR(q) transversely, in a finite number of
points.

Choose a lift ∗̃ ∈ Ũ of the base point ∗ ∈ U ; choose base paths from ∗ to
each critical point of f ; and choose an orientation for each left hand disk. For
P ∈ SL(p)∩SR(q) the characteristic element gP is the class of the path formed
by the base path ∗ to p, the trajectory p to q through P and the reversed base
path q to ∗. (See Figure 2). With naturally defined orientations for the normal
bundles of the right hand disks there is an intersection number εP = ±1 of
SR(q) with SL(p) at P .

q
P

p
DR(q)

DL(p)

Figure 2:

Notice that H∗(Ũλ, B̃λ) is a free π1(U)–module concentrated in dimension λ
and has basis elements that correspond naturally to the based oriented disks
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{DL(p) : p critical of index λ}. According to Milnor [4, p. 90], if we define

Cλ = Hλ(Ũλ, B̃λ) and ∂ : Cλ −→ Cλ−1 by

Hλ(Ũλ, B̃λ)
d "" Hλ−1(B̃λ)

i∗ "" Hλ−1(Ũλ−1, B̃λ−1)

then H∗(Ũ ,Bd Ṽ ) ∼= H∗(C). Further, by Wall [3, Theorem 5.1, p. 23] ∂ is
expressed geometrically by the formula

∂DλL(p) =
∑

P

εP gP Dλ−1
L (q(P ))

where DλL(p), Dλ−1
L (q(P )) stand for the basis elements represented by these

based oriented disks and P ∈ SR(q(P )) ∩ SL(p) ranges over all intersection
points of SL(p) with right hand spheres.

Here is a fact we will use later on. Suppose an orientation is specified at ∗ ∈ U .
Then using the base paths we can naturally orient all the right hand disks, and
give normal bundles of the left hand disks corresponding orientations. With
this system of orientations there is a new intersection number ε′P determined
for each P ∈ SR(q) ∩ SL(p). It is straightforward to verify that

ε′P = (−1)λ sign(gP )εP

where λ = index p and sin(gP ) is +1 or −1 according as qP is orientation
preserving or orientation reversing. The new characteristic element for P is
clearly g′P = g−1

P .

Let x ∈ Hk(Ũ ,Bd Ṽ ) satisfy i∗x = x ∈ Hk(Ṽ ,Bd Ṽ ) and represent x by a
chain

c =
∑

p

r(p)Dk
L(p)

where p ranges over critical points of index k and r(p) ∈ Zπ1(U). Introduce a
complementary (=auxiliary) pair p0, q0 of critical points of index k and k+1 us-
ing Milnor [4, p. 101] (c.f. Wall [3, p. 17]). The effect on C∗ is to introduce two
new basis elements DL(p0) ∈ Ck and DL(q0) ∈ Ck+1 so that ∂DL(q0) = DL(p0)
(with suitable base paths and orientations) while ∂ is otherwise unchanged. In
particular ∂DL(p0) = 0 so that x is represented by DL(p0)+c. Now we can ap-
ply Wall’s Handle Addition Theorem [3, p. 17] repeatedly changing the Morse
function (or handle decomposition) to alter the basis of Ck so that the new
based oriented left-hand disks represent DL(p0) + c and the old basis element
DL(p) with p %= p0 . (We note that the proof, not the statement, of the “Basis
Theorem” of Milnor [4, p. 92] can be strengthened to give this result.)
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We now have a critical point p1 so that DL(p1) is a cycle representing x. If
k = 2, the rest of the argument is easy. (If n = 5, the only case in question
is 2 = k = n − 3.) From the outset, there are no critical points of index
< 2. This means that the trajectories in U going to p1 form a disk D′

L(p1)
which is DL(p1) with a collar added. It is easy to see that D′

L(p1) with the
orientation and base path of DL(p1) is a nicely imbedded 2–disk that represents
x ∈ H2(Ũ ,Bd Ṽ ) and hence x ∈ H2(Ṽ ,Bd Ṽ ). (Actually, for k = 2, or even
2k + 1 " n, one can imbed a suitable k–disk directly, without handlebody
theory.)

If 3 " k " n − 3 (and hence n ! 6) argue as follows. Since ∂DL(p1) = 0
the points of intersection of DL(p1) with any right hand sphere in Bk can be
arranged in pairs (P,Q) so that gP = gQ and εP = −εQ (see the formula
above). Take a loop L consisting of an arc P to Q in SL(p1) then Q to P in
SR(q). It is contractible in Bk because gP = gQ . So L can be spanned by a
2–disk and the device of Whitney permits us to eliminate the two intersection
points P,Q by deforming SL(p1). Theorem 6.6 of Milnor [4] explains all this
in detail.

Then in finitely many steps we can arrange that SL(p1) meets no right hand
spheres (c.f. Milnor [4, §4.7]). Now observe that the trajectories in U going to
p1 form a disk D′(p1) which is DL(p1) plus a collar. D′(p1) is a based oriented
and nicely imbedded k–disk that apparently represents x ∈ Hk(Ũ ,Bd Ũ) and
hence x ∈ Hk(Ṽ ,Bd Ṽ ).

5 The Obstruction to Finding a Collar Neighbor-

hood

This chapter brings us to the Main Theorem (5.7), which we have been working
towards in §2, 3, and 4. What remains of the proof is broken into two parts. The
first (Proposition 5.1) is an elementary observation that serves to isolate the
obstruction. The second, (Proposition 5.6) proves that when the obstruction
vanishes, one can find a collar. It is the heart of the theorem.

As usual ε is an end of a smooth open manifold W n .

Proposition 5.1 Suppose n ! 5, π1 is stable at ε, and π1(ε) is finitely
presented. If V is a (n−3)–neighborhood of ε, then Hi(Ṽ ,Bd Ṽ ) = 0, i %= n−2
and Hn−2(Ṽ ,Bd Ṽ ) is projective over π1(ε).
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Remark If ε is tame, by Lemma 4.7 Hn−2(Ṽ ,Bd Ṽ ) is f.g. over π1(ε).

Corollary 5.2 If V is a (n− 2)–neighborhood of ε, H∗(Ṽ ,Bd Ṽ ) = 0 so that
Bd V ↪→ V is a homotopy equivalence. If in addition there are arbitrarily small
(n− 2)–neighborhoods of ε, then V is a collar neighborhood.

Proof of Corollary 5.2 The first statement is clear. The second statement
follows from the invertibility of h–cobordisms. For n = 5 this seems to require
the Engulfing Theorem (see Stallings [10]).

Proof of Proposition 5.1 Since Bd V ↪→ V is (n−3)–connected Hi(Ṽ ,Bd Ṽ ) =
0, i " n− 3. It remains to show that Hi(Ṽ ,Bd Ṽ ) = 0 for i ! n− 1 and pro-
jective over π1(ε) for i = n− 2.

By Theorem 3.10 we can find a sequence V = V0 ⊃ V1 ⊃ V2 ⊃ · · · of 1–
neighborhoods of ε with

⋂
n Vn = ∅, and Vi+1 ⊂ Int Vi . If Ui = Vi − Int Vi+1 ,

Bd Vi ↪→ Ui and Bd Vi+1 ↪→ Ui give π1–isomorphisms. Put a Morse function

fi : Ui
onto
−→ [i, i + 1] on each triad (Ui; Bd Vi,Bd Vi+1).

Following the proof of Milnor [4, Theorem 8.1, p. 100] we can arrange that fi

has no critical points of index 0, 1, n, and n − 1. (This is also the effect of
Wall [3, Theorem 5.1].) Piece the Morse functions f0, f1, f2, . . . together to give

a proper Morse f : V
onto
−→ [0,∞) with f−1(0) = Bd V .

It follows from the well known lemma given below that (V,Bd V ) is homotopy
equivalent to (K,Bd V ) where K is Bd V with cells of dimension λ, 2 " λ "

n−2 attached. Thus Hi(Ṽ ,Bd Ṽ ) = 0, i ! n−1. Further the cellular structure
of (K,Bd V ) gives a free π1(ε)–complex for H∗(K̃,Bd Ṽ )

0 −→ Ck−2(K̃,Bd Ṽ ) −→ Ck−3(K̃,Bd Ṽ ) −→ . . . −→ C2(K̃,Bd Ṽ ) −→ 0.

Since the homology is isolated in dimension (k − 2) it follows easily that
Hk−2(K̃,Bd Ṽ ) is projective.

Lemma 5.3 Suppose V is a smooth manifold and f : V −→ [0,∞) is a proper
Morse function with f−1(0) = Bd V . Then there exists a CW complex K ,
consisting of Bd V (triangulated) with one cell of dimension λ in K − Bd V
for each index λ critical point, and such that there is a homotopy equivalence
f : K −→ V fixing Bd V .

Proof Let a0 = 0 < a1 < a2 < . . . be an unbounded sequence of noncritical
points. Since f is proper f−1[ai, ai+1] is a smooth compact manifold and can
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contain only finitely many critical points. Adjusting f slightly (by Milnor [4, p.
17 or p. 37]) we may assume the critical levels in [ai, ai+1] are distinct. Then
there is a refinement b0 = 0 < b1 < b2 < . . . of a0 = 0 < a1 < a2 < . . . so that
bi is noncritical and f−1[bi, bi+1] contains at most one critical point.

We will construct a nested sequence of CW complexes K0 = Bd V ⊂ K1 ⊂
K2 ⊂ . . . ,K = ∪Ki , and a sequence of homotopy equivalences fi : Ui −→ Ki ,
Ui = f−1[0, bi], f0 = 1Bd V , so that (fi+1)|Ui

agrees with fi . Then f0, f1, f2, . . .
define a continuous map f : V −→ K , which induces an isomorphism of all ho-
motopy groups. By Whitehead’s theorem [11] it will be the required homotopy
equivalence.

Suppose inductively that fi,Ki are defined. If f [bi, bi+1] contains no critical
point it is collar and no problem arises. Otherwise let r : Ui+1 −→ Ui ∪ DL

be a deformation retraction where DL is the left hand disk of the one critical
point (c.f. Milnor [4, p. 28]). By Milnor [8, Lemma 3.7, p. 21] Fi extends to a
homotopy equivalence

fi : Ui ∪DL −→ Ki ∪φ D′
L

where D′
L is a copy of DL attached by the map (fi)|Bd DL

= φ. If φ′ ∼= φ
is a cellular approximation, by [4, Lemma 3.6, p. 20] the identity map of Ki

extends to a homotopy equivalence

g : Ki ∪φ D′
L −→ Ki ∪φ′ D′

L.

Define Ki+1 = Ki ∪φ′ D′
L and let fi+1 = g ◦ f ′

i ◦ r . Then Fi is a homotopy
equivalence and (fi+1)|Ki

agrees with fi .

Next we prove a lemma needed for the second main proposition. Let A,B,C
be free f.g. modules over a group π with preferred bases a, b, c respectively. If
C = A⊕B we ask whether there exists a basis c′ ∼ c (i.e. c′ is derived from c
by repeatedly adding to one basis element a Z[π]–multiple of a different basis
element) so that some of the elements of c′ generate A and the rest generate
B . This is stably true. Let B′ = B ⊕ F where F is a free π–module with
preferred basis f . Let C ′ = A ⊕ B′ and let the enlarged basis for B′ and C ′

be b′ = bf and c′ = cf .

Lemma 5.4 If rankF ! rankC there exists a basis c′′ ∼ c′ for C ′ such that
some of the elements of c′′ generate A and the rest generate B′ .

Proof The matrix that expresses ab′ in terms of the basis c′ looks like Figure
3 below.
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. . .

1

1

1

M

fc

a

b

f

=



 M 0
0 I





1

Figure 3:

Notice that multiplication on the right by an ‘elementary’ matrix (I +E) where
E is zero but for one off-diagonal element in Z[π] and I is the identity, corre-
sponds to adding to one basis element of c′ a Z[π]–multiple of a different basis
element.

Suppose first that rankF = rankC . Then
(

M 0
0 I

)(
M−1 0

0 M

)
=

(
I 0
0 M

)
.

But the right hand side of
(

M−1 0
0 M

)
=

(
I M−1

0 I

)(
I 0

I −M I

)(
I −I
0 I

)(
I 0

I −M−1 I

)

is clearly a product of elementary matrices. So the Lemma is established in
this case. In the general case, just ignore the last [rankF − rankC] elements
of f .

Definition 5.5 Let G be a group. Two G–modules A,B are stably isomorphic
(written A ∼ B ) if A ⊕ F ∼= B ⊕ F for some f.g. free G–module F . A f.g.
G–module is called stably free if it is stably isomorphic to a free module.

Proposition 5.6 Suppose ε is a tame end of dimension ! 5. If V is a
(n− 3)–neighborhood of ε, the stable isomorphism class of Hn−2(Ṽ ,Bd Ṽ ) (as
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a π1(ε)–module) is an invariant of ε. If Hn−2(Ṽ ,Bd Ṽ ) is stably free and n ! 6,
there exists a (n− 2)–neighborhood V0 ⊂ IntV .

Any f.g. projective module is a direct summand of a f.g. free module. Thus
the stable isomorphism classes of f.g. G–modules form an abelian group. It is
called the projective class group K̃0(G). Apparently the class containing stably
free modules is the zero element.

Combining Proposition 5.1, Corollary 5.2 and Proposition 5.6 we have our

Theorem 5.7 If ε is a tame end of dimension ! 6 there is an obstruction
σ(ε) ∈ K̃0(π1(ε)) that is zero if and only if ε has a collar.

In §8 we construct examples where σ(ε) %= 0. At the end of this section we
draw a few conclusions from Theorem 5.7.

Proof of Proposition 5.6 The structure of Hn−2(Ṽ ,Bd Ṽ ) as a π1(ε)–module
is determined only up to conjugation by elements of π1(ε). Thus if one action
is denoted by juxtaposition another equally good action is g ·a = x−1gxa where
x ∈ π1(ε) is fixed and g ∈ π1(ε), a ∈ Hn−2(Ṽ ,Bd Ṽ ) vary. Nevertheless the
new π1(ε)–module structure is isomorphic to the old under the mapping

a −→ x−1a.

We conclude that the isomorphism class of Hn−2(Ṽ ,Bd Ṽ ) as a π1(ε)–module
is independent of the particular base point of V and covering base point of
Ṽ , and of the particular isomorphism π1(ε) −→ π1(V ) (in the preferred con-
jugacy class). We have to establish further that the stable isomorphism class
of Hn−2(Ṽ ,Bd Ṽ ) is an invariant of ε, i.e. does not depend on the particular
(n− 3)–neighborhood V This will become clear during the quest of a (n− 2)–
neighborhood V ′ ⊂ IntV that we now launch.

Since Hn−2(Ṽ ,Bd Ṽ ) is f.g. over π1(ε), there exists a (n − 3)–neighborhood
V ′ ⊂ IntV so small that with U = V − IntV ′ , M = Bd V and N = Bd V ′ , the
map

i∗ : Hn−2(Ũ , M̃) −→ Hn−2(Ṽ , M̃)

is onto. By inspecting the exact sequence for (Ṽ , Ũ , M̃ )

0 −→ Hn−2(Ũ , M̃ )
i∗−→ Hn−2(Ṽ , M̃) −→ Hn−2(Ṽ , Ũ)

d
−→ Hn−3(Ũ , M̃ ) −→ 0

we see that i∗ and d are isomorphisms. Since the middle terms are f.g. projec-
tive π1(ε)–modules so are Hn−2(Ũ , M̃ ), Hn−3(Ũ , M̃ ).
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Since M ⊂ U is (n − 4)–connected and N ↪→ U gives a π1–isomorphism we
can put a self-indexing Morse function f with a gradient-like vector field ξ (see
Milnor [4, p. 20, p. 44]) on the triad c = (U ;M,N) so that f has critical
points of index (n− 3) and (n − 2) only (Wall [3, Theorem 5.5]).

n− 3 n− 2

M ————– U ————– N

Figure 4:

We provide f with the usual equipment: base points ∗ for U and ∗̃ over ∗ for
Ũ ; base paths from ∗ to the critical points; orientations for the left hand disks.
And we can assume that left and right hand spheres intersect transversely [4,
§4.6].

Now we have a well defined based, free π1(ε)–complex C∗ for H∗(Ũ , M̃) (’based’
means with distinguished basis over π1(ε)). It may be written

. . . 0!! Cn−3!!

%%""
""

""
""

"

Cn−2
∂!!

%%""
""

""
""

"
0!! . . .!!

Hn−3

**&&
&&

&&
&&

&

Bn−3

++'''''''''

,,""
""

""
""

""

Hn−2

++'''''''''

0 0 0

))''''''''''
0

--(((((((((

where we have inserted kernels and images.

We have shown Hn−3 is projective, so Bn−3 is too and Cn−3 = Hn−3 ⊕Bn−3 ,
Cn−2 = Bn−3 ⊕Hn−2 (the second summands natural). It follows that Hn−2 ∼
Hn−3 , hence Hn−2(Ṽ ,Bd Ṽ ) ∼ Hn−2(Ṽ ′,Bd Ṽ ′) (∼ denotes stable isomor-
phism). This makes it clear that the stable isomorphism class of Hn−2(Ṽ ,Bd Ṽ )
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does not depend on the particular (n− 3)–neighborhood V . So the first asser-
tion of Proposition 5.6 is established.

Now suppose Hn−2(Ṽ ,Bd Ṽ ) ∼ Hn−2 ∼ Hn−3 is stably free. Then B′
n−3

∼=
Bn−3 is also stably free. For convenience identify B′

n−3 with a fixed subgroup
in Cn−2 that maps isomorphically onto Bn−3 ⊂ Cn−3 , and define H ′

n−3 ⊂ Cn−3

similarly. Then C∗ is

. . . ←− 0 ←− H ′
n−3 ⊕Bn−3 ←− B′

n−3 ⊕Hn−2 ←− 0 ←− . . . .

Observe:

1) If we add an auxiliary (= complementary) pair of index (n−3) and (n−2)
critical points, then a Z[π1(ε)] summand is added to Bn−3 and to B′

n−3 .
See Milnor [4, p. 101], Wall [3, p. 17].)

2) If we add an auxiliary pair as above and delete the auxiliary (n−3)–disk
(thickened) from V , then a Z[π1(ε)] summand has been added to Hn−2 .

In the alteration 2) V changes. But i∗ : Hn−2(Ũ , M̃ ) −→ Hn−2(Ṽ , M̃) is still
onto. For, as one easily verifies, the effect of 2) is to add a Z[π1(ε)] summand
to both of these modules and extend i∗ by making generators correspond.

From 1) and 2) it follows that it is no loss of generality to assume that the stably
free modules B′

n−3 and Hn−2 are actually free. What is more, Lemma 5.4,
together with the Handle Addition Theorem (Wall [3, p. 17], c.f. Chapter IV,
p. 30) shows that, after applying 1) sufficiently often, the Morse function can
be altered so that some of the basis elements of Cn−2 generate Hn−2 and the
rest generate B′

n−3 .

We have reached the one point of the proof where we must have n ! 6. Let DL

be an oriented left hand disk with base path, for one of those basis elements of
Cn−2 that lie in Hn−2 . We want to say that, because ∂DL = 0, it is possible to
isotopically deform the left hand (n−3)–sphere SL = Bd DL to miss all the right

hand 2–spheres in f−1(n − 2
1

2
). First try to proceed exactly as in §4. Notice

that the intersection points of SL with any one right hand 2–sphere can be
arranged in pairs (P,Q) so that gP = gQ and εP = −εQ . Form the loop L and
attempt to apply Theorem 6.6 of Milnor [4] (which requires (n− 1) ! 5). This
fails because the dimension restrictions are not quite satisfied. But fortunately
they are satisfied after we replace f by −f and correspondingly interchange
tangent and normal orientations. We note that the new intersection numbers
ε′P , ε′Q are still opposite and that the new characteristic elements g′P , g′Q are
still equal (see §4). For a device to show that the condition on the fundamental
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groups [4, Theorem 6.6] in is still satisfied, see Wall [3, p. 23-24]. After applying
this argument sufficiently often we have a smooth isotopy that sweeps SL clear
of all right hand 2–spheres. Change ξ (and hence DL ) accordingly [4, §4.7].

Now DL can be enlarged by adding the collar swept out by trajectories from
M to SL . This gives a nicely imbedded disk representing the class of DL in
Hn−2(Ũ , M̃) (c.f. Definition 4.8). Now alter f according to Milnor [4, Lemma

4.1, p. 37] to reduce the level of the critical point of DL to (n−
3

4
).

When this operation has been carried out for each basis element of Cn−2 in
Hn−2 , the level diagram for f looks like:

NM ———————– U ————————

— U ′—

n = 31
4 n− 3 n− 2

}

represents index

{
n− 3
n− 2

critical point

Figure 5:

Observe that U ′ = f−1[−
1

2
, n −

3

8
] ∩ U can be deformed over itself onto

Bd V = M with based (n − 2)–disks attached which, in Ũ and M̃ , give a

basis for Hn−2(Ũ , M̃ ) and so for Hn−2(Ṽ , M̃ ). Thus i∗ is an isomorphism, in

the sequence of (Ṽ , Ũ ′, M̃) :

· · · −→ 0 −→ Hn−2(Ũ
′, M̃)

i∗−→
∼=

Hn−2(Ṽ , M̃) −→ Hn−2(Ṽ , Ũ ′) −→ Hn−3(Ũ
′, M̃ ) = 0.

Geometry & Topology Monographs, Volume X (20XX)



The obstruction to finding a boundary for an open manifold 37

It follows that H∗(Ṽ , Ũ ′) = 0.

We assert that V0 = V − IntU ′ is a (n − 2)–neighborhood of ε. It will suf-
fice to show that V0 is a 1–neighborhood. For in that case excision shows
H∗(Ṽ0,Bd Ṽ0) = H∗(Ṽ , Ũ ′) = 0. Now Bd V0 ↪→ V0 clearly gives a π1–isomorphism.

Claim Bd V0 ↪→ V gives a π1–isomorphism.

Granting that, we see that V0 ↪→ V gives a π1–isomorphism and hence π1(ε) −→
π1(V0) is an isomorphism – which proves that V0 is a 1–neighborhood.

To prove the claim simply observe that Bd V0 ↪→ U−U ′ gives a π1–isomorphism,
that (U − Int U ′) ↪→ U does too because N ↪→ U and N ↪→ (U − IntU) do,
and finally that U ↪→ V gives a π1–isomorphism.

We have discovered a (n − 2)–neighborhood V0 in the interior of the original
(n− 3)–neighborhood. Thus Proposition 5.6 is established.

To conclude this chapter we give some corollaries of Theorem 5.7. By Proposi-
tion 2.3 we have:

Theorem 5.8 Suppose W is a smooth connected open manifold of dimension
! 6. If W has finitely many ends ε1, . . . , εk , each tame, with invariant zero,
then W is the interior of a smooth compact manifold W . The converse is
obvious.

Assuming 1–connectedness at each end we get the main theorem of Browder,
Levine, and Livesay [1] (slightly elaborated).

Theorem 5.9 Suppose W is a smooth open manifold of dimension ! 6 with
H∗(W ) finite generated as an abelian group. Then W has finitely many ends
ε1, . . . , εk . If π1 is stable at each εi , and π1(εi) = 1 then W is the interior of
a smooth compact manifold.

Proof By Theorem 1.10, there are only finite many ends. If V is a 1–
neighborhood of εi , π1(V ) = 1, and H∗(V ) is finitely generate since H∗(W )
is. By an elementary argument, V has the type of a finite complex (c.f. Wall
[2]). Thus εi is tame. The obstruction σ(εi) is zero because every subgroup of
a free abelian group is free.

Theorem 5.10 Let W n , n ! 6, be a smooth connected manifold with com-
pact boundary and one end ε. Suppose
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1) Bd W ↪→W is (n− 2)–connected,

2) π1 is stable at ε and π1(ε) −→ π1(W ) is an isomorphism.

Then W n is diffeomorphic to Bd X × [0, 1).

Proof By Corollary 5.2, Bd W ↪→ W is a homotopy equivalence. Since W
is a 1–neighborhood ε is tame. Since W is a (n − 2)–neighborhood σ(ε) = 0
(Proposition 5.6). By Theorem 5.7, ε has a collar. Then Corollary 5.2 shows
that W itself is diffeomorphic to Bd W × [0, 1).

Remark The above theorem indicates some overlap of our result with Stallings’
Engulfing Theorem, which would give the same conclusion for n ! 5 with 1),
2) replaced by

1′ ) Bd W ↪→W is (n− 3)–connected,

2′ ) for every compact C ⊂ W , there is a compact D ⊃ Bd W containing C
so that (W −D) ⊂ W is 2–connected.

See Stallings [12]. A smoothed version of the Engulfing Theorem appears in
[13].

6 A Sum Theorem for Wall’s Obstruction

For path-connected spaces X in the class D of spaces of the homotopy type of a
CW complex that are dominated by a finite complex, C.T.C. Wall defines in [2] a
certain obstruction σ(X) lying in K̃0(π1(X)), the group of stable isomorphism
classes (see §5) of left π1(X)–modules. The obstruction σ(X) is an invariant of
the homotopy type of X , and σ(X) = 0 if and only if X is homotopy equivalent
to a finite complex. The obstruction of our Main Theorem 5.7 is, up to sign,
σ(V ) for any 1–neighborhood V of the tame end ε. (See below. We will choose
the sign for our obstruction σ(ε) to agree with that of σ(V ).) The main result
of this section is a sum formula for Wall’s obstruction, and a complement that
was useful already in §4.

Recall that K̃0 gives a covariant functor from the category of groups to the cate-
gory of abelian groups. If f : G −→ H is a group homomorphism, f∗ : K̃0(G) −→
K̃0(H) is defined as follows. Suppose given an element [P ] ∈ K̃0(G) represented
be a f.g. projective left G–module P . Then F∗[P ] is represented by the left
H –module Q = Z[h] ⊗G P where the right action of G on Z[h] for the tensor
product is given by f : G −→ H .

The following lemma justifies our omission of base point in writing K̃0(π1(X)).
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Lemma 6.1 The composition of functors K̃π1 determines up to natural equiv-
alence a covariant functor from the category of path-connected spaces without
base point and continuous maps, to abelian groups (see below).

Proof After an argument familiar for higher homotopy groups, it suffices to
show that the automorphism θx of K̃0(π1(X, p)) induced by the inner automor-
phism g −→ x−1gx of π1(X, p) is the identity for all x. If P is a f.g. projective,
θ[P ] is by definition represented by

P ′ = Z[π1(X, p)] ⊗π1(X,p) P

where the group ring has the right π1(X, p)–action r · g = rx−1gx. From the
definition of the tensor product

g ⊗ p = 1⊗ xgx−1p.

Thus the map φ : P −→ P ′ given by φ(p) = 1 ⊗ xp, for p ∈ P , satisfies
φ(gp) = 1⊗ xgp = 1⊗ xgx−1xp = g⊗ xp = gφ(p), for g ∈ π1(X, p) and p ∈ P .
So φ gives a π1(X, p)–module isomorphism P −→ P ′ as required.

If X has path components {Xi} we define K̃0(π1(X)) =
∑

i K̃0(π1(Xi)). This

clearly extends K̃0π1 to a covariant functor from the category of all topolog-
ical spaces and continuous maps to abelian groups. Thus for any X ∈ D
with path components X1, . . . ,Xr we can define σ(X) = (σ(X1), . . . ,σ(Xr))
in K̃0(π1(X)) = K̃0(π1(X1)) × · · · × K̃0(π1(Xr)). And we notice that σ(X)
is, as it should be, the obstruction to X having the homotopy type of a finite
complex.

For path-connected X ∈ D the invariant σ(X) may be defined as follows (c.f.
Wall [2]). It turns out that one can find a finite complex Kn for some n ! 2,
and a n–connected map f : Kn −→ X that has a homotopy right inverse, i.e.
a map g : X −→ Kn so that fg + 1X . For any such map Hi(M̃(f), K̃n) = 0,

i %= n + 1, and Hn+1(M̃(f), K̃n) is f.g. projective over π1(X). The invariant
σ(X) is (−1)n+1 the class of this module in K̃0(π1(X)). (We have reversed the
sign used by Wall.)

We will need the following notion of (cellular) surgery on a map f : K −→ X
where K is a CW complex and X has the homotopy type of one. If more
than one path component of K maps into a given path component of X , one
can join these components by attaching 1–cells to K , then extend f to a
map K ∪ {1 − cells} −→ X . Suppose from now on that K and X are path-
connected with fixed base points. If {xi} is a set of generators of π1(X) one
can attach a wedge

∧
i Si of circles to K and extend f in a natural way to a
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map g : K ∪ {
∧

i Si} −→ X that gives a π1–epimorphism. If f gives a π1–
epimorphism from the outset an {yi} is a set in π1(K) whose normal closure
is the kernel of f∗ : π1(K) −→ π1(X), then one can attach one 2–cell to K
for each yi and extend f to a 1–equivalence K ∪ {2 − cells} −→ X . Next
suppose f : K −→ X is (n − 1)–connected, n ! 2, and f is a 1–equivalence

(in case n = 2). If {zi} is a set of generators of Hn(M̃(f), K̃) ∼= πn(M̃(f), K̃) ∼=
πn(M(f),K) as a π1(X)–module, then up to homotopy there is a natural way
to attach one n–cell to K for each zi and extend f to an n-connected map
K ∪ {n − cells} −→ X (see Wall [2, p. 59]). Of course we always assume that
the attaching maps are cellular so that K ∪{n− cells} is a complex. Also, if X
is a complex and f is cellular we can assume the extension of f to the enlarged
complex is cellular. (See the cellular approximation theorem of Whitehead [11].)

Here is a lemma we will frequently use.

Lemma 6.2 Suppose X is a connected CW complex and f : K −→ X is a
map of a finite complex to X that is a 1–equivalence. If H∗(M̃(f), K̃) = P is
a f.g. projective π1(X)–module isolated in one dimension m, then X ∈ D and
σ(X) = (−1)m[P ].

Proof Clearly it is enough to consider the case where K and X are connected.
The argument for Theorem E of [2, p. 63] shows that X is homotopy equivalent
to K with infinitely many cells of dimension m and m + 1 attached. Hence X
has the type of a complex of dimension max(dimK,m + 1).

Choose finitely many generators xi, . . . , xr for Hm(M̃ (f), K̃). Perform the
corresponding surgery, attaching r m–cells to K and extending f to a m–
connected map

f ′ : K ′ = K ∪ {m− cells} −→ X.

Up to homotopy we may assume that K ⊂ K ′ ⊂ X . Then the homology
sequence of K̃ ⊂ K̃ ′ ⊂ X̃ shows that Hm+1(M̃(f ′), K̃ ′) = Q where P⊕Q = Λn ,

Λ = Z[π1(X)], and that Hi(M̃ (f ′), K̃ ′) = 0, i %= m + 1. Notice that Q has
class −[P ].

After finitely many such steps we get a finite complex L of dimension n =
max(dim K,m + 1) and a n–connected map

g : Ln −→ X

such that H∗(M̃(g), L̃) is f.g. projective isolated in dimension n + 1 and has
class (−1)n+1−m[P ]. According to [2, Lemma 3.1] g has a homotopy right
inverse. Thus X ∈ D and

σ(X) = (−1)n+1(−1)n+1−m[P ] = (−1)m[P ].
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The following are established by Wall in [2].

Lemma 6.3 [2, Theorems E and F] Each X ∈ D is homotopy equivalent to a
finite dimensional complex.

Lemma 6.4 [2, Lemma 2.1 and Theorem E] (c.f. Proposition 5.1) If X is
homotopy equivalent to an m–complex and f : Ln−1 −→ X , n ! 3, n ! m, is
a (n− 1)–connected map of an (n− 1)–complex to X , then H∗(M̃(f), L̃) is a
projective π1(X)–module isolated in dimension n.

Sum Theorem 6.5 Suppose that a connected CW complex X is a union of
two connected subcomplexes X1 and X2 . If X , X1 , X2 , and X0 = X1 ∩X2

are in D , then

σ(X) = j1∗σ(X1) + j2∗σ(X2)− j0∗σ(X0)

where jk∗ is induced by Xk ↪→ X , k = 0, 1, 2.

Complement 6.6 (a) X0,X1,X2 ∈ D implies X ∈ D .

(b) X0,X ∈ D implies X1,X2 ∈ D provided π1(Xi) −→ π1(X) has a left
inverse, i = 1, 2.

Remark 1 Notice that X0 is not in general connected. Written out in full, the
last term of the sum formula is

j0∗σ(X) = j(1)
0∗ σ(Y1) + · · · + j(s)

0∗ σ(Ys)

where Y1, . . . , Ys are the components of X0 . We have assumed that X , X1 ,
and X2 are connected. Notice that Complement 6.6 part (b) makes sense only
when X , X1 , and X2 are connected. But the assumption is unnecessary for
Theorem 6.5 and Complement 6.6 (a). In fact by repeatedly applying the given
versions one easily deduces the more general versions.

Remark 2 In the Complement, part (b), some restriction on fundamental
groups is certainly necessary.

For a first example let X1 be the complement of an infinite string in R3 that
has an infinite sequence of knots tied in it. Let X2 be a 2–disk cutting the
string. Then X0 = X1 ∩ X2

∼= S1 , and X = X1 ∪ X2 is contractible since
π1(X) = 1. Thus X0 and X are in D . However X1 /∈ D because π1(X1) is not
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finitely generated. To see this observe that π1(X1) is an infinite free product
with amalgamation over Z

· · · ∗Z G−1 ∗Z G0 ∗Z G1 ∗Z G2 ∗Z · · ·

(Z corresponds to a small loop around the string and Gi is the group of the i–
th knot.) Thus π1(X1) has an infinite ascending sequence H1 # H2 # H3 # . . .
of subgroups. And this clearly shows that π1(X1) is not finitely generated.

For examples where the fundamental groups are all finitely presented see the
contractible manifolds constructed in §8.

Question It is enough to assume in Complement 6.6 part (b), that π1(Xi) −→
π1(X) is (1− 1), for i = 1, 2?

Proof of Theorem 6.5 To keep notation simple we assume for the proof that
X0 is connected. At the end of the proof we point out the changes necessary
when X0 is not connected.

By Lemma 6.3 we can suppose that X0,X1,X2,X are all equivalent to com-
plexes of dimension " n, n ! 3. Using the surgery process with Lemma 3.8
and Lemma 4.7 we can find a (n− 1)–connected cellular map f0 : K0 −→ X0 .
Surgering the composed map K0 −→ X0 ↪→ Xi for i = 1, 2, we get finite
(n− 1)–complexes K1 , K2 with K1 ∩K2 = K0 and (n− 1)–connected cellular
maps f1 : K1 −→ X1 , f2 : K2 −→ X2 that coincide with f0 on K0 . Together
they give a (n− 1)–connected map f : K = K1 ∪K2 −→ X = X1 ∪X2 . For f
gives a π1–isomorphism by Van Kampen’s theorem; and f is (n−1)–connected
according to the homology of the following short exact sequence.

0 −→ C∗(M(f0),K0)
φ
−→ C∗(M(f1),K1)⊕C∗(M (f2),K2)

ψ
−→ C∗(M̃ (f), K̃) −→ 0

Here S denotes p−1(S), p : M̃(f) −→ M(f) being the universal cover of the
mapping cylinder. Also φ(c) = (c, c) and ψ(c1, c2) = c1 − c2 . To be specific let
the chain complexes be for cellular theory. Each is a free π1(X)–complex.

Let us take a closer look at the above exact sequence. For brevity we write it:

0 −→ C(0) −→ C(1)⊕ C(2) −→ C̃ −→ 0. (3)

We will establish below that

For k = 0, 1, 2, HiC(k) = 0, i %= n, and HnC(k) is f.g. projective of class (−1)njk∗σ(Xk).
(4)

From this the sum formula follows easily. Since we assumed X is equivalent to
a complex of dimension " n, Lemmas Lemma 6.4, Lemma 4.7, Lemma 6.2 tell
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us that Hi(C̃) = Hi(M̃(f), K̃) = 0 is i %= n, and Hn(C̃) is f.g. projective of
class (−1)nσ(X). Thus the homology sequence of (3) is

0 −→ HnC(0) −→ HnC(1) ⊕HnC(2) −→ HnC̃ −→ 0

and splits giving the desired formula.

To prove (3) consider:

Lemma 6.7 C(k) = Z[π1(X)] ⊗π1(Xk) C̃(k), k = 0, 1, 2, where C̃(k) =

C∗(M̃ (fk), K̃k), and for the tensor product Z[π1(X)] has the right π1(Xk)–
module structure given by π1(Xk) −→ π1(X).

Now recall that H∗(C̃(k)) is f.g. projective of class (−1)nσ(Xk) and concen-
trated in dimension n. Then Lemma 6.7 shows that Hi(C(k)) = 0, i %= n, and
Hn(C(k)) = Z[π1(X)] ⊗π1(Xk) Hn(C̃(k)), which is f.g. projective over π1(X)
of class (−1)njk∗σ(Xk). (Use the universal coefficient theorem [42, p. 113] or
argue directly.) This establishes (3) and the Sum Theorem modulo a proof of
Lemma 6.7.

Proof of Lemma 6.7 Fix k as 0, 1, 2. The map jk : π1(Xk) −→ π1(X)
factors through Im(jk) = G. Then

Z[π1(X)]⊗π1(Xk) C̃(k) = Z[π1(X)] ⊗G G⊗π1(Xk) C̃(k).

Step 1. Let (M̂ (fk), X̂k) be the component of (M(fk),Xk) containing the
base point. Apparently it is the G–fold regular covering corresponding to
π1(Xk) −→ G. Then Ĉ(k) = C∗(M̂ (fk), X̂k) is a free G–module with one
generator for each cell e of M(fk) outside Xk . Choosing one covering cell ê for

each, we get a preferred basis for Ĉ(k). Now the universal covering (M̃(fk), X̃k)

is naturally a cover of (M̂ (fk), X̂k). So in choosing a free π1(Xk)–basis for C̃(k)
we can choose the cell ẽ over e to lie above ê. Suppose the boundary formula
for C̃(k) reads ∂ẽn

i =
∑

j rij ẽ
n−1
j where rij ∈ Z[π1(Xk)]. Then one can verify

that the boundary formula for Ĉ(k) reads ∂ên
i =

∑
j θ(rij)e

n−1
j where θ is the

map of Z[π1(Xk)] onto Z[G]. By inspecting the definitions we see that this
means Ĉ(k) = G⊗π1(Xk) C̃(k).

Step 2. We claim C(k) = Z[π1(X)] ⊗G Ĉ(k).
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C(k) is a free π1(X)–module and we may assume that the distinguished cell

ẽ over any cell e in M(fk) coincides with ê in M̂ (fk) ⊂ M̃(fk). Then if the
boundary formula for Ĉ(k) reads

∂ên
i =

∑

j

sij ê
n−1
j , sij ∈ Z[G]

the boundary formula for C(k) is exactly the same except that sij is to be re-
garded as an element of the larger ring Z[π1(X)]. Going back to the definitions
again we see this verifies our claim. This completes the proof of Lemma 6.7.

Remark On the general case of Theorem 6.5 where X0 is not connected Let
X0 have components Y1, . . . , Ys . We pick base points pi ∈ Yi , i = 1, . . . , s
and let p1 be the common basepoint for X1 , X2 , and X . Choose a path γi

from pi to p1 to define homomorphisms j(i)
0 : π1(Yi) −→ π1(X), i = 1, . . . , s.

(By Lemma 6.1 the homomorphism j(i)
0∗ : K̃0(π1(Yi)) −→ K̃0(π1(X)) does not

depend on the choice of γi .) Now consider again the proof of Theorem 6.5.
Everything said up to Lemma 6.7 remains valid. Notice that

C(0) = C∗(M (f0),K0) =
s⊕

i=1

C∗(M (gi), Li)

where Li is the component of K0 corresponding to the component Yi of X0

under f0 , and gi : Li −→ Yi is the map given by f0 . For short we write this
C(0) = ⊕s

i=1C(0, i). For k = 0, the assertion of Lemma 6.7 should be changed
to

C(0, i) = Z[π1(X)] ⊗π1(Yi) C̃(0, i), i = 1, . . . , s (5)

where C̃(0, i) = C∗(M̃ (gi), L̃i) and for the i–th tensor product, Z[π1(X)] has
the right π1(Yi)–action given by the map π1(Yi) −→ π1(X). Granting this, an
obvious adjustment of the original argument will establish (4). The argument
given for Lemma 6.7 establishes (5) with slight change. Here is the beginning.
We fix i, 0 " i " s, and let H be the image of π1(Yi) −→ π1(X). Then

Z[π1(X)]⊗π1(Yi) C̃(0, i) = Z[π1(X)] ⊗H H ⊗π1(Yi) C̃(0, i).

Step 1. Let (M̂ (gi), Ŷi) be the component of (M(gi), Y i) containing the lift
p̂i in M(f) of pi by the path γ−1

i from p1 to pi . Apparently it is the H –

fold regular covering corresponding to π1(Yi)
onto
−→ H . The rest of Step 1 and

Step 2 give no new difficulties. They prove respectively that C(M̂(gi), Ŷi) =

H ⊗π1(Yi) C̃(0, i) and C(0, i) = Z[π1(X)] ⊗H C(M̂(gi), Ŷi), and thus establish
(5). This completes the exposition of the Sum Theorem 6.5.
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Proof of Complement 6.6 part (a) We must show X0,X1,X2 ∈ D implies
X ∈ D . The proof is based on:

Lemma 6.8 Suppose X0 has the type of a complex of dimension " n − 1,
n ! 3; and X1,X2 have the type of a complex of dimension " n. Then X has
the homotopy type of a complex of dimension " n.

Proof Let K0 be a complex of dimension " n−1 so that there is a homotopy
equivalence f0 : K0 −→ X0 . Surgering f0 we can enlarge K0 and extend f0

to an (n− 1)–connected map of a (n− 1)–complex F1 : K1 −→ X1 . Similarly

form f2 : K2 −→ X2 . According to Lemma 6.3 the groups Hn(M̃(fi), K̃i),
i = 1, 2, are projective π1(Xi)–modules. Then surgering f1, f2 , we can add
(n−1)–cells and n–cells to K1 , K2 and extend f1 , f2 to homotopy equivalences
g1 : Ln

1 −→ X1 , g2 : Ln
2 −→ X2 . (See the proof of Theorem E on p. 63 of Wall

[2]). Since L1 ∩ L2 = K0 and g1, g2 coincide with f0 on K0 , we have a map
g : L = L1 ∪L2 −→ X = X1 ∪X2 which is apparently a homotopy equivalence
of the n–complex L with X .

For the proof of Complement 6.6 part (a), we simply look back at the proof of
the Sum Theorem and omit the assumption that X ∈ D . By the above Lemma
we can still assume X0,X1,X2,X are equivalent to complexes of dimension
" n, (n ! 3). Lemma 6.4 says that H∗(C̃) is projective and isolated in
dimension n. The exact homology sequence shows that Hn(C̃) is f.g. Then
Lemma 6.2 says X ∈ D .

Proof of Complement 6.6 part (b) We must show that X0,X ∈ D implies
X1,X2 ∈ D provided π1(Xj) is a retract of π1(X), j = 1, 2. Let X0 have
components Y1, . . . , Ys and use the notations of this section.

Since π1(X) is finitely presented so are π1(X1), π1(X2) by Lemma 3.8. This
shows that the following proposition Px holds with x = 1.

(Px) : There exists a finite complex Kx (or K2 is x = 1) that is a union
of subcomplexes K1 , K2 with intersection K0 , and a map F : K −→ X so
that, restricted to Kk , f gives a map fk : Kk −→ Xk , k = 0, 1, 2, which is
x–connected and a 1–equivalence if x = 1.

Suppose for induction that Pn−1 holds, n ! 2, and consider the exact sequence

0 −→ C∗(M(f0),K0) −→ C∗(M (f1),K1)⊕C∗(M (f2),K2) −→ C∗(M̃(f), K̃) −→ 0

Geometry & Topology Monographs, Volume X (20XX)



46 Laurence C. Siebenmann

where S = p−1(S), p : M̃ (f) −→ M(f) being the universal cover. For short
we write

0 −→ C(0)
φ
−→ C(1)⊕ C(2)

ψ
−→ C̃ −→ 0.

Part of the associated homology sequence is

HnC(0)
φ∗−→ HnC(1)⊕HnC(2)

ψ∗−→ HnC̃ −→ Hn−1C(0) = 0. (6)

Now Hn(C̃) is f.g. over π1(X) by Lemma 4.7. Similarly, for each component Yi

of X0 , the corresponding summand Hn(C̃(0, i)) of Hn(C̃(0)) = Hn(M̃ (f0), K̃0)
is f.g. over π1(Yi). Since

C(0, i) = Z[π1(X)] ⊗π1(Yi) C̃(0, i) (this is (5))

and since C̃(0, i) is acyclic below dimension n, the right exactness of ⊗ shows
that Hn(C(0, i)) = Z[π1(X)]⊗π1(Yi)Hn(C̃(0, i)). Hence HnC(0) = ⊕s

i=1Hn(C(0, i))

is finitely generated over π1(X). Thus (6) shows that Hn(C(j)) is f.g. over
π1(X), j = 1, 2. (This uses the fact that ψ∗ is onto!)

We would like to conclude that Hn(C̃(j)) is f.g., j = 1, 2. In fact we have

Hn(C̃(j)) = Z[π1(Xj)]⊗π1(X) Hn(C(j)) (7)

where a retraction π1(X) −→ π1(Xj) makes Z[π1(Xj)] a π1(X)–module. For

Hn(C(j)) = Z[π1(X)]⊗π1(Xj)Hn(C̃(j)) and Z[π1(Xj)]⊗π1(X)Z[π1(X)] = Z[π1(Xj)].

So (7) is verified by substituting for Hn(C(j)).

Since Hn(C̃(k)) are f.g., k = 0, 1, 2, we can surger f to establish Pn . This
completes the induction. The proof that X1,X2 ∈ D is completed as follows.
We can suppose that X0 and X have the homotopy type of an n–dimensional
complex (Lemma 6.3), and that f : K −→ X is a (n− 1)–connected map as in
Pn−1 . Then in the exact sequence (6), H∗(C(0) and H∗(C̃) are f.g. projective
and concentrated in dimension n for j = 1, 2. Then by the argument of the
previous paragraph H∗(C̃(j)) is f.g. projective over π1(Xj) are concentrated
in dimension n, j = 1, 2. By Lemma 6.2 Xj ∈ D , j = 1, 2. This completes the
proof of the Complement to Complement 6.6.

In passing we point out the analogous sum theorem for Whitehead torsion.

Theorem 6.9 Let X , X ′ be two finite connected complexes each the union of
two connected subcomplexes X = X1 ∪X2 , X ′ = X ′

1 ∪X ′
2 . Let f : X −→ X ′

be a map that restricts to give maps f1 : X1 −→ X ′
1 , f2 : X2 −→ X ′

2 and
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so f0 : X0 = X1 ∩ X2 −→ X ′
0 = X ′

1 ∩ X ′
2 . If f0, f1, f2, f are all homotopy

equivalences then

τ(f) = j1∗τ(f1) + j2∗τ(f2)−
s∑

i=1

j(i)
0∗ (f (i)

0 )

where jk∗ is induced by Xk ↪→ X , k = 1, 2, X(1)
0 , . . . ,X(s)

0 are the components

of X0 and j(i)
0∗ is induced by X(i)

0 ↪→ X , i = 1, . . . , s.

Complement 6.10 If f0, f1, f2 are homotopy equivalences so is f . If f0 and
f are homotopy equivalences so are f1 and f2 provided that π1(Xi) −→ π1(X)
has a left inverse, i = 1, 2.

We leave the proof on one side. It is similar to and rather easier than for Wall’s
obstruction. A special case is proved by Kwun and Szczarba [19].

With the Sum Theorem 6.5 established we are in a position to relate our in-
variant for tame ends to Wall’s obstruction. Lemma 6.2 and Proposition 5.6
together show that if ε is a tame end of dimension ! 5 and V is a (n − 3)–
neighborhood of ε, then up to sign (which we never actually specified), σ(ε) cor-
responds to σ(V ) under the natural identification of K̃0(π1(ε)) with K̃0(π1(V )).
Let us agree that σ(ε) is to be the class (−1)n−2[Hn−2(Ṽ ,Bd Ṽ )] ∈ K̃0(π1(ε))
(compare Proposition 5.6). Then signs correspond.

Here is a definition of σ(ε) in terms of Wall’s obstruction. ε is a tame end
of dimension ! 5. Suppose V is a closed neighborhood of ε that is a smooth
submanifold with compact frontier and one end, so small that

π1(ε) −→ π1(V )

has a left inverse r .

Proposition 6.11 σ(ε) = r∗σ(V ).

Proof Take a (n−3)–neighborhood V ′ ⊂ IntV . Then V −IntV ′ is a compact
smooth manifold. So the Sum Theorem says σ(V ) = i∗σ(V ′) where i is the
map π1(V ′) = π1(ε) −→ π1(V ). Since r∗i∗σ(V ′) = σ(V ′) we get r∗σ(V ) =
σ(V ) = σ(ε).

A direct consequence of the Sum Theorem is that if W n n ! 5 is a smooth
manifold with Bd W compact that has finitely many ends ε1, . . . , εk , all tame,
then

σ(W ) = j1∗σ(ε1) + . . . + jk∗σ(εk)

Geometry & Topology Monographs, Volume X (20XX)



48 Laurence C. Siebenmann

where js : π1(εs) −→ π1(W ) is the natural map, s = 1, . . . , k . Notice that
σ(W ) may be zero while some of σ(ε1), . . . ,σ(εk) are nonzero. One can use
the constructions of §8 to give examples. On the other hand, if there is just
one end, ε1 , σ(W ) = j1∗σ(ε1); so if j1∗ is an isomorphism σ(W ) determines
σ(ε1). In this situation σ(ε1) is a topological invariant of W since σ(W ) and
j1∗ are. Theorem 6.12 below points out a large class of examples. In general
I am unable to decide whether the invariant of a tame end depends on the
smoothness structure as well as the topological structure (See §11).

Theorem 6.12 Suppose W is a smooth open manifold of dimension ! 5 that
is homeomorphic to X × R2 where X is an open topological manifold in D .
Then W has one end ε and ε is tame. Further j : π1(ε) −→ π1(W ) is an
isomorphism.

Proof Identify W with X × R2 and consider complements of sets K × D
where K ⊂ X is compact and D is a closed disk in R2 . The complement is a
connected smooth open neighborhood of ∞ that is the union of W × (Rn−D)
and (W −K)×R2 . Applying Van Kampen’s theorem one finds that π1((W −
K)×D) −→ π1(W ) is an isomorphism. We conclude that W has one end ε, π1

is stable at ε, and j : π1(ε) −→ π1(W ) is an isomorphism. Since W ∈ D π1(W )
is finitely presented (c.f. Lemma 3.8). Thus ε has small 1–neighborhoods by
Theorem 3.10. By Complement 6.6 part (b) each is in D . Hence ε is tame.

7 A Product Theorem for Wall’s Obstruction

The Product Theorem 7.2 takes the wonderfully simple form ρ(X1 × X2) =
ρ(X1)⊗ ρ(X2) if for path-connected X in D we define the composite invariant
ρ(X) = σ(X)⊕χ(X) in the Grothendieck group K0(π1(X)) ∼= K̃0(π1(X))⊕Z.
I introduce ρ for aesthetic reasons. We could get by with fewer words using σ
and K̃0 alone.

The Grothendieck group K0(G) of finitely generated (f.g) projective modules
over a group G may be defined as follows. Let P(G) be the abelian monoid of
isomorphism classes of f.g. projective G–modules with addition given by direct
sum. We write (P ′, P ) ∼ (Q′, Q) for elements of P(G) × P(G) if there exists
free R ∈ P(G) so that P ′+Q+R = P +Q′+R. This is an equivalence relation,
and P(G) × P(G)/ ∼ is the abelian group K0(G).

Let φ : P(G) −→ K0(G) has the following natural homomorphism given by
P −→ (0, P ). It is apparent that φ(P ) = φ(Q) if and only if P + F = Q + F
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for some f.g. free module F . For convenience we will write φ(P ) = P ; we will
even write P 0 for φ applied to the isomorphism class of a given f.g. projective
module P0 .

φ : P(G) −→ K0(G) has the following universal property. If f : P(G) −→ A is
any homomorphism there is a unique homomorphism g : K(G) −→ A so that
f = gφ. As an application suppose θ : G −→ H is any group homomorphism.
There is a unique induced homomorphism P(G) −→ P(H) (c.f. §6). By the
universal property of φ there is a unique homomorphism θ∗ that makes the
diagram on the next page commute. In this way K0 gives a covariant functor
from groups to abelian groups.

P(G) ""

φ

##

P(H)

φ

##
K0(G)

θ∗
"" K0(H)

The diagram

G
r ""

1
i

!!

shows that K0(G) ∼= ker(r∗)⊕K0(1). Now 1–modules are just abelian groups;
so K0(1) ∼= Z. Notice that r∗ : K0(G) −→ Z is induced by assigning to P ∈
P(G) the rank of P , i.e. the rank of Z ⊗G P as an abelian group (here Z
has the trivial action of G on the right). Next observe that by associating
to a class [P ] ∈ K̃0(G) the element P − FP ∈ ker(r∗), where FP is free on
p = rank(Z⊗GP ) generators, one gets a natural isomorphism K̃0(G) ∼= ker(r∗).
Thus we have

K0(G) ∼= K̃0(G) ⊕ Z

and for convenience we regard K̃0(G) and Z as subgroups.

The commutative diagram

G
θ ""

r

..)
))

))
))

) H

r
//**

**
**

**

1 1

shows that the map θ∗ : K0(G) −→ K0(H) induces a map θ∗ : K̃0(G) −→
K̃0(H); and the latter determines the former because the Z summand is mapped
by a natural isomorphism. The latter is of course the map described in §6.
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If G and H are two groups, a pairing

‘⊗′ : K0(G) ×K0(H) −→ K0(G×H)

is induced by tensoring projectives. (Recall that if A ⊗ B is a tensor product
of abelian groups and A has a left G–action while B has a left H –action, then
A⊗B inherits a left G×H –action.) This pairing carries ker(r∗)×ker(r∗) into
ker(r∗) and so a pairing

‘·′ : K̃0(G)× K̃0(H) −→ K̃0(G×H)

is induced. Thus if P ∈ P(G), Q ∈ P(H) the class [P ] · [Q] ∈ K̃0(G ×H) is
(P −F p)⊗(Q−F q) = P ⊗Q−F p⊗Q−P ⊗F q +F p⊗F q , where Fp is free over
G on p = r∗(P ) generators and Fq is free over H on q = r∗(Q) generators.

Since an inner automorphism of G gives the identity map of P (c.f. Lemma 6.1)
and so of K0(G) (and K̃0(G)), it follows that the composition of functors
K0(π1) (or K̃0(π1)) determines a covariant functor from path-connected topo-
logical spaces to abelian groups. More precisely we must fix some base point
for each path-connected space X to define K0(π1(X)) (or K̃0(π1(X))), but a
different choice of base points leads to a naturally equivalent functor. This is
the precise meaning of Lemma 6.1 for K̃0(π1).

Definition 7.1 If X ∈ D is path-connected, define

ρ(X) ∈ K0(π1(X)) ∼= K̃0(π1(X)) ⊕ Z

to be σ(X) ⊕ χ(X) where χ(X) =
∑

i(−1)i rank Hi(X) is the Euler charac-
teristic of X (it is well defined since X ∈ D).

If X is a space with path-components {Xi} we define K0(π1(X)) = ⊕iK0(π1(Xi)).
This extends K0(π1) to a functor on all topological spaces. Then if X ∈
D has path components Xi, . . . ,Xs we define ρ(X) = (ρ(X1), . . . , ρ(Xs)) in
K0(π1(X)) = K0(π1(X1))⊕ · · ·⊕K0(π1(Xs)).

Suppose X1 and X2 are path-connected. Then X1×X2 is path-connected and
π1(X1 ×X2) = π1(X1)× π1(X2). Hence we have a pairing

‘⊗′ : K0(π1(X1))×K0(π1(X2)) −→ K0(π1(X1 ×X2)).

This pairing extends naturally to the situation where X1 and X2 are not path-
connected.

Product Theorem 7.2 Let X1 , X2 , and X1 × X2 be connected CW com-
plexes. If X1 , X2 , and X1 ×X2 are in D , then

ρ(X1 ×X2) = ρ(X1)⊗ ρ(X2). (8)
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In terms of the obstruction σ this says

σ(X1 ×X2) = σ(X1) · σ(X2) + {χ(X2)j1∗σ(X1) + χ(X1)j2∗σ(X2)}. (9)

Complement 7.3 If X1 , X2 are any spaces,

X1,X2 ∈ D ⇔ X1 ×X2 ∈ D.

Remark We can immediately weaken the assumptions of Theorem 7.2 in two
ways:

(a) Since σ and ρ are invariants of homotopy type, it is enough to assume
that X1 , X2 , and (hence) X1 × X2 are path-connected spaces in D in
order to get (8) and (9).

(b) Further, if X1 , X2 are any spaces in D (8) continues to hold with the
extended pairing ⊗ (because of the way ⊗ is extended). But note that
(9) has to be revised since K0(π1(X)) %∼= K̃0(π1(X)) ⊕ Z when X is not
connected.

Remark The idea for the product formula comes from Kwun and Szczarba
[19] (January 1965) who proved a product formula for the Whitehead torsion
of f × 1X2 where f : X1 −→ X ′

1 is a homotopy equivalence of finite connected
complexes and X2 is any finite connected complex; namely

τ(f × 1X2) = χ(X2)j1∗τ(f) (10)

where j1∗ is induced by X1 ↪→ X1 ×X2 . This corresponds to the basic case of
(8) with σ(X2) = 0; namely

σ(X1 ×X2) = χ(X1)j1∗σ(X2). (11)

Steven Gersten [20] has independently derived (11). His proof is purely algebraic
so does not use the Sum Theorem. It was Professor Milnor who proposed the
correct general form of the product formula and the use of ρ. Already in 1964,
M.R. Mather had a (purely geometrical) proof that for X ∈ D , X × S1 is
homotopy equivalent to a finite complex.

Proof of Complement 7.3 Fortunately the proof of the Complement 7.3 is
trivial (unlike Complement 6.6). If Ki , i = 1, 2, are finite complexes and
ri : Ki −→ Xi are maps with left homotopy inverses si , i = 1, 2, r1× r2 : K1×
K2 −→ X1 ×X2 has left homotopy inverse s1 × s2 . This gives the implication
⇒. For the reverse implication note that X1 ×X2 ∈ D dominates Xi , which
implies X ∈ D , i = 1, 2.
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Proof of Theorem 7.2 The proof is based on the Sum Theorem 6.5 and
divides naturally into there steps. Since χ(X1 × X2) = χ(X2)χ(X2), it will
suffice to establish the second formula (9).

Case 1. X2 = Sn , n = 1, 2, 3, . . . .

Suppose inductively that (9) holds for X2 = Sk , 1 ≤ s < n. Let Sn = Dn
−∪Dn

+

be the usual decomposition of Sn into closed northern and southern hemi-
spheres with intersection Sn−1 . Then apply the sum theorem to the partition
X1 × Sn = X1 ×Dn

− ∪X1 ×Dn
+ .

Case 2. X2 = a finite complex.

Since X2 is connected, we can assume it has a single 0–cell. We assume induc-
tively that (9) has been verified for such X2 having < n cells. Consider X2

with exactly n cells. Then X2 = Y ∪f Dk , k ! 1, where f : Sk−1 −→ Y is an
attaching map and Y has n− 1 cells. Up to homotopy type we assume f is an
imbedding and Y ∩Dk is a (k− 1)–sphere. Now apply the sum theorem to the
partition X1 ×X2 = X1 × Y ∪ X1 ×Dk . The inductive assumption and (for
k ! 2) the case I) complete the induction.

Case 3. The general case.

We insert a Lemma needed for the proof.

Lemma 7.4 Suppose that (X,Y ) is a connected CW pair with X and Y in
D . Suppose that Y ↪→ X gives a π1–isomorphism and H∗(X̃, Ỹ ) is π1(X)–
projective and isolated in dimension n. Then

χ(X)− χ(Y ) = (−1)n rank
{

Z⊗π1(X) Hn(X̃, Ỹ )
}

.

Proof Since C∗(X,Y ) = Z⊗π1(X) C∗(X̃, Ỹ ), the universal coefficient theorem

shows that H∗(X,Y ) = Z ⊗π1(X) H∗(X̃, Ỹ ). The lemma now follows from the
exact sequence of (X,Y ).

[Proof of Case 3] Replacing X1,X2 by homotopy equivalent complexes we may
assume that X1,X2 have finite dimension " n say, and that there are finite (n−
1)–subcomplexes Ki ⊂ Xi , i = 1, 2, such that the inclusions give isomorphisms
of fundamental groups and H∗(X̃i, K̃i) are f.g. projective π1(Xi)–modules Pi

concentrated in dimension n. Let X = X1 ×X2 . See Figure 6.

Since the complex Y = X1×K2 ∪K1×X2 has dimension " 2n, there exists a
finite (2n− 1)-complex K and a map f : K −→ Y , giving a π1–isomorphism,
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K2

X2

K1

X1

1

Figure 6:

such that H∗(M̃ (f), K̃) is a f.g. projective π1(X)–module P concentrated in
dimension 2n. Replacing Y by M(f) we may assume that K ⊂ Y ⊂ X =
X1 ×X2 . Now the exact sequence of the triple K̃ ⊂ Ỹ ⊂ X̃ is

0 "" H2n(Ỹ , K̃) ""

∼=
##

H2n(X̃, K̃) "" H2n(X̃, Ỹ ) ""

∼=
##

0 "" . . .

P P1 ⊗ P2

Hence H∗(X̃, K̃) is P ⊕ (P1 ⊗ P2) concentrated in dimension 2n. But

σ(Y ) = χ(K2)j1∗σ(X1) + χ(K1)j2∗σ(X2)

by Case 2 and the Sum Theorem. Hence

σ(X) = [P ] + [P1 ⊗ P2] = [P1 ⊗ P2] + {χ(K2)j1∗σ(X1) + χ(K1)j2∗σ(X2)}.

As an equation in K0(π1(X)) = K̃0(π1(X))⊕ Z this says

σ(X) = {P 1 ⊗ P 2 − F 1 ⊗ F 2} + {σ(X1)⊗ χ(K2) + χ(K1)⊗ σ(X2)} (12)

where F1, F2 are free modules over π1(X1),π1(X2) of the same rank as P1, P2 .
Notice that the first bracket can be rewritten

(P 1 − F 1)⊗ (P 2 − F 2) + (P 1 − F 1)⊗ F 2 + F 1 ⊗ (P 2 − F 2).
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But according to Lemma 7.4, (−1)nF i = χ(Xi) − χ(Ki), i = 1, 2. Also
(−1)n(P i − F i) = (−1)n[Pi] = σ(Xi). Hence on substituting in (12) we get

σ(X) = (P 1 − F 1)⊗ (P 2 − F 2) + σ(X1)⊗ χ(X2) + χ(X1)⊗ σ(X2)

which is the formula (9). This completes the proof of Case 3 and hence of the
Product Theorem.

Here is an attractive corollary to the Product Theorem 7.2 and Complement 7.3.
Let Mn be a fixed closed smooth manifold with χ(M) = 0. (The circle is the
simplest example.) Let ε be an end of a smooth open manifold.

Theorem 7.5 Suppose dim(W ×M) ! 6. The end ε is tame if and only if
the end ε×M of W ×M has a collar.

Our definition of tameness (Definition 4.4) makes sense for any dimension. But
so far we have had no theorems that apply to a tame end of dimension 3 or 4.
(A tame end of dimension 2 always has a collar – c.f. Kerékjártó [26, p. 171].)
Now we know that the tameness conditions for such an end are equivalent, for
example, to ε× S3 having a collar.

It is perhaps worth pointing out now that the invariant σ can be written
for a tame end ε of any dimension. Since ε is isolated there exist arbitrary
small closed neighborhoods V of ε that are smooth submanifolds with com-
pact boundary and one end. Since π1 is stable at ε, we can find such a V so
small that π1(ε) −→ π1(V ) has a left inverse r .

Proposition 7.6 V ∈ D and r∗σ(V ) ∈ K̃0(π1(ε)) is an invariant of ε.

Definition 7.7 σ(ε) = r∗σ(V ).

Notice that, by Theorem 6.9, this agrees with our original definition of σ(ε) for
dimension ! 5.

Proof of Proposition 7.6 We begin by showing that V ∈ D . Since we do
not know that ε has arbitrarily small 1–neighborhoods we employ an interesting
device. Consider the end ε×M where M is a connected smooth closed manifold
so that dim(ε×M) ! 5. (S5 should always do.) By Complement 7.3 we know
that V ∈ D if and only if V×M ∈ D . Also ε×M is a tame end of dimension ! 5
and so has arbitrarily small 1–neighborhoods. Notice that r′ = r × id(π1(M))
gives a right inverse for π1(ε ×M) −→ π1(V ×M). Applying Proposition 4.3
we see that V ×M ∈ D . So V ∈ D by Complement 7.3.
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To prove that r∗σ(V ) is independent of the choice of V and of r use Theorem 6.5
and the existence of neighborhoods V ′ ⊂ V with the properties of V and so
small that j : π1(V ′) −→ π1(V ) has image π1ε ⊂ π1(V ) (– whence r · j is
independent of the choice of r).

Remark In §8 we construct tame ends of dimension ! 5 with prescribed
invariant. I do not know any tame end ε of dimension 3 or 4 with σ(ε) %= 0.
Such an end would be very surprising in dimension 3.

As an exercise with the Product Theorem one can calculate the invariant for
the end of the product of two open manifolds. Notice that if ε is a tame end
of a smooth manifold W n , n ! 5, there is a natural way to define

ρ(ε) = ρ(ε)⊕ χ(ε) ∈ K̃0(π1(ε)) ⊕ Z = K0(π1(ε)).

In fact let χ(ε) be χ(Bd V ) where V is any 0–neighborhood of ε. Notice that
χ(Bd V ) = 0 for n even and that χ(Bd V ) is independent of V for n odd. Also
observe that as n ! 5, there are arbitrarily small 1–neighborhoods V of ε so
that χ(V,Bd V ) = 0, i.e. χ(ε) = χ(Bd V ) = χ(V ).

Theorem 7.8 Suppose W and W ′ are smooth connected open manifolds of
dimension ! 5 with tame ends ε and ε′ respectively. Then W × W ′ has a
single, tame end ε and

ρ(ε) = i1∗{ρ(ε) ⊗ ρ(W ′)} + i2∗{ρ(W )⊗ ρ(ε′)} = i0∗{ρ(ε)⊗ ρ(ε′)}

for naturally defined homomorphisms i0∗, i1∗, i2∗ .

Proof Consider the complement of U×U ′ in W×W ′ where V = W−U, V ′ =
W ′ − U ′ are 1–neighborhoods of ε and ε′ with χ(ε) = χ(V ),χ(ε′) = χ(V ′).
Then apply the Sum Theorem and Product Theorem. (The sum formula looks
the same for σ and ρ.) The reader can check the details.

Remark If W has several ends, all tame ε = {ε1, . . . , εr}, and W ′ has tame
ends ε′ = {ε′1, . . . , ε

′
s} then W×W ′ still has just one tame end. And if we define

ρ(ε) = (ρ(ε1), . . . , ρ(εr)) in K0(π1(ε1)) ⊕ · · · ⊕K0(π1(εr)) and ρ(ε′) similarly,
the above formula remains valid. Also, with the help of Definition 7.7 one can
eliminate the assumption that dimension ! 5.
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8 The Construction of Strange Ends

The first task is to produce tame ends ε of dimension ! 5 with σ(ε) %= 0. Such
ends deserve the epithet strange because ε× S1 has a collar while ε itself does
not (Theorem 7.5). At the end of this section we construct the contractible
manifolds promised in §4.

We begin with a crude but simple construction for strange ends. Let a closed
smooth manifold Mn−1 , n ! 6, be given together with a f.g. projective π1(M)–
module P that is not stably free. Such a P exists if π1(M) = Z23 since
K̃0(Z23) %= 0. (For a resume of what is known about K̃0(G) for various G
see Wall [2, p. 67].) Build up a smooth manifold W n with Bd W = M by
attaching infinitely many (trivial) 2–handles and (nontrivial) 3–handles so that

the corresponding free π1(M)–complex C∗ for H∗(W̃ , M̃) has the form

. . . "" 0 "" C3
∂ ""

∼=
##

C2
""

∼=
##

0 "" . . .

F F

where F is a free π1(M)–module on infinitely many generators, and ∂ is onto
with kernel P . For example, if P ⊕ Q is f.g. and free, ∂ can be the natural
projection F ∼= P ⊕ Q ⊕ P ⊕ Q ⊕ · · · −→ 0 ⊕ Q ⊕ P ⊕ Q ⊕ · · · ∼= F . The
analogous construction for h–cobordisms of dimension ! 6 with prescribed
torsion is explained in Milnor [17, § 9]. The problem of suitably attaching
handles is the same here. Of course, we must add infinitely many handles.
But we can add them one at a time thickening at each stage. Before adding
a 3–handle we add all the 2–handles involved in its boundary. W is then an
infinite union of finite handlebodies on M . Proposition 8.2 below can be used
to show rigorously that H∗(W̃ , M̃ ) = H∗(C).

We proceed to give a more delicate construction for strange ends which has
three attractive features:

(a) It proves that strange ends exist in dimension 5.

(b) The manifold W itself can provide a (n − 4)–neighborhood of ε.

(c) W is an open subset of M × [0, 1).

The construction is best motivated by an analogous construction for h–cobordisms.
Given Mn−1 , n ! 6, and a d × d matrix T over Z[π1(X)] we are to find an
h–cobordism c = (V ;M,M ′) with torsion τ ∈ Wh(π1(M)) represented by T .
Take the product cobordism M × [0, 1] and insert 2d complementary (= aux-
iliary) pairs of critical points of index 2 and 3 in the projection to [0, 1] (c.f.
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[4, p. 101]). If the resulting Morse function f is suitably equipped, in the
corresponding complex

· · · −→ 0 −→ C3
∂
−→ C2 −→ 0 −→ 0

∂ is given by the 2d × 2d identity matrix I . By [17, p. 2] elementary row of
column operations serve to change I to ( T 0

0 T−1 ). Each elementary operation
can be realized by a change of f (c.f. [3, p. 17]). After using Whitney’s device
as in §4 we can lower the level of the first d critical points of index 3 and
raise the level of the last d critical points of index 2 so that M × [0, 1] is split
as the product of two h–cobordisms c, c′ with torsions τ(c) = [T ] = τ and
τ(c′) = [T−1] = −τ . The corresponding construction for strange ends succeeds
even in dimension 5 because Whitney’s device is not used.

Before giving this delicate construction we introduce some necessary geometry
and algebra.

Let f : W −→ [0,∞) be a proper Morse function with gradient-like vector field
ξ , on a smooth manifold W having Bd W = f−1(0). Suppose that a base
point ∗ ∈ Bd W has been chosen together with base paths from ∗ to each
critical point. At each critical point p we fix an orientation for the index(p)–
dimensional subspace of the tangent space TWp to W at p that is defined by
trajectories of ξ converging to p from below. Now f is called an equipped proper
Morse function. The equipment consists of ξ , ∗, base paths, and orientations.

When f has infinitely many critical points we cannot hope to make f nice in
the sense that the level of a critical point is an increasing function of its index.
But we can still put conditions on f which guarantee that it determines a free
π1(W )–complex for H∗(W̃ ,Bd M̃).

Definition 8.1 We say that f is nicely equipped (or that ξ is nice) if the
following two conditions on ξ hold:

(1) If p and q are critical points and f(p) < f(q), but index(p) > index(q),
then no ξ–trajectory goes from p to q . This guarantees that if for any
non-critical level a, f restricted to f−1[0, a] can be adjusted without
changing ξ to a nice Morse function g (see [4, § 4.1]).

(2) Any such g : f−1[0, a] −→ [0, a] has the property that for every index λ
and for every level between index λ and index λ + 1, the left hand λ–
spheres in g−1(b) intersect the right hand (n−λ−1)–spheres transversely,
in a finite number of points. In fact (2) is a property of ξ alone, for it
is equivalent to the following property (2′ ). Note that for every (open)
trajectory T from a critical point p of index λ to a critical point q
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of index λ+ 1 and for every x ∈ T , the trajectories from p determine a
(n−λ)–subspace V n−λ

x (p) of the tangent space TWx and the trajectories
to q determine a (λ+ 1)–subspace V λ+1

x (q) of TWx .

(2′ ) For every such T and for one (and hence all) points x in T , V n−λ
x (p) ∩

V λ+1
x (q) is the line in TWx determined by T .

Remark Any gradient-like vector field for f can be approximated by a nice
one (c.f. Milnor [4, § 4.4, § 5.2]). We will not use this fact.

We say that a Morse function f on a compact triad (W ;V, V ′) is nicely equipped
if it is nicely equipped on W − V ′ in the sense of Definition 8.1. This simply
means that f can be made nice without changing the gradient-like vector field
and that when this is done left hand λ–spheres meet right hand (n − λ + 1)–
spheres transversely in any level between index λ and λ+ 1.

Suppose that f : W
onto
−→ [0,∞) is a nicely equipped proper Morse function

on the noncompact smooth manifold with Bd W = f−1(0). We explain now

how f gives a free π1(W )–complex for H∗(W̃ ,Bd W̃ ). Let a be a noncritical
level and adjust f to a nice Morse function f ′ on f−1[0, a] without chang-
ing ξ . From the discussion in §4 one can see that the equipment for f com-
pletely determines a based, free π1(W )–complex C∗(a) for f ′ with homology

H∗(p−1f−1[0, a],Bd W̃ ), where p : W̃ −→ W is the universal cover. Then it
is clear that C∗(b) is independent of the particular choice of f ′ , and that if
a < b is another non-critical level, there is a natural inclusion C∗(a) ↪→ C∗(b)
of based π1(W )–complexes. Let 0 = a0 < a1 < a2 < a3 < . . . be an unbounded
sequence of non-critical levels of f . Then C∗ = ∪iC∗(ai) is defined, and from
its structure we see that it depends only on the equipment of f , i.e. it the same
for any other proper Morse function with the same equipment. There is one
generator for each critical point, and the boundary operator is given in terms
of the geometrically defined characteristic elements and intersection numbers
as in §4.

Proposition 8.2 In the above situation H∗(C∗) = H∗(W̃ ,Bd W̃ ).

Proof There is no problem when f has only finitely many critical points.
For if a is very large C∗ = C∗(a) and H∗(C∗(a)) ∼= H∗(p−1f−1[0, a],Bd W̃ ) ∼=
H∗(W̃ ,Bd W̃ ) where the last isomorphism holds because W is f−1[0, a] with an
open collar attached. Thus we can assume from this point that f has infinitely
many critical points.

Geometry & Topology Monographs, Volume X (20XX)



The obstruction to finding a boundary for an open manifold 59

We can adjust f without changing ξ so that at most one critical point lies at
a given level; so we may assume that for the sequence a0 < a1 < . . . above
f−1[ai, ai+1] always contains exactly one critical point. Also, arrange that
a1 = n + 1.

Notice that H∗(C∗) ∼= H∗(∪nC(an)) ∼= lim−→n
H∗(C(an)). We will show that the

limit on the right is isomorphic to H∗(W̃ ,Bd W̃ ).

We define a sequence f0, f1, f2, . . . of proper Morse function each with the same
equipment as f . Let f0 = f . Suppose inductively that we have defined a Morse
function fn having the same equipment of f so that fn is nice on f−1[0, an]
and coincides with f elsewhere. Suppose also that the level of fn for index

λ in f−1[0, an] is λ +
1

2
. Define fn+1 by adjusting fn on f−1[0, an] without

changing ξ , so as to lower the level of the critical point p in f−1[an, an+1] to

the level index(p) +
1

2
. (See Milnor [4, § 4.1].) By induction the sequence

f0, f1, f2, . . . is now well defined.

There is a filtration of f−1[0, an] determined by fn : Bd W = X(n)
−1 ⊂ X(n)

0 ⊂

· · · ⊂ X(n)
w , w = dim W , where X(n)

λ = f−1
n [0,λ + 1]. The chain complex for

the ‘lifted’ filtration p−1X(n)
−1 ⊂ p−1X(n)

0 ⊂ · · · ⊂ p−1Xn
w of p−1f−1[0, an] ⊂ W̃

is naturally isomorphic with the complex C∗(an). And the homology for the

filtration complex is H∗(p−1f−1[0, an],Bd W̃ ). Now we notice that the inclu-
sion j : f−1[0, an] ↪→ f−1[0, an+1] respects filtrations. In fact, if the new critical

point has index λ, X(n+1)
i = X(n)

i for i < λ, and for i ! λ, X(n+1)
i ⊃ X(n)

i is

up to homotopy X(n)
i with a λ–handle attached. One can verify in a straight-

forward way that the induced map j# : C∗(an) −→ C∗(an+1) of filtration com-
plexes is just the natural inclusion C(an) ↪→ C∗(an+1) noted above. Thus the
commutativity of

H∗(C(an))

∼=
##

j#∗ "" H∗(C(an+1))

∼=
##

H∗(p−1f−1[0, an],Bd W̃ )
j∗ "" H∗(p−1f−1[0, an+1],Bd W̃ )

where the vertical arrows are the natural isomorphisms) tells us that

lim−→H∗(C(an)) = lim−→H∗(p
−1f−1[0, an],Bd W̃ ) = H∗(W̃ ,Bd W̃ )

as required.
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Next come some algebraic preparations. Let Λ be a group ring Z[G] and con-
sider infinite ‘elementary’ matrices E = E(r; i, j) in GL(Λ,∞) = lim−→n

GL(Λ, n)
that have 1’s on the diagonal, the element r ∈ Γ in the i, j position (i %= j )
and zeros elsewhere. Suppose F is a free Λ–module with a given basis α =
{α1,α2, . . .} indexed on the natural numbers < N where N may be finite or
∞. Then provided i, j are less than N , E(r; i, j) determines the elementary
operation on α that adds to the j–th basis element of α, r times the i–th basis
element – i.e. E(r; i, j)α = {α1,α2, . . .αj−1,αj + rαi,αj+1, . . .}. In this way
elementary matrices are identified with elementary operations.

Suppose now that F is an infinitely generated free Λ–module and let α =
{a1,α2, . . .} and β = {β1,β2, . . .} be two bases. It is convenient to write the
submodule of F generated by the elements γ1, γ2, . . . as (γ1, γ2, . . .) – with
round brackets.

Lemma 8.3 There exists an infinite sequence of elementary operations E1, E2, E3, . . .
and a sequence of integers 0 = N0 < N1 < N2 < . . . so that for each integer k ,
the following statement holds:

(*) n ! Nk implies that EnEn−1 · · ·E1α coincides with β for at least the
first k elements.

Remark 1 (*) implies that for n ! Nk , En = E(r; i, j) with j > k (or r = 0).
But i < k is certainly allowable.

Proof Suppose inductively that N0, N1, . . . , Nx−1 and E1, E2, . . . , ENx−1 have
been defined so that (∗) holds for k " x − 1. (The induction begins with
N0 = 0 and no E ’s.) Then ENx−1 · · ·E1α = {β1, . . . ,βx−1, γx, γx+1, . . .} for
some γx, γx+1, . . . . Set γi = βi , i = 1, . . . , x− 1.

Suppose that βx is expressed in terms of the basis ENx−1 · · ·E1α = γ by βx =
b1γ1 + . . . + byγy , bi ∈ Λ, y > x. Then the composed map p : (γ1, . . . , γy) ↪→
F −→

p1

(β1, . . . ,βx−1,βx), where p1 is natural projection determined by the basis

β , is certainly onto. Hence (γ1, . . . , γy) is the direct sum of two submodules:

(γ1, . . . , γy) = (β1, . . . ,βx)⊕ ker(p).

This says that ker(p) is stably free. One can verify that the result of increasing
y by one is to add a free summand to ker(p). Thus, after making y sufficiently
large we can assume ker(p) is free. Choose a basis (γ′x+1, . . . , γ

′
y) for ker(p).

(Note that this basis necessarily has rank{Z⊗Λ ker(p)} = y − x elements.)

Geometry & Topology Monographs, Volume X (20XX)



The obstruction to finding a boundary for an open manifold 61

γx−1 = βx−1

βx, γ′x+1, . . . , γ
′

y

γ1 = β1

β1, . . . ,βx−1

...

γy

γx

...

. . .

1

1
0

NR

0

0

1

1

Figure 7:

Now consider the matrix whose rows express γ1, . . . , γy in terms of β1, . . . ,βx−1,βx,
γ′x+1, . . . , γ

′
y .

The upper right rectangle clearly contains only zeros. Notice that elementary
row operations correspond to elementary operations on the basis γ1, . . . , γy –
and hence on γ .

Reduce the lower left rectangle to zeros by adding suitable multiples of the
first x − 1 rows to the last y − x + 1. Now adjoin to each basis the elements
γy+1, γy+2, . . . , γ2y−x+1 so that the lower right box has the form ( N 0

0 I ) where I
is an identity matrix of the same dimension as N . By the proof of Lemma 5.4
there are further row operations that change this box to ( I 0

0 N ) (and don’t
involve the first x − 1 rows). Clearly we have produced a finite sequence of
elementary operations on γ , ENx−1+1, . . . , ENx , so that (∗) now holds for k " x.
This completes the induction.

What we actually need is a mild generalization of Lemma 8.3. Suppose that F ∼=
G⊕H where G, like F , is a copy of Λ∞ . Regard G and H as submodules of F
and let α = {α1,α2, . . .}, β = {β1,β2, . . .} be bases for F and G respectively.

Lemma 8.4 In this situation too, the assertion of Lemma 8.3 is true.

Proof Again suppose inductively that N0, . . . , Nx−1 and E1, . . . , ENx−1 have
been defined so that (*) holds for k " n − 1. Since (βx+1,βx+2, . . .) ⊕ H ∼=
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G⊕H ∼= Λ∞ there is a basis β′ = {β1, . . . ,βx−1,βx,β′
x+1,β

′
x+2, . . .} for F . Now

we can repeat the argument of Lemma 8.3 with β′ in place of β to complete
the induction.

We need a carefully stated version of the Handle Addition Theorem [3, p. 17].
Suppose (W ;V, V ′) is a compact smooth triad with a nicely equipped Morse
function f that has critical points p1, . . . pm all of index λ, 3 " λ " n−2. The
complex C∗ for f has the form

· · · −→ 0 −→ Cλ −→ 0 −→ · · ·

where Cλ ∼= Hλ(W̃ , Ṽ ) is free over π1(W ) with one generator e(pi) for each
critical point pi . Suppose f(p1) > f(p2). Let g ∈ π1(W ) be prescribed,
together with a real number ε > 0 and a sign ±1.

Proposition 8.5 By altering the gradient-like vector field on f−1[f(p1) −

ε, f(p1)−
ε

2
] only, it is possible to give Cλ the basis e(p1), e(p2)±ge(p1), e(p3), . . . , e(pm).

Remark A composition of such operations gives any elementary operation
E(r; 1, 2), r ∈ Z[π1(W )]. And by permuting indices we see that e(pi) and
e(pj) could replace e(p1) and e(p2) if f(pi) > f(pj).

Proof The construction is essentially the same as for the Basis Theorem [4, §
7.6]. We point out that the choice of g ∈ π1(W ) demands a special choice of the
imbedding “φ1 : (0, 3) −→ V0” on p. 96 of [4]. Also, f is never changed during
our construction. The proof in [4, § 7.6] that the construction accomplishes
what one intends is not difficult to generalize to this situation.

Finally we are ready to establish

Existence Theorem 8.6 Suppose given

(1) Mw−1 , w ! 5, a smooth closed manifold

(2) k , an integer with 2 " k " w − 3

(3) P , a f.g. projective π1(M)–module.

Then there exists a smooth manifold W w , with one tame end ε, which is an
open subset of M × [0, 1) with Bd W = M × 0, such that

(a) Inclusions induce isomorphisms

π1(M × 0)
∼=−→ π1(W )

∼=←− π1(ε)
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(b) σ(ε) = (−1)k[P ] ∈ K̃0(π1(M × 0))

(c) M × 0 ↪→ W is a (k − 1)–equivalence. Further Hi(W̃ ,Bd W̃ ) ∼= P and

Hi(W̃ ,Bd W̃ ) = 0, i %= k .

Remark After an adequate existence theorem there follows logically the ques-
tion of classifying strange ends. It is surely one that should have some interest-
ing answers. I ignore it simply because I have only begun to consider it.

Proof By construction W will be an open subset of M × [0, 1) that admits a

nicely equipped proper Morse function f : W
onto
−→ [0,

1

2
) with f−1(0) = M × 0.

Only index k and index k + 1 critical points will occur. Then according to
Theorem 1.10 W can have just one end ε. The left-hand sphere of each critical
point of index k will be contractible in M × 0. Thus M × 0 ↪→ W will be
a (k − 1)–equivalence. If k < n − 3, π1 is automatically tame at ε, and
π1(ε) −→ π1(W ) is an isomorphism. If k = n − 3 we will have to check this
during the construction. The complex C ′

∗ for f will be chosen that H∗(C ′
∗) =

H∗(W̃ ,Bd W̃ ) is isomorphic to P and connected in dimension k . Thus (c)
will follow. Then the tameness of ε and condition (b) will follow from (c) and
Lemma 6.2.

With this much introduction we begin the proof in serious. Consider the free
Λ = Z[π1(M × 0)]–complex

C∗ . . . "" 0 "" Ck+1
∂ ""

∼=
##

Ck
""

∼=
##

0 "" . . .

F F

where F ∼= Λ∞ and ∂ corresponds to the identity map of F . There exists an
integer r and a Λ–module Q so that P ⊕Q ∼= Λr . Then

F ∼= (P ⊕Q)⊕ (P ⊕Q)⊕ . . . ∼= P ⊕ (Q⊕ P )⊕ (Q⊕ P )⊕ . . . ∼= P ⊕ F.

So we have F ∼= G ⊕ P where G ∼= Λ∞ . Regard G and P as submodules
of F and choose bases α = {α1,α2, . . .} and β = {β1,β2, . . .} for F and G
respectively.

Consider the subcomplex of C∗ :

C ′
∗ : . . . "" C ′

k+1
∂ ""

∼=
##

C ′
k = Ck

""

∼=
##

0 "" . . .

G G⊕ P ∼= F

(13)
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where ∂ corresponds to the inclusion G ↪→ F . Let α give the basis for Ck+1 ,
Ck , C ′

k ; and let β give the basis for C ′
k+1 . We will denote the based com-

plexes by C and C ′ (without ∗). By a segment of C we will mean the based
subcomplex of C corresponding to a segment {α1,α2, . . . ,αr} of α.

By Lemma 8.4 there exists a sequence E1, E2, E3, . . . of elementary operations
and a sequence 0 = N0 < N1 < N2 . . . of integers so that, for n ! Ns ,
the first s basis elements of EnEn−1 . . . E1α coincide with β1, . . . ,βs . We let
E1, E2, E3, . . . act on α as a basis of Ck+1 and in this way on the based complex
C . For each integer s choose a segment C(s) of C so large that β1, . . . ,βs ∈
Ck+1(s) and E1, . . . , ENs act on C(s).

Let C ′(s) be the based subcomplex of ENs . . . E1C(s) consisting of Ck(s) and
the span of β1, . . . ,βs in Ck+1(s) (with basis β1, . . . ,βs ). Notice that C ′(s) is
a based subcomplex of C ′ and C ′ = ∪sC ′(s).

Choose any sequence 0 = a0 < a1 < a2 < . . . of real numbers converging to
1

2
.

We will construct a sequence f1, f2, f3, . . . of nicely equipped Morse functions

M × [0, 1]
onto
−→ [0, 1]

so that, for n ! m, fn coincides with fm on f−1
m [0, am]. The based free f.g.

π1(M × 0)–complex for fn is to be ENn · · ·E1C(n) and for fn restricted to
f−1

n [0, an] it is to be C ′(n).

Notice that such a sequence f1, f2, f3, . . . determines a nicely equipped proper

Morse function f on W =
⋃

n f−1
n [0, an] mapping onto [0,

1

2
); and its complex

is C ′ =
⋃

n C ′(n). The left hand sphere Sk−1
L in M × 0 of any critical point

of index k is contractible since it is contractible in M × [0, 1] and M × 0 ↪→
M × [0, 1] is a homotopy equivalence. In case k = n − 3 we now verify that
f−1

n (an) ↪→ M × [0, 1] andf−1
n [0, an] ↪→ M × [0, 1] give π1–isomorphisms. For

this easily implies that π1 is stable at the end ε of W and that π1(ε) −→ π1(W )
is an isomorphism. Now f−1

n [0, an] contains all critical points of fn of index k
so, even when k = 2, f−1

n [0, an] ↪→ M × [0, 1] and f−1(an) ↪→ f−1[an, 1] give
π1 -isomorphisms. Also f−1[an, 1] ↪→ M × [0, 1] gives a π1–isomorphism since
M × 1 ↪→ M × [0, 1] and M × 1 ↪→ f−1[an, 1] do. Thus f−1(an) ↪→ M × [0, 1]
does too, and our verification is complete.

In view of our introductory remarks in §3 it now remains only to construct
the sequence f1, f2, f3, . . . as advertised in the second to last paragraph above.
Here are the details. Insert enough complementary pairs of index k and k + 1

critical points (c.f. [4, § 8.2]) in the projection M × [0, 1]
onto
−→ [0, 1] to get
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a Morse function that, when suitably equipped, realizes the segment C(1) of
C . Apply the elementary operations E1, . . . , EN1 to C(1) and alter the Morse
function accordingly using the Handle Addition Theorem of Wall [3, p. 17, p.
19]. Now lower the critical points represented in C ′(1) ⊂ EN1 · · ·E1C(1) to
levels < a1 without changing the gradient-like vector field or the rest of the
equipment. This is possible because all the critical points of index k are in
C ′(1). Call the resulting Morse function f1 . Adjust the gradient-like vector
field ξ [4, § 4.4, § 5.2] so that f1 is nicely equipped.

Next, suppose inductively that a nicely equipped Morse function fn has been
defined realizing ENn · · ·E1C(n) on M×[0, 1] and C ′(n) on f−1

n [0, an]. Enlarge
ENn · · ·E1C(n) to ENn · · ·E1C(n+1) and insert corresponding complementary
pairs in f−1

n [an, 1]. Now apply ENn+1, . . . , ENn+1 . We assert that the equipped
Morse function can be adjusted correspondingly. At first sight this just requires
the Handle Addition Theorem again. But we must leave fn (and its equipment)
unchanged on f−1

n [0, an]; so we apply Proposition 8.5. Any elementary opera-
tion we have to realize is of the form E(r; i, j) where j > n, which means that
r times the i–th basis element e(pi) is to be added to the j–th basis element
e(pj) where pj lies in f−1

n [an, 1]. Change the present Morse function f ′
n on

f−1
n [an, 1] increasing the level of pj so that f ′

n(pj) − ε = d, (ε > 0) exceeds
f ′(pi), an , and the levels of the index k critical points. Temporarily change f ′

n

on (f ′
n)−1[0, d] to a nice Morse function and let c be a level between index k

and k+1. Applying Proposition 8.5 on f ′−1[c, 1] we can now make the required

change of basis merely be altering ξ on f ′
n
−1[d, d +

ε

2
]. By [4, § 4.4, § 5.2] we

cab assume that ξ is still nice. Next we can let f ′
n return to its original form on

f ′
n[0, d] without changing ξ . (This shows that we didn’t really have to change

f ′
n on (f ′

n)−1[0, d] in the first place.) After repeating this performance often
enough we get a nicely equipped Morse function – still called f ′

n – that realizes
En+1 · · ·E1C(n+1) ⊃ C ′(n+1) and coincides with fn on f−1

n [0, an]. Changing
f ′

n on f−1
n [an, 1] adjust to values in (an, an+1) the levels of critical points of

f ′
n that lie in C ′(n + 1) but do not lie in C ′(n) (i.e. do not lie in f−1

n [0, an]).
Since all index k critical points of f ′

n are included in C ′(n+1) this is certainly
possible. We call the resulting nicely equipped Morse function fn+1 .

Apparently fn+1 realizes the complex ENn · · ·E1C(n + 1) on M × [0, 1] and
realizes C ′(n + 1) when restricted to f−1

n+1[0, an+1]. The inductive definition of
the desired Morse functions f1, f2, f3, . . . is now complete. Thus Theorem 8.6
is established.

In the last part of this chapter we construct the contractible manifolds promised
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in §4. That the reader may keep in mind just what we want to accomplish we
state

Proposition 8.7 Let π be a finitely presented perfect group that has a finite
nontrivial quotient group. Then for w ! 8 there exists a contractible open
manifold W such that π1 is stable at the one end ε of W and π1(ε) = π , but
ε is nevertheless not tame.

Remark Such examples should exist with w ! 5 at least for suitable π .

Let {x : r} be a finite presentation for a perfect group π , and form a 2–
complex K2 realizing {x : r}. Since H2(K2) must be free abelian, one can
attach finitely many 3–cells to K2 to form a complex L3 with Hi(L) = 0,
i ! 2. Since H1(L) = H1(K) = π/[π,π] = 1, L has the homology of a point. If
we imbed L in Sw , w ! 7, or rather imbed a smooth handlebody H + L that
has one handle for each cell of L, then Mw = Sw − IntH is a smooth compact
contractible manifold with π1(Bd M) = π . The construction is due to M.H.A.
Newman [27].

Remark If one uses a homologically trivial presentation, H∗(K2) = H∗(point)
and one can get by with w ! 5. Some examples are {a, b ; a5 = (ab)2 =
b3}, which gives the binary icosahedral group of 120 elements, and Pn =
{a, b ; an−2 = (ab)n−1, b3 = (ba−2ba2)2} with n any integer. The presenta-
tions Pn are given by Curtis and Kwun [24]. For n even ! 6 there is a
homomorphism of the group Pn onto the alternating group An on n letters.
(See Coxeter-Moser [21, p. 67].) Unfortunately we will actually need w ! 8 for
different reasons.

Let π be a group and θ : π −→ π0 a homomorphism of π onto a finite group
π0 of order p %= 1. Let Σ ∈ Z[π] be (g1 + · · · + gp) where g1, . . . , gp are some
elements so that θg1, . . . , θgp are the p distinct elements of π0 . Consider the
following free complex C over Z[π]

C : 0 −→ C4
∂
−→ C3

∂
−→ C2 −→ 0

where C2 has one free generator a, C3 has two free generators b1 and b2 with

∂b1 = ma (m an integer)

∂b2 = Σa

and C4 has one free generator c with

∂c = Σb1 −mb2.
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Lemma 8.8 Suppose m is prime to p. Then Z ⊗π C is a cyclic, but H2(C)
is nonzero.

Proof Tensoring C with the trivial right π–module Z has the effect of replac-
ing each group element in Z[π] by 1. If we let a = 1⊗ a and define b1 , b2 , and
c similarly, then

∂b1 = ma

∂b2 = pa

∂c = pb1 −mb2.

So we easily see that Z⊗π C is acyclic.

To show that H2(C) %= 0 is to show that the ideal in Z[π] generated by m
and Σ is not the whole ring. If it were, there would be r, s ∈ Z[π] so that
rm+ sΣ = 1. Letting primes denote images under θ : Z[π] −→ Z[π1] we would
have

mr′ + s′Σ′ = 1 ∈ Z[π0].

Now s′Σ′ = kΣ′ for some integer k since gΣ′ = Σ′ for each g ∈ π0 . Thus we
have

mr′ = 1− kΣ′

which is impossible because m ( %= 1) cannot divide both 1− k (the coefficient
of 1 in 1− kΣ) and also −k (the coefficient of other elements of π0 in 1− kΣ).
This contradiction completes the proof.

Now we are ready to construct the contractible manifold W . Let π be the per-
fect group given in Proposition 8.7. Take a complex C provided by Lemma 8.8
and let C ′ be the direct sum of infinitely many copies of C . Then Z ⊗π C ′

is cyclic but H2(C) is infinitely generated over Z[π]. Let Mw , w ! 8 be a
contractible manifold with π1(Bd M) = π . To form W we attach one at a
time infinitely many 2, 3, and 4–handles to M thickening after each step.
The attaching 1–sphere of each 2–handle is to be contractible. Then W has
one end and π1 is stable at ε with π1(ε) −→ π1(W − M) = π an isomor-
phism. The handles are to be so arranged that there is a nicely equipped Morse
function (see §8) f : V = W − IntM −→ [0,∞) with f−1(0) = Bd M hav-
ing associated free π1(Bd M) = π–complex precisely C ′ . By Proposition 8.2

H2(Ṽ ,Bd M̃) = H2(C ′). But H2(C ′) is infinitely generated over π and V is a
1–neighborhood of ε. So Definition 4.4 and Lemma 4.7 say that ε cannot be
tame. However H∗(W,M) = H∗(V,Bd M) = H∗(Z ⊗π C ′) = 0, and the exact
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sequence of (W,M) then shows that W has the homology of a point. Since
π1(W ) = 1, W is a contractible by Hilton [23, p. 98].

It remains now to add handles to M realizing C ′ as claimed. Each λ–handle
added is, to be precise, an elementary cobordism of index λ. It is equipped
with Morse function, gradient field, orientation for the left hand disk, and base
path to the critical point. It contributes one generator to the complex for f .
We order the free generators z1, z2, . . . of C ′ so that zi involves zj with j < i,
then add corresponding handles in this order.

Suppose inductively that we have constructed a finite handlebody W ′ on M
and formed a nicely equipped Morse function on W ′ − Int M that realizes
the subcomplex of C ′ generated by z1, . . . , zn−1 . We suppose also that W ′ is
parallelizable, that the attaching 1–spheres for all 2–handles are spanned by
disks in Bd M and that the 3–handles all have a certain desirable property that
we state precisely below.

Since we are building a contractible (hence parallelizable) manifold we must
certainly keep each handlebody parallelizable. Now in the proof of Theorem
2 in Milnor [14, p. 47] it is shown how to take a given homotopy class in

πk(Bd W ′), k <
w

2
, and paste on a handle with attaching sphere in the given

class so that W ′∪ {handle} is still parallelizable. We agree that handles are all
to be attached in this way.

Without changing the gradient-like vector field ξ , temporarily make the Morse
function nice so that W ′ − IntM is a product c2c3c4 of cobordisms cλ =
(Xλ;Bλ−1, Bλ), λ = 2, 3, 4, with critical points of one index λ only.

2 3 4

Bd M = B2 B3 B4 B5 = Bd W ′

Figure 8:
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If zn is in dimension 2 we add a small trivial handle at Bd W ′ so that the
(contractible) attaching sphere spans a 2–disk in Bd W ′ which translates along
ξ–trajectories to Bd M .

If zn is in dimension 3, ∂zn determines a unique element of H2(X̃2, B̃1) ∼=
π2(X2, B1), hence a unique element of π2(B2) ∼= π2(X2) ∼= π2(X2, B1)⊕π2(B1).
(The last isomorphism holds because the 2–handles are capped by disks in
B1 = Bd M .) Realize this element of π2(B2) by an imbedded oriented 2–
sphere S with base path in B2 . Slide S to general position in B2 ; translate it
along ξ–trajectories to Bd W ′ and add a suitable 3–handle with this attaching
2–sphere.

We assume inductively that for each 3–handle the attaching 2–sphere in B2

gives a class in the summand π2(X2, B1) of π2(B2). This is the desirable
feature we mentioned above. Notice that the new 3–handle has this property.
We will need this property presently.

If the dimension of zn is 4, ∂zn gives a unique class in H3(X̃3, B̃2). We want
an imbedded oriented 3–sphere S with base path in B3 so that the class of S in
H3(X3) goes to ∂zn ∈ H3(X̃3, B̃2). Now ∂zn is in the kernel of the composed

map to H2(X̃2, B̃1)

: H3(X̃3, B̃2)
d "" H2(B̃2)

∼=
##

∼= "" H2(X̃2)

∼=
##

"" H2(X̃2, B̃2)

∼=
##

π2(B2) "" π2(X2) "" π2(X2, B1)

The property assumed for 3–handles guarantees that Im(d) lies in the summand

H2(X̃2, B̃1) of H2(B̃2), i.e. Im(d) goes (1-1) into H2(X̃2, B̃1). Thus ∂(∂zn) = 0
implies d(∂zn) = 0. From the exact sequence of (X̃3, B̃2) we see that ∂zn is in

the image of an element in H3(X̃3). Now the Hurewicz map π3(B3) ∼= π3(X3) ∼=
π3(X̃3) −→ H3(X̃3) is onto. (See [23, p. 167]). So there is a homotopy class s

in π3(B3) that goes to ∂zn ∈ H3(X̃3, B̃2). Since dim(B3) = w − 1 ! 7 we can
represent s by an imbedded oriented 3–sphere S in B3 with base path. This
is the desired attaching sphere. We slide it to general position, translate it to
Bd W ′ and add the desired 4–handle with this attaching sphere.

We conclude that with any dimension 2, 3, or 4 for zn we can add a handle
at Bd W ′ and extend the Morse function and its equipment to the handle so
the subcomplex of C ′ generated by z1, . . . , zn is realized, and all inductive
assumptions still hold. Thus the required construction has been defined to
establish Proposition 8.7.
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Remark 2 Mw was a smooth compact submanifold of Sw . It is easy to
add all the required 2, 3 and 4–handles to M inside Sw . Then W will be a
contractible open subset of Sw .

9 Classifying Completions

Recall that a completion of a smooth open manifold W is a smooth imbed-
ding i of W onto the interior of a smooth compact manifold W . Our Main
Theorem 5.7 gives necessary and sufficient conditions for the existence of a com-
pletion when dimW ! 6. If a completion does exist one would like to classify
the different ways of completing W . We give two classifications by Whitehead
torsion corresponding to two notions of equivalence between completions – iso-
topy equivalence and pseudo-isotopy equivalence. As a corollary we find that
there exist diffeomorphisms of contractible open subsets of Euclidean space that
are pseudo-isotopic but not isotopic. According to J. Cerf this cannot happen
for diffeomorphisms of closed 2–connected smooth manifolds of dimension ! 6.

For the arguments of this chapter we will frequently need the following

Collaring Uniqueness Theorem 9.1 Let V be a smooth manifold with
compact boundary M . Suppose h and h′ are collarings of M in V – viz.
smooth imbeddings of M × [0, 1] into V so that h(x, 0) = h′(x, 0) = x for
x ∈ M . Then there exists a diffeomorphism f of V onto itself, fixing M and
points outside some compact neighborhood of M , so that h′ = f ◦ h.

The proof follows directly from the proof of the tubular neighborhood unique-
ness theorem in Milnor [25, p. 22]. To apply the latter directly one can extend
h and h′ to bicollars (= tubular neighborhoods) of M in the double V .

Definition 9.2 Two collars V , V ′ of a smooth end ε are called parallel if there
exists a third collar neighborhood V ′′ ⊂ IntV ∩ IntV ′ such that the cobordisms
V − IntV ′′ are diffeomorphic to Bd V ′′ × [0, 1].

Lemma 9.3 If V and V ′ are parallel collars and V ′ ⊂ IntV , then V −IntV ′ ∼=
Bd V × [0, 1].

Proof Let V ′′ ⊂ Int V ∩ IntV ′ be as in Definition 9.2. Then V ′ − Int V ′′ is
a collar neighborhood of Bd V ′′ in V − IntV ′′ . By the Collaring Uniqueness
Theorem 9.1 there is a diffeomorphism of V − IntV ′′ onto itself that carries
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V ′ − V ′′ onto a small standard collar of Bd V ′′ and hence V − Int V ′ onto the
complement of the small standard collar. Since the ‘standard’ collar can be
so chosen that its complement is diffeomorphic to Bd V × [0, 1], the Lemma is
established.

Definition 9.4 If V and V ′ are any two collars of ε, the difference torsion
τ(V, V ′) ∈ Wh(π1ε) is determined as follows. Let V ′′ be a collar parallel to V ′

so small that V ′ ⊂ Int V . Then (V − IntV ′′; Bd V,Bd V ′′) is easily seen to be
an h–cobordism. Its torsion is τ(V, V ′).

It is a trivial matter to verify that τ(V, V ′) is well defined and depends only
on the parallel classes of V and V ′ . Notice that τ(V ′, V ) = −τ(V, V ′) and
τ(V, V ′′) = τ(V, V ′) + τ(V ′, V ′′) if V ′′ is a third collar. (See Milnor [17, §11].)

An immediate consequence of Stallings’ classification of h–cobordisms (Milnor
[17]) is

Theorem 9.5 If dim W ! 6 and one collar V0 of ε is given, then the difference
torsions τ(V0, V ), for collars V of ε put the classes of parallel collars of ε in
1-1 correspondence with the elements of Wh(π1ε).

If W is an open manifold that has a completion and V is a closed neighborhood
of ∞ that is a smooth submanifold with V ∼= Bd V × [0, 1) we call V a collar
of ∞. Apparently the components of V give one collar for each end of W .
Thus there is a natural notion of parallelism for collars of ∞ and Theorem 9.1
holds good.

Observe that a completion i : W −→ W of a smooth open manifold W deter-
mines a unique parallel class of collars of each end ε of W . (This uses collaring
uniqueness again.) Conversely if a collar V of ∞ is specified in W , form W
from the disjoint union of W and Bd V × [0, 1] by identifying V ⊂ W with
Bd V × [0, 1) under a diffeomorphism. Then i : W ↪→ W is a completion and
the parallel class of collars it determines certainly includes V .

Let i : W −→ W and i′ : W −→ W ′ be two completions of the smooth open
manifold W . If f : W −→W ′ is a diffeomorphism the induced diffeomorphism
f ′ : W −→W is defined by f ′(x) = (i′)−1(f ◦ i(x)).

Proposition 9.6 The completions i and i′ determine the same class of parallel
collars of ∞ if and only if for any prescribed compact set K ⊂ W there exists a
diffeomorphism f : W −→ W ′ so that the induced diffeomorphism of W fixes
K .
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Proof Let K ⊂ W be a given compact set. Let V be a collar of Bd W so
small that V = i−1(V ) does not meet K . If i and i′ determine the same class
of collars at each end of W , the closure V ′ of i′(V ) in W ′ is a collar of Bd W ′ .
Let f0 : IntW −→ IntW ′ be the diffeomorphism given by f0(x) = i′ ◦ i−1(x).
Let C be a collar of i(Bd V ) in V . The Collaring Uniqueness Theorem 9.1
shows that the map (f0)|C extends to a diffeomorphism f1 : V −→ V ′ . Now

define f : W −→W ′ to be f0 on (W −V )∪C and f1 on V . Since f0 coincides
with f1 on C , f is a diffeomorphism. The induced map f ′ : W −→ W fixes
W − V and hence K .

The reverse implication is easy. If V is a collar of ∞ in the class determined by
i, choose a diffeomorphism f : W −→W ′ so that the induced map f ′ : W −→
W fixes W − IntV . Then f ′(V ) = V ′ is a collar in the class for i′ .

Let i : W −→ W and i′ : W −→ W ′ be two completions of the smooth open
manifold W . By Definition 9.4 and the discussion preceding Proposition 9.6
there is a natural way to define a difference torsion τ(i, i′) ∈ Wh(π1ε1)× . . .×
Wh(π1εk) where ε1, . . . εk are the ends of W . Combining Theorem 9.5 and
Proposition 9.6 we get

Theorem 9.7 If dimW ! 6, τ(i, i′) = 0 if and only if given any compact
K ⊂ W there exists a diffeomorphism f : W −→ W ′ so that the induced
diffeomorphism f ′ : W −→ W fixes K . Further, if i is fixed, every possible
torsion occurs as i′ varies.

Recall that two diffeomorphism f and g of a smooth manifold W onto itself
are called (smoothly) isotopic [respectively pseudo-isotopic] if there exists a
level preserving [respectively not necessarily level preserving] diffeomorphism
F : W × [0, 1] −→W × [0, 1] so that F|W×0 gives f × 0 and F|W×1 gives g× 1.

Definition 9.8 Let i : W −→ W and i′ : W −→ W ′ be two completions of
the smooth open manifold W . We say i is isotopy equivalent [resp. pseudo-
isotopy equivalent ] to i′ if there exists a diffeomorphism f : W −→W ′ so that
the induced diffeomorphism f ′ : W −→ W is isotopic [resp. pseudo-isotopic]
to the identity. Also, we say i and i′ are perfectly equivalent if there exists a
diffeomorphism f : W −→ W ′ so that the induced diffeomorphism f ′ : W −→
W is the identity – or equivalently so that i′ = f ◦ i.

We examine perfect equivalence first. The completions i and i′ are apparently
perfectly equivalent if and only if the map f0 : IntW −→ IntW ′ given by
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f0(x) = i′(i−1(x)) extends to a diffeomorphism W −→ W ′ . Notice that if the
map f0 extends to a continuous map f1 : W −→W ′ , this map is unique. Thus
i and i′ are perfectly equivalent precisely when f1 exists and turns out to be
smooth, 1-1 and smoothly invertible.

Although perfect equivalence is perhaps the most natural of the three above it is
unreasonable stringent at least from the point of view of algebraic topology. For
example we easily form uncountable many completions of IntD2 (or IntDn ,
n ! 2) as follows. If S is a segment on Bd D2 let i : IntD2 −→ D2 be

any completion which is the restriction of a smooth map g : D2 onto
−→ D2 that

collapses S to a point but maps D2−S diffeomorphically. (Such a map is easy
to construct.)

g

Figure 9:

Let rθ be the rotation of Int D2 through an angle θ . Then for distinct angles
θ1, θ2 the completions i ◦ rθ1 , i ◦ rθ2 are distinct. In fact the induced map
IntD2 −→ Int D2 does not extend to a continuous map D2 −→ D2 . Apparently
these completions would not even be perfectly equivalent in the topological
category.

For a somewhat less obvious reason, there are uncountable many completions
of Int D1 = (−1, 1) no two of which are perfectly equivalent. If i and i′ are two
completions (−1, 1) −→ [−1, 1] there is certainly an induced homeomorphism
f1 of [−1, 1] onto itself that extends the monotone smooth function f ′(t) =
i′(i−1(t)). Up to a perfect equivalence we can assume that i(t) −→ 1 and
i′(t) −→ 1 as t −→ 1. Let h : (−1, 1) −→ (0,∞) be the map h(t) = (1 +
t)/(1 − t) and form the functions g(t) = h ◦ i(t), g′(t) = h ◦ i′(t). In case
i and i′ are perfectly equivalent f1 is a diffeomorphism and one can verify
that g(t)/g′(t) has limit Df1(1) as t −→ 1 and limit 1/Df1(−1) as t −→ −1.
(Hint: Df ′(t) = (Di′(i−1(t)))/(Di(i′)−1(t)) is shown to have the same limit as
{g(t)/g′(t)}±1 when t −→ ±1 by applying l’Hôpital’s rule.) For any positive
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real number α consider the completion iα(t) = h−1(h(t)α) and the map gα(t) =
h(iα(t)) = h(t)α . When α and β are distinct positive real numbers

gα(t)

gβ(t)
=

h(t)α

h(t)β
= h(t)α−β

does not converge to a finite non-zero value as t −→ ±1. Thus the above
discussion shows that iα and iβ cannot be perfectly equivalent.

Using the idea of our first example one can show that if a smooth open manifold
W ( %= D1 ) has one completion, then it has 2ℵ0 completions no two of which
are perfectly equivalent. In fact up to perfect equivalence there are exactly 2ℵ0

completions. To show that there are no more observe that

(a) If W is fixed there are at most 2ℵ0 completions i : W −→W , since there
are only 2ℵ0 continuous maps W −→ W .

(b) There are only 2ℵ0 diffeomorphism classes of smooth manifolds since each
smooth manifold is imbeddible as a closed smooth submanifold of a Eu-
clidean space.

We have already studied isotopy equivalence in another guise.

Proposition 9.9 The classification of completions up to isotopy equivalence
is just classification according to the corresponding families of parallel collars
of ∞.

Proof Let i : W −→W , i′ : W −→W ′ be two completions and f : W −→W ′

a diffeomorphism so that the induced diffeomorphism f ′ : W −→W is isotopic
to the identity. We show that collars V, V ′ of ∞ corresponding to i, i′ are
necessarily parallel. We know that f ′(V ) is parallel to V ′ . Consider the isotopic
deformation of j : Bd V ↪→ W induced by the isotopy of f ′ to 1W . Using
Thom’s Isotopy Extension Theorem [25] we can extend this to an isotopy ht ,
0 " t " 1 of 1W that fixes points outside some compact set K . If we choose V ′

so small that V ′∩K = ∅, ht fixes V ′ . Now h1(V ) = f ′(V ) and h1(V ′) = V ′ so
V − IntV ′ ∼= h1(V − IntV ′) = h1(V )− IntV ′ = f ′(V )− IntV ′ ∼= Bd V ′ × [0, 1]
which means V and V ′ are parallel.

To prove the opposite implication suppose V ⊂ W is a collar of ∞ for both i
and i′ . Thus there are diffeomorphisms:

h : i(V ) ∪ Bd W −→ Bd V × [0, 1]

h′ : i′(V ) ∪ Bd W ′ −→ Bd V × [0, 1].
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Using the Collaring Uniqueness Theorem 9.1 we see that h can be altered so
that h′ ◦ h−1 fixes points near Bd V × 0. Define f : W −→W ′ by

f(x) =

{
i′(i−1(x)) for x /∈ i(Int V )
(h′)−1h(x) for x ∈ i(V ) ∪ Bd W

Then f is a diffeomorphism such that the induced diffeomorphism f ′ : W −→
W fixes a neighborhood of W − IntV . The following lemma provides a smooth
isotopy of f ′ to 1W that actually fixes a neighborhood of W − Int V .

Lemma 9.10 Let M be a closed smooth manifold and g be a diffeomorphism
of M × [0, 1) that fixes a neighborhood of M × 0. Then there exists an isotopy
gt , 0 " t " 1, of the identity of M × [0, 1) to g that fixes a neighborhood of
M × 0.

Proof The isotopy is

gt(m,x) =

{
(m,x) if t = 0

tg(m,
x

t
) if t %= 0

where (m,x) ∈ M × [0, 1).

We now discuss the looser pseudo-isotopy equivalence between completions. For
simplicity we initially suppose that the smooth open manifold W n has just one
end ε. Then if i : W −→W and i′ : W −→W ′ are two completions there is by
Theorem 9.5 and Proposition 9.9 a difference torsion τ(i, i′) ∈ Wh(π1ε) that is
an invariant of isotopy equivalence, and, provided n ! 6, classifies completions
i′ as i′ varies while i remains fixed. Here τ(i, i′) = τ(V, V ′) where V and V ′

are collars corresponding to i and i′ .

Theorem 9.11 Suppose the manifold W n above has dimension n ! 5. If the
completion i is pseudo-isotopy equivalent to i′ , then τ(i, i′) = τ0 + (−1)n−1τ0

where τ0 ∈ Wh(π1ε) is an element so that j∗(τ0) = 0 ∈Wh(π1W ). If n ! 6 the
converse is true. (Here j∗ is the inclusion induced map Wh(π1ε) −→Wh(π1W )
and τ0 is the conjugate of τ0 under the involution of Wh(π1ε) discussed by
Milnor in [17, p. 49 and pp. 55-56].)

Proof First we explain the construction that gives the key to the proof. Given
a smooth closed manifold Mm , m ! 4, we form the unique (relative) h–
cobordism X with left end M × [0, 1] that has torsion τ ∈ Wh(π1M). It is
understood that X is to give product cobordisms X0 and X1 over M × 0 and
M × 1.
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M × [0, 1]

X1

X

X0

δ+X1

δ+X

δ+X0

τ

Figure 10:

The construction in Milnor [17, p. 58] applies with only obvious changes needed
because M × [0, 1] has a boundary. We will call X the wedge over M × [0, 1]
with torsion τ .

Notice that the right hand end ∂+X of X gives an h–cobordism between the
right hand ends ∂+X0 and ∂+X1 of X0 and X1 . The torsion of ∂+X0 ↪→ X is
τ and the torsion of ∂+X ↪→ X is (−1)m+1τ by the duality theorem of Milnor
[17]. It follows that the torsion of ∂+X0 ⊂ ∂+X is τ − (−1)m+1τ = τ +(−1)mτ
by [17, p. 35].

Observe also that, as a cobordism X0 to X1 , X has a two-sided inverse, namely
the wedge over M× [0, 1] with torsion −τ . Then the infinite product argument
of Stallings [10] shows that X −X0

∼= X1 × [0, 1).

We now prove the first statement of the theorem. Suppose that there exists
a diffeomorphism f : W −→ W ′ so that there is a pseudo-isotopy F of the
induced map f ′ : W −→ W to the identity. The pseudo-isotopy F is a diffeo-
morphism of W × [0, 1] that gives the identity on W × 0 and f ′× 1 on W × 1.
It will be convenient to identify W with i(W ) ⊂ W .

If V is a collar neighborhood for i, the closure V of V in W , is a collar of Bd W ,
and the closure F (V × [0, 1]) ⊂ Bd W × [0, 1] of F (V × [0, 1]) in W × [0, 1] is a
wedge over V ×0 with torsion τ0 say. Now f ′(V ) is a collar of V ′ corresponding
to i′ . So the end of the wedge f ′(V )×1∪Bd W×1 ⊂ W×1 gives an h–cobordism
with torsion −τ(i, i′) = τ0 +(−1)n−1τ0 . Since the product cobordism W × [0, 1]
is the union of the wedge over V × 0 with torsion τ0 and another product, the
Sum Theorem 6.9 for Whitehead Torsion says that j∗(τ0) = 0 ∈ Wh(π1W ).
This completes the proof of the first statement.

To prove the converse assertion suppose that −τ(i, i′) has the form τ0+(−1)n−1τ0 ,
where j∗(τ0) = 0 ∈ Wh(πW ). As above W is identified with i(W ) = IntW ,
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W × 1

W × 0 V × 0

W × [0, 1]

τ0

BαW × 1

BαW × [0, 1]

BαW × 0
. . .

. . .

. . .

Figure 11:

V is a collar of Bd W and V = V − Bd W is a collar of ε. For the wedge
over V with torsion τ0 , choosing X0 over Bd V (not Bd W ). From X and
W × [0, 1] form a completion Z of W × [0, 1] (in the sense of Definition 10.2) by
identifying X −X1

∼= X0 × [0, 1) with V × [0, 1] ∼= Bd V × [0, 1] × [0, 1) under
a diffeomorphism that is the identity on the last factor [0, 1), and matches X0

with Bd V × [0, 1] in the natural way.

W × 1

W × 0

W × [0, 1] BdV × [0, 1] = X0

X

X1

τ0

V
. . .

. . .

Figure 12:

Now Z is a compact h–cobordism from a manifold we can identify with W to a

manifold we call W
n
. We claim that the completion i′′ : W

id×1
−→ W × 1 ↪→W

n

is isotopy equivalent to i′ . For ∂+X = V × 1 ∪ Bd W
n

is an h–cobordism
with torsion τ0 + (−1)mτ0 . So −τ(i, i′′) = τ0 + (−1)n−1τ0 = −τ(i, i′). Thus
τ(i′, i′′) = 0. Since n ! 6, our claim is verified.

Also (Z;W,W ′′) = 0, since Z is the union of a product cobordism and the
wedge X with torsion τ0 satisfying j∗τ0 = 0 (c.f. Theorem 6.9). By the s–
cobordism theorem (Wall [2]), Z ∼= W × [0, 1]. Any such product structure

gives a diffeomorphism W −→W
′′

and a pseudo-isotopy to the identity of the
induced map W −→ W (since Z − X1 is by construction W × [0, 1]). As i
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and i′′ are isotopy equivalent there is a diffeomorphism W ′′ −→ W ′ and an
isotopy to the identity of the induced map W −→ W . Thus the composed
diffeomorphism W −→ W

′′
−→ W ′ induces a map which is pseudo-isotopic to

the identity. This completes the proof.

Remark If instead of one end ε, W has a finite set of ends ε = {ε1, . . . , εk},
Theorem 9.11 generalizes almost word for word. In the statement, Wh(π1ε) is
Wh(π1ε1)× · · · ×Wh(π1εk) and j∗ is induced by the maps πi(εi) −→ π1(W ),
i = 1, . . . , k .

Remark As a further generalization one can consider the problem of complet-
ing only a subset ε of all the ends of W while leaving the other ends open. Thus
a completion for ε is a smooth imbedding of W onto the interior of a smooth
manifold W ′ so that the components of a collar for Bd W ′ give collars for ends
in ε (and no others.) With the obvious definition of pseudo-isotopy equiv-
alence Theorem 9.11 is generalized by substituting a quotient Wh(π1W )/N
for Wh(π1W ). Here N is the subgroup generated by the images of the maps
Wh(π1εi) −→ Wh(π1W ) where εi ranges over the ends not in the set ε. This
is justified by the following theorem.

Let W ′ be a smooth manifold with Bd W ′ compact so that W ′ admits a com-
pletion. An h–cobordism on W ′ is by definition a relative (non-compact) cobor-
dism (V ;W ′,W ′′) so that V has a completion V (in the sense of Definition 10.2)
which gives a compact relative h–cobordism (V ;W ′,W ′′) between a completion
W ′ of W ′ and a completion W ′′ of W ′′ . The h–cobordism is understood to be
a product over Bd W ′ . Let N be the subgroup of Wh(π1W ′) generated by the
images of the maps Wh(π1ε′) −→Wh(π1W ) as ε′ ranges over the ends of W ′ .

Theorem 9.12 If dim W ′ ! 5, the h–cobordisms on W ′ are classified up to
diffeomorphism fixing W ′ by the elements of Wh(π1W ′)/N .

I omit the proof. It is not difficult to derive from Stallings’ classification of
(relative) h–cobordisms (c.f. [17, p. 58].) with the help of the wedges. The

torsion for (V ;W ′,W ′′) above is the coset τ(V ;W ′,W
′′
) + N .

Jean Cerf has recently established that pseudo-isotopy implies isotopy on smooth
closed n–manifolds, n ! 6, that are 2–connected (c.f. [28]). Theorem 9.13
shows this is false for open manifolds – even contractible open subsets of Eu-
clidean space.
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Theorem 9.13 For n ! 2 there exists a contractible smooth open mani-
fold W 2n+1 that is the interior of a smooth compact manifold and an infinite
sequence f1, f2, f3, . . . of diffeomorphisms of W onto itself such that all are
pseudo-isotopic to 1W but no two are smoothly isotopic. Further for each
n ! 2 this occurs with infinitely many topologically distinct contractible man-
ifolds like W , each of which is an open subset of R2n+1 .

Remark 1) The maps fk × 1R : W × R −→ W × R, k = 1, 2, . . . are all
smoothly isotopic.

Proof of Remark If W ∼= IntW , W×R ∼= Int(W×[0, 1]). But W×[0, 1] (with
corners smoothed) is a contractible smooth manifold with simply connected
boundary – hence is a smooth (2n+1)–disk by [4, §9.1]. Thus W ×R ∼= R2n+1

and it is well known that any two orientation preserving diffeomorphisms of
R2n+1 are isotopic (see [4, p. 60]).

Remark 2) To extend Theorem 9.13 to allow even dimensions (! 6) for W ,
I would need a torsion τ with τ %= τ , (for the standard involution), and none is
known for any group. However using the example Wh(Z8) with τ∗ = −τ [17, p.
56] one can distinguish isotopy and pseudo-isotopy on a suitable non-orientable

W = Int W
2n

, n ! 3, where W
2n

is smooth and compact with π1(W ) = Z2 ,
π1 Bd W = Z8 .

Remark 3) I do not know whether pseudo-isotopy implies isotopy for dif-
feomorphisms of open manifolds that are interiors of compact manifolds with
1–connected boundary. Also it seems important to decide this for diffeomor-
phisms of closed smooth manifolds that are not 2–connected.

Proof of Theorem 9.13 We suppose first that n is ! 3. Form a contractible

smooth compact manifold W
2n+1

⊂ S2n+1 with π1 Bd W = π the binary
icosahedral group

{
a, b ; a5 = b3 = (ab)2

}
(see §8), and let W = Int W . In

Lemma 9.14 below we show that there is a mapping φ : Z5 −→ π so that
φ∗ : Wh(Z5) −→ Wh(π) is 1-1. By Milnor [17, p. 26] Wh(Z5) = Z and
τ = τ for all τ ∈ Wh(Z5) – hence for all elements of φ∗ Wh(Z5). Let β
be a generator of φ∗ Wh(Z5) and form completions ik : W −→ W k of W ,
k = 1, 2, . . . such that τ(i, ik) = kβ + (−1)2nkβ = 2kβ where i : W ↪→ W .
Since π1W = 1, Theorem 9.11 says that i and ik are pseudo-isotopy equiv-
alent i.e. there exists a diffeomorphism gk : W −→ W k so that the induced
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diffeomorphism fk : W −→ W is pseudo-isotopic to 1W , k = 1, 2, . . . . If fj

were isotopic to fk , j %= k , fk ◦ f−1
j : W −→W would be isotopic to 1W . But

f−1
k ◦ fj is induced by gk ◦ g−1

j : Wj −→ Wk . Hence ij and ik would be isotopy
equivalent in contradiction to τ(ij , ik) = 2(k − j)β %= 0.

When n = 2, i.e. dimW = 5, the above argument breaks down in two spots. It
is not apparent that ik exists with τ(i, ik) = 2kβ . And when ik is constructed
is not clear that it is pseudo-isotopy equivalent to i. Repair the argument as
follows. If V is a collar corresponding to i, let Vk ⊂ IntV be a collar such
that the h–cobordism V − IntVk is diffeomorphic to the right end of the wedge
over Bd V × [0, 1] with torsion k . Then τ(V, Vk) = kβ + (−1)4kβ = 2kβ . So
τ(i, ik) = 2kβ if we let ik : W −→ W k be a completion for which Vk is a
collar. To show that this particular ik is pseudo-isotopy equivalent to i we try
to follow the proof for the second statement of Theorem 9.11 taking i′ = ik and
τ0 = kβ . What needs to be adjusted is the proof that i′′ and i′(= ik) are isotopy
equivalent. Now, if V ′′ ⊂ IntV is a collar for i′′ , it is clear that V − IntV ′′

is diffeomorphic to ∂+X , the right hand end of the wedge over Bd V × [0, 1]
with torsion τ0 = kβ . But in our situation V − IntVk is by construction
diffeomorphic to ∂+X . Because ∂+X is an invertible h–cobordism, V ′′ and Vk

are parallel collars. Thus Proposition 9.9 says that i′′ and i′ = ik are isotopy
equivalent. The rest of the argument in the proof of Theorem 9.11 establishes
that i and i′ = ik are pseudo-isotopy equivalent.

Finally we give infinitely many topologically distinct contractible manifolds like
W ⊂ R2n+1 . Let Ws be the interior of the connected sum along the boundary
of s copies of W , s = 1, 2, . . . . Now W 2n+1 ⊂ R2n+1 ⊂ S2n+1 − {point},
and the connected sum can clearly be formed inside R2n+1 . Hence we can
suppose Ws ⊂ R2n+1 . Ws is distinguished topologically from Wr , r %= s, by
the fundamental group of the end which is the s–fold free product of π . As Wh
is a functor Whπ is a natural summand of Wh(π∗ · · ·∗π). Hence the argument
for W will also work for Ws . This completes the proof of Theorem 9.13 modulo
Lemma 9.14.

Lemma 9.14 There is a homomorphism φ : Z5 −→ π =
{
a, b ; a5 = b3 = (ab)2

}

so that φ∗ : Wh(Z5) −→Wh(π) is 1-1.

Proof By [17, p. 26] Wh(Z5) is infinite cyclic with generator α represented
by the unit (t + t−1 − 1) ∈ Z[Z5] where t is a generator of Z5 . The quotient
{a, b ; a5 = b3 = (ab)2 = 1} of π is the rotation group A5 of the icosahedron
(see [21, pp. 67-69]). π has order 120 and A5 has order 60 so a10 = 1 in π .
Thus we can define φ(t) = a2 ∈ π .
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To show that φ∗ is 1-1 in Wh(π) it will suffice to give a homomorphism

h : π −→ O(3)

so that if we apply h to φ(t + t−1 − 1) = a2 + a−2 − 1 we get a matrix M
with determinant not equal to ±1. For by Milnor [17, p. 36-40] h determines
a homomorphism h∗ from Wh(π) to the multiplicative group of positive real
numbers, and h∗φ∗(α) = |det M |.

The homomorphism we choose is the composite

π −→ A5 −→ O(3)

where the second map is an inclusion so chosen that a ∈ A5 is a rotation about
the Z–axis through angle θ = 72◦ . Thus

h(a) =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1





and

h(a2 + a−2 − 1) =




2 cos 2θ − 1 0 0

0 2 cos 2θ − 1 0
0 0 1





which has determinant %= ±1.

10 The Main Theorem Relativized and Applications

to Manifold Pairs

We consider smooth manifolds W n such that Bd W is a manifold without
boundary that is diffeomorphic to the interior of a smooth compact manifold.
A simple example is the closed upper half plane. An end ε of W is tame if
it is isolated and satisfies conditions 1) and 2) of Definition 4.4. In defining a
k–neighborhood V of an end ε of W , k = 0, 1, 2, . . . , we must insist that V be
a closed submanifold of W so that V ′ = V ∩Bd W is a smooth, possibly empty,
submanifold of Bd W with V ′ ∼= Bd V ′ × [0,∞). The frontier bV of V in W
must be a smooth compact submanifold of W that meets Bd W transversely,
in Bd(bV ) = Bd V ′ . Otherwise the definition of k–neighborhood is that given
in Definition 2.4, Definition 3.9, and Definition 4.5, with frontier substituted
for boundary. To show that an isolated end ε of W has arbitrarily small 0–
neighborhoods form a proper smooth map

f : W −→ [0,∞)

so that
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(1) f|Bd W is a proper Morse function with only finitely many critical points.

(2) f is the restriction of a proper Morse function f ′ on the double DW .

(To do this one first fixes f|Bd W , then constructs f ′ by the methods of Milnor
[4, §2].) Then follow the argument of Theorem 2.5 to the desired conclusion
remembering that frontier should replace boundaries. If ε is an isolated end of
W so that π1 is stable at ε and π1(ε) is finitely presented, then ε has arbitrarily
small 1–neighborhoods. (The proof of Definition 3.9 is easily adapted.) Thus we
can give the following definition of the invariant σ(ε) of a tame end ε. Consider
a connected neighborhood V of ε that is a smooth submanifold (possibly with
corners) having compact frontier and one end. If V is so small that π1(ε) −→
π1(V ) has a left inverse r then V ∈ D and

r∗σ(V ) ∈ K̃0(π1ε)

is an invariant of ε (see Proposition 7.6). Define σ(ε) = r∗σ(V ). A collar for an
end ε of W is a connected neighborhood V of ε that is a closed submanifold
W such that the frontier bV of V is a compact smooth submanifold of W
(possibly with boundary), and V is diffeomorphic to bV × [0,∞).

Relativized Main Theorem 10.1 Suppose W n , n ! 6, is a smooth mani-
fold such that Bd W is diffeomorphic to the interior of a compact manifold. If
ε is a tame end of W the invariant σ(ε) ∈ K̃0(π1ε) is zero if and only if ε has
a collar neighborhood.

Proof We have already observed that ε has arbitrarily small 1–neighborhoods.
To complete the proof one has to go back and generalize the argument of §4
and 5. There is no difficulty in doing this; one has only to keep in mind that
frontiers of k–neighborhoods are now to replace boundaries, and that all handle
operations are to be performed away from Bd W . This should be sufficient
proof.

Suppose again that W is a smooth manifold such that Bd W is diffeomorphic
to the interior of a compact smooth manifold.

Definition 10.2 A completion of W is a smooth imbedding i : W −→ W of
W into a compact smooth manifold so that i(Int W ) = IntW and the closure
of i(Bd W ) is a compact smooth manifold with interior i(Bd W ). If N is a
properly imbedded submanifold so that BdN is compact and N meets Bd W
in Bd N , transversely, we say i gives a completion of (W,N) if the closure of
i(N) in W is a compact submanifold N that meets Bd W in Bd N , transversely.
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When W has a completion a collar of ∞ is a neighborhood V of ∞ so that
the frontier bV is a smooth compact submanifold and V ∼= bV × [0, 1). Notice
that W has a completion if (and only if) it has finitely many ends, each with
a collar. The natural construction for W (c.f. §9) yields a manifold W ⊃ W
that has corners at the frontier of Bd W . Of course they can be smoothed as
in Milnor [9].

For the purposes of the theorem below observe that if the end ε of the Rela-
tivized Main Theorem has one collar, then one can easily find another collar V
of ε so that V ∩Bd W is a prescribed collar of the ends of Bd W contained by
ε.

The following theorem is a partial generalization of unknotting theorems for
Rk in Rn , n − k %= 2. (See Theorem 10.7.) It might be called a ‘peripheral
unknotting theorem’. The notion of tameness and the invariant σ are essential
in the proof but obligingly disappear in the statement.

Theorem 10.3 Let W be a smooth open manifold of dimension n ! 6 and
N a smooth properly imbedded submanifold (without boundary). Suppose W
and N separately admit a boundary. If N has codimension ! 3 or else has
codimension one and is 1–connected at each end, then there exists a compact
pair (W,N ) such that W = Int W , N = Int N .

Complement 10.4 It is a corollary of the proof we give and of the observation
above that N can be chosen to determine a prescribed collar of ∞ in N .

Remark A counterexample for codimension 2 is provided by an infinite string
K in R3 that has evenly spaced trefoil knots.

Figure 13:

(R3−K has non-finitely generated fundamental group – see §6). The boundary
of a tubular neighborhood of K gives an example for codimension 1 showing
that a restriction on the ends of N is necessary. To get examples in any dimen-
sion ! 3 consider (R3,K)× Rk , k = 0, 1, 2, . . . .
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W ′

T N

Figure 14:

Proof of Theorem 10.3 Let W ′ be W with the interior of a tubular neigh-
borhood T of N removed. Apparently it will suffice to show that (T,N) and
W ′ both have completions.

Let U ∼= Bd U× [0,∞) be a collar of ∞ in N . Then the part T|U of the smooth
disk bundle T over U is smoothly equivalent to the bundle (T|Bd U)) × [0,∞)
over Bd U×[0,∞) ∼= U . One can deduce this from a smooth version of Theorem
11.4 in Steenrod [29]. It follows that (T,N) has a completion.

By the method suggested above, form a proper Morse function f : W −→ [0,∞)
so that f |N has no critical point on a collar U = N∩f−1[a,∞) ∼= Bd U×[a,∞),
and so that, when restricted to T|U

∼= (T|Bd U ) × [a,∞), f gives the obvious
map to [a,∞). Then for b > a, Vb = f−1[b,∞) meets T in a collar Tb of ∞
in T . Consider V ′

b = Vb − IntT = Vb ∩ W ′ for any b noncritical, b > a. If
N has codimension ! 3, i : V ′

b ↪→ Vb is a 1–equivalence by a general position
argument. Since Vb and V ′

b ∩ Tb are in D , so is V ′
b by Complement 6.6 and

0 = σ(Vb) = i∗σ(V ′
b ) by the Sum Theorem 6.5; as i∗ is an isomorphism σ(V ′

b ) =
0. This shows that for each end ε of W there is a unique contained end ε′ of
W ′ and that ε′ (like ε) is tame with σ(ε′) = 0. Thus the Relativized Main
Theorem says that W ′ has a completion. This completes the proof if N has
codimension ! 3.

For codimension 1 we will reduce the proof that (W,N) has a completion to

Proposition 10.5 Let W be a smooth manifold of dimension ! 6 so that
Bd W is diffeomorphic to the interior of a compact manifold, and let N be
a smooth properly imbedded submanifold of codimension 1 so that Bd N is
compact and N meets Bd W in Bd N , transversely. Suppose that W and N
both have one end and separately admit a completion. If π1(εN ) = 1, then the
pair (W,N) admits a completion.
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Figure 15:

The proof appears below. Observe that Proposition 10.5 continues to hold
if N is replaced by several disjoint submanifolds N1, . . . , Nk each of which
enjoys the properties postulated for N . For we can apply Proposition 10.5 with
N = N1 , then replace W by W minus a small open tubular neighborhood of N1

(with resulting corners smoothed), and apply Proposition 10.5 again with N =
N2 . Eventually we deduce that W minus small open tubular neighborhoods
of N1, . . . , Nk (with resulting corners smoothed) admits a completion – which
implies that (W,N1 ∪ . . . ∪Nk) admits a completion as required.

Applying Proposition 10.5 thus extended, to the pair (Vb, N ∩ Vb), we see im-
mediately that the pair (W,N) of Theorem 10.3 has a completion when N has
codimension 1.

Proof of Proposition 10.5 If T is a tubular neighborhood of N in W we
know that (T,N) admits a completion. With the help of Lemma 1.8 one sees

that W ′ = W −
o
T has at most two ends, (where

o
T denotes the open 1–disk

bundle of T ). Consider a sequence V1, V2, . . . of 0–neighborhoods of ∞ in W
(constructed with the help of a suitable proper Morse function, as above) so
that

(1) Vi+1 ⊂ IntVi and
⋂

Vi = ∅.

(2) Ti = Vi ∩ T is T |Ni where Ni is a collar of ∞ in N .

After replacing V1, V2, . . . by a subsequence we may assume

(i) π1(εW ) −→ π1(Vi) is an imbedding and π1(Vi+1) −→ π1(Vi) has image
π1(εW ) ⊂ π1(Vi) for all i (c.f. Definition 4.4).
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(ii) If W ′ has two ends ε1 and ε2 , then V ′
i = Vi−

o
T has two components Ai

and Bi that are, respectively, neighborhoods of ε1 and ε2 , i = 1, 2, . . . .
If W ′ has one end then V ′

i is connected.

Case A) W ′ has two ends ε1 , ε2 .

Since π1(Ti) = π1(εN ) = 1, π1(Vi) = π1(Ai)∗π1(Bi). Thus with suitably chosen

base points and base paths the system V : π1(V1)
V1←− π1(V2)

V2←− . . . is the free

product of A : π1(A1)
a1←− π1(A2)

a2←− with B : π1(B1)
b1←− π1(B2)

b2←− . . . .
Observe that Image(Vi) intersects π1(Ai) in Image(ai) and intersects π1(Bi)
in Image(bi). Thus if A or B were not stable V would not be stable. As V is
stable both A and B must be. Now π1(ε1) is a retract of π1(Bi) for i large
and π1(Bi) is a retract of π1(Vi), which is finitely presented. Hence π1(ε1)
and similarly π1(ε2) is finitely presented by Lemma 3.8. By Theorem 3.10
(relativized) we can assume that Ai , Bi are 1–neighborhoods of ε1 , ε2 , so that
π1(εW ) ∼= π1(Vi) ∼= π1(Ai) ∗ π1(Bi) ∼= π1(ε1) ∗ π1(ε2).

Now Vi, Ti ∈ D implies Ai, Bi ∈ D by Complement 6.6, and 0 = σ(εW ) =

i1∗σ(ε1) + i2∗σ(ε2). Since K̃0 is functorial, i1∗, i2∗ imbed K̃0(π1ε1), K̃0(π1ε2)

as summands of K̃0(π1εW ). We conclude that σ(ε1) = 0, σ(ε2) = 0. Thus
W ′ admits a completion. As (W,N) does too Proposition 10.5 is established
in Case A).

Case B) W ′ has just one end ε′ .

There exists a smooth loop γ1 in V1 that intersects N just once, transversely.
Since π1(T1) = 1, π1(V1) = π1(V ′

1) ∗Z where 1 ∈ Z is represented by γ1 . Since
γ1 could lie in V2 we may assume [γ1] ∈ Imageπ1(V2) = π1(εW ) ⊂ π1(V1). Then
γ1 can be deformed to a sequence of loops γ2, γ3, . . . so that [γi] ∈ π1(εW ) ⊂
π1(Vi) and γi cuts N just once. Thus with suitable base points and paths
V : π1(V1) ←− π1(V2) ←− . . . is the free product of V ′ : π1(V ′

1) ←− π1(V ′
2) ←−

. . . with the trivial system Z ×1
←− Z ×1

←− . . .. The remainder of the proof is
similar to Case A) but easier, as the reader can verify. This completes the
proof of Proposition 10.5, and hence of Theorem 10.3.

The analogue of Theorem 10.3 in the theory of h–cobordisms is

Theorem 10.6 Let M and V be smooth closed manifolds and suppose N =
M × [0, 1] is smoothly imbedded in W = V × [0, 1] so that N meets Bd W in
M × 0 ⊂ V × 0 and M × 1 ⊂ V × 1, transversely. If W has dimension ! 6 and
N has codimension ! 3, then (W,N) is diffeomorphic to (V ×0,M×0)× [0, 1].
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The same is true if N has codimension 1, provided each component of V is
simply connected.

Proof Let W ′ be W with an open tubular neighborhood
o
T of N in W deleted.

One shows that W ′ gives a product cobordism from V × 0 −
o
T to V × 1 −

o
T

using the s–cobordism theorem. For codimension ! 3 see Wall [3, p. 27]. For
codimension 1, the argument is somewhat similar to that for Theorem 10.3 but
more straightforward.

The canonically simple application of Theorem 10.3 and Theorem 10.6 is the
proof that Rk unknots in Rn , n ! 6, n − k %= 2. This is already well known.
In fact it is true for any n except for the single case n = 3, k = 2 where the
result is false! See Connell, Montgomery and Yang [13], and Stallings [10].

Theorem 10.7 If (Rn, N) is a pair consisting of a copy N of Rk smoothly
and properly imbedded in Rn , then (Rn, N) is diffeomorphic to the standard
pair (Rn, Rk) provided n ! 6 and n− k %= 2.

Proof By Theorem 10.3 and its Complement 10.4 we know that (Rn, N) is
the interior of a compact pair (R,N), where N is a copy of Dk . We establish
the theorem by showing (R,N) is diffeomorphic to the standard pair (Dn,Dk).
Choose a small ball pair (Dn

0 ,Dk
0 ) in Rn so that Dk

0 = Dn
0 ∩N is concentric with

N ≈ Dk . By the h–cobordism theorem R − IntDn
0 is an annulus. Thus, ap-

plying Theorem 10.6, we find that (R,N ) is (Dn
0 ,Dk

0 ) with a (relative) product
cobordism attached at the boundary. This completes the proof.

The Isotopy Extension Theorem of Thom (Milnor [25]) shows that if N is
a smoothly properly imbedded submanifold of an open manifold W and ht ,
0 " t " 1, is a smooth isotopy of the inclusion map N ↪→ W then ht extends
to an ambient isotopy of W provided ht fixes points outside some compact set.
The standard example to show that this proviso is necessary involves a knot in
a string that moves to ∞ like a wave disturbance. N can be the center of the
string (codimension 2) or its surface (codimension 1).

Figure 16:
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Do counterexamples occur only in codimension 2 or 1? Here is an attempt to
say yes.

Theorem 10.8 Suppose Nk is a smooth open manifold smoothly and properly
imbedded in a smooth open manifold W n , n ! 6, n− k %= 2. Suppose that N
and W both admit a completion, and if n− k = 1, suppose N is 1–connected
at each end. Let H be a smooth proper isotopy of the inclusion N ↪→ W ,
i.e. a smooth level preserving proper imbedding H : N × [0, 1] −→ W × [0, 1],
that fixes N × 0. Then H extends to an ambient pseudo-isotopy – i.e. to a
diffeomorphism H ′ : W × [0, 1] −→ W × [0, 1] that is the identity on W × 0.

Corollary 10.9 The pair (W,N) is diffeomorphic to the pair (W,N1) if N1

is the deformed image of N – i.e. N1 = h1(N) where ht , 0 " t " 1, is defined
by H(t, x) = (t, ht(x)), t ∈ [0, 1], x ∈ N .

Proof (in outline): Observe that N ′ = H(N×[0, 1]) and W ′ = W×[0, 1] both
admit completions that are products with [0, 1]. By Theorem 10.3 (relativized)
there exists a compact pair (W ′,N ′) with W ′ = Int W ′ , N ′ = IntN ′ . By the
Complement 10.4 (relativized), we can assume N ′ is a product N × [0, 1], the
product structure agreeing on N ′ with that given by H . Furthermore, after
attaching a suitable (relative) h–cobordism at the boundary of (W ′,N ′) we
may assume W ′ is also a product with [0, 1].

Applying Theorem 10.6 we find (Bd W ′,Bd N ′) is a product with [0, 1]. Ap-
plying Theorem 10.6 again (now in a relativized form) we find (W ′,N ′) is
a product. What is more, if we now go back and apply the relativized s–
cobordism theorem we see that the given product structure N ′ ≈ N × [0, 1] can
be extended to a product structure on W ′ (Wall [3, Theorem 6.2]). Restricted
to W ′ this product structure gives the required diffeomorphism H ′ .

For amusement we unknot a whole forest of Rk ’s in Rn , n− k %= 2.

Theorem 10.10 Suppose N is a union of s disjoint copies of Rk , smoothly
and properly imbedded in Rn , n ! 6, n − k %= 2. Then (Rn, Nk) is diffeo-
morphic to a standard pair consisting of the cosets Rk + (0, . . . , 0, i) ⊂ Rn ,
i = 1, 2, . . . , s.

Proof There always exists a smoothly, properly imbedded copy of R1 that
meets each component of N in a single point, transversely. Thus after a diffeo-
morphism of Rn we can assume that the component Ni of N meets the last
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co-ordinate axis in (0, . . . , i), transversely, i = 1, . . . , s. Using [4, §5.6] we see
that after another diffeomorphism of Rn we can assume that Ni coincides with
Rk + (0, . . . , 0, i) near (0, . . . , 0, i).A smooth proper isotopy of N in Rn makes
N coincide with the standard cosets. Now apply Corollary 10.9.

11 A Duality Theorem and the Question of Topo-

logical Invariance for σ(ε).

We give here a brief exposition of a duality between the two ends ε− and ε+
of a smooth manifold W n homeomorphic to M × (0, 1) where M is a closed
topological manifold. The ends ε− and ε+ are necessarily tame and the duality
reads σ(ε+) = (−1)n−1σ(ε−) where the bar denotes a certain involution of

K̃0(π1W ) that is the analogue of the involution of Wh(π1W ) defined by Milnor
in [17]. Keep in mind that, by the Sum Theorem, σ(ε+) + σ(ε−) = σ(W ) =
σ(M), which is zero if M is equivalent to a finite complex. I unfortunately do
not know any example where σ(ε+) %= 0. If I did some compact topological
manifold (with boundary) would certainly be non-triangulable – namely the
closure V in M × [0, 1] = W of a 1–neighborhood V of ε+ in W . When W is
orientable the involution ‘bar’ depends on the group π1(W ) alone. Prof. Milnor
has established that this standard involution is in general non-trivial. There
exists non-zero x, y ∈ K̃0(Z257) so that x̄ = x and ȳ = −y %= y . The appendix
explains this (page 95).

Suppose h : W −→ W ′ is a homeomorphism of a smooth open manifold W
onto a smooth open manifold W ′ that carries an end ε of W to the end ε′ of
W ′ . From Definition 4.4 it follows that ε is tame if and only if ε′ is. For tame
ends we ask whether

h∗σ(ε) = σ(ε′).

The duality theorem shows that the difference h∗σ(ε)−σ(ε′) = σ0 satisfies the
restriction

σ0 + (−1)n−1σ̄0 = 0, n = dimW.

This is far from the answer that σ0 = 0. An example with σ0 %= 0 would again
involve a non-triangulable manifold.

A related question is “Does every tame end have a topological collar neighbor-
hood?” This may be just as difficult to answer as “Is every smooth h–cobordism
topologically a product cobordism?” It seems a safe guess that the answer to
both these questions is no. But proof is lacking.
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The same duality σ(ε+) = (−1)n−1σ(ε−) holds for the ends ε+ and ε− of a
manifold W n that is an infinite cyclic covering of a smooth compact manifold
– provided these two ends are tame. The proof is like that for M × R. It can
safely be left to the reader.

Question Let ε be a tame end of dimension ! 5 with σ(ε) %= 0, and let
M be the boundary of a collar for ε × S1 . Does the infinite cyclic cover of
M corresponding to the cokernel π1(M) −→ Z of the natural map π1(ε) −→
π1(M) ∼= π1(ε× S1) provide a non-trivial example of this duality?

To explain duality we need some algebra. Let R be an associative ring with
one-element 1 and a given anti-automorphism ‘bar’ : R −→ R of period two.
Thus r + s = r+s, rs = sr and r = r for r, s ∈ R. Modules are understood to
be left R–modules. For any module A, the anti-homomorphisms from A to R
– denoted Ā or HomR(A,R) – form a left R–module. (Note that HomR(A,R)
would be a right R–module.) Thus α ∈ Ā is an additive map A −→ R so that
α(ra) = α(a)r̄ for a ∈ A, r ∈ R. And (sα)(a) = s(α(a)) for a ∈ A, s ∈ R.
I leave it to the reader to verify that P −→ P̄ gives an additive involution on
the isomorphism classes P(R) of f.g. projective R–modules and hence additive

involutions (that we also call ‘bar’) on K0(R) and K̃0(R).

If C : . . . −→ Cλ
∂
−→ Cλ−1 −→ . . . is a chain complex we define C to be the

cochain complex

. . . ←− Cλ
∂̄
←− Cλ−1 ←− . . .

where ∂̄ is defined by the rule

(∂̄c̄)(e) = (−1)λc̄(∂e)

for e ∈ Cλ and c̄ ∈ Cλ−1 .

For our purposes R will be a group ring Z[G] where G is a fundamental group
of a manifold and the anti-automorphism ‘bar’ is that induced by sending g
to θ(g)g−1 in Z[G], where θ(g) = ±1 according as g gives an orientation
preserving or orientation reversing homeomorphism of the universal cover. If
the manifold is orientable θ(g) is always +1 and ‘bar’ then depends on G alone
and is called the standard involution.

Let (W n;V, V ′) be a smooth manifold triad with self-indexing Morse function
f . Provide the usual equipment; base point p for W ; base paths to the critical
points of f ; gradient-like vector field for f ; orientations for the left hand disks.
Then a based free π1W complex C∗ for H∗(W̃ , Ṽ ) is well defined (see §4).
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When we specify an orientation at p, geometrically dual equipment is deter-
mined for the Morse function −f and hence a geometrically dual complex C ′

∗

for H∗(W̃ , Ṽ ′). With the help of the formula ε′p = (−1)λ sign(gp)εp in §4, one
shows that

C ′
∗ = Cn−∗

i.e. C ′
∗ is the cochain complex C∗ with the grading suitably reversed.

Duality Theorem for M ×R 11.1 Suppose that W is a smooth open man-
ifold of dimension n ! 5 that is homeomorphic to M × R for some connected
closed topological manifold M . Then W has two ends ε− and ε+ , both tame,
and when we identify K̃0π1ε− and K̃0π1ε+ with K̃0π1W under the natural
isomorphisms,

σ(ε+) = (−1)n−1σ(ε−).

The proof begins after Theorem 11.4 below.

Corollary 11.2 The above theorem holds without restriction on n.

Proof of Corollary 11.2 Form the cartesian product of W with a closed
smooth manifold N6 having χ(N) = 1, e.g. real projective space P 6(R). Then
we have maps

π1(W )
i ""

π1(W ×N)
r

!!

so that r · i = 1. Using Definition 7.7 and the Product Theorem 7.2 one easily
shows that σ(ε+ × N) = χ(N)i∗σ(ε+) and hence r∗σ(ε+ × N) = σ(ε+). The
same holds for ε− . Since r∗ commutes with ’bar’, duality for W × N implies
duality for W .

Corollary 11.3 Without restriction on n,

σ(M) = σ(ε+) + (−1)n−1σ(ε+)

and, consequently, σ(M) = (−1)n−1σ(M).

Proof of Corollary 11.3 By Theorem 6.5, σ(M) = σ(W ) = σ(ε+) + σ(ε−).

Remark It is a conjecture of Professor Milnor that if Mm is any closed topo-
logical manifold, then σ(M) = (−1)mσ(M) or equivalently

ρ(M) = (−1)mρ(M).

Of course the conjecture vanishes if all closed manifolds are triangulable. The-
orem 11.1 shows at least that
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Theorem 11.4 If Mm is a closed topological manifold such that for some k ,
M × Rk has a smoothness structure then

σ(M) = (−1)mσ(M).

Proof of Theorem 11.4 We can assume k is even and k > 2. We will be
able to identify all fundamental groups naturally with π1(M). By Theorem 6.12
the end ε of M × Rk is tame and σ(ε) = σ(M). The open submanifold
W = M × Rk −M × 0 is homeomorphic to M × Sk−1 × R and σ(W ) = 0 by
the Product Theorem since k − 1 is odd. From Corollary 11.2 and the Sum
Theorem we get

0 = σ(W ) = σ(ε) + (−1)m+k−1σ(ε)

or
0 = σ(M) + (−1)m−1σ(M) as required.

Remark It is known that not every closed topological manifold M is stably
smoothable (see the Footnote below). However it is conceivable that, for suffi-
ciently large k , M×Rk can always be triangulated as a combinatorial manifold.
Then the piecewise linear version of Theorem 11.4 (see the introduction) would
prove Professor Milnor’s conjecture.

Proof of Duality Theorem 11.1 For convenience identify the underlying
topological manifold W with M × R. By Theorem 4.6 we can find a (n − 3)–
neighborhood V of ε+ so small that it lies in M × (0,∞). After adding suit-
able (trivially attached) 2–handles to V in M × (0,∞), we can assume that
U = W − IntV is a 2–neighborhood of ε− . Next find a (n− 3)–neighborhood
of the positive end of M × (−∞, 0). Adding M × [0,∞) to it we get a (n− 3)–
neighborhood V ′ of ε+ that contains M × [0,∞). After adding 2–handles to
V ′ we can assume that U ′ = W − IntV ′ is a 2–neighborhood of ε− .

By Proposition 5.1 we know that H∗(Ṽ ,Bd Ṽ ) and H∗(Ṽ ′,Bd Ṽ ′) are f.g. pro-
jective π1(W )–modules P+ and P ′

+ concentrated in dimension n− 2 and both
of class (−1)n−2σ(ε+). By an argument similar to that for Proposition 5.1
one shows that U admits a proper Morse function f : U −→ [0,∞) with
f−1(0) = Bd U so that f has critical points of index 2 and 3 only. (The
strong handle cancellation theorem in Wall [3, Theorem 5.5] is needed.) The

same is true for U ′ . It follows that H∗(Ũ ,Bd Ṽ ) and H∗(Ũ ′,Bd Ṽ ′) are f.g.
projective modules P− and P ′

− concentrated in dimension 3 and both of class
(−1)3σ(ε−) by Lemma 6.2 and Proposition 6.11.
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M

R

U ′ M ×D V

————— U —————

————— V ′ —————

Figure 17:

Let X = V ′ − IntV . Since the composition V ′ −M × (0,∞) ↪→ X ↪→ V ′ is

a homotopy equivalence H∗(X̃,Bd Ṽ ′) −→ H∗(Ṽ ′,Bd Ṽ ′) is onto. Thus from

the exact sequence of (Ṽ ′, X̃, M̃ ) we deduce (c.f. §5) that Hn−2(X̃,Bd Ṽ ′) ∼=
Hn−2(Ṽ ′,Bd Ṽ ′) ∼= P ′

+ and Hn−3(X̃,Bd Ṽ ′) ∼= Hn−2(Ṽ ′, X̃) ∼= Hn−2(Ṽ ,Bd Ṽ ) ∼=
P+ .

Similarly one shows that H∗(X̃,Bd Ṽ ) −→ H∗(Ũ ,Bd Ṽ ) is onto. As a conse-
quence H3(X̃,Bd Ṽ ) ∼= H3(Ũ ,Bd Ṽ ) = P− .

Now Bd V ↪→ X gives a π1–isomorphism. Also Bd V ′ ↪→ X is (n − 4)–
connected (and gives a π1–isomorphism when n = 5). It follows from Wall
[3, Theorem 5.5] that the triad (X; Bd V ′,Bd V ) admits a nice Morse function
f with critical points of index n− 3 and n− 2 only.

Let f be suitably equipped and consider the free π1(W )–complex C∗ for

H∗(X̃,Bd Ṽ ′). It has the form (c.f. §5)

0 −→ Hn−2 ⊕B′
n−3

∂
−→ Bn−3 ⊕Hn−3 −→ 0

where ∂ is an isomorphism of B′
n−3 onto Bn−3 and Hn−2

∼= P ′
+ and Hn−3

∼=
P+ . Then the complex C∗ is

0 ←− H̄n−2 ⊕ B̄′
n−3

∂
←− B̄n−3 ⊕Hn−3 ←− 0

where ∂ gives an isomorphism of B̄n−3 onto B̄′
n−3 . But we have observed that

Cn−∗ is the complex C ′
∗ for H∗(X̃,Bd Ṽ ) that is geometrically dual to C∗ .

Hence we have

H3(C
′) ∼= H̄n−3.

But H3(C ′) ∼= H3(X̃,Bd Ṽ ) ∼= P− has class (−1)3σ(ε−) and H̄n−3
∼= P̄+ has

class (−1)n−2σ(ε+). So the duality relation is established.
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Suppose W n is an open topological manifold and ε an end of W . Let S1 and S2

be two smoothness structures for W and denote the smooth ends corresponding
to ε by ε1, ε2 . Notice that ε1 is tame if and only if ε2 is, since the definition
of tameness does not mention the smoothness structure.

Theorem 11.5 Suppose n ! 5. If ε1 is tame, so is ε2 , and the difference
σ(ε1)− σ(ε2) = σ0 ∈ K̃0π1ε satisfies the relation

σ0 + (−1)n−1σ0 = 0.

Further σ0 is always zero if and only if the following statement (S) is true.

(S) If Mn−1 is a closed smooth manifold and W n is a smooth manifold
homeomorphic to M × R then both ends of W n have invariant zero.

Corollary 11.6 The first assertion of Theorem 11.5 is valid for any dimension
n.

Proof Let N6 be a closed smooth manifold with χ(N) = 1, and consider the
smoothings ε1×N , ε2×N of ε×N . Now follow the proof of Corollary 11.2.

Proof Let V1 be a 1–neighborhood of ε1 . With smoothness from S2, IntV1

has two ends – viz. ε2 , and the end ε0 whose neighborhoods are those of
Bd V1 intersected with IntV1 . Since ε0 has a neighborhood homeomorphic to
Bd V1 × R, ε0 is tame and σ(ε0) + (−1)n−1σ(ε0) = 0 by Corollary 11.3 to the
duality theorem. Let U be a 1–neighborhood of ε0 . Then V2 = IntV1−IntU is
clearly a 1–neighborhood of ε2 . But V1

∼= IntV1 = U ∪V2 and U ∩V2 is a finite
complex. Thus, by the Sum Theorem 6.5, σ(ε1) = σ(V1) = σ(V2) + σ(U) =
σ(ε2) + σ(ε0). Thus the first assertion holds with σ0 = σ(ε0).

Now if (S) holds, σ0 = σ(ε0) = 0 because ε0 is an end of a smooth manifold
homeomorphic to Bd V1×R. Conversely, if σ0 is always zero, i.e. σ(ε2) = σ(ε1),
then σ does not depend on the smoothness structure. Thus (S) clearly holds.
This completes the proof.

Footnote To justify the above assertion here is a folklore example, due to Pro-
fessor Milnor, of a closed topological manifold which is not stably smoothable.
It is shown in Milnor [32, 9.4, 9.5] that there is a finite complex K and a topo-
logical microbundle ξn over K which is stably distinct (as microbundle) from
any vector bundle. Further one can arrange that K is a compact k -submanifold
with boundary, of Rk for some k . By Kister [33] the induced microbundle Dξn

over the double DK of K contains a locally trivial bundle with fibre Rn . If one
suitably compactifies the total space adding a point-at-infinity to each fibre, a
closed topological manifold results which cannot be stably smoothable since its
tangent microbundle restricts to ξn ⊗ {trivial bundle} over K .
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Appendix

This appendix explains Professor Milnor’s proof that there exist nonzero x and
y in K̃0(Z257) so that x̄ = x and ȳ = −y %= y where the bar denotes the
standard involution (see §11). Theorems A.6 and A.7 below actually tell a

good deal about the standard involution on the projective class group K̃0(Zp)
of the cyclic group Zp of prime order p.

Suppose A and B are rings with identity each equipped with anti-automorphisms
‘bar’ of period 2. If θ : A −→ B is a ring homomorphism so that θ(ā) = θ(a),
then one can show that the diagram

K̃0(A)
′bar′
−−−−→ K̃0(A)

?θ∗
?θ∗

K̃0(B)
′bar′
−−−−→ K̃0(B)

commutes where ‘bar’ is the additive involution of the projective class group
defined in §11. Now specialize. Let A = Z[π] where π = {t; tp = 1} is cyclic of
prime order. Define a(t) = a(t−1) for a(t) ∈ Z[π] so that

bar : K0Z[π] −→ K0Z[π]

is the standard involution of K̃0Z[π] ≡ K̃0(π). Let B = Z[ξ] where ξ is a
primitive p–th root of 1, and let θ(t) = ξ define θ : Z[π] −→ Z[ξ]. (Notice that
ker θ is the principal ideal generated by Σ = 1 + t + . . . + tp−1 .) Since ξ−1 is
the complex conjugate ξ̄ of ξ , θ(ā) = θ(a) where the second bar is complex
conjugation.

The following is due to Rim [38, pp. 708-711].

Theorem A.1 θ∗ : K̃0Z[π] −→ K̃0Z[ξ] is an isomorphism.

Remark Rim assigns to a f.g. projective P over Z[π] the subobject

ΣP = {x ∈ P | Σx = 0}, Σ = 1 + t + . . . + tp−1 ,

with the obvious action of Z[π]/(Σ) ∼= Z[ξ]. But there is an exact sequence

0 −→ ΣP
α
−→ P

β
−→ ΣP −→ 0

where α is inclusion and β is multiplication by 1− t. Hence ΣP ∼= P/(ΣP ) as
Z[ξ]–modules. But P/(ΣP ) is easily seen to be isomorphic with Z[ξ] ⊗Z[π] P .
Thus Rim’s isomorphism is in fact θ∗ .
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We now have a commutative diagram

K̃0Z[π]
′bar′
−−−−→ K̃0Z[π]

∼=

?θ∗ ∼=

?θ∗

K̃0Z[ξ]
′bar′
−−−−→ K̃0Z[ξ]

So it is enough to study ‘bar’ on K̃0Z[ξ]. To do this we go one more step to
the ideal class group of Z[ξ].

Now Z[ξ] is known to be the ring of all algebraic integers in the cyclotomic
field Q(ξ) of p-th roots of unity [39, p. 70]. Hence Z[ξ] is a Dedekind domain
[40, p. 281]. A Dedekind domain may be defined as an integral domain R with
1–element in which the (equivalent) conditions A) and B) hold. [40, p. 275][41,
Chap. 7, pp. 29-33].

A) The fractional ideals from a group under multiplication. (A fractional
ideal is an R–module A imbedded in the quotient field K of R such that
for some r ∈ R, rA ⊂ R.)

B) Every ideal in R is a f.g. projective R–module.

The ideal class group C(R) of R is by definition the group of fractional ideals
modulo the subgroup generated by principal ideals. B) implies that any f.g.
projective P over R is a direct sum A1 ⊕ . . . ⊕ Ar of ideals in R [42, p. 13].
According to [38, Theorem 6.19] the ideal class of the product A1 . . .Ar de-
pends only on P and the correspondence P −→ A1 . . .Ar gives an isomorphism
ϕ : K̃0(R) −→ C(R).

Let us define ‘bar’ : CZ[ξ] −→ CZ[ξ] by sending a fractional ideal A to the
fractional ideal σ(A−1) where σ denotes complex conjugation in Q(ξ). The
following two lemmas show that the diagram

K̃0Z[ξ]
′bar′
−−−−→ K̃0Z[ξ]

∼=

?ϕ ∼=

?ϕ

CZ[ξ]
′bar′
−−−−→ CZ[ξ]

commutes.

Lemma A.2 In any Dedekind domain R, HomR(A, R) ∼= A−1 for any frac-
tional ideal A.
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Lemma A.3 Let A be any fractional ideal in Z[ξ]. Then σ(A) is naturally
isomorphic as Z[ξ]–module to A with a new action of Z[ξ] given by r · a = ra
for r ∈ Z[ξ], a ∈ A.

The second lemma is obvious. The first is proved below. To see that these lem-
mas imply that the diagram above commutes notice that for a ring R equipped
with anti-automorphism ’bar’, the left R–module P̄ = HomR(P,R) used in §11
to define ’bar’ : K̃0(R) −→ K̃0(R), is naturally isomorphic to P ∗ = HomR(P,R)
provided with a left action of R by the rule (r ·f)(x) = f(x)r̄ for r ∈ R, f ∈ P ∗

and x ∈ P .

Proof of Lemma A.2 We know A−1 = {y ∈ K | yA ⊂ R} where K is the
quotient field of R [40, p. 272]. So there is a natural imbedding

α : A−1 −→ HomR(A, R)

which we prove is onto. Take f ∈ HomR(A, R) and x ∈ A∩R. Let b = f(x)/x
and consider the map fb defined by fb(x) = bx. For a ∈ A

0 = (f − fb)(x) = a(f − fb)(x) = (f − fb)ax =

= x(f − fb)(a) = (f − fb)(a).

hence f(a) = fb(a) = ba. Thus b ∈ A−1 and α is onto as required.

Let A be a Dedekind domain, K its quotient field, L a finite Galois extension
of K with degree d and group G. Then the integral closure B of A in L
is a Dedekind domain. [40, p.281]. Each element σ ∈ G maps integers to
integers and so gives an automorphism of B fixing A. Then σ clearly gives an
automorphism of the group of fractional ideals of B that sends principal ideals
to principal ideals. Thus σ induces an automorphism σ∗ of C(B). Let us write
C(A) and C(B) as additive groups.

Theorem A.4 There exist homomorphisms j : C(A) −→ C(B) and N : C(B) −→
C(A) so that N ◦ j is multiplication by d = [L;K] and j ◦N =

∑
σ∈G σ∗ .

Proof j is induced by sending each fractional ideal A ∈ A to the fractional
ideal AB of B . N comes from the norm homomorphism defined in Lang [43,
p. 18–19]. It is Proposition 22 on p ‘1 of [43] that shows N is well defined.
That N ◦ j = d and j ◦ N =

∑
σ∈G σ∗ follows immediately from Corollary 1

and Corollary 3 on pp. 20–21 of [43].

Geometry & Topology Monographs, Volume X (20XX)



98 Laurence C. Siebenmann

Since ξ, ξ2, . . . , ξp−1 form a Z–basis for the algebraic integers in Q(ξ) [39, p.

70], ξ+ξ̄, . . . , ξ
p−1
2 +ξ̄

p−1
2 form a Z–basis for the self-conjugate integers in Q(ξ),

i.e. the algebraic integers in Q(ξ) ∩ R = Q(ξ + ξ̄). But Z[ξ + ξ̄] is the span of

ξ + ξ̄, . . . , ξ
p−1
2 + ξ̄

p−1
2 . Hence Z[ξ + ξ̄] is the full ring of algebraic integers in

Q(ξ+ ξ̄) and so is a Dedekind domain [40, p. 281]. It is now easy to check that
we have a situation as described above with A = Z[ξ + ξ̄], B = Z[ξ], d = 2
and G = {1,σ} where σ is complex conjugation. Observe that with the ideal
class group CZ[ξ] written additively x̄ = σ∗(−x) = −σ∗x, for x ∈ CZ[ξ] (see
above). As a direct application of the theorem above we have

Theorem A.5 There exist homomorphisms N and j

K̃0(Zp) ∼= CZ[ξ]
N ""

CZ[ξ + ξ̄]
j

!!

so that j ◦N = 1 + σ∗ and N ◦ j = 2.

Now the order h = h(p) of CZ[ξ] is the so-called class number of the cyclotomic
field Q(ξ) of p–th roots of unity. It can be expressed as a product h1h2 of
positive integral factors, where the first is given by a closed formula of Kummer
[44] 1850, and the second is the order of CZ[ξ + ξ̄], Vandiver [45, p. 571]. (In
fact j is 1 − 1 and N is onto, Kummer [50], Hasse [46, p.13 footnote 3, p.49
footnote 2]). Write h2 = h′

22
s where h′

2 is odd. Recall that p is a prime number

and K̃0(Zp) is the group of stable isomorphism classes of f.g. projective over

the group Zp . Bar denotes the standard involution of K̃0(Zp) (see §11).

Theorem A.6

1) The subgroup in K̃0(Zp) of all x with x̄ = x has order at least h1 ;

2) There is a summand S in K̃0(Zp) of order h′
2 so that ȳ = −y for all

y ∈ S .

Proof For x ∈ Kernel(N), (1 + σ∗)x = j ◦ Nx = 0 implies x̄ = x. But
Kernel(N) has order at least h1 ; so 1) is established. The component of CZ[ξ+
ξ̄] prime to 2 is a subgroup S of order h′

2 . Since multiplication by 2 is an
automorphism of S , N ◦ j = 2 says that j maps S 1 − 1 into a summand
of K̃0(Zp). For y = j(x), x ∈ S , we have j ◦ N(y) = j(2x) = 2y . Thus
y + σ∗y = 2y or ȳ = −y . This proves 2).

In case h2 is odd h2 = h′
2 , and the proof of Theorem A.6 gives the clear-cut

result:
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Theorem A.7 If the second factor h2 of the class number for the cyclotomic
field of p-th roots of unity is odd, then

K̃0(Zp) ∼= Kernel(N)⊕ CZ[ξ + ξ̄]

and x = x̄ for x ∈ Kernel(N) while ȳ = −y for y ∈ CZ[ξ + ξ̄].

In [47] 1870, Kummer proved that 2|h2 implies 2|h1 (c.f. [46], p. 119). He
shows that, although h1 is even for p = 29 and p = 113, h2 is odd. Then
he shows that both h1 and h2 are even for p = 163 and states that the same
is true for p = 937. Kummer computed h1 for all p < 100 in [44] 1850 (see
[50, p. 199] for the correction h1(71 = 72 × 79241), and for 101 " p " 163 in
[49] 1874. In [49], h1 is incorrectly listed as odd for p = 163. Supposing that
the other computations are correct, one observes that for p < 163, h1 is odd
except when p = 29 or p = 113. We conclude that p = 163 is the least prime
so that h2 is even. Thus p = 163 is the least prime where have to fall back
from Theorem A.7 to the weaker Theorem A.6.

Elements x in K0(Zp), so that x = x̄, are plentiful. After a slow start the
factor h1 grows rapidly: h1(p) = 1 for primes p < 23, h1(23) = 3, h1(29) = 8,
h1(31) = 9, h1(37) = 37, h1(41) = 11 · 11 = 121, h1(47) = 5 · 139, h1(53) =
4889, . . . , h1(101) = 55 · 101 · 11239301, etc. Kummer [44] 1850 gives (without
proof) the asymptotic formula

h1(p) ∼ p
p+3
4 /2

p−3
2 π

p−1
2 .

But it seems no one has show that h1(p) > 1 for all p > 23.

On the other hand elements with x̄ = −x are hard to get hold of, for information
about h2 is scanty. It has been established that h2(p) = 0 for primes p < 23
(see Minkowski [48, p. 296]). In [47] 1870, Kummer shows that h2 is divisible
by 3 for p = 229, and he asserts the same for p = 257.

Vandiver [45, p. 571] has used a criterion of Kummer to show that p|h1(p) for
p = 257 (but p % |h1(p) for p = 229). Since 3|h2(257), Theorem A6 shows for

example that there is in K̃0(Z257) an element x of order 257 with x = x̄ and
another element y of order 3 with ȳ = −y . Notice that (x + y) %= ±(x + y).

Remark 3 It is not to be thought that K̃0(Zp) is a cyclic group in general. In
[50] 1853, Kummer discussed the structure of the subgroup Gp of all elements
for which x̄ = x, i.e. the subgroup corresponding to the ideals A in Z[ξ] such
that Aσ(A) is principal. For p < 100, h2 is odd so that this subgroup is a
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summand of order h1 by Theorem A.7. He found that

G29 = Z2 ⊕ Z2 ⊕ Z2

G31 = Z9

G41 = Z11 ⊕ Z11

G71 = Z49 ⊕ Z79241

For other p < 100 there are no repeated factors in h1 hence no structure
problem exists.
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