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Abstract. In this paper a new MultiOBjective Evolution Strategy (MOBES) for solving multi-
objective optimization problems subject to linear and nonlinear constraints is presented. MOBES
is based on the new concept of C-, F- and N -fitness, which allows systematically to handle con-
straints and (in)feasible individuals. The existence of niche infeasible individuals in every popula-
tion enables to explore new areas of the feasible region and new feasible pareto-optimal solutions.
Moreover, MOBES proposed a new selection algorithm for searching, maintaining a set of feasible
pareto-optimal solutions in every generation. The performance of the MOBES can be successfully
evaluated on two selected test problems.

1 Introduction

1.1 Multiobjective optimization problem

The general multiobjective optimization problem with linear and nonlinear constraints can be formally
stated as below:
mxin f(X) = mxin (f1 (X)7 fg(X), o 7fN(X))
where x = (xq, 79, ,2,) € FCS CR".
N and n are the number of objective functions and the number of variables, respectively.

The search space S is a region of the n-dimensional space R”, for example, a n-dimensional rectangle
defined by lower and upper bounds of variables:

(lower) < S m(npper)7 Vi — 1777/

Xy ~ i

whereas the feasible region F C & is defined by a set of m additional linear and nonlinear constraints
(m > 0):

Without loss of generality, in this paper only multiobjective optimization problems with m constraints in
terms of inequations will be taken into account, because by computational implementation a constraint
in terms of equation like hj(x) = 0 can be replaced by a pair of inequalities:

7]7] (X) —c < 0,
h’j (X) — € < 0,

where an additional parameter € is used to define the precision of the system. Therefore it seems to be a
special case of constraints in terms of inequalities.

To solve this problem is to find all feasible trade-offs among the multiple, conflicting objectives, known
as a set Py of feasible pareto-optimal solutions (Px C F) in the variable space [4]:

Definition1 (Pareto-Optimality). A vector x* € F is said to be feasible pareto-optimal if and only
if there exists no other vector x € F such that:

filx) < filx*) Vi=T,N
fi(x) < fi(x*) for at least one j

(1)



Definition 2 (Inferiority). The vector u = (fi(x*), f2(x*),-- -, fn(x*)) satisfying (1) is said to be
inferior to the vector v = (f1(x), f2(x),---, fn(x)).

Definition 3 (Non-Inferiority). Vectors u and v are said to be non-inferior to each other if neither u
is inferior to v nor v is inferior to u.

Py corresponds to a set Py of nondominated or noninferior vectors (solutions) lying on a surface known
as a pareto-optimal surface in the objective function space.

Because Py often contains an infinite number of elements, the solving multiobjective optimization prob-
lems namely leads to find and maintain a representative sampling of solutions on the pareto-optimal
surface.

1.2 Literature survey

Recently some evolutionary algorithms (EAs) for solving multiobjective optimization problems are pro-
posed [10, 5, 3, 8, 6, 1, 2]. They have not produced a meaningfull breakthrough in the area of con-
strained multiobjective optimization problems due to the fact that they have not addressed the handling
of constraints and objectives in a systematic way. Some of them consider multiobjective and constrained
optimization separetely, both in general terms and in the context of evolutionary algorithms [3]. There-
fore they try to convert the above constrained multiobjective optimization either into a multiobjective
optimization without constraints (e.g. using penalty function methods [8]) or into constrained optimiza-
tion. The others are based on evolution strategies and provide a well approximation of pareto-optimal
solutions [6, 1, 2]. The weakness of these methods is that it is necessary to initialize a population by fea-
sible individuals. The finding feasible individuals is itself a difficult problem especially in cases the ratio
between the feasible and search region is small. MOBES is proposed to overcome this disadvantage of
the traditional multiobjective ESs and to enable simultaneously to handle both constraints and multiple
objectives.

This paper presents a systematic way to handle constraints as well as (in)feasible individuals in the next
two sections. In section 4 a global selection scheme allowing to maintain a representative sampling of
solutions on the pareto-optimal surface is briefly discussed. Finally, two test cases are shown to illustrate
a remarkable efficiency of the MOBES.

2 Handling constraints
Similar to traditional ESs, each individual consists of a vector of objective variables x = (1,79, -+ ,2n)"
(a point in the search space), a strategy parameter vector s = (s1,s9,-+-,5n)" (a vector of standard

deviations). To evaluate the fitness of an individual the two following measures have to be taken into
account:

— an ohjective function vector f(x) (so-called F-fitness in the objective function space),
— a degree of violation of constraints (it is called C-fitness in the constraint space).
The F-fitness of an individual can be described by a point (vector) in the N-dimensional objective

function space. The remaining problem is how to evaluate the C-fitness of an individual.

Let ¢i(x) = max{gi(x),0}, Vi = 1,m, the C-fitness of an individual can be charaterized by a vector:

C(x) = (e1(x); e2(x), -+ 5 em(x)), (2)

(a point in the constraint space R"). Clearly, C = 0 for feasible individuals and C > 0 for infeasible ones
(at least one element of C is bigger than zero). Using this measure the original point of the constraint space
corresponds to the feasible region of the search space. This description of the C-fitness allows precisely
to represent an individual in the constraint space and to determine its degree of infeasibility. It was used
for the old version of the MOBES. The difficulties with this description are as below:



— When the number of constraints is large, a large amount of memory is necessary to save a vector
C(x) for every individual. This problem also increasingly arises for handling many multiple objectives
because the F-fitness is itself a vector.

— For two infeasible individuals with objective variable vectors x; and x5 so that C(x¢) and C(x3) are
noninferior it is very difficult to know which individual is better than the other. ITn other words,
the ranking infeasible individuals should be performed by using noninferiority (comparision between
infeasible individuals essentially is comparision between vectors C(x)). For this reason, it takes much
time for ranking the whole infeasible population.

To avoid them instead of using a vector (¢q(x),e2(x),---,em(x)) a scalar value determining the dis-
tance between a point (¢q(x), ¢a(x), -+ ,em(x)) and the original point in the constraint space is used for
evaluating a degree of (in)feasibility [9]:

m

cx) = (Y [ax)" )7, (p>0). (3)

i=1

The second measure of the C-fitness has experimentally shown to be as good as the first one and acceptable
for multiobjective constrained optimization problems. Therefore it is used to design the MOBES. Using
this concept, the population can be divided into classes (so-called C-classes) corresponding to degrees of
(in)feasibility. Tt is clear, the 0-class includes all feasible individuals; individuals of the higher classes are
“farther” from the feasible region than ones of the lower classes.

3 Handling (in)feasible individuals

The MOBES allows mutation and reproduction operators to generate both feasible and infeasible off-
spring. Therefore it is necessary to check whether offspring are better than their parent (by mutation and
reproduction) or to select better individuals for the next generation (by selection). For highly constrained
problems, a population can still consist of all infeasible individuals through first several generations (no
feasible solution can be found), the first priority is given to making an infeasible population to evolve
towards the feasible region. To do it the C-fitness is used to rank infeasible individuals; “better infeasible”
individuals belong to lower classes (i.e. they are “nearer” to the feasible region).

Criterion4 (Selection Between Classes). An individual of the Cq-class (C > 0) is said to be better
than the other of the Ca-class if and only if C7 < Cs.

To avoid problems for which an infeasible population converges to (possible) local minima of the C-fitness,
like traditional ESs some so-called niche infeasible individuals type 1 should be selected and inserted into
a new population:

Criterion5 (Niche Infeasible Individuals Type 1). If there is no feasible individual in a popula-
tion, niche infeasible individuals type 1 should have an as small value of the C-fitness as possible and be
as far as possible from the “best current infeasible” individual.

Mathematically, a niche infeasible individual type 1 should have a small value of the so-called niche fitness

(denoted by A;-fitness):

||X - XibestHﬁ

M(X) = ) (X # Xibest)

where:
— X;pest and C(X;pest) are an objective variable vector and the C-fitness of the “hest infeasible” individual,
respectively.
— ||-|| denotes a norm in the n-dimensional parameter space.

— Bis a scalar value (8 =1,2,---).



Notice that traditional ESs [1] have also shown that the use of niche individuals may help the ES in
finding many global minima with the same objective function value located at different points of the
variable space. For constrained optimization problems for which the feasible region is disconnected the
C-fitness (see Fq. 3) has the (global) smallest value 0 at different subsets of the feasible region. Therefore
it is meaningful to use niche infeasible individuals to explore other subsets of the feasible region.

Individuals of the same class can be compared together using their F-fitness and the concept of pareto-
optimality. So a current pareto-optimal surface can be developed in every generation:

Criterion6 (Selection In A Class). Among individuals of the same class, better individuals are non-
inferior ones (that means, their F-fitness vectors are noninferior to each other).

During the search process for the feasible region the population at some stage of the evolution process
may contain some feasible and infeasible individuals. Tt is necessary (but not easy) to introduce a criterion
for comparing between feasible and infeasible individuals. For many optimization problems the feasible
region is non-convex or the ratio between the feasible and search region is too small so that no feasible
offspring can be generated even from feasible individuals through many generations. But it is hopeful
that infeasible individuals lying near to the feasible pareto-optimal surface can generate feasible offspring
which are even better than offspring of some feasible individuals (for example, for a non-convex feasible
region, arithmetical crossover operators [7] for one infeasible and one feasible individual can generate
feasible offspring whereas no feasible individual can be found by using these operators for both feasible
parents). That means, any feasible individual is not always better than any infeasible one. Tt is reasonable
that infeasible individuals co-exist in a population with other feasible ones and infeasible offspring lying
in a neighourhood of the feasible region may be better than other feasible individuals. The difficulty
is that which infeasible individuals are said to be “better” than feasible ones and how to choose them
from a population. This problem seems to be a problem happened before making a decision for using
niche individuals in traditional ESs [1, 6]. Therefore, niche infeasible individuals seem to be “better” than
feasible ones.

Criterion7 (Niche Infeasible Individuals Type 2). If at least one feasible individual exists in the
population, niche infeasible individuals type 2 should have an as small value of the C-fitness as possible
and be as far as possible from the centroid of a feasible subpopulation (a set of feasible individuals,

denoted by 7).

The niche fitness of infeasible individuals (denoted by A (-fitness) can be evaluated by:

Nig(x) = ) (4)

x ==l
xX
7

where z =

xi‘F is the centroid of a set. J (nF - the number of individuals of [J).
Our initial experiments showed that this criterion was useful for many optimization problems.

Instead of directly comparing between feasible and infeasible individuals the MOBES would like to intro-
duce the following criteria to generate infeasible individuals and then to select niche infeasible individuals
in a population:

Criterion 8 (Extra class). Infeasible individuals up to the Cexira-class (i. e. individuals of C-classes so
that 0 < C < Cextra) are said to be in the same class (called the extra class).

Criterion9 (Extension Class). An infeasible offspring of a feasible individual is said to be viable if

and only if it belongs to the so-called extension Cextension-class defined by:

Cextensinn = ma'x{cextr;u Cpnp}7
where Cpop is the highest class in the population (corresponding to the infeasible individual with the

biggest distance to the original point of the constraint space).

Criterion10 ( Selection of Infeasible Individuals). Every population must contain at least a given
number (nT) of (niche) infeasible individuals.



The problem of how to choose the best value of Coxira and nl is far from trivial. With a too small value of
Cextra 1t is difficult to generate offspring in the extra class. Otherwise the choosing a higher value of Cextra
leads to generate more infeasible individuals (individuals of higher classes). Tf nT is too big or too small,
the population would slowly converge to the set of feasible pareto-optimal solutions. Our first experiments
showed that the value Coxira=0.1 and nl = 5%n P were preferable, where nP is the population size.

4 Maintaining a feasible pareto-optimal set

In the previous section, many operators were used to find the feasible region and to shift then the
population towards the feasible pareto-optimal surface. After some generations there exist more feasible
individuals on the feasible pareto-optimal surface (noninferior individuals) than necessary. A problem how
to maintain a representative sampling of solutions (to create an uniform distribution of the population)
on the pareto-optimal surface has therefore to be considered.

An algorithm for solving this problem was proposed in the old versions of the MOBES [2]. The weakness
of this algorithm is that the density of the population in a neighourhood of the selfish minima (an own
minimum of each objective function) is still higher than in other regions of the pareto-optimal surface.
For this reason it should be slighly modified as belows:

Criterion11. Tet

£ = (min £, min fa, -+, min fx)
= (A )

£M) — (max fi, max fo, - -+, max fx)
= (A ),

where the minimum and maximum operators are performed along each coordinate axes of the objective
function space for all feasible noninferior individuals of the population. Then, the current feasible trade-
offs surface is bound in a hyperparallelogram defined by vectors £(™mi") and £(max)

— Dividing each interval [fi(min), fi(max)] into Npap

ulation) small sections (denoted by 7-[%, J =1, Npop) with the length &, i. e.:

(the desired number of feasible individuals per pop-

5 fi(max) - fi(min)
‘ N,

pop

Individuals in the section 7-[; have a lower value of the i-th objective function than one of individuals
of the section Hi, Vk > j.

— Evaluating the density of the population per section (the number of noninferior individuals on a
section).

— Along the i-th coordinate axes of the objective function space (i = 1, N) the best individual in each

N,
of the N:fpk first sections is selected, where £ is an integer number.

— Other individuals can be selected from remaining sections with the lowest density.

5 Test Cases

For all two test cases the following important parameters of the MOBES were used:

Population size = 100
— Number of niche infeasible individuals = 5

— Number of parents for mutation and reproduction = 10

Number of offspring per mutation = 5.



5.1 Test Case 1

The problem [§] is minimizing (f1 (x), f2(x)):
Fi(x) = (50— 22+ (22— 1)2 42
fa(x) =921 — (25— 1)°
subject to non-linear constraints:
x5 —225<0
1 — 32+ 10<0
and bounds: =20 < z; <20, Vi=1,2.

A set of pareto-optimal solutions is found after running 5 generations. Tn opposition to [8] the current,
population more quickly runs to the pareto-optimal frontier (29 generations in [8]) and is more uniformly

distributed on it (see Fig. 1).

Multiobjective Optimization (the first generation)

Multiobjective Optimization (in the 5-th generation)
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Fig. 1. Pareto optimal solutions for Test Case 1

5.2 Test Case 2

The problem is minimizing (f;(x), f2(x)):

Si(wy, m9) = 427 + 42
fa(wa,m2) = (w1 —5)% + (w2 — 5)?

subject to non-linear constraints:

(r1 =5 + 25 -25<0
—(x1 — 8)% — (22 +3)?+7.7<0

and bounds: —15 < z; <30, Vi =1,2.
This problem has the following properties:

— The feasible region is non-convex.

— Some pareto-optimal solutions lie on the boundaries of the feasible region.

— Both objectives are in conflict so that a little reduction of the second objective f5 leads to a big

increase in the first one.

The optimization proccess with an infeasible starting point at xg = (—10,30)7 is illustrated in Fig. ?7.
The experimental results with different feasible regions (convex and nonconvex) have shown that MOBES
is very robust by searching for the feasible region and very good to maintain a representative sampling

of solutions along the pareto-optimal surface.



Multiobjective Optimization in objective function space Multiobjective Optimization in objective function space
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Fig. 2. Optimization process for Test Case 2

6 Conclusion

In this paper the new evolution strategy for multiobjective optimization problems subject to linear and
nonlinear constraints is proposed. In opposition to traditional ESs the MOBES allows to start the op-
timization even from an infeasible point. Tt is practically useful in many optimization cases where a
priori knowledge about the structure of the feasible region is missed. Experiments on some multiobjective
optimization problems indicated that the MOBES is robust and give good performances by effectively
handling (in)feasible individuals and by maintaining a representative sampling of solutions on the pareto-
optimal surface.
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