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Abstract. We present a tactile tool that implements Donald Knuth’s algorithm for
winning the game of Mastermind in 5 or less moves. This tool, called the Mastermind
Rad, can be easily printed using a color printer and assembled with a fastener. Uni-
versity teachers of general education math classes can use this tool to teach subtleties
of the important notion of algorithm. This hands-on approach to algorithms may
also be useful to high school teachers. In the article, we explain Knuth’s algorithm
and provide a few activities for students to explore it with the Mastermind Rad.

1. Introduction

NOTE: SEE THE STUDENT WORKSHEETS AFTER THE BIBLIOG-
RAPHY, and SEE SEPARATE FILE WITH RAD

This paper continues the long tradition of mathematical exploration via games and
puzzles. We provide a printable tool for teachers called the Mastermind Rad1 that
implements Knuth’s algorithm for winning the game of Mastermind in 5 or less moves.
Some recent examples of work in the expansive and entertaining genre of playful math-
ematical exploration are [3, 4, 7, 9, 10, 11, 26, 32, 35, 37, 44, 49]. And of course, the
oeuvre of Martin Gardner, including [18] and many books, introduced millions to the
joys of mathematical puzzles and games.

Mordecai Meirowitz’s 1970s hit Mastermind is a two-player game: codemaker against
codebreaker. The codemaker first chooses a concealed sequence of four colors, called
a code, and the codebreaker then attempts to determine the code. The codebreaker
presents a test code, and the codemaker responds with the number of correct colors in
the correct places and the number of correct colors in the wrong places. This process
continues until the codebreaker has enough information to determine the code, or until
the maximum number of attempts is exhausted. Today, Mastermind can also be played
against the computer at websites such as [1] or on a smartphone.

In 1976, the famed computer scientist Donald Knuth presented a codebreaker al-
gorithm [31] in the now defunct Journal of Recreational Mathematics. Surprisingly,
the codebreaker (with the help of logic) can always find the concealed code after four
tries and responses. The slogan and key idea behind Knuth’s algorithm is that each
codebreaker move should “minimize the maximum number of remaining possibilities.”
In Section 3 we explain this slogan, see in particular Table 1. Much has been written
about Mastermind since Knuth’s algorithm. See for instance [8, 12, 13, 15, 16, 14, 17,

1Rad means wheel in German.
1
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Figure 1. Side 1 of the Mastermind Rad. Print your own Mastermind
Rad using the supplementary pdf file!

19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 33, 34, 38, 39, 40, 42, 41, 43, 45, 46, 47, 48]
and Chapter 32 of the book [6].

Alexander Lang’s enumeration implementation of Knuth’s algorithm, called the Mas-
termind Rad, consists of two sets of four printable concentric rings that display the next
move for the codebreaker. In addition to illustrating the idea of an algorithm in a tac-
tile way, Lang’s tool offers several other lessons for students: an algorithm can have
multiple kinds of output, the user must sometimes consult logic and the outputs of pre-
vious steps to construct an outcome, and finally, an algorithm can involve guesswork.
The Mastermind Rad helps students learn how to play the game and builds deductive
reasoning skills. See Figure 1 for a picture of the Mastermind Rad.
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2. Description of the Game Mastermind and
Codebreaker Win Situations

In the game of Mastermind, the codemaker first selects and conceals a code, which
is a sequence of four colors from the six colors2 A, B, C, D, E, F. Repeat colors are
allowed, but the positions matter, so there are 6×6×6×6 = 1296 possible codes. The
codebreaker’s objective is to determine the concealed code. The codebreaker presents
a four-color test code, such as

AABB,

and then the codemaker responds about the correctness of the guess code with feedback
in the form of 0 to 4 pegs: one black peg for each correct color in the correct position,
and one white peg for each correct color in an incorrect position. Correct colors in the
incorrect position should not be double counted. For instance, if the code is ABBB
and the codebreaker tests CAAA, then the response is 0 black pegs and 1 white peg,
not 3 white pegs. We record the response of b black pegs and w white pegs as

bw .

The 14 possible responses are listed in the first column of Table 1. Notice that response
31 is physically impossible, so is not included in this list. Notice also that some
responses are not possible for specific moves, for instance, AAAA cannot have response
01. A noteworthy observation is that a total of 4 = b + w response pegs means the
test code is correct up to reordering. In fact the sum b + w is the maximum number
of black pegs that can be obtained by reordering the test code.

After the codemaker response, the codebreaker presents an improved test code (im-
proved using the ambiguous information from the response). The codemaker responds
again with 0 to 4 black/white response pegs, and the process repeats. All of the previ-
ous attempts and responses are present on the playing board, so the codebreaker can
use all of the previous information to deduce the code, not only the present response.
The game ends when the codemaker responds with 4 black pegs (meaning the correct
code has been presented by the codebreaker), or when the codebreaker has used up all
the allowed attempts.3

Illustrated instructions on how to play Mastermind are found at [2]. There are other
variants of Mastermind with codewords longer than 4 and with more than 6 colors.
There is also the simplification that does not allow repeat colors in the codeword.
Further variants appear in the literature list of Section 1.

Sections 2.1 and 2.2 contain detailed examples of winning and pre-winning situations.
The logic is somewhat intricate, so we also incorporate some of these examples into
the Activity Handouts for partner work in the appendices. The examples below serve
two purposes: illustrate features of the algorithm for the reader, and present solutions
to the partner work in the appendices.

2Different versions of the game have different colors, so we generally denote colors by letters. Knuth
used numbers instead of letters in his 1976 paper [31].

3The original game board allowed 12 attempts.
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2.1. Winning Situations for the Codebreaker. We next give two situations in
which the codebreaker can make a move and win, these are called “Think!” and
“50/50?”. We also present the situation in which the codebreaker immediately wins,
called ,. These situations foreshadow Knuth’s algorithm and the notation of the
Mastermind Rad.

Example 2.1 (Think!). In this situation, all the information necessary to deduce the
code is already on the playing board, and the codebreaker must only think and then
present the correct code. The Mastermind Rad does not find the code. For example,
suppose the first codebreaker move and first codemaker response are as follows.

Move Response

1. AABB 04

The codebreaker understands the response that all four colors are correct and in the
wrong place. This is all the necessary information to deduce the code because of the
particular configuration AABB. So the codebreaker’s next test code is BBAA, and the
codemaker responds with 4 black pegs, and the game is over.

Example 2.2 (,). In this situation, there is not enough information on the playing
board to deduce the code, but the codebreaker presents a test code and by luck guesses
the correct code. For example, in the following situation, after the first response, the
codebreaker only knows that the colors A and B do not appear in the code, so presents
a test code with other colors, namely CCDE and wins by a combination of luck and
logic.

Move Response

1. AABB 00

2. CCDE 40

Example 2.3 (50/50?). In this situation, exactly two test codes satisfy the information
on the playing board, and one of them is the correct code. The codebreaker must
simply try the two test codes, and has a 50/50 chance of getting it right on the next
try. For instance, consider a modification of the situation of Example 2.2, with a second
response of 04 instead of 40.

(2.1)

Move Response

1. AABB 00

2. CCDE 04

In the second move CCDE, all four colors are correct but in the wrong position. So
in the correct code, the colors CC must be in the last two positions, and the colors
D and E must be in the first two positions, ordered either as DE or ED. As a third
move, the codebreaker should now do DECC or EDCC. If the third response is 40, the
codebreaker wins. If the third response is not 40, then the codebreaker should next
play the other respective option of DECC or EDCC, and the fourth response will be
40 and the codebreaker wins. See Figure 2 for a record of these two possibilities in the
case that DECC is the concealed code.
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Concealed Code DECC
Move Response

1. AABB 00

2. CCDE 04

3. DECC 40

Concealed Code DECC
Move Response

1. AABB 00

2. CCDE 04

3. EDCC 22

4. DECC 40

Figure 2. The only two logically consistent continuations of the game
(2.1) when the concealed code is DECC. If the concealed code were in-
stead EDCC, there would similarly be only two possible logically consis-
tent continuations.

2.2. Pre-Winning Situations for the Codebreaker. For the purposes of Knuth’s
algorithm and Lang’s implementation, it is also useful to notate the situations that im-
mediately precede “Think!” and “50/50?”. That is, in the moment after a codebreaker
move but before the codemaker response.

Example 2.4 (“WXYZ!” Means its Response gives “Think!” or ,). In this situation,
the codebreaker has played a test code WXYZ and is awaiting the response, and any
response will bring us into the situation “Think!” of Example 2.1 or the situation , of
Example 2.2. In other words, any possible response to WXYZ will give enough infor-
mation to deduce the code (of course different codes for different responses to WXYZ),
or the correct code is played by chance. For instance, consider another modification of
the situation of Example 2.2, with a second response of 13 instead of 40.

Move Response

1. AABB 00

2. CCDE 13

3. CDEC!

By the way, the exclamation point in the test code “CDEC!” is meant to remind us of
the exclamation point in “Think!”.

We claim that any third response (along with the previous information) uniquely
determines the concealed code. First note that we know the colors are C, C, D, E
because the second response to CCDE is 13. Thus, the third response (to the reordering
CDEC of the correct colors) must have a sum of 4: the only possible third responses are
04, 13, 22, or 40 (the response 31 is always physically impossible so we do not consider
it). Another consequence of the second response to CCDE as 13 is that exactly one
of these two C’s is in the correct position.4 Next we go through the possible third
responses and show that each one (along with the previous information) determines a
unique code, thus confirming that each possible third response is the “Think!” situation
or , situation.

4By response 13 to CCDE, exactly one of the two C’s in CCDE is in the correct position, by the
following argument. If D were correct, then both C’s would have to move to the fourth position, which
is impossible. Similarly, if E were correct, then both C’s would have to move to the third position,
which is impossible. So one of the two C’s in CCDE is in the correct position.
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Suppose the third response to CDEC is 04. Then in CDEC, both the first and last
C are in the wrong position, so the concealed code must be of the form 2CC2. But
from the second response, we know the final color cannot be E, so must be D. Finally,
the concealed code is ECCD.

Suppose the third response to CDEC is 13. As mentioned above, we know from
Response 2 that either the first or second entry of the correct code is C, so we consider
the various cases.

(i) Suppose in Move 2 only second entry C is correct and suppose in Move 3 only
third entry E is correct. Then the 13 response to Move 3 implies the code
must be of the form [not C]CE[not C]. This is a contradiction, as the second
C must be somewhere!

(ii) Suppose in Move 2 only second entry C is correct and suppose in Move 3 only
fourth entry C is correct. Then the 13 response to both Moves 2 and 3 implies
the code must be of the form 2C[neither D nor E]C. This is a contradiction,
since D and E cannot both be in the first entry.

(iii) Suppose in Move 2 only first entry C is correct, hence also in Move 3 only first
entry C is correct. Consequently, the final three letters in Move 2 and the final
three letters in Move 3 are all in the wrong position. So the concealed code
must be CECD.

Suppose the third response to CDEC is 22. As mentioned above, we know from
Response 2 that either the first or second entry of the correct code is C, so we consider
the various cases.

(i) Suppose in Move 2 only first entry C is correct and in Move 3 additionally
second entry D is correct. Then in Move 3 only the third and fourth positions
are wrong and the code is CDCE. Contradiction: this final E cannot be correct
according to Response 2. So the code is not of the form CD22.

(ii) Suppose in Move 2 only first entry C is correct and in Move 3 additionally third
entry E is correct. Then in Move 3 only the second and fourth positions are
wrong and the code is CCED. Contradiction: this second C cannot be correct
according to Response 2. So the code is not of the form C2E2.

(iii) Suppose in Move 2 only first entry C is correct and in Move 3 additionally
fourth entry C is correct. Then in Move 3 only the second and third positions
are wrong and the code is CEDC. Contradiction: this third position D cannot
be correct according to Response 2. So the code is not of the form C22C.
Combining (i), (ii), and (iii), we see the code is not of the form C222.

(iv) Suppose in Move 2 only second entry C is correct. Then first entry C is
incorrect, and in Move 3, first entry C and second entry D are both incorrect,
so the final EC must be correct. Hence the code is DCEC.

Suppose the third response to CDEC is 40. Then the codebreaker has guessed the
correct code by a combination of luck and logic, precisely the situation ,.

Example 2.5 (“WXYZ?” Means its Response gives “Think!”, or “50/50?”, or ,).
In this situation, the codebreaker has played a test code WXYZ and is awaiting the
response, and any response will bring us into the “Think!” situation of Example 2.1, or
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the “50/50?” situation of Example 2.3, or the , situation of Example 2.2, and “50/50?”
will occur for at least one of responses. In other words, any possible response to WXYZ
and the other information on the playing board is satisfied by at most two codes, and
for some responses exactly two test codes (the correct code could also be played by
chance). For instance, consider another modification of the situation of Example 2.2,
with a second response of 22 instead of 40.

Move Response

1. AABB 00

2. CCDE 22

3. CDCE?

By the way, the question mark in the test code “CDCE?” is meant to remind us of the
question mark in “50/50?”.

We claim that any third response (along with the previous information) uniquely
determines the concealed code, or determines exactly two candidate codes, or is a win
by luck and logic.

First note that we know the colors are C, C, D, E because the second response to
CCDE is 22. Thus, the third response (to the reordering CDCE of the correct colors)
must have a sum of 4: the only possible third responses are 04, 13, 22, or 40 (the
response 31 is always physically impossible so we do not consider it). Next we go
through the possible third responses and show that each one (along with the previous
information) determines a unique code, or exactly two candidate codes, or is a lucky
win.

Suppose the third response to CDCE is 04. Then in CDCE, both the first and third
C are in the wrong positions, so the concealed code must be of the form 2C2C. In
Move 2 from response 22, exactly two of CCDE are correct, so third entry D must be
correct (first entry C and last entry E are known to be wrong from Response 3). Hence
the concealed code is uniquely determined to be ECDC.

Suppose the third response to CDCE is 13. Then we leave as an exercise to verify that
there exactly two candidates: CCED and CEDC. The method is to explicitly consider
all 6 cases of two correct entries in Move 2, and what that will mean in combination
with 13 as Response 3.

Suppose the third response to CDCE is 22. Then we leave as an exercise to verify
that the code is DCCE. The method is to explicitly consider all 6 cases of two correct
entries in Move 2, and what that will mean in combination with 22 as Response 3.

Suppose the third response to CDCE is 40. Then the codebreaker has guessed the
correct code by a combination of luck and logic, this is precisely the situation ,.

3. Knuth’s Algorithm

The key idea behind Knuth’s algorithm can be understood by considering the easier
game “Guess who?”. There one has to determine a person among a set of 24 people,
and Yes/No questions are allowed. A question like ‘Does he/she wear glasses?’ is bad
if few people wear glasses because most likely the answer is ‘No’ and hence only few
people get discarded. A good question is about a characteristic that half of the people
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possess, so that with any answer we can discard half of the candidates. For a good
strategy, the candidates should be at most uniformly distributed among the possible
answers. This achieves that most candidates can be discarded independently of the
response. In other words, the worst case scenario (maximum number of remaining
possibilities by going through the responses) is under control.

The main idea of Knuth’s algorithm is that the codebreaker always plays a test code
that “minimizes the maximum number of remaining possibilities” given the previous
information on the playing board, amongst the possibilities for the upcoming response
[31, page 3]. Moreover, when there is more than one test code that minimizes the
maximum number of remaining possibilities, the algorithm chooses (if possible) to play
a test code that is compatible with the previous information on the playing board, i.e.,
a test code that can actually win. Among these, the smallest in lexicographic order is
played.

As an illustration of the slogan “minimizing the maximum number of remaining
possibilities”, consider the first move of the game, when nothing is known. What
should the codebreaker’s first move be? Is it clever to use all different colors in the
first move? We analyze all possible first moves in Table 1.

Table 1 shows the number of candidate codes that remain after an initial test code
is played and a response is given, or in other words, how many codes satisfy a given
response to a given initial test code. The column labels are various initial test codes.5

Other initial test codes are of course possible, but we do not list them because their
columns will be equal to an indicated one obtained by permuting positions and/or col-
ors. The row labels in Table 1 are the various responses. As an example of interpreting
an entry, if the codebreaker’s initial test code is AAAA and the codemaker’s response
is 00 , then all 54 = 625 sequences of the five colors B to F could be the code and the
set of candidate codes after the first move and response has 625 elements.

Each column maximum in Table 1 is indicated in bold. The minimum column
maximum 256 is located in the AABB column. Thus, the first codebreaker move
should be AABB according to Knuth’s algorithm.

Of course, CCDD or EEFF et cetera would theoretically work just as well for the first
test code but the algorithm further stipulates that if more than one test code minimizes
the maximum number of remaining possibilities, then the first one in lexicographic
ordering is selected. Hence AABB rather than CCDD or EEFF.

The conceptual picture behind the algorithm is that each response narrows down as
much as possible (while independently of the response) the set of candidate test codes,
until finally there is a unique candidate, exactly two candidates, or the correct code is
presented by a combination of luck and logic. Initially, before the first response, the
set of candidate codes consists of all 1296 = 64 four-color sequences. After the first

5One representative from each permutation class appears in a column heading. More precisely,
two four-letter sequences are considered equivalent if one can be transformed into the other via a
permutation of the six letters and a permutation of the positions. Equivalent four-letter sequences
will have equal column number entries, so we only list one representative from each equivalence class,
in a normal form. The idea of code equivalence class just explained is valid only for the first move.
For later moves a sharpened notion of equivalence is needed, see Sections 5.1.2 and 5.2 of [36].
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Remaining Candidate Test Codes After First Move and Response

First Test Code
Response AAAA AAAB AABB AABC ABCD

00 625 256 256 81 16
01 308 256 276 152
02 61 96 222 312
03 16 44 136
04 1 2 9
10 500 317 256 182 108
11 156 208 230 252
12 27 36 84 132
13 4 8
20 150 123 114 105 96
21 24 32 40 48
22 3 4 5 6
30 20 20 20 20 20
40 1 1 1 1 1

Table 1. The initial test code AABB minimizes the maximum number
of remaining candidate test codes, so is the first move by the codebreaker
in Knuth’s algorithm. This table can be found in several references, see
for example Table 32.1 of Bewersdorff [6].

response the set becomes smaller because of the new information. By choosing the first
move AABB the worst case scenario is the response 10 shown in Table 1, in which 256
candidate codes remain. So with any response to AABB we have already got ridden
of 80% of the codes!

The second move is similarly determined by the slogan and such a table, however
the compilation of the table also takes the first response into consideration. The slogan
does not prevent Move 2 from being a test code that contradicts the information on
the board. In other words, in Move 2 and beyond, the algorithm may suggest a test
code that does not satisfy the previous information on the playing board, and hence
cannot win. This is a subtlety of the algorithm: sometimes the remaining candidate
codes do not minimize the maximum number of remaining possibilities and in this case
the codebreaker should use a test code that for sure will not have 40 as a response.
Such a code will not make us win in the present move, but can provide much better
information and allow us to win in five moves. An example of such an occurrence is
given in [31, p.3]. See Activity 11 for example of a “smart move” that gains additional
information but cannot win.

Of course, a computer is actually needed to realize Knuth’s algorithm; the sets of
candidate codes for various responses are too large for a human codebreaker to deter-
mine and compare quickly. The algorithm does not give basic rules that a codebreaker
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can simply apply by hand in a given situation. Thus, there is a need for a geometric
visualization of Knuth’s algorithm...

4. Instructions for Using the Mastermind Rad

Alexander Lang’s Mastermind Rad is a tool to help the codebreaker determine the
code selected and concealed by the codemaker, using Knuth’s algorithm. In fact, the
Mastermind Rad is a geometric visualization of Knuth’s Figure 1 [31, pages 4 and 5].
His visualization leaves out only one bit of information from Knuth’s figure, namely
the number of remaining candidate codes after each move.

The codebreaker tells the Mastermind Rad the responses, and the Mastermind Rad
tells the codebreaker which test code to play. To use the Mastermind Rad, the code-
breaker positions each ring according to the codemaker responses, and reads from the
center disc outwards to the outermost ring. Each codebreaker test code move cor-
responds to a ring, except the fifth. The Mastermind Rad terminates in one of the
situations of Examples 2.1, 2.2, 2.3, 2.4, or 2.5, so that in total five6 or fewer tries are
made by the codebreaker to win the game.

An important, but perhaps counterintuitive point, is that the Mastermind Rad does
not find the concealed code for the user. Rather, the Mastermind Rad leads, eventually,
to three situations:

(i) “Think!” All the information necessary to deduce the code is already on the
playing board, and the codebreaker must only think and then present the
correct code. See Example 2.1.

(ii) , There is not enough information on the playing board to deduce the code,
but the codebreaker presents a test code and by luck and logic guesses the
correct code. See Example 2.2.

(iii) “50/50?” Exactly two test codes satisfy the information on the playing board,
and one of them is the correct code. The codebreaker must think and de-
duce the two candidates, and then simply try them one after the other. See
Example 2.3.

To represent the large number of possible game sequences, the Mastermind Rad some-
times stops just before two of the preceding situations. Namely, the Mastermind Rad
stops at the pre-winning situations “WXYZ!” and “WXYZ?” that occur just before
“Think!” and “50/50?”, as described in Examples 2.4 and 2.5.

Next we describe how the codebreaker uses the Mastermind Rad. Suppose the code-
maker has selected and concealed an ordered sequence (code) of four colors, chosen
from the colors A, B, C, D, E, F. Repeat colors are allowed in the code.

Step 1. The codebreaker plays AABB, and the codemaker gives the 1st response.
(a) The codebreaker finds the correct face of the wheel, depending on whether

the response has no black peg, or at least one black peg.
(b) The codebreaker rotates the innermost ring until the window displays the

number of black pegs and the number of white pegs in the codemaker’s
1st response.

6The count of five includes also the final presentation of the correct code.
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Step 2. The codebreaker plays the code displayed in the innermost window, and the
codemaker gives the 2nd response.
(a) The codebreaker rotates the 2nd ring until the window displays the code-

maker’s 1st and 2nd response. Notice that the sector of interest on the
2nd ring is also indicated by an arc with the same color as the codemaker’s
1st response.

Step 3. The codebreaker plays the code displayed in the 2nd window, and the code-
maker gives the 3rd response.
(a) The codebreaker rotates the 3rd ring until the window displays the code-

maker’s 1st, 2nd, and 3rd response. Notice that the sector of interest on
the 3rd ring is also indicated by an arc with two stripes with the same col-
ors as the stripes corresponding to the codemaker’s 1st and 2nd response.

Step 4. The codebreaker plays the code displayed in the 3rd window, and the code-
maker gives the 4th response.

Step 5. The codebreaker successfully determines the code from the 4th response, with-
out consulting the Mastermind Rad.

As mentioned above, the Mastermind Rad may finish before Step 5. In most cases,
the Mastermind Rad ultimately leads to situation “Think!” or “50/50?”, both of
which are combinatorial riddles (because the codebreaker must use logic to find the
only possible code or the only two remaining codes). Notice that in general one can
produce Mastermind riddles in the same fashion as chess puzzles, where a configuration
of chess pieces is given, and the task is to find checkmate in one or two moves, without
playing a whole game to reach the given configuration.

5. Using the Mastermind Rad to Teach Algorithms in a Class

The Mastermind Rad illustrates the idea of an algorithm in a tactile way, and can be
used in a general education college course, or for enrichment of high school students.
Key lessons of the Mastermind Rad are: an algorithm can have multiple kinds of output,
the user must sometimes consult logic and the outputs of previous steps to construct
an outcome, and finally, an algorithm can involve guesswork.

We have prepared two handouts for partner work that illustrate the various outcomes,
see the appendices of this paper. Each group of two students should receive a printout
of Student A Activity Sheet and Student B Activity Sheet, and have pencil and paper
and a Mastermind Rad. The students alternate the roles of codemaker and codebreaker
and play several complete games on paper (the codemaker is told to use a specific
code). The activities are fairly short and ordered according to difficulty, and are
mostly special cases of Examples 2.1-2.5. These activities assume that the students
are familiar with the game Mastermind. Students may of course use a Mastermind
playing board instead of pencil and paper. It may be instructive for students to first
construct the Mastermind Rad themselves, in which case they should be furnished with
the construction instructions, printouts of the Mastermind Rad components, scissors,
and a fastener. Approximately 20 minutes should be planned for students to build
their own Mastermind Rad.
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The correspondence of the game activities to the previous examples and situations
is as follows. The students should of course not see this table, nor this paper!

Activity Concealed Code Leads to Situation
1 BBAA Think! Example 2.1
2 CBAA Think!
3 DECC 50/50? Example 2.3
4 EDCC 50/50? Example 2.3
5 ECCD WXYZ! Example 2.4 Third Response 04
6 CEDC WXYZ? Example 2.5 Third Response 13

Another activity is to verify several of the results in Table 1. In other words, given
an initial test code WXYZ and its response, the students are to determine the number
of codes that satisfy this information (but not the codes themselves). The solutions
to the problems in both Student Activity Sheets are as follows. The final AAAB 01 is
quite challenging for students.

AAAA 00: There are exactly 5 colors left, hence 54 = 625.
AAAB 00: There are exactly 4 colors left, hence 44 = 256.
AABB 00: There are exactly 4 colors left, hence 44 = 256.
AABC 00: There are exactly 3 colors left, hence 34 = 81.
ABCD 00: There are exactly 2 colors left, hence 24 = 16.
AAAB 01: If A is at the wrong place it must be in the 4th place so in the places 1

to 3 we get colors not AB hence 43 = 64. If B is at the wrong place then in the 4th
place we have non-AB colors while B is in one of the places 1 to 3, the other 2 places
have non-A colors (1B gives 4× (3× 42) = 192, 2B gives 4× (3× 4) = 48, 3B gives 4.)
Adding up we get 64+192+48+4=308.

The Student Activity Sheets have a number of activities that illustrate Knuth’s
algorithm and searches in Mastermind, see Activities 8 through 14.

Additionally, the Mastermind Rad illustrates the notion of algorithm in several more
ways, especially regarding the geometric arrangement of the cases. The initial case
distinction of “no black peg” versus “at least one black peg” corresponds to the two
sides. The color coded arcs enable the user to visualize the tree of cases and navigate
through it with ease, radially from the center outward (when the user lifts a ring to
reveal all the responses, the sector color matches the case colors). The recording of
the previous responses in the movable windows shows that the cases depend only on
the set of previous responses. Finally, the number of rings corresponds to how many
moves are needed to win: the four rings illustrate that the algorithm wins Mastermind
in five or less moves.

6. Conclusion

The Mastermind Rad and Student Activity Sheets provide a fun, concrete introduc-
tion to the notion of algorithm. We have mentioned several key lessons students can
learn from this visualization of Knuth’s algorithm. We conclude with several more
thought-provoking questions that can be used in class for meta-reflection. Students
may notice in the activities, that Knuth’s algorithm does not provide a repertoire of
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moves for the codebreaker, nor does it give general advice on how to play in typical
situations.

To wrap-up, an instructor could challenge students to debate the following questions:
what should a good algorithm for Mastermind do? Should it provide a repertoire of
moves that a human could use, or is it sufficient that a computer somehow searches a
solution space with intelligent brute force? Should we keep track of how the algorithm
works? Is it important that the algorithm always produces the same output or can
the strategy be random, for example making a random guess from the set of remaining
candidate code sequences? Should the algorithm just win the game, or win the game
as fast as possible?

What does “as fast as possible” even mean? There are different ways to compare the
speed at which algorithms win the game. Knuth’s algorithm guarantees a win after 5
or fewer codebreaker moves, but other algorithms may have a lower expected number
of moves, even though sometimes they require more than 5 moves. This is the case for
genetic algorithms approaches to Mastermind, see for instance [5] and [38].

Why are algorithms relevant to students in everyday life? An instructor could chal-
lenge students to debate the sometimes antagonistic roles of algorithms in a 21st century
economy and democracy. For instance, some online businesses optimize profits with
“dynamic pricing” algorithms, while consumers can find their best price with aggre-
gating platforms, hence algorithms can serve both profit maximization and consumer
interests. Stock markets are another illustrative domain: algorithms in high frequency
trading are stiff competition for individual investors. Mass surveillance is perhaps
a final topic to liven up the mathematics classroom: email, telephone, and internet
surveillance algorithms lie in the balance of national security and civil liberties. Also
noteworthy is the inherent risk of algorithms and their implementations: Knight Capi-
tal Group’s improper implementation of a stock trading algorithm lost untold millions
in less than an hour a few years ago! Algorithms are not just about fun and games!
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[30] Gerold Jäger and Marcin Peczarski. The worst case number of questions in generalized AB game
with and without white-peg answers. Discrete Applied Mathematics, 184:20–31, 2015.

[31] Donald E. Knuth. The computer as master mind. Journal of Recreational Mathematics, 9(1):1–6,
1976/77.

[32] David Kong and Peter D. Taylor. Skunk redux. Mathematics Magazine, 85(4):267–276, 2012.
[33] Barteld Kooi. Yet another Mastermind strategy. International Computer Games Association

Journal, 28(1):13–20, 2005.
[34] K. Koyama and T. W. Lai. An optimal mastermind strategy. Journal of Recreational Mathemat-

ics, 25(4):251–256, 1993.
[35] Igor Kriz and Paul Siegel. Rubik’s cube inspired puzzles demonstrate math’s “simple groups”.

Scientific American, 299(1):84–89, 2008, http://www.scientificamerican.com/article/

puzzles-simple-groups-at-play/.
[36] Alexander Lang. Mastermind. Zulassungsarbeit zur Examensprüfung für das Lehramt an Re-
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Student A Activity Sheet

In these activities you will play Mastermind with pencil and paper. The six colors
are A, B, C, D, E, F and codewords have length four. If you are using a Mastermind
playing board instead of pencil and paper, first list the six colors in your Mastermind
game in alphabetical order and label them A, B, C, D, E, F.

Suppose you are the codebreaker. The Mastermind Rad is a tool to help you deter-
mine the code selected and concealed by the codemaker. This tool is a visualization of
Donald Knuth’s 1976 algorithm published in “The computer as master mind,” Journal
of Recreational Mathematics, Volume 9, Issue 1.

You begin with move AABB, and then tell the Mastermind Rad the response in the
inner disk, and the Mastermind Rad tells you which test code to play next, and so
on. To use the Mastermind Rad, you position each ring according to the codemaker
responses, and you read from the center disc outwards to the outermost ring. Your first
move is AABB, find the response on the center disc, make the corresponding move,
and then find the response on the next ring, and so on.

The Mastermind Rad finishes in one of the following situations.

(i) “Think!” All the information necessary to deduce the code is already on the
playing board, and then you must think and then present the correct code.

(ii) , There is not enough information on the playing board for you to deduce the
code, but you have presented a test code, and by luck and logic guessed the
correct code.

(iii) “50/50?” Exactly two test codes satisfy the information on the playing board,
and one of them is the correct code. Then you must think and deduce the two
candidates, and simply try them one after the other.

(iv) “WXYZ!” After you play WXYZ, the response will put you into situation
“Think!” or situation ,.

(v) “WXYZ?” After you play WXYZ, the response will put you into situation
“50/50?”, or situation “Think!”, or situation ,.

Notice: the Mastermind Rad does not find the concealed code for you! Rather, the
Mastermind Rad leads to a situation where you must use logic to deduce the code from
the available information.

Activities Using the Mastermind Rad to Play Mastermind

Activity 1. You are the codebreaker. Use the Mastermind Rad to determine the code
selected by your partner.

Activity 2. Next switch roles: you are now the codemaker. Select and conceal the
code CBAA, and respond to your partners attempts.
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Activity 3. You are the codebreaker. Use the Mastermind Rad to determine the code
selected by your partner.

Activity 4. You are the codemaker. Select and conceal the code EDCC, and respond
to your partner’s attempts.

Activity 5. You are the codebreaker. Use the Mastermind Rad to determine the code
selected by your partner.

Activity 6. You are the codemaker. Select and conceal the code CEDC, and respond
to your partner’s attempts.

Activities on Counting Candidate Codes After First Response

Activity 7. Suppose you do the initial test code AAAA and receive response 00. How
many candidate codes are there? Similarly, for each of the following, if WXYZ is an
initial test code, and bw is the response, find the number of candidate codes.

AAAB 00
AABB 00
AABC 00
ABCD 00
Challenge: AAAB 01

Activities about Knuth’s Algorithm
In the previous activities you used the Mastermind Rad to play and win Mastermind.
Next let’s take a look at the ideas behind the Mastermind Rad, namely Knuth’s algo-
rithm from 1976. The conceptual picture behind the algorithm is that each response
narrows down as much as possible (while independently of the response) the set of
candidate test codes, until finally there is a unique candidate, exactly two candidates,
or the correct code is presented by a combination of luck and logic. But what is the se-
lection principle of the codebreaker’s test codes? The next exercises elucidate Knuth’s
idea.

Activity 8. The table below shows the number of candidate codes that remain after
an initial test code is played and a response is given, or in other words, how many codes
satisfy a given response to a given initial test code. Find your answers to Activity 7 in
the table. Hint: if your answers are not in the corresponding positions on the table,
then revise your answers to Activity 7.
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Remaining Candidate Test Codes After First Move and Response

First Test Code
Response AAAA AAAB AABB AABC ABCD

00 625 256 256 81 16
01 308 256 276 152
02 61 96 222 312
03 16 44 136
04 1 2 9
10 500 317 256 182 108
11 156 208 230 252
12 27 36 84 132
13 4 8
20 150 123 114 105 96
21 24 32 40 48
22 3 4 5 6
30 20 20 20 20 20
40 1 1 1 1 1

Activity 9. The main idea of Knuth’s algorithm is that the codebreaker always
plays a test code that “minimizes the maximum number of remaining possibilities”
given the previous information on the playing board, amongst the possibilities for the
upcoming response. Let’s consider the meaning of this test code selection principle
for the codebreaker’s very first move. Look at the table above. If the codebreaker
plays the first move AAAA, what is the maximum number of remaining candidate test
codes, amongst the possibilities for the upcoming response? If the codebreaker plays
the first move ABCD, what is the maximum number of remaining candidate test codes,
amongst the possibilities for the upcoming response? Now, amongst the listed first test
codes, which one minimizes the maximum number of remaining candidate test codes?
Compare your answer with Move 1 on the Mastermind Rad.

Activity 10. For Move 2, Knuth’s algorithm continues the test code selection princi-
ple “minimize the maximum number of remaining possibilities” explained in Activity
9. However, beginning with Move 2, information on the playing board must also be
considered in the minimization of maxima slogan. At this point, there are too many
possibilities for a human to compute and count, and a computer (or the Mastermind
Rad!) is needed. By analogy with the previous exercise, we can understand what
the computer does. Namely, in the previous exercises a table was partially computed
and presented, namely a table of remaining candidate test codes for each possible first
test code and possible response, and then you observed that AABB should be Move
1. What should Move 2 be? The computer would make a similar table of remaining
candidate test codes, for all possible second moves and all possible second responses,
however this table must take into account the information already on the board. Then
the computer would find the second move which minimizes the maximum number in
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the respective column. The Mastermind Rad is a geometrically organized enumeration
of the computer outputs, the Mastermind Rad itself does not compute. Your task in
this activity is to explain to your partner how Knuth’s algorithm selects the test code
for Move 2. Your partner will also explain it to you.

Activity 11. A perhaps counter-intuitive feature of Knuth’s algorithm is that some-
times it proposes the codebreaker play a test code that is not among the remaining
candidate test codes, i.e. a test code that contradicts information already on the board.
Such test codes can actually be smart moves and yield information. For instance, sup-
pose the codebreaker knows from previous moves that there are no A’s in the concealed
code, and wants to know if any B’s are in the concealed code. Then the codebreaker
can play AAAB. Why is this code not among the remaining candidate test codes, and
why does the response tell the codebreaker whether or not B is in the concealed code?
For a very clever and more involved example, see page 3 of Knuth’s article.

Activity 12. In order for a computer to implement Knuth’s algorithm, a formula
is needed to compute the response bw to a given test code for a given concealed
code. The number b of black pegs is straightforward to compute by comparing the
respective digits of the test code and concealed code, and counting the number of
digits in agreement. On the other hand, the number w of correct colors in wrong
positions is surprisingly difficult to precisely define and compute. One formula7 for w
is

w =

(
6∑

i=1

min(ci, gi)

)
− b,

where ci is the number of times the color i is in the concealed code and gi is the number
of times i is in the test code. Verify that the formula holds for your moves in Activities
1 and 2.

Activity 13. Every algorithm has an input and an output. What are the input and the
output for Knuth’s algorithm and the Mastermind Rad? Hint: strictly speaking, the
output is not the concealed code. As a follow up activity, can each move be considered
an algorithm in itself?

Activity about General Searches in Mastermind

Activity 14. This activity does not concern Knuth’s algorithm. Which of the following
problems will require going through few codes and which all codes once? Which of the
following problems require a more intensive search? For which of the following problems
can we make use of the concealed code?

• Developing the next move
• Computing the response
• Checking if a potential test code satisfies the information on a given playing

board
• Checking that a code fulfills an information

7From the website http://mathworld.wolfram.com/Mastermind.html

http://mathworld.wolfram.com/Mastermind.html
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• Checking that a code does not fulfill an information
• Finding a test code that distinguishes two codes
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Student B Activity Sheet

In these activities you will play Mastermind with pencil and paper. The six colors
are A, B, C, D, E, F and codewords have length four. If you are using a Mastermind
playing board instead of pencil and paper, first list the six colors in your Mastermind
game in alphabetical order and label them A, B, C, D, E, F.

Suppose you are the codebreaker. The Mastermind Rad is a tool to help you deter-
mine the code selected and concealed by the codemaker. This tool is a visualization of
Donald Knuth’s 1976 algorithm published in “The computer as master mind,” Journal
of Recreational Mathematics, Volume 9, Issue 1.

You begin with move AABB, and then tell the Mastermind Rad the response in the
inner disk, and the Mastermind Rad tells you which test code to play next, and so
on. To use the Mastermind Rad, you position each ring according to the codemaker
responses, and you read from the center disc outwards to the outermost ring. Your first
move is AABB, find the response on the center disc, make the corresponding move,
and then find the response on the next ring, and so on.

The Mastermind Rad finishes in one of the following situations.

(i) “Think!” All the information necessary to deduce the code is already on the
playing board, and then you must think and then present the correct code.

(ii) , There is not enough information on the playing board for you to deduce the
code, but you have presented a test code, and by luck and logic guessed the
correct code.

(iii) “50/50?” Exactly two test codes satisfy the information on the playing board,
and one of them is the correct code. Then you must think and deduce the two
candidates, and simply try them one after the other.

(iv) “WXYZ!” After you play WXYZ, the response will put you into situation
“Think!” or situation ,.

(v) “WXYZ?” After you play WXYZ, the response will put you into situation
“50/50?”, or situation “Think!”, or situation ,.

Notice: the Mastermind Rad does not find the concealed code for you! Rather, the
Mastermind Rad leads to a situation where you must use logic to deduce the code from
the available information.

Activities Using the Mastermind Rad to Play Mastermind

Activity 1. You are the codemaker. Select and conceal the code BBAA, and respond
to your partner’s attempts.

Activity 2. Next switch roles: you are now the codebreaker. Use the Mastermind
Rad to determine the code selected by your partner.



22 THOMAS M. FIORE, ALEXANDER LANG, AND ANTONELLA PERUCCA

Activity 3. You are the codemaker. Select and conceal the code DECC, and respond
to your partner’s attempts.

Activity 4. You are the codebreaker. Use the Mastermind Rad to determine the code
selected by your partner.

Activity 5. You are the codemaker. Select and conceal the code ECCD, and respond
to your partner’s attempts.

Activity 6. You are the codebreaker. Use the Mastermind Rad to determine the code
selected by your partner.

Activities on Counting Candidate Codes After First Response

Activity 7. Suppose you do the initial test code AAAA and receive response 00. How
many candidate codes are there? Similarly, for each of the following, if WXYZ is an
initial test code, and bw is the response, find the number of candidate codes.

AAAB 00
AABB 00
AABC 00
ABCD 00
Challenge: AAAB 01

Activities about Knuth’s Algorithm
In the previous activities you used the Mastermind Rad to play and win Mastermind.
Next let’s take a look at the ideas behind the Mastermind Rad, namely Knuth’s algo-
rithm from 1976. The conceptual picture behind the algorithm is that each response
narrows down as much as possible (while independently of the response) the set of
candidate test codes, until finally there is a unique candidate, exactly two candidates,
or the correct code is presented by a combination of luck and logic. But what is the se-
lection principle of the codebreaker’s test codes? The next exercises elucidate Knuth’s
idea.

Activity 8. The table below shows the number of candidate codes that remain after
an initial test code is played and a response is given, or in other words, how many codes
satisfy a given response to a given initial test code. Find your answers to Activity 7 in
the table. Hint: if your answers are not in the corresponding positions on the table,
then revise your answers to Activity 7.
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Remaining Candidate Test Codes After First Move and Response

First Test Code
Response AAAA AAAB AABB AABC ABCD

00 625 256 256 81 16
01 308 256 276 152
02 61 96 222 312
03 16 44 136
04 1 2 9
10 500 317 256 182 108
11 156 208 230 252
12 27 36 84 132
13 4 8
20 150 123 114 105 96
21 24 32 40 48
22 3 4 5 6
30 20 20 20 20 20
40 1 1 1 1 1

Activity 9. The main idea of Knuth’s algorithm is that the codebreaker always
plays a test code that “minimizes the maximum number of remaining possibilities”
given the previous information on the playing board, amongst the possibilities for the
upcoming response. Let’s consider the meaning of this test code selection principle
for the codebreaker’s very first move. Look at the table above. If the codebreaker
plays the first move AAAA, what is the maximum number of remaining candidate test
codes, amongst the possibilities for the upcoming response? If the codebreaker plays
the first move ABCD, what is the maximum number of remaining candidate test codes,
amongst the possibilities for the upcoming response? Now, amongst the listed first test
codes, which one minimizes the maximum number of remaining candidate test codes?
Compare your answer with Move 1 on the Mastermind Rad.

Activity 10. For Move 2, Knuth’s algorithm continues the test code selection princi-
ple “minimize the maximum number of remaining possibilities” explained in Activity
9. However, beginning with Move 2, information on the playing board must also be
considered in the minimization of maxima slogan. At this point, there are too many
possibilities for a human to compute and count, and a computer (or the Mastermind
Rad!) is needed. By analogy with the previous exercise, we can understand what
the computer does. Namely, in the previous exercises a table was partially computed
and presented, namely a table of remaining candidate test codes for each possible first
test code and possible response, and then you observed that AABB should be Move
1. What should Move 2 be? The computer would make a similar table of remaining
candidate test codes, for all possible second moves and all possible second responses,
however this table must take into account the information already on the board. Then
the computer would find the second move which minimizes the maximum number in
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the respective column. The Mastermind Rad is a geometrically organized enumeration
of the computer outputs, the Mastermind Rad itself does not compute. Your task in
this activity is to explain to your partner how Knuth’s algorithm selects the test code
for Move 2. Your partner will also explain it to you.

Activity 11. A perhaps counter-intuitive feature of Knuth’s algorithm is that some-
times it proposes the codebreaker play a test code that is not among the remaining
candidate test codes, i.e. a test code that contradicts information already on the board.
Such test codes can actually be smart moves and yield information. For instance, sup-
pose the codebreaker knows from previous moves that there are no A’s in the concealed
code, and wants to know if any B’s are in the concealed code. Then the codebreaker
can play AAAB. Why is this code not among the remaining candidate test codes, and
why does the response tell the codebreaker whether or not B is in the concealed code?
For a very clever and more involved example, see page 3 of Knuth’s article.

Activity 12. In order for a computer to implement Knuth’s algorithm, a formula
is needed to compute the response bw to a given test code for a given concealed
code. The number b of black pegs is straightforward to compute by comparing the
respective digits of the test code and concealed code, and counting the number of
digits in agreement. On the other hand, the number w of correct colors in wrong
positions is surprisingly difficult to precisely define and compute. One formula8 for w
is

w =

(
6∑

i=1

min(ci, gi)

)
− b,

where ci is the number of times the color i is in the concealed code and gi is the number
of times i is in the test code. Verify that the formula holds for your moves in Activities
1 and 2.

Activity 13. Every algorithm has an input and an output. What are the input and the
output for Knuth’s algorithm and the Mastermind Rad? Hint: strictly speaking, the
output is not the concealed code. As a follow up activity, can each move be considered
an algorithm in itself?

Activity about General Searches in Mastermind

Activity 14. This activity does not concern Knuth’s algorithm. Which of the following
problems will require going through few codes and which all codes once? Which of the
following problems require a more intensive search? For which of the following problems
can we make use of the concealed code?

• Developing the next move
• Computing the response
• Checking if a potential test code satisfies the information on a given playing

board
• Checking that a code fulfills an information

8From the website http://mathworld.wolfram.com/Mastermind.html

http://mathworld.wolfram.com/Mastermind.html
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• Checking that a code does not fulfill an information
• Finding a test code that distinguishes two codes
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