
MOBES: A Multiobjective Evolution Strategyfor Constrained Optimization ProblemsTo Thanh Binh & Ulrich KornInstitute of Automation, University of Magdeburg, GermanyAbstract. In this paper a new MultiOBjective Evolution Strategy (MOBES) for solving multi-objective optimization problems subject to linear and nonlinear constraints is presented. MOBESis based on the new concept of C-, F - and N -�tness, which allows systematically to handle con-straints and (in)feasible individuals. The existence of niche infeasible individuals in every popula-tion enables to explore new areas of the feasible region and new feasible pareto-optimal solutions.Moreover, MOBES proposed a new selection algorithm for searching, maintaining a set of feasiblepareto-optimal solutions in every generation. The performance of the MOBES can be successfullyevaluated on two selected test problems.1 Introduction1.1 Multiobjective optimization problemThe general multiobjective optimization problem with linear and nonlinear constraints can be formallystated as below: minx f(x) = minx (f1(x); f2(x); � � � ; fN(x))where x = (x1; x2; � � � ; xn)T 2 F � S � Rn.N and n are the number of objective functions and the number of variables, respectively.The search space S is a region of the n-dimensional space Rn, for example, a n-dimensional rectanglede�ned by lower and upper bounds of variables:x(lower)i � xi � x(upper)i ; 8i = 1; nwhereas the feasible region F � S is de�ned by a set of m additional linear and nonlinear constraints(m � 0): gj(x) � 0; 8j = 1; qhj(x) = 0; 8j = q + 1;mWithout loss of generality, in this paper only multiobjective optimization problems with m constraints interms of inequations will be taken into account, because by computational implementation a constraintin terms of equation like hj(x) = 0 can be replaced by a pair of inequalities:(�hj(x) � � � 0;hj(x)� � � 0;where an additional parameter � is used to de�ne the precision of the system. Therefore it seems to be aspecial case of constraints in terms of inequalities.To solve this problem is to �nd all feasible trade-o�s among the multiple, conicting objectives, knownas a set Px of feasible pareto-optimal solutions (Px � F) in the variable space [4]:De�nition1 (Pareto-Optimality). A vector x� 2 F is said to be feasible pareto-optimal if and onlyif there exists no other vector x 2 F such that:(fi(x) � fi(x�) 8i = 1; Nfj(x) < fj(x�) for at least one j (1)



De�nition2 (Inferiority). The vector u = (f1(x�); f2(x�); � � � ; fN(x�)) satisfying (1) is said to beinferior to the vector v = (f1(x); f2(x); � � � ; fN(x)).De�nition3 (Non-Inferiority). Vectors u and v are said to be non-inferior to each other if neither uis inferior to v nor v is inferior to u.Px corresponds to a set Pf of nondominated or noninferior vectors (solutions) lying on a surface knownas a pareto-optimal surface in the objective function space.Because Pf often contains an in�nite number of elements, the solving multiobjective optimization prob-lems namely leads to �nd and maintain a representative sampling of solutions on the pareto-optimalsurface.1.2 Literature surveyRecently some evolutionary algorithms (EAs) for solving multiobjective optimization problems are pro-posed [10, 5, 3, 8, 6, 1, 2]. They have not produced a meaningfull breakthrough in the area of con-strained multiobjective optimization problems due to the fact that they have not addressed the handlingof constraints and objectives in a systematic way. Some of them consider multiobjective and constrainedoptimization separetely, both in general terms and in the context of evolutionary algorithms [3]. There-fore they try to convert the above constrained multiobjective optimization either into a multiobjectiveoptimization without constraints (e.g. using penalty function methods [8]) or into constrained optimiza-tion. The others are based on evolution strategies and provide a well approximation of pareto-optimalsolutions [6, 1, 2]. The weakness of these methods is that it is necessary to initialize a population by fea-sible individuals. The �nding feasible individuals is itself a di�cult problem especially in cases the ratiobetween the feasible and search region is small. MOBES is proposed to overcome this disadvantage ofthe traditional multiobjective ESs and to enable simultaneously to handle both constraints and multipleobjectives.This paper presents a systematic way to handle constraints as well as (in)feasible individuals in the nexttwo sections. In section 4 a global selection scheme allowing to maintain a representative sampling ofsolutions on the pareto-optimal surface is briey discussed. Finally, two test cases are shown to illustratea remarkable e�ciency of the MOBES.2 Handling constraintsSimilar to traditional ESs, each individual consists of a vector of objective variables x = (x1; x2; � � � ; xn)T(a point in the search space), a strategy parameter vector s = (s1; s2; � � � ; sn)T (a vector of standarddeviations). To evaluate the �tness of an individual the two following measures have to be taken intoaccount:{ an objective function vector f(x) (so-called F-�tness in the objective function space),{ a degree of violation of constraints (it is called C-�tness in the constraint space).The F-�tness of an individual can be described by a point (vector) in the N -dimensional objectivefunction space. The remaining problem is how to evaluate the C-�tness of an individual.Let ci(x) = maxfgi(x); 0g; 8i = 1;m, the C-�tness of an individual can be charaterized by a vector:C(x) = (c1(x); c2(x); � � � ; cm(x)); (2)(a point in the constraint space Rmc ). Clearly, C � 0 for feasible individuals and C > 0 for infeasible ones(at least one element of C is bigger than zero). Using this measure the original point of the constraint spacecorresponds to the feasible region of the search space. This description of the C-�tness allows preciselyto represent an individual in the constraint space and to determine its degree of infeasibility. It was usedfor the old version of the MOBES. The di�culties with this description are as below:



{ When the number of constraints is large, a large amount of memory is necessary to save a vectorC(x) for every individual. This problem also increasingly arises for handling many multiple objectivesbecause the F-�tness is itself a vector.{ For two infeasible individuals with objective variable vectors x1 and x2 so that C(x1) and C(x2) arenoninferior it is very di�cult to know which individual is better than the other. In other words,the ranking infeasible individuals should be performed by using noninferiority (comparision betweeninfeasible individuals essentially is comparision between vectors C(x)). For this reason, it takes muchtime for ranking the whole infeasible population.To avoid them instead of using a vector (c1(x); c2(x); � � � ; cm(x)) a scalar value determining the dis-tance between a point (c1(x); c2(x); � � � ; cm(x)) and the original point in the constraint space is used forevaluating a degree of (in)feasibility [9]:C(x) = ( mXi=1[ci(x)]p ) 1p ; (p > 0): (3)The second measure of the C-�tness has experimentally shown to be as good as the �rst one and acceptablefor multiobjective constrained optimization problems. Therefore it is used to design the MOBES. Usingthis concept, the population can be divided into classes (so-called C-classes) corresponding to degrees of(in)feasibility. It is clear, the 0-class includes all feasible individuals; individuals of the higher classes are\farther" from the feasible region than ones of the lower classes.3 Handling (in)feasible individualsThe MOBES allows mutation and reproduction operators to generate both feasible and infeasible o�-spring. Therefore it is necessary to check whether o�spring are better than their parent (by mutation andreproduction) or to select better individuals for the next generation (by selection). For highly constrainedproblems, a population can still consist of all infeasible individuals through �rst several generations (nofeasible solution can be found), the �rst priority is given to making an infeasible population to evolvetowards the feasible region. To do it the C-�tness is used to rank infeasible individuals; \better infeasible"individuals belong to lower classes (i.e. they are \nearer" to the feasible region).Criterion4 (Selection Between Classes). An individual of the C1-class (C1 > 0) is said to be betterthan the other of the C2-class if and only if C1 < C2.To avoid problems for which an infeasible population converges to (possible) local minima of the C-�tness,like traditional ESs some so-called niche infeasible individuals type 1 should be selected and inserted intoa new population:Criterion5 (Niche Infeasible Individuals Type 1). If there is no feasible individual in a popula-tion, niche infeasible individuals type 1 should have an as small value of the C-�tness as possible and beas far as possible from the \best current infeasible" individual.Mathematically, a niche infeasible individual type 1 should have a small value of the so-called niche �tness(denoted by Ni-�tness): Ni(x) = C(x) � C(xibest)kx� xibestk� ; (x 6= xibest)where:{ xibest and C(xibest) are an objective variable vector and the C-�tness of the \best infeasible" individual,respectively.{ k:k denotes a norm in the n-dimensional parameter space.{ � is a scalar value (� = 1; 2; � � �).



Notice that traditional ESs [1] have also shown that the use of niche individuals may help the ES in�nding many global minima with the same objective function value located at di�erent points of thevariable space. For constrained optimization problems for which the feasible region is disconnected theC-�tness (see Eq. 3) has the (global) smallest value 0 at di�erent subsets of the feasible region. Thereforeit is meaningful to use niche infeasible individuals to explore other subsets of the feasible region.Individuals of the same class can be compared together using their F-�tness and the concept of pareto-optimality. So a current pareto-optimal surface can be developed in every generation:Criterion6 (Selection In A Class). Among individuals of the same class, better individuals are non-inferior ones (that means, their F-�tness vectors are noninferior to each other).During the search process for the feasible region the population at some stage of the evolution processmay contain some feasible and infeasible individuals. It is necessary (but not easy) to introduce a criterionfor comparing between feasible and infeasible individuals. For many optimization problems the feasibleregion is non-convex or the ratio between the feasible and search region is too small so that no feasibleo�spring can be generated even from feasible individuals through many generations. But it is hopefulthat infeasible individuals lying near to the feasible pareto-optimal surface can generate feasible o�springwhich are even better than o�spring of some feasible individuals (for example, for a non-convex feasibleregion, arithmetical crossover operators [7] for one infeasible and one feasible individual can generatefeasible o�spring whereas no feasible individual can be found by using these operators for both feasibleparents). That means, any feasible individual is not always better than any infeasible one. It is reasonablethat infeasible individuals co-exist in a population with other feasible ones and infeasible o�spring lyingin a neigbourhood of the feasible region may be better than other feasible individuals. The di�cultyis that which infeasible individuals are said to be \better" than feasible ones and how to choose themfrom a population. This problem seems to be a problem happened before making a decision for usingniche individuals in traditional ESs [1, 6]. Therefore, niche infeasible individuals seem to be \better" thanfeasible ones.Criterion7 (Niche Infeasible Individuals Type 2). If at least one feasible individual exists in thepopulation, niche infeasible individuals type 2 should have an as small value of the C-�tness as possibleand be as far as possible from the centroid of a feasible subpopulation (a set of feasible individuals,denoted by J ).The niche �tness of infeasible individuals (denoted by Nif -�tness) can be evaluated by:Nif (x) = C(x)kx� zk� ; (4)where z = Px2J xnF is the centroid of a set J (nF - the number of individuals of J ).Our initial experiments showed that this criterion was useful for many optimization problems.Instead of directly comparing between feasible and infeasible individuals the MOBES would like to intro-duce the following criteria to generate infeasible individuals and then to select niche infeasible individualsin a population:Criterion8 (Extra class). Infeasible individuals up to the Cextra-class (i. e. individuals of C-classes sothat 0 < C � Cextra) are said to be in the same class (called the extra class).Criterion9 (Extension Class). An infeasible o�spring of a feasible individual is said to be viable ifand only if it belongs to the so-called extension Cextension-class de�ned by:Cextension = maxfCextra; Cpopg;where Cpop is the highest class in the population (corresponding to the infeasible individual with thebiggest distance to the original point of the constraint space).Criterion10 ( Selection of Infeasible Individuals). Every population must contain at least a givennumber (nI) of (niche) infeasible individuals.



The problem of how to choose the best value of Cextra and nI is far from trivial. With a too small value ofCextra it is di�cult to generate o�spring in the extra class. Otherwise the choosing a higher value of Cextraleads to generate more infeasible individuals (individuals of higher classes). If nI is too big or too small,the population would slowly converge to the set of feasible pareto-optimal solutions. Our �rst experimentsshowed that the value Cextra=0.1 and nI = 5%nP were preferable, where nP is the population size.4 Maintaining a feasible pareto-optimal setIn the previous section, many operators were used to �nd the feasible region and to shift then thepopulation towards the feasible pareto-optimal surface. After some generations there exist more feasibleindividuals on the feasible pareto-optimal surface (noninferior individuals) than necessary. A problem howto maintain a representative sampling of solutions (to create an uniform distribution of the population)on the pareto-optimal surface has therefore to be considered.An algorithm for solving this problem was proposed in the old versions of the MOBES [2]. The weaknessof this algorithm is that the density of the population in a neigbourhood of the sel�sh minima (an ownminimum of each objective function) is still higher than in other regions of the pareto-optimal surface.For this reason it should be slighly modi�ed as belows:Criterion11. Let f (min) = (minf1;minf2; � � � ;minfN)= (f (min)1 ; f (min)2 ; � � � ; f (min)N )f (max) = (maxf1;maxf2; � � � ;maxfN)= (f (max)1 ; f (max)2 ; � � � ; f (max)N );where the minimum and maximum operators are performed along each coordinate axes of the objectivefunction space for all feasible noninferior individuals of the population. Then, the current feasible trade-o�s surface is bound in a hyperparallelogram de�ned by vectors f (min) and f (max).{ Dividing each interval [f (min)i ; f (max)i ] into Npop (the desired number of feasible individuals per pop-ulation) small sections (denoted by Hij; j = 1; Npop) with the length �i, i. e.:�i = f (max)i � f (min)iNpop :Individuals in the section Hij have a lower value of the i-th objective function than one of individualsof the section Hik; 8k > j.{ Evaluating the density of the population per section (the number of noninferior individuals on asection).{ Along the i-th coordinate axes of the objective function space (i = 1; N) the best individual in eachof the NpopN + k �rst sections is selected, where k is an integer number.{ Other individuals can be selected from remaining sections with the lowest density.5 Test CasesFor all two test cases the following important parameters of the MOBES were used:{ Population size = 100{ Number of niche infeasible individuals = 5{ Number of parents for mutation and reproduction = 10{ Number of o�spring per mutation = 5.



5.1 Test Case 1The problem [8] is minimizing (f1(x); f2(x)):f1(x) = (x1 � 2)2 + (x2 � 1)2 + 2f2(x) = 9x1 � (x2 � 1)2subject to non-linear constraints: x21 + x22 � 225 � 0x1 � 3x2 + 10 � 0and bounds: �20 � xi � 20; 8i = 1; 2.A set of pareto-optimal solutions is found after running 5 generations. In opposition to [8] the currentpopulation more quickly runs to the pareto-optimal frontier (29 generations in [8]) and is more uniformlydistributed on it (see Fig. 1).
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f 2Fig. 1. Pareto optimal solutions for Test Case 15.2 Test Case 2The problem is minimizing (f1(x); f2(x)):f1(x1; x2) = 4x21 + 4x22f2(x1; x2) = (x1 � 5)2 + (x2 � 5)2subject to non-linear constraints: (x1 � 5)2 + x22 � 25 � 0�(x1 � 8)2 � (x2 + 3)2 + 7:7 � 0and bounds: �15 � xi � 30; 8i = 1; 2.This problem has the following properties:{ The feasible region is non-convex.{ Some pareto-optimal solutions lie on the boundaries of the feasible region.{ Both objectives are in conict so that a little reduction of the second objective f2 leads to a bigincrease in the �rst one.The optimization proccess with an infeasible starting point at x0 = (�10; 30)T is illustrated in Fig. ??.The experimental results with di�erent feasible regions (convex and nonconvex) have shown that MOBESis very robust by searching for the feasible region and very good to maintain a representative samplingof solutions along the pareto-optimal surface.
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