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Abstract 

This thesis is in two parts.  The first discusses many uncertainties associated with the 

widely used HadCRUT4 global temperature dataset. The second part deals with three 

other issues in climate science, viz (i) the possible relationship between cloud cover 

and global average temperature; (ii) a better indicator of the El Nino-Southern 

Oscillation; and (iii) the probability of severe coral bleaching along the Great Barrier 

Reef prior to 1998. 

 

Part 1 

 

The HadCRUT4 dataset provides information about temperatures over as much of the 

Earth's surface for which historical temperature recordings are available.  It is 

regularly cited by government authorities and by organizations such as the 

Intergovernmental Panel on Climate Change (IPCC) and the United Nations 

Framework Convention on Climate Change (UNFCCC) and yet very little appears in 

the scientific literature about its errors and uncertainties other than from within the 

organizations responsible for its collation.  Authors of the IPCC's Fifth Climate 

Assessment Report (2013) admitted during the review process for that report that no 

audit of the HadCRUT4 dataset or any associated dataset had been undertaken.  

 

Given that governments are deciding energy and climate policies on claims based on 

the HadCRUT4 dataset, an independent audit of its accuracy and uncertainties was 

undertaken using data from 1850 to 2015.  The audit covers a broad range of issues 

but leaves the quantifying of the impact of such errors to others, save for some general 

comments about the direction of changes in error margins. 

 

Bespoke software revealed many areas of concern.  Data coverage was found to vary 

between 12% and 91% of the Earth's surface, which means that any declared "global 

average" assumes that temperatures over the part of the world for which no data was 

available were identical to that average. It also assumes that meaningful trends can be 

calculated even though the coverage varies. Also revealed was that when coverage 
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was low it was found to be concentrated on particular regions, meaning for example 

that less than 13% of a hemisphere might account for more than 60% of the data 

coverage for that hemisphere in a given month. 

 

Sample size was another problem.  A single observation station in the entire Southern 

hemisphere reported data in the first three years of the HadCRUT4 record and only 

nine were reporting by 1859.  The data is processed and presented on a monthly basis 

as values for each grid cell, each of which covers 5° latitude x 5° longitude.  More 

than 30% of the grid cells derived from sea surface temperature do so from 1850 to 

about 1950 on the basis of from one to five measurements in the entire month. 

 

Outliers were also discovered in the data, even in the 30-year period from 1961 to 

1990 over which long-term average temperatures are calculated and sometimes in the 

longer period over which standard deviations were calculated.  Their presence in these 

periods firstly widens the range of acceptable values (i.e. includes the inclusion of 

other outliers) and secondly distorts the crucial long-term average temperatures. 

 

Numerous other inconsistencies and uncertainties were identified, including 

differences between dataset values that should be identical, unexplained differences 

between land and sea temperatures, inconsistent sources of coastal temperature data, 

questionable "bulk adjustment" to sea surface temperature data, poor data quality 

control and possible errors in the processing of land and sea temperature data prior to 

their submission for inclusion in the dataset. 

 

Over 25 findings are presented in the summary to part 1of the thesis, the most serious 

being that HadCRUT4 global averages prior to 1950 are of limited value because for 

almost all of the period from 1850 to 1950 the coverage of the Earth's surface was less 

than 50%. The summary also proposes how a new historical dataset with fewer 

uncertainties and inconsistencies might be constructed from some but not all of the 

existing data. 
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Part 2 

 

Three topics are covered in this section.  The first is a published paper that attributes 

the pattern in HadCRUT4 global average temperature anomalies since 1950 firstly to 

a change in the El Nino-Southern Oscillation after 1977 from having few El Nino 

events to having many, then from 1987 to 1997 to a general reduction in cloud cover.  

Since 1997 the trend in global average temperature is minimal but low-level cloud 

cover has decreased while mid to upper level cloud cover have correspondingly 

increased. 

 

The second topic focuses on an alternative to the commonly used Troup Southern 

Oscillation Index (SOI), which is used to indicate the state of the El Nino-Southern 

Oscillation (ENSO) and is based on sea-level pressure (SLP) at just two locations - 

Darwin (Australia) and Tahiti (French Polynesia). It proposes that an ensemble index 

be created from data at six other locations, three in the eastern Pacific and three in the 

western Pacific or further west. The ensemble index is shown to have three significant 

advantages.  Firstly, it provides better coverage of the entire region where mean sea 

level pressure is directly related to ENSO conditions. Secondly, and somewhat 

related, is that data noise such as that caused by small-scale weather conditions at one 

or two locations is less likely to have a major impact on the ensemble SOI than in the 

Troup-SOI. Thirdly, and less significant, it is refining an existing index rather than 

introducing a new one. 

 

 

The third topic addresses the often-repeated claim that severe and extensive coral 

bleaching on Australia's Great Barrier Reef (GBR) driven by warm water first 

occurred in 1998.  Regular aerial surveys of the GBR did not commence until the late 

1990s so to address the question of earlier severe bleaching four different techniques 

are used. 
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The first approach uses statistical and probability argument based on known recent 

bleaching events and Willis Island temperature data to conclude that the probability of 

bleaching in one or more years of the period from 1922 to 1997 is at least 0.6.  

 

The second approach considers previous instances of El Nino events during summer 

months, such events being related to bleaching overseas and along the GBR in recent 

years. El Nino events during eighteen summer months over the period 1939 to 1997 

were identified, the strongest occurring in 1983 when extensive coral bleaching was 

reported in the eastern Pacific near Panama and in waters off Indonesia. 

 

The third considers the number of warm summer days and the maximum length of 

sequences of warm days according to temperature records from the observation 

station on Willis Island, about 350 km east of the GBR. Warm summers prior to 1998 

include those which ended in 1944 and 1964, the latter coming immediately after a 

short El Nino event that weakened in January of that year. 

 

The final approach was to analyse sea temperature records in the ICOADS database 

that applied to summer and the GBR, with the data divided into three bands, each 

spanning 5° of latitude.  An examination of the proportion of warm days revealed that 

of the 37 observations made in the northern third of the reef during March 1970 33 

include reports of temperatures ≥29°C and 25 of temperatures ≥30°C.  Sequences of 

warm days were also examined, this revealing sea temperatures ≥30°C on nine 

successive days in the middle third of the reef commencing 25 December 1923 and 

seven successive days in the northern third of the reef in late March 1983. 

 

Contrary to various claims, severe coral bleaching on the GBR prior to 1998 seems 

likely with a probability of ~0.6 that bleaching occurred in one or more summers from 

1922 to 1997, with the other methods suggesting it was most likely in the summers 

ending in 1983 and 1963. 

 

 

*** 
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Chapter 1: Introduction 

 

1.1 Introduction 

 

The money spent addressing climate change is sometimes truly staggering.  In 2009 it 

was estimated that the US had spent $79 billion since 1989 on policies related to 

climate change1.  In 2015 climate change was said to be a $1.5 trillion industry2.  In 

March 2016 it was announced that the Australian government had committed 

AUD$2.55 billion for carbon abatement within the country3 and a further $1 billion 

over five years to support developing countries build resilience to climate change and 

reduce their carbon dioxide emissions.  A meeting of the IMF in October 2016 talked 

of mobilizing USD$100 billion in annual financing flows from rich countries to 

developing economies by 2020 and mentioned one estimate suggesting that around 

USD$90 trillion will need to be invested by 2030 in infrastructure, agriculture and 

energy systems, to meet the requirements of the Paris Climate Treaty of 20154.  

 

Underpinning all this spending is the proposition that temperatures have risen to a 

dangerous level and that mankind is to blame.  The source of the temperature data in 

question is often the HadCRUT4 dataset, which is cited by the Intergovernmental 

Panel on Climate Change (e.g. IPCC, 2013) and by other government and non-

government organizations.  Despite the great reliance on this data it appears that no 

independent in-depth audit or analysis of its accuracy has ever been undertaken, save 

for a paper that addresses some, but not all, issues. 

 

The author became aware of the situation when he was Expert Reviewer of IPCC 

5AR, the IPCC's fifth climate assessment report, published in 2013.  In response to 

                                                
1 http://scienceandpublicpolicy.org/images/stories/papers/originals/climate_money.pdf  
2 http://joannenova.com.au/2015/07/spot-the-vested-interest-the-1-5-trillion-climate-change-industry/ 
3 http://www.abc.net.au/news/2016-05-05/government-spends-$500m-reducing-carbon-
emissions/7388310 
4 http://newsroom.unfccc.int/unfccc-newsroom/the-paris-agreement-will-soon-enter-into-force-now-
we-need-to-move-the-money/ 
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two comments about an independent audit of key data the IPCC authors responded as 

follows5: 

 

Comment 2-1106 ... Did the IPCC seek an independent audit of HadCRUT3 

(of [sic] HadCRUT4) data prior to citing it?  If not, why not? ...  [John 

McLean, Australia] 

 

IPCC Author: Rejected. The assessment is charged with undertaking a 

holistic literature review. Not undertaking audits of each and every dataset 

which would be an impossible task with solely voluntary effort on the part 

of the (C)Las [i.e. the report authors]. 

 

And ... 

 

Comment 2-1256 Did you audit HadSST3 before using it? ... [John McLean, 

Australia] 

 

IPCC Author: Rejected. Details of data quality control for HadSST3 is 

presented in Kennedy et al. (2011c) which is referenced in the 

previous paragraph. It is not the job of IPCC to audit each and every 

dataset in substantive detail. 

 

Regarding the response to the second comment it should be noted that "Kennedy at al 

(2011c)", is a paper with five authors, four of whom at the time of writing the paper 

were employees of the Hadley Centre, the creators of the HadSST3 dataset, which 

means that the evaluation was not independent.  Further, the issue is not about "data 

quality control" per se but accuracy and reliability. 

 

In 2010 the UK parliament undertook an inquiry into the so-called "Climategate" 

emails, the unauthorised disclosure of many emails from people at the UK's Climate 

Research Unit (CRU).  Conclusion three of the inquiry's report6 said: 

 

                                                
5 Review comments and responses at http://www.ipcc.ch/pdf/assessment-
report/ar5/wg1/drafts/Ch02_WG1AR5SOD_RevCommResponses_Final.pdf  
6 Available via http://www.publications.parliament.uk/pa/cm/cmsctech.htm  
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A great responsibility rests on the shoulders of climate science: to 

provide the planet’s decision makers with the knowledge they need to 

secure our future. The challenge that this poses is extensive and some of 

these decisions risk our standard of living. When the prices to pay are so 

large, the knowledge on which these kinds of decisions are taken had 

better be right. The science must be irreproachable.  

 

I argue that it's not simply the scientific knowledge that needs to be irreproachable but 

also the data that underpins the science and justifies actions to address the matter.  In 

the context of issues of climate change, if the HadCRUT4 is shown to be inaccurate or 

uncertain it might change the manner in which climate issues are addressed, either to 

increase efforts, decrease them, or redirect them into other areas.  

 

 

1.2 The structure, tools and limits of this thesis 

 

The aim of Part 1 of this thesis is to try to establish the general credibility of the 

HadCRUT4 temperature dataset.  It is an initial analysis of areas of concern ranging 

from macro-scale items, such as data coverage and the number of samples  (e.g. 

number of reporting observation stations or sea surface observations), down to the 

micro-scale issues of data outliers and temperature adjustments at individual stations.  

Some issues will impact "big picture" issues like hemispheric or global averages.  

Others will impact "small picture" issues such as temperature patterns for very small 

regions or even individual observation stations. While the small issues might 

individually be minor, in sufficient number and of sufficient magnitude even they can 

impact the "big picture issues". 

 

This thesis makes little attempt to quantify the uncertainties exposed by this 

investigation, save for some brief mention of the impact certain issues might have on 

error margins, because numerous issues are discussed and it would be an enormous 

the task to quantify the uncertainties associated with the many instances of each.  It 

has been left to others to quantify the impact of incomplete data, inconsistencies, 
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questionable assumptions, very likely data errors and questionable adjustments of the 

recorded data.  

 

The primary data sources for this thesis are the HadCRUT4 dataset and associated 

HadSST3 and CRUTEM4 datasets. All three datasets are updated each month, 

typically to add very recent data but sometimes to revise historical data, but for 

consistency the end-of-year datasets for 2015, which is to say the state they were after 

the update in January 2016, are used throughout. 

 

The chapters of Part 1 are organised in a sequence that first addresses the large scale 

issues with the HadCRUT4 dataset - coverage, data quantity, the calculation of long-

term average temperatures - followed by chapters on lesser but still important issues, 

including various inconsistencies and issues specific to each of land-based 

temperature data from observation stations or sea surface temperature data.  Two 

subsequent chapters prior to the summary chapter look in detail at the source data 

from which the various datasets are constructed because flaws in the source data could 

easily be carried through to the completed dataset. 

 

 

1.3 Basic concepts 

 

1.3.1 Introduction 

 

The understanding of certain basic concepts is necessary in order to fully appreciate 

several matters raised in this thesis so this section is an introduction to those issues. 

 

 

1.3.2 Data and information sources 

 

The HadCRUT4 temperature anomaly dataset is derived from the data used in two 

other datasets, the HadSST3 dataset and the CRUTEM4 dataset.  The former is of 
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temperature anomalies for sea surface temperatures and is created and maintained by 

the UK's Met Office Hadley Centre for Climate Science and Services (more 

commonly just "Hadley Centre").  The latter is derived from data obtained by land-

based observation stations and processed by the Climatic Research Unit of the 

University of East Anglia (and commonly known as "the CRU"). 

 

 The HadSST3 web page directs users wanting details to Kennedy et al (2011a) and 

Kennedy et al (2011a) but a more detailed reference for information about the 

processing is Rayner et al (2006).  The primary sources for detailed information about 

the CRUTEM4 dataset are Jones et al (2012) and Osborn & Jones (2014). Information 

about the composite dataset, HadCRUT4, which is constructed from the data for each 

of these two datasets can be found primarily in Morice et al (2012).  Detailed 

discussion of these references follows later in this chapter. 

 

Only McKitrick (2010) seems to offer much in the way of independent examination of 

the temperature anomaly dataset and its construct, albeit based on HadCRUT3, the 

version prior to HadCRUT4. 

 

1.3.3 Grid-based system 

 

Like the CRUTEM4 and HadSST3 datasets, the HadCRUT4 dataset is grid-based 

with data values for each grid cell (or flagged as missing).  The three datasets all use 

grid cells of 5° latitude x 5° longitude, with full coverage of the Earth's surface 

requiring 36 grid cells from north to south and 72 from west to east, a total of 2592 

grid cells.  

 

The advantage of using a grid-based methodology is that there is no bias towards grid 

cells with a greater amount of raw data over those with less raw data.  On the other 

hand one disadvantage is that the cell boundaries are fixed and each cell is processed 

in isolation from its neighbours despite the possibility that an observation station in a 

neighbouring grid cell might be physically closer to more of the target grid cell than 

the stations within that cell. 
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1.3.4 Grid cell types 

 

The HadCRUT4 data are from two basic sources, fixed observation stations (almost 

exclusively on land) or measurements of sea surface temperature, but the grid cells are 

of three types: (1) "Land" grid cells, which exclusively cover regions of land, for 

which the data comes from the CRUTEM4 dataset, (2) "sea" grid cells, which 

exclusively cover regions of sea grid and for which the data is from the HadSST3 

dataset, and (3) "coastal" grid cells for which the data will be a merging of HadSST3 

and CRUTEM4 data if both have data for that cell and otherwise whichever is 

available.   

 

When both sources are used for coastal grid cells the approach in HadCRUT4 is to 

weight the two values according to the fractional area of each, with a minimum land 

data weighting (i.e. weighting for CRUTEM4 data) of 25%. This contrasts with the 

approach from the HadCRUT3, the previous form of HadCRUT data, in which the 

data from the two sources was weighted in inverse proportion to error variance. The 

change goes some way towards recognising that some islands are only a few percent 

of the total area covered by the grid cell. 

 

The number of grid cells and the percentage of the Earth's surface that each cell type 

covers are shown in Table 1-1 and a map to indicate the grid cells is shown in Figure 

1.1.  HadSST3 data can apply to both "sea" and "coastal" and therefore at a maximum 

can cover 81.9% of the Earth's surface, while the maximum cover of CRUTEM4 data 

will include both "land" and "coastal" grid cell types and is therefore 46.2% 
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 Cell Type Cell Count 

Percent 

of cells 

Percent of 

Earth's 

Surface 

Northern Hemisphere Land 293 22.61% 24.32% 

 Sea 560 43.21% 41.79% 

 Coastal 443 34.18% 33.89% 

Southern Hemisphere Land 270 20.83% 11.94% 

 Sea 752 58.02% 65.91% 

 Coastal 274 21.14% 22.15% 

Global Land 563 21.72% 18.13% 

 Sea 1312 50.62% 53.85% 

 Coastal 717 27.66% 28.02% 

Table 1-1 Grid cell types and the number grid cells, percentage of grid cells and the percentage of 
the Earth's surface they cover. 

 

 

 

Figure 1.1 Map of the three types of grid cells, with 'land' grid cells in black, 'sea' grid cells in 
blue and 'coastal' grid cells in grey. 

 

 

1.3.5 Concept of temperature anomalies 

 

The HadCRUT4 dataset and its two source datasets (CRUTEM4 and HadSST3) are 

based on temperature anomalies because this method takes into account variations in 
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temperature caused particularly by latitude and altitude but also by exposure (e.g. to 

winds). 

 

In general terms, all temperature anomalies are calculated according to  

 

Tanom = Ts - Tbase 

 

where Ts is a specific temperature and Tbase is the base or reference temperature. 

 

For HadCRUT4, CRUTEM4 and HadSST3 datasets the data is in reference to specific 

months with Ts being the mean temperature in a given month and Tbase the long-term 

average for the same calendar month, producing the temperature anomaly for the 

given month. 

 

For CRUTEM4 data, i.e. data obtained from observation stations, both the base 

temperature and the anomaly are calculated from the mean monthly temperatures, 

which are the average of the mean daily minimum temperature and the mean daily 

maximum temperature across the month.  The base temperature, Tbase when 

calculating the anomaly for a given month is the average of the monthly mean 

temperatures for the same calendar month across the period from 1961 to 1990 

inclusive (e.g. when calculating a temperature anomaly for January the base 

temperature is the average in each January from 1961 to 1990 inclusive).  More than 

one station might be located in any given CRUTEM4 grid cell and so the cell's value 

in a given month is the average of the temperature anomalies for all reporting 

observation stations within that grid cell in that month. 

 

A different approach is used to calculate sea surface temperature anomalies for the 

HadSST3 dataset. While the dataset is expressed on a grid cell size of 5° x 5° and by 

month, the values are derived from temperature anomalies calculated using 1° x 1° 

grid cells (here called sub-cells for convenience) and 5-day intervals (also known as 

pentads).  Each calendar month has a notional six pentads except for August, which is 

assigned seven, making 73 pentads per 365-day year. Anomalies are separately 

calculated for each sub-cell and pentad, with the base temperature, Tbase, estimated 
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mathematically and subsequently modified by actual SST measurements made during 

the period from 1961 to 1990 within the sub-cell and pentad. 

 

The sea surface temperature anomaly expressed in the HadSST3 dataset at 5° x 5° 

grid cell resolution and in whole months is determined via a two-step process. The 

location and day of the measurement are first converted to a sub-cell and pentad, then 

the long-term average for the sub-cell and pentad used to calculate the sub-cell 

anomaly.  The second step is to average and interpolate the anomalies in order to 

convert it to HadSST3 5° x 5° grid cells at monthly intervals, the interpolation being 

necessary at the start and end of the given month if it fails to align with pentad 

boundaries. 

 

 

1.3.6 Ensemble Approach 

 

In previous versions of the HadCRUT dataset the published dataset was calculated 

directly from the relevant HadSST and CRUTEM datasets, each of which were 

directly calculated from the input data. 

 

In recognition that some uncertainties are unknown or even unknowable, the latest 

version of the HadSST dataset, i.e. HadSST3, was created as an "ensemble" of 100 

different datasets, each of which was constructed according to different assumptions, 

particularly about the proportion of the use of two alternative methods for measuring 

sea surface temperature that produce different results and necessitate adjustment to 

data obtained by one method to make it compatible with the other method. The 

CRUTEM4 raw data required no such modification but mathematical simulating of 

uncertainties and potential biases was used to produced multiple datasets. 

 

HadCRUT4 dataset uses the same technique of 100 different datasets, each 

constructed according to varying assumptions used for the HadSST3 and CRUTEM4 

data, with the mean value of the values in each dataset published as an 'ensemble 

mean'.  While the use of multiple datasets might be useful for establishing the 

sensitivity to certain assumptions ultimately the "ensemble" datasets are the averaging 
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of data derived from (presumably) one correct and ninety-nine incorrect datasets, 

although it is impossible to determine which grouping a given dataset belongs in, and 

whose assumptions often conflicted with each other. 

 

The use of "ensemble mean" datasets makes difficult any comparisons between 

datasets because of the averaging of values. When comparisons are used in this thesis 

it is recognised that the averaging might cause small differences between the datasets 

and therefore certain tolerance thresholds (e.g. 0.05°C) are set and only differences of 

greater magnitude are considered to be genuine differences. 

 

 

1.3.7 Calculations for a (near) spherical Earth 

 

The overlaying of a two-dimensional grid onto the Earth's shape of an oblate spheroid 

of the Earth has implications for the calculation of both the data coverage of the 

Earth's surface and the average temperature in each hemisphere.  Each grid cell covers 

5° latitude x 5° longitude but lines of longitude converge as the latitude moves from 

the equator to the North or South Pole.   Weighting the data by the cosine of the 

latitude of the centre of the grid cell takes the area covered by each grid cell into 

account, the weighting itself being used to determine relative coverage and in 

combination with the temperature anomaly data to determine the average anomaly 

over a number of grid cells. 

 

Coverage in a given month is therefore determined by summing the weightings 

(cosines of the latitude of the centre) of all reporting grid cells in that month and 

expressing it as a percentage of the sum of the weightings of all grid cells across the 

Earth's surface. The percentage coverage for a given area in a given month, Tcov, is 

therefore given by 

 

 Tcov = 100 * ∑ (cosine (x)) for all reporting grid cells 

  ------------------------------------------------------------------ 

            ∑ (cosine (x)) for all grid cells  
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where x is the degrees of latitude of the centre of the grid cell and both the numerator 

and denominator refer to grid cells over the same area (e.g. hemisphere or region) 

 

The calculation of the average temperature anomaly from grid cell values is similar to 

the above but now the temperature data is incorporated to produce a weighted average 

temperature anomaly. The average temperature anomaly for a hemisphere, for 

example, is given by: 

 

Themi = ∑ (cosine(x) * T(x,y)) 

  ------------------------ 

   ∑cosine(x)  

 

where T(x,y) is the grid cell value for the cell centred at latitude and longitude (x,y), 

cosine(x) is the cosine of the angle of latitude of the centre of the grid cell and the 

summing is across all reporting grid cells in the hemisphere. 

 

The approach used for calculating Themi can be generalised to determine the average 

temperature anomaly for any selected region by simply applying it across only the 

selected grid cells. 

 

The calculation of the global average temperature anomaly7 is based on the 

hemispheric average temperature anomalies. In the case of HadSST3 and HadCRUT4 

datasets the global average is simply the mean of the two hemispheric values, 

calculated this way to accept that the data coverage for the two hemispheres is usually 

different. In contrast the average global temperature anomaly for the CRUTEM4 

dataset is calculated as  

 

Tglobal = ((2 * TNHav) + TSHav ) / 3 

 

where Tglobal is the global average temperature anomaly and TNHav and TSHav are the 

average anomalies for the Northern and Southern hemispheres respectively, the 

                                                
7 In the author's experience the term "global average temperature anomaly" is ambiguous.  It has often 
been wrongly understood to be an anomaly of average global temperature. The correct meaning of the 
term is the global average of the temperature anomalies. 
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different weightings for each hemisphere being an attempt to compensate for the very 

different amount of land (v. sea) in each. 

 

1.3.8 Historical annual average temperature anomalies 

 

For general reference in relation to what follows Figure 1.2 shows the annual average 

HadCRUT4 global average temperature anomaly, along with the corresponding data 

for its two sources, HadSST3 and CRUTEM4.  Because of the number of reporting 

HadSST3 grid cells and their location on the Earth’s surface, the HadCRUT4 global 

averages are slightly biased towards the value of the HadSST3 global averages, hence 

the closer proximity to that graph line than to the CRUTEM4 line. 

 

When examined in detail Figure 1.2 shows a changing difference between the 

CRUTEM4 and HadSST3 global averages, with CRUTEM4 generally lower than 

HadSST3 during 1865-1895 but greater from about 1990 onwards. Chapter 5 will 

discuss these differences in more detail. 

 

 

 

Figure 1.2 HadCRUT4 annual global averages plotted with the annual global averages of 
CRUTEM4 and HadSST3 data on which HadCRUT4 is based. 
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1.4 Comments on key literature 

 

As mentioned earlier, no published papers seem to address all areas of concern about 

the HadCRUT4 dataset. Certain issues raised in subsequent chapters of this thesis are 

not even mentioned in papers written by people directly involved with creation and 

updating of it or of the two associated datasets.  McKitrick (2010) provides 

independent discussion of some but not all of the issues but we'll look first at the 

papers from employees of the CRU and the Hadley Centre before returning to 

McKitrick (2010).  

 

The definitive papers for the creation of the CRUTEM4 dataset are Jones et al (2012) 

and Osborn and Jones (2014), with Jones (2016) discussing the reliability of the data. 

The last-mentioned will be discussed in the final chapter so that comments can refer 

to material within this thesis, so focus for the moment is on the two other papers. 

 

Jones et al (2012) talks at length about data supplied by national meteorological 

services (NMSs).  It mentions only briefly that this data was considered to be better 

quality than the data used in CRUTEM3 and HadCRUT3 datasets. The improvement 

in quality can be attributed largely to national meteorological services (e.g. Australia's 

Bureau of Meteorology) now adjusting the data themselves rather than having the 

CRU or the Global Historical Climatology Network (GHCN) undertake this work. 

 

Jones et al (2012) also fails to adequately explain some changes in regard to important 

issues related to the CRUTEM4 datasets. The minimum number of years of data over 

which the long-term average temperatures are calculated is 14 from the period from 

1961 to1990 in CRUTEM4 but was 15 in CRUTEM3 and no reason for the reduction 

is given.   The calculation of the global average temperature anomaly for CRUTEM3 

was a simple mean value of the two hemisphere averages but for CRUTEM4 it is 

calculated as (2/3 * NH + 1/3 * SH) and again no reason is given for the change.  

 

The paper also contains many inconsistent, ambiguous and even incorrect 

terminologies. The term "monthly averages [of temperatures]" is used when the 

"calendar month averages" are meant; and temperature anomalies are not "from a 
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common period" but determined using the average temperature calculated over that 

common period.  The terms "temperature" and "temperature anomaly" are used as if 

they were synonymous, as are "anomaly" and "average anomaly". Also confusing are 

"temperature averages" when referring to average temperature anomalies or even 

weighted average temperature anomalies. 

 

Osborn and Jones (2014) is generally better at describing processing changes from 

previous versions of the CRUTEM4 dataset but like Jones et al (2012) has numerous 

errors with terminology, most typically using the word "temperature" when 

"temperature anomaly" would be correct. 

 

The web page for the HadSST3 data8 lists Kennedy et al (2011a) and Kennedy et al 

(20011c) as the primary references for the dataset.  These papers in fact discuss the 

measuring and sampling uncertainties (Kennedy et al, 2011a) and the biases and 

homogenisation (Kennedy et al, 2011b); they do not detail the derivation of the long-

term averages or the processing of the observations from which the dataset is created.  

The processing is described on a web page9 where no references are given for either 

the description of quality control or the gridding process (i.e. deriving an anomaly 

from one or more observations).  The only direction as to where further information 

can be found is the comment "The gridding process proceeded as in HadSST2" but 

the absence of links or references to specific papers is unhelpful. 

 

The web page for HadSST2 data, the version prior to HadSST3, gives Rayner et al 

(2006) as the principal reference.  This paper provides a detailed discussion of several 

issues including the use of 1° x 1° grid cells and pentads, and the long-term averages 

that it refers to as the "monthly climatology".  It also discusses various changes that 

have occurred over time in regards to sea surface temperature recording, including 

changes in ships' routes and changes in the methodology of measurement, and 

mentions the uncertainties associated with the "inadequate sampling in grid cells", 

which is a point that this thesis will address in chapter 3. 

 

                                                
8 http://www.metoffice.goc.uk/hadobs/hadsst3/  
9 http://www.metoffice.ogov.uk/hadobs/hadsst3/description.html  
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One criticism of Rayner et al (2006) also applies to Kennedy et al (2011a and 2011b), 

namely that too much information is given scant discussion, with readers referred to 

other papers.  Information given this way is unfortunately very fragmented and 

discussed in different styles and contexts, leaving the reader uncertain of whether 

every topic of this complex issue has been properly addressed.  

 

McKitrick (2010) is probably the most extensive independent audit to date, albeit not 

of the HadCRUT4 dataset but the previous version, HadCRUT3.  Some comments in 

the paper have been made redundant by changes of basic procedures for HadCRUT4 

but others are still pertinent and will be mentioned in the chapters about the number of 

observation stations and the measurement and subsequent adjustment of sea surface 

temperature. 

 

 

1.5 Summary 

 

As general background and context to subsequent chapters, this chapter has discussed 

the data sources for the HadCRUT4 dataset, the grid-based system that is used, the 

concept and use of temperature anomalies, the different cell types, the general concept 

of coverage and the method used to calculate the hemispheric and global temperature 

anomalies.  It went on to illustrate the historical annual average temperature 

anomalies according to HadCRUT4, CRUTEM4 and HadSST3 datasets before 

expressing some concerns about the quality of the primary documentation for each of 

these. 
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Chapter 2: Coverage 

 

2.1 Introduction 

 

The geographic coverage of HadCRUT4 data has varied greatly over the period since 

1850.  This is rarely mentioned when discussing HadCRUT4 temperature data but is 

important because hemisphere and global averages are calculated without complete 

data.  In these circumstances the implicit assumption is that the average temperature 

anomaly of all regions for which data is unavailable would be the same as the average 

for the data that is available. 

 

The concept of coverage as used by the HadCRUT4 dataset, and for that matter 

CRUTEM4 and HadSST3 datasets, is nothing more than notional because the 

temperature at every point on the Earth's surface is not recorded and observation 

stations might be located hundreds of kilometres from their nearest neighbours. 

  

This chapter will discuss what "coverage" means in the context of HadCRUT4, the 

variation in HadCRUT4 coverage over time, the links between the magnitude of 

coverage and the change in average temperature anomalies, and how the uneven 

coverage at various times might have distorted the average temperature anomalies. 

 

 

2.2 The calculation of coverage 

 

As discussed in the previous chapter, the data coverage is calculated according to the 

sum of the weightings of reporting grid cells as a fraction (or percent) of the sum of 

the weightings of all grid cells, the weightings being the cosine of the latitude of the 

centre of each grid cell. In essence, HadCRUT4 coverage is in terms of entire grid 

cells regardless of the distribution of observations, either from land or sea, made 

within that grid cell.   
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The impact on coverage of decreasing or increasing grid cell size was investigated by 

using CRUTEM4 station metadata with its precise location of each observation station 

by latitude and longitude to one decimal place.  Figure 2-1 shows the global coverage 

of CRUTEM4 data when grid cells 2.5° x 2.5° (latitude x longitude), 5° x 5° and 10° 

x 10° are used.   

 

The difference in coverage with these different cell sizes is not only related to the grid 

cell size but depends also on the distribution of stations within the grid cells.  Three 

observation stations in a single 5° x 5° grid cell might occupy one, two or three grid 

cells of 2.5° x 2.5° if this smaller size was used, in which circumstances the coverage 

will be one two or three of the smaller grid cells.  Rather than decreasing the grid cell 

size it might be increased to 10° x 10°, which is equivalent to four 5° x 5° grid cells.  

It would only require one of the 5° x 5° grid cells to contain one or more observation 

stations in order that the 10° x 10° grid cell had at least one observation station and 

the entire cell being regarded as contributing to the dataset coverage.  

 

 

 

Figure 2.1 Variation in coverage of CRUTEM4 data when grid cells of 2.5° x 2.5° (latitude x 
longitude), 5° x 5° and 10° x 10° are used.  

 

None of the grid cell sizes illustrated in Figure 2.1 is any more correct than the others, 

so the adoption of 5° x 5° grid cells for HadCRUT4 is somewhat arbitrary and a 
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compromise between cells that span thousands of kilometres from north to south and 

east to west, grid cells that are so small that coverage will be poor.  

 

The HadCRUT4 data coverage is therefore notional and has no meaning outside of 

that datasets and the CRUTEM4 and HadSST3 datasets.  A claim of 75% coverage for 

example actually means data is available from grid cells that together amount to 75% 

of the Earth's surface. 

 

2.3 Inconsistency in HadCRUT4 data coverage 

 

The previous section described how coverage is related to grid cell size and illustrated 

this using CRUTEM4 data.  This section focuses on the variable notional coverage of 

the HadCRUT4 dataset over time according to its 5° latitude x 5° longitude grid cell 

size. 

 

Figure 2.2 shows the annual average global and hemispheric coverage from 1850 to 

2015.  The coverage of the Northern Hemisphere during the period 1850-2015 was 

always greater than or equal to the coverage of the Southern Hemisphere save for a 

period from about 1860 to 1880.  Coverage of the Southern Hemisphere only very 

briefly exceeded 50% prior to 1925, dropped again during World War II, recovered to 

above 50% in 1950 and only consistently exceeded two thirds of the hemisphere after 

1961. 

 

Global coverage did not exceed 75% until about 1960 and in 2015 was 83.4%, having 

peaked at 88.1% in 1979, the same year that Southern Hemisphere peaked at 82.7% 

and nine years after Northern Hemisphere coverage peaked at 92.3%. 
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Figure 2.2 Global and hemispheric HadCRUT4 data coverage over time, the global data being as 
percentage of the Earth's total surface and the hemispheric data as a percentage of the total 
surface of the hemisphere. 

 

 

When coverage is less than 100% there is an implicit assumption that had the missing 

data been present the global and hemispheric average temperature anomalies would be 

identical to those derived from the available data. This assumption is unsustainable 

because, as we will see, at various times more data was available from certain regions 

of the Earth's surface data than from other regions, skewing the anomalies according 

to those regional weather conditions.  Temperatures vary more in the mid and high 

latitudes than they do in the tropics and therefore even the location from which data is 

missing has implications for how the large-scale averages might differ if the coverage 

was 100%. 

 

The global coverage of sea surface temperature data and observation station data was 

also examined.  The Earth's surface comprises 29% land and 71% water but on a grid 

cell basis ~28% of grid cells are "coastal" and their data could be sourced from 

temperature measurements over land and/or sea (see Chapter 1).  Figure 2.3 shows the 

annual average coverage for the CRUTEM4 and HadSST3 datasets.  HadSST3 

coverage in December 2015 is 69% whereas CRUTEM4 coverage is 31%, meaning 

that HadSST3 accounts for a much greater amount of the coverage in that month, but 
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magnitude of the difference in coverage has been far from constant. Oceans have a 

buffering effect on temperature change, shown clearly by sea surface temperatures 

that vary less from month-to-month than do temperatures over land, so different ratios 

of coverage from the two sources will impact hemispheric and global HadCRUT4 

average temperature anomalies. 

 

 

 

Figure 2.3 Annual average coverage of data of the two datasets associated with HadCRUT4, 
namely CRUTEM4 and HadSST3   

 

The CRUTEM4 and HadSST3 coverage of the Northern Hemisphere is shown in 

Figure 2.4, the maximum possible coverage (based on grid cell types) being ~75% for 

CRUTEM4 and ~58% for HadSST3.  The corresponding graphs for the Southern 

Hemisphere are shown in Figure 2.5, with maximum coverage of ~34% and 88% for 

lCRUTEM4 and HadSST3 respectively.  As noted in chapter 1, the greater global 

coverage of HadSST3 means that HadCRUT4 global averages are closer to HadSST3 

than CRUTEM4 averages. 
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Figure 2.4 Annual average coverages of CRUTEM4 and HadSST3 datasets in the Northern 
Hemisphere 

 

 

 

Figure 2.5 As for Figure 2.4 but for the Southern Hemisphere. 
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2.4 Monthly variation in HadCRUT4 global coverage 

 

This chapter as so far discussed and illustrated annual average coverage but this 

masks the variation in coverage in each month. 

  

Figure 2.6 shows the minimum and maximum coverage in each year of the record.  

The annual range in coverage is greatest in the Southern Hemisphere where it usually 

falls between 10% and 20% of the hemisphere for the 49 years from 1945 to 1993.  

Prior to 1945 the annual variation was generally below 10% of the hemisphere. 

Coverage decreased sharply with the outbreak of war reducing shipping movements 

and then increased quickly when wars ended. 

 

  

 

Figure 2.6 Maximum and minimum monthly coverage in each year on a global and hemispheric 
basis 

 

 

In general the annual range of coverage is a consequence of variations in shipping 

traffic at certain times of the year or, in some cases over land, the temporary absence 

of staff to read observation station thermometers, which has tended to happen more in 
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Polar regions. Attribution of the cause of the variation in coverage is made more 

complex by the weighting based on the cosine of the latitude of the centre of the grid 

cell, meaning that a failure to report data in just a few grid cells in the tropics might 

mean the same shortfall in coverage as a failure to report from eight or even ten times 

that number in Polar regions. 

 

 

2.5 Coverage and variation in month-to-month average 

temperature anomaly 

 

The absolute month-to-month variations (i.e. change in value from one month to the 

next) in HadCRUT4 average global temperature anomalies is somewhat related to 

coverage, especially in the early years when coverage is low.  Month-to-month 

variation over land is greater than at sea where the warming and cooling of the mass 

of the ocean takes longer.  Figure 2.7 (a) shows the relationship between CRUTEM4 

global averages and the month-to-month variation and Figure 2.7 (b) does likewise for 

HadSST3 data. Both figures show instances of the inverse relationship between 

coverage and temperature variability, particularly with low coverage generally 

meaning greater month-to-month variations.  

 

The situation with the month-to-month variation in HadCRUT4 average temperature 

anomalies is more complicated because while the general relationship still broadly 

holds, it is influenced by the number and locations of grid cells using CRUTEM4 or 

HadSST3 data or both in each month. 

 

In January 1863, when the HadCRUT4 global average temperature anomaly rose by 

1.02°C over the previous month, global coverage was 15% and in March 1869, when 

global coverage was 20%, the HadCRUT4 global average fell by 0.859°C from the 

previous month.   These extreme month-to-month changes in average temperature do 

not occur later in the record when coverage was more complete. From January 2000 

to December 2015 global coverage has varied between 79% and 88% and the month-

to-month variation has ranged from -0.279°C to 0.305°C, with 141 of the 192 months 
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(i.e. 73.4% of months) showing variations in global average temperature anomaly of 

within ±0.1°C. 

 

 

 

 

 

Figure 2.7 Annual average coverage and annual average Tvar (i.e. absolute month-to-month 
variation in average global temperature anomaly) for CRUTEM4 (top) and, at a different Y-axis 
scale, HadSST3 (bottom) 
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2.6 Inhomogeneities in coverage - (a) Latitude bands 

 

Figure 2.2 showed how HadCRUT4 coverage has varied over time. An important 

question is whether the regions from where data was obtained were sufficiently 

dispersed as to provide a reasonable estimate of global conditions.  Figure 2.8 shows 

that this was not the case and in fact the contribution of all reporting grid cells in each 

latitude band to the total coverage in each hemisphere has varied greatly over time. 

(As expected, the weighting according to the cosine of the grid cell centre means that 

coverage will differ even when data is reported from the same number of grid cells in 

each band.)  

 

In the Northern Hemisphere (Figure 2.8 top), during the period from 1860 to 1890 

latitude bands 30°-40°N and 40°-50°N made disproportionately high contributions to 

the hemisphere's coverage and hence to average hemispheric temperature anomaly, 

while the bands 10°-20°N and 20°-30°N made disproportionately low contributions to 

that coverage.  In this hemisphere the coverage stabilised in about 1950 and the 

contributions are commensurate with the weighting factor. 

 

In the Southern Hemisphere (Figure 2.8 bottom), during the period from 1855 to 

1900, the contributions from bands 30°-40°S and 40°-50°S were disproportionately 

high, but the contribution of the latter band fell sharply from about 17.0% to 3.7% 

during 1913 to 1918, which is below the contribution it would make if an equal 

number of grid cells had data in each latitude band.  Unlike the Northern Hemisphere, 

the contributions from Southern Hemisphere latitude bands do not stabilise by 1950, 

in fact they do not stabilised by 2015. 
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Figure 2.8 Percentage contributions of each latitude band to the annual average total coverage of 
each Hemisphere (Top: Northern Hemisphere, bottom: Southern Hemisphere).   

 

 

Some of the changes in the contributions to Southern Hemisphere coverage can easily 

be accounted for.  The contribution of latitude bands 30°-40°S and 40°-50°S from 

1850 to 1910 is largely attributable to ships following trade routes from Europe to 

Indonesia and the "Far East" and the transport of immigrants to Australia and New 

Zealand.  By the mid-1850s steam-driven shipping was common in the Atlantic but 
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wind-powered shipping continued to be used on the Europe-Australia route because 

the supply of adequate coal was uncertain, the downside being that the ships 

continued to travel south of Africa because the Suez Canal, which opened in 

November 1869, was unsuitable for wind-powered vessels. 

 

The bands 30°-40°S and 40°-50°S cover a region where the cold waters of the 

Southern Ocean meet warmer subtropical water (Toole & Warren, 1993, Belkin & 

Gordon, 1996), meaning that average Southern Hemisphere temperature anomalies 

from 1850 to 1900 disproportionately include the anomalies from this region of 

mixing waters. The number of reporting grid cells in the region within latitudes 40°-

50°S and longitudes 50°W-150°E (i.e. South American coast to Australia's east coast) 

averaged 56.2 of a possible 80 across each month of 1913, when the average 

temperature anomaly for the region was -0.78°C, but averaged 1.2 per month of the 

possible 80 in 1919, when the region's average temperature anomaly was +0.01°C. 

 

 

2.7 Inhomogeneities in coverage - (b) Longitude bands 

 

The same kind of disproportionate input for latitude bands can be seen in the annual 

average contribution of 20-degree longitude bands to each hemisphere's total 

coverage. Figure 2.9 shows the percentage contribution of each 20°-longitude band to 

Northern Hemisphere SST coverage, the upper figure dealing with longitudes west of 

Greenwich (longitude = 0.0°) and the lower with longitudes east.   

 

The top portion of Figure 2.9, showing West longitude bands in the Northern 

Hemisphere, indicates a strong bias towards the 20°-40°W band, which covers much 

of the mid-Atlantic, and a less disproportionately high contribution from the 0°-20°W 

band that covers much of the United Kingdom, western France, Spain and the eastern 

portion of the Atlantic Ocean.  The contributions to total coverage are very similar 

around 1920 and almost equal (all at 5.55% of hemisphere) from 1960 onwards. 
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Figure 2.9 Percentage contributions of east (bottom) and west (top) longitude bands to 
HadCRUT4 coverage of the Northern Hemisphere. 

 

The bottom portion of Figure 2.9 is of East longitude bands in the Northern 

Hemisphere and shows a very variable situation until about 1960.  The maximum 

contribution by any band is about 50% of the maximum contribution from any West 

longitude band, which means a more even distribution of reporting grid cells across 

the bands. Of particular note is that the northern Pacific Ocean, covered by bands 
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140°-160°E and 160°-180°E made very little contribution to total NH coverage prior 

to 1900 and only slowly increased that contribution over the next 60 years. 

 

The percentage contributions of longitude bands to the Southern Hemisphere 

coverage are more irregular (Figure 2.10) than those for the Northern Hemisphere.  

The dominant West bands in the 1860s are 20°-40°W and 0°-20°W, which cover part 

of the Atlantic Ocean and are probably a reflection of the shipping routes at the time.  

The sharp decrease in the contribution to coverage of the 80°-100°W band in the late 

1855's is likely due to both changes in shipping routes and of a decrease in SH 

coverage at the time (see Figure 2.1).  The contribution of the three East longitude 

bands between 120E and 180E increased from 1850 to about 1900 when data from 

Australian observation stations is included in the HadCRUT4 dataset for the first time.   

Unlike with the Northern Hemisphere, abrupt shifts in contributions to Southern 

Hemisphere coverage are evident during the years of the two world wars, this being a 

consequence of the greater area of ocean in the hemisphere and the changes to 

shipping traffic caused by the starting and ending of the wars.  

 

While Figure 2.9, for the Northern Hemisphere, shows near-stable and equal 

contributions from about 1960 onwards, Figure 2.10, for the Southern Hemisphere, 

shows uneven contributions continuing to the end of the period shown (i.e. 2015). 
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Figure 2.10 Percentage contributions of east (bottom) and west (top) longitude bands to 
HadCRUT4 coverage of the Southern Hemisphere. 

 

 

2.8 Inhomogeneities in coverage - (c) regional bias NH 

 

The studies of latitude and longitude bands described above suggest that during the 

period 1850-1870 grid cells covering Europe and the North Atlantic ocean contributed 

to a greater proportion of northern hemisphere coverage, and therefore the average 
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temperature anomaly, than the proportion of the area of the regions to the surface area 

of the hemisphere.  To put it another way this region of the Northern Hemisphere 

provided more temperature data than did other parts of the hemisphere for the 

calculation of the average anomaly, meaning that the average is biased towards this 

area. Given that the global average is calculated from the average of the two 

hemispheres then the global average is also skewed by this biased coverage. 

 

For the HadCRUT4 dataset this is confirmed by an analysis of coverage of Western 

Europe and a portion of the Atlantic just north of the equator (regions A and B in 

Figure 2.11).  According to the HadCRUT4 method of determining coverage, the 

region in question covers just 12.5% of the Northern Hemisphere (not very obvious 

from the Figure which uses Mercator's projection and excludes the Antarctic) yet on 

an annual average basis the grid cells in the region accounted for more than 55% of 

the coverage of the hemisphere during eight years of the 1860s, in four of those years 

accounting for more than 60% (Figure 2.12). An analysis of monthly data shows that 

the regions accounted for more than 50% of the hemisphere's coverage in all 96 

months from January 1861 to December 1868.  In 56 of those months (58.3% of 96) it 

exceeded 60% and in 13 of the months (13.5%) it exceeded 66.6%. 

 

 

 

Figure 2.11 Two regions of the Northern Hemisphere whose coverage is discussed in this section 
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Figure 2.12 Annual average percentage contribution of HadCRUT4 northern hemisphere 
coverage made by the composite of the A and B regions shown in Figure 2.11 

 

 

The CRUTEM4 data from observation stations for most of the continent of Europe 

(region A in Figure 2.11) was also examined, this region, according to the CRUTEM4 

method of determining coverage, being ~9.3% of the land area of the northern 

hemisphere.  Figure 2.13 shows the annual average percentage contribution of the 

region to the CRUTEM4 northern hemisphere coverage.   

 

In the early years of the CRUTEM4 record the contribution of Europe to the total 

coverage of the hemisphere is much greater than the region's proportion of the 

hemisphere's total land area. From 1858 to 1868 the annual average contribution from 

this region always exceeds 50% of the coverage reported for the hemisphere.  The 

analysis of monthly data showed that from January 1860 to December 1867, after 

rounding to a single decimal digit, this region always accounted for 50% or more of 

the Northern hemisphere coverage.  

 

Earlier in this chapter it was shown that global and hemisphere coverage was quite 

low in the early parts of the HadCRUT4 data record (i.e. 1850 to at least 1900) and 

now it has been shown that average temperature anomalies for the northern 

hemisphere were disproportionately weighted towards these areas that had good 
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coverage (i.e. most grid cells contain data) when other coverage in other areas was 

poor (i.e. far fewer grid cells with data). 

 

The bias towards Europe could be particularly distorting because Europe was 

emerging from the Little Ice Age at the time and temperature anomalies were likely to 

be abnormally low.  In the case of CRUTEM4 there is the further problem that Europe 

is densely populated and data from its observation stations are likely to have suffered 

from urbanisation over time.  In some cases the urbanisation might still be present in 

the station data but in other cases the data might have been adjusted to remove these 

non-meteorological contributions to temperature.  Chapter 6 will discuss how 

distortion, causing excessively low temperature anomalies in the early part of the 

record and excessively high temperatures in the more recent date, or both, is quite 

possible.   

 

 

 

 

Figure 2.13 Annual average percentage contribution of CRUTEM4 data for Europe (region A in 
Fig. 2.11) to the total CRUTEM4 coverage of the northern hemisphere 
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2.9 Inhomogeneities in coverage - (d) regional bias SH 

 

Coverage of the Southern Hemisphere was likewise biased, particularly during the 

late 1800's, and hemispheric average temperatures were skewed in favour of the 

regions of greatest coverage.  (The region responsible for the bias was identified by 

determining the grid cells that reported data in more than 200 of the 360 months from 

January 1850 to December 1879 and focussing on the dominant distribution pattern 

that this revealed.)  Unlike the Northern Hemisphere, with distinct large rectangular 

"blocks" of coverage, one encompassing Europe and one for a large portion the North 

Atlantic Ocean that touched on the equator (Figure 2.11), Southern Hemisphere 

coverage focussed heavily on shipping trade routes from Europe, around the Cape of 

Good Hope to Indonesia (Dutch interests) and to the Far East (British interests) 

(Figure 2.14). 

 

 

 

Figure 2.14 Region of coverage in the Southern Hemisphere corresponding to shipping routes 
between Europe and Indonesia or Far East 

 

 

Based on the HadCRUT4 method of determining coverage the region shown in Figure 

2.14 accounts for 13.95% of the Southern Hemisphere (although the map projection 

used in Figure 2.14 suggests a greater figure.)  Despite this, the annual average 

percentage contribution of this area to the HadCRUT4 Southern Hemisphere coverage 
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exceeded 66.6% in every year of 1861 to 1867, peaking at 74.9% in 1866 (Figure 

2.15).  The percentage was not consistently less than 30% until 1898, which is still 

more than double 13.95% of the southern hemisphere that this region accounts for. 

 

In 61 months (50.8%) of the period January 1860 to December 1869 the percentage 

contribution to SH coverage was greater than 66.6%, with three months of 1866 

exceeding 80% and a peak of 84.3% in September of that year. 

 

As with the Northern Hemisphere, Southern Hemisphere average temperature 

anomalies in the late 1800's are very much biased towards weather conditions in only 

small fractions of the total hemisphere.   

 

 

 

Figure 2.15 Annual average percentage of HadCRUT4 coverage attributable to the area shown in 
Fig 2.14 

 

 

2.10 Summary 

 

HadCRUT4 data coverage is related to the grid cell size that the dataset uses and 

because it has only notional application to the physical world it should be used with 

caution.  Even as a notional concept the global coverage has varied greatly over time, 
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being less than 50% of the Earth's surface for about one-third of the data record from 

1850 to 2015 and only having been greater than 75% for only the last 60 years (since 

1956).  Even at the end of 2015 there was no coverage of 16.6% (i.e. 1/6th) of the 

Earth's surface. 

 

Coverage has not only varied annually but also on a month-to-month basis throughout 

every year, which means that the average HadCRUT4 global and hemispheric 

temperature anomalies have been calculated from data sources that vary in each 

month.  

 

There is an implicit assumption with HadCRUT4 global average temperature 

anomalies calculated with less than 100% coverage that had the missing data been 

present it would have produced identical averages to those reported from the available 

data.    The HadCRUT4 global average temperature anomaly in May 1861 was 

-0.761°C when coverage was just 12% but claiming it to be global and the practice of 

calculating global averages from any coverage whatsoever is to claim that if data was 

available for the rest of the world (i.e. that coverage was 100%) then the global 

average would also be -0.716°C. Expressed more generally, claiming that an average 

is global or even hemispheric when it is derived from less than 100% coverage is to 

assume that the average temperatures across the grid cells that failed to report data 

would exactly match the average. This is extremely optimistic because the data that is 

available differs between grid cells, the hemispheric averages in each month since 

1850 differ by up to 1.9°C and, as Figure 1.2 showed, sea surface temperature 

averages have differed from temperatures from observation stations on land. . 

 

In a similar fashion any of trends in global average temperature anomalies from 

varying temperature data coverage assumes that the trends apply to everywhere on the 

Earth's surface, even those that did not report data during some or all of the period 

over which the trend was calculated.  This is also an unsustainable argument because 

it is easy to illustrate that different locations have in fact had different temperature 

trends over the same period of time. 

 

It was also noted in this chapter that for both CRUTEM4 and HadSST3 data a general 

inverse relationship exists between data coverage and month-to-month variation in 
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average global temperature anomaly, with a greater variation during times of low 

coverage.  This undermines the published global and hemispheric averages for early 

years of the datasets by implying that averages would likely be different (and month-

to-month variations less) if coverage was greater. 

 

The imbalance between the coverage by latitude bands, longitude bands and the 

regional bias in each hemisphere means that hemispheric and global average 

temperature anomalies have at times been biased towards areas with substantial 

coverage and away from those that supplied little data.  In the Northern Hemisphere 

the coverage by latitude bands since 1960 has been almost consistent but in the 

Southern Hemisphere it continues to be inconsistent even in 2015, although less than 

it was prior to 1980. Coverage by longitude bands shows a similar pattern to that by 

latitude bands, which is near-consistency in the Northern Hemisphere but inconsistent 

even in 2015 in the Southern Hemisphere, albeit less inconsistent in western 

longitudes since 1980 or in eastern longitudes since 1970. 

 

It has also been shown that in the late nineteenth century and into the twentieth 

century the supposed hemispheric average temperature anomalies for both CRUTEM4 

and HadCRUT4 in the Northern Hemisphere and HadCRUT4 in the Southern 

Hemisphere drew more than 50% of their data from grid cells that covered only a 

small percentage of those hemispheres, making them based heavily on weather 

patterns in those regions.   

 

Ultimately the poor and uneven HadCRUT4 data coverage prior to 1950 means that 

large scale average temperature anomalies could have a very large error margin 

associated with them, so large as to render the average values meaningless. 

 

At a smaller scale, i.e. when the focus is on smaller number of grid cells, the data 

might be acceptable but coverage should be carefully analysed before a decision to 

use it is made.  

   

The interesting but difficult to resolve question is whether Southern Hemisphere 

coverage after 1950 is still too low and inhomogeneous to use with confidence when 

calculating the average temperature anomalies over large areas. 
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Chapter 3: Variation in data quantity 

 

3.1 Introduction 

 

The previous chapter discussed data coverage, which in the context of HadCRUT4 

data is simply whether data is present for a grid cell in a given month.  Although 

coverage and volume of data are clearly related, this chapter will delve deeper into the 

volume of data from which a grid cell's value in a given month was generated and to 

look at how the overall quantity of data has changed over time.  This examination will 

also go some way to showing whether a grid cell's value can be regarded as 

representative of both the area covered by the grid cell and across the entire month. 

 

The HadCRUT4 dataset is constructed from HadSST3 and CRUTEM4 data so the 

data for these two contributing datasets will be considered separately. 

 

 

3.2 SST Observations 

 

The HadSST3 data is compiled from a combination of data from the International 

Comprehensive Ocean Atmosphere Data Set (ICOADS) with, since 2009, data 

obtained directly from ship's logs. The number of observations made in each grid cell 

in each month is published in a file available for download from the Hadley Centre, 

which creates and maintains the HadSST3 data. Figure 3.1 shows the annual averages 

of the number of sea surface temperature observations per month for the period 1850 

to 2015. 
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Figure 3.1 Annual average SST observations per month 

 

 

McKitrick (2010) reports similar total numbers of observations for the period 1936 to 

2005, albeit for the HadSST2 data rather than the HadSST3 dataset.  The only change 

of note between HadSST2 and HadSST3 is the inclusion of data transcribed from 

ship's logs, which is not generally a significant inclusion but might be of value in 

areas for which no previous data exists.  

 

The number of SST observations in each month has generally increased over time, 

observations in the northern hemisphere especially being more seasonal.  Starring 

from 1850, the total number of observations per month did not exceed 10,000 until 

May 1879, having been as low as 1,430 in November 1851. The number reached 

89,810 in August 1913 but fell sharply the next year, from 72,390 in February 1914 to 

41,470 in July and 28,000 in August due to the outbreak of World War I.  As Figure 

3.1 indicates, the number of observations per month recovered to pre-war levels in the 

1920's and 1930's but fell again during World War II and did not consistently exceed 

200,000 until 1985.  The surge in observations per month after year 2000 can be 

attributed to the increasing use of Argo buoys. 

 

The number of observations per grid cell in each month has also varied throughout the 

period from 1850 to 2015.  Since the year 2002 some grid cells have monthly 
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observation counts of more than 5000 and in some instances in excess of 10,000 

because of the use of Argo buoys for SST monitoring, but at the other end of the scale 

(Figure 3.2) in the same period some grid cells have fewer than 6 observations (and of 

course some have no observations at all because of sea ice or because no ships took 

sea surface measurements within the grid cell in the month.) 

 

Even in December 2015, 33 grid cells had only a single observation for the month and 

a further 67 had from 2 to 5.  Only in nine of the 103 years from 1850 to 1952 did the 

average annual percentage of grid cells with a single observation fall below 5% of all 

reporting grid cells. 

 

The situation is summarised in Figure 3.2 which shows the global number of grid cells 

with the specified range of observation counts as a percentage of all reporting grid 

cells.  From this Figure we see that grid cells with from one to five observations per 

month accounted for an average of about 30% of reporting grid cells from 1870 to 

1950 and grid cells with from 6 to 16 observations accounted for only slightly less, 

meaning that more than 50% of reporting grid cells had an observation rate of one or 

fewer every two days. 

 

 

 

Figure 3.2 Annual average of the monthly number of grid cells with the specified ranges of 
observation counts expressed as percentage of all SST grid cells with data in the month (e.g. after 
1990 the data for more than 30% of reporting grid cells was based on at least 120 observations).  
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This can also be expressed in terms of the contribution that such grid cells made to the 

coverage of each hemisphere (Figure 3.3).  In January 1850, for example, according to 

the HadSST3 concept of coverage, grid cells with from 1 to 5 observations accounted 

for 13.9% of the Northern Hemisphere surface area, cells with 6 to 15 observations 

accounted for 5.3%, cells with 16 to 30 observations accounted for 1.6% and cells 

with more than 30 observations accounted for 0.2%, making a total coverage of 

21.0% of the hemisphere's surface.  Grid cells with 1-5 observations account for 

66.1% of that fraction of the total surface area and cells with 6 to 15 account for 

25.1%, meaning that the hemispheric average SST in January 1850 was derived from 

very sparse observations and consequently should have a high error margin. 

 

In the Northern Hemisphere the annual average coverage contribution of grid cells 

with from 1 to 15 observations per month was 93% in 1852 but fell to approximately 

45% by 1885, remained at that point with only some mild fluctuation until 1950 

before falling gradually to around 13% by 1970 and since then to about 8.5% by 2008.  

This number of observations ranges from an average of 1 per month to 1 every second 

day.  The set of lowest number of observations, from 1 to 5, is from one observation 

per month to one every 6 days and grid cells with this number of observations account 

for about 5% of the annual average Northern Hemisphere SST coverage, as they have 

since about 1964 (i.e. the last 50 years). 

 

The situation in the Southern Hemisphere is different because grid cells with from one 

to five observations accounted for more than 33% of SST coverage from 1850 to 1951 

except for three brief periods in the 1860's, the mid 1880's and around 1910.   Grid 

cells with from 6 to 15 observations accounted for only a slightly smaller percentage 

of the coverage, meaning that about 80% of the coverage from 1850 to 1950 came 

from grid cells that averaged one observation every two days or fewer.  It was not 

until 1995 that grid cells with more than 30 observations in the month, an average of 

one per day, consistently accounted for more than half of the SST coverage of the 

Southern Hemisphere. 
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Figure 3.3 Annual average percentage contributions of grid cells with certain ranges of 
observation counts to the total hemisphere coverage.  Top: Northern Hemisphere; bottom: 
Southern Hemisphere. 

 

 

To put these observation counts in HadSST3 grid cells into context, the calculation of 

monthly SST values is based on grid cell sizes of 1° latitude x 1° longitude and 

according to 5-day periods known as "pentads" (Chapter 1).  On this basis a single 

observation in each grid cell and pentad would require that a minimum of 150 
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observations (i.e. 5 x 5 x 6) were made in each HadSST3 5° x 5° grid cell in each 

month.  On purely statistical grounds the accuracy of any interpolation to resolve a 

value for a monthly value for a 5° x 5° grid cell will depend on the temporal and 

spatial distribution of the available data for the month, the latter particularly relevant 

if any significant ocean currents occur in part of the 5° x 5° grid cell.  The temporal 

dimension also adds a factor not present in data from land-based observation stations 

where the monthly mean temperature is calculated from a minimum of 20 days of 

data, using the daily minimum and maximum temperatures, whereas SST data is from 

any time of day.  

 

3.3 Variation in number of observation stations 

 

The investigation of the number of land-based observation stations started with the 

processing of each station data file, made available in a composite archive file by the 

CRU. Jones et al (2012) describes the criteria for rejecting the data for various stations 

from the CRUTEM4 calculations. This meant the rejection of: 

(a) 16 stations that have no valid Latitude and/or Longitude (typically set to 99.9 

and 199.9 respectively), 

(b) 852 stations where the long-term averages have been set to -99.99 (i.e. missing 

data), because no temperature anomalies could be calculated for their data 

(c) 75 stations where the standard deviations were fixed at 100, which seemed to 

indicate that standard deviations could not be calculated. 

 

Analysis of the entire set of station metadata revealed several instances of pairs of 

stations with the same latitude and longitude (to 1 decimal place) and one instance of 

3 stations in that situation. The filtering described above as (a), (b) or (c) removed 27 

such entries from consideration, leaving just 21 station pairs that shared the same 

location. In some cases the paired stations were clearly different (e.g. different 

elevation or different long-term averages) but in one case, Norwegian station "Kjobli i 

Snasa", all information for both entries was identical so one instance was rejected. 

 

The data for all remaining stations, including those retained after the filtering 

described in the paragraph above, were used to determine the number of stations that 
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reported their monthly mean temperature in each month of each year from 1850 to 

2015.  The results, expressed as annual averages are shown in Figure 3.4 where the 

totals excluding those in the USA are also shown separately because of the large 

number of stations in that country relative to its size (~1.85% of the Earth's surface or 

~6.2% of total land area).  More than 64% of stations that reported in 1895 were 

located in the USA, a percentage that fell to about 25% for the period from 1960 to 

1975. 

 

 

 

Figure 3.4 Annual average total number of reporting observation stations in each month. 

 

 

McKitrick (2010) discusses a sharp reduction in station numbers after 1990 and shifts 

late in the twentieth century that included an increasing number of stations located at 

airports and reductions in the number of stations at high altitude or latitude.  Apart 

from the matter of McKitrick (2010) working with CRUTEM3 data rather than the 

newer CRUTEM4 data, according to Jones et al (2012) some national meteorological 

services supply data to the CRU at decade intervals rather than annually or monthly, 

which accounts for what McKitrick (2010) described as a shortfall in 1990 now being 

a reduction after 2010.      

 



 47

The large disparity between land coverage in the two hemispheres prompted the 

separate totalling of the two hemispheres (Figure 3.5) and attention is drawn to the 

separate scales for each hemisphere caused by the great difference in total counts. 

 

For the entire Southern Hemisphere only a single station - Padang/Tabing in 

Indonesia at 0.9°S 100.4°E (Station No. 961630) - reported data in each month from 

January 1850 to December 1852.  The number of reporting stations in the Southern 

Hemisphere did not exceed 10 until October 1860, exceed 25 until in late 1874, 

exceed 50 until May 1889, which is almost 40 years after the start of CRUTEM4 data, 

and did not exceed 100 until January 1904.  The amount of data in these early years of 

the record means that a very substantial error margin should be associated with the 

CRUTEM4 data of that time, not only for the southern hemisphere average but also 

for the global average calculated using that SH average. 

 

In contrast, in the Northern Hemisphere 145 stations reported data for the first month 

of the CRUTEM4 dataset, namely January 1850 and six years later this had reached 

200.  In May 1889, when the number of reporting Southern Hemisphere stations 

reached 50 the number in the Northern Hemisphere was 909.  With the exception of 

2015, when the data might not be complete, the annual averages since the start of data 

in 1850 show at least 84.6% of reporting stations being located in the Northern 

Hemisphere, this despite the CRUTEM4 global average being calculated from a 

weighting of 2:1 for the Northern Hemisphere opposed to the Southern Hemisphere.  

Some of the bias beyond the ratio or land areas in the hemispheres is due to the 

number of stations in the USA but even so the Northern Hemisphere station count 

increased from 145 to 171 before the Southern Hemisphere had its second reporting 

station. 

 

There might be an inclination to assume the observation stations to be evenly spread 

across the relevant grid cells but data from the 'observation count' file, published by 

the CRU and noting the number of reporting stations in each grid cell and month, 

shows that such an assumption would be false.  From this supplementary file the 

number of grid cells with the same number of reporting stations (e.g. grid cells with 2 

reporting stations) was determined on a monthly basis.  Figure 3.6 shows the annual 
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average of those counts, grouped into the described ranges, expressed as a percentage 

of all CRUTEM4 grid cells that reported data in the month.  

 

 

 

Figure 3.5 Average annual reporting observation stations for each hemisphere. The data is 
separately scaled on the Y-axes at each side of the graph 

 

 

 

Figure 3.6 Annual average percentages of reporting grid cells with the specified numbers of 

reporting observation stations 
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The key point of Figure 3.6 is that until 1945 the data for more than 40% of grid cells 

was derived from a single observation station and that the data for about 28% of grid 

cells came from just two or three observation stations.  Together these mean that the 

data for more than two-thirds of reporting grid cells was derived from fewer than four 

observation stations. 

 

When grid cells have few reporting stations the average temperature anomaly for the 

grid cell can be greatly influenced by the presence or absence of other stations.   If, for 

example, a grid cell contains two observation stations and one station has an anomaly 

of +2.0°C and the other of +1.0°C in the same month (which might happen when the 

latter station is near the coast) the average of the two stations is 1.5°C but the 

omission of either would mean the value for the grid cell was either +2.0°C or +1.0°C 

depending on which station was present. 

 

The error margin associated with some data is often calculated by dividing the 

standard deviation by the square root of the sample size. On this basis grid cells with a 

large number of reporting stations will produce a lower error margin that a grid cell 

with the same standard deviation but fewer reporting stations.  Instances of more than 

40 observation stations were reported, in any month from January 1850 to December 

2015, for 20 grid cells, all in either North America or central Europe.  The greatest 

number was when 79 observation stations reported data in the grid cell centred at 

42.5°N 72.5°W, which is in the north eastern USA. In this grid cell more than 70 

observation stations reported data in each month from February 1893 to December 

2015. 

 

 

3.4 Summary 

 

For HadSST3 sea surface temperature anomalies, on the basis of annual averages, for 

most of the period from 1850 to 1950 HadSST3 grid cells with from 1 to 5 

observations per month comprised about 30% of all reporting grid cells, and these in 
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combination with cells with from 6 to 15 measurements, accounted for more than 

50% of reporting cells. 

 

Based on annual averages, from 1850 to 1950 more than 40% of the NH SST 

coverage can be attributed to grid cells with from 1 to 15 observations for the month, 

with about 25% of the total coverage coming from grid cells that had from 1 to 5 

observations per month. In the Southern Hemisphere about 70% of the SST coverage 

can be attributed to grid cells with from 1 to 15 observations per month, of which 40% 

of the total coverage came from grid cells with from 1 to 5 observations per month. 

 

For CRUTEM4 temperature anomalies from observation stations, for the period from 

1850 to 1950 more than two thirds of grid cell data was derived from cells with from 

1 to 3 observation stations. 

 

For both of these datasets a very high proportion of the grid cell data is derived from 

very few observations.  It is impossible to determine or even estimate the difference 

that the inclusion of more data might have made to grid cell values and therefore to 

the hemispheric and global averages. 

 

In relation to the HadSST3 dataset there can be little confidence that so few 

observations in a month presents an accurate summary of sea surface temperatures 

over that month, not even with as many as 15 observations because they might be 

clustered in particular 1° x 1° sub-cells or in specific pentads (i.e. 5-day periods).  As 

discussed above, a minimum of 150 SST measurements is required in each HadSST3 

grid cell in each month in order to avoid any interpolation, so having just 15 

observations falls well short of that. 

 

In relation to the CRUTEM4 data the reliance of a single station to provide data for a 

grid cell risks using data from an atypical location (eg. elevated when much of the 

area covered by the grid cell is not) and risks having no data whatsoever from that 

grid cell when the single station fails to supply it.  Grid cells that contain two or three 

observation stations are less likely to fail to have data than a grid cell with a single 

station but if the observation stations are in very different locations and produce quite 
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different temperature anomalies then the failure of one station to report data could 

skew the grid cell's value. 

 

The issues of sample size that have been discussed here are unlikely to skew the 

HadCRUT4 average temperature anomalies in any particular direction, any errors in 

one direction being likely to generally counterbalance any errors in the opposite 

direction, but they do widen the uncertainties, especially when focus is narrowed to 

smaller numbers of grid cells as might be the case with studies of regional 

temperature patterns.  
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Chapter 4: Long-term average temperatures 

 

4.1 Introduction 

 

HadCRUT4 monthly temperature anomalies are calculated relative to a base 

temperature, which for a given month is defined to be the average of the mean 

temperatures in the same calendar month over the 30-year period from 1961 to 1990.  

For land observation station data the long-term average is referred to as the "normal" 

and for sea surface temperatures it is known as the "climatology". 

 

This chapter will discuss issues of the suitability of this period and some of the 

relevant statistical issues before looking in more detail at the calculation of long-term 

averages for CRUTEM4 observation stations and HadSST3 sea surface temperatures.   

 

One of the key aspects of this chapter is whether the data used to calculate long-term 

averages has normal (i.e. Gaussian) distribution.  Certain conclusions and 

generalisations about the data might not apply if the distribution is not normal. 

 

 WMO (2011) states explicitly that the period of 30 years was set as a standard period 

over which long-term average temperatures are calculated, "mainly because only 30 

years of data were available for summarization when the recommendation was first 

made". Perhaps by good fortune 30 entries is the minimum that some statisticians 

recommend for the application of the Central Limit Theorem (CLT), the means of 

drawing general conclusions about a large population (i.e. the full set of data) from a 

smaller sample that shows normal (i.e. Gaussian) distribution, regardless of whether 

the large population itself has a normal distribution.  Rumsey (2011) indicates a 

minimum of 30 years is required for the application of CLT, although Witte &Witte 

(2010) says "depending on the degree of non-normality in the parent population, a 

sample size of between 25 and 100 is sufficiently large".   

 

WMO (2011) provides guidance on the use of goodness-of-fit tests, by which the data 

can be tested for normal distribution, in climatology studies involving data from 
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observation stations, mentioning that the chi-squared and Kolmogorov-Smirmov tests 

are commonly used.  It gives no reason for using these tests over any other test, 

especially the widely used Shapiro-Wilk test that is also used in this chapter. 

 

The Shapiro-Wilk test determines how well the distribution of data fits the normal 

Gaussian distribution bell-curve by considering both the symmetry and spread of the 

data.  Ultimately it determines a type of correlation coefficient between the data and 

the Gaussian distribution pattern that would be expected from the same sample size, 

then turns the coefficient into a p-value for the null hypothesis that the data is indeed 

normally distributed.  Often misinterpreted, the p-value is a level of confidence rather 

than a probability and actually indicates whether the data might be normally 

distributed, not to be confused with is normally distributed. A low p-value, below a 

somewhat arbitrary threshold, is regarded as indicating whether the data is not likely 

to be normally distributed.  Opinions vary as to whether a threshold of 0.05 or 0.1 is 

more appropriate in various circumstances.  A high p-value is merely an indication 

that the data seems more likely to be normally distributed but is no guarantee that it is 

and is not even a probability that it is. 

 

This chapter includes discussion of the application of the Shapiro-Wilk goodness-of-

fit test to both the CRUTEM4 long-term averages and the HadSST3 mean values over 

the period 1961-90.  The p-values shown in these analyses were obtained through 

bespoke software created according to the Excel code of a source10 that draws directly 

on Shapiro and Wilk (1965), the original work that describes the method, and with the 

software verified by testing it against the given Excel code. 

 

4.2 The suitability of 1961-90 as the base period 

 

The period over which the long-term average temperatures are calculated for each 

observation station (in the case of CRUTEM4) or 1 x 1 grid cell (in the case of 

HadSST3) is of questionable suitability given that two of the major drivers of 

                                                
10 http://www.real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-
symmetry/shapiro-wilk-test/  



 54

temperature, volcanic eruptions and the El Nino-Southern Oscillation, are somewhat 

unusual across this time.  

 

Major volcanic eruptions, with a volcanic explosivity index (VEI) (Simkin et al., 

1981; Newhall & Self, 1982; Simkin and Siebert, 1994) of 5, occurred three times 

during 1961-1990 - Agung (1963), St Helens (1980, VEI:5), El Chicon (1982 - along 

with 19 other volcanic eruptions with a VEI of 4. Stothers (2001) shows that these 

eruptions caused perturbations in the stratospheric optical depth, which means that 

they blocked a portion of the solar insolation, which in turn meant a reduction in 

measured temperature.  Stothers (2001) also shows that prior to the Agung (Indonesia) 

eruption the last previous major perturbation was caused by the Santa Maria 

(Guatemala) eruption in 1902, more than 60 years earlier. 

 

The other major influence on temperature is the El Nino-Southern Oscillation with El 

Nino events bringing generally warmer weather and La Nina events bringing 

generally cooler weather. McLean et al (2009) and de Freitas & McLean (2013) 

respectively show that changes in the Troup Southern Oscillation Index (SOI) (Troup, 

1965) correlate well with corresponding changes in lower tropospheric temperatures 

about 7 months later and near-surface temperatures about five months later. 

 

The trend in the annual average HadCRUT4 global average temperature anomalies 

was near-flat from 1945 to 1979 (downward trend of ~0.1°C/century) before showing 

a persistent if slightly irregular increase until 1997 (upward trend ~1.32°C/century). 

Figure 4.1 shows the monthly values for the HadCRUT4 global average - assuming 

for the moment that it is accurate - and the Troup SOI.  The delayed inverse 

relationship between the pair, due to by negative values of SOI indicating conditions 

on the El Nino side of neutral and El Nino events being associated with higher 

temperatures, is clear, especially prior to 1987. 
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Figure 4.1 Monthly HadCRUT4 temperature anomalies and Troup SOI for the period 1961 to 
1990' 

 

 

Another way to consider this data is in the form of running aggregate values - which 

is a simple total of the values to date from the start point - (Figure 4.2) where a 

downward trend indicates a preponderance of negative values and an upward trend a 

preponderance of positive values.  Figure 4.2 shows a clear switch in the SOI in 1976 

(April-June), from a predominantly positive state (associated with La Nina events) to 

a predominantly negative state change (associated with El Nino events).  The 

HadCRUT4 global average temperature anomalies are disturbed somewhat by the 

cooling due to the volcanic eruptions mentioned above but briefly switched from 

mainly negative values to positive values in December 1976 or January 1977, reverted 

to mainly negative values about 12 months later, and then back again to mainly 

positive values after May 1979.  
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Figure 4.2 Running aggregate of monthly HadCRUT4 temperature anomaly and Troup SOI 
from January 1961 to December 1990, one with an inflexion in 1976 and the other in 1979. 

 

 

The changes in temperature trend across the period indicate that if less than 30 years 

of data for that month are available the mean temperature might be biased above or 

below the mean that would be calculated if data was available for all years.  If the data 

for a given station follows the pattern of the HadCRUT4 global average for example, 

a shortfall in the period 1961 to 1976 will likely produce a higher mean value than a 

shortfall in the period 1977 to 1990. 

 

In terms of anomalies for individual stations (CRUTEM4) or individual grid cells 

(HadSST3) the values will uniformly decrease or increase with different long-term 

averages but trends in the anomalies will remain the same.  The problem arises when 

the anomalies for stations or grid cells with long-term averages calculated from less 

than complete data are averaged with other stations or grid cells that have anomalies 

based on long-term averages over other periods. 

 

As a simple example, consider two nearby observations in the same grid cell with, for 

the same calendar month, long-term averages of 17C and 18C respectively, one of 

which was calculated using data from all such months during 1961-1990 and one 

calculated from identical monthly data but for just 20 of those years.  A mean monthly 
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temperature of 20C at both stations would mean anomalies of +3°C and +2°C and an 

average temperature of 2.5C.   The failure of one station to report data in that month 

would result in an average temperature anomaly of +3°C or +2°C depending on which 

station was missing. Any relative expression such as "two degrees above average" is 

unsafe because it would depend on the anomaly being used, which in turn would 

depend on the long-term average being used. 

 

 

4.3 Issues with observation station long-term average 

temperatures 

 

4.3.1 Introduction 

 

As noted above, there are issues associated with the long-term averages from 

observation stations.  Firstly there is the method by which the long-term averages are 

calculated and the minimum sample size used by the CRU. Secondly we have the 

assumption of normal distribution, the calculations of the standard deviation and the 

limits used to identify data outliers in the entire data time span, this despite possible 

data outliers being included when calculating the standard deviation. 

 

It cannot be overstated that errors in long-term averages will be carried through to 

every temperature anomaly calculated using those averages and that error margins 

will likewise be carried through. As noted previously, errors in the anomalies for a 

single observation station will have negligible impact but when anomalies are 

averaged with those of other stations the impact and implications might be important. 

 

4.3.2. Calculated and estimated long-term averages 

 

The World Meteorological Organization (WMO) provides guidelines about the 

procedures and practices when determining 'normals' (i.e. long-term average 
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temperatures11) for surface temperatures, guidelines that are not followed by the 

Climatic Research Unit (CRU) when it derives its normals. 

 

WMO TD-No. 341 (1989) says "If for a given month (e.g. January) 3 consecutive 

year-month values (e.g. January 1970, 1971, 1972) are missing or more than 5 values 

in total for the given month are missing, the 30-year standard normal should not be 

calculated."  The same document goes on to discuss "provisional normals", which 

may be calculated if at least 10 year-month values are available but insufficient to 

calculate the standard 30-year normals, and emphasises that such normals should be 

identified by a "provisional" indicator. 

 

WMO (2011) says "As a guide, normals or period averages should be calculated only 

when values are available for at least 80 per cent of the years of record, with no more 

than three consecutive missing years."   

 

The CRU ignores the WMO recommendations, first by failing to provide an indicator 

that long-term averages are provisional when stations have less than 25 years of data 

for a given calendar month, and then by including station data when less than 80% (24 

years) are available.   

 

The minimum amount of data acceptable for inclusion in the CRUTEM4 dataset is 14 

years of data across the 30-year period, a minimum that has fallen with each 

successive version of CRUTEM data.  (The first version of CRUTEM required 25 

years of data, the second 20 years with at least 4 in each of the three decades from 

1961-90 and the third 15 years from anywhere in that period.)  The 14-year threshold 

is not for a number of years of a given month but for years as a whole, each year 

subject to a minimum permissible number of months without data.  The previous 

version of the dataset, CRUTEM3, had an instance where the observation station had 

the requisite minimum of 15 years of data (as per the limit then) but the data was such 

that the station had no more than 14 years of data for any calendar month. 

 

                                                
11 Personally I prefer the term "long-term average temperatures" because as section 4.2 shows, the 
period over which these figures are calculated is not normal.  The term "normal" is however used here 
for consistency with the cited documentation. 
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The omission of any monthly mean temperatures for a given calendar month will bias 

the normal towards whatever data was present.  WMO (2011) states that normals 

calculated from incomplete datasets can be biased and says, rather obviously, that a 

normal calculated without a particularly cold month would be warmer than a normal 

with that month included.  This can be extended to say that if the omissions are of a 

number of warmer years then the normal will be biased low and consequently 

temperature anomalies calculated from these low normals will be higher than they 

would be with the full set of data. 

 

While temperature data from any given station tends to vary randomly, the global 

average annual CRUTEM4 temperature anomaly shows a slight downward trend from 

1961 to 1978 then an upward trend from 1979 to 1990.  If individual stations followed 

this pattern then the absence of data in the period 1961 to 1978, when temperatures 

were falling, but present in from 1979 to 1990 will skew the long-term average 

upwards and the opposite situation skew it downwards.  Further, the initial period 

with the slight downward trend is more than 14 years, meaning that an observation 

station might meet the criteria for the minimum number of years but with data that 

comes entirely from the period of cooling. 

 

Before looking specifically at the derivation of CRUTEM4 station long-term average 

temperatures (i.e. 'normals') it is useful to consider the scope of the potential problem 

of including data from stations that failed to meet the WMO criteria of a minimum of 

25 values out of the 30 for the period from 1961 to 1990 and no more than three 

consecutive values flagged as 'missing'.  Figure 4.3 shows the average annual number 

of HadCRUT4 and CRUTEM4 grid cells for which data is available, along with the 

number of grid cells that have data but fail to meet the WMO criteria in each calendar 

month. 

 

Figure 4.4 shows the average number of grid cells with data from sources failing to 

meet the criteria expressed as a percentage of the total numbers of HadCRUT4 and 

CRUTEM4 reporting grid cells.  The peak percentage of HadCRUT4 grid cells was 

20.57% in 1974 but for the period from 1969 to 1978 inclusive only one year 

averaged below 20%, which was 19.68% in 1972.  For the 73 years from 1909 to 

1981, except for 13 years (11 during and immediately after WW II plus 1959 and 
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1960) did the percentage of the annual average number of reporting CRUTEM4 grids 

sourced from data that failed to meet WMO criteria fall below 33.33% (i.e. one-third). 

 

 

 

Figure 4.3 Average annual number of reporting grid cells for HadCRUT4 and CRUTEM4 
datasets plus the number of grid cells that included data for which long-term average 
temperatures do not meet WMO standards 

 

 

Figure 4.4  The average annual number of grid cells that fail to meet WMO criteria expressed as 
a percentage of the total number of reporting HadCRUT4 and CRUTEM4 grid cells 
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The CRUTEM4 normals for a given station might be determined from the station's 

data during the period 1961-90 or they might be estimated, which is to say calculated 

by means other than via a minimum of 14 years of data during 1961-1990. Osborn 

and Jones (2014) describe the alternative methods by which the normals might be 

estimated, the list in order of priority as follows: 

 

1. If the station has sufficient data to estimate a normal for the 1951–1970 

period and the grid box from an earlier version of CRUTEM contains data 

across the longer 1951–1990 period, then we estimate the 1961–1990 

normal for the station using its 1951–1970 normal adjusted by the 

difference between the grid-box averages (in the earlier version) for 1961–

1990 and 1951–1970. 

 

2. If a neighbouring station does have sufficient values to determine its 

normal, then we calculate the mean difference between the temperatures 

recorded at this neighbouring station and the temperature recorded at the 

current station over a different period when they both have data (e.g. 

1951–1970), and assume that this mean difference still holds during the 

reference period. The normal for the current station is then calculated as 

the sum of the normal for the neighbouring station plus the mean 

difference between the two stations’ temperatures. 

 

3. If the World Meteorological Organisation (WMO) have published a 

1961–1990 normal for the station and the reference period (perhaps 

because the National Meteorological Service had calculated it from 

additional data not available to us), then we use that. We rely on a WMO 

normal for about 150 (~ 2.5%) of the stations. 

 

 

Each of these methods is not without its problems. Method 1 is flawed because earlier 

versions of CRUTEM used data that was inconsistent with data supplied by national 
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meteorological services (NMS)12. A comparison of CRUTEM3 and NMS data for 

various locations in Russia, Norway, Iceland, Switzerland, Australia, New Zealand, 

Tahiti and the USA revealed differences in data supply (i.e. missing months) and 

mean monthly temperature between the two sources.  The greatest differences in the 

NMS and CRUTEM3 station data of those examined were from eastern Russia13, 

some examples of which are for the following locations: 

 

Kirensk (ID: 302300) No difference between CRUTEM3 and NMS data in 241 of 

the 360 months across 1961-90 but 10.0°C in January 1963, 

10.0°C in March 1974, 3.4°C in May 197914  

 

Vitim (ID: 300540) across 1961-90 only 41 of the 360 months had matching data, 

the differences of the other months almost all within -0.8°C to 

+1.2°C but 3.8°C in May 197915. 

 

Tura (ID: 245070) Of the 360 months 236 had no difference but others included 

11.3°C (Feb 1978), -9.7°C (Jan 1962), 8.6°C (Oct 1964) and -

4.5°C (Mar 1964). 

 

Bratsk (ID:30309) The differences in 1981 in each month are as follows: -9.5°C, 

-10.2°C, -6.7°C, -0.5°C, -0.3°C, -1.7°C, -0.5°C, -0.2°C, -

3.0°C, 0.3°C, -7.1°C and -5.7°C, this despite about 80% of all 

other months 1961-90 showing no difference at all. 

 

Kyra (ID: 30949) Of the 360 months across 1961-90, 67 had differences either 

≤-1.0°C or ≥+1.0°C, with only one year in which those limits 

were not exceeded in any month and only the months from 

                                                
12 The most significant change from CRUTEM3 to CRUTEM4 was that adjusted data for each station 
is supplied by the NMS's, which means that CRUTEM4 data is consistent with the data available 
directly from those NMS's. 
13 The NMS data for locations in eastern Russia can be found via http://neacc.meteoinfo.ru  
14 With few exceptions, the differences between Kirensk HadCRUT3 station data and the NMS data for 
every February from 1892 to 1940 was -2.7°C and for March over the same period -2.4°C 
15 Differences between Vitim HadCRUT3 station data and the NMS included -11.6°C (Jan 2003), -
10.8°C (Mar 2002) and -9.8°C (Jan 1993) 
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March to July inclusive showing close agreement between 

CRUTEM3 and the NMS across the period. 

 

The obvious conclusion is that CRUTEM3 station data is unreliable and should not be 

used to estimate long-term average temperatures. 

 

Estimating using method 2 is questionable because it involves several assumptions, in 

particular that there is a consistent relationship between the data from the two (or 

more) locations, which might not be true if exposure to certain weather conditions 

differs. 

 

Estimating using method 3 makes the false assumption that mean temperatures taken 

from a period other than 1961-90 will still apply across 1961-90, this despite most (or 

perhaps all) stations showing temperature anomaly trends that are not flat over time.     

 

As an example, data for Canadian station Cape Dorset (ID: 715750) is available 

continually since 1927 but the other station in the same grid cell, Nottingham Island 

(ID: 719080), has data only from 1930 to 1970, which means it has less than the 

minimum 14 years for the period 1961-90.   The source of the normals for 

Nottingham Island is described as "extrapolated" but this does not distinguish between 

methods 1 (using an earlier period) and 2 (via relationship with neighbouring station).  

Figure 4.5 shows the difference in normals for the two stations in each calendar month 

along with the average difference in mean monthly temperature for the period of 

overlap (1930 to 1970 with data 22 months missing). In both cases the differences 

were calculated by subtracting data for Cape Dorset from data for Nottingham Island. 

 

The pattern of the difference in average mean monthly temperature is quite different 

to the pattern for the difference in normals, which suggests that the normals for 

Nottingham Island were not estimated from those for Cape Dorset, i.e. method 2 was 

not used, but at the same time it can be shown that estimation method 1 described 

above does not produce the normals defined for Nottingham Island. 
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Figure 4.5 Difference in the long-term average temperatures ("Normals") and the average 
difference in mean monthly temperatures for those calendar months at two locations within the 
same grid cell. 

 

 

The CRUTEM4 station metadata indicates the source of the long-term average 

temperatures as "Data", "WMO" or "Extrapolated" (or "Nil" for rejected stations).  

With the "Extrapolated" group having no distinction between long-term averages 

derived from 1951-70 data and those estimated from a neighbouring station the 

number of stations for which each method was used cannot be determined. 

 

According to the data available in January 2016, of the total number of 7263 stations, 

6182 stations have acceptable averages calculated from their own data, 59 have 

averages provided by the WMO of which 41 were rejected because they failed the 

minimum data permitted for calculation of the standard deviation, 127 have averages 

extrapolated from 1951-70 data of which seven failed the same criteria for standard 

deviations, and 866 stations have no long term average and were therefore rejected. 

 

This mixture of approaches to deriving the long-term averages for a station for a given 

calendar month has several inherent problems when it comes to data accuracy. 
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1. Calculating the long-term average temperature over different years will likely 

produce different results, which would lead to different temperature anomalies 

being produced.  If the monthly averages in the missing years were warmer 

(cooler) then their inclusion would have meant a higher (lower) long-term 

average temperature and the calculated anomalies would be lower (higher), 

albeit the temperature trend at this location for this calendar would be 

unchanged, the data simply uniformly increasing or decreasing in line with the 

difference in the average. 

 

2. The assumption that averages extrapolated from earlier years and then adjusted 

according to grid cell values in earlier versions of CRUTEM (presumably 

mainly CRUTEM3) is contentious because the observation station temperature 

data in those earlier versions frequently differed from the data available from 

the national meteorological services.  As mentioned above, for some Siberian 

stations differences in excess of 5°C were not unusual and in some months the 

difference was greater than 10°C. 

 

3. Grid cells are likely to contain reporting stations that vary in the amount of data 

used to determine their long-term averages and therefore the stations have 

different temperature anomalies that might have been the same if the full sets of 

data for calculating the long-term averages were available. 

 

4. For some grid cells there are multiple stations that have the entire 30 values or 

very close to it for every calendar month during the period from 1961 to 1990 

and the inclusion of further stations with extrapolated long-term average 

temperatures decreases the consistency of the grid cell data and arguably adds 

nothing to the accuracy of the cell value.  When the data is sorted into station ID 

order, the first two observation stations with "extrapolated" averages are 

respectively in grid cells with 23 stations with an acceptable number of months 

of data between 1961 and 1990, and in a cell with 54 other stations, 2 with no 

averages, 4 others with extrapolated averages and 48 having averages from their 

own 1961-90 data (and 45 of those having the full set of data for each calendar 

month). 
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Morice at al (2012) suggests that there is only a small error margin when mixing 

anomalies derived from varying periods of long-term averages or from estimated 

long-term averages but the number of inconsistencies in data supply, the uncertainties 

of estimating 'normals' and the number of assumptions suggest a greater error margin. 

 

 

4.3.3 Average temperatures and standard deviations 1961-1990 

 

The CRUTEM4 station metadata provides both the long-term average temperatures 

and standard deviations but the temperatures are notionally for the period from 1961 

to 1990 but the standard deviations for the period from 1941 to 1990. 

 

Station-month combinations (i.e.. station ABC/January, station ABC/February etc.) 

were constructed and the data analysed on this basis. The number of station-month 

combinations for each long-term average temperature value to one decimal digit - the 

format in which it was supplied - was counted and graphed (Figure 4.6).  Six 

long-term averages of below -60.0°C are omitted, each mapping to a single value, 

with the lowest being -67.9°C 

 

One feature of Figure 4.6 is that the distribution of long-term average temperatures is 

either a skewed Gaussian distribution or an approximation of a reversed Poisson 

distribution, both distorted by a secondary peak that make neither particularly 

appropriate.  

 

Another feature is the spike in station counts with long-term average temperature of 

0.0°C. The 242 instances of this average compares with the mean of 129.4 (max 145) 

in each 0.1C interval across the one degree below, i.e. from -0.1°C to -1.0°C, and the 

mean of 138.1 (max 158) across the one degree above zero. The number of stations 

with a given long-term mean temperature did not exceed 242 until the 249 at a 

temperature of 10.8°C. 

 



 67

Neither point has a crucial bearing on accuracy but might be important for the 

understanding of temperature variations, the second point in particular suggesting that 

the latent heat transition point for water might need to be considered.    

 

 

 

Figure 4.6 Number of station-month combinations for each long-term average temperature, 
according to CRUTEM4 metadata. 

 

 

4.3.4 Checking for Gaussian distribution 

 

Both Jones et al (2012) and Osborn & Jones (2014) discuss standard deviation in 

regard to error margins but neither mentions normal distribution and in particular 

whether all station data was tested for its approximation to a normal distribution. 

 

To meet the criteria for a standard distribution curve means that the spans of mean ± 

1σ (i.e. within 1 standard deviation either side of the mean value), mean ± 2σ and 

mean ± 3σ should contain 68%, 95% and 99.7% of values respectively.  

 

As mentioned above in section 4.1, the Shapiro-Wilk test is often used to test the 

goodness-of-fit to normal distribution by considering how well the data distribution 
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fits the standard curve and the symmetry of the data and returning a p-value between 0 

and 1.  

 

Before the Shapiro-Wilk test was applied the 52,444 station-month combinations with 

30 entries (i.e. data for the applicable calendar month in every year from 1961 to 

1990) were tested for autocorrelation using the Durbin-Watson test.  This test 

produces a score from 0 to 4 with 2 indicating no correlation and scores below 1.0 

indicating significant positive correlation. The average score of the station-month 

combinations was 1.86, which shows only a negligible very slight inclination towards 

positive correlation.  The number of combinations with each D-W score, rounded to 

one decimal place is shown in Figure 4.7.  Just 608 combinations, just 1.16% of the 

total, show scores below 1.0, so autocorrelation is not a significant issue. 

 

 

 

Figure 4.7 Counts of station-month combinations for which the Durbin-Watson test returned 
various scores, rounded to one decimal place. 

 

The next step was to apply Shapiro-Wilk test to the same 52,444 station-month 

combinations with 30 entries.  The frequency counts for each of the 2 digit p-values is 

shown in Figure 4.8, with values of 0 assigned for p-values less than 0.01 and 1 for p-

values greater than 0.99. 
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Figure 4.8 The number of station-month datasets, from a total pool of 52,444 with 30 entries, 
whose data distributions according to the Shapiro-Wilk method had the p-values shown on the X-
axis. 

 

 

Wasserstein & Lazar (2016), stating the position of the American Statistical Society 

on the use of p-values, says "... a p-value near 0.05 taken by itself offers only weak 

evidence against the null hypothesis" and that p-values do not measure the probability 

that the studied hypothesis (in this case the fit to the normal distribution curve) is true. 

This would be true if the 30 entries was a subset of a larger sample and the aim was to 

determine whether the larger sample was normally distributed but this is not the case 

here. The distribution of the 30 entries will determine whether conclusions based on 

Normal distribution can be made for each subset. Figure 4.9 shows firstly the 

"perfect" distribution, the pattern that complies with the "68-95-99.7 percent" 

distribution and whose p-value would be >0.99, followed by examples of station-

month combinations with p-values of 0.25, 0.2, 0.15 and 0.1, meaning progressively 

less conformance to Normal distribution.   
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Figure 4.9 The "perfect" normal distribution followed by examples of standardized frequency 
distributions station-month combinations with 30 entries during the period from 1961 to 1990, 
with the locations, calendar months and decreasing p-values noted.  Lower p-values indicate less 
conformance to normal distribution. 

 

 

According to data from which Figure 4.8 was created, of the total 52,444 station-

month combinations those with low Shapiro-Wilk p-values are as follows: 

 

7.9% that have p-values ≤0.05 

13.9% that have p-values ≤0.10  

16.7% that have p-values ≤0.15 

and 20.0% that have p-values of ≤0.20. 

 

According to the above list, a p-value cut-off of 0.1 would exclude 13.9% of the 

station month combinations. This is equivalent to a ratio of 1.67:12 so, given that each 

station has 12 station-month combinations associated with it, an average of 1.66 

station months for any given observation station do not meet the criteria for normal 

distribution. 

 

Regarded en masse the low p-values of 13.9% of the population is not unusual but 

when station-months are dealt with individually the situation is different because 

standard deviations associated with assumed normal distribution are used to identify 

outlying data values and in the calculation of error margins.  If data is not normally 

distributed both can be distorted.   
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4.3.5 Inclusion of outliers when calculating long-term average 

temperatures and standard deviations 

 

Data outliers can be a problem for any data processing. According to Jones et al 

(2012), outlying mean monthly temperatures of more than five standard deviations 

from the long-term average temperature for the corresponding month are excluded 

from CRUTEM4 processing.  Five standard deviations is a very relaxed threshold for 

determining outliers but this and the broad issue of outliers in regard to the entire data 

record will be discussed in Chapter 5.  The concern at this point is the inclusion of 

outliers in the calculation of the long-term average temperatures or of the standard 

deviations.  Outliers present in this subset of the data will widen error margins in 

long-term averages, distort temperature anomalies and, for standard deviations, 

potentially lead to the inclusion of further outlying data in the data record at other 

times. Figure 4.10 shows some examples of likely outlying data for certain station-

months over the 1961-1990 period used to calculate long-term average temperatures.  

 

Figure 4.10 includes just one example of several instances of questionable data from 

Chinese station Tuotuohe (ID: 560040).  Mean monthly temperatures of -28.1°C, 

-26.9°C, -28.2°C are reported for November 1985 to January 1986 respectively, 

which unlike the corresponding data from the three other stations in the same grid cell 

(Naqu, Dangxiong and Suoxian, with IDs 552990, 554930 and 561060) is a marked 

shift from the long-term average temperatures those months. (The temperatures in 

October 1985 and February 1986 were also several degrees, and therefore several 

standard deviations, from the respective means but less so than these three months.) 
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Figure 4.10 Examples of outliers in the 1961-90 data from which long-term averages are 
calculated with outliers in 1985, 1972 and 1968 top to bottom respectively.  
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The long-term average temperatures at Tuotuohe over 1961-1990 when the mean 

monthly temperatures shown above are included in the calculations are -11.3°C, 

-14.8°C and -15.8°C, with standard deviations calculated over 1956-1990 (almost the 

same as for temperatures) are 3.5°C, 2.5°C and 2.6°C.  This means that the 

temperatures were at -4.7σ, -6.8σ and -4.8σ from the long-term average temperatures 

for the relevant calendar months. 

 

When the probably erroneous mean monthly temperature for the three months are 

excluded from the calculations the long-term average temperatures for the calendar 

months become -10.7°C, -14.4°C and -15.4°C and the 1956-1990 standard deviations 

reduced to 2.0°C, 1.2°C and 1.5°C.   In particular the "five standard deviation" 

thresholds for these months are greatly reduced, from 17.5°C to 10.0°C for 

November, from 12.5°C to 6.0°C for December and from 13.0°C to 7.5°C for 

January, meaning that more outliers in these months in other years of the record 

would be rejected. 

 

Another station where obvious outliers are included when calculating long-term 

average temperatures and standard deviations is Colombian observation station Apto 

Otu, where the mean monthly temperatures April, June and July 1978 have the 

implausible values of 81.5°C, 83.4°C and 83.4°C.  This data is from the period over 

which long-term average temperatures and standard deviations are calculated for this 

location, the first from 1961 to 1990 and the second from 1947 to 1988.  As a result of 

these very high mean temperatures, the long-term average temperatures for the 

respective months are 27.8°C, 27.9°C and 28.0°C when for all other months of the 

year the temperatures are consistently between 24.0°C and 24.6°C. The standard 

deviations for the location are 11.9°C, 11.8°C and 12.0°C in these months, while in 

the rest of the year no standard deviation exceeds 0.7C. The impact on the CRUTEM4 

grid cell values of these three months of high mean temperatures is shown in Figure 

4.11. 
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Figure 4.11 Data from the CRUTEM4 gridded dataset for the CRUTEM4 data cell that contains 
Colombian observation station Apto Uto and one other station, plus the data for the grid cells 
immediately west and east of it. 

 

 

4.3.6 Implications of the generous five standard deviations 

threshold for outliers 

 

The use of the very generous "five standard deviations" threshold for determining 

outliers means that the entire range of acceptable data for a given calendar month is 

ten times the standard deviation for that month, centred on the long-term average 

temperature.  For the 75840 acceptable CRUTEM4 station-month combinations Table 

4-1 shows the number of combinations with standard deviations above the given 

thresholds. According to this table, 5414 station month combinations have standard 

deviations 3.0°C, which means the range of acceptable monthly mean temperatures 

for that same calendar month will span more than 30.0°C, among these being 292 

have a range that exceeds 50.0°C, i.e. have standard deviations of 5.0C or more. 

 

At the top of the list in Table 4-1 are three station-month combinations for 

observation station Apto Otu discussed in the previous section.  According to that 

station's metadata the "five standard deviations" threshold would amount to an 
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acceptable range of values (i.e. from -5σ to +5σ) of 119°C, 118°C and 120°C for 

April, June and July respectively. 

 

Threshold  Combinations  

1.0 53968 

2.0 15742 

3.0 5414 

4.0 1813 

5.0 292 

6.0 35 

7.0 10 

8.0 4 

9.0 3 

10.0 3 

11.0 3 

12.0 0 

 

Table 4-1 The number of station month combinations whose standard deviations exceed the given 
thresholds. 

 

 

The "five standard deviations" threshold is extremely generous because the 

probability associated with having values at each end of the scale is less than one in 

one million.  The data can be trimmed to a 3 standard deviations limit by calculating 

of long-term average temperature and standard deviation, removing outlying values 

beyond 3 standard deviations and then repeating the calculation until no values are 

removed. When this approach was applied to the 71,500 station-months that have 

from 20 to 30 years of data across 1961-1990, data was removed from 4400 station-

months, 6.15% of the total number. 

 

Even an outlier threshold of 3 standard deviations can be considered excessive 

because it includes 99.7% of data and therefore only excludes an average of 3 in 1000.  

Climate is rarely stable for long and can vary considerably in 1000 years.  A 

somewhat arbitrary but arguably more reasonable alternative is to trim to 2.81 

standard deviations, corresponding to a probability of 99.5% (i.e. 1 in 200 outside the 



 77

range) because at most we are dealing with just 30 values. This limit was applied to 

the 1961-1990 data in order to ascertain its effect. 

 

Table 4-2 shows the consequence of trimming data to a limit of 2.81 standard 

deviations for the three examples shown in Figure 4.10, as described above, this 

trimming being a cyclic operation until no values fall beyond that limit.  In all three 

instances the long-term averages increased slightly because the outliers were the 

lowest values.  More importantly the standard deviations decreased, meaning a 

reduction in the error margins and in the limits for identifying data outliers.  

 

  

Station  Tuotuohe  Luxor  Bjoernoeya  

Country  China Egypt Norway 

Station ID  560040 624050 10280 

Month  December December October 

Outlier  -4.8σ -4.23σ -3.85σ 

Before adjustment  Mean -14.80C 14.93C -0.45C 

 Std Deviation 2.52C 1.78C 2.04C 

 Std. Error 0.47C 0.33C 0.38C 

After Adjustment  Mean -14.38C 15.06C -0.18C 

 Std. Deviation 1.16C 0.89C 1.46C 

 Std. Error 0.22C 0.17C 0.27C 

Table 4-2 Summary of result of removing outlying entries from the data shown in Fig 4.9 until all 
values fell within 2.81σ (i.e. standard normal probability 99.5%).    

 

The limit of 2.18 standard deviations described above was also applied to all 74465 

station-month combinations where the long-term average temperatures were 

calculated from at least 14 years of data in the period 1961-90. The cycle of 

identifying and removing outliers until all data fell within ±2.81 standard deviations 

from the long-term average temperature was repeated as necessary and caused 

modification to 8436 (11.8%) combinations.  

 

Table 4-3 summarises the consequences of removing data to meet the 2.18 standard 

deviations limit, with the reductions in sample size sometimes meaning the station-

month combination fell back to a lower sample size grouping, or in the case of the 
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lowest group, for "19 to 14 years", sometimes meaning that data for fewer than 14 

years remained and the combination no longer met the criteria for inclusion in 

CRUTEM4 data processing. 

 

The average standard deviation of the 8436 modified station-month combinations 

decreased from 1.59°C to 1.28°C as a result of trimming to the new limit.  This meant 

a reduced average threshold for determining outliers in data outside the period and, 

with the small reduction in the number of entries a reduction in the average standard 

error from 0.3°C to 0.25°C.  

 

This experiment of restricting the data to a smaller range of standard deviations when 

calculating the long-term average excludes some outlying data but reduces error 

margins and the thresholds for identifying data outliers at other times in the data 

record.  

 

 

  Grouping by years of data (i.e. no. of  entries) Totals 

  30 

years 

25 to 29 

years 

20 to 24 

years 

14 to 19 

years 

 

 Initial       

(a) Count 52444 11798 7258 2965 74465 

(b) Percent of total 70.4 15.8 9.7 4.0  

(c) Group Av Standard Error (95% confid.) 0.61 0.53 0.52 0.59  

 Modified entries from group       

(d) Count 6258 1392 615 171 8436 

(e) Percent of group total count 11.9 11.8 8.5 5.8  

(f) Av Std  error prior (95% confid.) 0.62 0.51 0.50 0.67  

(g) Av Std error after (95% confid).* n/a 0.42 0.37 0.38  

(h) Change in Max std error (95% confid.) 1.00 0.69 0.69 6.53  

 After modification (for total group)       

(i) Revised count 46186 17854 7311 3111  

(j) Group Av Standard Error (95% confid.) 0.61 0.52 0.51 0.57  

Table 4-3 Summary of changes caused by removing data more than 2.81 standard deviations 
from the mean.   Group average standard errors change little (rows c and j) but the reduction in 
the standard error of the modified group is as high as 43% (in the "14 to 19 years" group).  
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4.3.7 Summary for observation station long-term averages 

 

The long-term calendar month average temperatures (i.e. normals) calculated for 

CRUTEM4 stations suffer from a variety of issues. Firstly we have seen that the CRU 

does not follow WMO recommendations and that any station's long-term averages can 

be calculated from as few as 14 years across the period from 1961 to 1990.  The 

acceptance criteria are based on the number of years of data in total rather than a 

minimum for each calendar month. This is unsatisfactory given the variability of 

temperatures during the thirty years, especially in the increase in El Nino events in the 

last 14 years of the period.  

 

Secondly, for some stations, data outliers exist in months of the period over which the 

long-term averages or standard deviations are calculated.  In the case of long-term 

average temperatures this distortion will mean distorted temperature anomalies for 

every instance of the given month in the entire data record.  For standard deviations 

increased by the inclusion of outliers this will mean expanded error margins and 

widened thresholds for identifying outlying data that should be corrected or excluded.  

Trimming the data over which the long-term averages and standard deviations are 

calculated has been shown to reduce error margins and reject more data outliers.  

 

The impacts of these issues are relatively minor for individual stations, except for the 

inclusion of data outliers.  The greater problem is that temperature anomalies for 

individual stations are often averaged or, in the case of HadCRUT4 coastal grid cells, 

merged with other data and there is a very real possibility that the processing will 

involve anomalies calculated with long-term average temperatures derived from data 

over different periods and with different standard deviations to determine outliers. 

Further, stations commencing or ceasing operations could result in false shifts in 

CRUTEM4 grid cell values.    
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Text Box 4A - Observations about temperatures and standard deviations 

 

The CRUTEM4 station metadata provides both the long-term average temperatures and 

standard deviations but the temperatures are notionally for the period from 1961 to 1990 

and the standard deviations for the period from 1941 to 1990. Station-month combinations 

were created and for all instances of 30 values across the period from 1961 to 1990 (i.e. no 

missing data) the standard deviations were calculated for that period so that the two periods 

matched and the relationships could be examined. 

 

Figure 4A.1 shows the distribution of long-term average temperatures across the period.  

Six values are omitted from below -60.0C, the lowest of which is -67.9C.  The relationships 

between the long-term average temperature and the standard deviation for 50% of the 

station-month combinations, constrained by the volume of data are shown in Figure4A.2.  

(The omitted 50% showed very small variation from those displayed here except at the 

extremes where the number of stations is low.) 

 

 

Figure 4A.1 - Number of station-month combinations with the given long-term average 
temperature. 

 

... 



 81

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Text Box 4A contd 

 

 

Figure 4A.2 Long-term average temperatures and the corresponding standard deviations for 
station-month combinations that have data for that month in all 30 years of the period from 1961 
to 1990. 

 

 

Figure 4A.3 shows the mean standard deviation associated with each long-term average 

temperature.  This indicates that greater variation in temperature occurs in colder regions, 

which by extension means that an increase in temperatures in those regions is of less 

significance than a similar increase in warmer regions. 

 

... 
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4.4 Issues with long-term average sea surface temperatures 

 

4.4.1 Introduction 

 

In HadSST3 terminology, long-term average temperatures are known as 

"climatology" and they are derived quite differently to the "normals" used for 

CRUTEM4 data from observation stations.  This section discusses issues with the 

derivation of the "climatologies", the standard deviations of HadSST3 data, the 

presence of outlying data and whether the HadSST3 data has normal distribution. 

 

As before, errors or abnormalities in individual grid cells will not matter greatly.  

Even though temperature anomalies will be shifted from proper values the shift will 

Text Box 4A contd 

 

 

Figure 4A.3 Mean standard deviations for each long-term average temperature. 
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be consistent and the trend remain the same, but combining anomalies from different 

grid cells might be a very different matter, especially if data for specific grid cells is 

sometimes unavailable. 

 

4.4.2 The creation of long-term SST averages 

 

Obtaining information about the creation of HadSST3 climatologies is an arduous 

process. The primary reference for information on the creation of the HadSST3 

dataset, Kennedy et al (2011a), refers only to HadSST3 using the same approach as 

used for the HadSST2 dataset as described by Rayner et al (2006), which provides 

limited information and refers the reader to Parker et al (1995). 

 

Ultimately we find that HadSST3 data, using grid cells of 5° latitude x 5° longitude 

grid cells and calendar months, is produced from a method using 1° x 1° grid cells and 

5-day periods called "pentads", with 6 pentads making up a pseudomonth (of 30 

days), except for August where 7 pentads make up the month, so that a 365-day 

calendar year corresponds 73 complete pentads. 

 

According to Rayner et al (2006) the establishment of the climatologies is a multi-step 

process, the first of which is to create the initial SST background dataset that will 

subsequently have SST observations merged into it.  

 

The initial HadSST2 background dataset consists of data from the Global Ice and Sea 

Surface Temperature dataset (GISST 2.0), also gridded at 1° x 1°, with quality-

controlled SST anomalies added to it, plus data from Polar regions that are sometimes 

partially or completely covered in sea ice. 

 

The second step is to interpolate the grid cell values using the Laplacian (a partial 

second order differential equation) to complete the global grid and the third step is to 

convert the results into calendar months. Rayner et al (2006) says that the new 1961-

1990 averages generated by these steps were then used as background fields in 

iterations of the second and third steps, with six iterations "needed to ensure 

convergence to a stable result". 
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This description by Rayner et al (2006) is somewhat unclear. No reason is given for 

using the Laplacian technique in preference to any other. It also fails to state, in light 

of the whole task being to create a climatology from which anomalies will be 

determined, the basis by which the SST anomalies in step one were calculated or how 

their quality was checked given that quality control involves comparing calculated 

anomalies.  It also fails to describe what is meant by "convergence" and by "a stable 

result". 

 

In total the climatology appears to be derived from mathematical estimates combined 

with SST measurements - measured by ships, buoys and by satellite - which are 

averaged, interpolated and winsorized16, each step requiring assumptions, the whole 

process being iterative until some state of stability is produced, which presumably 

means no large differences between adjacent grid cells.  

 

Given the lack of detail provided in Rayner et al (2006), the apparent complexity of 

the work and the volume of SST observation records, detailed analysis of the process 

of determining the "climatology" is too large a task to be attempted here.  The focus 

will instead be on only certain aspects of the HadSST3 data across the period 1961 to 

1990, limited somewhat by the available data. 

 

4.4.3 No of years of data per HadSST3 grid cell 

 

The number of years of data between 1961 and 1990 for each HadSST3 grid cell 

indicates the number of instances in which data for a given calendar month was used 

to derive the long-term average SST for the grid cell and month. 

 

This can be done using the concept of grid cell-month combinations, with each grid 

cell paired with each calendar month, similar to the pairing of station and months used 

earlier for CRUTEM4 data.  A total of 2592 grid cells of 5° latitude x 5° longitude 

                                                
16 Winsorizing involves setting a certain number or range at the two extremes to certain values (e.g. the 
90th percentile is copied to the 91st to 100th percentiles) before averaging, the aim being to reduce the 
influence of extreme values on the mean. 
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cover the Earth's surface, meaning 31104 cell-months.  Some are entirely over land 

and will therefore never contain HadSST3 data but all other grid cells either do 

provide data or could provide data. 

 

For the period 1961 to 1990 no data is available for 10229 cell-month combinations, 

4381 combinations have from 1 to 13 values (i.e. data was reported in 1 to 13 years 

for that calendar month) and 16494 cell-months have data 14 or more years. 

 

A check of the 10229 combinations without data in that period revealed that 2249 

combinations had data at other times in the 1850-2015 data record.  With no data 

during 1961-1990 the climatologies for these combinations must be based on 

estimates and interpolations rather than SST measurements within the area covered by 

each grid cell. The 2249 cell-month combinations apply to 396 grid cells of which 229 

(57.8%) were north of 65°N, just 15 (3.8%) between 65°N and 60°S, and 152 (38.4%) 

south of 60°S.  This distribution is heavily biased towards the Polar regions, which 

with the weighting system, by the cosine of the latitude of the centre of each grid cell, 

have very little impact on hemispheric and global average temperature anomalies. 

 

Of the 4381 cell-month combinations with from 1 to 13 values from 1961 to 1990, a 

total of 1006 (~23%) had a single value (instance of data for that calendar month) 

across the entire period. The grid cells that these combinations relate to account for an 

annual average of about 4.5% of the total HadSST3 grid cells containing data but in 

July 2010 peaked at 15.2%. 

 

The climatologies of these 4381 cell-month combinations seem to be derived from 

very few SST measurements within the grid cell in the period 1961-1990.   

Information from the Hadley Centre fails to clarify whether priority was given to 

these few measurements, which might have been abnormal, over the interpolation of 

data from neighbouring grid cells. 

 

4.4.4 Number of observations 
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As noted earlier, the number of observations for each 5° x 5° HadSST3 grid cell in 

each month are listed in a file available for public download. This data provides 

further details on the number of SST measurements that revised the estimates of long-

term average sea surface temperatures.  

 

Because the monthly data in each 5° x 5° HadSST3 grid cell is derived from data in 

1° x 1° grid cells using 5-day pentads it would require a minimum of 150 SST 

observations, i.e. one for each 1° x 1° cell and pentad, per HadSST3 grid cell to avoid 

the interpolation of data when creating the underlying set of fine resolution long-term 

averages. 

 

Figure 4.12 shows the number of 5° x 5° HadSST3 grid cells that have the various 

specified ranges of observation counts in each month of the period 1961-1990.  The 

group of grid cells with more than 150 observations per month, the minimum number 

discussed above, increases slowly from 1961 and peaks as the largest of the groups in 

some months of just a few years after 1985.  For most of the 1961-1990 period the 

largest group is that for 2 to 20 observations, albeit varying by month/season. Figure 

4.13 shows the same data expressed as a percentage of all grid cells that have data.   

 

Figure 4.13 shows that for almost all months over the 30-year period more than 70% 

of grid cells had fewer than 150 observations for the month and about 50% had fewer 

than 50 observations.  About 33% of the total number of grid cells had from 1 to 20 

observations meaning that a considerable number of grid cells appear to have had few 

SST observations to modify the estimated long-term averages. 
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Figure 4.12 Number of grid cells with the specified ranges of observation counts. 

 

 

 

Figure 4.13 As for the previous figure but expressed as a percentage of all grid cells that contain 
valid data in each month. 
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4.4.5 Sum of anomalies over the period 1961-90 

 

The average of the values across the period from1961 to 1990 is used as the base 

value from which anomalies are calculated so if the HadSST3 data is accurate then the 

global average SST anomalies in each calendar month over that period should sum to 

zero.  Figure 4.14 shows this to not be the case in any calendar month or as an annual 

average.  These figures cannot be attributed to rounding because the data is from 

HadSST3 summary files in which data is given to three decimal places, which means 

precision to one-thousandth of a degree despite only 30 values, one for each year, 

being used to calculate each of the graphed values.   

 

The common failure to sum to zero is likely to be due to the technique of using 1° x 

1° grid cells and pentads as the basis for long-term average temperatures and the 

calculation of anomalies, and then using interpolation and extrapolation to generate 

HadSST3 dataset monthly values at 5° x 5° grid cell size.   

 

 

Figure 4.14 The sum of the HadSST3 global average SST anomalies for each calendar month, 
and on the right the annual averages, across the period 1961-1990.   

 

 

Another way to consider this is to analyse cell-month combinations with 30 values for 

the period 1961-1990 (i.e. data for that month in every year).  The values are summed 

then divided by 30 to obtain the average "discrepancy" for that month in each year, 
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which is to say the amount that should be consistently subtracted from data for that 

month in each of the years so that the sum of the values over all 30 years is in fact 

zero. Figure 4.15 shows the distribution of the average discrepancies, rounded to two 

significant figures, for the 11421 cell-month combinations with 30 entries over the 

period 1961-1990. 

 

 

 

Figure 4.15 Distribution of discrepancies for each cell-month combination that has 30 entries (i.e. 
one in every year) for the calendar month over the period from 1961 to 1990. 

 

 

In the worst case the grid cell centred at 32.5°N 67.5°W (off north east USA) has the 

lowest negative discrepancy of -1.84°C in each February of 1961-90 and two nearby 

others grid cells have discrepancies of -1.64°C and -1.55°C respectively in December.  

The grid cell centred at 67.5°N 27.5°W (between Iceland and Greenland) has the 

highest positive discrepancy of 1.13°C. 

 

If we accept discrepancies of ≤ 0.1°C (i.e. allow a range of ±0.1°C) as being 

sufficiently accurate in the light of data rounding and the "ensemble" methodology, 

we are left with the 1661 (14.5% of the total 11421) cell-month combinations that fall 

outside this range of ±0.1°C, with 658 greater than it and 1003 below it (Figure 4.16).  

The grid cells with these discrepancies are neither clustered nor distributed evenly as 
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Figure 4.17 (for January) and Figure 4.18 (for June) indicate (refer Table 4-4 for 

colour legend).  

 

 

 

Figure 4.16 As for Figure 4.15 but only where average discrepancy exceeds 0.1°C. 

 

 

 

Colour  Meaning  

Black Land grid cells 

Grey Coastal grid cells 

White Seas grid cells 

Dark blue x < -1.0°C  

Medium blue -1.0°C ≤ x < -0.5°C  

Light blue -0.5°C ≤ x < -0.1°C  

Light Red 0.1°C < x ≤ 0.5°C  

Medium red 0.5°C < x ≤ 1.0°C  

Strong red x >1.0°C  

Where x is the average discrepancy, i.e. the amount to be added to each instance of that 

cell and calendar month during 1961 to 1990 to make the sum over the period equal zero. 

Table 4-4 Colour legend for Figures 4.17 and 4.18 
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Figure 4.17 Grid cells with 30 years of data for January during 1961 to 1990 but with January 
discrepancies of more than ±0.1°C (i.e. sum of January values divided by 30 falls outside ±0.1°C 
indicating an inconsistency).   See Table 4-4 for legend. 

 

  

 

Figure 4.18 As for Figure 4.17 but for the month of June. 

 

 

While the analysis to this point has focussed on cell-month combinations with 30 

values for the period 1961-1990 combinations with less than this number are also 

relevant. The grid cell centred at 42.5°N 62.5°W (off NE coast of the USA) has 24 

years of data for the month of May and has a mean discrepancy for that month of 

-3.22°C. In total, 42 cell months with from 14 to 24 years of data have mean 

discrepancies of less than or equal to -1.0°C while 26 have greater than +1.0°C, the 

greatest of which is 2.7°C. 

 

Correcting these offsets in all months as applicable and recalculating the global 

average HadSST3 temperature anomaly results in a negligible difference (approx 
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0.01°C) because of the distribution of the cells needing positive and negative 

adjustments and the weighting applied to each cell when averaging largely 

counterbalance the positive and negative influences. As indicated previously, when 

the region under study is smaller the distortion could well be more significant. 

 

While the above discrepancies are probably a consequence of the original data at 1° x 

1° grid cell size and applying to pentads being expanded into 5° x 5° grid cells and 

months, the discrepancies mean that the HadSST3 data is internally inconsistent. 

 

 

4.4.6 Testing HadSST3 data over 1961-90 for Gaussian distribution 

 

The SST data for the period 1961-1990 was tested for Gaussian distribution using a 

similar analysis to that for CRUTEM4 data earlier in this chapter, but this time using 

the concept of cell-month combinations. 

 

The Shapiro-Wilks test for goodness of fit was again applied, the test examining both 

the distribution symmetry and the fit to the bell-curve characteristic of Normal 

Distribution.  The HadSST3 dataset is of monthly temperature anomalies rather than 

mean temperatures but the distribution of the data defines the standard deviation and 

that should not be affected. 

 

For each cell-month combination with 30 years of data for the period 1961-90 a 

p-value was calculated according to the Shapiro-Wilks method and the data is 

summarised in Figure 4.19.  Of the total of 11,421 cell-months that were analysed 844 

(7.4%) were found to have p-values less than 0.05, 1,538 (13.5%) have p-values less 

than 0.1, 22,299 (20.1%) have p-values less than 0.2 and 6,240 (54.6%) have p-values 

below 0.5.  The percentage with p-values below 0.1, 13.5%, is almost identical to the 

13.9% for observation station data. 
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Figure 4.19 Counts of the HadSST3 cell-month combinations with 30 years of data 1961-90 that 
share a p-value to two decimal places. 

 

As mentioned earlier (sect 4.3.4) Wasserstein & Lazar (2016), says "... a p-value near 

0.05 taken by itself offers only weak evidence against the null hypothesis" and that p-

values do not measure the probability that the studied hypothesis, which here is the fit 

to the normal distribution curve, is true. This would apply if the 30 values for each 

cell-month were analysed to determine if the entire record for the cell-month is likely 

to be normally distributed but here the analysis is only to consider the data for 1961-

1990 and the conclusions that might be drawn from it.  With more than 1 in 8 cell-

month combinations having p-values <0.1 some caution is called for when drawing 

conclusions about small numbers of grid cells. 

 

4.4.7 SST Outliers during 1961-1990 

 

Any HadSST3 outliers occurring in the data over the period 1961 to 1990 seem likely 

to have been included when using SST measurements to refine long-term average 

temperatures.  With this in mind data across the period was examined for any extreme 

values.  

 

The 1961-1990 average temperatures and standard deviations were calculated for each 

cell-month combination with 14 entries or more (i.e. 14 or more years with data for 
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that calendar month), the limit chosen to be comparable to the CRUTEM4 minimum 

data requirements.  The data for each year of all acceptable cell-month combinations 

was examined for any instances of HadSST3 grid cell values more than three standard 

deviations from the mean temperature (i.e. the long term average temperature). 

 

After rounding the standard deviations to one decimal place 731 instances were found 

to be more than 3 standard deviations below the mean, 181 of which were more than 

3.5 standard deviations, 51 below 4, and 19 below 4.5.  In the opposite direction 1065 

instances were found to be more than 3 standard deviations above the mean, 225 more 

than 3.5, 48 more than 4 and 4 exceeding 4.5 standard deviations.  

 

The lowest extreme was 4.76 standard deviations below the mean, with a temperature 

anomaly of  -7.0°C, but an even lower anomaly of -8.09°C was discovered, it being 

4.72 standard deviations below the mean temperature for the grid cell and calendar 

month combination.  At the other end of the scale was a value at 4.9 standard 

deviations above the mean, with a temperature anomaly of +7.58°C.  The maximum 

temperature anomaly of +7.96°C was 3.81 standard deviations above the mean for the 

cell and month. 

 

An example of an outlier, at -3.45 standard deviations and a temperature anomaly of 

-6.9°C, in May 1985 is shown in Figure 4.20 in the central of three grid cells in the 

mid-Pacific. The smaller anomaly of -4.8°C in an adjacent grid cell later that year is 

3.11 standard deviations below the long-term average for that grid cell in that month.  

Several possible causes for the two aberrations can be found - high winds, unusual 

upwelling, instrument errors, recording errors - but the impact of most of these would 

be negligible if numerous SST measurements were made during the month.  This is 

not the case with the anomaly of -6.9°C being from a month with just one observation 

and the anomaly of -4.8°C having two observations for the entire month. 
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Figure 4.20 An example of two outlying HadSST3 SST anomalies in the mid Pacific. 

 

The presence of outliers in the HadSST3 data during 1961-1990 suggests that they 

might have been present when long-term average sea surface temperatures were being 

determined, which would result in distorted averages. 

 

4.4.8 Summary for HadSST3 grid cells 

 

This analysis of HadSST3 grid cells over the period from 1961 to 1990 has revealed 

three major areas of concern.  Firstly, the global average anomalies for each calendar 

month fail to sum to zero, as is often the case for cell-month combinations, some of 

which would require average adjustments for the calendar month in excess of 1°C in 

order to meet the condition.  

 

Secondly, more than 13% of the grid cell - calendar month combinations for the 

period from 1961 to 1990 do not appear to be normally distributed, which means that 

caution is required when dealing with or making statements that rely on that 

distribution (e.g. calculating error margins using standard deviations). 

 

Finally it was shown that outliers beyond three standard deviations are present in the 

data across the period, suggesting that these might have been included in the process 
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of determining long-term average temperatures and the associated standard 

deviations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEXT BOX 4B 

 

Mean SSTs are not available but latitude can be used as a crude proxy for temperature 

when examining the relationship with the magnitude of standard deviations.  In a similar 

manner to that for Text Box 4A grid-cell/month combinations were determined and the 

standard deviations were calculated for all HadSST3 grid cells that supplied data in every 

year of the period 1961 to 1990 for the same calendar month.  The standard deviations for 

each grid according to the latitude of the grid cell centre are shown in Figures 4B.1 (for 

January) and 4B.2 (for July), the arrows indicating particular differences between the two 

Figures. 

 

 

 

Figure 4B.1 Standard deviations and latitudes for all HadSST3 grid cells with 30 years of data 
for January 1961-1990.  (Arrows indicate notable regions of seasonal variability.) 

 

... 
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4.5 Summary 

 

The long-term average temperature for a given calendar month and station (for 

CRUTEM4 data) or grid-cell (HadSST3 data) is imperative for the calculation of 

temperature anomalies.  This chapter has shown that for both temperatures over land 

and sea surface temperatures there are areas of concern about how these averages are 

calculated. 

Text Box 4B contd 

 

 

Figure 4B.1 Standard deviations and latitudes for all HadSST3 grid cells with 30 years of 
data for January 1961-1990. (Arrows indicate notable regions of seasonal variability.) 

 

In a reversal of the situation for station data, standard deviations for SSTs increase as the 

temperature increases, with both Figures above indicating greatest standard deviations 

during summer in each hemisphere. 
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While both CRUTEM4 and HadSST3 data have issues specific to those datasets there 

are also issues common to both.  Firstly, it has been shown that 13.5% of such 

averages are probably not normally distributed (i.e. do not comply with Gaussian 

distribution patterns).  This is a not a significant number in the totality of the 

CRUTEM4, HadSST3 and HadCRUT4 datasets but could be important when dealing 

with subsets of that data. 

 

Secondly, both CRUTEM4 and HadSST3 long-term averages are sometimes 

determined from very few observations. The CRUTEM4 criteria for the minimum 

amount of data falls well below that recommended by the WMO and sometimes 

worrying few SST observations are available to refine estimated long-term average 

sea surface temperatures. 

 

Thirdly, it was noted that both datasets arguably contain outliers in the data used to 

calculate long-term averages.  In the CRUTEM4 dataset these are also included in the 

calculation of standard deviations and, given that the limit of acceptable data is five 

standard deviations from the mean, cause the inclusion of data that should realistically 

be identified as outlying and therefore be excluded.  The problems are exacerbated 

when the outliers are part of a less than complete set of data for the two calculations, 

as discussed immediately above. 

 

Fourthly, a problem specific to HadSST3 is that the anomalies for a given grid cell 

and month over the period from 1961 to 1990 often failed to sum to zero even when 

data is present for all 30 years.  This seems likely to be due to the approach of 

calculating mean temperatures at finer resolution and over shorter intervals, often with 

few SST measurements, then extrapolating and interpolating that data to produce the 

HadSST3 dataset.  On this basis the technique seems flawed and the error margins 

quite large. 

 

Much of the above will have only minor impact when only one data source - station 

for CRUTEM4, grid cell for HadSST3 - is considered, except when outliers are 

present in the data; anomalies might not be exact but the shift will be constant and 

trends unchanged.  Problems can however arise when the anomalies are averaged with 
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those from other stations or grid cells that might be to a different base, and 

particularly when the number of sources varies and the starting or ceasing of sources 

might cause false steps in the sequence of the composite values. 
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Chapter 5: Other issues with the HadCRUT4 dataset 

 

5.1 Introduction 

 

This chapter discusses several other issues associated with the accuracy of the 

HadCRUT4 dataset.  It starts by pointing out numerous discrepancies of different 

types between grid cell values in the HadCRUT4 dataset and the two associated 

datasets, CRUTEM4 and HadSST3.  

 

It moves on to 'coastal' grid cells, where the data source might be from observation 

stations on land (CRUTEM4) or from sea surface temperature data (HadSST3) or a 

combination of both, to show inconsistencies in not only coverage but also the data 

sources for the same grid cells over time.  

 

Outliers were discussed in the previous chapter in regard to their influence on long-

term average temperatures in particular and for CRUTEM4 data, via the calculation of 

standard deviations, their impact on the identification of outliers at other times. This 

chapter will look at the inclusion of outliers across the entire 1850-2015 data record in 

both the SST data and the data from observation stations.  While their impact outside 

the period of calculation of long-term averages and standard deviations is limited, 

even the existence of outliers is a general concern in itself.  

 

This chapter also points out, for CRUTEM4 data from observation stations, some 

instances of large ranges of temperature anomalies from stations in the same grid cell.  

In some cases but not all the removal of outliers would greatly reduce the range of 

values.  This might seem to be a minor issue but the crux of the problem is that the 

stations that reported data when those wide ranges occurred might not always report 

data and that shifts in cell values might be due to the failure of stations to report rather 

than meteorological causes. For example, with two stations within the same grid cell 

and the range in the anomalies exceed 7.0°C degrees as it sometimes does, the failure 

of one of those stations to report data would shift the grid cell average up or down as 

appropriate by 3.5°C.  
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Errors are also identified in the station data from which the CRUTEM4 and 

HadCRUT4 datasets are created, in particular that the location for one observation 

station is obviously incorrect and that the location of another one is doubtful.  These 

are not large errors but they raise the question of quality control and undermine the 

credibility of the data. 

 

In total it seems unlikely that any of the above issues will have a large influence on 

the HadCRUT4 dataset in regard to hemispheric or global averages but when studies 

are focussed on smaller regions there is a risk that if the proportion of erroneous data 

to good data increases then accuracy of the regional averages could be in doubt.  As 

mentioned above, the very existence of some of these issues undermines confidence in 

the datasets. 

 

 

5.2 HadCRUT4 fails to match source dataset 

 

Several discrepancies exist between the grid cell values for the HadCRUT4 data and 

the two associated datasets CRUTEM4 (derived from observation station data) and 

HadSST3 (derived from sea surface temperatures). 

 

The HadCRUT4 dataset is created from data used in the CRUTEM4 and HadSST3 

datasets so it follows that if only one of the CRUTEM4 or HadSST3 datasets reports 

data in a given grid cell for a given month then the HadCRUT4 dataset should contain 

that value or, given that HadCRUT4 uses the "average of the ensemble" approach (see 

Chapter 1), at least a value that is very close to it. It also follows that if neither 

CRUTEM4 nor HadSST3 report data for a given cell and month then there should 

also be no corresponding data in the HadCRUT4 dataset.  Instances were identified of 

both of these situations being untrue. 

 

In the latter case it was found that the HadCRUT4 dataset has data for certain grid 

cells in May and September 2009 when neither the HadSST3 nor CRUTEM4 datasets 
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have data in those grid cells.  The source of the HadCRUT4 data is therefore 

unknown. 

 

The first situation, of a discrepancy between HadCRUT4 dataset and the single other 

dataset reporting data is more complicated.  An analysis of the entire HadCRUT4 

dataset when only one data source is available (2,004,617 grid cell - month 

combinations) shows 1,634,589 instances (81.5%) of exact matches with the single 

source, which was either CRUTEM4 or HadSST3.  A further 247,538 instances have 

a difference between corresponding grid cells and months of less than 0.05°C, which 

is somewhat arbitrary limit intended to take into account the HadCRUT4 and 

HadSST3 datasets being "ensembles" (see chapter 1).  

 

The problem lies with the 127,490 instances in which the HadCRUT4 dataset shows a 

difference of 0.05°C or more from the corresponding values in the single other dataset 

in which they are found. Of these instances 34,435 show a difference of 0.1°C or 

more.  Maximum discrepancies of 0.43°C (in 3 instances), 0.42°C (7 instances) and 

0.41°C (16 instances) were discovered.  The three instances of the maximum 

discrepancy, 0.43°C, occur when the HadCRUT4 dataset has values of 0.78°C, 

2.53°C and -3.07°C compared to the values in the single other datasets of 1.21°C  (in 

HadSST3), 2.1°C and -3.5°C (both in CRUTEM4) respectively. 

 

Figure 5.1 shows the number of instances of mismatched grid cells where the 

differences are rounded to two significant digits, the top portion of the figure showing 

all differences and the bottom showing differences of 0.25°C or greater. Figure 5.2 

shows the number of instances where the difference was ≥0.05°C in each year for the 

full period of the HadCRUT4 data. 
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Figure 5.1 Count of instances (i.e. cell-month combinations) when the absolute value of the 
difference between HadCRUT4 and the single source it was drawn from (either CRUTEM4 or 
HadSST3) was greater than or equal to 0.05°C.  (Top: all data, bottom: data when difference 
≥0.25°C) 
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Figure 5.2 Number of instances per year in which the difference between HadCRUT4 and data 
for a given grid cell and month differed by ≥0.05°C from whichever of CRUTEM4 and HadSST3 
contained data in that grid cell and month 

 

 

Analysis of the instances with differences of more than 0.1°C showed that they were 

approximately consistent across longitude bands but of the 34,435 instances where 

that difference was exceeded 30,978 (90%) were for the Northern Hemisphere and 

only 3,357 for the Southern Hemisphere.  The HadCRUT4 data differed by more than 

0.1°C from the HadSST3 data in just one instance, leaving 34,434 discrepancies with 

the CRUTEM4 dataset. 

  

A similar situation was found with the 127,490 instances of discrepancies of more 

than 0.05°C with over 99% being in relation to CRUTEM4 data and in this case 

110,328 (86.5% of the total) being from the Northern Hemisphere and only 17,162 

(13.5%) from the Southern Hemisphere. 

 

While some variation between the single data source and HadCRUT4 might be 

expected due to the ensemble approach, the number of relatively large differences has 

nor been explained by either the CRU or the Hadley Centre.  It appears that, contrary 

impressions given by the documentation, that the creation of the HadCRUT4 and 

CRUTEM4 datasets use different processing of the data from land-based observation 

stations.  
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5.3 Inconsistent sources for coastal grid cells 

 

"Coastal" grid cells are those cells where part of the cell is over land and part over sea.  

The data for coastal grid cells might be from observation stations, from sea surface 

temperatures, or when both are available from a merging of the two according to the 

fractional areas of land and sea, with a minimum land fraction set to 0.25 (Morice et 

al, 2012). 

 

To take into account the "ensemble" nature of the HadCRUT4 and HadSST3 datasets 

when determining the source the data from these, plus the CRUTEM4 dataset, the 

following principles were adopted in this analysis: 

 

- Ignore when data missing from all three datasets 

- If HadCRUT4 data present but HadSST3 and CRUTEM4 missing assign to 

special "unsourced" group  

- If only HadSST3 reported data, 

(a) If HadSST3 value within ±0.125°C of HadCRUT4 value assign to group "sea" 

(b) else assign to "> 0.125C" group 

- If only CRUTEM4 reported data, 

(a) If CRUTEM4 value within ±0.125°C of HadCRUT4 value assign to group 

"land" 

(b) else assign to ">0.125C" group 

- If both CRUTEM4 and HadSST3 reported data 

(a) if HadCRUT4±0.125°C falls outside the range defined by CRUTEM4 and 

HadSST3 values then list as "outside range" 

(b) else assign to group "merged". 

 

No instances were identified as "unsourced", just four "outside range", which will be 

discussed later in this section, and only a small number in the ">0.125C", leaving the 

vast majority as "land", "sea" or "merged". 
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Figure 5.3 shows average annual "coastal" grid cell coverage from the different 

sources and Figure 5.4 the average annual percentage contribution of each of those 

sources to the total "coastal" coverage.  

 

While the group in which HadCRUT4 data differed from CRUTEM4 and HadSST3 

by more than 0.125°C was non-zero the coverage of such grid cells peaked at 0.25% 

of the earth's surface in 1876 and made maximum percentage contribution to coverage 

of 3.5% in 1868, which are negligible compared to the three main groups and have 

been omitted from Figures 5.3 and 5.4.  Morice et al (2012), the primary reference for 

HadCRUT4 details, makes no mention of these variations and therefore no 

explanation as to why they might be this large. 

 

 

 

Figure 5.3 Global coverage, expressed as a percentage of the Earth's surface, of coastal grid cells 
from either one of CRUTEM4 and HadSST3 datasets and when a merging of the values in the 
two datasets. 
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Figure 5.4 Data for Figure 5.3 (above) expressed as a percentage of the total coastal coverage at 
the time. 

 

The same criteria as above were used to determine the data source for each grid cell in 

each month and therefore identify those cells in which the source for the calendar 

month changed over time. Table 5-1 shows that on average the data for a given 

calendar month was from a consistent source for only about 108 (17.1%) of the 633 

coastal grid cells that reported data at any time from 1850 to 2015. In all other cases 

the data source varied over time between the three categories i.e. exclusively from 

land, exclusively from sea or a merging of the data from the two sources. 

 

Figure 5.5 shows the average annual percentage of the coverage of each hemisphere 

attributable to coastal grid cells for the entire period of the record. It was noted in 

Chapter 1 that coastal grid cells account for 33.9% of the northern hemisphere, which 

means they were over-represented by as much as 50% in the coverage prior to 1950, 

with the southern hemisphere 22.2% coverage over-represented only slightly less in 

magnitude but in general for a shorter period.  When considered with Figure 5.4 we 

see that the reducing over-representation in the northern hemisphere coincided with 

increasing coastal coverage via the merging of land and sea data, and a decrease in the 

coverage attributable to data only from land only. 
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Month 
Changed 
Source 

Unchanged 
Source 

Jan 516 123 
Feb 529 113 
Mar 518 130 
Apr 522 121 
May 518 110 
Jun 523 108 
Jul 534 101 
Aug 536 94 
Sep 537 99 
Oct 533 101 
Nov 532 93 
Dec 529 106 

Table 5-1 The number of coastal grid cells that changed and did not change their data source for 
the same calendar month over time. 

 

 

 

Figure 5.5 Percentage contributions to the reported coverage in both hemispheres from 1850 to 
2015 

 

 

The analysis of the data sources for coastal grid cells also revealed four instances 

where HadCRUT4 values for a grid cell fell outside the range of HadSST3 and 

CRUTEM4 data, despite the allowance of ±0.125°C (Table 5-2). As with the case of 

the HadCRUT4 dataset reporting data when neither CRUTEM4 nor HadSST3 

datasets did so, no explanation seems forthcoming for these "out of range": values.  
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Year Month  

Cell centre 

Latitude 

Cell centre 

Longitude  HadCRUT4 CRUTEM4 HadSST3 Excess 

1869 4 37.5N 117.5E -1.25 -1.4 -1.42 0.15 

1942 12 42.5N 127.5E -0.37 -0.5 -1.11 0.13 

1996 5 37.5N 32.5E 2.14 2.35 2.62 -0.19 

2011 10 67.5N 167.5E 3.93 3.8 3.79 0.13 

Table 5-2 Instances where the HadCRUT4 value for a coastal grid cell is more than 0.125C 
outside the range bounded by HadSST3 and CRUTEM4 values.  

 

 

The variation in coverage of coastal grid cells (Figure 5.4) is to be expected given that 

both CRUTEM4 and HadSST3 datasets vary in coverage and the data for coastal grid 

cells is derived from whatever data from these two sources is available for the given 

month.  Despite this, the problem remains that the source and coverage of this data 

has been very inconsistent over time.  It cannot be ruled out that these inconsistencies 

might contribute to changes over time in HadCRUT4 hemispheric and global 

averages, or for that matter cause spurious trends in the temperature anomalies for 

individual grid cells. 

 

 

5.4 Data Outliers 

5.4.1 Introduction 

 

Chapter 4 discussed the implications of the presence of outliers during the period over 

which long-term average temperatures are calculated, and in the case of observation 

station data, during the period over which standard deviations are calculated, because 

errors or distortions of these two factors will be carried through the entire data record 

since 1850. 

 

This section will address the presence of outliers during other times in the record, 

when they will not impact all data for the grid cell since 1850 but have the potential to 

distort grid cell values in the months in which they occur and distort derived data such 
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as averages or temperature trends when the outlying data is incorporated into the 

calculations.   

 

CRUTEM4 data, from observation stations, will be treated separately to HadSST3 

data because the analysis is constrained by the available information.  This is due to 

the identification of outliers in CRUTEM4 data being relatively straightforward 

because monthly mean temperatures are published for each observation station, along 

with the CRU's calculation of long-term average temperatures and standard 

deviations. 

 

In contrast, as Chapter 4 discussed, the HadSST3 dataset, with grid size of 5° x 5° 

latitude and longitude and at monthly intervals is derived from temperature anomalies 

based on 1° x 1° grid cells and 5-day periods known as pentads. Unlike with 

CRUTEM4 station data the SST data at smaller resolution and period is not published 

with the HadSST3 dataset, so this analysis adopts a different approach.   

 

 

5.4.2 Outliers in CRUTEM4 data from observation stations 

 

Outliers in data, whether due to abnormal meteorological events or to instrument 

malfunction or errors at some point in data processing, e.g. incorrectly flagged 

missing data, can distort the final product. The usual practice when dealing with 

possible outliers is to set a threshold, typically defined as some multiple of standard 

deviations of the data away from the mean value, and to declare values beyond that 

point to be outliers and exclude them.  When constructing the CRUTEM4 dataset the 

CRU adopts a threshold for outliers of five standard deviations from the mean 

temperature and although calculating the long-term average temperatures from data 

over the 30-year period from 1961 to 1990 the standard deviations used for 

CRUTEM4 are calculated over a minimum of 15 years of data over the 50-year period 

from 1941 to 1990. 
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The use of the long-term averages and standard deviations provided in the metadata of 

the CRUTEM4 station data files results in 1829 instances of data outliers, i.e. beyond 

the five-standard deviations limit. 

 

The probability of normally distributed data exceeding five standard deviations is ~1 

in 1.25 million.  To use this threshold for outliers is exceptionally generous given that 

for each calendar month there is a maximum of only 166 values (i.e. a value for every 

instance of the given calendar month in every year from 1850 to 2015). 

 

A threshold of three standard deviations, with probability of exceeding that value of 

~26 in 10,000 (i.e. ~1 in 384), would be too low given that the number of years of 

data (166) is 43% of 384, meaning a high risk of outliers based on probability alone.  

 

The compromise position, adopted for the purposes of this present analysis, is to set 

the threshold at four standard deviations, where the probability of exceeding that 

value is ~6 in 100,000 (or ~1 in 16,666), and to use long-term averages and standard 

deviations based on all available data rather than the CRUTEM4 1961-1990 subset for 

averages and 1941-90 subset for standard deviations.  The advantage of using all 

available data is that the inclusion of outlying data in the calculation of the long-term 

average temperature and standard deviation will cause less distortion than it would 

when calculating from just 30 values for the former and 50 for the latter. 

 

The entire set of station data was analysed, using again the concept of station-month 

combinations because the long-term average temperature and the standard deviation 

are determined for each calendar month.  This identified 1418 outliers beyond four 

standard deviations, of which 86 were beyond five standard deviations. The 

identification of just 86 compared to the 1829 determined by using CRU-supplied 

long-term average temperatures and standard deviations calculated over a different 

period (see above in this section) suggests that the CRU might have excessively 

trimmed the data, especially low values in the early years of station records.   

 

Table 5-3 shows some extreme examples of outliers in the station data.  The mean 

(i.e. long-term average temperature), standard deviation and years of record for the 
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month in question are given to show the context of the monthly mean ('Tmean') being 

the number of standard deviations from that mean in the given calendar month.  

 

 

Stn ID Station name  Month  Mean StDev Yrs Year Tmean SDs 

720192 AMITE 8 26.97 0.91 131 1885 32.4 6.0 

804100 BARQUISIMETO 8 23.86 0.89 74 2008 29.7 6.6 

679640 BULAWAYO/GOETZ-OBS. 5 16.29 3.33 110 2013 -16.3 -9.8 

425150 CHERRAPUNJI 5 19.46 1.57 106 1902 33.1 8.7 

416240 DERA ISMAIL KHAN 12 13.71 1.12 134 2005 20.4 6.0 

670090 DIEGO-SUAREZ 11 27.23 5.13 63 2013 67.3 7.8 

434950 GALLE 9 26.65 0.49 111 1901 29.7 6.2 

434950 GALLE 8 26.59 0.54 111 1901 29.8 6.0 

434950 GALLE 5 27.57 0.64 111 1894 23.2 -6.8 

637230 GARISSA 8 27.07 0.81 63 2003 32.0 6.1 

417150 JACOBABAD 9 31.81 1.31 138 1938 19.0 -9.8 

588340 NANPING 7 29.28 1.68 61 1951 17.8 -6.8 

588340 NANPING 8 28.85 1.55 62 1951 18.0 -7.0 

852420 ORURO 9 11.55 11.05 52 2011 90.0 7.1 

80150 OVIEDO  EL CRISTO 6 16.43 2.31 86 1945 0.1 -7.1 

483780 PHITSANULOK 8 28.36 0.66 74 2006 32.5 6.3 

859310 PUNTA DUNGENES 9 4.84 1.3 89 1907 13.8 6.9 

279950 SAMARA (BEZENCUK) 7 21.01 2.59 112 2015 2.0 -7.3 

985500 TACLOBAN 7 27.89 1.11 100 1906 18.2 -8.7 

14650 TORUNGEN FYR 1 0.3 2.96 148 1937 18.1 6.0 

913340 TRUK WSO A 1 27.09 3.22 73 2012 0.0 -8.4 

60510 Vestervig 7 15.42 1.6 136 1874 4.2 -7.0 

627510 WAD MEDANI 4 32.27 8.61 64 2011 99.9 7.9 

480970 YANGON 10 27.76 0.6 116 1993 23.8 -6.6 

318290 ZOLOTOJ 10 7.3 1.76 75 2010 19.6 7.0 

Table 5-3 Extreme outliers based on mean temperatures and standard deviations calculated 
across all available data for each station in each calendar month. 

 

Implausible mean monthly temperatures of 67.3°C (at Diego-Suarez), 90.0°C (Oruro) 

and 99.9°C (Wad Medani) produced implausible standard deviations of 5.13°C, 

11.5°C and 8.61°C respectively.  (Note that adopting the five standard deviations 

threshold, as per the CRUTEM4 practice, would mean the inclusion of values within 

ranges of 51.3°C, 115.0°C and 86.1°C respectively for the calendar months in which 

the implausible mean temperatures are reported.) 
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Given that the mean temperature for "Bulawayo/GoetzObs" station is 16.29°C for the 

month of May a reported mean of -16.3°C appears to have an accidental negative sign 

("-").  Further, the mean monthly temperatures of 0.0°C and 0.1°C seem very unlikely 

at Truk WSO A (an island in the Pacific) and Oviedo El Christo (Spain) when the 

mean temperatures for the applicable calendar months were 27.09°C and 16.43°C 

respectively. 

 

It seems very likely that the mean monthly temperatures of 0.0°C, 90.0°C and 99.9°C 

in Table 5-3 were intended to indicate missing data but failed to use the correct flag 

value of -99.0°C. 

 

Various outliers in Table 5-3 seem likely to be due to instrument, observer or 

transcribing error include Cherrapunji where 33.1°C perhaps should have been 

23.1°C, Jacobabad where 19.0°C perhaps should have been 29.0°C and 2.0°C for a 

July monthly mean temperature at Samara/Benzencuk is perhaps missing a digit ("1") 

when the long-term average for that month is 21.01°C. 

 

The likely causes of certain other outliers are less certain, especially when some are 

less than 5°C from the mean temperature for the calendar month (e.g. Balasor and 

Galle).  The probability of these mean temperatures occurring might be very low but it 

is not beyond possibility that they might have been genuine.  They might have been 

caused by a rare meteorological event (e.g. heatwave with hot winds) or, if the 

temperature gradient through the month is quite steep then the absence of data for a 

number of consecutive days at one end of the month might have distorted the monthly 

mean. 

 

The Nanping and Vestervig outliers seem to be part of an extended sequence of errors 

at both locations.  The data for Nanping has seven entries in the same year where the 

mean monthly temperatures are about 10°C below the long-term averages. At 

Vestervig four consecutive months in 1874 have mean temperatures more than 5σ 

below their calendar month long-term average temperatures. 
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Outside the values listed in Table 5-3 are others that are not as many standard 

deviations from their long-term averages but appear very likely to be errors.  A 

selection of these is shown in Table 5-4, which is in the same format as the table 

above.  

 

 

Stn ID Station name Mon Mean StDev Yrs Year Tmean SDs 
800890 APTO_OTU 4 27.07 11.89 22 1978 81.5 4.6 

800890 APTO_OTU 6 27.07 11.76 24 1978 83.4 4.8 

800890 APTO_OTU 7 27.23 11.99 23 1978 83.4 4.7 

915920 NOUMEA 11 23.92 1.08 97 1912 29.3 5.0 

915920 NOUMEA 4 24.26 1.17 97 1913 29.9 4.8 

915920 NOUMEA 5 22.48 1.09 96 1913 28.6 5.6 

915920 NOUMEA 8 20.13 1.13 96 1913 26.8 5.9 

915920 NOUMEA 9 21.03 1.18 95 1913 27.4 5.4 

915920 NOUMEA 10 22.45 1.22 95 1913 28.7 5.1 

915920 NOUMEA 11 23.92 1.08 97 1913 29.2 4.9 

400610 PALMYRA 6 27.44 1.55 63 1938 18.0 -6.1 

400610 PALMYRA 7 29.58 1.4 64 1938 21.6 -5.7 

400610 PALMYRA 8 29.51 1.9 63 1938 19.3 -5.4 

400610 PALMYRA 9 26.32 1.6 64 1938 16.9 -5.9 

913480 PONAPE 1 27.10 0.5 75 1926 24.6 -5.0 

913480 PONAPE 2 27.16 0.57 78 1926 24.4 -4.9 

913480 PONAPE 3 27.27 0.6 77 1926 24.2 -5.1 

913480 PONAPE 4 27.19 0.59 76 1926 24.2 -5.0 

672610 TETE 4 26.87 1.44 63 1935 19.7 -5.0 

672610 TETE 6 22.17 1.26 64 1935 15.8 -5.0 

672610 TETE 7 21.87 1.14 65 1935 15.3 -5.8 

672610 TETE 8 23.69 1.39 67 1935 14.9 -6.3 

560040 TUOTUOHE 11 -10.43 3.06 60 1985 -28.1 -5.8 

560040 TUOTUOHE 12 -14.21 2.29 59 1985 -26.9 -5.5 

560040 TUOTUOHE 1 -15.30 2.43 58 1986 -28.2 -5.3 

383580 Susamyr 1 -19.9 8.46 32 2013 23.6 5.1 

873050 JACHAL 12 23.58 3.86 43 1994 0.0 -6.1 

858840 CABO RAPER 12 10.28 1.58 58 1933 0.8 -6.0 

722590 DALLAS/FORT WORTH 9 25.32 2.55 55 2009 9.8 -6.1 

636300 GULU 7 21.94 1.45 70 1937 13.1 -6.1 

404380 RIYADH 2 17.16 2.35 62 2002 30.0 5.5 

Table 5-4 Other outliers according to long-term average temperatures and standard deviations 
calculated across all reported data for each observation station in each calendar month.  

 

 

The first three instances in Table 5-4 are from "Apto_Uto" (Colombia) with reported 

monthly mean temperatures implausibly above 80.0°C.  The analysis used in this 

section differs from the approach used to create the CRUTEM4 dataset but as noted in 
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the previous chapter, these monthly mean temperatures were included when both the 

long-term average temperatures and standard deviations were calculated, meaning that 

both are distorted and the outlier threshold based on five standard deviations is so 

wide as to allow the inclusion of temperatures in a range of over 100.0°C for that 

calendar month.   

 

Tulcea (Romania) is not listed in either Table 5-3 or 5-4 but for the years 2007, 2008 

and 2009 the monthly mean temperatures the data appears to be shifted by one 

decimal place (e.g. mean temperature for June 2007 is 2.3°C c.f. the June average 

across 1961-90 of 20.6°C) except for the months from December to March.  While the 

given mean temperatures fall within the range of mean temperatures of the past, the 

number of degrees C for all months except that for January 2007 could be multiplied 

by ten and would still fall within the acceptable range.   

 

Both Jones et al (2012) and Osborn & Jones (2014) report that outliers of more than 5 

standard deviations are excluded unless they have obvious problems that can be 

corrected.  The data files published in association with the CRUTEM4 dataset do not 

include a set of station data files that have been corrected or data removed so it is not 

possible to determine the changes that have been made or to verify that the data has 

modified as described. What is clear however is that the inclusion of some erroneous 

values when calculating long-term average temperature and standard deviations has 

negative repercussions on the CRUTEM4 dataset. 

 

A greater problem to be addressed is why such obvious outliers are included in the 

station data files.  It would seem that not all the national meteorological services that 

supply the data to the CRU, nor the CRU itself, apply suitable quality control 

measures to the data in question. 

 

 

5.4.3 Outliers in HadSST3 data 

 

As discussed in the previous chapter the HadSST3 data, with grid cells of 5° latitude x 

5° longitude and intervals of one month are derived from temperature anomaly data 
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that uses 1° x 1° grid cell size and pentads (i.e. intervals of 5-days).  Direct analysis of 

the finer granularity data is not possible without the complete set of information 

including the long-term average temperatures used in calculations. Likely outliers can 

however be identified from the available HadSST3 data. 

 

A first approach is to follow the practice for CRUTEM4 data for observation station 

data by considering only HadSST3 cell-month combination with at least 14 years of 

data for the given calendar month during the period from 1961 to 1990.  Applying the 

cell-month combination method described in chapter 4 this identified 14964 cell-

months. The long-term average temperatures and standard deviations were calculated 

for each of these and an outlier threshold of four standard deviations was set to make 

it consistent with the discussion in chapter 4.   

 

This resulted in 22,729 outliers being identified for the full period of available data 

(i.e. 1850 to 2015), 14,360 (63.2%) being more than four standard deviations below 

the long-term average temperature and 8369 (36.8%) more than four standard 

deviations above. Despite the greater amount of ocean in the Southern Hemisphere 

only 8,784 (38.6%) of the outliers applied to grid cells located there, leaving 13,945 

(61.4%) for the Northern Hemisphere.  

 

Table 5-5 shows details of some extreme outliers, including the month of their 

occurrence, the number of entries used to calculate the mean (i.e. long-term average 

temperature) and standard deviation, then the anomaly given by the HadSST3 dataset 

and the number of standard deviations from the mean that this represents. 

 

From the same analysis the annual total number of outliers per year, i.e. instances of 

values beyond four standard deviations from the long-term average, was determined 

(Figure 5.6).  Not surprisingly the period over which the averages and standard 

deviations were calculated appears to contain few outliers, this because the outliers 

were included in the calculations of the two values. 

 

The problem with this approach is that non-seasonal components of sea surface 

temperatures seem to change slowly, meaning that, as Table 5.5 suggests, standard 

deviations calculated over the 30 years from 1961 to 1990 are small.  The average 
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standard deviation for the 16494 cell-months across 1961-1990 is just 0.73°C, during 

a period when the monthly HadSST3 global average temperature anomalies have a 

range of just 0.596°C  (min = -0.335°C, max = 0.261°C). The low average standard 

deviation means that quite narrow outlier thresholds are applied across the entire data 

record (i.e. 1850-2015) where the monthly HadSST3 global average temperature 

anomalies have a range of 1.469°C (min = -0.744°C, max = 0.725°C). 

 

 

Cell centre 
Latitude 

Cell centre 
Longitude Year Month Mean Std Dev Av Years Tanom SDs 

2.5 152.5 1942 4 0.01 0.23 30 -7.11 -31.10 

7.5 152.5 1942 4 0.02 0.28 30 -7.49 -26.84 

-2.5 107.5 1858 6 -0.01 0.26 30 -6.82 -25.68 

-2.5 152.5 1942 4 0.00 0.28 30 -6.74 -24.24 

-22.5 -72.5 1918 8 -0.01 0.29 30 -6.91 -23.81 

-17.5 -57.5 1854 9 -0.02 0.27 30 -6.19 -23.18 

12.5 47.5 1941 7 -0.03 0.41 30 6.59 16.32 

17.5 -7.5 1910 10 -0.03 0.42 30 6.92 16.71 

62.5 -52.5 2010 12 -0.08 0.42 29 6.91 16.76 

-47.5 -62.5 1937 3 -0.52 0.39 30 6.37 17.81 

-52.5 162.5 1918 4 -0.07 0.27 30 5.03 19.09 

-47.5 -62.5 1952 2 -0.21 0.39 30 7.23 19.23 

Table 5-5 Details extreme HadSST3 outliers, where Tanom is the temperature anomaly in the 
given month and SDs being the number of standard deviations (column 'Std Dev') from the mean 
temperature anomaly for that month.  (Mean and standard deviations based on 1961-90 data, 
with a minimum of 14 instances of the calendar month.) 
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Figure 5.6 Annual total HadSST3 outliers beyond the "four standard deviation" threshold based 
on long-term average temperatures and standard deviations for each cell-month combination 
calculated from a minimum of 14 entries for the period 1961-1990. 

 

 

Figure 5.6 supports this with large numbers of negative (i.e. below-range) outliers and 

fewer positive outliers in data prior to 1961-1990 and the opposite situation after.  

(Figure 5.6 also needs to be interpreted in the context of the number of observations 

increasing over time.)   

 

On this basis a second approach was used, employing the same method as in the 

previous section for CRUTEM4 station data, viz calculating long-term averages and 

standard deviations from all available data (i.e. across 1850-2015) for each cell-month 

combination and then, for all cell-months with at least 14 entries over that time, using 

the calculated means and standard deviations to identify outliers beyond four standard 

deviations.  

 

This approach produced 18690 acceptable cell-months combinations, up from the 

16494 across 1961-1990 by including more years.  The average standard deviation 

increased to 0.90C (which means the average outlier threshold of four standard 

deviations increases from 2.92°C to 3.6°C, an increase of more than 20%). 
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Based on these new criteria 4857 outliers were identified, the most extreme of which 

are shown in Table 5-6 where none of the SST long-term averages or standard 

deviations for the cells was calculated with less than 132 entries (i.e. 132 years of data 

for that calendar month).  

 

Figure 5.7, similar to Figure 5.6, shows the annual total number of outliers beyond 

four standard deviations from the mean where the mean and standard deviation are 

based on at least 14 years of data in for the cell-month combination across the entire 

period from 1850 to 2015.  The scale on the Y-axis is one quarter that of Figure 5.6, 

indicating a smaller maximum annual total. 
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Cell centre   Long term   

Lat Long Year Mon SSTav StDev SSTval SDVar 

-37.5 77.5 1993 9 -0.28 0.83 6.92 8.67 

-17.5 -2.5 1910 10 -0.17 0.83 6.87 8.48 

-17.5 -7.5 1910 10 -0.18 0.9 6.92 7.89 

52.5 -2.5 1941 6 -0.04 0.97 7.28 7.55 

42.5 2.5 1919 2 -0.31 0.57 3.99 7.54 

22.5 -77.5 1859 4 0.01 0.72 5.44 7.54 

2.5 -32.5 1869 10 -0.09 0.62 4.55 7.48 

22.5 -82.5 1859 4 0 0.69 5.16 7.48 

27.5 -67.5 1878 10 -0.03 0.72 -6.43 -8.89 

22.5 -67.5 1851 8 -0.07 0.7 -6.29 -8.89 

22.5 -72.5 1918 8 -0.18 0.75 -6.91 -8.97 

2.5 -32.5 1878 12 -0.09 0.67 -6.14 -9.03 

7.5 97.5 1851 3 -0.08 0.82 -7.57 -9.13 

7.5 92.5 1851 3 -0.15 0.76 -7.34 -9.46 

2.5 107.5 1858 6 -0.07 0.71 -6.82 -9.51 

17.5 42.5 1940 8 -0.02 0.75 -7.35 -9.77 

Table 5-6 Extreme outliers when long-term average SSTs and standard deviations are calculated 
from data for all cell-months, subject to a minimum of 14 SST values.  Column 'SDVar' indicates 
the number of standard deviations (StDev) that SSTval is from the long-term average (SSTav).   

 

 

 

Figure 5.7 Total SST outliers per year when the mean and standard deviation are based on all 
available data (i.e. 1850 to 2015). 
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Finally, a critical point about any SST outliers is the magnitude of their variation from 

the long-term average for the grid-cell and month.  Table 5-7 shows some extreme 

temperature anomalies from the HadSST3 dataset of up to 8.32C from the mean 

values for the cell and calendar month.  In some instances these might be due to 

abnormal weather and very few SST measurements in the month but in others it might 

be a problem with the source data (chapter 11). 

 

 

Cell centre    

 Lat  Long Year Mon SSTval 

47.5 12.5 2002 1 -8.1 

-22.5 -17.5 1957 4 -8.09 

-7.5 177.5 1986 10 -8.09 

-32.5 132.5 1993 6 -8.01 

-47.5 162.5 1976 6 -7.85 

-62.5 7.5 1997 4 7.87 

-47.5 -12.5 1858 10 7.92 

-42.5 42.5 1970 6 7.94 

-42.5 127.5 1976 7 7.96 

-7.5 -87.5 1919 9 8.32 

Table 5-7 Extreme HadSST3 temperature anomalies (calculated according to 1961-1990 
averages).  

 

 

5.5 HadSST3 and CRUTEM4 global averages differ  

 

In was shown in Chapter 1 that the annual average HadSST3 sea surface temperature 

and the annual average CRUTEM4, from observation stations over land, differ.  

HadSST3 averages are greater than CRUTEM4 averages until about year 1900, very 

similar from 1900 to about 1990 and thereafter being less than CRUTEM4 averages. 

The differences in the annual averages are shown in Figure 5.8 and whether the 

pattern in differences is correct or a consequence of failings with the data needs to be 

explored. 
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Figure 5.8 Annual average differences between CRUTEM4 and HadSST3 global averages 

 

 

When viewed by calendar month, with 1850 to 2015 data for each month, a different 

picture emerges (Figure 5.9).  The difference in annual average temperatures changes 

over time, largely as a consequence of the changing pattern in differences during the 

six months spanning the Northern Hemisphere winter; the difference in summer 

temperatures being less. 

 

 

 

Figure 5.9 Differences between CRUTEM4 and HadSST3 monthly global averages, sorted into 
calendar months 
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The situation is made clearer by considering the difference between CRUTEM4 and 

HadSST3 monthly averages separately for the two hemispheres. (Note that the 

HadSST3 global average is the average of the two hemispheres but the CRUTEM4 

global average uses a 2:1 weighting for the NH over the SH, which means the data is 

only generally comparable to the global averages.)  Figure 5.10 shows the Northern 

Hemisphere monthly differences for January to March and six months later, for July 

to September, at the same scale. 

 

The standard deviations for the differences during these months is of limited value 

because of the obvious trends but the average standard deviations in the Northern 

Hemisphere for the months of January to March are 0.728°C and for July to 

September 0.243°C, while in the Southern Hemisphere the differences vary less 

across the year and the corresponding average standard deviations are 0.342°C and 

0.327°C. 

 

The differences in global averages can also be examined in terms of the number of 

instances where CRUTEM4 averages are greater than or equal to HadSST3 averages 

and number where it is less, for each month of the year (Figure 5.11).  While we 

might expect approximately equal numbers, varying almost randomly either side of 

50% we find that from July to October instances of CRUTEM4 averages being less 

than or equal to HadSST3 averages range from 33.7% to 40.1%. In contrast only one 

month of the rest of the year has less than 40% of instances the opposite way, March 

36.1%, largely refuting any notion that the variation in months might be due to 

seasonal differences in temperature and the temperature buffering of the oceans.  
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Figure 5.10 Monthly differences in CRUTEM4 and HadSST3 averages in the Northern 
Hemisphere during two periods of the year (top: January-March, bottom: July-September). 
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Figure 5.11 Per calendar month percentages of the 166 years in which the CRUTEM4 average 
was less than or equal to HadSST3 ("diffs <=0") and in which it was greater ("diffs > 0"). 

 

 

Jones (2016) comments more than once in relation to these differences between 

CRUTEM4 and HadSST3, saying: 

 

"Related to this, adjustments for land data are estimated completely independently 

from the marine series, so these two components mutually support each other." 

[section 3 of that paper] 

 

"If the [SST] adjustments were not applied then century-timescale warming would 

be greater, and there would be a major discrepancy between the land and marine 

components prior to about 1940." [section 4.1] 

 

"If the latter [(ie. SST records)] had not been adjusted for the large bias due to the 

change from bucket measurements, then the agreement with the land record would 

not have been produced". [section 6]. 

 

The second and third comments seem to contradict the first, the both seeming to 

justify the adjustment of data on the grounds that the CRUTEM4 and HadSST3 values 

are brought closer together, this despite them being quite different at certain stages of 

the 166 year record. 
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The differences in the record during the NH winter months might have more than one 

plausible explanation and those explanations need not address both the start and end 

of the record simultaneously. As chapter 2 mentioned, Western Europe contributed 

more than 50% CRUTEM4 coverage for the Northern Hemisphere from 1850 to 

1869, decreasing to 30% (almost twice the land area as a percentage of the total 

hemisphere land area) by about 1890.  Further, at this time Western Europe was still 

emerging from the Little Ice Age that ended around 1850, which means that 

CRUTEM4 temperature anomalies at that time will be less than in later years. 

 

One plausible explanation for the CRUTEM4 global averages exceeding those of 

HadSST3 since around 1990 is that the data from many parts of the NH might be 

corrupted by urbanisation, particular locally generated heat during the colder months. 

Another explanation is changes in cloud cover (McLean, 2014). The important 

difference between these two explanations is that the first is not a meteorological 

cause but the second is. 

 

Another possible explanation is that the CRUTEM4 data is correct but the SST data in 

cooler months is too high in the last half of the 1800s and too low since around 1990, 

but this would require distinct seasonal effects that have changed over time. 

 

It might also be that both CRUTEM4 and HadSST3 are correct and that conditions 

genuinely have varied as illustrated, but evidence would be needed to support such an 

assertion.  Until such evidence is presented the accuracy of at least one of CRUTEM4 

and HadSST3 is in doubt. 

 

 

5.6 The averaging of station temperature anomalies 

 

The CRUTEM4 practice is to average the temperature anomalies for all reporting 

stations in the same grid cell in order to obtain the grid cell value for that month.  The 

failure of individual stations to report in some month, either for short-term reasons 

such as instrument failure or over a long-term (e.g. ceasing operation), will have an 
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impact on the average for the grid cell according to the range of station anomalies and 

generally inversely according to the number of stations within the grid cell. 

 

The range of temperature anomalies in each grid cell with from two to 10 reporting 

observation stations in the month in question was analysed.  This revealed 8968 

instances with a range of temperature anomalies greater than or equal to 4.0°C. 

Among these were 4225 instances where the range was greater than or equal to 5.0°C 

and the number of instances for different numbers of reporting stations is shown in 

Figure 5.12.   

 

 

 

Figure 5.12 Number of instances of grid cell temperature anomaly ranges ≥5.0°C for grid cells 
containing different numbers of reporting stations  

 

 

Figure 5.13 maps the grid cells that at some time in the record had instances of the 

range of temperature anomalies exceeding 5.0°C. Chapter 4 contained discussion of 

the general inverse relationship between mean temperature and standard deviation so 

the large range of temperature anomalies in northern Canada and much of Russia is no 

surprise. The same cannot be said about the mapped grid cells in the tropics where 

temperatures are consistently warm and the daily and annual range of temperatures is 

likely to be low. 
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Figure 5.13 Map of the locations of CRUTEM4 grid cells where anomaly ranges in one or more 
months were ≥5.0°C. (Americas to the left, Africa in the centre and Asia to the right) 

 

 

The 20 highest anomaly ranges are shown in Table 5-8, with many of the highest 

values in the list probably the result of the presence of outliers in the temperature data 

for one or more stations in the given grid cell. 

 

Of particular interest are instances of large temperature anomaly ranges but few 

observation stations within the grid cell because the omission of a single station from 

a grid cell in that month could have a large impact on the grid cell value.  Table 5-9 

lists the 15 greatest ranges of temperature anomalies for grid cells with two or three 

reporting observation stations.  (In the case of just two observations the absence of 

one station would increase or decrease the grid cell average by 50% of the range of 

anomalies.  With three reporting observation stations the shift depends on the actual 

temperature anomalies but dividing the range by three gives the average magnitude of 

the shift.) 

 

The presence of grid cells with large ranges in the temperature anomalies of the 

stations those cells contain firstly suggests that outlying data has been included, 

secondly raises questions about the accuracy of the mean temperatures for each 

station and thirdly suggests that either meteorological conditions are not homogenous 
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across individual grid cells or if they homogenous then the consequence change in 

temperature when the conditions change are not. 

 

Extreme ranges of anomalies have been discussed here but any changes in the number 

of reporting stations in each grid cell will have some impact on the calculated grid cell 

average that appears in CRUTEM4 and HadCRUT4 datasets.   Changes in the number 

of reporting stations in a grid cell might therefore result in temperature anomaly shifts 

or even cause false trends in those anomalies.  

 

 

Cell centre     

Latitude Longitude Range Year Month Cell Stns 

-17.5 -67.5 80.6 2011 9 9 

12.5 32.5 68.1 2011 4 6 

7.5 -72.5 55.9 1978 6 5 

7.5 -72.5 55.7 1978 7 5 

7.5 -72.5 54.2 1978 4 5 

-12.5 47.5 40.3 2013 11 4 

-22.5 27.5 33.9 2013 5 9 

72.5 127.5 23.8 1931 2 3 

57.5 27.5 20.4 1970 12 6 

32.5 67.5 20.2 2010 5 4 

62.5 102.5 20.0 1951 2 4 

42.5 47.5 19.9 2012 2 9 

72.5 127.5 19.7 1929 12 3 

67.5 62.5 19.2 1997 3 8 

57.5 62.5 19.2 1927 1 7 

52.5 47.5 19.0 2015 7 7 

72.5 112.5 18.7 2014 3 3 

47.5 97.5 17.8 1994 11 4 

62.5 112.5 17.5 1959 3 3 

47.5 92.5 17.4 1977 11 6 

Table 5-8 Details of the greatest ranges in temperature anomalies for observation station located 
within the same grid cell 
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Cell centre     

Latitude Longitude Range Year Month Cell Stns 

72.5 127.5 23.8 1931 2 3 

72.5 127.5 19.7 1929 12 3 

72.5 112.5 18.7 2014 3 3 

62.5 112.5 17.5 1959 3 3 

67.5 -137.5 17.4 2006 2 2 

72.5 127.5 16.9 1931 1 3 

67.5 157.5 16.6 1953 11 2 

67.5 -152.5 15.8 1998 1 3 

72.5 127.5 15.5 1930 12 3 

62.5 122.5 14.7 1957 1 3 

72.5 127.5 14.6 1930 1 3 

32.5 12.5 14.5 2015 7 3 

27.5 42.5 13.8 2014 2 2 

52.5 67.5 13.7 1909 4 2 

27.5 -12.5 13.6 2012 12 2 

Table 5-9 Greatest ranges in observation station temperature anomaly for grid cells with 2 or 3 
observation stations 

 

 

5.7 Observation stations assigned to incorrect grid cells 

 

During one of the analyses described above it was noticed that the observation station 

at Ghanzi (Botswana) was, according to the CRU's published data, located within the 

same grid cell as an observation station in southern Libya.  This obvious error was 

traced to Ghanzi being shown with positive value for its latitude, placing it in the 

Northern Hemisphere rather than in its correct location in the Southern Hemisphere. 

 

It was also discovered that the given latitude for the observation station at Garissa 

(Kenya) is 0.5 (i.e. 0.5°N) when -0.5 (i.e. 0.5°S) is much closer to the town of Garissa 

and would perhaps refer to the observation station at Garissa airport.  The distance 

between the two locations is only 125km but 0.5°N places Garissa in one grid cell and 

0.5°S places it in another. 
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These appear to be the only likely errors with station locations but the fact that they 

occur at all indicates a failure to check the data. 

 

5.8 Summary 

 

This chapter has discussed several problems with HadCRUT4 data ranging from 

inconsistencies to outright errors. 

 

Discrepancies were shown to exist between data in the HadCRUT4 dataset and the 

data in the CRUTEM4 and HadSST3 datasets, sometimes by excessive difference, 

sometimes with the HadCRUT4 data outside the range defined by the values from the 

two other datasets and sometimes where the HadCRUT4 dataset contained a value for 

certain grid cells in certain months but no data existed in either of the other two 

datasets.  An important conclusion in regard to the dominance of discrepancies with 

the CRUTEM4 dataset is that it appears that different processing is applied to 

observation station data to create the CRUTEM4 and HadCRUT4 datasets.   

 

It was also shown that data for individual HadCRUT4 "coastal" grid cells often 

switches between near-surface temperature data from observation stations, sea surface 

temperatures and a merging of the two.  It was also shown that the percentage of 

coverage from coastal grid cells using each of these sources has varied over time, 

making the whole situation very inconsistent. It appears likely these inconsistencies 

could cause shifts in the patterns of anomalies for individual grid cells, or in bulk, 

shifts in HadCRUT4 hemispheric or global averages, as well as generate false or 

exaggerated trends.  

 

The presence of data outliers was revisited but this time outside the period over which 

long-term average temperature are calculated and, in the case of data from observation 

stations outside the different period over which standard deviations are calculated.  It 

was shown that while some values were likely identified as outliers and either 

corrected or excluded (no clarification provided by the CRU) it appears that some 

outliers would not have been identified as such and would have been included in the 

processing to create the CRUTEM4 and HadCRUT4 datasets. It was also found that a 
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change in period over which long-term average temperatures and standard deviations 

are calculated can lead to changes in the data identified as outliers, even more so 

when the very generous thresholds for outliers in both CRUTEM4 data and the 

HadSST3 dataset are trimmed to less generous limits. 

 

Outliers were also identified in HadSST3 sea surface temperature data, with changes 

in the period over which long-term averages and standard deviations again making a 

significant difference to the data identified as outliers.  Admittedly the data used in the 

analysis is HadSST3 data rather than data, at a smaller grid cell size and shorter time 

period, from which the HadSST3 data is derived but it seems likely that the problem 

will be similar at that level. 

 

The presence of any outliers in either CRUTEM4 station data or HadSST3 sea surface 

temperature anomaly data indicates poor quality control both at the sources of the data 

and by the CRU and Hadley Centre for the respective datasets.  It also suggests that 

monthly HadSST3 temperature anomalies for some grid cells might be calculated 

from very few SST measurements and that in abnormal weather this results in 

abnormal outlying values. 

 

The next section of the chapter showed that global average temperature anomalies for 

the CRUTEM4 and HadSST3 datasets differ inconsistently from each other.  The 

difference between the annual global averages of the two datasets appears to be due to 

changes in the relationship between the two datasets during the northern hemisphere 

winter.  It is suggested that the lower CRUTEM4 average temperature anomalies 

during the late 1800s was due to Europe, the dominant source of such data at the time, 

coming out of the Little Ice Age and still suffering from very cold winters.  

 

It was also shown that the range of temperature anomalies for observation stations in 

the same grid cell could at times be very wide.  This implies that changes in the 

number of reporting stations within a grid cell could have a substantial impact on the 

average of the station temperature anomalies, which is to say the grid cell value.  It 

appears possible that changes in the number of reporting stations in a grid cell might 

cause sudden shift in the temperature anomalies and therefore cause distorted trends.   
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Finally it was shown that at least one and possibly two observation stations have 

incorrect latitudes and have been assigned to incorrect grid cells.  As with the 

presence of data outliers and extreme ranges of temperature anomalies within 

individual grid cells the errors in location the two stations raises doubts about whether 

any data quality control is undertaken either by the sources of the data or by the CRU 

and Hadley Centre before the CRUTEM4, HadSST3 and HadCRUT4 datasets are 

created. 

 

As with concerns raised in earlier chapters individually these likely errors will 

probably have little impact on HadCRUT4 hemispheric and global averages save 

perhaps for inconsistencies with coastal grid cells. The situation could be different 

when focus is narrowed onto a smaller number of grid cells or when the number of 

grid cells with errors increases. 

 

It might have been useful to attempt to correct the various errors and inconsistencies 

shown in this chapter and to recalculate the CRUTEM4, HadSST3 or HadCRUT4 

datasets.  This task would be very time consuming and perhaps not possible without 

complete data because it would require  

(a) Correcting station locations, 

(b) Ensuring that HadCRUT4 data was consistent with its source when only one 

of CRUTEM4 and HadSST3 provided data for the given grid cell and month 

(c) Resolving inconsistencies with data sources for coastal grid cells,  

(d) Determining and excluding data outliers for each observation station and for 

each HadSST3 grid cell,  

(e) Determining appropriate limits to the ranges temperature anomalies within the 

same grid cell then investigating and correcting any cause of extreme ranges,  

(f) Resolving the reason for the difference between CRUTEM4 and HadSST3 

data and making the appropriate data adjustments  

 

Any corrections would assume that the source data used by the CRU and the Hadley 

Centre is generally accurate apart from the occasional outlier.  The next two chapters 

will show that such an assumption could easily be false. 
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Chapter 6: Observation station data prior to CRUTEM4 

processing 

 

6.1 Introduction 

 

The Climatic Research Unit (CRU) creates the CRUTEM4 dataset from data 

submitted to it by national meteorological services (e.g. UK's Met Office, Australia's 

Bureau of Meteorology) and errors, uncertainties and inconsistencies in the data prior 

to its submission should not be ignored. 

 

The issues can be broadly classified in to two groups, those related to the measuring 

of temperature and those related to subsequent explicit modification or other 

processing of the data.  This chapter will discuss these issues with less emphasis on 

the first group of issues, because such problems are likely to be random and less 

common, than on the second group of issues. 

 

The term "homogenisation" appears frequently in this chapter.  It is the deliberate 

adjustment of temperature measurement to make them supposedly consistent with 

having been measured at the same location at the same time of day.  It is a two-step 

process that first requires the identification of inhomogeneities and a second step to 

adjust them. The aim of the process is to remove all non-meteorological influences 

from the data record (e.g. the relocation of an observation station). The data is almost 

always homogenised to correspond to the latest location of the observation station but 

if the latest location has been in use for less than a few years its data might be 

tentatively homogenised to the previous location pending greater confidence in 

understanding the relationship of the data at the old and new locations.  

 

This chapter will discuss issues related to the accuracy of data prior to its use in the 

construction of the CRUTEM4 and HadCRUT4 dataset.  At the outset it has to be said 

that observation stations were primarily intended only to provide information about 

local weather and its patterns for purposes such as comparisons and predictions; they 
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were not intended to provide climate information and to accurately represent 

conditions over much larger regions. 

 

 

6.2 How HadCRUT4 creators see the issues 

 

To provide some context to the discussion of the issues upstream of HadCRUT4 it 

might be useful to understand how the creators of the HadCRUT4 dataset see the 

problem of data uncertainty.  This is a relatively new issue for the CRU and the 

HadCRUT4 dataset because in previous versions of the dataset either the CRU or the 

GHCN (Global Historical Climate Network) homogenised the data, perhaps under 

guidance from national meteorological services, but now the adjustments are the 

responsibility of those services. 

 

A key reference for the perspective of the creators of the HadCRUT4 dataset is 

Morice et al (2012), which draws heavily on the discussion by Brohan et al (2006) of 

the uncertainty of the earlier HadCRUT3 data which states "Uncertainties in the land 

data can be divided into three groups: (1) station error, the uncertainty of individual 

station anomalies; (2) sampling error, the uncertainty in a grid box mean caused by 

estimating the mean from a small number of point values; and (3) bias error, the 

uncertainty in large-scale temperatures caused by systematic changes in measurement 

methods." 

 

Brohan et al (2006) went on to describe the station mean monthly temperature at a 

given stations as follows: 

 

Tactual = Tob + εob + CH + εH + εRC 

 

where Tactual  is the actual station mean monthly temperature that becomes part of the 

historical record, Tob is the reported temperature,  εob is the measurement error, CH is 

any homogenisation adjustment that may have been applied to the reported 

temperature and εH is the uncertainty in that adjustment, and εRC is the uncertainty due 

to inaccurate reporting or calculation of the station mean.  
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Morice et al (2012) revised this by talking in terms of a "true monthly average 

temperature" and described the situation as: 

 

Tobs + CH = Ttrue + εobs + εH 

 

where Tobs is the observed temperature, CH is a homogenisation correction applied to 

remove inhomogeneities in the station record, Ttrue is the true monthly average 

temperature, εobs is a random measurement error and εH is the error in the applied 

homogenisation correction. 

 

Morice et al (2012) includes no recognition of Brohan et al's "inaccurate reporting or 

calculation of the station mean" but states an important qualifier about its aims and 

discussion: 

 

"Ideally, the above equation would also include the effects of urbanization 

and changing sensor exposure, arising from changes in enclosures used to 

shield thermometers from the elements. These terms are omitted at this 

stage as the urbanization and sensor exposure models used here are based on 

studies of the influence of these factors on regional averages, and the 

derived biases may not be representative of the influence of these factors on 

individual station records. These factors are instead applied to gridded 

temperature anomalies." 

 

This statement appears to be saying that adjustments for urbanisation are not made 

individually for each station but somehow in a composite form to the datasets' grid 

cell value. This would be inaccurate and unwise because over time magnitude of the 

urbanisation influence will differ for each station.  

 

Both Brohan et al (2006) and Morice et al (2012) recognise that temperature normals 

(i.e. long-term average temperatures calculated across the period 1961-1990) for a 

given station would themselves have uncertainties and that because temperature 

anomalies are calculated by subtracting the normal for the calendar month from the 
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mean value in the current month, the uncertainties in each must be combined. Morice 

et al (2012) describes the true station temperature anomaly Ta as 

 

 Ta = Tobs + CH - εobs - εH – (TN + εN) 

 

where TN is the estimated station normal and εN is "the error in this estimate arising 

from measurement error and the computation of normal temperatures from a finite 

number of years of data" and other values as described above. 

 

Morice et al (2012) goes on to say that because urbanisation and exposure biases 

"represent the possible influence of these factors on regional averages rather than 

individual stations" these are also omitted from the published gridded data file of 

uncertainties. 

 

Both Brohan et al (2006) and Morice et al (2012) have two major flaws.  Firstly only 

the available data can be used to generate any statistical error margin and neither the 

calculated mean nor the error margin can anticipate the situation if more data were 

available.  Secondly the accurate quantification of the error margins in the equations 

given above would be very arduous given that monthly data is used and while the 

given equations might be theoretically correct they do little to advance the accuracy of 

the data save perhaps for a minor refinement of large scale averages. 

 

 

6.3 A brief review of issues with observation station data 

 

As the introduction to this chapter noted, the issues with observation station data can 

be grouped into issues with the measuring of temperature and those related to 

subsequent explicit modification or other processing of the data.  This section presents 

a brief review of these issues. 

 

The World Meteorological Organization (WMO) is the primary global authority on 

meteorological practices and publishes standards for the recording of temperature 

observations and any subsequent processing of the data. WMO 8 (WMO, 2010) 
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describes the instruments that should be used, the enclosures (i.e. screening) in which 

they should be housed and where, in general terms, the enclosures should be sited.  In 

recognition that locations might not always be ideal it defines four siting classes, 

explicitly stating of the less ideal sites that temperatures recorded at a class 3 site have 

"additional estimated uncertainty added by siting of 1°C", at a class 4 site an 

uncertainty of 2°C and at a class 5 site an uncertainty of 5°C (see Appendix 1). 

 

On the subject of the enclosure it points out that good airflow is essential because 

without that airflow the difference between the temperature of the outer walls of the 

enclosure might be "markedly different from the air temperature", "perhaps reaching 

2.5K and -0.5K respectively in extreme cases." 

 

No information is provided as to whether the observation stations fully comply with 

WMO standards and to which siting class they belong, but as the above suggest, these 

issues are important as regards the uncertainty of the data. 

 

In discussing potential issues with the measurement of temperature WMO 8 (WMP, 

2010) lists seven possible errors with all liquid-in-glass and a major potential error 

with the spirit thermometers that are used in very cold conditions when mercury might 

freeze.  It also notes that electronic thermometers can produce false recordings when 

their power supply fluctuates and that they have a faster reaction time to temperature 

changes, which might mean that they record maximum or minimum temperatures that 

slower reacting liquid thermometers do not. 

 

Folland et al (2001) say "... estimated the two standard error (2σ) measurement error 

to be 0.4°C in any single daily [land surface-air temperature] observation". Brohan et 

al (2006) claimed that this meant the "random error in a single thermometer reading is 

about 0.2°C (1σ)" having wrongly reduced both the number of observations and the 

number of standard deviations.  Frank (2010) argues instead, on the basis of parallax 

issues when reading thermometers and issues with instrument manufacture, use and 

degradation, that the lower limit instrument uncertainty is 0.359°C. 

 

The WMO statements above show the potential for errors in the measurement of 

temperature and the references given above show that the matter of instrument 
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uncertainty is unsettled. Further, the duration of the potential errors described above 

extends from a single instrument reading to the entire set of recordings made by an 

individual observer or individual instrument, so the impact of these uncertainties is 

very uncertain. 

 

Another issue with temperature observations concerns the time at which the 

meteorological day starts and ends. WMO 8 (WMO, 2010) states that the change of 

day should occur between 7:00am and 9:00am with the maximum temperature in the 

previous 24 hours assigned to the previous day and the minimum temperature for the 

previous 24 hours assigned to the current day.  Most sites appear to use 9:00am but 

this can lead to the minimum temperatures on successive meteorological days being 

made within a few hours of each other (Figure 6.1) 

 

A common practice in the USA until; the 1970s was to end the meteorological day at 

3:00pm or 4:00pm local time but doing so at this time risks maximum temperatures 

recorded for successive meteorological days occurring just a few hours apart. 

 

This "time-of-day" bias is even more likely when summer time (also known as 

daylight-saving time) is in operation or in the western side of time zones, both 

situations having local time ahead of true solar time for the location in question. 

 

The monthly mean temperature for a given observation station is the average of the 

mean daily minimum temperature and the mean daily maximum temperature, so a 

9:00am observation time (and therefore change of meteorological day) will risk lower 

mean daily minimum temperatures and therefore lower monthly mean temperature, 

while a 4:00pm change of day will risk higher mean daily maximum temperature and 

therefore higher mean monthly temperature.  

 

Temperature data has often been adjusted from a different observation time to bring it 

in line with the current practice of a 9:00am observation time.  The accuracy of such 

adjustments is open to question especially when observations were made once per day 

compared to the later use of electronic thermometers that almost constantly log 

temperature (although data is usually presented at 30-minute intervals) which should 
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provide better guidance when resetting minimum and maximum temperatures relative 

to a 9:00am observation time. 

 

 

 

Figure 6.1 Example of where the minimum temperature for the 24 hours ending at 9:00am was 
recorded only a short time prior to the minimum temperature for the next 24 hours. (Solid vertical 
lines indicate 9:00am, the meteorological change of day, and the broken vertical lines indicate clock-time 
midnight.) 

  

 

Siting and exposure are major concerns for the accurate measurement of temperatures 

at any given point in time in regard to whether these factors change over time (e.g. 

annual cycles, vegetation growth.).  Local shading caused by natural or man-made 

obstacles, seasonal changes in vegetation, changes in surface vegetation due to 

rainfall, variations in prevailing winds and changing exposure to those winds will all 

influence the recorded temperature.  Early morning shading is a significant issue and 

the WMO standard mentioned above (WMO, 2010) pays particular attention to near 

horizon shading when defining the five siting classes, three of which have explicit 

data uncertainties due to siting.  Fall et al (2011) reports on the siting of 82.5% of US 

observation stations and finds that 64.4% of these fall into Climate Reference 

Network (CRN) class 4 and 6.2% fall into CRN class 5, these classes being very 

similar to the WMO classes 4 and 5 mentioned above and with uncertainties due to 

siting of 2°C and 5°C respectively. 
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Urbanisation influences on observation stations encompass siting and exposure issues 

and add to those impacts of the properties of the manmade environment that might be 

different to the natural environment (e.g. heat retention and release, reflection, 

disposal of surface water) as well as the matter of locally generated heat.  Because 

attempts to adjust data for homogenisation are common it will be discussed in more 

detail shortly. 

 

Finally in the sequence of measuring, adjusting and preparing data for inclusion in the 

CRUTEM4 and HadCRUT4 datasets is the calculation of the monthly mean 

temperature.  Neither Jones et al (2012) nor Osborn & Jones (2014) specify the 

minimum acceptable number of days of data in order that the monthly mean value is 

acceptable.  WMO 100 (2011) says "[i]t is recommended that a monthly value should 

not be calculated if more than ten daily values are missing or five or more consecutive 

daily values are missing."  In terms of total days this limit is approximately one-third 

of all days in the month and slightly greater in February.  As for compliance with 

WMO 8 (WMO, 2010) regards siting, enclosure and instruments we have no 

information regarding the compliance of stations. 

  

 

 6.4 Introduction to temperature data homogenisation 

 

Homogenisation involves the identification and correction of short and long-term 

errors, or corrections for inconsistencies in how the data was obtained and recorded, 

in short any inhomogeneities in the data record, and the conversion of all data to be 

equivalent (at least theoretically) to the data that would have been recorded had the 

current instruments recorded data at the current observation site for the entire period 

of the data record (Morice et al, 2011).  A more concise definition is that it seeks to 

remove non-meteorological influences from the temperature record, influences that 

might be abrupt (e.g. nearby construction, vegetation removed) or gradual over time 

(e.g. growing vegetation, urbanisation). 

 

Given that the adjustments usually seek to make the data consistent with recording at 

the current location, screening and instruments the entire set of previous data will be 
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adjusted as necessary, meaning that early portions of the data record might have been 

adjusted multiple times.   

 

Any individual errors in homogenisation will therefore be carried forward and any 

systemic errors be compounded throughout the record.  Also important is that data for 

the period 1961-1990 might be homogenised and therefore impact the long-term 

average temperatures used to calculate temperature anomalies. 

  

Aguilar et al (2012) adds to earlier work by Peterson et al (1998) to produce a list of 

14 methods of identifying potential inhomogeneities in recorded temperature data, 

some in terms of consistency at a single station and others by comparison with data 

from other stations or sources (see Appendix 2).  Aguilar et al (2012) also notes that 

one problem with homogenisation is that "... on most occasions the magnitude of the 

inhomogeneities is the same or even smaller than that of true climate-related 

variations", meaning that it can be difficult to determine natural variation from those 

with a non-meteorological cause. 

 

 

6.5 Issues with homogenisation that uses the Standard 

Normal Homogeneity Test 

 

6.5.1 Introduction 

 

A popular approach to homogenising data uses the Standard Normal Homogeneity 

Test (SHNT) that considers the relationship between the data at a target observation 

station and nearby other stations collectively called for the purposes of the exercise 

"reference stations". 

 

Menne and Williams (2009) is a key source for information about the technique 

although it draws heavily on Alexandersson and Moberg (1997), which in turn draws 

on Alexandersson (1986). 
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The SNHT technique relies on identifying changes in the relationship between the 

temperature data at one observation station - commonly called the target station - and 

the temperature data from one or more neighbouring reference stations (also known as 

"comparison stations").  The underlying fundamental assumption is that the influence 

of weather systems (e.g. high and low pressure cells) on temperatures measured at 

neighbouring stations will show consistent patterns. Disruptions to the pattern of the 

relationship between stations are assumed to identify points of inhomogeneity, which 

are then amended by using the relationship to estimate the temperature(s), that 

according to the relationship, "should have been" recorded at the target station. 

 

Numerous variations on the basic approach of Menne and Williams (2009) can be 

found.  Some use all neighbouring stations as reference stations but others use only 

neighbouring stations with strong correlations to the target site (e.g. Hausfather et al, 

2013). Some use the method pairwise (i.e. compare the data from the target station to 

the data each individual reference station) as per Menne and Williams (2009) while 

others merge the data from those neighbouring stations into a composite reference 

sequence (e.g. Tuomenvirta, 2002).  

 

Some determine the relationship using the actual recorded temperatures, as described 

in Menne and Williams (2009), but others determine it using the difference between 

successive recorded temperatures at each site (e.g. Peterson & Easterling, 1994) or it 

might be based on the normalised difference (e.g. Alexandersson & Moberg, 1997; 

Toreti et al, 2010) or even on temperature percentiles (Trewin, 2013). 

 

In some cases the adjustment is determined by the median value of all estimated 

adjustments (Menne & Williams, 2009) but in others a weighted average (based on 

the distance to a neighbouring comparison station) is used or in the case of Trewin 

(2013), the weighted average of temperatures mappings based on percentiles. 

 

In some cases the annual mean minimum and maximum temperatures are compared, 

but in other cases the monthly mean temperatures might be used, or even daily 

minimum and maximum temperatures (Trewin, 2013). 
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Tuomenvirta et al, (2002) describes some areas of concern about the technique of 

Menne and Williams (2009).  Those concerns will be discussed in the following 

sections, along with issues with the adjustments for the Australian Observations 

Reference Network - Surface Air Temperature (ACORN-SAT) as described by 

Trewin (2013).  The adjustments for ACORN-SAT data are a variation on the use of 

the SNHT and the creation and use of a "transformation matrix" (i.e. one-to-one 

mapping) of temperature percentiles at the reference and target stations.     

 

6.5.2 Assumption of similarity of data from target and reference 

stations 

 

The method described by Menne and Williams (2009) assumes that nearby locations 

will show "similar variations in climate", which is to say that the impact of passing 

weather systems cause very similar fluctuations in temperature at the target station 

and neighbour stations.  (For methods described above that use variations of the 

approach this means relative consistency in whatever data derivative they use.)  This 

makes large assumptions about the spatial coverage and homogeneity of a given 

weather system, about the consistency of the physical environment surrounding 

observation station despite irregular changes (e.g. surface moisture, land-use changes, 

urbanisation) and about meteorological forces at that station (e.g. wind speed and 

direction, fog, cloud cover) (Stierou & Koutsoyiannis, 2012). 

 

Trewin (2012) states "Even today, 23 of the 112 ACORN-SAT locations are 100 

kilometres or more from their nearest neighbour, and this number has been greater at 

times in the past, especially prior to 1950." This number is more than 20% of all 

ACORN-SAT stations and is only for the nearest station. ACORN-SAT comparisons 

require a minimum of ten reference stations, which implies that stations might be 

separated by much greater distances, which in turn increases the doubt that that the 

target station and all reference stations would be equally impacted by the same 

weather system.  
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Exposure to conditions is an important part of this. Figure 6.217 shows an example of 

variations in the prevailing winds near reference stations used to homogenise data for 

a target station at Orbost, Australia.  The four sites have very different wind patterns 

and, given that wind can influence temperature, a certain recorded temperature might 

be a cooler base temperature plus a warm wind or vice versa or perhaps the wind had 

no influence. 

 

 

Figure 6.2 Annual average 3pm wind roses at or near weather stations whose data was used to 
homogenise the daily data at ACORN-SAT station Orbost (Victoria), from left to right Albury, 
Bega, East Sale and Melbourne.  These stations have very different prevailing wind patterns s 
that might influence the temperature recorded at each of the locations.  

 

The speed at which the weather patterns move through the region covered by the 

target and comparison stations might also be important. Stierou & Koutsoyiannis 

(2012) notes that stations located at different longitudes within the same time zone 

could easily record different minimum temperatures at 9:00am as weather systems 

move through. 

 

Figure 6.3 shows the difference in time of the recorded minimum temperature across 

the period 6:00pm to 9:00am at two stations in the ACORN-SAT network, separated 

by just 20 kilometres.  The difference in the time of recording the minimum 

temperature on the same day varied from over 200 minutes in one direction to almost 

400 minutes in the opposite direction, a total range of 10 hours, suggesting that the 

                                                
17 Created from data available via http://www.bom.gov.au/climate/averages/wind/selection_map.shtml. 
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weather was not consistent at the pair of stations despite the separation of only 20 

kilometres.  

 

 

 

Figure 6.3 Difference in the time at which the minimum temperature was recorded at Laverton 
and Melbourne (Olympic Park) observations stations, about 20km apart. 

 

 

6.5.3 Use of data from stations that are poorly sited 

 

It was stated earlier that WMO standards apply five different siting classifications 

based on a certain set of parameters, with classes 3, 4 and 5 associated with siting 

uncertainties of 1°C, 2°C and 5°C respectively (see Appendix 1). It would seem 

unwise to include such observation stations when attempting to homogenise the data 

from a target site and yet neither Menne and Williams (2009) or Trewin (2012) 

mention excluding observation stations on these grounds. 

 

One of the observation stations used to homogenise data for the ACORN-SAT station 

at Orbost (mentioned in 6.5.2) is "Bombala (Therry Street)".  The site information 

provided by the Bureau of Meteorology for this station contains a site map that shows 

a building "4 to 6m" high located approximately 15 metres from the thermometer 

enclosure.  This station is WMO class 4 site because the enclosure fails to meet the 
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requirement for class 3 sites that it is "[a]way from all projected shade when the sun is 

higher than 7°" but does meet the class 4 limit of "[a]way from all projected shade when the 

sun is higher than 20°". The uncertainty due to siting associated with this site is 2°C, 

which should have excluded it from consideration. 

 

 

6.5.4 Data for reference stations likely to already have been 

adjusted 

 

There is usually no raw temperature sequence from any site that can unequivocally be 

regarded as homogenous. This results in two issues, the first of which is how the data 

from the very first station can be adjusted if the data from the available reference 

stations might contain uncorrected inhomogeneities.  The second is that any errors in 

the adjustment of data at reference stations will potentially impact the identification of 

inhomogeneities (false positives or false negatives) at the target station and likewise 

impact the estimated "corrected" value (Tuomenvirta et al, 2002).  

 

6.5.5 Strength of correlation between reference stations and target 

 

The quality of the relationship between the data from the target station and reference 

stations is measured by its correlation but the recommended threshold of the 

correlation varies and a very strong correlation cannot be expected if the data at the 

target site contains inhomogeneities.  

 

In some cases the limits of acceptable correlation are very generous, for example 

Alexandersson & Moberg (1997) says only that the correlation should be positive, this 

despite a low correlation indicating a poor match of sites.  Tuomenvirta et al (2002) 

states that a subjective decision will also need to be made as to the priority of using 

either highly correlated reference stations or stations in the same climatic region that 

might have lower correlation. 
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According to Trewin (2012) the ACORN-SAT data homogenisation involved the 

comparison of daily temperature data at the target location against a temperature 

estimated from the mean of the 10 nearest neighbouring sites, weighted inversely by 

distance and by the correlation between the data at the target and comparison sites 

(excluding neighbouring sites where the correlation coefficient was <= 0).  If 

insufficient stations met the criteria then the distance was expanded with the 

minimum correlation coefficient set to 0.6.  In other words it set a greater priority on 

correlation than on distance but then weighted the data inversely against the distance 

(i.e. lower weighting for greater distance), which means that the influence of the 

reference station with correlation 0.6 or above could be negligible in the weighted 

mean of the temperatures from multiple neighbours.  

  

 

6.5.6 Assumption of data showing normal Gaussian distribution 

 

There is a broad assumption that the data from each station - or if used on the basis of 

data differences, the differences in the data - will conform to a standard normal 

distribution.  Chapter 5 showed that one in eight temperature series for station-month 

combinations is probably not normally distributed.  Even if the data were normally 

distributed the use of annual, seasonal, monthly or daily data for such comparisons 

would mean different sample sizes and therefore different error margins and 

uncertainty (Tuomenvirta et al, 2002). 

 

Related to this is the ACORN-SAT notion of a one-to-one mapping of the data 

expressed as a transformation matrix and based on temperature percentiles. (No 

station is going to have a range of temperatures spanning 100°C around the time of 

the inhomogeneity so it follows that the percentiles are going to be split on the basis 

of fractions of a degree, this despite data from manual observation stations rarely 

being recording at intervals of less than one degree because of thermometer scales.) 

 

The fallacy of assuming a normal distribution and one-to-one correspondence will be 

illustrated shortly in a case study. 
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6.5.7 The majority of stations rule 

 

As Tuomenvirta et al (2002) expresses it, if the majority of reference stations fall 

under the same weather influence then the adjustment to data from the target station 

will have this influence imposed on it whether it be correct or not. These influences 

might include the extent of urbanisation, exposure to weather from a certain direction, 

exposure to major weather influences such as ENSO and the extent of soil moisture 

retention. 

 

Further, if a sufficient number of reference stations undergo a shift (e.g. the painting 

of an instrument enclosure or a change from manual to automated operation) at about 

the same time and for an unrelated reason an inhomogeneity occur at the target station 

the inhomogeneity might not be identified at all if the general relationship is 

unchanged (Tuomenvirta et al, 2002). 

 

The coincidental changes discussed above need not occur at precisely the same time.  

It is only necessary that they occur within the same time period being considered and 

that they be sufficient to cause a shift in the data.  For example, when data is averaged 

across a month the change might occur near the end of the previous month or within 

the first ten days of the new month (assuming no missing data in the month).  The 

magnitude of the changes might not be the same in both cases but might be 

sufficiently similar to indicate a shift.  

 

 

6.5.8 Granularity of input data 

 

Tuomenvirta et al (2002) points out that the use of annual, seasonal or monthly 

temperature averages would mean different sample sizes for SHNT calculations that 

might produce different outcomes. A simple example of this is when comparing a 

coastal observation station, where temperature variation is relatively low, to an inland 

station that might experience periods of severe cold and severe heat and therefore 
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have a wider annual range.  Comparing annual averages will produce one result but 

comparing individual months will show an annual cycle that any adjustment should 

take into account. 

 

It appears that ACORN-SAT adjustments use daily minimum and maximum 

temperatures when they are available for the target and reference sites.  In theory this 

should reduce error margins but this would require the data to be normally distributed, 

which might not be true, very similar weather patterns and very similar exposure.  

(Equally if the daily data is adjusted because it is supposedly correct then there seems 

to no good reason to continue to operate the station if its data is to be corrected on the 

basis of data recorded at other stations.)  

 

 

6.5.9 Possible false positives and negatives with the SNHT 

 

Stierou and Koutsoyiannis (2012) report that the SNHT falsely identified certain data 

sequences as having shifts and that not all deliberate shifts were identified in other 

modified sequences. SNHT performance reportedly degrades near the ends of data 

sequences when the amount of data to analyze is reduced (Toreti et al, 2011).  The 

consequence of false positives is that data is adjusted when it doesn't need to be and of 

false negatives that adjustments that should have been made are not. 

 

False positives might also arise in situations where the data from comparison stations 

was weighted, such as by distance, and then conditions at a heavily weighted station 

underwent major change.  The change in the relationship might be falsely flagged as 

an inhomogeneity at the target site.  The usual case is that all comparison stations are 

checked against each other, the assumption being that the station with the most 

identified instances of inhomogeneities in the one-to-one comparison at this particular 

point in time is the station to be corrected (because other stations only record a 

problem when being compared to the erroneous station).  This assumption might 

however be incorrect because the correlation between stations might be weak or 

multiple stations might have a simultaneous inhomogeneity (e.g. switch to automatic 

station). 
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6.5.10 The subjective interpretation of the SNHT results 

 

The SNHT tests the null hypothesis (that the comparison variable is within the range 

of natural variation) against the hypothesis that it is not, but the typical test result 

indicates whether the range might be natural rather than is natural and therefore either 

a subjective decision or some form of automated decision is required, but the 

automated decision might be incorrect for a given situation. 

 

 

6.5.11 Possible errors in attributing cause of inhomogeneities 

 

Toreti et al (2011) points out that not all inhomogeneities should be regarded as errors 

that need correcting.  It uses the example of a volcanic eruption potentially impacting 

some observation stations by its downwind plume but not others, and yet such 

eruptions are recognised natural influence on weather. 

 

In a similar fashion some stations might be more exposed to irregular influences, such 

as ENSO events, than other stations that their data is compared to.  These events 

might cause inhomogeneities in the data record but they are natural meteorological 

events. 

 

6.5.12 Errors in determining the magnitude of the adjustment 

 

Menne and Williams (2009) indicate that the adjustment should be calculated by 

comparing the target location to a minimum of four reference sites, with the 

adjustment being the median value of the adjustment calculated against each reference 

station.  The median is used so that the influence of outliers in the data will be 

minimised but there can be no certainty that the media is more accurate than the 

adjustment to other reference stations, especially those with strong correlation. 
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As mentioned above, the adjustment system for the ACORN-SAT data applies an 

inverse weighting by natural log to the distance between stations and puts lower 

priority on the correlation between data at the target and reference locations.  It can be 

shown that under this system three reference stations at 150km to 200km distance 

from the target station have greater composite weighting than a single reference 

station 20km from the target, this despite a closer station being more likely to have 

similar weather patterns. 

 

 

6.5.13 Only moderate success with gradual inhomogeneities 

 

The Meene and Williams (2009) reported that their approach to dealing with 

inhomogeneities that gradually increase over time (e.g. vegetation growth, 

urbanisation) had a detection rate of about 67% and a false detection rate of 19.7%. 

 

In relation to such inhomogenieties Trewin (2012) says in regard to the ACORN-SAT 

adjusted data from Australia's Bureau of Meteorology, "All breakpoints are treated as 

step changes with no anomalous trend (model M3 of Menne and Williams).  This 

assumption is based on their findings that the method was only moderately effective in 

reliably identifying more complex breakpoint models (e.g. an anomalous trend 

superimposed on a breakpoint)." 

 

Trewin (2012) later discusses a separate check for anomalous trends at locations 

potentially impacted by urbanisation but adopts a population of 10,000 as the 

threshold between rural and urban settings.  This is unhelpful because the effects of 

urbanisation have been detected at centres with much lower population and even for 

roadways and airstrips.   

 

Barrow, Alaska, is one of the better documented instances of urbanisation in a small 

town, having a population of 4373 (2013 data) and daily average winter temperatures 

elevated by as much as 6°C (and hourly temperatures sometimes elevated by 9°C) as a 

result of the Urban Heat Island Effect (Hinkel et al, 2003), this despite its low-density 

housing, gravel unsealed roads and plentiful open space. 
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The ACORN-SAT station catalogue specifically mentions that the original site at 

Deniliquin (Lat: 35.56S, Long: 144.95E) was at the post office, near the centre of the 

small town, "with the site becoming built up from about 1950 onwards".  An 

adjustment was made from 1 January 1950 with the maximum temperature increased 

by 0.51°C and no change to the minimum.  Ten years later, 1 January 1960, the 

adjustment to maximum temperature was reversed (i.e. -0.51°C) and again no change 

to minimum temperature.  Following a site move on 13 August 1971, to a site on the 

outer edge of the town as it was at the time, all previous minimum temperatures were 

reduced by 1.0°C with an annual average adjustment to maximum temperature of -

0.17°C "but with larger adjustments in spring and summer".  This site was then 

replaced with a new station at the local airport, 3.7km away, in September 198418.  

 

The three site changes at Deniliquin were due to urbanisation at a town with a 

population of 7431, which in the terminology of Trewin (2012) means that the site 

was regarded as "Non-urban".  

 

Another example is the sequence of observation stations at Inverell, NSW, (pop. 

9749) about which Trewin (2012) says that the original site, at the post office, "was 

very built-up with several buildings within a 10-metre radius".  Despite the "enclosed" 

(his word) nature of the site the station is described as non-urban in table 8 of Trewin 

(2012). 

 

The above examples, including that of Barrow (Alaska), show that urbanisation 

effects can occur in quite small towns and each probably needs to be considered on its 

own merits if the adjusted data is to be as accurate as it can be. 

 

As noted above, Trewin (2013) says regarding ACORN-SAT adjustments, "All 

breakpoints are treated as step changes with no anomalous trend".  It will be shown 

later in this chapter that the treating of gradual changes as step changes is a significant 

error with important consequences for the accuracy and relevance of the temperature 

record. 

                                                
18 Information obtained by the author via interview with local residents, September 2016. 
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6.6 Homogenisation with site operation overlap 

 

6.6.1 Introduction 

 

It is a relatively common practice that where possible when a station is to be relocated 

a new station is established at the new site and the old and new stations operate in 

parallel for some time to collect data to determine the adjustments to be made at the 

original site to homogenise it with the data from the new.   

 

This section presents two case studies that illustrate homogenisation issues based on 

data from the parallel operation of old and new sites of stations in the ACORN-SAT 

network. 

 

 

6.6.2 Case study 1:  Cape Borda, South Australia 

 

A comparison was made of the daily minimum and maximum temperatures (Tmin 

and Tmax) recorded at two sites at Cape Borda, South Australia, (Lat. 35.75°S, Long. 

136.60°E) with Bureau of Meteorology identification numbers 022801 (old site) and 

022823 (new site).  The ACORN-SAT documentation says regarding the Cape Borda 

site that the newer site (station 22823) "is further inland [by about 300 metres] and a 

less exposed location than the former site". The sites operated in parallel during the 

period 1 March 2003 to 20 July 2007, which leaves about 1175 days of data after the 

exclusion of data for days when one or both made no recording. 

 

Figure 6.4 shows the distribution of the majority of the differences in minimum and 

maximum temperatures at the two sites, with 19 outlying differences (1.6%) omitted 

from the low and high ends of the graph.  In order to show both sets of differences 

above the X-axis the Tmax differences are calculated as data from station 22801 

minus data from station 22823 but the reverse for Tmin, indicating that in general 



 155

station 22801 records higher maximum temperatures but lower minimum 

temperatures than 22823. Six Tmax differences below the Figure's limit of -1.6°C are 

not shown, the lowest being -4.2°C and none from the high end. Seven Tmin 

differences below -1.6°C are not shown, the lowest of which is -7.2°C, and six 

differences were above the upper limit of the Figure, the highest being +5.7°C. 

 

 

 

Figure 6.4 Distribution of differences between daily minimum and maximum temperatures at 
two nearby Cape Borda observation stations with overlapping data, with all data reported and 
processed to one decimal place. 

 

 

When all Tmax data are included the average difference is 0.21°C with a population 

standard deviation of 0.376°C.  For Tmax the majority of differences fall between -

0.3°C and +0.7°C, with the distribution of differences skewed towards the lower 

values.  The inclusion of all Tmin differences data produces an average difference is 

0.475°C with a population standard deviation of 0.735°C.  For Tmin the majority of 

differences fall between +0.1°C and +0.8°C and again the distribution is sharply 

skewed towards lower values.  

 

The above differences were derived from all of the available data.  Narrowing the data 

for the month of January excluding two outliers at -7.2°C and +3.1°C results in a 

mean Tmin difference of 0.405°C and a population standard deviation of 0.5°C, 
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suggesting a seasonal element to the difference between the two sites.  This suggests 

that the temperature differences might be related to specific weather conditions that 

are more common at some times of the year than at others.  On this basis the accurate 

homogenisation of data would need to take weather factors such as the wind direction 

and speed into account. 

 

6.6.3 Case study 2: Orbost, Victoria 

 

A similar comparison to the above was made of the daily minimum and maximum 

temperatures (Tmin and Tmax) recorded at two sites at Orbost, Victoria (Lat. 37.69°S, 

Long. 148.47°E) with Bureau of Meteorology identification numbers 084030 (older 

station) and 084145 (intended replacement station)19.  The sites are separated by about 

800 metres and with parallel readings during the period 5 June 2003 to 31 Oct 2011. 

The old site was at the top of a gentle north-facing slope with a house and several 

trees between 20 and 30 metres to the southeast, and the new site, according to 

ACORN-SAT documentation, is a site "adjacent to a reservoir on a southwest-facing 

slope". The comparison shown here is based on data for the ~3000 days that remained 

after the exclusion of days when one or both stations made no recordings. 

 

The distributions of differences for Tmin and Tmax (both calculated as the recording 

at station 084145 minus the recording at station 084030) are shown in Figure 6.5 with 

just a few outliers not shown at each end. Eight Tmax outlying differences are below 

the lower limit of the graph, three of those being all at the lowest value of -5.0°C, and 

none from beyond the upper limit.  No Tmin outlying differences are below the range 

shown but four outliers beyond the maximum value of 4.9°C are omitted. 

 

When all Tmax data is included the average Tmax difference is -0.450°C with a 

population standard deviation of 0.513°C.  For all Tmin data the average difference is 

0.885°C with a population standard deviation of 0.985°C. (Based on average 

differences, 84145 generally records lower maximum temperature but higher 

minimum temperatures than station 084030). 
                                                
19 Described in http://www.bom.gov.au/climate/change/acorn-sat/documents/station-adjustment-
summary-Orbost.pdf  
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Figure 6.5 Distribution of Tmax and Tmin differences at two observation station locations 800 
metres apart at Orbost, Victoria.  

 

The distribution of Tmax differences is a very sharp "bell-curve" while the Tmin 

difference bears only slight resemblance to such a curve, the difference perhaps being 

that maximum temperatures on days with mostly clear sky tend to be around 3:00pm 

when the sun is still high in the sky and shadows across both observation stations are 

not a problem. 

 

For much of the range of Tmin values most recordings from station 84145 are greater 

than those from station 84030 but not all.  Figure 6.6, cut-off at a maximum of 9.0°C 

for convenience, shows that this does not hold true for minimum temperatures at 

station 84030 below 4.0°C where save for very few instances the minimum 

temperature at station 84145 is always greater.   

 

Analysis on a monthly basis shows no significant change in the spread of the 

difference, only that the bias indicated above rarely applies in warmer months when 

minimum temperatures are generally higher. 
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The bias at low temperatures might be a reflection of different exposure to the 

conditions that cause the low temperatures (eg. wind) or the influence of other factors 

in the local environment (e.g. the small reservoir near station 84145). Regardless of 

the cause, the use of the average difference in minimum temperature to adjust the old 

data to bring it in line with the new would ignore this low-temperature bias. 

 

Figure 6.6 also refutes the assumption in ACORN-SAT adjustments that there is one-

to-one correspondence between the temperatures at two locations because it shows 

that a single temperature at one location might correspond to several different 

temperatures at the other location. 

 

 

 

Figure 6.6 Comparison of minimum temperatures at the low end of the range of minimum 
temperatures recorded at two sites at Orbost.   

 

 

6.7 Homogenisation using multiple sites 

 

6.7.1 Introduction 
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This section presents two instances where the homogenisation of temperature 

involved the use of multiple comparison sites and questionable adjustments have been 

made.  As with any homogenisation it is simply impossible to know whether the 

adjusted data is correct but it is possible to indicate potential flaws in the approach.  

 

The first case study is an adjustment to Orbost data made prior to the adjustment 

described above.  (Orbost is used because documentation summarising the data 

adjustments is available20.)  The second case study is of adjustments to observation 

station data that in composite form is used by the New Zealand government as its 

preferred national temperature record. 

 

 

6.7.2 Case study 1:  1966 adjustments to Orbost data 

 

A case study above (section 6.6.3) used an example of parallel operation of two 

stations over 5 years from 2003 to 2011 at Orbost, Australia, when an observation 

station was relocated to a new site and replaced with an automatic weather station.  

According to ACORN-SAT documentation the station at Orbost was also relocated in 

1966 and its data adjusted according to a comparison with that from several other 

stations. This study will consider recorded and adjusted minimum temperatures before 

addressing the same situation for maximum temperatures. 

 

(a) Adjustment to data for minimum temperatures 

 

Figure 6.7 shows January mean minimum temperatures at the Orbost site and at six of 

the ten other sites that it was compared to, over the period 1938 to 1980.  (Four other 

sites are omitted here because they commenced operations just prior 1966 and the 

amount of data is insufficient for comparison.)  This plot shows that the data from 

Orbost was very similar to the data from its two closest comparison stations 

Bairnsdale (74km) and East Sale (125km), not just prior to 1966 but also after it.  The 

correlation coefficient for Orbost and Bairnsdale data across the period 1938 to 1970 

                                                
20 http://www.bom.gov.au/climate/change/acorn-sat/documents/station-adjustment-summary-
Orbost.pdf  



 160

(when Bairnsdale station closed) is 0.94 and Orbost and East Sale (1938-1980) is 

0.88. 

 

 

 

Figure 6.7 January mean minimum temperatures for Orbost and stations that its data was 
compared with and, starting in 1966, adjusted according to. 

 

 

Figure 6.8 shows the same situation for July.  The mean minimum temperature at 

Wangaratta (NW, 242km, over a range of mountains) is now similar to Orbost but 

Wangaratta is well inland, away from the buffering effect of the ocean.  Orbost data is 

again very similar to the data from Bairnsdale, and similar to East Sale until about 

1970 when East Sale data starts fluctuating by several degrees each year, as do two of 

the three stations other than Orbost.  

 

From the data shown in Figures 6.7 and 6.8 it is difficult to see why Orbost minimum 

temperature data was adjusted at all. If there is any issue it appears to be with the data 

for East Sale.  The East Sale observation station in question closed in 2005 after 

several years of parallel operation with a new automatic weather station 90 metres 

south.  The metadata for the old site indicates two trees about 20 metres south from 
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the thermometer screen.  The GPS coordinates of the old site location place it what is 

now a golf course, in a position with a single large tree to the south, large enough to 

have been present when the observation station was nearby.  The open question is 

whether the loss of the other tree exposed the thermometer to southerly winds, which 

at this site are usually cold. 

 

 

 

Figure 6.8 July mean minimum temperatures for Orbost and stations that its data was compared 
with and, starting in 1966 onward, adjusted according to. (i.e. as for Figure 6.6 but for July) 

 

 

The adjusted data available from the ACORN-SAT system indicates that minimum 

temperature data for both Orbost and East Sale were homogenised.  Figures 6.9 and 

6.10 show the adjustments for each calendar month across the periods as stated.  The 

data was sorted into month and then year order to show the changes in each calendar 

month. A negative (positive) difference indicates that the adjusted data was less than 

(greater than) the original data.   
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Figure 6.9 Difference between unadjusted and adjusted monthly mean daily minimum 
temperatures at Orbost 1938-1980.  

 

 

 

Figure 6.10 Adjustments of East Sale monthly mean daily minimum temperature for each 
calendar month over the period 1946-1980.   

 

It appears that Orbost minimum temperature data has been adjusted in a way that 

increases the difference between summer and winter temperatures, this despite the 

location being less than 20km from the coast and therefore being located where the 

ocean buffers air temperature variation.  It is not possible to determine whether the 

adjustment is correct or a consequence of the majority of comparison stations being 

away from the coast and therefore having a greater range of temperatures. 
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(b) Adjustment to data for maximum temperatures 

 

In similar fashion to the minimum temperatures discussed above, Figures 6.11 and 

6.12 show mean monthly maximum temperatures for January and June at Orbost and 

the six other stations that it was compared to.  The striking feature of Figure 6.11 is 

that the maximum temperature at Orbost in January very closely matches that from 

four of the comparison sites, the exceptions being the coastal station at Gabo Island 

and the very inland station at Wangaratta, 243km inland to the north west. 

 

 

Figure 6.11 January mean maximum temperatures for Orbost and six comparison stations. 

  

 

Again we have a situation where it is difficult to see any rationale for adjusting 

Orbost's maximum temperatures, especially in January, but they were adjusted in 

January and in every other month (Figure 6.13), including a rare upward adjustment 

of more than 3°C in November 2011. 
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Figure 6.12 July mean maximum temperatures for Orbost and six comparison stations. 

 

 

 

Figure 6.13 Mean monthly adjustments made to maximum temperatures at Orbost (in all cases 
adjusted values minus original data) 

 

The maximum temperature for the relatively nearby East Sale observation station 

were also adjusted (Figure 6.14) despite this station being at low elevation and close 

to large areas of water (a lake and 20km away over countryside with few hills, the 
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ocean) when the stations that it was compared to are probably not.  (Comparisons are 

often made to data from stations that are not in the ACORN-SAT network and 

complete information about all data adjustments is not published.) 

 

 

 

Figure 6.14 Mean monthly adjustments made to maximum temperatures at East Sale  (in all 
cases adjusted values minus original data) 

 

 

General comments 

 

The adjustment to East Sale minimum temperature data raises certain questions.  Its 

adjustment occurred in 1970 but its metadata record reportedly shows no change from 

the station's establishment in 1945 until 1996.  Coincident with this adjustment of Sale 

data was the closure of neighbouring station Bairnsdale (59 km away) in April 1970 

and Cooma SMHEC (277 km away), plus Woods Point station (93 km away) closed 

in October 1969. 

 

Winter minimum temperatures (e.g. during July) are probably also subject to 

orographic airflow that sees temperatures at the top of an incline, as Orbost was, 

warmer than stations at the bottom of an incline as Woods Point (located in a steeply-

sided valley) and possibly other comparison stations were.  
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The need for adjustment to Orbost minimum temperature data does not appear to be 

justified and the imposing of a warmer summer- cooler winter pattern might be 

genuine or might be an artefact of the majority of comparison stations being located 

further inland from the coast.  The Bureau of Meteorology has given no reason for the 

data adjustment at East Sale but those adjustments occurred at a time when several 

comparison stations, including two that were likely the closest, ceased operation. Both 

issues undermine the credibility of such adjustments. 

 

The adjustment to Orbost maximum temperatures is also of concern, especially in 

January where it shows good agreement with maximum temperatures from 

comparison stations.  Even the adjustments of maximum temperatures in July are 

questionable because no account seems to be taken of exposure to winter weather. 

 

Trewin (2012) says that identified breakpoints, indicating error or inhomogeneities, 

were regarded as potentially significant if the number of comparison stations 

generating such a breakpoint exceeded a threshold - 2 if <5 sites, 3 if 5 to 9, 4 if 10 to 

19, 5 if 20 or more - chosen on the basis of less than 5% probability that the 

significant breakpoints could occur by chance.  No detailed data is available for 

adjustments made to East Sale data but in this case three stations that might have been 

used for comparison - Woods Point, Bairnsdale and one other - were closed at or 

about the time the adjustments to East Sale data began. 

 

On top of this Orbost was probably used as a comparison station for East Sale, just as 

East Sale was for Orbost, which indicates a degree of circularity as well as suggesting 

that the adjustments at each site might depend on which site was adjusted prior to the 

other. 

 

Overall the extent of adjustment is worrying.  It would seem that an observation 

station would only need to operate for a few years in order to establish the relationship 

to data from other stations and beyond that time the data could be synthesised from 

the data at those other locations. This would be a farce and would fail to recognise 

that stations have different exposure and that the observation stations were established 

to record local temperature in a consistent or almost consistent local environment. The 
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relationship between their data at that at other sites was never regarded as an issue 

worthy of detailed attention when weather, rather than climate, was the focus.  

 

 

6.7.3 Case study 2: New Zealand national temperature record 

 

The New Zealand Institute of Water and Atmospheric Research (NIWA) publishes a 

"7-station" composite and an "11-station" composite for the record of New Zealand 

temperatures over time.   Mullan et al (2010) is the primary documentation for the "7-

station" composite series, which is created from the data from three station from large 

urban environments (Auckland, Wellington and Dunedin), one station in a 

medium-sized urban area (Nelson), one station in a small urban area (Hokitika) and 

two stations in rural regions (Masterton and Lincoln).  Except for the last mentioned 

rural stations the stations are situated in towns and cities on the coast but in each case 

the coast facing in different directions. 

 

Site relocations were rare in the large urban environments.  The Auckland observation 

station relocated once in the 48 years from 1951 to1998, Wellington's location was 

unchanged from 1928 to 2005 and Dunedin's in the same location for 38 years (1960-

1997), meaning they were all susceptible to increasing urbanisation throughout these 

periods. 

 

In the 101 years described by the documentation, 1909-2009, a total of 32 data 

adjustments were made, sometimes from overlapping local observations and at other 

times by comparison with other of the seven stations. In the order of the seven stations 

listed above in the introduction 3, 3, 5, 4, 5, 4 and 8 adjustments were made.  The 

adjustments at each site were sequential, which means that adjustments were carried 

forward and the earliest data from the stations was adjusted 3, 4, 5 or 8 times. 

 

A graph of the annual averages of the raw and adjusted composite data is shown in 

Figure 6.15.  It is very notable from Figure 6.15 that the early temperature data for the 

composite record was adjusted downwards, which has resulted in an increased 

warming trend.  Figure 6.16 shows the difference between the original and adjusted 
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data.  There is no reasonable explanation of why earlier data should need greater 

adjustment because temperature observations should have the least interference and 

distortion when the station commences operation at any given site.   It is also notable 

that the pattern indicated in Figure 6.16 is virtually a 180° rotation of rising 

temperatures that might be expected under increasing urbanisation. 

 

 

 

Figure 6.15 Average annual temperature anomalies for the raw and adjusted data used in 
NIWA's "7-station" composite for New Zealand 

 

 

 

Figure 6.16 Difference between the two sets of data shown in the previous graph 
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Hessell (1980), the author being from the New Zealand Meteorological Service, finds 

serious problems with urbanisation at many urban sites and growth of local vegetation 

to be a problem at many rural sites, especially those run by the New Zealand Forest 

Service.  It states "There are no sites at all which have been unaffected since 1930 by 

site changes less than 10m, increased sheltering, urbanisation or screen changes." and 

goes on to say "It is concluded that the warming trends in New Zealand previously 

claimed are in doubt". 

 

Hessell (1980) predates NIWA's "7-station" composite record but de Freitas et al 

(2014) does not when it re-examines the data.  de Freitas et al (2014) recounts how 

M.J. Salinger developed a homogenisation technique published in 1980 (Salinger, 

1980), elaborated on it in an unpublished doctoral thesis in 1981 and in 1993 co-

authored a different technique of homogenisation (Salinger & Rhoades, 1993).  

 

NIWA's adjusted 7-station composite, which uses the 1980/81 homogenisation 

technique and 35 adjustments, has a warming trend of 1°C/century but de Freitas et al 

(2014), using the 1993 technique plus two well-documented site changes that did not 

appear in NIWA's list of adjustments, found an average 0.32°C/century warming for 

the five urban locations and 0.2°C/century for the two rural stations. This finding 

illustrates two significant issues, firstly that different methods of homogenisation 

produce different temperature estimates and secondly that the homogenisation of data 

to remove the impact of urbanisation might be flawed.  The next section of this 

chapter will discuss the second point in more detail. 

 

6.8 Homogenisation for urbanisation reconsidered 

 

Much of the temperature data used in CRUTEM4 and HadCRUT4 datasets is sourced 

from observations stations that at some time have been subjected to the influence of 

urbanisation because people recording the data at manual stations lived in close 

proximity to the site.  The habit in Australia at least was to locate observation stations 

at post offices where government employees could record the data.  The adjustment of 

such data to compensate for local shielding or the greater problem of urbanisation 
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(local heat generation, distortion of natural processes) is vital to the accuracy of 

temperature records when they are used for climate matters. 

 

It was noted above that Menne and Williams (2009) reported a detection rate of 

gradual inhomogeneities such as urbanisation of about 67% and a false detection rate 

of 19.7% and that the adjustment of ACORN-SAT data always used a step-wise 

change (Trewin, 2012).  

 

An alternative view of the situation with trend inhomogeneities is to recognise that 

local influences on measured temperature will change over time and that the accurate 

adjustment of temperature needs to be cognisant of those changes. Hansen et al (2001) 

mentions a similar concept, calling it "undisturbed temperature", and briefly mentions 

the potential error of incorrect adjustment but fails to fully explore the situation. 

 

"True temperature" can be defined as the exact meteorological temperature for a given 

location with its fixed geography and baseline physical environment that existed when 

observations began at the location.  The temperature is "true" in the sense that it is 

consistent with the location, environment and meteorological conditions.   

 

"True temperature" will vary throughout the calendar year because of the changes to 

the position of sunrise and sunset, the changes in the angle of incidence of insolation, 

changes in meteorological conditions and the changing influence of the constants or 

constant cyclic factors (e.g. leaves on trees) in the physical environment.  It will 

however disregards all changes of a non-meteorological nature that might occur over 

time, such as any local manmade heat, manmade changes to the nearby physical 

environment and natural changes to nearby vegetation.   

 

On this basis the measured temperature at a given site at any time, Tm, can be 

described as 

 

Tm = Tt + T∆e + Tn 

 

where Tt is the true temperature, T∆e is the temperature contribution from changes to 

the environment and Tn is any general change in climate.  The changes to the 
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environment might occur gradually and in regular fashion or might be abrupt or a 

combination of both, and they might come into effect at any time. 

 

When a station is relocated the difference in measured values at the two sites is given 

by 

 

 TDIFF = (T1t + T1∆e + T1n ) - (T2t + T2∆e + T2n ) 

 

where the factors are as before but identified as being from site 1 or site 2.   

 

A site relocation is usually of just a few kilometres at most, meaning that T1n and T2n, 

the general change in climate, will be equal at both sites, assuming no large different 

in elevation.  Just after start-up at site 2 the site is still in its baseline environmental 

state and therefore changes to the environment are not a factor.  The difference in 

temperatures therefore resolves to  

 

TDIFF = (T1t + T1∆e) - T2t 

 

In other words the difference in temperature is the measured temperature at site 2, 

which at this time is its true temperature, subtracted from the combination of the true 

temperature at site 1 plus any distortion caused by environment changes at site 1. 

 

Figure 6.17 illustrates this situation, with 'site 1' recording the "true temperature" from 

start-up (point 'A') for an undefined period of time (until point 'B'), then non-

meteorological causes have an increasing influence on local temperature.  The 

skewing from true temperature ('B' to 'C1') is shown as a solid line that in reality 

might be in steps, some of which might even be downwards, or an almost constant 

increase or a mix of some steps and steady increases.  After some time a new station 

('site 2') starts operating in parallel with 'site 1' for a certain period before the average 

difference between the old and new locations, C1 and C2 respectively, is calculated. 

 

In Figure 6.17 the average difference between the data from the two sites is shown for 

illustration purposes as 0.3°C and the difference in 'true temperature' at the two sites is 

0.2°C caused, for example, by differences in the local geography. 
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Regardless of whether a simple average difference or some other homogenisation 

technique (e.g. percentile-matching as described by Trewin, 2012) is used, the 

principal is the same.  All data for the old site, 'site 1' in Figure 6.17, is adjusted 

according to the homogenisation algorithm devised from the data recorded during the 

period of overlap with 'site 2' despite the data from 'site1' already being distorted by 

non-meteorological influences. As the middle portion of Figure 6.17 shows, this 

would incorrectly leave all data prior to point 'B' 0.5°C below the correct values 

because the magnitude of the adjustment does not reduce over time to counterbalance 

the extent of the distortion from true temperature. 

 

 

 

Figure 6.17 Concept of 'true temperature' as applied to an observation site being relocated and 
the data from the original site being adjusted.  The X-axis is of time but cannot be scaled because 
specific points in time are unknown. 

 

 

As noted at the bottom of 6.17, the correct adjustment of 'site 1' data and all previous 

data is a two-step process. The first step is to correct the divergence from true 

temperature by correcting each point along the path (from 'B' to 'C1' in Figure 6.17) 
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and the second step is to adjust the modified site 1 data and all earlier data by an 

amount equal to the difference in true temperatures at each site.   

 

Neither the exact pattern of the divergence from true temperature is known nor the 

point in time at which it began, but the earliest that the environmental changes could 

have started influencing temperature is when the first site commenced operations 

because that was the time of the baseline environment against which true temperature 

was defined.  In the case of an urban environmental those external influences might 

have started increasing from very soon after site start-up but in non-urban 

environments any skewing might have occurred much later or even not at all. 

 

One approach would be to assume that all sites began by reporting true temperatures 

and that the distortion increased in linear fashion, but this might be a poor description 

of reality. 

 

To correctly adjust the data from the original site to be the equivalent of what would 

have been recorded at the new site requires that the true temperature at the first site 

and the point of divergence from that true temperature be known or estimated with 

good accuracy.  The problem is that unless the progressive distortion is recognised 

and the data adjusted in accordance with the extent of distortion there is a risk that the 

adjusted data will be incorrect and contain false trends. 

 

 

6.9 Summary 

 

This chapter has shown that the original data from observation stations, which is the 

input for the CRUTEM4 dataset and for the HadCRUT4 dataset, is likely to be 

adversely impacted by errors, uncertainties, assumptions and inconsistencies at many 

levels, these varying in magnitude according to specific issues at individual stations. 

 

Issues arise at every step of the measurement and subsequent data processing, starting 

with the instruments, their enclosures (or screening) and the siting of the observation 

station.  The last mentioned is particularly important because World Meteorological 
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Organization standards indicate up to 5°C uncertainty for individual measurements for 

some siting situations. 

 

A key issue with the data from observation stations is its homogenisation, which 

involves attempts to remove non-meteorological distortion of the temperature record.  

This chapter has shown that the commonly used Standard Normal Homogeneity Test 

is not without uncertainties and potential errors.  

 

Four case studies have been presented to illustrate various issues with 

homogenisation.  The first and second (Cape Borda and Orbost site relocation), both 

using nearby stations operating in parallel to determine the relationship between the 

data, were shown to make assumptions about exposure and in the second case in 

particular illustrate that there is not necessarily one-to-one correspondence between 

the temperatures recorded at one location and those at another less that 1km away. 

 

The third and forth case studies (Orbost ACORN-SAT adjustment and New Zealand 

national temperature trend) involved the use of data from multiple sites, in case three 

to make questionable adjustments to the data at a target site.  The fourth case involved 

data from multiple sites being merged to create composite records both with and 

without station data adjustment. The post-adjustment composite showed increasingly 

lower temperatures than the unadjusted data the further we move back in time.  There 

is no reasonable explanation for this other than errors in the data adjustment. 

 

With this last point in mind the homogenisation of data to remove the effects of 

urbanisation was reconsidered and a serious systemic error identified, that of adjusting 

all data for a previous observation station despite the fact that when it commenced 

operation the station probably accurately recorded the true (i.e. undistorted) 

temperature.  

 

Case four also showed that different methods of homogenisation can produce quite 

different temperature estimates, especially when there is a sequence of 

homogenisation operations. 
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Homogenisation is nothing more than a process of estimating likely temperature 

recordings that would have been recorded if the instruments, enclosure and site had 

been consistent throughout the entire data record.  There is no practical method of 

determining the accuracy of the adjusted data because there is nothing to directly 

compare it to. One might say that it "looks correct", or that some high level statistics 

are "consistent with" certain assumptions or estimates, but neither is confirmation that 

it is in fact correct.  

 

Unlike previous versions of the datasets, HadCRUT4 and CRUTEM4 now require 

that national meteorological services supply temperature data that has already been 

adjusted however the metadata associated with each station gives no indication of the 

station classification or any details of any data adjustments.  In these circumstances it 

is not possible to determine the accuracy of the adjustments in the supplied data. 

While the magnitude of any problems with the supplied data cannot be determined, 

the presence of several data outliers (see chapters four and five) is not encouraging.         
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Chapter 7: Issues with sea surface temperature data 

 

7.1 Introduction 

 

The previous chapter dealt with issues related to data from observation stations on 

land prior to the national meteorological services supplying the monthly mean 

temperatures for inclusion in CRUTEM4 and HadCRUT4 datasets. This current 

chapter will consider similar issues for sea surface temperature measurements but 

with some important differences from the CRUTEM4 data analysis. 

 

Firstly, the Hadley Centre does not provide the original measurements of sea surface 

temperature. Such data is available from the International Comprehensive Ocean-

Atmosphere Data Set (ICOADS) database but the lack of information about the 

average temperatures used at the initial 1 x 1 grid cell size used by the Hadley Centre 

makes the ICOADS data of limited value and the entire ICOADS database is so large 

as to be unwieldy to download and process. 

 

Secondly, by its nature sea surface temperature measurements are not from a static (or 

near-static) site as with observation stations and this makes redundant any need to 

consider site exposure and station relocations.  Further, because sea surface 

temperature measurements are not of minimum and maximum temperatures over 

time, issues such as time of day bias and the error margins associated with monthly 

averages are very different. That said there are still many issues about the 

measurement and processing of sea surface temperatures that cause concern. 

 

While land makes up 29% of the Earth's surface and 71% water, the maximum global 

coverage of HadSST3 data is 81.9% because it includes all coastal grid cells, each of 

which is part water and part land.  (Chapter 5 discussed the derivation of data for 

coastal grid cells.)  Given the much greater coverage of the earth's surface by oceans 

than by land the accuracy of sea surface temperature data is crucial to the accuracy of 

the HadCRUT4 dataset. 
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7.2 Inconsistencies with measurement methodology 

 

The methods used for observing sea surface temperature have varied greatly over 

time.  One of the most significant changes has been the increasing reliance on buoys 

for the measurement and reporting of temperatures.  Prior to the use of such buoys sea 

surface temperatures measurements were made on a voluntary basis by a set of ships 

often referred to as the voluntary observing fleet, or some similar name, with the 

individual vessels using a methodology defined by the authority that they reported to. 

 

Matthews (2013) and Folland & Parker (1995) provide a detailed discussion of the 

issues.  The following is a summary in point form of issues mentioned by Folland & 

Parker (1995), with clarifications where appropriate.  The aim is not so much to 

provide details but to illustrate several issues and the general complexity of deriving 

SST anomalies from sea temperature measurements. 

 

(a) Variations in instruments and tools 

- Seawater samples in which to measure temperature have been obtained using 

a variety of bucket types - canvas, leather, leather and metal, rubber, 

insulated canvas, wood and iron, although reportedly the last two types were 

less common because they risked causing damage to the ship's hull. 

- Measurements have also been made in the pipes of the seawater inlet for 

engine cooling, often referred to as Engine Room Inlet (ERI), as well as via 

hull-mounted sensors. 

- Measurements made in any given month are likely to have been made, at 

least until very recently, by a mixture of the above techniques, each of which 

had different characteristics that might need to be taken into account. 

- More recently than Folland and Parker (1995), measurements have also been 

made by moored or floating buoys or since about 2001 by Argo buoys. 

 

(b) Variation in water sampling site and depth when using buckets 

- The relevant authorities (typically the national meteorological services of the 

country in which the ship was registered) usually, but not always, instructed 
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that the sample be taken from forward of the outlet for the engine cooling 

water. 

- Some authorities, but not all, stipulated that it should be taken as far as 

possible from the side of the ship. 

- UK instructions in 1938 said water was to be drawn from the surface. 

- US observers were instructed to draw water from a depth of 1 or 2 metres 

where possible (although how water from closer to the surface was to be 

prevented from entering the bucket is not mentioned). 

- Folland and Parker (1995) note that rough seas probably made it impossible 

to comply with the above instructions. 

 

(c) Variation in instructions re the temperature of the bucket itself 

- Some authorities specified that the bucket was to be stored in the shade so 

that it didn't warm prior taking the water sample. 

- Some said a dry bucket should be used so that evaporation didn't cool the 

bucket. 

- Some specified the time that the bucket was to be left in the sea and these 

might differ between authorities (e.g. 30 seconds, 1 minute). 

- Some said that the first water sample was to be discarded, presumably on the 

basis that the first sample would bring the bucket to sea temperature. 

 

(d) Variation in placement of the bucket on board the ship 

- Some authorities directed that the bucket be placed in the shade when lifted 

aboard the ship but others were not specific. 

- Some said to place the bucket out of any wind, but again not all. 

 

(e) Variation in instructions about mixing the water within the bucket 

- No recommendations were made in the nineteenth century about stirring the 

water sample but instructions in the twentieth century variously advised stirring 

"little, if at all", "slowly", "slowly, not touching the walls", "continuously", 

"quickly" or "vigorously". 

 

(f) Variation in thermometer types and their use 
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-  Some authorities required the use of wooden or metal backing or sheaths to 

protect thermometers from breakage and/or a small water reservoir to briefly 

preserve the temperature when the thermometer was withdrawn from the 

bucket to be read, although this was said to introduce problems due to the 

initial temperature of the thermometer and its housing. 

- Instructions to observers sometimes said that the thermometer should be read 

with mercury bulb still immersed in the water although some observers 

reportedly removed the thermometer and took it into some light so that it 

could be read. 

 

(g) Variation in time from ocean to temperature measurement when using bucket 

- Some authorities recognised the issue of the time taken to haul the water 

sample aboard potentially causing cooling (or in rarer instances, warming) 

but not others. 

- Some specified that the thermometer should be inserted immediately the 

sample is hauled aboard but not all. 

- Some said that the thermometer was to be left in the water for 2 to 3 minutes 

before it was read although some said 'at least 3 minutes', another '3 to 5 

minutes', another ' 4 or 5 minutes' and another implied for large buckets that 

a maximum of 5 minutes was acceptable. At the other end of the scale some 

recommended for one minute or less and a few authorities specified that the 

observer should wait until the reading was steady. 

 

(h) Variation in number of measurements 

- Some authorities that used a thermometer with a water reservoir to preserve 

the temperature said that multiple readings should be taken but others did not. 

 

If these instructions were all precisely followed then the data has been obtained using 

a wide variety of methods and techniques, suggesting a variety of accuracies that 

might alter with specific circumstances at the time of each measurement. 

 

Folland and Parker (1995) do not mention Expendable Bathythermographs (XBTs), 

which became popular in the 1970s for determining sea surface temperature although 

intended for Naval applications at greater depths.  Each XBT has a metal nose weight 
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to force it to sink and near the front of which is fixed a thermistor (Kizu et al, 2001; 

Geise et al, 2011).  XBTs are dropped in a controlled fashion from the sides of ships, 

the XBT manufacturers referring to it as a launch.  The sea temperature is determined 

from the electrical resistance of the thermistor, which is initially activated by the XBT 

reaching the water surface, and with the depth measured by cable run-out. The XBT 

will pass through the notional depth of 500mm below the sea surface, the depth at 

which bucket samples are notionally taken, about 0.8 seconds after being launched 

from 5.5 metres above the sea surface, with more than 0.7 seconds of that time spent 

in the air.  At the time of dropping the XBT would be at air temperature, or perhaps 

warmer if it had been in the sun, so there is uncertainty as to whether the temperature 

of the metal nose weight of the XBT will match the water temperature after less than 

0.1 seconds in the water. 

 

As noted briefly above, SST measurements have also been made by moored or 

drifting buoys, said by Rayner et al (2006) to account for 65% of observations in 

1997, or since about 2001 by Argo buoys.  Argo buoys appear to currently contribute 

the greatest number of SST measurements, although not necessarily the greatest 

number of "sea" grid cells.  Argo and drifting buoys have an advantage of being able 

to travel through regions of shallow water that ships cannot traverse. 

 

Over time the precision of thermometers used for these observations has improved, 

especially on engine room intakes.  Matthews (2013) mentions Saur (1963) noting 

that ERI thermometers were sometimes graduated in intervals of 2°F or 5°F, this 

being of sufficient accuracy for the process of engine cooling.  In recent times, with 

computer-assisted operation of ships engines, electronic thermometers are probably 

accurate to 0.1°C.  Kent and Taylor (2006) make the point that prior to this precision 

being available readings were often rounded to the nearest whole number, a point 

supported by analysis of part of the data for Brohan et al (2009) (see later this chapter) 

which showed that sea temperatures were generally given in whole degrees 

(Fahrenheit), only rarely to 0.5°F (perhaps 5%) and never at any other fraction of a 

degree. 

 

The measured temperature might also be influenced by time of day, month of the 

year, direction and speed of any wind (a moving ship will generate on-board wind and 
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a natural wind will cause waves and overturning at the surface), presence or absence 

of cloud, rainfall (latent heat exchange with the ocean) and the influence of any 

turbulence caused by the passage of the vessel through the water (e.g. bow wave). It 

will be shown in sections 7.5 and 7.6 that the measured temperature could also be 

influenced by the recent weather conditions at that point in the ocean causing distinct 

thermal layering and by the ocean's internal waves.  All of these issues are outside the 

control of the method of measurement, some influences being meteorological and 

others as a consequence of the ship itself. 

 

 

7.3 Different methodologies produce different temperatures 

 

Several papers (eg. Folland & Parker, 1995; Kennedy et al, 2011b; Matthews, 2013) 

report differences in temperatures measured by different methods, with some of the 

findings likely attributable at least in part to one or more factors mentioned in the 

section immediately above.  This section reviews some of those findings to illustrate 

how the temperatures vary. 

 

Kennedy et al (2011b) discuss several papers that found that, according to tests or 

various assumptions, certain biases were present and goes on to describes some of the 

data adjustments that were made and the reasons for rejecting others. It lists 19 papers 

that found biases from -0.13°C to +2.3°C but the situations varied as to bucket type, 

number of ships for which data was analysed and the years of data collection. Most 

are anecdotal to some extent, and all illustrate the complexity of the situation. 

 

Folland and Parker (1995) found that, depending on the location of the ship, 

adjustments of up to several tenths of a degree were required to correct for the 

widespread use of canvas and wooden buckets in the collection of water samples, but 

only until 1942, after which time it was assumed that the method of data collection 

was constant. 

 

Matthews (2013) cites Brooks (1926) as reporting an average difference of 0.3°C 

between a canvas bucket used from one height and a tin bucket from a lower height, 
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but with the average difference doubling to 0.6°C when another person took 

measurements using the same canvas bucket.  This suggests that SST monitoring 

might be inconsistent even when the same methodology is used. 

 

Matthews & Matthews (2013) detail a comparison between temperatures measured by 

wooden, canvas and rubber buckets during a one-month voyage from the Hawaiian 

Islands to Tahiti during May and June 2008 at the end of a La Nina, reporting mean 

differences between those bucket types of less than 0.1°C during both day and night 

and across different weather conditions (eg. wind speed, wind direction, cloud, 

atmospheric pressure).  ERI measurements were also made at 3 metres depth but 

found to be noisy, the conclusion being that ERI-measurements cannot be corrected 

for any near-surface gradients in water temperature, a point that we'll return to shortly. 

Matthews & Matthews (2013) also caution that their findings might not apply in other 

months or seasons or with different El Nino-Southern Oscillation conditions. 

 

Kent and Taylor (2006) concluded that difference between measurements made via 

buckets and via engine room intakes varied on a seasonal and even decadal basis.  It 

shows that for the North Atlantic from 20°N to 50°N and 80°W to 0°W over the three 

decades 1970 to 1999 the SST measured using buckets was usually cooler than that 

measured via the engine room intake.  In the 1970s the mean January and June 

differences were around 0.4°C and 0.2°C respectively, those for the same months 

during the 1980s were around 0.34°C and a maximum, in July, of 0.1°C.  By the 

1990's the temperatures showed less difference with the January average difference 

(as bucket temperature minus ERI temperature) being -0.16°C and the June average 

difference of +0.15°C, the latter being part of the March-September period when SST 

measured via buckets was slightly warmer than that by engine room intake. 

 

Kennedy et al (2011a) claims that the SST sensor in floating buoys (c.f. 

self-submerging Argo buoys) measured temperatures at 250mm below the surface. 

Emery et al (2001) estimates that temperature measurements recorded by such buoys 

were 0.15°C cooler than measurements made from ships. 

 

Rayner et al (2005) show graphs of SST anomalies derived from floating buoys and 

from ships from off the east and west coasts of the USA, the equatorial Pacific and 
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around the UK.  The smoothed differences vary over time, but on average the data 

from buoys were colder than that from ships by from 0.1°C to 0.2°C in most locations 

and ~0.4°C off the west coast of the USA. More telling are occasional differences 

exceeding 1.2°C at various times in all locations except the USA, sometimes in the 

Pacific for several months, again illustrating the inconsistency of the situation. 

 

Kennedy et al (2011b) make the observation that "during hauling the water sample 

collected in a bucket can lose heat via evaporation, and can be cooled or, less 

commonly warmed, by the exchange of sensible heat with the air".  This appears 

unlikely given the very short time in which the operation takes place but Matthews 

and Matthews (2013) report this occurring with small rubber buckets. 

 

The question of whether cooling or warming might occur during lifting the bucket 

onto the ship is intriguing given that an analysis of the downloaded data for the 69 of 

the ships that Brohan et al (2009) discussed (see also 7.7 and 7.8 below) found that of 

251,867 recordings of both sea surface temperature and dry bulb air temperature 

(DBT), 24392 (10%) were equal, SST was greater than DBT in 118,567 (47%) 

instances and less than DBT in 108,908 (43%).  This data shows only a small 

difference in the number of situations when the water might have been cooled or 

warmed by the air.  Further analysis would be required to determine the relationship 

of temperature to latitude and month but it does suggest that the situation is more 

complex than the statement made by Kennedy et al (2011b). 

 

Kent and Taylor (2006) mention that the difference in measurement depth "(surface 

for the bucket compared with the noted average of 10m for the engine intake) means 

that the engine intake should, if anything, be colder than the bucket SST".  This raises 

two issues, the first being that the depth of the engine room intake will vary according 

to the total weight of the ship and its cargo, and hence to the depth of water it 

displaces.  The second is that over time the size of ships has increased and although it 

is not clear whether depth has increased or only width it does suggest that that engine 

room intakes might have been lowered. Matthews (2013) says that the depth of the 

ERI on the observer ships are "typically around 7-10m, although can exceed 15m" 

and lists 10 earlier papers that report ERI depths from 2m to 10m. These comments 

about increasing ERI depth conflict with Kent and Taylor (2006) who noted that the 
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difference between bucket-measured and SSTs and ERI-measured SSTs seemed to be 

decreasing over time.   

 

The above collection of sometimes-contradictory findings illustrates some 

fundamental problems associated with attempting to resolve the different 

methodologies of measuring sea surface temperature.  The uncertainties are 

substantial even when the same method is used, whether that is with different people 

drawing water from the ocean via a bucket or engine room intake measurements made 

at different depths.  Matthews and Matthews (2013) is so concerned about the 

problem of deriving sea surface temperatures from subsurface temperatures at a depth 

of even 2 metres that it calls for ERI and other subsurface temperature data to be 

removed from the SST records.  The removal of that data would not be easy because 

sea temperature measurement records in the ICOADS database often fail to state the 

method used, as the next section will discuss.   

 

 

7.4 Macro adjustments to SST data 

 

With all the above variability in the method of measurement, the uncertainty over the 

measurement technique being used at the time and the various reports of differences 

in temperature from one method to another, the adjustment of SST data to make it all 

equivalent to hypothetical measurements involves numerous assumptions that might 

not be valid. Apart from these per-measurement or per-ship adjustments two 

macro-scale adjustments to SST data have been proposed. 

 

Numerous sources (e.g. Folland & Parker, 1995 citing the earlier Folland et al, 1984; 

Folland et al, 2001; Smith & Reynolds, 2004; Rayner et al, 2006; Kennedy et al, 

2011b) report an abrupt shift in average SST's in December 1941 and several papers 

(e.g. Thompson et al, 2008; Kennedy et al, 2011b) report a similar shift in late 1945, 

the former particularly in the North Pacific and the latter especially in the Southern 

Hemisphere.  These shifts (Figure 7.1) have been attributed to changes in the most 

common technique of measuring SST, firstly as a shift from buckets (favoured by 
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non-US ships) to engine room intake (favoured by US ships) as the USA entered 

World War II and then the use of buckets increasing after the end of the war.  

 

Folland et al (2001) refer to the switch from buckets to engine room intake for SST 

measurements when describing how SST measurements were adjusted to more 

closely match global average temperature anomalies derived from models, the 

assumption being that SST measurements via bucket recorded lower temperatures 

than measurements via engine room intakes. It states "The global annual mean bias 

correction increases steadily from 0.17°C in 1872 to 0.30°C in 1900 and 0.39°C in 

1920, remaining around 0.4°C until 1941" and later says "Without bias corrections to 

SST, ensemble mean LATs [land-surface air temperatures] are significantly too cold 

between 1872 and 1941 in all major regions except extratropical S. America  ...". This 

suggests that SST data was adjusted on the assumption that it was incorrect and that it 

needed to be adjusted to match the output of models.  Given the frequent failure of the 

prediction of climate models the claims by Folland et al (2001) are simply 

extraordinary. 

 

Folland and Parker (1995) describe adjustments to SST data, first pointing out sudden 

shifts of ~0.8°C and ~0.5°C in the night marine air temperatures (NMAT) in the 

Northern and Southern Hemispheres respectively (Figure 7.1). The paper fails to 

quantify the data shifts so they must be estimated from graphs and the time-scale 

along the X-axis is unhelpful, on top of which the influence of natural variation must 

be considered.  Folland and Parker (1995) go on to point out that the first jump, in 

1941-2, coincides with the entry of the USA into World War II and "is likely to have 

resulted from a realization of the dangers of hauling sea buckets onto deck in wartime 

conditions when a light would have been needed for both hauling and reading the 

thermometer at night". 

 

To illustrate the impact of the adjustments to SST in light of the above Figure 7.2 

shows the monthly anomalies according to the adjusted HadSST3 data. 
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Figure 7.1 Copy of Figure 3 in Folland and Parker (1995) showing the jump in measured SST 
(solid line) in the mid 1940's and the adjusted - stated as "corrected" - night marine air 
temperature NMAT (dashed line) for (a) northern (b) southern hemisphere, (1856-1992) 

 

 

Figure 7.2 Monthly HadSST3 temperature anomalies for both hemispheres (1939-1948) 
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Rayner et al (2005) say of this period "It was clear that the FP95 [Folland and Parker 

(1995)] corrections needed modification in this period [1939-42] for the new analysis, 

so they were altered to gradually decrease to zero between January 1939 and January 

1942, rather than the previous continued increase to December 1941 and then sudden 

end at December 1941... This was achieved by decreasing the annual proportion of 

canvas buckets from 100% in 1939 to 50% in 1940 to 25% in 1941. Smith and 

Reynolds (2005) linearly decreased their bucket corrections to zero over this period 

for the same reason." 

 

McKitrick (2010) has a different take on the matter, pointing out that according to 

WMO data, buckets were still widely used well into the 1980s.  McKitrick et al 

(2010) cites Kent et al (2007) and replicates a figure from that paper but the earlier 

Kent and Taylor (2006) has similar if slightly different information (Figure 7.3).  

According this figure, ≥ 40,000 SST measurements per month were taken using 

buckets from 1979 to 1992, the ratio of that to all SST measurements varying largely 

according to the measurements via engine room intake. 

 

 

 

Figure 7.3 From figure 3(b) of Kent and Taylor (2006), breakdown of the average number of ship 
SST reports by measurement method using information from the ICOADS SI flag (i.e. method 
indicator) for the period of 1970–97, supplemented with metadata information from the WMO, 
all smoothed with a 3-month running mean filter. 
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McKitrick (2010) makes the point that average hemisphere and global SSTs seem 

very sensitive to the relative proportions of measurements by buckets and engine 

room intakes.  That might have been a concern with HadSST2 but is less of an issue 

with the HadSST3 dataset, the version that is usually used being the average of 100 

datasets, each with slightly different assumptions about the percentages of different 

techniques for measuring SST when no method was logged when recording the 

temperature.  

 

The above papers seem to ignore the fact that while the entry of the US into World 

War II coincided with a change in average global SST it also constrained shipping and 

reduced data coverage.  Global SST coverage altered significantly in December 1941 

and again during 1946, the first being a contraction and the latter being an expansion. 

SST coverage of the Northern Hemisphere in December 1941 is 40.09% of the 

hemisphere, down from 53.9% in the previous month, a decrease of 25.6% of the 

original figure.  The Southern Hemisphere the fall was greater with coverage of 

31.5% of the hemisphere in November 1941 falling to just 18.2% in December.  

Figures 7.3 and 7.4 show the coverage by 10-degree latitude bands, excluding those 

bands that failed to ever exceed 2.0% during the period. 

 

The abrupt changes in SST, based on Folland and Parker (1995), coincide closely with 

an abrupt change in coverage.  Figure 7.4 shows the Northern Hemisphere coverage in 

10-degree latitude bands from 1937 to 1948, with the December 1941 decrease in 

coverage very obvious. 

 

The shift in SST from November to December 1941 is most noticeable in the northern 

Pacific Ocean (0-60N and bounded by coastlines to the east and west) and 

corresponds to the coverage in December 1941 of 15.47% of the hemisphere, down 

from 24.02% in November and 27.6% in October (Figure 7.5).  In particular coverage 

of Pacific Ocean grid cells in the band 0°N to 5°N fell sharply from 8.1% of the total 

of the North Pacific's 24.02% hemisphere coverage (i.e. 1.96% hemisphere coverage 

for the band), to 3.9% of the North Pacific's 15.47% hemisphere coverage (i.e. just 

0.6% hemisphere coverage for the band) in December.  In band north (i.e. 5°N to 

10°N) coverage in December was half what it had been in November.  
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Figure 7.4 Northern Hemisphere coverage by latitude band 1935-1946 

 

 

 

Figure 7.5 Northern Hemisphere SST coverage of the Pacific Ocean, expressed as percentage of 
total hemisphere surface area, from 1940 to 1945 (labels at January position) showing sharp 
decrease in coverage in December 1941 and almost simultaneous change in NH SST.  

 

 

The situation in the Southern Hemisphere is similar but this time with a shift in SST 

coverage in late 1939 and again in 1946 (Figure 7.6).  The coverage in August 1945 

was 13.68% of the hemisphere and in September just 11.60% but 12 months later 
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these were in 41.58% and 32.99% respectively as shipping resumed after the war. The 

increases occurred in all latitude bands (Figure 7.6), with substantial increase in 

coverage in bands centred at 22.5S and beyond.  During 1945 but prior to August the 

coverage in the latitude band 40-50S was less than 1%, and virtually nil for some 

months up to August, after which it expanded rapidly, exceeding 2% by the end of the 

year. 

 

 

 

Figure 7.6 Southern hemisphere coverage by latitude band 1937-1948 

 

 

Not surprisingly this expansion of SH coverage can be attributed to the war in the 

Pacific ending on September 2, 1945 and shipping routes reopening.  During 1945 

shipping was very much along the coasts (Australia, South Africa, South America) 

but after the war ended, shipping on the route from South Africa to Australia 

recommenced as did shipping from Australian and New Zealand to Cape Horn, these 

routes traversing the ocean where warmer waters meet Antarctic waters and SSTs are 

variable. 

 

The sources cited earlier in this section focus on only the two methods of measuring 

sea surface temperature and the estimated relative proportions of the methods.  This 

discussion of coverage has shown that changes in coverage and the locations of those 
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changes might go a long way towards accounting for the reported abrupt shifts in sea 

surface temperatures in both hemispheres.  Further, if SSTs prior to 1941 have been 

adjusted upwards excessively it might make quite a difference to the earlier SST 

pattern.  

 

Kennedy et al (2011b) talk at length about the assumptions involved with assigning 

SST measurements to either buckets or engine room intakes. It then goes on to 

describe how 100 different datasets, each based on different assumptions about 

uncertainties, were developed to explore the impacts of different assumptions and 

how the "ensemble mean" of these datasets is commonly used.  This has two 

problems. Firstly the  "ensemble mean" is derived from datasets that are constructed 

according to assumptions that vary between the datasets, which means that if any one 

set of assumptions was correct its data is averaged not only with incorrect data but 

even with the data based on assumptions that might differ quite substantially from it. 

Secondly, as indicated above in the discussion about 1942 and 1946 data, the 

magnitude of the SST adjustments might be quite incorrect.  

 

 

7.5 The inherent problem of thermal layering in the ocean 

 

Few, if any, papers related to HadSST3 data seem to take into account some 

significant problems with estimating the sea surface temperature when the thermal 

layers of the ocean vary over time, both in depth and according to the temperature of 

each layer. 

 

Figure 7.7 is copied from Donlon et al (2005).  Its legend, focussed on sea surface 

temperatures, is summarised as follows: 

STTint is the interface of atmosphere and ocean, 

SSTskin is the skin layer, 

SSTsubskin is below the level at which heat is lost by evaporation,  

SSTdepth is "an in situ measurement near the surface of the ocean that is typically 

reported simply as SST " (Donlon et al, 2005), and  
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SSTfnd is the "foundation" temperature obtained from below the layer that varies 

diurnally.   

 

 
Figure 7.7 (Copied from Donlon et al, 2005) Schematic of the variation in temperature with water 

depth. See text for explanation of the legend. 

 

Figure 7.7 is a schematic but it indicates the typically SST measurement, presumably 

taken by bucket, as being at 1m depth whereas other sources (e.g. Webster et al, 1996) 

give the depth as 500mm. It is also greatly generalised and gives no indication that 

surface wind or other turbulence, plus the amount of solar radiation will vary the 

relationship between depth and temperature on a diurnal basis and residual heat might 

be carried over from one day to the next. 

 

The top layer is the sea surface skin layer (Woodcock, 1941; Ewing & MacAlister, 

1960; Hasse, 1963; Fedorov & Ginsburg, 1992; Mobasheri, 1995; Fairall et al, 1996; 

Wells et al, 2009).  This is the layer where heat is lost to the atmosphere (evaporation, 

sensible heat loss and infrared radiation) and in some cases gained (eg. radiation in 

some bands is absorbed within microns of the surface).  The layer is typically 1 or 2 

millimetres deep but exceeding 3mm is not unusual and instances of 6mm have been 

reported (Mobasheri, 1995).  Webster et al (1996) and Fairall et al (1996) report 

instances in the tropics where the temperature difference between the surface and the 
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layer beneath the skin was as much as 3.0°C, Fairall et al (1996) indicating that this 

was during the daytime but at night 0.1°C to 0.3°C was more likely. 

 

The direction and rate of heat exchange are according to the current temperature 

difference and the magnitude of incoming or outgoing radiation, meaning that the heat 

transfer differs during sunlight and darkness, seasons/latitude and the absence or 

presence of clouds.  Windspeed is also a significant factor because up to a certain 

point it will enhance evaporation and conduction, but beyond that will cause over-

turning of the ocean surface and therefore mixing with the waters below the surface 

skin. 

 

Measurement of sea surface temperature can involve passing a bucket through this 

layer, which might collect a substantial amount of this layer water especially if the 

angle of the bucket is approaching horizontal as it enters the water, as could easily be 

the case with moving ships.  Matthews and Matthews (2013) reported that when 

drawing water samples using different types of buckets it was found that rubber 

buckets would enter the water "near-vertically and did not need to be dragged like the 

wood and canvas buckets. The canvas buckets tended to close flat when dragged and 

so not fill while the wood buckets would bounce along the surface when under-motor. 

... Retrieval of the wood and canvas buckets became difficult if too much line was 

released and they drifted far back towards the stern [of the ship]." 

 

This skin layer is the only one "seen" by satellite-based SST measurement, which 

means an adjustment is necessary to bring them into line with the temperature that 

might have been measured below that surface skin but within 500mm of the surface. 

A web page from the Hadley Centre21 discusses this skin in the context of converting 

satellite-based measurements of sea surface temperature to values ostensibly 

equivalent to what would have been measured by bucket. 

 

The layer beneath the subskin layer of Figure 7.7 is sometimes referred to the "warm 

layer", which some papers (e.g. Fairall et al, 1996; Webster et al, 1996; Soloviev & 

Lukas, 1997; Kawai & Wada, 2007) refer to as a "diurnal warm layer". Fairall et al 

                                                
21 http://research.metoffice.gov.uk/research/nwp/satellite/infrared/sst/conversion.html  
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(1996) say that roughly half of the insolation received from the sun is absorbed in the 

first 2 metres of water, which on a daily average of 500 w/m2 is sufficient to heat the 

2m deep layer uniformly by 2.0°C. Soloviev & Lukas (1997) shows a composite of 5 

temperature profiles taken during calm weather during the TOGA COARE project, 

with a temperature difference of almost 3°C between depths of about 200mm down to 

1 metre. Kawai & Wada (2007) show an example of a diurnal temperature variation of 

4.5°C in a warm layer 200mm to 450mm below the surface. 

 

Matthews and Matthews (2013) report that during a voyage from Hawaii to Tahiti the 

temperature gradients from depths of 0 to 3 metres averaged 0.4°C±0.2°C and were 

0.5°C±0.2°C during the day but 0.3°C±0.1°C at night, and goes on to say "Evidently 

the near surface thermocline did not breakdown overnight."  The temperature gradient 

was greatest in the early afternoon and weakest overnight. The gradient was also 

greater in regions where the south Equatorial Current was stronger. 

 

Farrar et al (2007) show a figure indicating temperatures at different depths off 

Martha's Vineyard in the USA, with negligible difference until about 2:00pm but then 

an abrupt temperature increase of about 2.0°C at 1.0m depth while the temperature at 

2.2m remained unchanged until about 22:00 hours (Figure 7.7).  

 

 

 

Figure 7.7 copy of Figure 5 from Farrar et al (2007) showing temperatures at two depths off 
Martha's Vineyard on 15 August 2003.  The divergence between the temperatures after about 
2:00pm is very obvious and the whole shows that the relationship between SSTs measured at the 
two depths is inconsistent. 

 

If calm conditions with high insolation persist the warm layer becomes hotter and it 

deepens, with not all the heat appreciably dissipating at night.  The development of El 

Nino conditions can be described in similar terms and Wyrtki (1989) points out that in 
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the Pacific warm pool, under calm conditions with high insolation, a warm layer can 

easily extend to a depth of 80 metres.  From a sea surface measurement perspective 

this warm layer is a challenge, Kawai & Wada (2007) says "The large temperature 

difference between the sea surface and about 1m depth, where ships and buoys 

usually measure the seawater temperature as 'SST', has been recognized as one of the 

major sources of error in satellite-derived SST."  As noted above, satellite-based 

observations are of the sea surface and the data are often adjusted in an attempt to 

bring them into line with bucket-based measurements that draw water from a depth of 

about 0.5 metres. The variable temperature gradient between the surface and that 

depth is the result of insolation over time and water mixing due to turbulence and bow 

wave, mean that estimating a 0.5 metre temperature from surface measurements is far 

from simple. 

 

The above description applies to calm weather conditions and high insolation.  

Changes in the wind speed or insolation (due to the diurnal cycle, changes in cloud 

cover or in latitude) will modify the layering.  Under thick cloud the warm layer will 

be shallower and of lower temperature, meaning that the thermal layering will differ 

from that under clear skies.  Under windy conditions the surface turbulence will cause 

mixing of the upper layers, homogenising their temperatures, and the removal of heat 

from the sea surface, meaning a temperature profile shifted towards a vertical line.  

Ultimately in the high latitudes, where insolation is low, the schematic described in 

Figure 7.4 will become virtually a straight line with the temperature at the sea surface 

being almost identical to deeper temperatures. 

 

El Nino conditions in the Pacific are widely regarded as occurring due to a pause in 

the easterly trade winds across the ocean, the calm ocean causing the thermal layering 

described above. HadSST3 global average temperature anomalies increased after 

1976 (see chapter 1, figure 1.2), which coincided with a switch in the El Nino-

Southern Oscillation (ENSO), the average Troup22 SOI for the 25 years23 prior (i.e. 

1952-1976) being 2.04 and for the 25 years after -2.88, with similar averages over 15, 

                                                
22 The alternative index, the multivariate ENSO index, or MEI, includes sea surface temperature in the 
Nino 3.4 region so to use the MEI here would be circular reasoning. 
23 Under the Troup SOI, values greater than 7 for 3 months or more generally indicate La Nina 
conditions and less than -7 for a similar time indicate El Nino conditions. 
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20 and 20 years. While neither of these averages is beyond the La Nina or El Nino 

event threshold they respectively indicate a propensity for those conditions. The open 

question is therefore whether the shift towards more frequent El Nino events coupled 

with incorrect assumptions about the relationship between SST measurements made at 

different depths artificially increased sea surface temperatures, particularly in the 

tropical Pacific where the ENSO influence is greatest. 

 

In summary, thermal layering of the ocean and the establishment of various 

temperature gradients across the depths at which sea surface temperatures are 

measured make it difficult to accurately convert temperatures measured, using any 

specific methodology, at a particular depth to equivalent temperatures that, 

conceptually at least, would have been measured by another methodology at a 

different depth.  

 

 

7.6 Ships in port when recording sea surface temperature 

 

Brohan et al (2009) discusses the transcription of temperature observations in the log 

books of the Royal Navy into the ICOADS database, the source of HadSST3 and 

HadCRUT4 sea surface temperature data. 

 

Samples of that data were available from Brohan's web page24 and data for the 69 

ships whose names commenced with 'A', 'B' or 'C', was downloaded for analysis.  Of 

the 253,600 recordings of SST data a total of 127,846 recordings (50.4%) were made 

while the ship was in port (i.e. a non-blank 'port' field in the record) leaving only 

125,754 recordings made (49.6%) with the ship at sea (assuming that the field would 

not be left blank while the ship was in port which might not be true if it remained 

there for many days). 

 

As an example, ICOADS data shows that ship "ABERDARE", one of those 

downloaded as described just above, made 32 SST observations between 24th and 

                                                
24 See http://brohan.org/hadobs/digitised_obs/docs/  
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30th of September 1939 (inclusive) at latitude 1.4°N longitude 103.8°E, which 

according to the downloaded data file for ABERDARE is "RN Base Singapore". The 

ICOADS search, covering a box of latitudes 0°N to 2°N and longitudes 103°E to 

105°E over the period from 24 to 30 September 1939, revealed 11 ships of the Royal 

Navy making observations at or very close to the same location, with just 86 of the 

445 observations made by those ships over the 7 days apparently outside the port but 

within the given HadSST3 grid cell. 

 

In ports the water is shallower, likely fed by local natural and manmade discharges, 

sheltered from currents and often from wind, with far less mixing of surface water 

with deeper water; and on the basis of these factors the thermal layering will be 

different.  Sea surface temperatures are therefore likely to be higher in ports than in 

the open sea and are therefore likely not representative of the grid cell. 

 

The data in question was from ships of the Royal Navy during the years of World War 

II, which might spend considerable time in port depending on requirements for their 

deployment or the action they were undertaking. Commercial shipping is likely to 

spend less time in port on the basis that it is paid to move cargo. Without accessing a 

very large part of the International Comprehensive Ocean-Atmosphere Data Set 

(ICOADS) database, on which the HadSST3 dataset is based, it is not possible to 

determine the magnitude of any "in-port" temperature bias in the HadSST3 dataset but 

the recent additions from the logs of Royal Navy ships certainly have a problem. 

 

 

7.7 Errors in transcription of data from ships' logs 

 

Data from Brohan et al (2009) was also found to have flaws in its transcription from 

handwritten logs from Royal Navy ships for the periods 1938-39 and 1941-47 into 

digital form for inclusion in the ICOADS and HadSST dataset.  It appears that at 

times the automatic digitising (apparently by character recognition software) failed to 

correctly distinguish between similar digits, such as '1' and '7', and '4' and '9'.  Figure 4 

of Brohan et al (2009) provides an illustration of the latter when it shows details from 

ship HMS Warspite on January 12 1941 (Figure 7.8 and Table 7-1). 



 198

 

 

 

Figure 7.8 Enlarged extract of Figure 4 from Brohan et al (2009), with several instances of the 
digit '9' indicated and one of the digit '4', the latter shown in the table below to be misinterpreted 
as a '9'. 

 

 
YearMnDyTime  Lat Long                     Location   WDir                 DB  WB SS 

 

1941 1111800 3442 1948 0204 310WARSPITE               20SE 04bc 061110038 064 060 60 

1941 1112200            020 310WARSPITE               24SE  03c 061110025 065 059 60 

1941 112 200            020 310WARSPITE               04NNW 03c 06  10016 069 060 60 

1941 112 600 3472 2317 0204 310WARSPITE               08NNW 06c 062110023 063 061 61 

1941 1121000 3410 2427 0204 310WARSPITE               12WNW 06bc073110053 065 060 60 

1941 1121400            020 310WARSPITE               16NW  07bc 06221008 069 061 61 

1941 1121800 3288 2647 0204 310WARSPITE               20W   06b 062210104 063 060 63 

1941 1122200            020 310WARSPITE               24WNW 06bc072210113 069 060 60 

Table 7-1 The digitised data (downloaded from ICOADS) corresponding to the data in Figure 7.9, 
with the relevant data from the last line of the extract of the ship's log underlined and, in bold, 
the dry bulb temperature with the '4' incorrectly identified as a '9'. 

 

The above problem also occurred with the latitude and longitude of the ships, in some 

cases placing ships well inland from the sea.  Brohan has subsequently stated that 
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various errors with the latitude and longitude have been corrected by quality control 

processing but it seems that the less obvious errors in temperature data persist. 

 

The error described here is a single instance of an ICOADS error and while it means 

little in itself it raises the question of the accuracy of the transcription of written 

records into the ICOADS database. 

 

 

7.8 Other possible discrepancies in ICOADS 

 

As mentioned above, the ship "Warspite" was in the south-east of the Mediterranean 

Sea on 12 January 1941.  Data from the ICOADS database shows that other ships 

were nearby. According to data from "Warspite", at 2pm the air temperature was 

20.0°C whereas ship "Barham", just 0.07° latitude north and 0.07° longitude west 

away (approximately 3km across open sea), recorded the air temperature as 16.1°C. A 

few days later, on 14 January 1941, in the same area of the Mediterranean ships 

"Eagles" and "Barham" reported 6pm air temperatures of 21.1°C and 16.7°C 

respectively when "Eagles" location was given as 34.85°N 20.83°E and "Barham" at 

34.87°N 20.90°E, which puts the vessels even closer than 3km.  

 

Other simultaneous observations made by "Eagle" and "Barham" are shown in Table 

7-2, where pairs of readings at the same time are grouped. Some of the differences in 

recordings made from ships just a short distance apart25 are surprising: 

 

- Sea level pressures differ greatly when the ships are very close (e.g. 1005.8 hPa 

v. 1017.1hPa at 16:00hrs) 

- Air temperatures are sometimes more than 3°C different when the ships are 

close but with wind supposedly from different directions (at 10:00) but even 

with wind from the same direction one is 16.7°C while the other 18.3°C (at 

16:00hrs) 

- Wet bulb temperatures are consistently different at 16:00 and 18:00 hrs 

                                                
25 At this latitude and longitude a difference of 1° latitude is 100km and 1° longitude is 92 km. 
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- The sea surface temperature from ship "Barham" fell by almost 3.5°C between 

16:00 and 18:00 hrs but for ship "Eagle" only by 0.5°C, with a difference of 

0.6°C at 16:00hrs becoming a difference of 2.3°C at 18:00.  (Both SST's at 

18:00 hrs appear to be incorrect repeats of wet-bulb temperatures.) 

 

On the basis of this data the accuracy of the ICOADS database is open to question. 

 

Day Hour  Ship 

Latitude 

(N) 

Longitude 

(E) 

Wind 

direction  

Wind 

speed 

(m/s) 

Sea Level 

Pressure 

(hPa) 

Air 

Temp 

(°C) 

Wet 

Bulb 

Temp 

(°C) 

Sea 

Surface 

Temp 

(°C) 

12 6 BARHAM 34.60 23.20 225 6.7 1004.3 16.7 15 17.8 

12 6 EAGLE 34.65 23.13 248 6.7 1003.6 18.3 15.6 17.2 

           

12 10 BARHAM 35.15 23.22 270 6.7 1004.9 15.6 13.3 18.3 

12 10 EAGLE 35.12 23.12 315 6.7 1001.2 18.9 17.2 17.2 

           

12 14 BARHAM 35.29 23.32 293 6.7 1005.6 16.7 14.4 17.8 

12 14 EAGLE 35.26 23.24 293 6.7 1017.1 16.7 16.1 17.2 

           

12 16 BARHAM 35.35 23.36 293 6.7 1005.8 16.7 14.4 17.8 

12 16 EAGLE 35.33 23.30 293 6.7 1017.1 18.3 16.7 17.2 

           

12 18 BARHAM 35.42 23.41 293 4.6 1008.9 15.6 14.4 14.4 

12 18 EAGLE 35.40 23.36 293 4.6 1017.2 17.2 16.7 16.7 

           

12 22 BARHAM 35.56 23.51 315 2.6 1009.2 16.1 15 14.4 

12 22 EAGLE 35.55 23.49 248 2.6 1007.6 16.7 16.1 15.6 

           

13 2 BARHAM 35.69 23.60 315 4.6  17.2 15.6 16.7 

13 2 EAGLE 35.69 23.61 293 2.6  15.6 14.4 17.2 

           

13 6 BARHAM 35.83 23.70 293 9.3  12.8 11.1 16.7 

13 6 EAGLE 35.83 23.73    15.6 13.9 16.1 

Table 7-2 Extract from ICOADS database for two ships in close proximity on 12 and 13 January 
1941.  The differences in data for two ships less than 100km apart are sometimes quite great (e.g. 
sea level air pressure 1005.8hPa to 1017.1hPa at the same time of day). 
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Further, ICOADS entries often provide latitude and longitude co-ordinates to one 

decimal place. This is insufficient to precisely pinpoint the location in which the 

observations were made and it requires some allowance when attempting to pinpoint 

locations near coasts. Despite this, when ICOADS data was accessed for a study of 

SSTs along the Great Barrier Reef (see chapter 11) it was found that in several cases 

the co-ordinates were further inland than can be explained by rounding to one decimal 

place.  Some these erroneous locations are shown in Table 7-3. 

 

 

Latitude  Longitude  Distance inland  Coast longitude  

-12.9 142.5 100 km 143.3 

-13.5 142.5 125 km 143.5 

-14.6 143.2 75 km 143.8 

-15.6 144.0 300 km 145.3 

-15.7 144.3 125 km 145.3 

-18.5 145.4 125 km 146.3 

-19.8 146.0 100km (SW) 146.8 (Lat -19.3) 

-21.8 148.4 250km 149.4 

 Table 7-3 Example instances of ICOADS co-ordinates defining inland locations rather than 
locations at sea.  (Distances to sea are approximate via scaling of distances.) 

 

 

The examples shown in this section of ICOADS meteorological data varying 

considerably for ships only a short distance away, poor transcriptions of ship logs and 

finally ship's co-ordinates mapping to land areas rather than sea indicate that the 

quality control of ICOADS data is far from ideal.  When that data is incorrect so too, 

to some extent, will be the HadSST3 and HadCRUT4 datasets.  Whether the errors are 

sufficient to shift the hemispheric or global average temperature anomalies is 

unknowable without a very large amount of work and even then some assumptions 

will probably be required.      
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7.9 Summary 

 

In December 2015 SST data was available from 69% of the Earth's surface and data 

from observation stations accounted for 31%, with coastal grid cells that have data 

from both sources covering for about 15% of the Earth's surface (see section 5.3).  

HadCRUT4 coverage in the same month totalled 84% of the Earth's surface, which 

means that SST data accounts for 82% of the coverage - more than three-quarters - in 

that month either directly or when merged with data from observation stations as is 

the case with the coastal grid cells. 

 

Accurate sea surface temperature data appears unlikely given the variety of methods 

of measurement, assumptions about adjustments to those temperatures and 

uncertainties associated with the physical environment.  These are listed in point form 

below. 

 

(a) Methodological issues 

 

Over the time of the HadSST3 dataset the methods of measuring sea surface 

temperature have been the following: 

 

 Canvas bucket Leather bucket 

Wooden bucket Leather and metal bucket 

Rubber bucket Insulated canvas bucket 

Iron/tin buckets Floating buoy (moored or drifting) 

Hull-mounted sensor Engine room intake 

Argo Buoy; 

 

- The methodology used for each measurement was not always recorded; 

 

- There is no consistency in the instructions given by different agencies for the use of 

basically the same equipment and method; 
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- Hull-mounted sensors and thermometers on engine room cooling intakes record 

temperatures at a greater depth (to 10m or slightly more) than bucket-based 

measurements and buoys; 

 

- A variety of thermometer types with different scale graduations have been used, 

meaning differing degrees of rounding or interpolation and therefore not necessarily 

accurate for a single measurement or consistently accurate over multiple 

measurments; 

 

- The types of buckets reportedly differ in the kind of sample they take, some more 

prone to sampling more water from the sea skin than others. 

 

(b) Adjustment issues 

 

- Various papers indicate that SST data should be adjusted to take into account a 

variety of factors including depth, bucket type, local weather conditions while lifting 

samples onto the ship and the initial temperature of the bucket, but there is little 

consistency in the magnitude of the indicated adjustments. 

 

- Broad-scale adjustments have been recommended in various papers on the basis that 

global or hemispheric average SSTs are supposedly incorrect and that false 

assumptions have been made about the relative proportions of the use of certain 

methodologies or the adjustments associated with each. 

 

It has been shown in this chapter that broad-scale adjustments based on SST shifts in 

December 1941 in particular might be incorrect because the assumption has been that 

the shifts were due solely to switch in the dominant methodology for obtaining sea 

surface temperatures rather than the significant change in coverage that was a 

consequence of changes to shipping patterns during World War II.  

 

(c) Environmental issues 

 

- The ocean has a general series of layers – skin, warm layer, semi-permanent deeper 

layer - with gradients between them.  The warm layer can often be divided into an 
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upper diurnal warm layer that varies over 24 hours and a lower more permanent warm 

layer that loses less heat at night and might therefore accumulate heat over some 

period. 

 

- The layers are dynamic and vary in temperature and depth.   

 

- Taken as a whole the layer structure varies in amplitude (i.e. temperature range) and 

total depth according to latitude, season, time of day, current weather (insolation, 

wind, rainfall) and weather in the recent past (varies from days to months).  The 

amplitude is typically very small in high latitudes but often much greater at low 

latitudes in calm, clear-sky conditions.  

 

- The layering is likely to be different in ports because they are sheltered and have 

relatively shallow water, which means that SST measurements taken while a ship is in 

port could be quite different to a temperature made in the open sea.  

 

- Layering in shallow water, such as on a continental shelf might also differ from 

layering in deep water. 

 

 

With the above uncertainties the SST data provided to the Hadley Centre for the 

HadSST3 and HadCRUT4 datasets seems likely to be inaccurate by an amount that 

cannot be determined because the magnitude of the errors in the various assumptions 

is both unknown and highly variable. 

 

The HadSST3 dataset attempts to counteract these uncertainties by creating 100 

different realizations of the data (i.e. multiple variants of the dataset), each based on 

different assumptions about measurement techniques when they were not recorded.  It 

seems inevitable that any conflicting assumptions in those realizations will make 

some realizations redundant. It is also impossible to know if particular realization is in 

fact correct, this even before it is averaged with all other realizations to produce the 

"ensemble mean" dataset that has become a de facto standard. 
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With 82% of the HadCRUT4 gridded dataset for December 2015 derived from SST 

measurements the many uncertainties about SST data are transferred into the 

HadCRUT4 dataset with little dilution. 
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 Chapter 8: Summary of Part 1 

 

8.1 Introduction 

 

This thesis has discussed many issues regarding the accuracy of the data in the 

HadCRUT4 dataset and therefore on information derived from it.  It has only been a 

"first pass" audit of the data and its processing but has identified some obvious errors 

and numerous uncertainties that together question the accuracy of the dataset. Jones 

(2016) (see Appendix 2) concurs with several points that have been raised here but 

makes no mention of many others. 

 

The scope of the uncertainties spans the entire range of activities and processes from 

individual temperature measurements on land or at sea, to the calculation of global 

average temperature anomalies when global coverage is variable and has never been 

100%. 

 

Some of the uncertainties translate into errors that are likely to be distributed 

relatively evenly above and below the given values but some suggest bias in one 

direction for some portion of the record (e.g. European dominance of early coverage) 

or even all of the record when the long-term average temperatures, from which 

anomalies are calculated, are incorrect. 

 

Adjustments to individual values for most of the uncertainties will have an 

indistinguishable impact on global or hemispheric average temperature anomalies 

because the change will occur many decimal places below the precision of those 

averages.  This won't necessarily be true as the number of corrected errors increases 

or with an increasing proportion of corrected data relative to the data pool being 

studied (e.g. to data for individual grid cells or observation stations).  
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This chapter will reiterate the many findings made in earlier chapters and propose an 

alternative approach that would use as much of the historical data as practicable to 

create a revised temperature dataset with fewer uncertainties.  

 

 

8.2 Major findings 

 

Many issues uncovered by this analysis will only directly impact the data from 

individual observation stations (in the case of CRUTEM4 station data) or individual 

grid cells (in the case of HadSST3 data), and might impact a single month, a series of 

months but also impact the temperature anomaly trend incorporating the specific data.  

Some issues are however large scale and impact the accuracy of a larger data pool 

(e.g. global averages) or at least extend the error margin.  This section (8.1) will 

discuss these large scale issues or issues with an implied potential for greater 

influence.  

 

8.2.1 Coverage Issues 

 

According to the HadCRUT4 method of calculating coverage that coverage has varied 

greatly over time, generally increasing except in the times of the two World Wars but 

particularly notable for its lack of homogeneity. 

 

1. Coverage Southern Hemisphere coverage was not consistently above 50% 

until the early 1950's and global coverage not consistently above 75% until 

about 1960. 

  

2. In the late nineteenth century grid cells in certain latitude and longitude bands 

in each hemisphere made a much greater percentage contribution to the 

hemispheric coverage at that time than their proportionate area (i.e. more data 

available from these grid cells than from grid cells in other bands).  In the 

Southern Hemisphere for example, the 20% of the hemisphere that lies 

between latitudes 30S and 50S accounted for about 45% the hemisphere's 
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coverage from 1850 to 1914. By about 1950 the Northern Hemisphere 

coverage became homogenous and while the Southern Hemisphere is 

approaching that state it has still not done so completely. 

 

3. Also in the late nineteenth century but on regional rather than band basis, 

HadCRUT4 grid cells for western European and the nearby Atlantic Ocean, 

accounted for more than 60% of Northern Hemisphere coverage at that time 

despite being only 12.5% of the surface area of the hemisphere. (For 

CRUTEM4, using only data from observation stations, the continent of 

Europe, which covers ~9.3% of the hemisphere land area at times accounted 

for more than 50% of the CRUTEM4 Northern Hemisphere coverage.) 

 

4. In general terms, late nineteenth century data was heavily focussed on Europe, 

its colonies and trading centres in other parts of the world, and the shipping 

routes between those points.  Some HadCRUT4 grid cells in the central Pacific 

for example did not consistently report data until the 1970s. 

 

5. The variation in coverage over time is a potential source of systemic (rather 

than random) errors that the process of averaging cannot remove. If 

temperature variation trends are not uniform across the globe changes in 

coverage will potentially cause a misrepresentation of the global average 

trend.  If, for example, the Northern Hemisphere recovery from the Little Ice 

Age was not homogenous in the late 1800's in particular then the inclusion, if 

it was possible, of data from where data for that time is currently unavailable 

might alter the Northern Hemisphere and global average temperature 

anomalies.   HadCRUT4 global averages rest on the implicit assumption that if 

data was available from other locations it would not alter those averages 

regardless of how many locations supplied data and, in terms of trends, that 

temperature anomalies varied across the globe in a manner consistent with the 

available data.  

  

8.2.2 Sample size 
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The sample size affects the amount of interpolation that might need to be done and the 

square root of the sample size is often used as the denominator when calculating the 

error margin, which means the greater the sample size the less the error margin. The 

following findings are relevant in this regard: 

 

6. While the number of reporting stations in the Northern Hemisphere in 1850 

was 145 in the Southern Hemisphere only a single station reported data until 

the start of 1853, and the number only grew to 9 in the first decade of data. 

 

7. In 1850 grid cells with a single observation station accounted for an average of 

70% of all reporting CRUTEM4 grid cells. This fell below 45% in 1891 but 

continued to be above 38% until 1951. Grid cells with 1, 2 or 3 observation 

stations accounted for 92% of reporting grid cells in 1850 and reached its 

minimum of 52.7% in 1974. Unless the geography and prevailing weather 

conditions are very consistent over the entire grid cell the data from a single 

observation station seems unlikely to be a good representation of the entire 

cell. In the case of 2 or 3 stations any failure to report could alter the grid cell 

average value so the inconsistency of the number of stations is also important.  

 

8. HadSST3 and HadCRUT4 datasets are based on a grid cell size of 5° latitude x 

5° longitude and intervals of one month but HadSST3 data is developed from 

a dataset at a grid size of 1° x 1° using pentads (5-day periods).  A minimum 

of 150 observations in the month in the 5° x 5° grid cell would be required in 

order to provide each 1° x 1° grid cell in each pentad with data from a single 

observation, but many of the HadSST3 5° x 5° grid cells have fewer than 15 

observations per month. 

 

9. Grid cells with from 1 to 5 SST observations in the month account for at least 

33% of all grid cells with SST observation from 1850 to 1955 except for three 

brief periods, none exceeding a decade.  Grid cells with from 1 to 15 

observations (i.e. group 1 to 5 and group 6 to 15) accounted for 93.8% of 

reporting SST grid cells in 1850 and did not fall below 33% until 1995.  
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8.2.3 Long-term average temperatures 

 

Long-term average temperatures are used to determine temperature anomalies. Trends 

and differences in anomalies for any observation station (CRUTEM4) or grid cell 

(HadSST3) will be the same for any consistent long-term average temperature even if 

it is erroneous but problems arise when merging or averaging anomalies calculated 

from different bases.  Findings in relation to the calculation of long-term average 

temperatures are as follows: 

 

10. The period from 1961 to 1990 inclusive over which long-term averages are 

calculated is climatically abnormal because of various volcanic eruptions in 

and around the Pacific Ocean and because of the Pacific Climate Shift of 

1976.  The absence of data across part of this period could easily impact the 

long-term average temperature more than a similar absence of data from a 

more climatically stable period.  

 

11. The acceptance of as few as 14 years of data from observation stations for the 

calculation of long-term (i.e. 1961-1990) average temperatures - 14 years as a 

whole not 14 years for the given calendar month - is well below the WMO 

recommendation of a minimum of 80% be present and that no data sequence 

of more than three values be missing.  In fact the minimum sample size set by 

the CRU is less than 50% of the maximum possible data. 

 

12. The standard deviations associated with long-term average temperatures for 

observation stations appears to be inversely related to that temperature, and 

when considered in bulk the range of standard deviations for a given mean 

temperature widens as the mean temperature decreases. This warrants further 

study because it suggests the temperature range at observations stations in the 

same grid cell but with different average temperatures might have a different 

natural range of temperatures and therefore a different range of temperature 

anomalies. 
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13. HadSST3 long-term averages are first estimated on a 1° x 1° grid cell size and 

using pentads (5-day periods) and then modified according to SST 

observations in those 1 x 1 grid cells and pentads.  When considered as grid 

cell and month combinations (where each cell is 5° x 5° and the combination 

with calendar months means 12 entries per cell), 4381 combinations (21% of 

the total with any data in any year 1850-2015) have less than 14 years of data 

for the given month over the period 1961-1990 and 1006 of these had a single 

instance of data in that month.  These low sample sizes, at the 5° x 5° level, 

make any modified estimates of long-term average SSTs at the 1° x 1° and 

pentad level quite uncertain. 

 

 

8.2.4 Outliers present in data 

 

Data outliers will cause distortion at some scale, perhaps not with global or 

hemispheric averages but they will when the focus is on a small number of grid cells 

and/or a smaller period of time.  Several issues with outliers are identified: 

 

14. Data for CRUTEM4 is regarded as an outlier if it is more than five standard 

deviations from the long-term average temperature (the two factors strangely 

being calculated over a different time periods).  The "five standard deviation" 

threshold is excessively generous because on the basis of Normal Distribution 

the probability of data exceeding this range is 1 in more than 1 million. 

 

15. Outliers, some of which are obvious errors, are present in the CRUTEM4 

station data across the period used to calculate the mean temperature and 

across the different period used to calculate standard deviations. When outliers 

increase standard deviations they automatically extend the threshold for 

identifying other data outliers, at times producing ridiculous acceptable ranges 

of values. 

 

16. Outliers were also found in the SST data. When using HadSST3 data for the 

period from 1961 to 1990 to calculate mean temperatures and standard 
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deviations for each grid cell and month one outlier was identified at more than 

31 standard deviations from the mean temperature.  Changing the period to 

cover the entire range (i.e. 1850 to 2015) when calculating the two factors 

reduced the range of standard deviations from the mean but still revealed 

instances of more than 7 standard deviations from the mean.    

 

 

8.2.5 Errors in ancillary data files 

 

During this study errors were discovered in three ancillary files published with the 

HadCRUT4 dataset.  None of these errors directly impacted the main file of gridded 

temperature anomalies but they could be an issue when using the data in these files. 

 

17. Data processing errors identified in ancillary files are as follows: 

 

(i) Two summary data files, one file for each hemisphere, contain monthly 

average sea surface temperature data and hemispheric coverage and while 

each contained the correct temperature data, they contained the coverage 

for the other hemisphere. 

 

(ii) The file containing the number of observations in each cell of a global 

grid had its monthly data in reverse order to the main temperature file 

(i.e. listed in order from latitude 90°S to 90°N rather than 90°N to 90°S). 

 

(iii) The same file as for (ii) above had fields where the data was too large for 

the number of bytes allocated, these fields containing '*******', which is 

the "field overflow" indicator for the Fortran programming language. 

 

In all likelihood these problems have existed since 2012, when HadCRUT4 replaced 

the earlier version, HadCRUT3 and perhaps even before then.  In February 2016 these 

errors were reported by the author to the Climatic Research Unit and the Hadley 
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Centre, both of which promptly corrected the files and advised users of the changes26.  

Whether more subtle data processing errors exist in other files is unknown but 

attention to detail appears to be missing. 

 

8.2.6 Other issues 

 

Several other inconsistencies, unexplained differences and uncertainties were 

identified in the HadCRUT4, CRUTEM4 and HadSST3 datasets.  Some are few in 

number of instances but cast doubt on the overall quality of the processing of data and 

documentation associated with it. 

 

18. Despite the HadCRUT4 dataset being created from the same data as the 

CRUTEM4 and HadSST3 datasets the HadCRUT4 grid cell data sometimes 

differs inexplicably from CRUTEM4 and HadSST3 data even after allowing 

±0.1°C for the ensemble nature of HadCRUT4.  

a. Of just over 2 million instances of either CRUTEM4 or HadSST3 but 

not both having data for a given grid cell and month the HadCRUT4 

value differs by more than 1.0C from the single other dataset in 34,435 

instances, all but one being differences from CRUTEM4 data. 

b. In two instances the HadCRUT4 dataset contains data for a given grid 

cell and month and yet neither CRUTEM4 nor HadSST3 have data for 

that cell and month.  

c. When an even wider HadCRUT4 allowance of ±0.125°C was applied 

four instances of HadCRUT4 values were found to be outside the range 

of the two values given by the CRUTEM4 and HadSST3 datasets for the 

same grid cell and month. 

 

19. Annual average CRUTEM4 and HadSST3 global average temperature 

anomalies differ with SST averages generally being greater than CRUTEM4 

averages in the late nineteenth century but generally less than CRUTEM4 in 

the last 30 years (i.e. 1986-2015).  As discussed earlier, the difference in the 
                                                
26 See above subheading "File Formats" on web page  https://crudata.uea.ac.uk/cru/data/temperature/ 
and at top of http://hadobs.metoffice.com/hadsst3/  
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early period might be due either to the bias towards European data (see above 

in this section), to incorrect downward adjustment of observation station data 

(see below this section) or to the incorrect bulk upward adjustment of SST 

data (ditto) but the later (1986-2015) lacks a good explanation. 

  

20. The data sources for coastal grid cells, i.e. observation stations or sea surface 

temperature measurements, have changed over time for most coastal grid cells 

with only about 17% of HadCRUT4 data being from a consistent source.  This 

lack of consistency can cause temperature anomaly trends that might not be 

present if the data was from a consistent source and, given that coastal grid 

cells account for 28% of the Earth's surface, the impact on the global average 

temperature anomaly might be significant. 

 

21. If step-wise adjustments are made to observation station data to remove the 

influence of urbanisation there is a very real danger that earlier data will be 

excessively adjusted downwards, this causing falsely exaggerated upward 

trends.  Given that adjustments are far more likely to be decreases than 

increases this would mean a systemic bias.  

 

22. The CRUTEM4 station metadata supplied by the CRU gives no indication of 

any corrections or adjustments that have been made to the data either by the 

national meteorological service (NMS) supplying the data or by the CRU 

itself.  This severely limits any thorough audit but the presence of outliers and 

obvious errors in the data indicate failings in quality control both by the NMSs 

and the CRU. 

 

23. The different methodologies for obtaining sea surface temperatures are well 

known but this thesis has identified that the bulk adjustments to SST data to 

take into account those changes in methodology, derived from sudden shifts in 

SST averages, could be excessive because changes in coverage can account 

for part or all of those shifts in SST. 
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24. The adjustments to SST recordings to take into account the depth into the 

water are questionable given the thermal layering that irregularly occurs 

particularly in calm tropical waters. 

 

25. The ICOADS database, from which SST data is obtained for the creation of 

HadSST3 and HadCRUT4, contains instances of temperatures measured while 

ships were in port, which typically means in shallow, calm water, sheltered 

from winds and ocean currents, and potentially in areas where rivers, stream 

and drainage will deposit local water that might be at different temperature to 

the ocean.  The number of such measurements across the entire ICOADS 

database is unknown.  This problem could give rise to systematic errors (offset 

biases), as the amount of data recorded while ships were in port is likely to 

have changed over time. 

 

26. The presence of erroneous transcriptions of hand-written data, questionable 

differences in simultaneous observations made by ships less than 100km apart 

in the Mediterranean Sea and ship's locations that are on land suggest that 

ICOADS data quality control is poor.  Whether the Hadley Centre has taken 

steps to correct or exclude such errors and inconsistencies is unknown.  

 

8.2.7 General conclusions 

 

Data prior to 1950 is unsatisfactory for the calculation of global or hemispheric 

averages due to (a) low coverage of the Earth's surface, (b) lack of homogeneity of 

coverage, (c) the high percentage of SST grid cells with data based on from 1 to 5 

observations in entire months and (d) the likelihood that observation station data prior 

to this time has been adjusted multiple times meaning a risk of compounded errors.   

Data at grid cell or even regional level might be satisfactory for localised studies but 

should be checked prior to its use. 

 

On the basis of improved coverage, increased SST sample sizes and less likelihood of 

adjustments to the data the post-1950 HadCRUT4 data is better but, as shown earlier, 

not completely free from errors. 
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Climate assessment reports by the Intergovernmental Panel on Climate Change focus 

on post-1950 data but give no explicit reason for doing so. This concurs with the 

finding shown here.  

 

 

8.3 Less significant issues 

 

A number of lesser issues were identified and while each might have very limited 

influence at a larger scale they might be relevant when making use of the HadCRUT4 

data and associated files: 

 

1. Decreasing the grid cell size will decrease the number of grid cells in which 

observations were made and therefore reduce coverage, while increasing the 

grid cell size will have the opposite effect.  On this basis the hemispheric and 

global coverage determined from the HadCRUT4, CRUTEM4 and HadSST3 

datasets is a consequence of the grid-based system being used and the size of 

each grid cell.   

 

2. The number of reporting observation stations has varied over time and 

therefore also the number of grid cells that report that data. At times the 

number of stations from the 48 contiguous states of the USA, accounting for 

only 36 of the 2592 HadCRUT4 grid cells that cover the Earth's surface, 

exceeded 50% of the total number of stations. While the use of grid-cell 

averages negates most of that disproportionate representation discussion of the 

number of stations needs to be taken with caution. 

 

3. The annual average of monthly SST observations did not exceed 

10,000/month until 1880 and did not exceed 100,000 until 1960. The number 

of monthly SST observations increased to about 328,000 by 1999 and grew 

rapidly to over 1,200,000 by 2015, largely due to the number of observations 

from Argo buoys especially near the coastline of the USA. 
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8.4 Statistical issues 

 

A number of statistical issues were identified in earlier chapters of this thesis and they 

are as follows: 

 

The analysis of CRUTEM4 observation station-month combinations for the period 

1961-1990 showed that even when data is present for all 30 instances of a given 

calendar month and station 13.9% (more than 1 in 8) of all such combinations have 

Shapiro-Wilks p-values of ≤0.1, indicating that the complete data record for the 

station-month is unlikely to be normally distributed.  Care therefore needs to be taken 

when attempting to draw conclusions that assume normal distribution when 

discussing a small number of stations.  

 

Error margins should be expressed at every step in the sequence of monitoring, 

adjusting and averaging data. With data from observation stations this means from 

error margins associated with the method by which temperatures are measured, 

through the averaging of daily minimum and maximum temperatures across the 

month, any adjustments of the recorded data, the calculation of temperature anomalies 

using long-term average temperatures, the averaging of anomalies for each station 

within the grid cell and finally the calculation of hemispheric and global averages. 

 

In a similar fashion the deriving of sea surface temperature anomalies also involves 

steps that should be accompanied by error margins, from measuring the water 

temperature, the averaging of it at grid cell sizes of 1° x 1° over pentads (5-day 

intervals) and then its interpolation, extrapolation and averaging to convert it to 

monthly values for 5° x 5° grid cells. 

 

As mentioned earlier in this chapter, the sample size changes from one month to the 

next either as changing numbers of reporting observation stations, sea surface 

temperature observations per grid cell, or at a later stage in the process, the number of 

grid cells that contain data when calculating the average for the hemispheric. This 

means that if the error margin is calculated using as the denominator the square root 
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of the sample size that error margin is constantly changing at each level through the 

processing sequence.  The calculated error margin amounts to nothing more than an 

estimate based on assumptions about the likely distribution had more data been 

available.  These assumptions might be reasonable when little data is missing but they 

are less reasonable when large amounts of data are absent and of course error margins 

are subject to skewing when outlying data is included.  

 

The true error margin for HadCRUT4 would be extremely difficult to calculate 

because every step in the process of measuring each temperature through to the 

production of hemispheric or global averages, including all data adjustments and any 

merging with any other data, would need to be examined in detail and the context 

(coverage and number of stations) constantly varying.  The number of error margins 

to take into account would be enormous, many of them prior to the submission of data 

either directly to the CRU (for observations) or to the inserting of the data into the 

ICOADS database (from where the SSTs are accessed by the Hadley Centre). 

 

 

8.5 Some general issues with observation station data 

 

The approach to measuring temperature, even according to WMO standards, is more 

aligned to making comparative weather observations than to considering long-term 

climate variations.  As a consequence of this there are several areas of concern when 

the data is used in climatological studies. 

 

Firstly, temperate data from observation stations is measured between 1.5 metres and 

2 metres in the atmosphere above the Earth's surface and sea surface temperature 

measurements are made just below the sea surface. In many respects the earth and sea 

surfaces are the worst locations to measure long-term temperature trends even though 

they are of most interest to humans.  This is because larger temperature fluctuations, 

both spatially and temporally, occur at these boundaries with the Earth's atmosphere 

than occur at higher levels in the atmosphere or deeper in the ocean. Heat exchanges 

between the two mediums will take place, sometimes producing steep temperature 

gradients, and the conditions and therefore the measured temperature will by 
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influenced by varying meteorological forcings (e.g. wind speed and direction, surface 

moisture, ground cover, ocean turbulence).  

 

Secondly, data from observation stations has many potential flaws: 

 

• The mean temperature is determined from just two measurements over a 24-

hour period, the minimum temperature and the maximum temperature, both 

susceptible to short-term weather influences such as cloud, rain or wind. 

 

• Especially in mid-latitudes, minimum temperatures on clear-sky mornings are 

typically recorded within ~5 minutes of sunrise, which means that the sun is 

low in the sky and therefore under conditions where the solar radiation could 

easily be impeded by landscape, vegetation or manmade structures. . 

 

• Urbanisation is a significant issue and its influence on recorded temperature 

can change over time either abruptly with the construction of buildings near 

observation stations or more gradually as the pattern of generation of 

manmade heat changes (e.g. changing traffic patterns). 

 

• The WMO standard of recording minimum and maximum temperature for the 

last 24 hours as they stand at 9:00am is far from ideal given the chances in mid 

to high latitudes of the minimum temperature for two 24-hour periods being 

recorded within just a few hours of each other (see Chapter 6). 

 

• Adjustments to recorded temperatures are very common but rely heavily on 

possibly invalid assumptions about the relationship between the temperatures 

measured at different location.  It has also been shown that several different 

methods of homogenisation have been attempted and that different methods 

produce different outcomes for the same data. 
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8.6 Comments about the discussion of HadCRUT4 reliability in 

Jones (2016) 

 

Jones (2016) discusses the reliability of the HadCRUT4 dataset and associated 

datasets.  Earlier chapters of this thesis have addressed several issues that Jones 

(2016) mentions. 

 

Jones (2016) claims that large-scale area averages are reliable even when the data is 

sparse, even citing an earlier study, by the same author (Jones, 1994), that found that 

the sparse network of observation stations in the second half of the 19th century was a 

reliable indicator of global averages on decadal time scales.  Such a statement is 

unsustainable because there is no means by which it can be judged.  Moreover it has 

been shown that the contribution of certain latitude bands, longitude bands and 

regions such as Europe was well in excess of their true proportionate area of the 

hemisphere (Chapter 2), which means that hemispheric and global averages were 

skewed towards the temperatures recorded in these areas. 

 

The paper (Jones, 2016) also argues for an upward adjustment of sea surface 

temperatures measured by drawing water samples in buckets between 1900 and 1941, 

presumably based on the change to temperature measurement via engine room intake 

and the corrections claimed to be required. Chapter 7 of this thesis has shown that 

variation in global coverage of SST data, brought about by a contraction of shipping 

during war-time, might account for much of the "spike" in SST global averages on 

which the adjustments are based.  Jones (2016) goes on to say, "If the adjustments 

were not applied then century-timescale warming would be greater, and there would 

be a major discrepancy between the land and marine components prior to about 

1940."  This argument is questionable given that many historical temperature 

observations over land have been adjusted at least once for a change from manual to 

electronic instruments and many have been adjusted for urbanisation.  The accuracy 

of land temperatures prior to 1940 is very debatable so comparing them to sea surface 

temperatures is of questionable value when apparently Jones is unconcerned about the 

discrepancy between the two sets of temperatures over the last ~25 years.   
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Jones (2016) also says that the relative correspondence between the HadCRUT4 

dataset and the other global temperature datasets (eg. NASA-GISS, GHCN) is "a 

testimony to the robustness and accuracy of the resulting homogenized data".  It is no 

such thing because national meteorological services adjust their own data prior to 

supplying it to the CRU and are hardly likely to supply completely different data to 

the GHCN database.  In other words the datasets are similar not because of the 

homogenized data but because the datasets share the same data. 

 

Jones (2016) also attempts to dismiss the urbanization effect on measured 

temperature, claiming that differences between urban and rural areas might have 

meteorological explanations, but such a claim conflicts with the widespread attempts 

to mathematically remove the effects of urbanization from temperature records in the 

belief that the distortions have non-meteorological causes.  In section 6.3.2 we saw 

how alternative adjustments to raw data from seven observation stations in New 

Zealand resulted in an average trend of 0.32°C/century for the five stations in urban 

areas but just 0.2°C/century for the two rural stations. 

 

The treatment of urbanization is somewhat simplistic in Jones (2016) because, as 

McKitrick (2013) shows, a variety of situations can cause an apparent temperature 

trend and a trend in a rural area can, for a variety of reasons, be greater than a trend in 

an already urban area. McKitrick (2013) also points out that apparent conflicts in the 

results of different studies is likely due to the absence of common evaluation 

frameworks. 

 

Jones (2016) goes on to claim that urbanization is not an issue because the data over 

land is similar to SST data, having argued (see just above) that the SST data was 

adjusted to match data from land-based observations.  Later it claims that adjustments 

for urbanisation have no net effect, which is an admission that adjustments were made 

and a dubious assertion of the correctness of those adjustments given the discussion in 

chapter 6 about urbanization adjustments. 

 

In total the claims of Jones (2016) are weak.  They also fail to include many of the 

findings mentioned earlier in this chapter, especially the presence of outliers and their 

distorting influence, and that their presence implies poor quality control. 
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8.7 Towards a more accurate global temperature dataset 

 

So far this chapter has noted several of the failings or at least areas of concern with 

the HadCRUT4 dataset.  It is now time to consider some possible improvements that 

would make the best use of the available historical temperature data rather than reject 

it completely.  

 

Satellite-based observations would seem to be the future of temperature monitoring 

because their coverage is more complete (Christy et al, 2000; Spencer & Christy, 

1992).  Being usually from a single satellite, on the rare occasions when data 

adjustment is required (e.g. a change of satellite) the conversion is applied generally 

rather than, as is the practice with HadCRUT4 data, adjustments being made to 

individual sea surface temperature measurements or specific to part of the data record 

from an individual observation station. 

 

Satellite-based measurements, via microwave sensor units (MSUs), are available only 

since 1978, which means they are of limited historical value.  Radiosonde 

atmospheric temperature measurements offer some advantage because the atmosphere 

even at 1000m is more laterally homogenous than very close to the Earth's surface.  

Radiosonde measurements are available since 1958, albeit not gridded but either for 

the 87 individual stations that launch balloons with these instruments or for mean 

values over large scales such as global, hemispheric, tropical and extratropical.  

Likewise Argo buoys seem to offer the most accurate sea surface temperature data but 

they have been in widespread use for less than two decades. Temperature data from 

satellites and Argo buoys would be recommended if the aim was only to create a more 

accurate future set of temperature data but to do so would be to reject virtually all of 

the data collected since 1850 and have no historical temperature record of any length. 

  

The alternative dataset proposed here aims to make best use of the available historical 

temperature data and make minimal, if any, adjustments, and with fewer uncertainties 
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than the HadCRUT4 dataset.   The utilising of available data is key if the new dataset 

is to have historical value. 

 

The following are some recommendation for such an alternative dataset.  They are 

listed in point form with each followed by the reasoning behind the point. 

 

General 

 

1) A new climate reference network system to be established comprised of non-

urban observation stations and a separate specific set of grid cells for sea 

surface temperatures, with the reference network ideally evenly distributed 

across all latitudes and longitudes. 

 

The use of a reference network of non-urban station avoids any contamination 

(UHI effects, manmade shielding) from urban environments, and for SSTs 

reduces several uncertainties (e.g. quantity and continuance of data, 

estimations, data processing issues such as interpolation).  Effort will be 

needed to maintain or improve the quality of data from this network because 

its utility relies on that quality, which might mean ongoing constraints to any 

changes in the local environment. 

 

 

2) The observation stations and SST grid cells should be distributed as evenly as 

possible across latitudes and longitudes 

 

The aim of an even distribution across latitudes and longitudes is to ensure a 

reasonably representative coverage of the Earth's surface, albeit with 

coverage being a lesser concern than high quality data from a set of consistent 

environments.   

 

 

3) In order to minimise the uncertainties due to missing data the start year of the 

data needs to be the point at which very little data is missing (e.g. 90% of the 

network providing data). 
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This starting point cannot be locked to a specific year and month without first 

knowing the availability of the data because data quality is a primary concern. 

 

 

4) No reference locations to include coastal grid cells 

 

No coastal data should be used because the local environment inconsistently 

distorts it. Observation station data is impacted by the buffering effect of the 

ocean and offshore winds, and sea surface temperatures are potentially 

coming from areas of shallower water, coastal currents or impacted by 

onshore winds. Data for the reference network is therefore only from 

observation stations and SST measurements. 

 

 

5) The two datasets, one land and one sea, to be referred to as reference networks 

to clearly define their composition. 

 

The terminology "reference network" also makes it clear that global coverage 

is irrelevant and that the average of the network values are not a global 

average but from temperature anomalies at a consistent set of representative 

locations. 

 

 

Observation station data 

 

6) The selected stations to be non-urban but also with further constraints of 

consistency of the local environment subjected to ensure a minimum of non-

meteorological temperature forcings (very low if any nearby human 

population, no natural or manmade shielding, no changes of land use etc.) 

 

Only non-urban observation stations should be used in order to avoid both 

any Urban Heat Island effect and any adjustments that might have been made 

to the data when stations were relocated as a consequence of that effect.  The 
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constraints on the local environment are to try to limit temperature variations 

to only meteorological causes. 

 

 

7) The mean monthly temperature, as the average of the mean daily minimum 

and mean daily maximum temperature, to be replaced by the median daily 

maximum temperature across the month 

 

The maximum temperature to be used because the minimum is frequently 

recorded shortly after sunrise when the sun is low in the sky and can easily be 

blocked by landscape, vegetation or manmade objects, the maximum usually 

occurring before the sun is similarly low in the western sky.  Further, the 

maximum temperature is usually of greater importance and the focus on one 

rather than two temperatures removes one factor with uncertainties.  The use 

of the median value for the maximum temperature rather than mean is to avoid 

the mean temperature potentially being skewed by short periods of abnormal 

weather.  Using the median value also avoids any implication that the data 

precision is at greater than one decimal place. 

 

 

8) In line with the immediately above, the long-term average for a given calendar 

month to be replaced with the long-term median maximum temperature over a 

time period of at least 30 years with minimal weather or climate abnormalities.  

 

The use of a long-term median temperature again minimises any distortion 

caused by abnormal weather conditions. 

 

 

9) Anomalies to be derived from the monthly daily median and the long-term 

median maximum for the corresponding month 

 

This point is consistent with the two points immediately above it and has the 

side-effect that the anomalies will be at similar precision to both the values 

used to calculate it and the original temperature measurements.  This is in 
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contrast to the current system that records to one decimal place but the 

subsequent calculation of monthly mean temperatures, long-term average 

temperatures and monthly anomalies are at multiple decimal places. 

 

 

Sea surface temperature data 

 

10) A reference set of sea surface grid cells of size 2° latitude x 2° longitude to be 

established with those grid cells distributed as evenly as possible across the 

latitudes and longitudes but free of inconsistent external influences. 

 

The current SST grid cells at 5° x 5° are too large both for data collection and 

accurate representation with a single value.  As shown earlier, the current 

methodology of 1° x 1° and 5-day pentads requires a minimum of 150 

observations in a calendar month if interpolation is to be avoided when 

converting to the 5° x 5° grid cell size.  Reducing the size to 2° x 2° will 

reduce the current uncertainties.  (Moored Argo buoys offer quality SST data 

at fine granularity but they have been used for very little of the temperature 

record.)  These grid cells should be located away from influence of 

significant ocean currents (e.g. Gulf Stream, Humboldt and Kuro-Shio), 

subsea shelving, sea mounts, coastal continental shelfs, river deltas, extended 

shallow areas and the influence of ocean gyres because all can distort 

measured sea temperatures. 

 

 

As well as the above, the complete set of observation station data should be carefully 

reviewed and any data adjustments reconsidered at a level that takes into account 

variations in exposure at comparison sites. All temperature adjustments should be 

fully detailed so users of this data might make informed decisions about data quality. 

 

 

8.8 Concluding remarks 
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This analysis and audit of the HadCRUT4 temperature anomaly dataset has revealed 

many serious concerns about its accuracy.  It has not been possible to establish the 

error margins because the quantity of data changes every month, either as 

observations report or fail to report data or as the number of observations of sea 

surface temperature changes.  

 

HadCRUT4 data prior to 1950 is unsatisfactory, particularly due to low coverage and 

poor distribution of what little coverage there is. Overall coverage even by the 

HadCRUT4 method of calculation is low and only exceeds 50% in few of the years 

prior to 1950.  Even in the mid 1940's coverage of the southern hemisphere sea 

surface temperatures is often below 20%.  Pre-1950 data from observation stations is 

not greatly better.  Stations that did report data are likely to be in urban areas or areas 

that since 1950 have developed into urban areas, which means either the data has been 

distorted by the urban environment or adjusted to try to remove the influence of 

urbanisation with unknown and unknowable degrees of success.  Temperature data 

adjustments are sequential so all things being equal older data is more likely to have 

been adjusted multiple times. 

 

Data since 1950are more complete than earlier data but still not without concerns.  

Even at the end of 2015 data are unavailable for about 12% of the Earth's surface.  

The majority of HadCRUT4 data is SST data and it suffers from assumptions about 

the methodology being used and the associated data adjustments, the homogenisation 

of observation station data remains questionable and the accuracy of the vital long-

term average temperatures on both land and sea remain under a cloud. 

 

At the end of the day the HadCRUT4 dataset is comprised of estimates at almost 

every level, covering the rounding of instrument measurements, the adjustment of 

recorded data and through to the calculation of global average temperature anomalies 

(which implicitly estimate that had coverage been 100% the average would be the 

same), but they are not estimates in which one can have great confidence. 

 

***** 
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Part 2 

 

 

 

 

Papers, both published and drafted, dealing with three 

contemporary issues in climate science. 
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INTRODUCTION TO PART 2 

 

 

Part 1 of this thesis was an initial analysis of the HadCRUT4 dataset that highlighted 

many problems with its creation. Part 2 of this thesis contains three papers, one 

already published and two in draft form. 

 

 

The first of these chapters is a reformatted version of a paper (McLean, 2014) written 

and published in the course of my candidature.  It uses the HadCRUT4 temperature 

dataset that was the subject of Part 1 and presents some plausible reasons for the 

pattern in HadCRUT4 global average temperature anomalies from 1950 onwards. It 

accordance with Part 1 it explicitly ignores earlier HadCRUT4 data. 

 

The second chapter is a draft of a forthcoming paper that investigates the Troup 

Southern Oscillation Index (SOI), a key measure of the state of the El Niño-Southern 

Oscillation (ENSO).  Short term fluctuations, caused by the manner in which it 

derived, result in a "noisy" data sequence, with implicit uncertainty about the 

relevance of short term interruptions to SOI sequences and when those sequences 

commence and end.  The derivation of the Troup SOI is discussed and an alternative 

ensemble index, the average of multiple indices calculated in the same manner as the 

Troup SOI, is proposed.  

 

The third chapter is also a draft of a forthcoming paper for publication.  It uses four 

different approaches to indicate whether severe and widespread bleaching of coral on 

the Great Barrier Reef was likely to have occurred prior to 1998, which some people 

claim or imply was the first such outbreak in the last 100 years.  
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Chapter 9:  Paper - Late Twentieth-Century Warming 

and Variations in Cloud Cover 

 

9.1 Introduction 

 

This chapter consists of a reformatting of a paper (McLean, 2014) that draws on some 

of the findings about the HadCRUT4 dataset made by that time (see Part 1). In this 

reformatting table numbers and figure numbers have had the chapter prefix added to 

them for consistency with other chapters, but the caption wording and main text are 

unchanged, save for the inserting of reference to an earlier chapter.  

 

9.2 Published Paper 

ABSTRACT 

 

From 1950 to 1987 a strong relationship existed between the El Nino-Southern Oscillation 

(ENSO) and HadCRUT4 global average temperature anomaly, interrupted occasionally by 

volcanic eruptions. After 1987 the relationship diverged, with temperature anomaly increasing 

more than expected, but was re-established after 1997 at an offset of ~0.48°C higher. 

 

The period of increased warming from 1987 to 1997 loosely coincided with the divergence of 

the global average temperature anomalies over land, which are derived from observation 

station recordings, and the global average anomalies in sea surface temperatures. Land-based 

temperatures averaged 0.04°C below sea temperatures for the period 1950 to 1987 but after 

1997 averaged 0.41°C above sea temperatures. 

 

The increase in the global average temperature anomaly and the divergence of land and sea 

surface temperatures also coincided with two significant changes in global average cloud 

cover. Total cloud cover decreased during the period from 1987 to 1997 and, for most of the 

remainder of the period from 1984 to 2009, decreases in low-level cloud were accompanied 

by increases in middle and upper level cloud.  These changes can be found in both global 

average cloud cover and in each of the six 30°-latitude bands.  The impact of these changes in 
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cloud cover can account for the variations in HadCRUT4 global average temperature 

anomalies and the divergence between land and sea temperatures. 

 

Key words: climate change, temperature shift, insolation, ENSO, ISCCP, HadCRUT4 

 

 

 

1. Introduction 

 

The latest report by the Intergovernmental Panel on Climate Change (IPCC, 2013, 

[1]) reports that some climate models overestimate the climate system's response to 

increasing greenhouse gases since 1998, in other words they predicted higher 

temperatures than those observed.  

 

Given that models overestimate the influence of carbon dioxide it follows that the 

relative accuracy of the models for the period 1950 to 1997, as reported in IPCC's 

4AR [2], could only occur if the models under-estimated the influence of other 

forcings. 

 

One forcing that might have been under-estimated is cloud cover. Variations in total 

solar irradiance are often discussed but not variations in cloud cover, but cloud cover 

impedes the flow of radiation, which in general means that it controls the amount of 

radiation reaching the Earth’s surface during the day, and how much heat is lost 

during overnight cooling. 

 

The effect of cloud cover on the net radiation budget of the earth has received much 

attention (e.g. Hartmann et al.[3], and Keihl, [4]), especially in the context of the zone 

of tropical convection, which is essentially the engine driving atmospheric circulation. 

In the tropical convection zone the cooling effect of increased albedo due to clouds is 

largely cancelled by the reduction in outgoing long wave radiation, however there is 

much that is not yet understood about the role of clouds. 
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Relevant papers include Goode and Pallé [5], who briefly discussed variations in 

cloud cover as part of larger paper focusing largely on variations in solar radiation. 

Herman et al [6] also discussed global cloud cover but dealt mainly with surface 

reflectivity at 340nm. Kauppinen et al [7] discussed the impact of both humidity and 

cloud cover on the global mean surface temperature. Eastman and Warren discuss 

long-term trends in cloud over sea [8] and land [9]. The former focuses on marine 

stratus and stratocumulus cloud cover when discussing variations in sea surface 

temperature and the later mentions temperature only very briefly. 

 

This paper will attempt to address the wider issue of variation in cloud cover at all 

levels and in total, and whether this relates to variations in the HadCRUT4 global 

average temperature anomaly. Because temperature is expressed in terms of average 

monthly anomalies, the cloud cover data will likewise be converted to anomalies. 

Volcanic eruptions and the El Nino-Southern Oscillation (ENSO) are recognised 

influences on temperature so those influences will be identified and removed before 

the relationship between the residual temperature and variations cloud cover is 

considered.  

 

 

2. Data Sources 

 

This paper draws on cloud cover data from the International Satellite Cloud 

Climatology Project (ISCCP), at http://isccp.giss.nasa.gov/, and described in Rossow 

and Schiffer [10]. This data includes total cloud cover as well as low, mid and upper 

level coverage, all of which will are used in this paper, but is only available, at the 

current time, for the period from 1984 to 2009. 

 

The primary temperature data is the HadCRUT4 dataset, available via 

http://www.cru.uea.ac.uk/cru/data/temperature/. 

 

Data for the El Nino-Southern Oscillation is the Troup Southern Oscillation Index 

[11] published by the Australian Bureau of Meteorology and available at 

http://www.bom.gov.au/climate/current/soihtm1.shtml. Under the Troup system, 
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sustained values above +8 for at least three months usually indicate La Nina 

conditions and sustained values below -8 usually indicate El Nino conditions. The 

Troup SOI is open-ended and for the period 1950 to 2013 inclusive it averages 0.19 

with a standard deviation of 10.53. The Troup SOI data is preferred to the 3-month 

average of sea surface temperatures in the "Nino 3.4" region (bounded by latitudes 

5N-5S and longitudes 170W-120W) because prior to 1957 data coverage of this 

region rarely exceeded 50% and was less than 75% for many years after, the shortfall 

being mainly in the western half of this region, which might have been the only 

portion impacted by mild ENSO events. 

 

Data for volcanic eruptions, particular for the periods of eruption, was sourced from 

the Smithsonian Institution (see http://volcano.si.edu/search_eruption.cfm). 

 

This paper uses data only since January 1950 for two reasons. The first is that the 

selected period corresponds to the period for which the IPCC claims that warming 

was largely due to human activity, meaning that the findings of this paper therefore 

apply to the same period. 

 

The second reason is that prior to 1950 the coverage of HadCRUT4 temperature data 

for the Southern Hemisphere was below 50% in both World Wars, and fell to just 

23% in 1945. After World War II Southern Hemisphere data coverage increased, with 

only one month during the 1950s below 50% and after the start of 1960 it was 

consistently above 60%27. 

 

The reliability of data during periods of low coverage is one problem but the other is 

that the month-to-month variation during low coverage is usually greater, meaning 

more data "noise" than during periods of greater coverage. For the decade January 

1990 to December 1999, with average global coverage 83.7%, the average absolute 

month-to-month variation was 0.084°C (σ = 0.075°C), whereas for the decade 1940-

1949, with average coverage lower at 56.62%, the variation was almost 50% higher at 

0.122°C (σ = 0.092°C). 

                                                
27 This paragraph refers to the issue of coverage that is more completely dealt with in chapter 2 of this 
thesis. 
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3. Analysis 

 

3.1 Resolving a Residual Temperature 

 

The first step towards investigating the possible influence of cloud cover on the 

HadCRUT4 global average temperature anomaly is to establish a residual temperature 

anomaly from which the impacts of the ENSO and volcanic eruptions have been 

removed. 

 

Large volcanic eruptions, particularly in the western Pacific, appear to have an impact 

on the global average temperature anomaly. Table 9-1 shows four volcanoes that are 

regarded as having a noticeable impact on the global average temperature since 1950. 

The displayed metrics of Volcanic Explosive Index (Lamb [12], [13] and [14]; 

Newhall and Self [15]) and the Dust Veil Index (Global) indicate their relative 

strengths. 

 

 

Volcanic eruption  Duration  VEI DVIG 

Agung Feb 1963 - Jan 1964 5 800 

Awu Aug 1966 - Oct 1966 4 200 

El Chichón Mar 1982 - Sep 1982 5 800 

Pinatubo Apr 1991 - Sep 1991 6 Not available 

Table 9-1 – Four major volcanic eruptions of the late twentieth century.  

 

Volcanic eruptions are a challenge when working with climate statistics. It is difficult 

to compare these in any simple way because the VEI scale is logarithmic. A VEI of 4 

means in the range 0.1 km3 to 1km3 of ejected tephra; a VEI of 5 is from 1km3 to 

10km3 and so on. If an eruption rated as VEI 4 is near the lower end of that band and 

an eruption rated 5 is near the upper limit of that band the difference in ejected tephra, 

and presumably sulphides that cause cooling, could be a factor close to 100. 
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In passing it is noted that the first three of the eruptions listed in Table 9-1 occurred in 

the period from 1961 to1990. The HadCRUT4 temperature dataset is derived from the 

variation (or "anomaly") from the long-term average temperatures for each calendar 

month over this same period, which means that monthly "normals" are lower than 

what they would be had no volcanic eruptions occurred and that the calculated 

anomalies are higher. 

 

Determining the influence of volcanic eruptions on temperature is problematic. 

Various previous attempts have attempted to use either the Dust Veil Index (DVI) or 

estimates of cooling. The use the DVI is flawed because it is derived from the 

temperature, thus making the argument circular (Robock [16]; Bradley and Jones, 

[17]). Using the aerosol optical depth (AOD) to estimate cooling, such as the 

technique used by Sato et al [18], is uncertain because there appears to be no accepted 

factor for converting AOD into a temperature change. The other approach to 

estimating cooling relies on models of uncertain accuracy, which is probably 

inevitable when trying to calibrate them against temperature data with its short-term 

fluctuations, and consequently the error margins are large. 

 

A further complexity is the potential link between volcanic eruptions and ENSO 

conditions (Gu and Adler [19]). El Nino events often follow volcanic eruptions in the 

western Pacific (Wigley [20]; Emile-Geay et al. [21]). Empirical data indicates that 

the cooling due to the eruption substantially counterbalanced the warming influence 

of the El Nino events. 

 

Because both the cooling and warming attributable to the two phenomenon are less 

than expected had they occurred without the other this situation distorts any 

calculation of the "average" impact of such events. In turn, this impacts on the 

calculation of a "residual temperature" that remains after removing the influence of 

volcanic eruptions and the ENSO. Accordingly, the simplest interpretation of the 

long-term temperature records is achieved by omitting the data for the period over 

which major eruption caused cooling (cf. Figure. 8.2). This is unlikely to have much 

impact on residual temperature because the influence of volcanic eruptions is 

transitory with a maximum of about three years and there is no evident trend in 

volcanic eruptions during the period of this study (1950-2013).  
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3.2 The El Nino-Southern Oscillation (ENSO) 

 

The ENSO is widely recognised as having a significant impact on weather patterns 

both in and around the Pacific Ocean and as far away as the continents of Africa (e.g. 

Korecha and Barnston [22]; Ogutu et al.[23]) and Europe (e.g. Shaman and 

Tziperman [24]; Brönnimann et al. [25]).  

 

The ENSO has also been found to influence global average near-surface temperature 

and Trenberth et al. [26] and Jones [27] found an optimum correlation between ENSO 

and global average temperature when using the time-lagged ENSO data from six 

months earlier but de Freitas and McLean [28] found the lag time varied between four 

and five months when data from 1950 to 1995, 1950 to 2000, 1950 to 2005 and 1950 

to 2012 was considered. 

 

Figure 9.1 shows the Troup SOI and HadCRUT4 global average temperature anomaly 

for the period from1950 to 2013 inclusive with no time lag to the SOI data. (As with 

other graphs in this paper a 5-month centred average is used when plotting, but 

monthly data is used in analyses.) 

 

The vertical axes in Figure 9.1 are scaled for optimum correspondence across the 

period 1950-1985. The graphs show a generally close relationship, with the SOI 

leading the HadCRUT4 temperature data slightly, from 1950 until the late 1980s and 

an offset of ~0.5°C after about 1995. 
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Figure 9.1 - HadCRUT4 global average temperature anomalies and Troup SOI, both using 5-
month centred averaging (i.e. from -2 months to +2 months), with major volcanic eruptions 
indicated 

 

Both signals have significant short-term fluctuations (i.e. "noise"). The SOI is more 

susceptible to short-term weather effects because it is derived from air pressure 

monitoring at just two locations, Darwin, Australia and Tahiti. The month-to-month 

variation in the Troup SOI averages 6.87 (σ =8.74) from 1950 to 2013 but the 

variation differs across the calendar year with a maximum of 9.88 (σ =7.33) in May 

and then falls to a September low of 4.46 (σ = 3.45). 

 

The month-to-month variation in HadCRUT4 data averages 0.076°C (σ = 0.103°C) 

across the entire period, with December to March all exceeding 0.08°C and June to 

September averaging between 0.04 and 0.05°C. Temperatures over land show a 

greater month-to-month variation than sea surface temperatures. The CRUTEM4 

average across all months is 0.182°C (σ =0.164°C) compared to the HadSST3 average 

of 0.039°C (σ =0.031°C) 

 

The temporary periods of divergence in Figure 9.1, when temperature are lower than 

expected from the SOI value (i.e. 1964-66, 1983 and 1991-1993) have been attributed 

to cooling caused by volcanic eruptions near the tropical Pacific (Agung 1963, Awu 

1966, El Chichón 1982 and Pinatubo 1991) (Hansen et al [29]; Dutton and Christy 

[30]; Douglass and Knox [31]). The two later periods illustrate the issues discussed 
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earlier. Cooling due to El Chichón appears to be less than expected, with Angell 

(1988, 1990) attributing blame on the El Nino event that followed, whereas the 

Pinatubo eruption appears to have caused cooling and reduced the impact of the El 

Nino event that followed it. 

 

The first step in determining the relationship between the Troup SOI and global 

average temperature anomaly until the late 1980's, the period of good correspondence 

in Figure 9.1, was the exclusion of the data for the periods of cooling due to volcanic 

eruptions. These periods are February 1963 to June 1967 (Awu eruption closely 

followed by Agung) and from March 1982 to September 1983 (El Chichón), which 

are extensions on the periods of eruptions shown in Table 9-1. 

 

The second step was to find the optimum correlation between the HadCRUT4 and 

Troup SOI data when the latter was lagged by different numbers of months. This 

optimum was found to be -0.551 when using the SOI from three months earlier. The 

correlation appears to be reduced by two main factors, firstly the month-to-month 

variation (or data "noise") discussed above and secondly possibly minor volcanoes in 

1955, 1972 and 1975 (Figure 9.2). 

 

 

 

Figure 9.2 - HadCRUT4 and Troup SOI for the period 1950-1987(monthly averages). 
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After applying the three-month time lag in SOI to the 1950-1987 data with periods of 

eruption-driven cooling omitted, the linear equation of best fit was found to be. 

 

 GATA = (-0.0083 * SOI) - 0.021 (equation 1) 

 

where GATA is the HadCRUT4 global average temperature anomaly and SOI is the 

Troup SOI (from three months earlier). 

 

Applying the same time lag to the 1998-2012 data, which on visual inspection appears 

to be a time of relative consistency in relationship, resulted in a different equation of 

best fit. 

 

 GATA = (-0.0049 * SOI) + 0.465 (equation 2) 

 

The R2 values for the two equations are 0.304 and 0.196 respectively; the weaker 

correlation in the second period suggesting that temperature variability during that 

period is somehow different to the earlier period. 

 

The above calculations assume a linear relationship between the SOI and HadCRUT4 

global average temperature anomaly. It is however possible that the relationship 

varies on a seasonal basis, as do temperature and prevailing winds, or in the case of 

regions where rainfall correlates well with the ENSO, a sustained El Nino or La Nina 

event could influence the amount of surface moisture, which in turn might impact 

near-surface temperature until such time as the surface moisture returns to normal 

levels. 

 

The 95% percentile of the magnitude of the influence of the ENSO on global average 

temperature anomalies can be approximately determined by applying two standard 

deviations of the monthly Troup SOI data to equation one. For the period for which 

equation 1 was calculated, the standard deviation is 9.68 and therefore two standard 

deviations implies a temperature anomaly contribution of 0.16°C. 
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The addition of the constants in equations 1 and 2 total almost 0.49°C, indicating a 

temperature shift of approximately that amount occurred between 1988 and 1997, i.e. 

the intervening period between the two for which calculations were made. 

 

Figure 9.3 shows the derived residual global average temperature anomaly for the 

period 1950-2012 after the ENSO influence, as derived from the 1950-1987 ENSO-

temperature relationship, and with the periods of volcanic eruption-driven cooling 

omitted, i.e. the two periods as above (February 1963 to June 1967 and March 1982 to 

September 1983) and additionally Pinatubo (June 1991 to December 1994). 

 

 

 

Figure 9.3 - Residual global average temperature anomaly after removing the ENSO influence 
derived from the Troup SOI (using equation 1) and the data for periods of cooling due to 
volcanic eruptions (5-month centred average). 

 

 

Figure 9.4 expands on Figure 9.2 by showing the number of months where the 

residual temperature anomaly was less than -0.2°C or greater than +0.2°C in each 

year. To put this range into context, it is slightly less than two standard deviations of 

month-to-month variation HadCRUT4 global average temperature anomaly described 

above (σ = 0.103°C). 
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Figure 9.4 - The number of months in each year that the residual temperature anomaly was 
outside the range 0.0 ± 0.2°C. 

 

 

The presence of the temperature shift in multiple temperature datasets, including near 

surface (HadCRUT, GISS and NCDC) and the lower tropospheric temperatures 

obtained from balloon-mounted instruments (RATPAC-A) and satellite-mounted 

instruments (UAH, and RSS) indicates that the shift is not an artefact of monitoring 

(e.g. technique, instrument error, number of stations, coverage) or the data processing 

methodology (e.g. station data adjustments). Similar shifts in the temperature-ENSO 

relationship are also found when the Nino 3.4 index is used, which means that the 

shift is not specific to the Troup SOI. 

 

The residual global average temperature anomaly shown in Figure 9.3 differs from 

those calculated in other studies such as Trenberth et al. [26], Thompson et al. [32] 

and Foster and Rahmstorf [33]. Two of these three studies used temperature data prior 

to 1950, when hemispheric (and global) coverage was poor, and none identified the 

combination of post-1987 increase in temperature and post-1997 plateauing. 

 

Further, Trenberth et al [26] attempts to split the ENSO-temperature relationship into 

two periods, 1950-1978 and 1979-1998, and because the change in the relationship 

after 1987 wasn't identified concludes that only 0.06°C of the warming between 1950 

and 1998 could be attributed to the ENSO. Thompson et al [32] attempts to use sea 
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surface temperature of the eastern Pacific cold tongue as an ENSO proxy across the 

period from 1900 to 2009 but data in that region is sparse prior to 1950 and 

particularly unreliable for determining mild ENSO conditions. Further, the ENSO 

relationship is derived prior to addressing the irregular cooling caused by volcanic 

eruptions, which were shown earlier to suppress ENSO-driven warming. Foster and 

Rahmstorf [33] considers only the period since 1979 and therefore largely omitted the 

period from 1950 to 1987 during which the global average temperature anomaly 

varied little. 

 

The pattern in residual temperature anomaly of Figure 9.3 indicates warming from 

1988 to 1997, the details of which are masked by cooling caused by the Pinatubo 

eruption, followed by a flattening. 

 

 

3.3 Divergence of Land and Sea Temperature anomalies 

 

Perhaps associated with this pattern is that 1988 was the beginning of the divergence 

between the global average temperature anomalies derived from observation stations 

(CRUTEM4) and those derived from sea surface temperatures (HadSST3). Figure 9.5 

shows these two anomalies using five-month centred averages but the averaging 

spreads the effect of brief peaks in single months.  
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Figure 9.5 - CRUTEM4 and HadSST2 global average temperature anomalies (5-month centred 
averages) 

 

 

For the period 1950 to 1986, CRUTEM4 values exceeded HadSTT3 data by more 

than 0.1°C in 24.1% of all months and only three years had more than six months that 

met this condition. In contrast, since 1988 CRUTEM4 values exceeded HadSST3 data 

by more than 0.1°C in 84.3% of months, and only one year had more than six months 

where the condition was not met. (Unlike above, in these calculations no exclusions 

have been made for periods of cooling due to volcanic eruptions because both land 

and sea temperatures could be expected to reduce.) 

 

The average difference between CRUTEM4 and HadSST3 global averages (the 

former minus the latter) from January 1950 to December 1987 is -0.04°C (µ=0.23°C) 

but for the period 1998 to 2013 the average is +0.41°C (µ=0.23°C), which together 

indicate a shift of 0.45°C. 

 

The pattern of a divergence and a later offset stabilisation between these two datasets 

echoes the pattern in the residual temperature anomaly and the ENSO/HadCRUT4 

relationship shown in Figure 1. 
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3.4 Coincidental Variations in Cloud Cover 

 

The pattern of the residual temperature anomaly does not correspond to changes in 

atmospheric carbon dioxide, which has been increasing almost linearly from 1958, 

when monitoring began and certainly has not stabilised since 2000.  The pattern is 

also inconsistent with other greenhouse gases, including methane, whose 

concentration rose from 1984 to 1999, and CFC-12, which increased from 1979 to 

year 2000. 

 

The residual temperature anomaly is however consistent with two variations in cloud 

cover. The first is a reduction in total cloud cover, which would allow more solar 

insolation to strike the Earth's surface and in particular more radiation in the UV-B 

range; the second is a decrease in low-level cloud and increase in mid- and upper-

level cloud. 

 

As noted earlier, cloud cover data is available from the ISCCP only for the period 

from 1984 to 2009, which is far less than the period of available HadCRUT4 

temperature data.  

 

To compare cloud cover data with the temperature anomalies from HadCRUT4 

dataset it was necessary to convert to cloud cover data first to monthly long-term 

averages calculated from the full span of available data, and from those averages 

calculate the cloud cover anomalies for each month. These anomalies were calculated 

for "total cloud" cover as well as for low, mid and upper level cloud. 

 

Figure 9.6 shows the anomaly in global average total cloud cover and HadCRUT4 

global average temperature anomaly with cloud cover inverted and  both graph lines 

as three-month centred averages. The HadCRUT4 temperature anomalies fell after the 

eruption of Mount Pinatubo and this cooling continued for the next few years. The fall 

in HadCRUT4 anomalies around year 2000 was largely ENSO driven (see Figure 

9.3). When these factors are taken into account there is general consistency of a 

reduction in total cloud cover as temperature anomaly increases, with cloud cover 
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decreasing from about 1984 until year 2000 followed by a flattening out to 2009, 

which is the end of the available cloud cover data. 

 

 

Figure 9.6 - HadCRUT4 global average temperature anomaly and the inverted anomaly in total 
cloud cover (3-month centred averages). 

 

 

The decrease in total cloud cover anomaly is approximately 4.5 percent of sky, against 

the long-term average (all months 1984-2009 inclusive) of 66.4 percent of sky, which 

means a reduction of 6.8%. 

 

The reduction in total cloud cover is significant in the context of the energy budget 

described by Trenberth et al [34], which indicates that cloud reflect 23% of the 341 

Wm-2 (i.e. 79 Wm-2) of incoming solar radiation. The reduction in total cloud cover of 

6.8% means that 5.4 Wm-2 (6.8% of 79) is no longer being reflected but acts instead 

as an extra forcing into the atmosphere, some of which will be lost when it adds to the 

longwave radiation to space. Of course clouds have many other affects on the earth's 

radiation budget many of which are not fully understood, but a change of 5.4 W/m2 is 

potentially of considerable significance. 

 

To put this into context, the IPCC Fifth Assessment Report [1], section 8.5.2, states 

that the total anthropogenic radiative forcing for 2011 relative to 1750 is 2.29 [1.13 to 
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3.33] Wm-2 for all greenhouse gases and for carbon dioxide alone is 1.68 [1.33 to 

2.03] Wm-2. 

 

The increase in radiative forcing caused by the reduction in total cloud cover over 10 

years is therefore more than double the IPCC's estimated radiative forcing for all 

greenhouse gases and more than three times greater than the forcing by carbon 

dioxide alone. Even the upper limits of the IPCC's estimates fall well short of the 

increase in radiative forcing caused by the reduction in total cloud cover. 

 

Goode and Pallé [5] examined variations in Earth's albedo from 1984 to 2000 and 

concluded that the decrease in albedo from the late 1980s to the late 1990s caused 

additional shortwave forcing of 6.8Wm-2. 

 

Herman et al [6] determined 340nm Lambertian equivalent reflectivity of the Earth 

from 1979 to 2011 and found a 3.6% ±0.2% decrease in cloud reflectivity over that 

period, which after applying the shortwave energy balance in Trenberth et al [34] 

concluded an increase of 2.7 Wm-2 insolation, of which 2.3 Wm-2 was absorbed by the 

Earth's offset slightly by increased longwave cooling. This is less than the 5.4 Wm-2 

described above, possibly because it focuses on 340nm reflectivity, but it likewise 

finds a reduction in cloud cover and a consequent increase in surface temperature. 

 

The second form of variation in cloud cover is cloud height, which is not evident from 

total cloud cover. Increasing cloud height is associated with an increase in the 

transparency of cloud and how much radiant heat passes through it. Figure 9.7 shows 

the global cloud cover anomaly at low, mid and upper levels. A general decrease in 

low-level cloud is evident, except for the period from 1992 to 1998, which is when 

firstly the Pinatubo eruption caused widespread cooling and then HadCRUT4 global 

average temperature recovered, accompanied by the further warming of an El Nino 

event. 
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Figure 9.7 - Global average cloud cover anomalies at low, mid and upper levels 

 

 

The global average percentage sky coverages for low, mid and upper-level cloud are 

27.3, 20.6 and 13.1 respectively. The reduction in low-level cloud cover, from 2.0 

percent sky above average to 2.5 below, amounts to a change of 15%. The increase in 

mid-level cloud, calculated in similar fashion, is 10%. Considering the affect of cloud 

cover on both long and short wave radiation fluxes, these and the 6.8% reduction in 

total cloud cover are likely to be variations of considerable significance. 

 

Figure 9.8 shows the anomaly in low level cloud cover with the (inverted) anomalies 

of the sum of mid and upper-level cloud. Across the entire period the average low 

cloud cover is 27 percent of sky and for the sum of mid and upper-level cloud 33.8 

percent of sky. Across the calendar year low-level cloud cover varies from 23.2 

percent of sky in February to 26.5 in June, and the combined mid and upper cloud 

varies from 38.8 in December to 33.7 in August. 
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Figure 9.8 - Anomalies in global average low-level cloud cover and the (inverted) sum of mid and 
upper-level cloud cover (3-month centred average) 

 

 

The important feature of Figure 9.8 is that from 1988 any decrease in low-level cloud 

was reflected in an increase in mid and upper-level cloud (and vice versa). Between 

1992 and 2002 mid and upper-level cloud reduced slightly and low-level cloud 

increased. From 2002 to 2009 (end of data) a reduction in low-level cloud 

corresponded to an increase in mid and upper-level cloud. Further, the absence of any 

clear shifts in the relationship between the cloud cover at each level indicates a 

genuine shift rather than an instrumentation issue. 

 

3.5 Analysis by latitude bands 

 

The findings described in section 3.4 (above) were derived from global average 

temperature anomalies and cloud cover anomalies.  A further analysis of each of six 

30°-degree latitude bands was undertaken to determine whether the variations were 

widely distributed or influenced by very large variations at few locations. The 

contribution each band to the global averages is that the region from the equator to 

30° latitude covers 50% of the hemisphere, the region from 30° to 60° covers 36.6% 

and the region from 60° to 90° covers 13.4%, so global contributions are half of each 

of these figures.  
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The mean HadCRUT4 temperature anomalies for each region are shown in Figure 9.9 

as 7-month centred averages.  The Polar latitude bands, from 60° to 90° in each 

hemisphere, show the greatest variation in temperature both since 1950 and on a 

short-term basis, but neither repeats the global pattern of an obvious temperature 

increase from 1988 to 1997 with relative flat trends before and after. The mid-latitude 

band for the northern hemisphere shows greater variability than the corresponding 

band in the southern hemisphere, as well as a clearer warming period from 1988 to 

1997.  

 

The two latitude bands nearest the tropics exhibit very similar patterns in temperature 

anomalies, with a correlation of 0.85 on monthly data, and with both having a distinct 

step in 1977 when ENSO conditions swung from favouring La Nina conditions to 

favouring El Nino conditions. 

 

The average of the monthly temperature anomalies for these two bands (i.e. 30°N to 

30°S) shows persistently close correlations with the Troup SOI of between -0.614 and 

-0.674 for ENSO time lags of zero to five months. Residual temperature anomalies 

can be calculated in similar fashion to that shown in Section 3.2 and the pattern is 

almost identical to those shown in section 3.2 above. 



 250

 

 

 

 

 

 

Figure 9.9 - Average HadCRUT4 temperature anomalies for six latitude bands. 
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The anomalies in total cloud cover for each band are shown in Figure 9.10. In the 

northern hemisphere, the polar band (60°N-90°N) shows a general decrease of about 

3% sky across the period from 1987 to 2009, while the other two bands, 00°-30°N and 

30°-60°N, show decreases from about 1987 to year 2000 of about 4% sky and 6% sky 

respectively, and a subsequent recovery of slightly less than half those figures from 

2000 to 2009.  In the Southern Hemisphere only the band from 00° to 30°S shows that 

pattern, the cloud cover in the other bands fluctuating but showing little trend from 

1984 to 2009. 

 

 

 

 

Figure 9.10 - Anomaly in total cloud cover for each latitude band. 
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The average of the monthly temperature anomalies for these two tropical bands (i.e. 

30°N to 30°SN) shows persistently close correlations with the Troup SOI of between -

0.614 and -0.674 for ENSO time lags of zero to five months. Residual temperature 

anomalies can be calculated in similar fashion to that shown in Section 3.2 and the 

pattern in those anomalies is almost identical to the global residual temperature 

anomalies shown in section. 

 

The anomalies in total cloud cover for each band are shown in Figure 9.10. In the 

northern hemisphere, the polar band (60°N-90°N) shows a general decrease of about 

3% sky across the period from 1987 to 2009, while the other two bands, 00°-30°N and 

30°-60°N, show decreases from about 1987 to year 2000 of about 4% sky and 6% sky 

respectively, and a subsequent recovery of slightly less than half those figures from 

2000 to 2009.  In the Southern Hemisphere only the band from 00° to 30°S shows that 

pattern, the cloud cover in the other bands fluctuating but showing little trend from 

1984 to 2009. 

 

Figure 9.11 shows the anomalies in cloud cover at low, mid and upper levels. As for 

the global analysis, these show a reduction in low level cloud but an increase in mid 

and upper level cloud across the period for which data is available. 

 

The correlation, for each latitude band, between low-level cloud cover and the sum of 

mid and upper level cloud is shown in Table 9-2.  The correlation for the tropical 

bands is weak but for other bands is much stronger, where the decrease in low cloud 

cover is largely offset by increases at mid and upper levels. 

 

Since 1950, temperatures have risen in all latitude bands except for the Antarctic band 

at 60°-90°S.  Warming has been greatest in the Arctic band (60°-90°N), followed by 

30°-60°N, the two tropical bands (00°-30°N and 00°-30°S) and then the mid-latitude 

band at 30°-60°S. 

 

The anomaly in total cloud cover decreased from 1987 to year 2000 in 30°-60°N, 00°-

30°N and 00°-30°S. The Arctic band (60°-90°N) suffered a general decrease over the 
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entire period for which data is available, 1984 to 2009, but for the two remaining 

bands, 30°-60°S and 60°-90°S, the trend in total cloud cover has been virtually flat.  

Changes in total cloud cover correspond well to temperature changes in each of these 

six latitude bands band. 

 

 

Figure 9.11 - Anomalies in cloud cover at low, mid and upper levels for each latitude band. 
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Latitude Band  Mean Total 

Cloud Cover 

Mean Low 

Cloud Cover 

Mean Mid 

Cloud Cover 

Mean Upper 

Cloud Cover 

Correlation L 

to (M + U) 

60 - 90 N 68.429 18.283 36.537 6.888 −0.754 

30 - 60N 69.707 25.336 24.986 14.465 −0.807 

00 - 30N 58.527 24.495 14.596 14.305 −0.032 

00 - 30S 59.615 29.459 13.145 12.345 −0.087 

30 - 60S 80.852 36.741 24.930 13.388 −0.951 

60 - 90S 69.210 17.433 31.371 14.322 −0.875 

Table 9-2 - Mean cloud cover at each level for each latitude band and correlation between low 
level cloud and combined mid and upper level cloud. 

 

Both tropical bands (00°-30°N and 00°-30°S) experienced a decrease in low-level 

cloud, offset rather imperfectly by an increase in mid and upper level cloud.  This 

shift was more gradual and smaller than the similar changes in cloud cover at mid 

latitudes and high latitudes where the negative correlation between low cloud cover 

and the sum of the mid and upper level cloud cover is strong. In the polar bands most 

of the shift occurred between 1997 and 2002, after which time cloud cover trends 

flattened, but in the mid-latitudes the shift began later and low-level cloud was still 

decreasing at the end of 2009 when ISCCP data currently ends.  The shift from low 

cloud to mid and upper level cloud will likely mean an increase in temperature but 

low or zero solar insolation at high latitudes in winter mean that the consequences of 

changes in cloud cover are more complex. 

 

This regional analysis shows that the variations in temperature and cloud cover 

described by the global analysis were widespread across the planet and not due to 

localised extreme variations. 

 

 

4. Discussion and Conclusions 

 

This paper has shown that the variation in the global average temperature anomaly 

since 1950 has three distinct phases, the periods for which are 1950-1987, 1988-1997 

and post 1997 respectively. 
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(a) Phase 1 (1950-1987) 

 

This phase was dominated by variations driven largely by the El Nino-Southern 

Oscillation, interrupted at times by irregular periods of cooling caused by volcanic 

eruptions. It can be further split into the La Nina dominated period 1950-1976 and the 

El Nino dominated 1977-1987. Two La Nina events occurred during the 1950’s, one 

of sixteen months, and no El Nino events. The first El Nino event after 1950 occurred 

in the latter half of 196 and the next in1972. Three El Nino events, two of which 

continued for almost 12 months, occurred during the period from 1977 to 1987, but no 

La Nina events. 

 

It is often implied that the ENSO is a tri-state phenomena but it is a continuum with 

arbitrary thresholds for La Nina and El Nino events.  A better analysis is achieved by 

examining the Southern Oscillation Index rather than the three defined states. 

 

Averaging the Troup SOI over approximately equal periods across the time span 

shows the dominance of conditions on the La Nina side of absolutely neutral (i.e. 

index = 0) during 1950-1976 and the dominance of conditions on the El Nino side 

after 1976.  From 1950 to 1962 the average Troup SOI was 2.61 (σ =9.1), for 1963-75 

was 2.37 (σ =10.3) and for 1977-1987 was -4.62 (σ= 9.8). Over the period 1950 to 

1987 therefore, the average Troup SOI shifted from the La Nina side of absolutely 

neutral to a figure almost double and on the El Nino side of absolutely neutral. 

 

The trends in the monthly SOI data over this time appear to be related to temperature 

trends.  From 1950 to 1976 the trend in the Troup SOI data was 0.066/year (i.e. 

towards La Nina) and from 1977 to 1987 was -0.0111/year, with an overall trend from 

1950 to 1987 of -0.21/year. The trend in monthly HadCRUT4 global average 

temperature anomalies for the corresponding periods were -0.0024°/year, 

+0.006°/year and +0.0036°/year. Note that the temperature data used for these 

calculations includes data from periods when volcanic eruptions caused cooling and 

the precision of the figures is debatable, but an ENSO shift towards El Nino 

conditions and a corresponding increase in temperatures after 1977 are indicated (see 

also Figure 1). 
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(b) Phase II (1988-1997) 

 

During this second phase the ENSO and volcanic eruptions continued to influence the 

temperature but after excluding the influence of the ENSO, the residual average 

global temperature anomaly was found to rise across the decade and by 1997 had 

reached ~0.48°C above the 1961-90 average. 

 

Across this decade the global average temperature anomalies from the CRUTEM3 

dataset, based on data from observation stations, increasingly diverged from 

corresponding averages from the HadSST3 dataset whose data is derived from sea 

surface temperatures. 

 

The temperature pattern for the period 1988-1997 appears to be generally consistent 

with the 7% reduction in total cloud cover that occurred across the period 1987 to 

1999. Applying that reduction to the influence of clouds in the energy budget 

described by Trenberth et al [34] results in an increased average solar forcing at the 

Earth's surface of about 5 Wm-2. This increase is more than double the IPCC's 

estimated radiative forcing from all anthropogenic emissions of greenhouse gases. 

 

The analysis by six 30° latitude bands shows a loss in total cloud cover in four of the 

bands but not occurring in the two southern-most bands, 30°-60°S and 60°-90°S.  

 

The reduction in total cloud cover during the period from 1987 to 1999 could also 

account for the divergence of CRUTEM4 and HadSST3 temperatures. An increase in 

solar radiation will pass deeper into the ocean, to about 100 metres in clear calm 

tropical water, and the heat disperse far more than when the same amount of radiation 

strikes the ground surface. 

 

(c) Phase III (since 1997) 

 

The third phase of the post-1950 pattern in the average global temperature anomaly is 

the plateauing of the anomaly after 1997.  
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From 1999 to 2009 total cloud cover increased slightly from its low point but at the 

same time there was a widespread reduction in low-level cloud that was almost 

matched by increases in cloud cover at middle and upper levels. This finding applies 

to the global average cloud cover and to latitudes 30° to 90° in each hemisphere. 

 

Less opaque low-level cloud and more translucent mid and upper-level cloud meant 

greater solar radiation, albeit diffuse radiation, reaching the Earth's surface. This 

approximately coincides with both the flat trend in average global temperature 

anomaly and the a stabilising of the difference between CRUTEM4 and HadSST3 

temperature datasets although data "noise", particularly in the former, makes 

confident conclusions difficult. 

 

 

5. Conclusions 

 

Since 1950 global average temperature anomalies have been driven firstly, from 1950 

to 1987, by a sustained shift in ENSO conditions, by reductions in total cloud cover 

(1987 to late 1990s) and then a shift from low cloud to mid and high-level cloud, with 

both changes in cloud cover being very widespread.  

 

According to the energy balance described by Trenberth et al (2009) [34], the 

reduction in total cloud cover more than accounts for the increase in temperature since 

1987, leaving little, if any, of temperature change to be attributed to other forcings.   

 

With ISCCP cloud cover data available only for the period from 1984 to 2009 this 

hypothesis should be regarded as tentative. 
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Chapter 10: Improving the Troup SOI 

 

10.1 Introduction 

 

The El Niño-Southern Oscillation (ENSO) is an important influence on the weather 

patterns of the Pacific Ocean and has a lesser but still significant affect on global 

weather. Three commonly used indices of the ENSO state are Oceanic Nino Index 

(ONI), the Multi-variate ENSO Index (MEI) and the Troup Southern Oscillation 

Index (Troup SOI or simply SOI).   

 

All three indices use threshold values to determine which of the three states the ENSO 

is in at the time - La Niña (widespread cooler and wetter conditions), El Niño 

(widespread warmer and drier conditions) and neutral (a middle state between these 

two) - but this is misleading because the range of values is continuous in each index 

and conditions that fall just short of some threshold are very similar to conditions that 

just over that threshold. 

 

The ONI used by the US National Oceanographic and Atmospheric Administration 

(NOAA) is based on average sea surface temperature (SST) in the eastern Pacific, 

specifically an area covering latitudes 5°N to 5°S and longitudes 120°W to 170°W, 

known as region "Nino 3.4", with El Niño and La Nina thresholds of +0.5°C and 

-0.5°C respectively for the three-month running mean SST.   

 

The ONI commences in 1950 but data coverage of the designated area is far from 

complete in the early years.  The Nino 3.4 region covers 20 HadSST3 grid cells but 

from 1950 to 1959 the annual average number of reporting cells did not exceed 15 and 

in 57 of the 120 months have less than half of those grid cells report SST data. The 

cells without data were typically in the western end of the region meaning that milder 

El Nino conditions, which even with complete coverage might have had little impact 

on SST at the region's eastern end, are likely to have been unrecorded. 
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One disadvantage of the ONI is that it is focussed on a single region of the tropical 

Pacific and therefore related to conditions only within this area. Another problem is 

that data for five successive overlapping three-month "seasons" (i.e. centred 3-month 

averages) must be collected before either El Niño or La Niña episodes are identified, 

with the threshold for El Niño being SST increases of more than 0.5°C in the five 

seasons and that for La Niña being decreases of more than 0.5°C.  The use of 3-month 

averages means that data for seven months must be collected before the ENSO 

thresholds are reached, but according to other indices the duration of such events 

often falls fall short of seven months. 

 

The MEI (Wolter and Timlin, 1993) incorporates sea-level pressure (SLP) with five 

other environmental factors - zonal and meridional wind, SST, surface air temperature 

and cloudiness - when it generates a single value to describe the ENSO state.   These 

factors are not independent e.g. a warmer ocean will cause convection that causes a 

decrease in SLP and an increase in cloud cover.  Meridional wind will also cause 

overturning of ocean water and therefore mixing of surface water with lower layers, 

and the absence of wind in the tropics can cause thermal layers to form in the water, 

both issues making it more difficult to accurately determine sea surface temperature 

[see chapter 7].  Like the ONI the MEI is an imperfect index. 

 

The third index is the Troup SOI, based on the difference in monthly mean seal level 

air pressure (MSLP) at Tahiti and Darwin.  This SOI will be discussed in greater 

detail below but for now the key point is that according to the Australian Bureau of 

Meteorology, sustained (three months or more) Troup SOI values of less than -7 

"typically indicate" El Niño episodes and sustained values of greater than +7 

"typically indicate" La Niña episodes28 

 

The three indices for the period 1991 to 2000 are shown in Figure 10.1.  The MEI and 

ONI use average values over two and three months respectively and here the Troup 

SOI is shown as a 3-month centred average for comparison. Small, short-term 

variations between the indices are to be expected but sustained differences can be seen 

                                                
28 From http://www.bom.gov.au/climate/enso/#tabs=SOI but other BoM web pages say -8 and + 8 (eg. 
http://www.bom.gov.au/climate/enso/history/ln-2010-12/SOI-what.shtml).  Until just a few years ago 
the term "sustained for at least 3 months" was used by the BoM but now it is simply saying "sustained". 
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during strong El Niño episodes (eg. 1983 and 1997) and milder El Niño episodes 

(1992-1994). 

 

 

 

Figure 10.1 Monthly values of three ENSO indices 1991-2000 

 

 

The Troup SOI is an MSLP-based index to ENSO conditions. The use of the MSLP as 

an ENSO index has the advantage that many of the characteristics of ENSO events are 

associated with the state of, or changes in, air pressure and therefore  the SLP is a 

direct measure of an important part of the phenomenon.   

 

Relatively few papers seem to recognise the MSLP-ENSO relationship. Kousky et al 

(1984) reviews the state of knowledge about the ENSO to that time and discusses 

what it terms a pressure "seesaw" between the Indian and Pacific Oceans, the former 

actually meaning the waters near Indonesia.  It cites Berlage and de Boer (1959) as 

identifying the two principal regions of MSLP anomaly correlation, in this case from 

1949 to 1957, using MSLP at Easter Island as the base against which other locations 

were compared. It goes on to talk about indices being created from MSLP at Easter 

Island and Djakarta but it follows through with the findings of Berlage and de Boer 

(1959) and when it describes the ENSO it makes no mention of the implications of the 

changes in MSLP at the two locations. 
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Reason et al (2000) discussed the relationship of SST and MSLP anomaly in the 

Indian Ocean and show that both could be linked to rainfall patterns.  Their analysis 

of MSLP data is broken into seasons and it deals only with MSLP anomalies, not 

standardized anomalies based on long term averages and standard deviations.  The 

aim of the paper appears to be the clarification of certain Indian Ocean characteristics 

of El Niño and La Niña events rather than to further understanding of the structure of 

the ENSO system as a whole. 

 

Cai et al (2011) discuss MSLP but only in the context of its variation and how the 

ENSO affects Australia's climate.  Dijkstra (2006) mentions that the Southern 

Oscillation is "related to changes in surface pressure", discussing MSLP, as do Wolter 

and Timlin (2011), in terms of characteristics of ENSO. Clement et al (2011) supports 

this by showing that according to modelling, the Southern Oscillation is the dominant 

mode of tropical Pacific variability, without needing dynamic coupling to the ocean. 

 

Sea level pressure is conventionally linked to certain weather patterns and its 

influence is usually expressed in relative rather than absolute terms (e.g. "warmer" 

rather than "warm") because basic weather at any location depends largely on the 

latitude (and hence month or season) and on the altitude.  The same can be said about 

how the mean seal level pressure (MSLP) is related to characteristics of El Niño 

events (Table 10-1(a)) and La Niña events  (Table 10-1(b)).  (For general context in 

diagrammatic form see Appendix 3.) 

 

One example of the association with MSLP can be seen in the manner in which the 

ENSO influences the Indian monsoon, which occurs during the period from July to 

September. India's monsoonal rains develop when the very hot summer air over the 

land rises and is replaced with cooler air from over the ocean, laden with moisture 

picked up by westerly winds.  La Niña events, associated with reduced MSLP in 

Southern India and over the nearby part of the Indian Ocean, mean stronger westerly 

winds and therefore above-average rainfall is likely on the subcontinent.   In contrast 

El Niño events, associated with increased MSLP in the regions just described, impede 

or limit those westerly winds and therefore below-average rainfall is likely in India 

(Reason et al, 2000; Kug and Kang, 2006; Kumar et al, 2006). 
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The remainder of this chapter will discuss the nature of the MSLP-based Troup SOI, 

its shortcomings as an ENSO index and how an alternative but associated "ensemble" 

index might resolve some of its problems. 

 

 

Factor under El Niño 

conditions 
Relationship to SLP 

Surface air pressure across the Pacific Increased MSLP in the west, decreased MSLP in 
the east 

Weather in the western Pacific and 
nearby - Warmer and/or drier  
 

Increased MSLP in the west of the Pacific will 
typically mean finer weather and less rainfall.   

Weather in the eastern Pacific and on 
the nearby coast - Cooler and wetter  

Decreased MSLP will likely mean increased 
evaporation and increased cloud cover and 
therefore greater chance of rainfall. 

Pacific trade winds (easterlies) - 
Weaker, wind might even reverse . 

Decreased MSLP means a reduction in wind and 
increased MSLP in the western Pacific acts against 
these winds.  

Upwelling of cold water in the eastern 
Pacific - Weaker  

Less wind means less ocean overturning and less 
opportunity for cold water to reach the surface. 

Sea level - Flatter across the Pacific  
Elevated pressure and reduced winds mean less 
"piling up" of the water in the west, which is to say, 
flatter sea surface  

East-west thermoclines - Flatter 
across Pacific  

Reduced winds means reduced current and less 
surface overturning, meaning calmer seas and 
greater opportunity for the sea to warm in transit 
along the equatorial current 

Walker Circulation (west to east across 
the Pacific well above the surface) - 
Weaker, might even reverse  

The elevated pressure in the west reduces the 
easterly winds so less air will circulate.  

Hadley Circulation (poleward from the 
equator) - Stronger  

The elevated pressure in the west pushes air 
outwards, including to the north.  . 

Tropical cyclones, typhoons, 
hurricanes (different names but same 
thing) in Indian and Pacific Oceans - 
Fewer   

Elevated pressure in the west is forcing air 
outwards, also the difference in surface pressure 
across the Pacific is reduced and therefore the key 
driver of these events is reduced. 

Summer monsoon rainfall in India and 
Australia - Start later and less rainfall  

Increased MSLP acts somewhat like a blocking 
High to impede the monsoon process. 

Cloud near the intersection of the 
equator and Date Line - Increased  

Convection increased when air from the east strikes 
the leading edge of the elevated MSLP. 

Table 10-1(a) The characteristics of an El Niño ENSO state described with reference to MSLP  
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Factor under La Niña 

conditions Relationship to SLP  

Sea level pressure Decreased MSLP in the west and increased 
MSLP in the east 

Weather in the western Pacific and 
nearby - Cooler and/or wetter  

Reduced MSLP in the west means more 
evaporation and convection, so more cloud and 
likely increased rainfall.  

Weather in the eastern Pacific and on 
the nearby coast - Warmer and drier  

Increase in MSLP near South America brings fine 
weather and impedes on-shore winds carrying 
moisture. 

Pacific trade winds (easterlies) - 
Stronger  

Increased MSLP in east pushing winds across 
Pacific.  

Upwelling of cold water in the eastern 
Pacific - Stronger  

More upwelling of cold water and more mixing of 
surface layer due to the increased winds. 

Sea level - Higher in the west  
The combination of wind-driven water, reduced 
MSLP and thermal expansion of water cause higher 
sea level. 

Thermoclines (eg. for 24C) - Deeper in 
the west  

More upwelling in the east means colder water at or 
near the surface.  In the west, cloud impedes ocean 
cooling.  

Walker Circulation (west to east across 
the Pacific well above the surface) - 
Stronger  

Easterly winds mean an enhanced Walker 
Circulation cycle.  

Hadley Circulation (poleward from the 
equator) - Weaker  

No impediment to easterly winds across the Pacific 
so convection occurring in the western rather than 
central Pacific. 

Tropical cyclones, typhoons, 
hurricanes (different names but same 
thing) in Indian and Pacific Oceans - 
Increase  

Tropical cyclones are more easily generated in the 
narrow central Pacific transition zone between the 
regions of increased and decreased MSLP.  

Summer monsoon rainfall in India and 
Australia - Starts earlier and more 
rainfall  

Increase in the amount of moisture-laden air 
reaching land. 

Cloud near the intersection of the 
equator and Date Line - Decreased  

Convection occurring further west therefore clouds 
developing further west. 

Table 10-1(b) The characteristics of a La Niña ENSO state described with reference to MSLP.  
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10.2 The background and calculation of the Troup SOI 

 

The Troup SOI is based on the oscillation of sea level pressure across the Pacific that 

typically sees the MSLP at Tahiti rising as the MSLP at Darwin falls and vice versa 

(Figure 10.2).   

 

 

 

Figure 10.2 Monthly anomalies in MSLP from the 1961-1990 average at Tahiti and Darwin, with 
the general pattern of MSLP at one location rising while it falls at the other. (Seven-month 
centred averages) 

 

 

The Troup SOI is derived from the difference in monthly mean sea level pressure 

(MSLP) at Tahiti, French Polynesia, and Darwin, Australia, (i.e. MSLP at Tahiti 

minus MSLP at Darwin).  Figure 10.3 shows the monthly MSLP at the two locations 

in each year from 1961 to 1990, sorted into calendar month.  The annual cycle in 

MSLP varies at the two locations, with the range at Darwin being ~6hPa and at Tahiti  

~4hpa, leading to average differences in MSLP that range from ~1 hPa in July to ~4 

hPa in January.  
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Figure 10.3 Monthly MSLP at Darwin and Tahiti from 1961 to 1990 sorted by calendar month 

 

 

The Australian Bureau of Meteorology defines the Troup Southern Oscillation Index 

(SOI) as ten times the standardised anomaly of the Mean Sea Level Pressure (MSLP) 

difference between Tahiti and Darwin.  It is calculated according to  

 

                  [ Pdiff – avgPdiff ] 

     Troup SOI = 10 ------------------- 

                       SD(Pdiff) 

 

where: 

Pdiff   =   (Tahiti MSLP for the month) minus (Darwin MSLP for the month), 

avgPdiff   = long term average29 of Pdiff  for the month in question, and 

SD(Pdiff)  = standard deviation associated with avgPdiff  

The multiplication by 10 is a convention to make it possible to express the range as a 

whole number without any significant loss of accuracy. 

 

Based on the probability associated with Normal distribution and ignoring for the 

moment the need for thresholds to be exceeded for at least three months, the 

                                                
29 In the above calculations 'long term' refers to the period from 1933 to 1992 inclusive according to the 
Bureau of Meteorology  at http:://www.bom.gov.au/climate/current/soihtm1.shtml  
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thresholds of -7 (for El Niño) and +7 (for La Niña) mean an approximate probability 

of 0.516 for "neutral" conditions and 0.242 for each of El Niño and La Niña.   

 

The primary variable factor in the above equation is Pdiff, which is the monthly 

MSLP at Tahiti minus the monthly MSLP at Darwin, the whole top line of the 

equation, the numerator, being the anomaly in Pdiff (i.e. difference from the long-

term average).  When the Tahiti MSLP increases the SOI will increase and when it 

falls the SOI will decrease. Figure 10.4 shows the monthly Troup SOI from 

September 1935 to December 2015 in the form of a 7-month centred average, a 

compromise between "noisy" data with frequent very short-term fluctuations and 

over-smoothing that might minimise critical information. (Subsequent Figures will 

use similar averages for consistency and clarity.). 

 

 

 

Figure 10.4 Troup SOI from 1935 to 2015. Positive values greater than +7 sustained for more 
than 3 months correspond to La Niña events and negative values of less than -7 sustained for the 
same length of time indicate El Niño events. 

 

In its discussion of the Troup SOI the Australian Bureau of Meteorology states "Daily 

or weekly values of the SOI do not convey much in the way of useful information 

about the current state of the climate, and accordingly the Bureau of Meteorology 

does not issue them. Daily values in particular can fluctuate markedly because of 
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daily weather patterns, and should not be used for climate purposes."30  The 

underlying problem is that the data from which the Troup SOI is calculated is 

measured at just two locations.  Local weather events at these locations can cause data 

"noise" (i.e. very short-term irregular fluctuations in the calculated value), which 

potentially means positives or false negatives regards meeting thresholds for El Niño 

and La Niña conditions. 

 

This data noise and a serious problem with the Troup SOI prior to 1935 warrant 

discussion prior to considering the development of an alternative but similar SOI 

index. 

 

 

10.3 Analysis 

 

10.3.1 Investigation of the data "noise" 

 

The Troup SOI is a particularly noisy signal with the average month-to-month 

variation (i.e. absolute value of difference) from January 1940 to December 2015 

being 6.86 (σ = 5.36).  These variations are very large given that the difference 

between El Niño and La Niña thresholds is 14 units - one has a value of +7 and the 

other of -7.   The reason for this large variation lies in the local MSLP. Table 10-2 

shows the monthly average mean difference in MSLP at Tahiti and Darwin, along 

with the standard deviations, according to all MSLP data from 1933 to 1992.  Based 

on the method by which the Troup SOI is calculated (see above) if a particular SLP 

state continues for more than a few days into the next month it can have a big impact 

on the Troup SOI because of the different mean differences and standard deviations 

(e.g. the shift in the mean difference and standard deviation from March to April are 

falls of more than 33%).  

 

 

                                                
30 See http://poama.bom.gov.au/climate/glossary/soi.shtml  
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Month  Mean (hPa) Std Dev (hPa)  

1 4.43 2.10 

2 4.57 2.12 

3 3.96 1.84 

4 2.36 1.21 

5 1.64 1.27 

6 1.18 1.23 

7 0.96 1.53 

8 1.68 1.56 

9 2.35 1.66 

10 2.91 1.64 

11 2.91 1.52 

12 3.48 1.96 

Table 10-2 Long-term (1933-92) mean differences in MSLP between Tahiti and Darwin, with 
associated standard deviation, for each calendar month. 

 

As mentioned above, the thresholds for El Niño and La Niña events are Troup values 

of -7 and + 7, which means a variation of  ±0.7σ from the mean value. From Table 

10-1 this variation is equivalent to differences in the MSLP at the two sites that, 

depending on the calendar month, vary between 1.47hPa and 0.85hPa from the long-

term mean difference for that month.  

 

Based on data from Australia's Bureau of Meteorology this range of differences is 

equivalent to ~25% of the range in MSLP at Darwin in any month, this conclusion 

derived from 9:00am and 3:00pm recordings at Darwin, from March 2016 to February 

2017, showing SLP monthly range that varied from 4.5hPa during May, June and July 

to 9.32 hPa for the period from December to February31.  On this basis a small shift in 

the Darwin MSLP alone, i.e. without considering the MSLP shifts at Tahiti, could 

easily result in substantial short-term changes in the Troup SOI. 

 

These short-term shifts cause data "noise" and make it difficult to interpret Troup SOI 

values.  It is not only a question of whether specific values are a consequence of short-

                                                
31 From daily details of the last 13 months provided by the Bureau of Meteorology at 
http://www.bom.gov.au/climate/dwo/IDCJDW8014.latest.shtml  
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term weather but the start and end dates of El Niño, La Niña and neutral episodes are 

unclear, as are apparent interruptions to those sequences. 

 

Accurate probabilistic analysis is not possible but if it is assumed that 25% of the 

MSLP is distorted by short term weather, in keeping with the figure mentioned above 

for Darwin, the probability of having just two successive months without that 

distortion is 0.563 (i.e. 0.75 x 0.75) and three successive months is 0.422. 

 

With the Troup SOI so seriously impacted by data "noise", caused by weather events 

at the two locations, a reduction in this noise is highly desirable. 

 

 

10.3.2 Accuracy of the Troup SOI prior to 1935  

 

The Troup SOI data is available from 1877 onwards but there are several reasons why 

the data prior to 1935 should be treated with caution. 

 

Firstly, the meteorological data recorded at Tahiti prior to 1935 is already known to be 

suspect. CRUTEM4 temperature data from Tahiti (station ID 919380) commences in 

August 1876, has six months missing from 1877, more data missing from April 1891 

to January 1898 and data missing again from January 1908 to January 1935. 

Ropelewski and Jones (1987) say that from 1875 to 1933 the meteorological data for 

Tahiti were recorded at Papeete hospital rather than at an observation station.  It is an 

open question as to whether the measuring and recording of the data at that time 

conformed to standard meteorological practices.  

 

Secondly the data from Tahiti since 1877 can be split into two periods, the first, from 

1877 to 1935, being 58 years and 41.5% of the total, and the second, from 1936 to 

2016, being 82 years and 58.5% of the total.  Of the total number of instances where 

the MSLP at Tahiti was unchanged from one month to the next 64.7% occurred in the 

first period and just 35.3% in the second, whereas for Darwin the split is very close to 

40% to 60%, which is very close to evenly distributed given the duration of the two 

periods.  The metric is indicative rather than absolute but it suggests critical 
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differences between the recording of MSLP at Tahiti prior to 1936 and the recording 

after that year.  

 

Thirdly, and perhaps related, the negative correlation between MSLP at Darwin and at 

Tahiti is considerably weaker in the early period.   The monthly MSLP anomalies 

shown earlier in Figure 10.2 are derived from the 1961-1990 long-term average 

MSLP at each site but while the correlation between Darwin and Tahiti MSLP 

anomalies is -0.341 from 1936 to 2016 the correlation for 1877-1935, as shown in 

Figure 10.5, is weaker at just -0.206. 

 

 

 

Figure 10.5 Monthly anomalies in MSLP, derived from the 1961-1990 averages, at Tahiti and 
Darwin.  

 

 

On the basis of the above it seems unwise to make any use whatsoever of the Troup 

SOI data prior to 1935. 
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10.3.3 Background to the derivation of an improved MSLP-based 

index 

 

It was shown earlier that as the MSLP at Darwin rises the MSLP at Tahiti falls.  The 

nature of this oscillation means that the MSLP at either Darwin or Tahiti can be used 

individually to generate a reasonable approximation of the SOI because a similar but 

inverted MSLP state will very likely be occurring at the at the other location.   

 

A 'local SOI' can therefore be created, based on the anomaly in mean local monthly 

MSLP.  In order to take into account the variable range of MSLP in each month, this 

local SOI can be calculated by standardisation, in a similar manner to the Troup SOI, 

namely: 

 

                [ MSLP - avMSLP ] 

Normalised MSLP = ----------------- 

                    SD(MSLP) 

    

where: 

MSLP = mean MSLP for the month, 

avMSLP = long term average of MSLP for the month in question, and 

SD(MSLP) = standard deviation associated with avMSLP for the month in 

question 

 

Cane (2011) shows that the SLP for Darwin has a strong negative correlation with the 

Niño 3.2 ENSO Index, which is based on sea surface temperatures in the central 

Pacific. The paper simply says "SLP" but the figure in question, its Figure 1, shows 

the SLP in the range +4 to -2, which suggests it is the standardised anomaly as 

discussed here. 

 

As we might expect, the normalised MSLP (NMSLP) for Darwin is close to a mirror- 

image of that for Tahiti (Figure 10.5).  (The Figure, like the analysis that follows for 

other locations, uses MSLP data from the KNMI Climate Explorer available at 
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http://climexp.knmi.nl.) The correlation coefficient from comparing Troup SOI to 

Darwin's NMSLP is -0.933 and to Tahiti's NMSLP is 0.876, the slight asymmetry 

probably attributable to the different annual ranges of MSLP and different local 

weather at the two locations. 

 

 

 

Figure 10.6 Normalised MSLP anomalies at Tahiti and Darwin, based on average MSLPs and 
standard deviations calculated from 1951-1980 data. 

 

 

Comparing the normalised MSLP at various locations to the Troup SOI has the 

problem that the exercise is undertaken on the assumption that the Troup SOI is 

distorted by local weather conditions. This is not a major problem because the aim is 

to identify locations where the MSLP is similar but not the same as the Troup SOI, in 

fact any locations with perfect correlation to it would seem to be suffering from 

identical weather when the aim is to reduce that weather influence.  The complete 

removal of weather influences is impossible because the MSLP at any location will be 

impacted by local weather.  

  

 



 277

10.3.4 Analysis of MSLP data around the Pacific 

 

MSLP data from more than 80 locations in and around the Pacific Ocean was 

analysed to determine the correlations to the Troup SOI, the results indicating both the 

extent of direct ENSO influence on MSLP and the locations with the strongest 

positive or negative correlations.  

 

Apart from drawing on the KNMI Climate Explorer as mentioned above, the SLP data 

for three locations at sea, all grid cells of 2° latitude x 2° longitude, was extracted 

from the International Comprehensive Ocean Atmospheres Data Set (ICOADS) 

database and converted to monthly mean values.  Details of the three locations are 

given in Table 10-3. 

 

 

No. Latitude  Longitude  From To Location  Comments  

1 6°S to 8°S 76°E to 78°E 1954 2011 
Indian Ocean due 

South of India 

Excludes 1.5% of 

the data when obs 

per month <10 

2 6°N to 8°N 84°W to 86°W 1950 2014 

Off the south coast 

of Costa Rica, near 

the Panama Canal 

All data processed; 

all months <=15 

obs 

3 26°N to 28°N 
116°W to 

118°W 
1940 2014 

Between Baja Sur 

(Mexico) and 

Hawaii 

Excludes data 

when obs per 

month <5. Poor 

correlation with 

Troup SOI. 

Table 10-3 Details of locations at sea for which SLP data was obtained and processed 

 

 

The MSLP data for all other locations was obtained via the KNMI Climate Explorer 

and were of variable duration, often ending in 1991 and often with various months 

where the data was missing. In some cases the amount or sequence of missing data 

was such that for practical reasons several years of data were trimmed from the 

record. An arbitrary constraint placed on this data was for a minimum period of 25 

years so that the long-term averages and standard deviations would be meaningful 
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even when the periods varied slightly depending on the available data. The first of the 

following criteria that the data satisfied was used to define the period: 

 

(a) when all calendar months have at least 20 values for 30-year period 1951-1980 

(b) ditto for 16 values for 25-year period 1956-1980 

(c) ditto for 20 values for 30 years from first year of data 

(d) ditto for 20 values for 30 years back from last year of data 

(e) ditto for 16 values for 25 years from first year of data 

(f) ditto for 16 values  for 25 years back from end of data 

(g) ditto for 16 values over the entire period of the data 

 

In practice most locations satisfied the first criteria and therefore shared the same 

period, but there were exceptions. 

 

Extreme outliers, probably caused by data noise due to local weather events such as 

storms, were trimmed from the record by excluding any standardised values equalling 

or exceeding ±4, which according to the probabilities associated with Gaussian 

distribution means a probability of exclusion of ~6 in 100,000. This very rarely 

excluded more than 5 months of the minimum of 25 years of data from any of the 

more than 80 locations that were examined and no exclusions were required for most 

locations. 

 

Details for many observation stations, including the correlations of their NMSLP to 

the Troup SOI (both as 7-month averages) are shown in Table 10-4.  NMSLPs were 

calculated for several other stations but their correlations to the Troup SOI fell outside 

the range ±0.5 and showed no sign of significant improvement in even a recent subset 

of the data (see Appendix 4 to this thesis). 

 

The full list of sites is split between Table 10-4, which shows locations with strong 

correlation and a list of locations with weak correlation is given in Appendix 2.  



 279

 

Name Country Lat Long Beg yr End yr 

 Correl 

Coeff  Comments 

Darwin Australia 12.42S 130.88E 1940 2001 -0.933  

Broome Australia 17.95S 122.22E 1951 2001 -0.907  

Singapore Singapore 1.37N 103.92E 1948 1998 -0.812  

Goa India 15.48N 73.82E 1965 2001 -0.776 correlation 1986-2001 

Townsville Australia 19.25S 146.75E 1951 2001 -0.763  

Geraldton Australia 28.78S 114.70E 1961 2001 -0.754  

Rabaul Papua-New Guinea 4.22S 152.18E 1951 1990 -0.735  

Penang Malaysia 5.30N 100.27E 1951 2001 -0.711  

Palau Caroline Islands 7.33N 134.48E 1961 2001 -0.710  

Adelaide Australia 34.93S 138.52E 1961 1997 -0.705  

Perth Australia 31.90S 116.00E 1940 2001 -0.699  

Noumea New Caledonia 22.27S 166.45E 1941 2001 -0.693 correlation 1993-2001 

Mannar Sri Lanka 8.98N 79.92E 1951 1989 -0.691  

Mildura Australia 34.22S 142.08E 1961 2001 -0.676  

Sea grid cell 1 Indian Ocean 6-8S 76-78E 1954 2011 -0.637  

Brisbane Australia 27.4S 153.1E 1940 1998 -0.636  

Ceduna Australia 32.12S 133.70E 1951 2001 -0.599  

Chumphon Thailand 10.48N 99.18E 1951 2001 -0.570  

San Francisco USA 33.93N 118.40E 1971 2001 0.500  

Apia American Samoa 13.8S 171.8W 1940 1992 0.504 correlation 1965-1992 

Christobal Panama 9.40N 79.90W 1940 1960 0.537  

San Diego USA 32.73N 117.17W 1940 2001 0.585 correlation 1973-2001 

Trujillo Peru 8.10M 79.03E 1949 1980 0.589 downward trend (error?) 

Penrhyn Cook Islands 9.03S 158.05E 1940 1990 0.637 correlation 1955-1990 

Sea grid cell 2 near Panama Canal 6-8N 84-86W 1950 2014 0.682  

La Serena Chile 29.9S 71.2W 1960 2001 0.761 correlation 1973-2001 

Tahiti French Polynesia 17.55S 149.64W 1940 2001 0.876  

Atuona French Polynesia 9.8S 139.03W 1959 2000 0.903 correlation 1967-2000 

Table 10-4 Locations with normalised MSLP correlating to Troup SOI (both 7-month averages) 
less than or equal to -0.5 or greater than or equal to +0.5. 

 

Figure 10.7 shows some examples of reasonable positive correlation - Penrhyn (Cook 

Islands), La Serena (Chile) and Trujillo (Peru), with coefficients of 7-month centred 

averages (applied to reduce data noise) of 0.637 since 1955, 0.761 since 1973 and 

0.589 respectively, but a persistent downward trend in Trujillo MSLP suggesting 

instrument problems. Figure 10.8 illustrates some corresponding examples of negative 

correlations with the Troup SOI  - Perth (Australia), Mannar (Sri Lanka) and 

Singapore, with correlation coefficients of -0.699, -0.691 and -0.812 respectively. 
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Figure 10.7 Example of normalised MSLP anomalies showing positive correlations between local 
NMSLP and Troup SOI for at least 20 years - Penrhyn (Cook Is.), La Serena (Chile) and Trujillo 
(Peru). (7-month centred averages) 

 

 

 

Figure 10.8 Examples of normalised MSLP anomalies showing negative correlations between 
local NMSLP and Troup SOI for at least 20 years - Perth (Australia), Mannar (Sri Lanka) and 
Singapore. (7-month centred averages) 

 

Figure 10.9 maps the locations noted in Table 10-3 along with the approximate 

regions of positive correlation of ≥0.5 and negative correlation of ≤-0.5.  Applying the 
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HadCRUT4 method of determining coverage from grid cells, these regions together 

amount to ~20% of the Earth's surface.  Berlage and de Boer (1959) shows a similar 

figure based on a correlation with MSLP at Easter Island rather than the Troup SOI as 

shown here.  The Figure in Berlage and de Boer (1959) is derived from data covering 

just nine years (1949-1957) compared to the 25 (or more) years analysed here and the 

limited availability of MSLP data, especially at sea and away from usual shipping 

routes, makes the accuracy of the figure uncertain. 
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Figure 10.9 The two regions corresponding to the data shown in Table 10-3, i.e. locations where 
the correlation coefficient for the comparison of the Troup SOI and the local NMSLP is ≤ -0.5 or 
≥ 0.5.  (The boundaries of the two regions can only be estimated from the given locations.) 
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10.4 Proposal for an improved MSLP-based index 

 

Figure 10.9 shows that the area directly influenced by ENSO conditions is substantial, 

stretching from Panama across the dateline to India and from southern Chile to 

California.  The indication from data beyond the regions illustrated here are that the 

Andes, Rocky Mountains and the Central American mountain range spine largely 

confine the relationship in the east of the Pacific. Using the same approach as 

HadCRUT4 to determine global surface coverage, it seems that 21% of the Earth's 

surface is directly impacted, although that figure is uncertain because the exact limits 

of the region cannot be identified.  

 

Figure 10.9 also shows that the "oscillation" of MSLPs at Darwin and Tahiti is likely 

to be mirrored elsewhere, with one of the pair of locations from the region with 

negative correlation to the Troup SOI and the other from the region of positive 

correlation. Ropelewski and Jones (1987) discusses using indices based on MSLP at 

Darwin (Australia) and either Apia (Samoa), Suva (Fiji) or Santiago (Chile) but for 

reasons that are not made clear finds no reasons to change the Darwin-Tahiti pairing.   

 

Simply changing the pair of locations for which the MSLP can be used to derive an 

index of ENSO conditions seems unlikely to greatly alter the occurrence of "noise" in 

the data.  

 

It is suggested here that a better approach would be to create an "ensemble" SOI based 

on several location pairs, not only Darwin and Tahiti.  Three such paired locations are 

shown in Table 10-5, along with the correlation coefficients from the comparison of 

the base Troup SOI and indices calculated as for the Troup SOI but using MSLP at 

the given location pairs. The correlation of both monthly values and the 7-month 

centred averages (as used earlier in this document) are shown. 

 

The three additional pairings greatly extend the range of the SOI from just the Darwin 

and Tahiti pairing where the stations are at 12.4°S 130.9°E and 17.55°S 149.6°W.  

The latitude of the Geraldton-La Serena pair is at approximately 29°S, Atuona at 9°S, 
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Singapore at 0°S, the centre of the Panama grid cell at 7°N and Mannar at 9°N.  

Longitudinally the range stretches from Mannar at almost 80°E to La Serena at 71°W.   

The three pairings, when added to the Darwin-Tahiti pairing, therefore provide better 

coverage of the regions where the MSLP correlates with ENSO conditions. 

 

 

 Data Period Correlation Coefficient 

Location pair  from  to Monthly data  7-mon avg  

 Singapore - Panama 1950 1998 0.723 0.875 

 Mannar - Atuona 1970 1989 0.783 0.936 

 Geraldton - La Serena 1973 2001 0.720 0.884 

Table 10-5 - Correlation coefficients for the comparison of the Troup SOI (based on Darwin-
Tahiti location pair) and indices calculated using the same method but for other location pairs 

 

 

The Panama location mentioned here is for the grid cell at sea off the west coast of 

Panama and south of Costa Rica (and labelled "Sea grid cell 2" in Figure 10.9). While 

being sourced from ships' observations has an advantage of using multiple 

instruments to measure air pressure, which means that errors in one or few 

instruments are of little consequence, for practical reasons the MSLP data from 

Christobal, at the northern end of the Panama Canal, might be preferable. 

 

Figure 10.10 shows the Troup SOI and the ensemble index based on the average of 

several indices. The KNMI Climate Explorer contains data for all four pairs of sites 

only for the period 1973 to 1989 but data for a minimum of three pairs is available 

from 1961 to 1998 and that data is used here. (The publishing of MSLP data is less 

common than the publishing of temperature and rainfall data although it is certainly 

recorded for weather predictions.) At times there is considerable difference between 

the ensemble index and Troup SOI, such as November 1973, when the Troup SOI is 

31.6 but the ensemble index is just 18.6, and May 1983 when the Troup SOI is 6.0 but 

the ensemble index is -12.2.  Figure 10.11 shows the monthly differences between the 

two indices for the entire period of Figure 10.10.  
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Figure 10.10 Monthly values of Troup SOI and the ensemble SOI from 1961 to 1998 

 

 

 

Figure 10.11 Difference between the ensemble index and the Troup SOI for the period shown in 
the previous Figure 
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10.5 Comparison of the Troup SOI and the Extended SOI 

 

A quantitative comparison of the original Troup SOI and the Extended Troup SOI 

described here requires other ENSO indices as a reference against which the two can 

be compared. 

 

One frequently used index is the Nino 3.4 index derived from the average SST 

anomalies in the region covered by latitudes 5°N to 5°S over longitudes 170°W to 

120°W, using a 5-month running mean of the average anomalies.  

 

For the period 1961 to 1998, the period for which a pair SOI can be calculated for 

minimum of three of the four pairs of locations in the Extended Troup SOI, the 

correlation in monthly values between the Nino3.4 index and the Troup SOI is -0.71 

whereas it is -0.74 for the Extended Troup SOI. 

 

Another ENSO index is the Oceanic Nino Index (ONI) uses the same data as the Nino 

3.4 index but uses a 7-month (cf. 5-month) running mean.  The correlations over the 

same period above are -0.74 and -0.76 respectively, again showing a small 

improvement in correlation for the Extended Troup SOI. 

 

Two issues arise with these comparisons.  Firstly SST changes more slowly than does 

air pressure, the latter partly a product of the transfer of heat from the ocean to the 

atmosphere but partly also a product of the Earth's rotation bringing atmospheric 

pressure patterns to the region. Correlating a variable that varies only slightly from 

one datum to the next in the sequence with one that varies much more in its sequence 

is always problematic and there is an element of chance in corresponding shifts. 

 

Second is the problem that both the Nino 3.4 and ONI indices are based on average 

sea surface temperature from the Nino 3.4 region of the Pacific Ocean (as defined 

above) and that there are issues with SST data from this region.  For the period prior 

to 1950 the two indices use interpolated sea surface temperature data, presumably 

estimated from the available measurements and according to derived relationships in 
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data since that time.  SST observations are used to derive the values since 1950 but to 

do so ignores the sometimes-small number of observations that were made. The 

region covers 20 of the 5° latitude by 5° longitude used in the HadSST3 gridded 

dataset, 10 in the region from latitude 5°N to the equator and 10 parallel below them.   

Figure 10.12 shows, for the period 1950 to 2015, the annual average number of grid 

cells reporting SST data (maximum is 20 as per above), split into the number of grid 

cells with fewer than five observations in the month and those with five or more. 

 

Further, in all but three years of the period from 1950 to 1972 the annual averages 

indicate that less than five observations were made in 25% or more of the reporting 

grid cells (Figure 10.13). These high percentages, coupled in the 1950s with a 

shortfall in the number of grid cells for which data was reported, cast doubt on the 

accuracy of both the Nino 3.4 and ONI indices from 1950 to 1972. 

 

The extended Troup SOI therefore is about as accurate as the Troup SOI but there are 

indices in which we have high confidence against which it can be compared.  

 

   

 

Figure 10.12 Annual average number of reporting grid cells in the Nino 3.4 region broken into 

cells with less than five observations and those with five or more 
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Figure 10.13 Annual average numbers of reporting cells with less than five observations per 

month expressed as a percentage of all reporting cells in the same month 

 

 

10.6 Summary 

 

This chapter has discussed the indices used to describe the state of the El Nino-

Southern Oscillation (ENSO) and some of the shortcomings of each, before 

addressing the Troup SOI in more detail.  It has shown that the reliance on mean sea 

level pressure data at just two sites is unwise because that data might be impacted by 

local weather conditions and has shown other reasons for scepticism about the Troup 

SOI prior to 1935. 

 

It has been shown that the fundamental "oscillation" in mean sea level pressure at 

Darwin and Tahiti indicates that data from just one of those stations would be 

indicative of ENSO conditions. With this in mind MSLP data from more than 80 

locations was examined and it was found that the MSLP at many locations in the 

eastern Pacific Ocean show similar patterns in normalised MSLP to Tahiti and that 

many in the western Pacific Ocean and into the Indian Ocean show similar patterns to 

Darwin. 
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It was proposed that Troup-like SOI values could be derived from MSLP data from 

pairs of locations with strong correlations, one of the pair in the eastern region and 

one in the western region. It is suggested that the average of the three calculated 

indices plus the Troup SOI, based on Darwin and Tahiti MSL data, will provide a 

useful ensemble SOI. 

 

Deriving the ensemble SOI from individual indices from station pairs rather than 

average MSLP of the four locations in the eastern region and the four in the western 

region takes into account that the natural range of SLP might differ between locations, 

as was shown for Darwin and Tahiti in Figure 10.2. Moreover we might find that the 

individual indices are also of value, especially with the Singapore-Panama pairing 

being equatorial and 9°N and the Geraldton-La Serena pairing being at almost 30°S. 

 

The ensemble Troup SOI has three significant advantages.  Firstly it is not a radical 

shift to a new set of ENSO-related factors with new threshold values but merely a 

refinement of an existing index. Secondly, it provides better coverage of the entire 

region where mean sea level pressure is directly related to ENSO conditions. 

 

Thirdly, and somewhat related to the second, is that data noise such as that caused by 

small-scale weather conditions at one or two locations is less likely to have a major 

impact on the index value than in the Troup-SOI, which is calculated from MSLP data 

from just two locations. The risk of false positives and false negatives regards ENSO 

thresholds is therefore reduced and this provides greater confidence about sequences 

of index values, not only that they persisted across periods when the Troup SOI 

indicates a disruption but also confidence is increased regarding the starting and end 

months of such sequences.  
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Chapter 11: On the likelihood of historical coral 

bleaching on the Great Barrier Reef 

 

11.1 Introduction 

 

The Great Barrier Reef (GBR) stretches for approximately 2300 km along the north-

east coastline of Australia, from latitude 11°S to 24°S, with most of the reef about 

100km offshore.  The coral that makes up the GBR is prone to bleaching when the 

water is unusually warm, the bleaching being due to the coral expelling the symbiotic 

zooxanthallae algae that live in coral tissues and supply it with nutrients.  The 

expelling appears to be a normal mechanism for coping with warmer water but unless 

those algae, or alternative algae, are acquired again the coral is likely to die. 

 

Coral bleaching can be caused by unusually cold water  (Hoegh-Guldberg & Fine, 

2004; Rodriguez-Troncoso et al, 2010; Lirman et al, 2011) however the emphasis on 

GBR bleaching has focused on warm water. 

 

Anthony & Kerswell (2007) report that tide height can be a significant influence on 

bleaching. Summer tidal patterns along the GBR typically see the lowest tide during 

the night and the second lowest during mid afternoon, which is often the warmest time 

of the day.  Low tides in mid-afternoon might contribute to bleaching but the 

underlying factor is still the elevated water temperature that might be a consequence 

of low tides and little cloud cover. 

 

Severe bleaching occurred in parts of the GBR four times in the last 20 years (1998, 

2002, 2016 and 2017) and has been declared or implied by some researchers to be 

very recent phenomena caused primarily by manmade climate change32 (Lough, 2000; 

Lough, 2008; De'ath et al, 2012; Hughes et al 2017).  One such example is that of 

Professor Terry Hughes, a coral ecologist at James Cook University in Townville, 
                                                
32 The frequent use of the term "climate change" to mean "manmade climate change" causes substantial 
confusion. Natural climate change, in the form of the 1977 Pacific Climate shift that resulted in an 
increase in El Niño events, certainly changed the climate in and around the Pacific (and further). 
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Australia. This professor, who has been responsible for much of the publicity about 

the bleaching event of early 2016, stated on Australian national radio:  

"a critical issue here is that these bleaching events are novel. When I was a PhD 

student 30 years ago regional scale bleaching events were completely unheard of, 

they're a human invention due to global warming."33. 

 

Bleaching was in fact first recorded early last century by Sir Maurice Yonge in the 

first major scientific study of the Great Barrier Reef (Yonge and Nicholls 1931).  

Oliver et al (2009) reports 26 records of coral bleaching before 1982.  Many early 

reports are anecdotal and refer to only small areas of the reef but that is not surprising 

given that monitoring of the reef prior to about 1985 was largely random and by 

opportunity, rather than a methodical and regular event.  

 

Understanding whether severe bleaching, or at least conditions associated with severe 

bleaching, occurred prior to 1998 would put recent bleaching into context and perhaps 

prompt a re-interpretation of these episodes, so this is the aim of this study. 

 

A complicating factor in this work is the acclimatisation of corals to earlier periods of 

bleaching (Maynard et al, 2008; Middlebrook et al, 2008; Schoepf et al, 2015).  

Acclimatisation cannot be taken into account in this study because it would depend on 

whether extensive bleaching occurred prior to 1998, which is what this study attempts 

to ascertain.  It does however follow that if earlier extensive bleaching did occur and 

acclimatisation is a significant issue then any earlier extensive bleaching likely 

occurred at a lower temperature than the bleaching episodes since 1998. 

 

 

                                                
33 ABC Radio National 2 March 2016, audio available at 
http://www.abc.net.au/radionational/programs/breakfast/widespread-coral-bleaching-detected-on-
the/7212760  
The quoted passage above starts 3min 13secs into the audio and follows about 80 seconds (starting at 
1min 33secs) of Hughes saying that the El Nino event at the time was causing temperatures "hotter than 
average, not much wind and lots of sunshine.  These conditions have pushed temperatures up."  He 
went on to describe how the weather over the next few weeks would determine if the mild bleaching at 
the time would worsen. 
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11.2 Methods, data and limitations 

 

With the absence of observational evidence of bleaching prior to 1998 this study will 

rely on four different analyses of past weather conditions to establish the likelihood of 

bleaching in those years.  These analyses are (i) a probabilistic approach based on 

Willis Island mean summer temperature, (ii) the identification of summers in which El 

Niño episodes occurred in some or all of those months, (iii) the identification of large 

numbers of hot summer days and successive hot summer days recorded at Willis 

Island and (iv) a similar identification of hot days according to sea surface 

temperature observations recorded in the International Comprehensive Ocean 

Atmosphere Data Set (ICOADS) database.  

  

Two of these analyses rely on familiar data for this thesis, the El Nino episodes that 

can be identified by the Troup SOI data published by the Bureau of Meteorology and 

the ICOADS database of observations made at sea.  By its nature the ICOADS data is 

dependent on the movement of ships, which for the GBR means at irregular time 

intervals and located in designated shipping routes on the east and west sides of the 

reef, plus various passages between the two, these routes by necessity being of deeper 

water when faster warming occurs in shallow water, suggesting that corals in shallow 

water are more susceptible to bleaching.    

 

Data from the Bureau of Meteorology's Willis Island observation station (Lat: 

16.2878°S, Long: 149.9652°E) (Figure 11.1) is used in the other two analyses. Like 

the GBR this location is surrounded by ocean, with particular exposure to the east, 

rather than on mainland Australia where it might be subject to land influences or 

urbanisation.  Although there is reason to think that the Willis Island observation 

station has been relocated short distances on the small island (approx 500m x 100m) 

the microenvironment around the station has essentially been unchanged since 

observations began in 1921. According to data from the Bureau of Meteorology an 

automatic weather station was installed in June 1991, and was replaced with a new 

type in June 2000. 
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Daily data is available from the Willis Island station since 1921 except for certain 

periods (May 1933-Dec 1934, May 1936-Dec 1936, May 1937-Dec 1938, Nov 2004- 

Sep 2006) and occasional short sequences of days or even months.  While this is a 

significant advantage over the intermittent data from ICOADS the disadvantage of the 

Willis Island data is that it is for air temperature rather than sea temperature, which 

means that it is only generally indicative of the environment around the coral. 

 

 

Figure 11.1 Map of the Great Barrier Reef, Willis Island and the three latitude bands discussed 
in this chapter. 

 

This study focuses on temperature data across the period from December to March 

inclusive and for convenience refers to this period as "summer", although strictly 

speaking it extends beyond the normal summer period. Figure 11.2 shows the 

summer34 mean maximum temperatures from Willis Island from 1922 to 2017.  The 

temperature trend across the entire period is 0.059°C/decade but that includes a shift 

in temperature from 2002 onwards because the trend from 1940 (after two years of 

missing data in the 1930s) to 2001 is just 0.006°C/decade with an average of 27.96°C, 

whereas the average for 2002 to 2017 is 0.5°C higher at 28.46°C.  
                                                
34 As with other references to "summer" in this chapter, the year displayed is that for the January of the 
summer.  
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Figure 11.2 Willis Island mean maximum summer (Dec to Mar) temperatures 1922-2017 

 

 

The correlations of average NOAA OI SSTs for three latitudinal bands of the GBR 

(see Figure 11.1) and Willis Island summer mean temperatures in individual months 

and the average for each summer are shown in Table 11-1.  Probably as a 

consequence of local conditions (eg. ocean currents) the correlations are stronger for 

the central and southern thirds of the reef.  

 

  

 Northern GBR  

10°S-15°S 

Central GBR  

15°S-20°S 

Southern GBR  

20°S-24°S 

December 0.638 0.773 0.740 

January 0.426 0.644 0.637 

February 0.430 0.733 0.759 

March 0.560 0.677 0.508 

Summer mean 0.561 0.794 0.747 

Table 11-1 Correlation coefficients between Willis Island monthly mean temperatures and 
average NOAA OI SSTs for the GBR in three latitudinal bands.  
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Sea surface temperature (SST) data reported by ships is problematic for this study 

because with rare exception the ships were travelling designated channels of deeper 

water where corals would not be damaged, whereas coral beaching is common in 

shallow water where over time and in the absence currents, such as in pools, the heat 

at the sea surface is progressively forced lower and eventually contacts the coral. SST 

data obtained by satellites offers better coverage of both deep and shallow water but 

that data is available only since 1982. 

 

 

11.3 Analyses 

  

11.3.1 Probabilistic approach 

 

Severe bleaching has been reported in 4 of the last 20 years (1998-2017), meaning 

that the present probability of severe bleaching in any given year is 4/20 or 20%.  If 

we assume normal (i.e. Gaussian) distribution of temperatures at Willis Island the 

probability corresponds to the temperature being at least 0.842 standard deviations 

(i.e. 0.842σ) greater than the mean (Figure 11.3). After taking into account the mean 

December-March temperature over the last 20 years and the standard deviation 

associated with that mean, 28.71°C is the Willis Island average December-March 

temperature at which bleaching occurs, i.e. the bleaching threshold. 
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Figure 11.3 Deriving the number of standard deviations from the probability 

 

 

The data for Willis Island from 1922 to 1997 can be split into an initial period of 16 

years followed by three periods each of twenty years.  The probability of bleaching 

threshold average summer temperature occurring in each year of these periods is 

determined from the mean temperature for that period and the number of standard 

deviations from the mean that corresponds to the bleaching threshold of 28.714°C.  

For example, the mean temperature for 1978-97 was 27.961°C with standard 

deviation 0.377°C, meaning that the bleaching threshold was (28.714 - 27.961)/0.377 

(i.e. 1.995) standard deviations from the mean, which has a corresponding probability 

of 0.023. 

 

From the probability of the threshold being exceeded in any given summer (p) the 

probability of it not being exceeded in any given summer (i.e. 1 - p) can be calculated 

and from that the probability of it not being exceeded in all summers of the period 

(i.e. (1 - p)n where n is the number of summers). Subtracting that probability from 1.0 

gives the probability that in at least one summer of the period the threshold was 

exceeded.  Table 11-2 summarises the calculations for each period and the 1922-1997 

period as a whole.  
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Factor      Full per.  

Period 1922-37 1938-57 1958-77 1978-97 1922-97 

Years of data 15 19 20 20 74 

Mean Summer Temperature (°C) 27.802 27.886 28.006 27.961 27.921 

Standard deviation of MST (°C) 0.334 0.311 0.337 0.377 0.347 

Bleaching point above mean Temp (°C) 0.912 0.829 0.709 0.753 0.793 

No of standard deviations of bleaching  

threshold above the mean temperature 2.735 2.662 2.103 1.995 2.282 

      

Probability of no bleaching (per summer) 0.997 0.996 0.982 0.977 0.989 

Probability of bleaching (per summer) 0.003 0.004 0.018 0.023 0.011 

Probability of no bleaching in the period 0.953 0.928 0.698 0.628 0.435 

Probability of bleaching in at least one 

year of the period 0.047 0.072 0.302 0.372 0.565 

Table 11-2 Summary of analysis of probability of Willis Island mean summer temperature 
reaching the notional bleaching temperature according to the period 1998-2017 

 

The rightmost column of Table 11-2 shows data for the single composite period 

from1922 to 1997, concluding a probability of 0.565 of bleaching occurring in one or 

more years of the entire period. Calculating this probability from the probability of no 

bleaching in each of the periods, i.e. 1.0 - (0.953 x 0.928 x 0.698 x 0.628), produces a 

similar but different probability of 0.6121 because the periods contain different 

sample sizes, but the division into periods is useful for indicating in which periods 

bleaching was more likely.  

 

Therefore, assuming Gaussian distribution, the probability of the Willis Island mean 

summer temperature bleaching threshold being reached in at least one year of the 

period 1922 to 1997, excluding the three years for which data is unavailable, is ~60% 

with the strongest possibility that it occurred during 1978-1997. 

 

 

11.3.2 El Niño episodes 

 

The second approach considers the occurrence of El Niño events.  Hendy et al (2003), 

Arthur et al (2005), Guzman & Cortes (2007), del Mónaco et al (2012) and many 
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others have established the link between such events and coral bleaching. Strong El 

Nino events persisted through the 1997-1998 summer, the 2002-2003 summer and the 

2015-2016 summer, all being summers with severe bleaching on the GBR.  

 

The Troup Southern Oscillation Index (SOI) is based on the standardised difference in 

mean monthly sea level pressure at Tahiti and Darwin, calculated on a calendar month 

basis.  The Australian Bureau of Meteorology advises that Troup SOI ranges between 

about -35 and +35 with values of less than -7 for three consecutive months indicating 

El Niño conditions. It advises that local weather events (e.g. summer storms) can 

make it a "noisy" index. 

 

Table 11-3 shows all instances since 1935 of summer months that were the last of 

three consecutive months when the Troup SOI was below -7. Some summers feature 

multiple times (1940-1, 1982-3, 1991-2 and 1997-8) because the El Nino event 

persisted for longer than three months.  By this approach the most likely times for 

severe widespread bleaching appear to be in 1941, at some point during the 1983 

summer, when the January-March Troup SOI averaged a very low -30.6, and again in 

the 1992 summer.  

 

 

Year Month SOI Year Month SOI 

1939 12 -10.43 1992 1 -16.47 

1941 2 -18.17 1992 2 -17.13 

1941 3 -11.90 1992 3 -19.63 

1941 12 -12.70 1993 3 -8.20 

1942 1 -10.30 1994 12 -11.00 

1963 12 -11.27 1997 12 -14.03 

1977 12 -12.70 1998 1 -15.93 

1982 12 -24.20 1998 2 -17.27 

1983 1 -27.67 1998 3 -23.73 

1983 2 -28.40 2010 2 -10.53 

1983 3 -30.63 2010 3 -11.73 

1991 12 -12.30 2016 2 -16.17 

Table 11-3 Last month of three consecutive months, ending in December to March inclusive, 
when the Troup SOI was below -7 in each month, which according to the Bureau of Meteorology 
indicate El Niño conditions. 
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As table 11-3 indicates, strong El Nino events during summer have become more 

common since 1977. The Australian Institute of Marine Science (AIMS) reports 

severe bleaching at Myrmidon Reef (18.274S 147.381E) in 1983, the same year in 

which widespread coral bleaching was reported in the eastern Pacific (Glynn, 1984) 

and Indonesia (Brown & Suharsonso, 1990), with both reports attributing bleaching to 

the El Niño event at the time. Whether severe bleaching occurred in other parts of the 

reef in that year or across any parts of the reef during earlier years with low Troup 

SOI (eg. 1941) is unknown because extensive surveying of the GBR was not the 

practice until well into the 1990s. 

 

 

11.3.3 Willis Island daily maximum temperatures 

 

The two approaches above are both broad-brush generalisations about the occurrence 

of conditions under which bleaching is likely, using very coarse temporal granularity 

of one or more months and treating the reef as a single unit.  We turn now to more 

finely detailed analyses, the first considering daily temperatures and the second 

dealing with temperature recordings that might be just hours apart. 

 

The first approach is to consider daily maximum and mean temperatures at Willis 

Island temperatures, identifying summers with high numbers of hot days and the 

duration of any hot spells.  Data for 97 summers (December-March inclusive) were 

analysed, with six years having incomplete summer data (unknown reasons 1934-38 

and cyclone damage 2004-05). 

 

Tables 11-4(a) and 11-4(b) show summary information for maximum and mean 

temperatures respectively, with the total number of days above the specified 

temperature to the left and the longest sequence of consecutive days with 

temperatures equal to or above the given value to the right, the latter not precluding 

the possibility of other sequences of shorter duration meeting the same criteria. 

 

Weightings of 1, 2, 4, 8 and 16 were applied to the five columns of "Total days" 

above each temperature, i.e. ≥31°C to ≥35°C in 11-4(a) and ≥28°C to ≥32°C in 
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11-4(b), before the data was sorted to rank the years. This ranking system is an 

arbitrary means of elevating summers with higher numbers of warm days to the top of 

the list. Only the first 12 entries are shown in each instance, this being sufficient to 

illustrate likely periods of bleaching prior to 1998.  

 

 

End 

Year 

Days in 

period  
Total days  Maximum sequence of days  

≥31°C ≥32°C ≥33°C ≥34°C ≥35°C ≥31°C ≥32°C ≥33°C ≥34°C ≥35°C 

2002 120 91 64 27 5 2 23 16 13 2 1 

2004 122 79 40 12 2 0 32 13 4 1 0 

2016 122 96 41 9 1 0 38 10 4 1 0 

1944 121 63 35 13 2 0 10 7 4 1 0 

1964 122 74 48 7 0 0 35 15 2 0 0 

1977 121 72 39 8 0 0 26 17 5 0 0 

1942 121 88 34 2 0 0 36 10 1 0 0 

1960 122 54 19 7 4 0 12 6 6 4 0 

2017 121 84 27 3 0 0 27 8 3 0 0 

1982 121 57 31 7 0 0 48 16 3 0 0 

1940 122 55 29 5 1 0 18 7 3 1 0 

1958 121 83 22 1 0 0 16 3 1 0 0 

Table 11-4(a) Total number of days and maximum sequence of days when the daily maximum 
temperature was greater than or equal do the listed temperature 

 

 

End 

Year 

Days in 

period 

Total days  Maximum  sequence of days 

≥28°C ≥29°C ≥30°C ≥31°C ≥32°C ≥28°C ≥29°C ≥30°C ≥31°C ≥32°C 

2002 120 103 75 33 6 0 43 16 12 2 0 

2016 122 107 66 19 3 0 22 13 11 2 0 

2004 122 96 56 16 3 0 37 10 6 3 0 

1977 121 88 56 15 0 0 48 11 5 0 0 

2017 121 104 53 9 0 0 31 7 2 0 0 

1994 121 80 48 14 0 0 25 15 5 0 0 

2009 120 78 48 10 0 0 20 11 4 0 0 

1964 122 90 42 7 0 0 35 10 2 0 0 

2012 122 88 47 5 0 0 16 15 4 0 0 

1944 118 80 39 7 0 0 16 11 3 0 0 

1982 121 82 34 9 0 0 48 12 4 0 0 

2015 121 88 36 4 0 0 20 7 2 0 0 

Table 11-4(b) Total number of days and maximum sequence of days when the daily mean 
temperature was greater than or equal do the listed temperature 
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In Table 11-4(a) year 2002 stands out with daily maximum temperatures ≥31°C on 

just over 75% of days from December 1st to March 31st, more than 66% of those 

having maximum temperatures ≥ 32°C.  Year 2016 had even more daily maximums 

above 31°C than 2002 but almost half of those did not reach 32°C.  The summer of 

1944 is second only to 2002 for the number of days in which temperatures were 

≥33°C. 

 

The conclusion from Tables 11-4(a) and 11-4(b) is that while high daily maximum 

and daily mean temperatures have occurred in recent years they also occurred in 

earlier years, such as over the summers that ended in 1942, 1944 and 1964.  The first 

of these, 1942, came at the end of almost 18 months of El Niño conditions whereas 

ENSO conditions in summer 1944 were more neutral. In relation to the summer of 

1964 the last of three months with Troup SOI below -7.0 occurred in December 1963 

but the collapse of an El Niño can bring warm water from the central Pacific Ocean to 

the reef thus reducing the input required to warm the water to bleaching temperature.  

 

While 2002 and 2016 both rate highly in Tables 11-4(a) and (b), the year 1998, in 

which bleaching was severe, rates 67th of 97 years for Table 11-4(a) (maximum daily 

temperatures) and 33rd for Table 11-4(b) (mean daily temperatures).  This suggests 

that either other factors contribute to coral bleaching, perhaps quite localised 

conditions like clear sky and the absence of cooling winds, or the less likely prospect 

that local conditions at Willis Island somehow suppressed temperatures for much the 

summer in that year despite the El Niño conditions. 

  

11.3.4 ICOADS sea surface temperature observations 

 

Data for individual observations of sea and meteorological conditions along the GBR 

since 1901 was accessed from the ICOADS database in order to try to identify periods 

of elevated sea surface temperatures.  The data is somewhat problematic because the 

observations are irregular, varying in number each month, and that the measurements 

of SSTs were usually made when the ships were either in port or travelling defined 

shipping routes, which are deeper passages of water. Despite these issues the data can 
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be taken as broadly indicative of conditions in a given month, although confidence in 

the data diminishes when few observations were made that month. 

 

In this study the data was split into almost equal thirds along the length of the reef, the 

northern region from 10S (northern limit of GBR marine park) to 15S (near Cape 

Flattery), the middle region from 15S to 20S (near the township of Bowen) and the 

southern region from 20S to the southern end of the marine park. Again only data for 

the months December to March were used.   

 

Table 11-5 shows instances when, for certain months prior to 1998, the percentages of 

SST observations recording ≥29°C and ≥30°C were relatively high (>35% for the 

northern region and >30% for the middle region), indicating periods of warm SST.  

No such instances meeting those parameters were identified in the southern region 

during that time and only three instances after 1998. 

 

Table 11-5 shows in 1970 and 1983 multiple months with high percentages of warm 

SSTs were reported in the northern third of the reef and for both years a single month 

of warm SSTs in the middle region of the reef. Bleaching in 1983, during a strong El 

Nino event, was mentioned earlier.  The Troup SOI in the first two months of 1970 

were -10.1 and -10.7 respectively, coming after two months of very neutral -0.1 and 

+3.7, suggesting a tenuous link if the Troup SOI is assumed to be accurate rather than 

as being data noise.  
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Year Month 

Count  

SSTObs 

Count  

≥29°C 

Count  

≥30°C 

% SST 

≥29°C 

% SST 

≥30°C 

Northern region  

1963 1 35 28 19 80.00 54.29 

1964 1 39 26 14 66.67 35.90 

1966 2 29 21 14 72.41 48.28 

1970 1 37 32 15 86.49 40.54 

1970 2 49 35 28 71.43 57.14 

1970 3 37 33 25 89.19 67.57 

1971 1 36 25 23 69.44 63.89 

1973 1 39 28 17 71.79 43.59 

1977 1 56 30 23 53.57 41.07 

1980 3 30 19 18 63.33 60.00 

1981 12 38 22 17 57.89 44.74 

1983 1 57 48 25 84.21 43.86 

1983 3 32 29 20 90.63 62.5 

1983 12 46 32 19 69.57 41.30 

1984 2 44 29 21 65.91 47.73 

1985 12 46 33 23 71.74 50.00 

1987 1 47 42 28 89.36 59.57 

Middle region (latitudes 15°S to 20°S)  

1961 2 30 16 9 53.33 30.00 

1970 3 63 35 21 55.56 33.33 

1971 1 48 29 22 60.42 45.83 

1973 2 37 26 12 70.27 32.43 

1987 1 60 47 23 78.33 38.33 

1991 1 39 20 14 51.28 35.90 

1995 2 27 17 11 62.96 40.74 

Table 11-5 Instances of a high proportion of recorded SSTs in the given month being ≥29°C and 
≥30°C. (Minimum observations per month = 25). 

 

 

Consecutive days of high temperatures can pose a threat to corals. Table 11-6 shows 

some instances of extended periods of temperatures ≥29°C and ≥30°C based on at 

least one SST observation in the given region reporting that SST on each day.  

 



 304

 

≥29°C  ≥30°C  

from  to days  from  to  days  

Northern        

31/01/1970 5/02/1970 6 31/01/1970 5/02/1970 5 

5/01/1972 13/01/1972 9 5/01/1972 8/01/1972 4 

16/03/1978 26/03/1978 11 17/03/1978 21/03/1978 5 

22/03/1980 27/03/1980 6 22/03/1980 27/03/1980 6 

23/03/1983 31/03/1983 7 25/03/1983 31/03/1983 7 

11/03/1990 21/03/1990 11 12/03/1990 17/03/1990 6 

Middle       

25/12/1923 3/01/1924 10 25/12/1923 2/01/1923 9 

7/03/1970 13/03/1970 7 7/03/1970 13/03/1970 7 

8/02/1978 17/02/1978 10 25/03/1978 28/03/1978 4 

4/01/1986 16/01/1986 13   <4 

17/01/1989 28/01/1989 12   <4 

Southern        

16/01/1971 21/01/1971 6   <4 

2/02/1971 6/02/1971 5   <4 

14/02/1973 19/02/1973 6   <4 

11/01/1986 20/01/1986 10   <4 

20/02/1986 23/02/1986 4   <4 

23/01/1987 29/01/1987 7   <4 

Table 11-6 Number of consecutive days (minimum of 4) when SSTs were reported of ≥29°C and 
≥30°C 

 

As with the other analyses presented here, year 1983 features in this table with 

consecutive periods of seven days in which SSTs greater than or equal to 30°C were   

recorded in the northern third of the reef.  Surpassing the length of that period though 

is 1923 when nine consecutive days of maximum temperatures exceeding 30C were 

reported for the central third of the reef. 

 

11.4 Conclusions 

 

While it has been sometimes claimed or implied that widespread severe coral 

bleaching has only occurred since 1998 the four methods of analysis shown here 

indicate a substantial likelihood that severe bleaching occurred but was unobserved 

earlier in the twentieth century. 
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The first analysis technique established a probability of 0.6 that severe bleaching 

occurred prior to 1998 and the subsequent three showed that land and sea summer 

temperatures reported after 1998 also occurred prior to that year, suggesting a strong 

possibility of earlier bleaching.  Three of the four methods deal directly with 

temperatures either on land or at sea and the fourth with El Nino events, which are 

recognised as causing elevated temperatures.  All four methods indicate likely severe 

bleaching episodes prior to 1998. 

 

As noted earlier, this analysis does not take into account the impact of winds, 

especially cooling sea breezes, tides in any sense other than generally and that 

acclimatisation to any bleaching prior to 1998 would suggest that the earlier bleaching 

occurred at a lower sea temperature. 

  

No approach shown here is favoured over any of the other approaches because all four 

have various strengths and weaknesses.  It is left to readers to form their own 

judgement as to which approach is most appropriate to their needs. 
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Appendix 1 - Observation station site classes 

according to WMO standards 

 

(refers chapter 6) 

 

Chapter 1 of WMO-No. 8 (WMO, 2010) Part 1 describes five site classes of 

temperature observation stations, noting that class 3 has "additional estimated 

uncertainty added by siting up to 1°C", class 4 up to 2°C and class 5 up to 5°C. An 

appendix to that document defines the various classes as follows: 

 

 

CLASS 1 

(a)  Flat, horizontal land, surrounded by an open space, slope less than ⅓ (19°); 

(b) Ground covered with natural and low vegetation (< 10 cm) representative of the 

region; 

(c) Measurement point situated: 

(i) At more than 100 m from heat sources or reflective surfaces (buildings, 

concrete surfaces, car parks, etc.); 

(ii) At more than 100 m from an expanse of water (unless significant of the 

region); 

(iii) Away from all projected shade when the sun is higher than 5°.  

A source of heat (or expanse of water) is considered to have an impact if it occupies more 

than 10 per cent of the surface within a circular area of 100 m surrounding the screen, 

makes up 5 per cent of an annulus of 10–30 m, or covers 1 per cent of a 10 m circle. 

 

 

CLASS 2 

(a)  Flat, horizontal land, surrounded by an open space, slope inclination less than ⅓ 

(19°); 

(b) Ground covered with natural and low vegetation (<10 cm) representative of the 

region; 

(c)  Measurement point situated: 
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(i) At more than 30 m from artificial heat sources or reflective surfaces 

(buildings, concrete surfaces, car parks, etc.); 

(ii) At more than 30 m from an expanse of water (unless significant of the 

region); 

(iii) Away from all projected shade when the sun is higher than 7°. 

A source of heat (or expanse of water) is considered to have an impact if it occupies more 

than 10 per cent of the surface within a circular area of 30 m surrounding the screen, 

makes up 5 per cent of an annulus of 5–10 m, or covers 1 per cent of a 5 m circle. 

 

 

CLASS 3  

(a) Ground covered with natural and low vegetation (< 25 cm) representative of the 

region; 

(b) Measurement point situated: 

(i) At more than 10 m from artificial heat sources and reflective surfaces 

(buildings, concrete surfaces, car parks, etc.); 

(ii) At more than 10 m from an expanse of water (unless significant of the 

region); 

(iii) Away from all projected shade when the sun is higher than 7°. 

A source of heat (or expanse of water) is considered to have an impact if it occupies more 

than 10 per cent of the surface within a circular area of 10 m surrounding the screen or 

makes up 5 per cent of an annulus of 5 m. 

 

 

CLASS 4 

(a) Close, artificial heat sources and reflective surfaces (buildings, concrete surfaces, 

car parks, etc.) or expanse of water (unless significant of the region, occupying: 

(i) Less than 50 per cent of the surface within a circular area of 10 m around the 

screen; 

(ii) Less than 30 per cent of the surface within a circular area of 3 m around the 

screen; 

(b)  Away from all projected shade when the sun is higher than 20°. 

 

 

CLASS 5 
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Site not meeting the requirements of class 4. 
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Appendix 2 - Alternative methods for identifying 

inhomogeneities in temperature data 

 

(refers Chapter 6) 

 

The following methods of identifying inhomogeneities in temperature data records are 

given in Aguilar et al (2012): 

 

(i) Caussinus-Mestre 

– Assumes that a dataset for a given site is homogenous between one break and the 

next (or to its end) and compares other data from that same site to it. 

 

(ii) Bushland range test 

 – Sums the temperature anomalies calculated against the mean of the temperature 

across the data being considered and looks for peaks. 

 

(iii) Craddock test 

– Uses a homogenous reference series and accumulates the normalised difference 

between the test series and reference series. 

 

(iv) Expert Judgement 

– Relies on expert interpretation of usually a graphical display of data – target series, 

neighbouring series and perhaps the difference between the two – to identify 

discontinuities. 

 

(v) Instrument comparison 

– Side-by-side comparison of instruments in their enclosures; useful particularly when 

changing instruments 

 

(vi) Multiple Analysis of Series for Homogenisation (MASH) 

– Compares target series to multiple other series from the same climatic area, 

essentially using the composite of the others as a reference series. 
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(vii) Multiple Linear Regression 

- Applies four regression models to test for steps and trends in the data using 

surrounding stations as references. 

 

(viii) Petit Test 

– A non-parametric rank test that then draws on significance tables. 

 

(ix) Potter's Method 

– tests the hypothesis that the combined population before and after a target year has 

the same bivariate normal distribution as the before and after periods considered 

separately. 

 

(x) Radiosonde data 

– Uses radiosonde data obtained by balloons to estimate surface temperatures and 

compares these estimates to the measured temperatures. 

 

(xi) Rank-Order Change point test 

 – Uses a non-parametric test related to Wilcoxon-Mann-Whitney test and based on 

the sum of the ranks of values from the start of data to the target point 

 

(xii) Standard Normal Homogeneity test 

 – Takes the difference at each point between a target series and a reference series, 

normalises those differences (i.e. subtract from mean and divide by standard 

deviation) then tests for symmetry before and after each target value. 

 

(xiii) Stop-Trend method 

 – Splits data into intervals and compares differences in consecutive values in each 

interval. 

 

(xiv) Two phase regression  

– Looks at the difference between lines of regression before and after a target value, 

which might be a temperature measurement or might be the difference between data 

from a target site and corresponding data at a reference site. 
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Appendix 3 - Diagrams describing recognised ENSO 

states  

 

(refers Chapter 9) 

 

 

 

Figure A2.1 Neutral ENSO state, with easterly winds across the Pacific and circulating water. 
Image credit: NOAA 
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Figure A2.2 La Niña state, with an increase in cold water upwelling and strengthened winds 
across the Pacific. Image credit: NOAA 

 

 

 

Fig A2.3 El Niño state, with reduced upwelling and reduced winds. Image credit: NOAA 
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Appendix 5 - Correlation coefficients for comparison 

of Troup SOI and MSLP 

 

The table below lists the correlation coefficient at locations additional to those shown 

in Chapter 9, table 9-3. 

 

Name Country Lat Long Yr beg  Yr end  

 Correl 

Coeff  Comments 

Auckland New Zealand 37.02S 174.08E 1940 1992 0.109  

Bangkok Thailand 13.73N 100.57E 1940 2001 -0.485  

Brownsville USA 25.92N 97.42W 1951 2001 0.053 Texas-Mexico border 

Calcutta India 22.53N 88.33E 1940 2001 -0.213 1940-1981 coeff = -0.479 

Cebu Philippines 10.30N 123.90E 1951 1982 -0.400 downward MSLP trend 

Chittagong Bangladesh 22.35N 91.82E 1948 1987 -0.401 15% of data missing 

Christchurch New Zealand 43.48S 172.52E 1940 1993 0.274  

East Sale Australia 38.10S 147.13E 1961 2001 -0.396  

Funafuti Tuvalu 8.52S 179.22E 1940 1993 0.273  

Guam US Territory 13.55N 144.83E 1965 1993 -0.433 

with SOI 5 months 

previously, -0.753 

Guangzhou China 23.13N 113.23E 1961 2001 -0.246  

Hihifo Wallis and Fortuna Is. 13.23S 176.7W 1951 1994 0.097  

Hilo USA 19.72N 155.07W 1961 2011 0.387 

with SOI 6 months ahead, 

0.590 

Honiara Solomon Islands 9.42S 159.97E 1951 1976 0.116  

Honolulu Obs. USA 21.30N 158.10W 1940 1985 0.320 

with SOI 5 months ahead 

0.483 

Kwajalein Marshall Islands 8.73N 167.73E 1971 2001 -0.202 

with SOI 5 months 

previous, -0.529 

Legazpi Philippines 13.13N 123.73E 1947 2000 -0.379  

Martin de Vivies French territories 37.78S 77.52E 1951 1990 -0.029  

Melbourne Australia 37.82S 144.97E 1940 1982 -0.382  

Nadi Fiji 17.75S 177.45E 1947 2001 0.136  

Oita Japan 33.23N 131.62E 1951 2001 -0.168  

Pamban India 9.27N 79.30E 1940 2001 -0.268 1981 onwards, -0.766 

Ponape Micronesia 6.97N 158.22E 1961 2001 -0.265 

with SOI 4 months 

previously, -0.401 

Port Vila Vanuatu 17.8S 168.30E 1954 1981 -0.426  

Raizet Guadaloupe 16.27N 61.52W 1955 1989 0.063  

Raoul Island New Zealand 29.25S 177.92E 1940 1988 -0.070  

Rodriguez Mauritius 19.68S 63.42E 1954 2001 -0.310  

Sea grid cell 3 btwn Baja Sur and Hawaii 26-28N 116-118W 1966 2014 0.398  

Shantou China 23.40N 116.68E 1961 2001 -0.396  
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Wake Island US territory 19.28N 166.65E 1949 1996 -0.226 

with SOI 5 months 

previously, -0.378 

Williamtown Australia 32.78S 151.82E 1957 2001 -0.393  

Table A3-1 Alphabetic listing of other locations where the correlation between Troup SOI and 
NMSLP was determined. 
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