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ABSTRACT

--Procedures of statistical inference are described which

generalize Bayesianv inference in specific ways. Probability

is used in such a way that in general only bounds may be

placedon the probabilities of given. events, and probability

systems ofthis kind are suggested both for sample information

and for- prior information. These systems are then combined

usinga specified rule. Illustrations are given for inferences

6bout trinomial probabilities, and for inferences about a mono-

tone sequence of binomial ps. Finally., some comments are mad&-

on ,the general class of models which produce upper and lowcr

probabilities, and on the specific models which underlie the

suggested inference procedures.

'1



"t, t

1. INTRODUCTION

Reduced to its mathematical essentials, Bayesian inference

means starting with a global probability distribution for all

relevant variables, observing the values of some of these vari-

ables, and quoting the conditional distribution of the remaining

variables given the observations. in the generalization of this

paper, something less than a global probability distribution is

required, while the basic device of conditioning on observed data

is retained. Actually, the generalization is more specific. The

term Bayesian commonly implies a global probability law given in

two parts, first the marginal distribution of a set of parameters,

and second a family of conditional distributions of a set of

observable variables given potential sets of parameter Values.

The first part, or prior distribution, summarizes a set of beliefs

or state of knowledge in hand before any observations are taken.

The second part, or likelihood function, characterizes the informa-

tion carried by the observations,. Specific generalizations are

suggested in this paper for both parts of the common Bay sian model,

and also for the method of combining the two parts. The components

of these generalizations are built up gradually in Section 2 where

they are illustrated on a model for trinomial sampling.

Inferences will be expressed as probabilities of events defined

by unknown values, usually unknown parameter values, but sometimes

the values of not yet observed observables. It is not possible here
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to go far into the- much embroiled questions of whether probabilities

,are or are not objective, are or are not degrees of belief, are or

are not frequencies, and so on. But a few remarks may help to set

the stage. I feel that the proponents of different specific views

of probability generally share more attitudes rooted in the common

sense of the subject than they outwardly profess,, and- that careful

analysis renders manyof the basic ideas more complementary than

contradictory. Definitions in terms of frequencies or equally

-likely cases do illustrate clearly how reasonably objective prob-

abilities arise in practice, but they fail in themselves to say

what probabilities mean or to explain the pervasiveness of the

concept ,of probability -in human affairs. Another class of defini-

tions stresses concepts like degree of c nfidence or degree of

belief or degree of knowledge, sometimes in relation to betting

rules and sometimes not. These convey the flavor and motivation of

the science of probability, but they tend to hide the realities

which make it both possible and important for cognizant people to

agree when assigning probabilities to uncertain outcomes. The

possibility of agreement arises basically from common perceptions

of symmetries, such as symmetries among cases counted to provide

frequencies, or symmetries which underlie assumptions of exchange-

ability or of equally likely cases. The importance of agreement

may be illustrated by the statistician who expresses his

inferences about an unknown parameter value in terms of a set of
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betting odds. If this statistician accepts any bet proposed at

his stated odds, and if he wagers with colleagues who consistently

have more infomnation, perhaps in the form of larger samples,

then he is sure to suffer disaster in the long run,. The moral

is that probabilities can scarcelybe "fair" for business deals

unless both parties have approximately the same probability

assessments, presumably based on similar knowledge or information.

Likewise probability inferences can contribute little to public

science unless they are as objective as the web of generally

accepted fact on' which they are based. ,While knowledge may

certainly be personal, the communication of knowledge is one of

the most fundamental of human endeavors. Statistical inference

can be viewed as the science whose formulations make it possible

to communicate partial knowledge in the form of probabilities,..

Generalized Bayesian inference seeks to permit improvement on

classical Bayesian inference through a complex trade-off of advantages

and disadvantages. On the credit side, the requirement of a global

probability law is dropped and it becomes possible to work with only

those probability assumptions which are based on readily apparent

symmetry conditions, and ar3 therefore reasonably objective. For

example, in a wide class of sampling models, including the trinomial

sampling model analyzed in Section 2, no probabilities are assumed

except the familiar and noncontroversial representation of a sample
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as n independent and identically distributed random elements from

a population. Beyond this, further assumptions like specific

parametric forms or prior distributions for parameters need be

put in: only to the extent that they appear to command a fair

degree of assent.

The new inference procedures do not in general yield exact

probabilities for desired inferences, but only bounds for such

probabilities. While it may count as a debit item that inferences

are less precise than one might have hoped, it is a credit item

that greater flexibility is allowed in the representation of a state

of knowledge. For example, a state of total ignorance about an

uncertain event T is naturally represented by an upper probability

P*(T) - 1 and a lower probability P*(T) - 0. The new flexibility

thus permits a simple resolution of the old controversy about how

to represent total ignorance via a probability distribution. In

real life, ignorance is rarely so total that (0,1) bounds are justified,

but ignorance is likely to be such that a precise numerical probability

is difficult to justify. I believe that-experience and familiarity

will show that the general range of bounds 0 < P*(T) < P*(T) < 1

provides a useful tool for representing degrees of knowledge.

Upper and lower probabilities apparently originated with Boole

(1854), and have reappeared after a largely dormant period in Good

(1962) and Smith (1961, 1965). In this paper upper and lower
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probabilities are generated by a specific mathematical device whereby

a well-defined4.probability measure over one sample space becomes

diffused in its application to directly interesting events. In

order to illustrate the idea simply, consider a map showing regions

of land and water. Suppose that .80 of the area of the map is

visible and that the visible area divides in the proportions .30

to .70 of water area to land area. What is the probability that a

point drawn at random from the whole map falls in a region of water?

Since the visible water area is .24 of the t ota! area of the map,

while the unobserved .20 of the total area could be water or land,

it can be asserted only that the desired probability lies between

.24 and .44. The model supposes a well-defined uniform distribution

over the whole map. Of the total measure of unity, the fraction- .24

is associated with water, the fraction .56 is associated with land,

and the remaining fraction .20 is ambiguously associated with water

or land. Note the implication of total ignorance of the unobserved

area. There would be no objection to introducing-other sources of

information about the unobserved area. Indeed, if such information

were appropriately expressed in terms of an upper and lower probability

model, it could be combined with-the above information using a rule of

combination defined within the mathematical system. A correct analogy

can be drawn with prior knowledge of parameter values, which can like-

wise be formally incorporated into inferences based on sample data,

using the same rule of combination. The general mathematical system, as
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given originally in Dempster (1967a) will be unfolded in Section 2'

an&will be further commented upon in Section 4.

If the inference procedures suggested in this paper are some-

what speculative in nature, the reasoa lies, I believa, not in a

lack of objectivity in the probability assumptions, nor in the upper

and lower probability feature. Rather, the source of the speculative

quality is to be found in the logical relationships between population

members and their observable characteristics which are postulated in

each model set up to represent sampling from .a population. These

logical.relatipnships are conceptual devices, which are not regarded

as empirically checkable even in principle, and they are somewhat

arbitrary. Their acceptability will be analyzed in Section 5 where

it will be argued' that the arbitrariness may correspond to something

real in the nature of an uncertainty principle.

A degree of arbitrariness does not in itself rule out a method

of statistical inference. For example, confidence statements are

widely used in practice despite the fact that many confidence pro-

cedures are often available within the same model and for the same

question, and there is no well-established theory for automatic choice

among available confidence procedures. In part, therefore, the use-

fulness of generalized Bayesian iference procedures will require that

practitioners experiment with them and come to feel comfortable with

them. Relatively few procedures are as yet analytically tractable,



but two examples are included, namely-, the trinomial sampling

inference procedures of Section 2,j and a procedure for distin-

guishing between monotone upward and monotone downward sequences

of binomial pi as given in Section 3. Another model is worked
Ii

through in detail in Dempster (1967b).

Finally, an acknowledgment is due'to R.A. Fisher who announced,

with characteristic intellectual boldness, nearly four decades ago,

that probability inferences were indeed possible outside of the

Bayesian formulation. Fisher compiled a iist of examples and- guide-

lines-which seemed to him to lead to acceptable inferences in terms

of.probabilities which he called fiducial probabilities. The mathe-

matical formulation of this paper is broad enough to include the

fiducial argument in addition to standard Bayesian methods. But the

specific models which Fisher advocated, depending on ingenious but

often controversial pivotal quantities, are replaced here by models

which start further back at the concept of a population explicitly

represented by a mathematical space. Fisher did not consider models

which lead to separated upper and lower probabilities, and indeed

went to some lengths, using sufficiency and ancillarity, and

arranging that the spaces of pivotal quantities and of parameters be

of the same dimension, in order to ensure that ambiguity did not

appear. This paper is largely an exploration of fiducial-like argu-

ments in a more relaxed mathematical framework. But, since Bayesian

--- ---- ---
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methods are more in the main stream of development, and since I

do explicitly provide for the incorporation of prior information,

I now prefer to describe my methods as extensions of Bayesian

methods rather than alternative fiducial methods. I believe that

Fisher too, regarded fiducial inference as being very close to

Bayesian inference in spirit, differing primarily in that

fiducial inference did not make use of prior information.

.1
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2. UPPER AND LOWER PROBABILITY INFERENCES ILLUSTRATED

ON A MODEL FOR TRINOMIAL SAMPLING

A pair of sample spaces X and S underlie the general form

of mathematical model appearing throughout this work. The first

space X carries an ordinary probability measure p, but interest

centers on events which are identified with subsets of S. A

bridge is provided from X to S by a logical relationship which

asserts that, if x is the realized sample point in X, then the

realized sample point s in S must belong to a subset Px of S.

Thus a basic component of the model is a mathematical transfor-

mation which associates a subset Px of S with each point x of X.

Since the rx determined by a specific x contains in ,general many

points (or branches or values), the transformation x - Px may be

called a multivalued mapping. Apart from measurability considera-

tions, which are ignored in this paper, the general model is defined

by the elements introduced above and will be labeled (X, s, P, r) for

convenient reference. Given (X, s, p, r), upper and lower proba-

bilities P*(T) and P*(T) are determined for each subset T of S.

In the map example of Section 1, X is defined by the points

of the map, S is defined by two points labeled "water" and "land",

p is the uniform distribution of probability over the map, and r is

the mapping which associates the single point "water" or "land"
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in S with the appropriate points of the visible part of X, and

associates both points of S with the points of the unseen part

of X. For set-theoretic consistency, Px should be regarded as

a single point subset of S, rather than a single point itself,

over the visible part of X, but the meaning is the same either

way.

The general definitions of P*(T) and P,(T) as given in

Dempster (1967a) are repeated below in more verbal form. For any

subset T of S, define T* to be the set of points x in X

for which rx has a nonempty intersection with T, and define

T, to be the set of points x in X for which rx is contained

in T but is not empty. In particular, the sets S* and S,

coincide and they constitute the union of all rx as x ranges

over X. The complement X - S* of S* .consists of those x

for which Px is the empty set. Now define the upper probability

of T to be

(2.1) P*(T) - p(T*)/ (S)

and the lower probability of T to be

(2.2) P*(T) - I(T,)/ P(S*)

Note that, since TC T* C S*, one has

(2.3) 0 < P*(T) < P*(T) < 1.



- 1I -

Also, if T is the complement of T in S, then T and T*

are respectively the complements of T* and T, in S*, so that

(2.4) P,(T) = I - P*(T) and P*(T) = 1 - P*(T)

Other formal consequences of the above definitions are explored

in Dempster (1967a).

The heuristic conception which motivates (2.1) and-(2.2) is

the idea of carrying probability elements d from X to S

along the branches of the mapping rx. The ambiguity in the

consequent probability measure over S occurs because the probability

element dp(x) associated with x in X may be carried along any

branch of rx or, more generally, may be distributed over the dif-

ferent branches of Px. for each x. Part of the p measure,

namely the measure of the set X - S* consisting of points x such

that Px is empty, cannot be moved from X at all. Since there is

an implicit assumption that some s in S is actually realized, it

is appropriate to condition by S* when defining relevant probabili-

ties. This explains the divisor [t(S*) appearing in (2.1) and (2.2).

Among all the ways of transferring the relevant probability p(S*)

from X to S along branches of Ix, the largest fraction which

can possibly follow branches into T is P*(T), while the smallest

possible fraction is P*(T). Thus conservative probability judg-

ments may be rendered by asserting only that the probability of T

lies between the indicated upper and lower bounds.

i0



-12-

It may also be: illuminating to view Tx as a random set in S

gpnerated by the random point x in X, subject to the condition

That rx is not empty. After conditioning on. S*, P*(T) is the

probability that the random set Px intersects the fixed set T,

while P*(T) is the probability that the random set rx is con-

tained in the fixed set T.

A probability model like (X, s, ti, r) may be modified into

other probability models of the same general type by conditioning

on subsets of S. Such. conditioning on observed data defines the

generalized Bayesian inferences of this paper. Beyond and generai'

izing the concept of conditioning, there is a natural rule for

combining or multiplying several independent models of the type

(X, S, P, r) to obtain a single product model of the same type.

1 For example, the models for n independent sample observations

may be put together by the product rule to yield a single model

for a sample of size n, and the model defining prior information

may be combined with the model carrying sample information by the

same rule. The rules for conditioning and multiplying will be

transcribed below from Dempster (1967a) and will be illustrated

on a model for trinomial sampling. First, however, the elements of

the trinomial sampling model will be introduced for a sample of

size one.

Each member of a large population, shortly to be idealized as
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an infinite population, is supposed known to belong to one of three

identifiable categories clc 2 and c3, where the integer subscripts

do not indicate a natural ordering of the categories. Thus the

individuals of the population could be balls in an urn, identical

in appearance apart from their colours which are red (C) or white

(e2) or blue (c3). A model will be defined which will ultimately

lead to procedures for drawing inferences about unknown'population

proportions of clc 2 and c3  given the categories of a random,

sample of size n from the population. Following Dempster (1966),

the individuals of the population will be explicitly represented by

the points of a space U, :and the randomness associated with a

sample individual drawn from U will be characterized by a proba-

bility measure over U. Thus, a finite population of size N could

be represented'by any finite space U with N elements, with random

sampling represented by the uniform distribution of probability over

the N elements of U. Such a finite population model is analyzed in

detail in Dempster (1967b). Here, however, the population is treated

as infinite, and, for reasons tied up with the trinomial observable,

the space U is identified with a triangle. Convenient barycentric

coordinates for a general point of U are

(2.5) U- (u 1 ,u 2 ,u 3 )
lIu2u

I-Z-
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where 0 u I, 0 u2 , 0 u3 andu I +u 2 +u 3 =1. See Figure 1.

It is further supposed that a random sample of size one means an

individual u drawn according to the uniform distribution p over

the triangle U. In the model (X, S, p, r) representing a random

sample of size one from a trinomial population-the roles of X and

p will be played by U and p.

Two further spaces enter naturally into the model for a single

trinomial observation. The first is the three element space

C {'c1 ,c2 ,c3} whose general member c represents the observable

category of the sample individual. The second is the space, n whose

general point is

(2.6) = (7r 2,7) ,

with 0 I, 0 < r2 , 0 K r3 and 7I + r 2 + r3 =1 ,where 7. is

to be interpreted .for i = 1,2,3 as the proportion of the popula-

tion falling in category c.. Note that I is a mathematical

copy of U, but its appliedmeaning is distinct from that of U.

The role of S in the general model (X, s, P, r) will be played

by the product space C x n which represents jointly the observa-

tion on a single random individual together with the population

proportions of cl,c 2 and c3 . Finally, the role of r is played

by B where, for any u -in U, the set Bu in C x H consists

of the points (ci,w) such that
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= ma 7, 72 , 73
(2.7) u max

for i = 1, 2, 3. To understand the definition of B, but not yet

the motivation for the definition, it is helpful to visualize

C x n as a stack of three triangles as in Figure 2 where the

three levels correspond to the three points of C. The contribu-

tions to Bu from the three levels of C x n are shown as shaded

areas in Figure 2. It is important also to understand the inverse
-i

mapping B which carries points of C x n to subsets of U,

where

(2.8) U. B1 (c.r)

is defined to be the subset of U consisting of points u for

which Bu contains (ci ,O. The subsets UI ,U2 ,U3  defined by a

given r in n are illustrated in Figure 1.

It is easily checked with the help of Figure 1 that

(2.9) P(Ui) = i and p(Ui U ) 0

for i,j = 1, 2, 3 and i 0 j. It will be shown later that Cie

property (2.9) is a basic requirement for the mapping B defined

in (2.7). Other choices of U and B could be made which would

also satisfy (2.9). Some of these choices amount to little more

than adopting different coordinate systems for U, but other
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(o, t~o(io~o.o)
r='r' 1 U3rLUIr$)

(o.(0 1)0 (O 1)

Figure 1. A triangle representing the space U, showing the*
barycentric coordinates of the three vertices of U together
with a general point u = (ulU 2 ,U3). The three closed sub-

triangles labelled UI,U2 and U3 with a common vertex at 7

represent the subsets of U consisting of points u such that
Bu contains (cl,w), (c2, r )  and (c3,7) , respectively.

VA,

I
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possible choices differ in a more fundamental way. Thus an element

of arbitrariness enters .the model for trinomial sampling at the point

of choosing U and B. The present model was introduced in

Dempster (1966) under the name structure of the second kind. Other

possibilities will be mentioned in Section 5.

All of the pieces of the model (U, C x H, p, B) are now in

place, so that upper and lower probabilities may be computed for

subsets T of C x n-. It turns out, however, that P*(T) = 1 and

P*(T) = 0 for interesting choices of T, and that interesting

illustrations of upper and lower probabilities are apparent only

after conditioning. For example, take T to be the event that

category cI will be observed in a single drawing from the popula-

tion, i.e., T = C 1 x n where C1 is the subset of C consisting

of cI only. To check that P*(T) = 1 and P*(T) = 0, note

(i) that T* = U because every u in U lies in U1  of Figure i

for some (cl,w) in C1 x n, and (ii) that T, is empty because

no u in U lies in U1  for all (clir) in C x 11. In general,

any nontrivial event governed by C alone or by n alone will have

upper probability unity and lower probability zero. Such a result

is sensible, for if no information about v is put into the system

no information about a sample observation should be available, while

if no sample observation is ii hand there should be no available

information about w. (Recall the interpretation suggested in
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Section 1 that P*(T) = 1 and P*(T) = 0 should convey a state of

complete ignorance about the whether or not the real world outcome

s will prove to lie in T.)

Turning now to the concept of upper and lower conditional

probabilities, the definition which fits naturally with the general

model. (X, s, P,, r) arises as follows. If information is received

to the effect that sample points in S - T are ruled oat of consid-

eration, then the logical assertion "x in X must correspond to

s in rx c s" is effectively altered to read "x in X must

correspond to s in rxn T in S." Thus the original model

(X, s, P, r) is conditioned on T by altering (X, s, P, r) to

(X, S, p, ,), where the multivalued mapping r is defined by

(2.10) rx - rxfnT

Under the conditioned model, an outcome in S - T is regarded as,

impossible, and indeed the set S - T has upper and lower conditional

probabilities both zero. It is sufficient for practical purposes,

therefore, to take the conditional model to be (K, T, ., p') and

to consider upper and lower conditional probabilities only for

subsets of T.

Although samples of size one are of little practical interest,

the model for a single trinomial observation provides two good

illustrations of the definition of a conditioned model. First, it
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will be shown that conditioning on a fixed value of v = (wi,7 2 ,w3 )

results in r. being both the upper and lower conditional proba-
1.

bility of an observation ci, for i = 1, 2, 3. This result is

equivalent to (2.9) and explains the importance of (2.9), since any

reasonable model should require that the population proportions be

the same as the probabilities of the different possible outcomes in

a single random drawing when the population proportions'are known.

Second, it will be shown that nontrivial inferences about r may be

obtained by conditioning on the observed category c of a single

individual randomly drawn from U.

In precise mathematical terms, to condition the trinomial

sampling model (U, C x n, p, B) on a fixed r is to condition

on T - C x A, where H is the subset of n consisting of the

single point r. T itself consists of the three points (cli),

(c 2 ,2) and (c3 ,) which in turn define single point subsets TI,T 2

and T3  of T. The conditioned model may be written (U, T, p, B)

where Bu = BunT for all u. By referring back to the definition

of B as illustrated in Figures 1 and 2, it is easily checked that

the set of u in U such that Bu intersects T. is the closed

triangle U. appearing in Figure 1, while the set of u in U

such that Bu is contained in T. is the open triangle Ui, for

:11
i = 1n 2, 3. Whether open or closed, the triangle U has measure

7Ti, and it follows easily from (2.9) that the upper and lower
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conditional probabilities of T. given T are

(2.11) P (TilT) = P, (TiT) = i.

for i = 1, 2, 3. Note that Bu is not empty for any u in U,

so that the denominators in (2.1) and (2.2) are both unity in the

application (2.11).

Consider next the details of conditioning the trinomial model

on a fixed observation cI. The cases where a single drawing pro-

duces c2 or c3 may be handled by permuting indices. Observing

c 1is formally represented by conditioning on T= C 1 x n where

C1  as above is the subset of C consisting of cI  alone. In the

conditional model (U, T, p, B), the space T is represented by the

first level in Figure 2 while Bu is represented by the closed

shaded region in that first level. Since Bu is nonempty for all

u in U, the p measure may be used directly without renormalization

to compute upper and lower conditional probabilities given T. An

event R defined as a subset of n is equivalently represented by

the subset C x R of T. The upper conditional probability of
1

C x R given T is the probability that the random region Bu
1

intersects C x R where (cl,U) is uniformly distributed over

C x H. See Figure 3. Similarly the lower conditional probability
1

of C1 x R given T is the probability that the random region 9u

is contained in C1 x R. For example, if R is the lower portion

L1
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Figure 3. The triangle T =C x n1 for the model conditioned
1

on the observation c1. Horizontal shading covers the region

Bu, while vertical shading covers a general fixed region

C xR.
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of the triangle where 0 < 7ri - I"' then P*(C I x RIT) = 1-(l - w11)

= 1
11(2 - wi') and P,(C x RIT) = 0. Or, in more colloquial notation,

p*(0 < wi < 7i''Ic = cI ) = 1"(2- wi") ,and _ 7rw1  "Ic = cI ) =0.

More generally, it can easily be checked that

(2.12) P*(l l l wI1' 1c = cl) " wi''(2 - ') '

while

(2.13) P*(wl' < r, 7r'c Cl) - 0 if rl" < I

= (1 - rI )2 if rl- 1,

for any fixed r' and rI" satisfying 0 < r < 7r," < 1. Likewise,

(2.14) P*(w2 ' 7 7 < w2'' c " cl) 1 -7

while

(2.15) P*( 2' < 2  w2 'Ic = cl) i 0 if 2' > 0

2 if 7 02

for any fixed 72' and 7r2" satisfying 0 < w2 ' < 7 2" < 1. Relations

(2.14) and (2.15) also hold when subscripts 2 and 3 are interchanged.

Formulas (2.12) through (2.15) are the first instances of generalized

Bayesian inferences readhed in this paper, where, as will shortly be

explained, prior knowledge of r is tacitly assumed to have the null

form such that all upper probabilities are unity and all lower

probabilities are zero. For example, the model asserts that, if

Ix
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a single random individual is observed to belong in category cl,

and no prior knowledge of r is assumed, it may be inferred that

at least half the population belongs in cI with probability between

1/4 and 1.

A collection of n models (X S) P r for i = 1,2,...

may be combined or multiplied to obtain a product model (X, S, I,, F).

The formal definition of (X, S, p, F) is given by

(X = X( I ) x X(2) x ... X X( n)

(2.16) =_- ( X(?x ) x ... X P(n), and

x - r(r)X ( I )  r(2)x ( 2 ) n ... 0 F(n)x( n )

where x -(x ( ) ,  ... , x n ) ) denotes a general point of the

product space X. The product model is appropriate where the*
reaizd vlus ( I )  (2) (n)
realized values x x are regarded as independently

random according to the probability measures pl) (2) (n)
while the logical relationships implied by r''I  r'', .. are

'postulated to apply simultaneously to a common realized outcome s

in S. It may be helpful to view the models (X(i), S, (i), r (i))

as separate sources of information about the unknown s in S. In

such a view, if the n sources are genuinely independent, then the

product rule (2.16) represents the legitimate way to pool their
information.



-22-

The concept of a product model actually includes the concept

of a conditioned model which was introduced earlier. Proceeding

formally, the information that T occurs with certainty may be

represented by a degenerate model (Y, S, v$, ) where Y consists

of a single point y, while Ay - T and y carries v measure

unity. Multiplying a general model (X, S, ii, r) by (Y, S$ v, A)

produces essentially the same result as conditioning the general

model (X, s, P, r) on T. For X x Y and p x v are isomorphic

in an obvious way to X and p, while Ixfn Ay - Px flT - Px as in

(2.10). Thus the objective of taking account of information in the

special form of an assertion that T must occur may be reached

either through the rule of conditioning or through the rule of

multiplication, with identical results. In particular, when T = S

the degenerate model (Y, S, v, A) conveys no information about the

uncertain outcome s in S, both in the heuristic sense that Upper

and lower probabilities of nontrivial events are unity and zero,

and in the formal sense that combining such a (Y, S, v, A) with

any information source (X, s, p., r) leaves the -latter model

essentially unaltered.

Product models are widely used in mathematical statistics to

represent random samples of size n from infinite populations, and

they apply directly to provide the general sample size extension of

the trinomial sampling model (U, C x n, p, B). A random sample of

(1) (2) (n)
size n from the population U is represented by u %" $00 ..
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independently drawn from U according to the same uniform proba-

bility measure p. More precisely, the sample (1) (2) (n))

is represented by a single random point drawn from the product space

(2.17) n U 1  x U

according tO the product measure

n (1) (2) (n)

(2.18) p - p x p x ... x p

- ((1) ,(!)) (2 ,(2) (n)(n

where the pairs (U sp 1) (U SP )10009(2 Vp at n

identical mathlamatical copies of the original pair (U, p). In

similar way, the observable categories of the n sample individuals

are represented by a point in the product space

(2.19) 6n . C( 1 ) x C( 2 ) x ., x C( n )

where C(i) is the three element space from which the observable

category c(i) of the sample individual u(i) is taken. The
interesting unknowns before sampling are c'l,c ( c and

7, which define a point in the space Cn x n. Accordingly, the

model which represents a random sample of size n from a trinomial

population is of the form (Un , Cn x n, p , B n), where it remains

only to define Bn. In words, Bn is the logical relationship

which requires that (2.7) shall hold for each ufi) In symbols,
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(2.20) Bn(1) $U(2) u(n)

SB 1 u n B(2) 2  . n B(n)u (n )

where Biu i  consists of those points (c(1),c (2) , . . ,c (n) 30

in Cn x n such that

Wk m I ar2 'r3

(2.21) ax - - i ' ,(i

Uk \ui1) U2

for k = 1,2,3.

The model (Un , Cn x 1, p ,n B) now completely defined

provides in itself an illustration of the product rule. For (2.17),

(2.18) and (2.20) are instances of the three lines of (2.16), and

hence show that (Un , C x H, p , Bn ) is the product of the n

models (UMi$6n X n, p(i), BM for i = 1,2,...,n, each

representing an individual sample member.

As in the special case n = 1, the model (Un, Cn x H, pn, Bn)Y

does not in itself provide interesting upper and lower probabilities.

Again, conditioning may be illustrated either by fixing r and

asking for probability judgments about c (1),(2) (n),c ,.o..C or

conversely by fixing cMi) (2),... ,c (n ) and asking for probability

judgments (i.e., generalized Bayesian inferences) about V. Condi-

tioning on fixed Z leads easily to the expected generalization of

(2.11). Specifically, if T is the event that 7 has a specified

value, while T is the event that c P ), *PC are fixed,

,.. ... ,......fi e H
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with n. observations in category c. for i = 1,2,3, then
2. 1

(2.22) P*(TIT) = P*(TIT) = 7rl2z3

The converse approach of conditioning on T leads to more difficult

mathemaLics.

(1) (2) (n)
Before c 2c 20-2c are observed, the relevant sample

space cn x n consists of 3n triangles, each a copy of n.
c( I ) c ( 2 )  c ( n )

Conditioning on a set of recorded observations c ,) ,...

reduces the relevant sample space to the single triangle associated

with those observations. Although this triangle is actually a sub-

set of Cn x 1, it is essentially the same as n and will be

formally identified with U for the remainder of this discussion.
Un nn n 1 (2) (n)

Conditioning the model (Un , C x I, n, Bn ) on c 1,c 2 ,...,c

leads therefore to the model , B ) where B is defined

by restricting Bn to the appropriate copy of n. The important

random subset n(u(1) (2) (n) of defined by the random

()(2) (n)sample u 1 , 2,...,n  will be denoted by V for short. V

determines the desired inferences, i.e., the upper and lqwer proba-

bilities of a fixed subset R of n are respectively the probability

that V intersects R and the probability that V is contained in

R, both conditional on V being nonempty.

V is the intersection of the n random regions B (i)u(i) for

i = 1,2,...,n where each B(i)u( i ) is one of the three types
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illustrated on the three levels of Figure 2, the type and level
depending on whether the observation c(i) is c or c

Figure 4 illustrates one such region for n = 4. It is easily

discovered by experimenting with pictures like Figure 4 that the

shaded region V may have 3, 4, 5 or 6 sides, but most often is

empty. It is shown in Appendix I that V is nonempty with proba-

bility n 1.n2 n3 /n' under independent uniformly distributed

u(1). U2  ,(n) Moreover, conditional on nonempty V, six

random vertices of V are shown in Appendix I to have Dirichlet

distributions. Specifically, define W(i) for i -1,2,3 to be

point r in V with maximum coordinate Y. and define Z(i)

for i = 1,2,3 to be the point r in V with minimum coordinate

ri . These 6 vertices of V need not be distinct, but are distinct

with positive probability and so have different distributions. Their

distributions are

WW()  : D(nI + il,n2 ,n3 )

W D(nl,n2 + l,n3)

(2.23) W3 : D(nln 2 n3 +1)

I : D(nln 2 + l,n3 + 1)

(2.23 : D(nI + l,n2,n3 + 1)

D(nI + l,n2 + l,n3)

2 P

Z(2)

[~ ,nn+1
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(o,t)o) (0o)0)1

Figure 4. The triangle I representing the sample space of unknowns

after n = 4 observations ,I) = c2) = 3) = C ,c( c

have been taken. The shaded region is the realization of V

determined by the illustrated realization of u() (2) (3) and u(4)
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where D(rl,r2 ,r3) denotes the Dirichlet distribution over the

triangle ii whose probability density function is proportional
1l- r 2 -1 r3-l

to *I r 2 r 3 . The Dirichlet distribution is defined

as a continuous distribution over II if r. > 0 for i = 1,2,3.

Various conventions, not listed here, are required to cover the

distributions of the six vertices when some of the n. are zero.
I

Many interesting upper and lower probabilities follow from

the distributions (2.23). For example, the upper.probability that

71 exceeds 7r1  is the probability that V intersects the region

where I7" > I which is in turn the probability that the first
coordinate of W(1) exceeds rl'. In symbols,

P ( 1 
->  I ' I nl,n2 n3 )

(2.24) 1 1 n1 n2 -1 n3il
( Il (n 2-1) .(n 3'-)' ' 2  7r3  didw2

r1  0

1 nI nI  n2 +n-

if n2 > 0 and n > 0. Similarly, P*(wI - wIjlnln 2,n3) is the

probability that the first coordinate of Z(1) exceeds rr1 , i.e.

,., ,i~e.
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P* (VI >  i Iln'

(2.25) n-i (n+l) _ nlI n2+n3+l
,(n-1). (n2+n3l)+ +I ( 2'rI) dl'

again assuming no prior information about r. Two further analogues

of the pair (2.24) and (2.25) may be obtained by permuting the

indices so that the role of 1 is played successively by 2 and 3.

In a hypothetical numerical example with n1 = 2, n2 = In 3  1 as

used in Figure 4, it is inferred that the probability of at least
3 I

half the population belonging in cI lies between 6 and In
16 16

passing, note that the upper and lower probabilities (2.24) and

(2.25) are formally identical with Bayes posterior probabilities

corresponding to the pseudoprior distributions D(I,,O,) and D(0,1,1),

respectively. This appears to be a mathematical accident with a

limited range of applicability, much like the relations between

fiducial and Bayesian results pointed out by Lindley (1958). In the

present situation, it could be shown that the relations no longer

hold for events of the form (r < 7 1 < wI).

The model (U n  Cn x 1, p , Bn ) has the illuminating feature

of remaining a product model after conditioning on the sample obser-

vations. Recall that the original model (Un, Cn X n, p , B) is

expressible as the product of the n models U(i), Cn x n, B

for i = 1,2,...,n. Conditioning the original model on the observations
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n ~-n

yields (Un , T, p P n) where, as above T is the subset of
Cn xg wth (1) (2) (n)

Sx with , $ $ )c fixed at their observed values

and

(2.26)^n (u(l) (2) (n)

n (1) (2) (n)-B(U ,U ,...,u n T.

Conditioning the ith component model on the ith sample obser-
(i TM M (i)) '(i)

vation yields (U(i), i P(, where T is the subset

of Cn x U with c fixed at its observed value, and

(2.27) B = B )u( n (i)

for i 1,2...,n. It is clear that

(2.28) T = T n "(2) n ... n T (n)

and from (2.20), (2.26), (2.27) and (2.28) it follows that

(2.29) ,n( (1) (2) ,U(n))

-'(1)u(1) ,'(2) (2) .(n)(n).
B u n n n n B

From (2.28) and (2.29) it is immediate that the model (U , T, p , )
is the product of the n models (U, 2T , p , B(i)) for

i - 1,2,...,n. The meaning of this result is that inferences about

R may be calculated by traversing two equivalent routes. First,

___________________ K
I
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as above, one may multiply the original n models and condition

the product on T. Alternatively, one may condition the original

n models on their associated T and then multiply the conditioned

models. The availability of the second route is conceptually

interesting, because it shows that the information from the ith

sample observation c(i) may be isolated and stored in the form

(U , Ti )) and when the time comes to assemble all

the information one need only pick up the pieces and multiply them.

This basic result clearly holds for a wide class of choices of U and

B, not just the particular trinomial sampling model illustrated here.

The separability of sample information suggests that prior infor-

mation about V should also be stored as a model of the general type

(x, n, Ii, r) and should be combined with sample information according

to the product rule. Such prior information could be regarded as the

distillation of previous empirical data. This proposal brings out

the full dimensions of the generalized Bayesian inference scheme.

Not only does the product rule show how to combine individual pieces

of sample information, but it handles the incorporation of prior

information as well'. Moreover, the sample information and the prior

information are handled symmetrically by the product rule, thus

banishing the asymmetric appearance of standard Layesian inference.

At the same time, if the prior information is given in the standard

form of an ordinary probability distribution, the methods of generalized

Bayesian inferences reproduce exactly the standard Bayesian inferences.
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A proof of the last assertion will now be sketched in the

context of trinomial sampling. An ordinary prior distribution for

an unknown w is represented by a model of the form (X, n, P, r)

where r is single-valued and hence no ambiguity is- allowed in the

computed probabilities. Without loss of.generality, the model

(X, n. P, r') may be specialized to (11, II, p, I) where I is the

identity mapping and p. is the ordinary prior distribution over n.

For simplicity, assume that p is a discrete distribution with

probabilities plP2,...pd assigned to points Z1'2' .... 'd in

n. From (2.16) it follows that the mapping associated with a product

of models is single-valued if the mapping associated with any compo-

nent model is single-valued. If a component model not only has a

single-valued mapping, but has a discrete measure p as well, then

the product model is easily seen to reduce to another discrete

distribution over the same carriers Z
2 ,...Z'd " Indeed the

second line of (2.16) shows that the product model assigns proba-

bilities P(r.) to 7r which are proportional to piti, where t.

is the probability that the random region V includes the point

r.. Setting - = (wiI'wi2 'wi3 ) it follows from the properties

of the random region V that

n n n
(2.30) 1.i 1 1 U2 7r1 3

which is just the probability that all of the independent random

regions whose intersection is V include ," Normalizing the

-at
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product model as indicated in (2.1) or (2.2) leads finally to

pici
(2.31) P(ri) = Pll' 2 + ... +

for i - !,2,...,d, which is the standard form of Bayes's theorem.

'This result holds for any choices of U-and:B satisfying (2.9). Note

that 4. is identical with the likelihood of ..

deneralized Bayesian inference permits the use of sample infor-

mation alone, which is mathematically equivalent to adopting the

informationless prior model in which all upper probabilities are

unity and all lower probabilities are zero. At another extreme, it

permits the incorporation of a familiar Bayesian prior distribution

(if it is a genuine distribution) and then yields the familiar

Bayesian inferences. Between these extremes a wide range of flexi-

bility exists. For example,.a prior distribution could be introduced

for the coordinate 7I alone, while making no prior judgment about

the ratio w2 /w3 . Alternatively, one could specify prior information

to be the same as that contained in a sample of size m which produced

m- observations in category ci for i = 1,2,3. In the analysis of

quite small samples, it would be reasonable to attempt to find some

characterization of prior information which could reflect tolerably

well public notions about r. In large samples, the inferences clearly

resemble Bayesian inferences and are insensitive to prior information

over a wide range.



-33-

3. A SECOND ILLUSTRATION

Consider a sequence of independent Bernoulli trials represented

by z. withi

(3.1) P(z = P = pi and P(zi - 0ip) = 1 -

for i =1,2,...,n,

where it is suzpected that the sequence pi is subject to a monotone

upward drift. In this situation, the common approach to a sequence

of observations z. is to apply a test of the null hypothesis

{P1 = P2 = = Pn} designed to be sensitive against the alternative

hypothesis {Pl - p2 < "'" p-n. The unorthodox approach suggested

here is to compute upper and lower probability inferences for the

pair of symmetric hypotheses fP1 > P2 -"" > pn1 and {pl P2 < " -Pn

under the overall prior assumption that the sequence pi is monotone,

either increasing or decreasing, with probability one. A small

.J upper probability for either of these hypotheses would be evidence

for drift in the direction contrary to that indicated by the hypothesis.

Upper and lower probabilities may also be computed for the null

hypothesis {Pl - P2 - "'" - P ' but the upper probability will

usually be vanishingly small in sample sequences of moderate length,,

always zero.

The model described could apply in simple bioassays or learning

II
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situations. A wider range of applications could be achieved in

several ways, for example by allowing several observations at each

pi or postulating Markov type dependence in the z. sequence. But the

aim here is to focus attention as simply as possible on one feature of

the new methods, namely their ability to handle the problem of many

* nuisance parameters which plagues the more traditional forms of

statistical inference. Plausible inferences may be obtained de-

spite the presence of as many continuous parameters as there are

dichotomous observables.

Under the binomial analogue of the trinomial model treated in

Section 2, a single -binomial observable z is represented before

observation by the model (U, Z x P, p, B) where

(3.1) U {u;O< u<}

(3.2) Z={z ; z= or z 1l}

; (3.3) P-p O p l
P fp ;0 < p (l

P is the uniform distribution over U, and

( {(z,p); z = 0 and u (p , or

z=l a p. u}

After conditioning on z, this model becomes effectively

(U, P, p, BZ) where
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(3.5) B z p;U<P:l} if z= ,

={P;O<P u} if z=l

A conditioned model of this kind may be constructed for each of

n independent observations z. and associated parameters pi.

Combining these n sources of information about

yields a single model (U , p B where
, (zz z ) where

(3.6) Un {(ul,u2,...,un); 0 < ui < 1 for i = 1,2,...,n ,

(3.7) Pn {(Pl,P2,..,pn); 0< Pi <  for i= 1,2,...,n},.

n th
p is the uniform distribution over the cube U, and

(3.8) B(zlz 2 ,...,Zn)(Ul,u2,...)un)

i( 2n e B u. for i 1 1,2,...,n.
i

The combined model would be appropriate for unrestricted inferences

about an unknown (plP 2 ,...,pn) based on observations (Zl,Z2 ,...,Zn).

However, when consideration is restricted to the subset S of pn

in which PI'P2'"''Pn is a monotone sequence, the sharpness of the

inferences is much improved.

Define TI  and T2  to be the subsets of S for which

Pl P2 < " Pn and Pl > P2 "> Pn' respectively. Define
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FIGURE 5. The plotted values p P2  "' 'P d t rmine a point

pn for which p1  < P2  -
* " p The plotted values u 1u 2 ,[ , determine-'a point of U for which p1  lies in BlZ1 , p2 lies in

% z2  ' P3  lies in B Z3 " ''P lies in B0 zn . The interpretation,

is that (u U 2 ,...,u) lies in the region T I  determined by the

observation z1 1 , z2 0, z3 -0,...,z n ;0.
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TT12 T 1 n T2  to be the subset of S for which p= P2= Pn

An immediate objective is to characterize TI,T2  and T12 , from
n

whose p measure the desired inferences will follow. For example,

T consists of all points (ul,u2 ,...,un) for which there exists

some (plP2,...,pn satisfying Pl. -< P2 < ' - < Pn and such that

Pi lies in BZ.u, for i = 1,2,...,n. With the help of Figure 5
1

it is easily checked that

(3.9) TI  1 (ul,U2 ,...,un); ui < uj

(ij)3 z. =1, z. = 0; i < ji}

2. J

By symmetry,

* {(l n

(3.10) T2 = (uu 2 ,...,u n); ui  u.• __ J

(i'D 3 zi = 0, z = 1, i < j}-

Finally,

(3.11) T = {(UU 2 ,...u ); ui _< u. * (ij) 3z = 1, z. 0.

* * * * * *

It is clear that T12 = T 1n T2  and that T12 , T, - TI2 and

T - T are disjoint sets whose union is S
2 12

Un may be decomposed into n! geometrically similar simplexes,

each characterized by a particular ordering of the values of the

coordinates (ul u2 ,...,Un). These simplexes are in one-to-one
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correspondence with the permutations (1,2,....

where for every (ulU 2,...,un) in a given simplex the corre-

sponding permutation obeys u1, _< u2, < ... un, . Since the

characterizations (3.9), (3.10) and (3.11) involve only order

relations among coordinates ui, each of the simplexes is either

included or excluded as a unit from TI or T2 orTI2 . And s'nce

n neach of the n! simplexes has p measure l/n! , the p

measures of T or T2 or T12  may be found by counting the appro-

priate number of simplexes and dividing by n! . Or, instead of

counting simplexes, one may count the permutations to which they

correspond. The permutation (1,2,... ,n)-(l*,2*,...,n) carries

the observed sequence (zlZ 2 ,...,z) of zeros and ones into

another sequence (Zl*,Z2*,...Zn*) of zeros and ones. According

to the definition of TI , a simplex is contained in T if and

only if its corresponding permutation has the property that

i < j for all i < j such that z. = 1 and z. = 0, i.e., any1 J

pair ordered (1,0) extracted from (zlz 2 ,...,z) must retain the

same order in the permuted sequence (zl*,,z 2 *,... ,Zn*). Similarly,

to satisfy T2  any pair ordered (0,1) extracted from (ziZ 2 ,...,Zn)

must have its order reversed in the permuted sequence, while to

satisfy T* = T* n T* the sequence (zz... z ,) must consisty 12 1 2 1*'2*'' nw-

of all ones followed by all zeros.

If (z l ,z 2 ,..., z n ) contains n, ones and n2 zeros, then a
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simple counting of permutations yields

(3.12) P(TI 2 ) = 2!

simple iterative procedure for computing p (T or 'T2' is

|* derived in Appendix II by Herbert Weisberg. The result is quoted

. below and illustrated on a numerical example.

For a given sequence of observations zlz 2,... of indefinite

length define N(n) to be the number of permutations of the re-

stricted type counted in T N(n) may be decomposed into

r

(3.13) N(n) = N(k,n)

k=O

where N(k,n) counts the subset of permutations such that

(Zl,, 2,,... ,zn,) has k zeros preceding the rightmost one.

Since no zero which follows the rightmost one in the original

sequence (zz 2 ,....,zn) can be permuted to the left of any one

under any allowable permutation, the upper limit r in (3.13) may

be taken as the number of zeros preceding the rightmost one in the

original sequence (zlz 2 ,...,zn). In the special case of a se-

quence consisting entirely of zeros, all of the zeros will be

assumed to follow the rightmost one so that N(kn) = 0 for k > 0

and indeed N(n) = N(O,n) - n. Weisberg's iterative formula is

4 -
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k-i
(3.14) N(k,n+l) = \ N(jn)

j=0

+ (n1 + 1 + k) N(k,n)

if Zn+I = 1

- (n2 + 1 - k) N(k,n)

if Zn+I = 0

where n and n2  denote as above the numbers of ones and zeros,

respectively, in (zl, 2 ,...,zn ) .

Formula (3.14) has the pleasant feature that the counts for

the sequences (z1), (zlZ 2 )-, (Zlz 2 ,z3 ),... may be built up

successively, and further observations may be easily incorporated

as they arrive. Consider, for example, the hypothetical observations

(Zl,2,..., 7 ) = (0, 0, 1, 1, 0, 1, 1)

The following tabular scheme shows

Z n2 N(0,n), . N(rn)

on line n, for n = 1,2,...,7.
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I,

1 2. 23

1' 4, 8, 12
0 I12, 16,1 12
1 ' 36, 76, 84, 40

1 144, 416, 640, 480

from which N(7)-= 1680. The number of permutations consistent with
*
T2 is found by applying the same iterative process to the sequence

(1, 1, 0, 0, 1, 0, 0) with zeros and ones interchanged. This yields

1 1
1 2
0 2
0 4

0 36, 8, 4

0 144, 24, 8

from which N(7) = 176. The number of permutations common to T1*n
and is 3!4! 144. Thus pn(T1 ) = 1680/7, p (T2) 1 176/7!,

(T*) 144 and pn ()i (1680 + 176'- 144)/7! = 1712/7!

Consequently, the upper and lower probabilities of T1, T2 and T12

conditional on S and (zlz 2 ,...,z 7 ) - (0, 0, 1, 1, 0, 1, 1) are

P*(T) 1680 P*(T) 1536 ,
1 1712 1 1712

• 176 32
P (T2 ) 171 ' P*(T2 ) - '

• 144
P (T12 ) 7- ' P*(T2) " 0

1A. .
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Since more than 10 percent of the measure 
could apply to a monotone

nonincreasing sequence, the evidence for an 
increasing sequence is

not compelling.

For the extended sequence of observations 0, 0, 1, 1, 0,

1, 1, 0,) 1, , 1,..., the lower and upper probabilities of 
a monotone

downward sequence after n observations are as follows :

n P.(T 2 ) P (T2 )

1 0. 1.

2 0. 1.

3 0. .333

4 0. .167

5 .167 .417

6 .048 .190

7 .019 .103

8 .188 .319

9 .065 .148

10 .028 .080

11 .014 .047
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4. COMMENTS ON THE METHOD OF GENERATING

UPPER AND LOWER PROBABILITIES

Although often notationally convenient, it is unnecessary to

use models (X, S, , r) outside of the subclass where the inverse

of r is single-valued. For the model (X, S, p, r) with

(4.1) S = X x S

and

(4.2) Fx = X x rx

does belong to the stated subclass, anC yields

(4.3) (P*(T), P,(T)) = (P*(XxT), P*(XxT))

for any TC-S, where the left side of (4.3) refers to any original

model (X, S; p., r) and the right side refers to the corresponding

model (X, s, P, r). Moreover, the model (X, S, p, 1) provides

upper and lower probabilities for all subsets of X x S, not just

those of the form X x T. On the other hand, it was assumed in

applying the original form (X, s, P, r) that the outcome x in

X is conceptually unobservable, so that no operational loss is

incurred by the restriction to subsets of the form X x TCS.

Underlying the formalism of (X, S, ., r) or its equivalent

(X, S,. p., ) is the idea of a probability model which assigns a
distribution only over a partition of a complete sample space,

complte smple pace
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specifically the distribution p. over the partition of S = X x S

defined by X. Thus the global probability law of an ordinary

probability measure space is replaced by a marginal distribution

or what might be called a partial probability law. The aiw there-

fore is to establish a useful probability calculus on marginal or

partial assumptions.

I believe that the most serious challenges to applications of

the new calculus will come not from criticism of the logic but from

the strong form of ignorance which is necessarily built into less-

than-global probability laws. To illustrate, consider a simple

example where w1 denotes a measured weight, w2. d'enotes a true

weight, and x - w, - w2  denotes a measurement error. Assume that

ample relevant experience is available to justify assigning a

specific error distribution p over the space X of possible values

of x. The situation may be represented by the model (X, W, p, r)

with X and p as defined, with W.= {(w.,w2); wl 0, w2 > O} ,

and r defined by the relation x = wI - w2 . Conditioning the

model on an observed wi  leaves one with the same measure p applied

to w1 -w 2 , except for renormalization which restricts the measure

to wI > 0. The result is very much in the spirit of the fiducial

argument (although there is some doubt about Fisher's attitude to

renormalization). I am unable to fault the logic of this fiducial-

like argument. Rather any discomfort is produced by distrust of the

initial model, in particular by its implication that every uncertain

'ii
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event governed by the true weight w2  has initial upper and lower

probabilities one and zero. It would be hard to escape a feeling

in most real situations that a good bit of information about a

parameter is available, even if difficult to formalize objectively,

and that such information should clearly alter the fiducial-like

inference if it could be incorporated. One way to treat this weak-

ness is openly to eschew the use of prior information, while not

necessarily denying its existence, that is, to assert that the

statistician should summarize only that information which relies

on the observation w2  and the objectively based error distribution .

Because of the conservatism implicit in the definition of upper

and lower probabilities, the approach of rejecting soft information

seems likely to provide conservative inferences on an average, but

I have not proved theorems to this effect. The difficulty is that

the rejection of all soft information, including even information

about parametric forms, may lead to unrealistically weak inferences.

The alternative approach is to promote vague information intc as

precise a model as one dares, and combine it in the usual way with

sample information.

Some comments on the mathematics of upper and lower proba-

bilities are appropriate. A very general scheme for assigning upper

and lower probabilities to the subsets of a sample space S is to

define a family C of measures P over S and to set

Cf

:1.
-~' - -- I-!
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P (T) = sup P(T)

(4.4)

and P,(T) = inf P(T)

Within the class of systems of upper and lower probabilities achieved

in this way for different C , there is a hierarchical scheme of

shrinking subclasses ending with the class of systems defined by

models like (X, S, p, See Dempster (1967a). The family

A corresponding to a given (X, S, p, r) consists of all measures

P which for each x distribute the probability element dp(x)

in some way over rx. Some readers may feel that all systems should

be allowed, not just the subclass of this paper. In doing so,.how-

ever, one loses the conception of a source of information as being[ a single probability measure. For, in the unrestrictedl formulation

of (4.4) the class C consists of conceptually distinct measures
such as might be adopted by a corresponding class of personalist

statisticians, and the conservatism in the bounds of (4.4) amounts

to an attempt to please both extremes in the class of personalist

statisticians. I believe that the symmetry arguments underlying

probability assignments do not often suggest hypothetical families

demanding simultaneous satisfaction. Also, the rules of con-

ditioning and, more generally, of combination of independent sources

of information do not extend to the unrestricted system (4.4), and

without these rules the spirit of the present approach is lost.
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The aim of this short section has been to suggest that upper

and lower probabilities generated by multivalued mappings provide

a flexible means of characterizing limited amounts of information.

They do not solve the difficult problems of what information should

be used, and of what model appropriately represents that information.

They do not provide the only way to discuss meaningful upper and

lower probabilities. But they do provide an approach iaith a well

rounded logical structure which applies naturally in the statistical

context of drawing inferences from samples to populations.

'I
1.
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5. COMMENTS ON THE MODELS USED FOR INFERENCE

The models used here for the representation of sampling from

a population take as their point of departure a space whose

elements correspond to the members of the population. In addition

to the complex of observable characteristics usually postulated

in mathematical statistics, each population member is given an

individual identity. In conventional mathematical stat'istics

the term hypothesis is often used for an unknown population

distribution of observable characteristics, but the presence of

the population space in the model leads directly to the more

fundamental question of how each hypothesized population distri-

bution applies to the elements of the population space, i.e., under

a given hypothesis what are the observable characteristics of each

population member? In the trinomial sampling model of Section 2,

the question is answered by the multivalued mapping B defined in

(2.7). As illustrated in Figure 1, B asserts that for each hypothesis

the population space U partitions into three regions UI, U2 , U3

corresponding to the observable characteristics cl, c2 , c3 . More

generally, the observable characteristics may be multinomial with

k categories cl, c2 , ... , ck and the population space U may
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be any space with an associated random sampling measure p. For

a given hypothesis Z = (7lw 2,...,k) the question is answered

by determining subsets UI,U 2 ,... , U  of U which specify that
1 3" k

a population member in Ui  is permitted to have characteristic
1

c. under w, for i = 1,2,...,k. Having reached this point in

building the model, it seems reasonable to pose the restriction

which generalizes (2.9), namely,

(5.1) P(Ui) = wi and p(Ui n U.) - 0

for i,j = 1,2,...,k and i A j. The reason for (5.1) as with

,(2.9) is simply to have r. represent both upper and lower prob-1

abilities of c. for a single drawing with a given w.
I

Now it is evident that the above formulation by no means

uniquely determines a model for multinomial sampling. Indeed,

one may start from any continuous space U with measure p, and

for each r specify a partition UlU 2 ,...,Uk satisfying (5.1)

but otherwise completely arbitrary. In other words there is a

huge bundle of available models. In Dempster (1966), two choices

were offered which I called models of the first kind and models of

the second kind. The former assumes that the multinomial categories

cl,c2 ,...,ck have a meaningful order, and is uniquely determined by

the assumption that the population members have an order consistent

with the order of their observable characteristics under any

Lu

'
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hypothesis v. See Dempster (1967b). The restriction to ordered

categories implies essentially a univariate characteristic, and

because that restriction is so severe the following discussion is

mostly aimed at a general multinomial situation with no mathematical

structure assumed on the space of k categories. The general model

of the second kind is defined by extending (2.5), (2.6) and (2.7)

in the obvious way from k =3 to general k. This m6del treats

the k categories with complete symmetry, but it is not the only

model to do so, for one can define B arbitrarily for r such

-1that 7r : r 2 < ... ,,' and define B for other r by symmetry.

But the general model of the second kind is strikingly simple, and

I recommend it becouse I can find no competitor with comparable

aesthetic appeal.

The status of generalized Bayesian inference resembles that

of Bayesian inference in the time of Bayes, by which I mean that

Bayes must have adopted a uniform prior distribution because no

aesthetically acceptable competitor came to mind. The analogy

should be carried further, for even the principles by which com-

petitors should be judged were not formulated by Bayes, nor have

the required principles been well formulated for the models discussed

here. I believe that the principles required by the two situations

are not at all analogous, for the nature and meaning of a prior

distribution has become quite clear over the last two centuries
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and the concept may be carried more or less whole over to generalized

Bayesian inference. The choice of a model satisfying (5.1), on the

other hand, has no obvious connection with prior information as the

term is commonly applied relative to information about postulated

unknowns. In the case of generalized Bayesian inference, I believe

the principles for choosing a model to be closely involved with an

uncertainty principle which can be stated loosely as:

The more information which one extracts from each
sample individual in the form of observable
characteristics, the less information about any
given aspect of the population distribution may
be obtained from a random sample of fixed size.

For example, a random sample of size n = 1000 from a binomial

population yields quite precise and nearly objective inferences

about the single binomial parameter p involved. On the other

hand, if a questionnaire given to a sample of n = 1000 has been

sufficient to identify each individual with one of 1,000,000

categories, then it may be foolhardy to put much stock in the sample

information about a binomial p chosen arbitrarily from among the

21,000,000 - 2 nontrivial available possibilities. At least

conceptually, most real binomial situations are of the latter kind,

for a single binomial categorization can be achieved only at the

expense of suppressing a large amount of observable information

about each sample individual. The uncertainty principle is therefore

a specific instance of the general scientific truism that an [

0 ;ow, 4
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investigator must carefully delimit and specify his area of

investigation if he is to learn anything precise.

Generalized Bayesian inference makes possible precise formula-

tions of the uncertainty principle. For example, the model of

the second kind k '=2 and n = 1000 yields inferences which most

statisticians would find very nearly acceptable for binomial

sampling. On the other hand., it is a plausible conjecture that

the model of the second kind with k = 1,000,000 and n 1000

would yield widely separated upper and lower probabilities for

most events. The high degree of uncertainty in each inference

compensates for the presence of a large number of nuisance para-

meters, and protects the user against selectioneffects which would

produce many spurious inferences. Use of the model of the first

kind with k = 1,000,000 and n = 1000 would .v'ry likely lead-to

closer bounds than the model of the second kind for binomial

inferences relating to population splits in accord with the given

order of population members. And it is heuristically clear that

models could be constructed which for each Z would place each point

of U in each of U ,U2 r...,Uk as Z varies over an arbitrarily small

neighborhood about r. Such a model would present an extreme of

uncertainty, for all upper and lower probability inferences would

turn out to be one and zero, respectively. It is suggested here

that the choice of a model can only be made with some understanding
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of the specific reflections of the uncertainty principle which

it provides. For the time being, I judge that the important task F
is to learn more about the inrerences yielded by the aesthetically

pleasing models of the second kind. Eventually, intuition and

experience may suggest a broader range of plausible models.

Models of the second kind were introduced above for sampling

from a general multinomial population with k categories and

unknown I x k parameter vector r. But the range of application of

these models is'much wider. First, one may restrict 7 to parametric

hypotheses of the general form = ,(8, 4, ... )- More important,

the multinmial may be allowed to have an infinite number of

categories, as explained in Dempster (1966), so.that. general spaces

of discrete and continuous observable characteristics are permissible.

It is possible therefore to handle the standard parametric

hypotheses of mathematical statistics. Very few of these have as

yet proved analytically trLztable.

At present, mainly qualitative insights are available into

the overview of statistical inference which the sampling models of

generalized Bayesian inference make possible. Some of these insights

have been mentioned above, such as the symmetric handling of prior

and sample information, and the uncertainty principle by which

upper and lower probabilities reflect the degree of confusion

produced by small samples from complex situations. it is interesting

*1
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to note also that parametric hypotheses and prior distributions,

which are viewed as quite different in conventional statistical

theory, play indistinguishable roles in the logical machinery of

generalized Bayesian inference. For a parametric hypothesis such

as r ry(O, 4, ... ) may be represented by a model of the general

type (x, s, p, r) which asiigns all of its probability ambiguously

oyer the subset of r allowed by (e, 0, ... ) as 0, 4, ... range

over thei. Vermitted values and this model combines naturally

with sample information using the rule of combination defined in

Section 2 and suggested there to be appropriate for the introduction

of prior information.

Concepts which appear in standard theories of inference may

reappear with altered roles in generalized Bayesian inference.

Likelihood-is a prime example. The ordinary likelihood function

L() based on a sample from a general multinomial population is

proportional to the upper probability of the hypothesis r. This

may be verified in tha trinomial example of Section 2 by checking

that the random region illustrated in Figure 4 covers the point r
nI n2 n3

with probability 7i 72 r3 " The general result is hardly more

difficult to prove. Now the upper probability of r for all Z does

not contain all the sample information under generalized Bayesian

inference. Thus the likelihood principle fails in general, and

the usual sets of sufficient statistics under exponential families

VI
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of parametric hypotheses no longer contain all of the sample

information. The exception occurs in the special case of ordinary

Bayesian inference with an ordinary prior distribution, as

illustrated in (2.31). Thus the failure'of the likelihood

principle is associated with the uncertainty which enters when

upper and lower probabilities differ. In-passing, note that

marginal likelihoods are defined in the general system, i.e., the

upper probabilities of specific values of e from a set of parameters

02, , ... are well defined and yield a function L(0) which may be

called the marginal likelihood of 8 alone. If the prior information

consists of an ordinary prior distribution of 0 alone, with no

prior information about the nuisance parameters, then L(O) contains

all of the sample information about 0.

Unlike frequency methods, which relate to sequences of trials

rather than to specific questions, the generalized'Bayesian

inference framework permits direct answers to specific questions in

the form of probability inferences. I find that significance tests

are inherently awkward and unsatisfying for questions like that

posed in the example of Section 4, and the main reason that Bayesian

inference has not replaced most frequency procedures has been the

stringent requirement of a precise prior distribution. I hope that

I have helped to reduce the stringency of that requirement.
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APPENDIX I

A derivation is sketched here for the distributions (2.23)

relating to specific vertices of the random region R defined by

(2.20). R is the intersection of n regions B 3 i  for
i= 1,2,...,n, as illustrated in Figure 4. The region B(i)u(i)

•M

corresponding to u(i) which gives rise to an observation c
consists of points u such that u3/u 1 3 u i and u2/u 1 i (i)

The intersection of the nI regions corresponding to the nI obser-

vations c is a region R consisting of points u such that

(1.1) u3/u1  c13  and u2/u 12

(iu M)M (i)]where c1  mm (i /i) = min ( /u the minimization

[u3 3u ] and c12  2  1

being over the subset of i corresponding to observations cI. Note

that R1 together with the nI regions which define it are all of the
1 1

type pictured on level 1 of Figure 2. By permuting subscripts,

define the analogous regions R2 with coordinates c 2 3 , c21 and R

with coordinates c31, c32 , where R and R3 are of the types

pictured on levels 2 and 3 of Figure 2, respectively. One is led

*thus to the representation

(1.2) R= R 1  R2 nR 3.

Any particular instance of the region R which contains at least

one point is a closed polygon whose sides are characterized by fixed

I,
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ratios of pairs of coordinates ui , u. Thus R may be described

by a set of six coordinates

(1.3) b.. max[u./U. ]

for i k j. From (1.1), (1.2), and (1.3) it follows that

(.4) bij < c..

for i A j. Moreover, equality holds if the corresponding side of

R. is also a side of R, while the inequality is strict if the side
1

of R. misses R entirely. The reader .may wish to satisfy himself
1

that R may have 3, 4, 5, or 6 sides in which case the strict

inequality in (1.4) holds for 3, 4, 5, or 6 pairs i,j, (with

probability one).

If R is considered a random region, while R0 is a fixed region
0

of the same type with coordinates bij, then

(1.5) Pr(R R0 ) - Pr(bij bij V i j),

0 )n nn
(1 + b12 + b13) (1 + bO1 + b23) (1 + b3 1 + b32)

0To prove (1.5) note first that the three events 12 >  12,

b 'b,>b ol ~, b bl b > o are
1 3 b0 3} 2tbl 2 b3 l b 3 1  32 32(

equivalent respectively to the three events c b
tththeevns{ 12 2 b12, c,3 2:13

LcL>b c >b 0 Jo > b 0 , c b 0  . In the latter form,
L2 1--2: 1 c2 3-23 C31--31 32 b 321
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the three events are clearly independent, for they depend on

disjoint sets of independent u , and their three probabilities

are the three factors in (1.5). For example, the first event

says that the n, points u corresponding to observations c

0 0fall in the subtriangle u2/uI  b12 and u3 /ul b whose area

0 0 -is the fraction (1 + b12 + b13)  of the area of the whole

triangle U.

It will be convenient to denote the right side of (1.5) by

0 b0  b 0  0F(b 13' b 21 ' b b1 b32) which defines as the b.. vary a12' 31 3

form of the joint cumulative distribution function of the b...
ii

This c.d.f. should be handled with care. First, it is defined only

over the subset of the positive orthant in six dimensions such that

0 0the b.. define a nonempty R . -Many points in the orthant are
0 0 0whharimlitn

ruled out by relations like b 2  b13 which are implicit in

(1.3)' Second, the distribution of the b.. is not absolutely2.3

cbntinuous over its six-diimensional domain, but assigns finite

probability to various boundary curved surfaces of dimensions 5,

•4 and 3, corresponding to random R with 5, 4 and 3 sides. Never-

theless it is not difficult to deduce (2.23) from (1.5).

Suppose that u* denotes the vertex of R with maximum first

coordinate. This vertex lies, with probability one, at the inter-

section of two of the six sides of RI, R and R By looking at the
2e 3

vertices defined by all possible pairs of sides it is easily checked
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that exactly three possibilities exist for u*, namely,

i) u/u*= c2  and u"/u c
i 2 21u 1 c31 ,

(1.6) (ki) u/ = c23  and u/u =c 31 , or

(iii) - and uC/u 3 2

The probability density function of j may be formed by summing

the contributions from the three possibilities (i), (ii), (iii).

The contribution from case (i) will be expressed first in terms of

c21, c31 and then transformed to ut, ut. Consider the event E

that-both i < c < b 0 + 6, b0  < c < b10 + and that the
- ~21 <21< 21 31 3 1<3 31 6~LLa~.~

lines c21 and c31 intersect in a point which maximizes the first

coordinate. The latter condition may be written

(1.7) {C12  v2/vl, c13 2 v3/vl, c2 3 2 v3/v2, c32  v2/v3

where v - (v1, v2, v3) is the point at which the lines c21 and c31

intersect, or

(1.8) C12 2 c1 3 > c31, c2 3 2 c21c31' 32 - c21C31"

Thus, apart from terms of second order and higher in 6 and £,
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(1.9) Pr(E) F([b + ]-1 [b0 + 6]-1 0 0+ 0

S1 ,21 + b2 1 ++

0 0 -0
6, [b 2 1 + e] [131+6])

F(0b -1 01- 0 0 01

- 21 + e] b3 1  , b2 1 +Ie [b21 + b3 1

0 0 --10
b31, [b21 + ej b 3 1 )

0 -1 0 -.1 0 0 0 b +0 ,F(b2 , [b31 + 6] , b21, b2 1 [b 3 1 + 6 b31

0 0-1 0
21 [b31 + 6])

+ 0 b- 0 1 0 b0 b 0 b0  0 0 -b 0
F(b 2 1  31 b2 1 ' 21 31 3 b31' b 1

That is, the required case (i) contribution is found in terms of

c21 , c31 represented by b21' b31 by differentiating F with respect

0 -1 0 -1to its third and fifth arguments and then substituting 1, b31,
0 0 -i 0 -i1 0b1 1 b 1 b1 in order for the other four arguments. Expressing
21 31 '21 31

the result in terms of the coordinates t= (U, u2 ' u3) at which the
n n+1 n +1

lines and 0 intersect, one finds n2n3 u 1 u2  u3  which,lie 21 b31 31u
0 0-2U-2

after multiplying by (ulu2)/D(b 01,b U u gives the
12 2 31 1 2 u3 gieth

density contribution

nl+l n 2 - I  n3 -1
(I.10) n2 n3 u 1  u2  u 3

expressed in terms of ulU2 and of course u3 -1-u -U 2 . The

contributions from cases (ii) and (iii) may be found similarly to be

n n-I n n n n-i
1 2 3 1 2 9'3(n.) nf 3 uI  u2  u3  and n2n 3 uI  u2  u3

.........
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Since u1 + u2 + U3 =1, the sum of the three parts is

n I  n2 -I n3-1
~23 1 2 3 on2 nI n3 -  n3-12Uo

nl'n 2'!n3 nr nuI  2 1 3 -

(1.12) n. LnI (n2 1 1  2
1 2 3j

where the first term is the probability that u* is anywhere, i.e.,

that R is not empty, while the second is the Dirichlet density

i given in (2.23).

The density of the point with minimum first coordinate may

be found by a similar argument. The analogue of (1.6) is

(i) u/u = c12  and u*/u* = c

(1.13) (ii) ut/u* = c32  and u*/u* = c13 , or

(iii) u/u* = c12  and u*/ut = c

and the corresponding three components of density turn out to be

nl-i n2  n nI-I n2  n3

(1.14) nl(n1+1)u1  u2  u3  , n1n3 u1  u2  u3  , and

nl-I n2  n3

nln2 u u2  u3

which 
sum to _____n[ nl'l n2  n31

(1.15) n! (nl-l)!n2! '3 .

which like (1.12) is the product of the probability that R is not

empty and the Dirichlet density specified in (2.23).
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The remaining four lines of (2.23) follow by symmetry. The

probability that R is not empty may be obtained directly by an

argument whose gist is that, forany set of n points in U, tho

is exactly one way to assign them to three cells of sizes nl, n2,

n3 corresponding to observations cl, c2 , c3 in such a way that R

is not empty. This latter assertion will not be proved here.

-w~j Y,
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APPENDIX II (By H. Weisberg)

In this appendix we derive formula (3.14). We wish to find

the number of permutations (1,2 ...,n)-(l ,2 ,.,n ), carrying

an original sequence (zl,...,z) of zeros and ones into a sequence

(zl*,...,zn,) of zeros and ones subject to the restriction that

i < j for all i < j such that z. = 1 and z. = 0. Let us

call such permutations admissible. The approach is to count

admissible permutations of (zl,...,Zn) for which there are k

zeros preceding the right-most one. Call such permutations

k-permutations.

First note that each admissible permutation of (zl,...,Zn+I)

may be considered as an admissible permutation of (Zl,...,Zn) with

Zn added on in a position which maintains the admissibility.
n+l

Suppose first that Zn+l = 1. Corresponding to each admissible

k-permutation of (zl,...,Zn) we can form

(n1+l+k) admissible k-permutations of (zl,...Zn+I)

1 admissible i-permutation of (zl,...,Z

for i - k + l,...,n 2

Summing over ail admissible permuttions-of (zl,....,Zn) yields

the first part of (3.14).

Now suppose Zn+l r 0. Corresponding to each admissible

k-permutation of (z..I*0)Zn) , there are n. + 1 - k admissible

permutations of (Zl,...,zn+l) , since Zn+I cannot cross to the
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left of any one. Moreover, each of these permutations of (zij***,Zn)

is ak-permutatioin. This proves the second part.
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