
Language subsetting in an industrial context: a

comparison of MISRA C 1998 and MISRA C

2004

Les Hatton
CISM, University of Kingston∗

November 20, 2005

Abstract

The MISRA C standard [7] first appeared in 1998 with the objective
of providing a set of guidelines to restrict features in the ISO C language
of known undefined or otherwise dangerous behaviour. The standard was
assembled by representatives of a number of companies in the automobile
sector in response to the rapidly growing use of C in electronic embedded
systems in automobiles. The standard attempts to build on the earlier
work of [6], [3] and others. Due to various perceived deficiencies, notably
considerable ambiguity in the rule definitions, a revision was planned and
eventually appeared in 2004. This paper measures how well the two stan-
dards compare on the same population of software and also determines
how well the 2004 version achieved its stated goals. Given its increasing
influence, the results raise important concerns.

Keywords: safer subsets, MISRA C, embedded control systems

1 Overview

Pragmatic safer subsetting of languages to remove dependence on poorly defined
features is finally becoming a mainstream activity with the recent recommen-
dation to form a high-integrity study group under the auspices of the ISO, [8]
with the intention of producing sets of rules to restrict features with undefined
or otherwise dangerous behaviour in programming languages in common use.

It frequently comes as a surprise to developers that significant parts of a pro-
gramming language can fall into this category. In practice, all standardised
programming languages contain problematic features for a variety of reasons
which include the inability of the standardising committee to agree on the be-
haviour of a particular feature, the use of unintentionally ambiguous language
in the standards document itself, omitting to say anything at all and so on.
It must of course be remembered that many users of a programming language
never see the underlying standard document, but these documents are usually

∗L.Hatton@kingston.ac.uk, lesh@leshatton.org

1



between 300 and around 800 pages and contain complex and highly techni-
cal language. In other words, in spite of the great care language committees
take, there will always be problems with their production, consistency and in-
terpretation and sometimes surprisingly bad programs can legitimately survive
compilation as a result. Regrettably, successful compilation is usually not a
quality measure and in some languages, of which C and C++ are probably the
most well-known, when a program compiles successfully for the first time, the
programmer’s problems are just beginning rather than ending.

In addition to the continuing work of a language committee in trying to
tighten the definition as much as possible, over time, word gets round amongst
users of a particular language that certain features are of suspect behaviour
and best avoided. Often these are of a rather different nature and may be well-
defined but simply surprising for one reason or another. As a result of this, codes
of practice spring up to attempt to avoid problematic language fragments with
greater or lesser success. C has always contained a rich set of such features, this
richness resulting at least in part from the extraordinary success of the language
over the years in an astonishingly wide range of applications, and it was arguably
the first language where systematic avoidance of problematic constructs was
enshrined in an excellent book, [6]. It should be noted in passing that the ISO
standard document itself also goes to considerable pains to document poorly
defined areas in appendix G of ISO C 9899 (1990) and appendix J of ISO C 9899
(1999). Other languages have also moved to address such issues, for example
Ada95 which has a safety annex, (Annex H) and also carefully designed subsets
such as SPARK Ada, [2].

In C, problematic features might be very simple such as the misuse of the
comparison operator ’==’ to give expressions like:-

c == d;

which does nothing at all, (the programmer meant to say c = d which assigns
the value in d to the object c), or rather more subtle involving the meaning of
expressions such as:-

a[i] = ++i;

where i is used and modified in the same expression leading to a dependence
on the order of evaluation of the operands, (which in most modern program-
ming languages is left up to the compiler writer for optimisation reasons). In
both C and C++, the above expression is entirely legal but leads to undefined
behaviour. In languages such as Ada and Fortran, dependence on order of eval-
uation can also occur but there are considerably fewer opportunities for this
to happen and it is consequently rather less frequently occurring, (a fragment
such as the above occurs about every 7,000 lines in C, [3]). Suffice it to say
that the practice of safer subsetting simply compiles lists of legal constructs
such as these which have undefined or surprising behaviour, so that they can
be avoided in future, beneficially affecting the reliability and perhaps also the
safety, (the relationship between reliability and safety is non-trivial). An ex-
ample of a compact measurement based subset for ISO C is given by [5]. Such
rulesets are often accompanied by tools which automate the detection process

2



to some extent. The greater the extent to which this can be done, the better as
static detection takes place earlier in the development life-cycle than dynamic
detection and is therefore much cheaper to do per fault found. This area has
been particularly well studied in Ada.

2 Safer subsets and noise

The original MISRA C 1998 standard was discussed in detail by [4] from a
number of points of view. The most pertinent aspect here is the issue of static
rule induced noise. When a static analysis toolset detects dependence on an
undefined feature, for example use of a variable which has not been initialised,
it will issue a warning. Unfortunately, as pointed out by [4], such rules in
practice fall into three broad categories, A, B.1 and B.2. Of these, category A
rules are generally stylistic and have no known relationship with failure. An
example of a category A rule is that all local variables should have a name
beginning with ’L ’. Category B.1 rules could conceivably be associated with
failure, (for example the frequently repeated rule that the ’goto’ statement shall
not be used), but for which there is still no measurement support as yet. In
contrast, category B.2 rules are known by measurement to be associated directly
with failure.

The ideal safer subset and the one most convincing to its users is one made
up of category B.2 rules only, for example [5]. Professional engineers do not
like their programs to fail and the detection of an obvious fault known to fail,
(such as dependence on an uninitialised variable) is a palpable benefit. How-
ever, in static analysis, the run-time behaviour of even the most blatant faults
is unknown and there is therefore a probability of failure invariably less than
one and sometimes very much less than one. It can even be zero if an obvious
fault is never executed, a not uncommon scenario in a complex program. Not
withstanding these comments, there is evidence of causal quantifiable connec-
tions between such faults and actual failures, [10]. When typical commercial
populations of C are subjected to a standard based entirely on category B.2
faults, a detection rate of around 8 per 1000 lines of source code is reported
on average, [3], [4], a value which hasn’t changed much in the last 10 years. In
other words, a necessary condition for a safer subset related directly to failure
is a detection rate of around this figure. It is not sufficient as it could be the
wrong 8 of course.

The dangers of false positives In very simple terms, if a set of rules causes
many more transgressions than around 8 genuine faults per 1000 lines of source
code on average, there is an obvious danger that the programmer will not be
able to see the wood for the trees. Detection of items belonging to category
B.1 or even A are simply false positives. That such false positives may greatly
outnumber real positives and simply obscure them is a well known problem in
practical safer subsetting. There is however a greater danger first identified by
[1]. The whole point of a subset is that transgressions from that subset should
be corrected by the programmer before continuing. However, as showed by [1],
there is a non-zero probability p (about 0.15 in Adam’s work), that such a

3



’correction’ will in fact inject a new defect of about the same severity because
of unintended side effects.

To quantify this simply, suppose there are a total of f category B.2 faults cor-
rectly detected by a safer subset per 1000 lines of source code, where f is around
8 on average, [3]. If all these are corrected, the number of faults remaining after
correction will be fp. Suppose now that a safer subset causes f genuine faults
to be detected and g false positives to be detected, i.e. warnings unrelated to
any known failure mode. Suppose further that all these faults, genuine or false
positive have to be corrected for compliance reasons. The number of faults after
correction will therefore be

fp + gp (1)

However, there were f to start with so there is a chance that adhering to this
noisy subset will actually increase the total number of faults and this will occur
if:-

fp + gp > f (2)

which can be simplified to the condition:-

f

g
<

p

1− p
(3)

As was pointed out in [4], even in the best case if it is assumed that the MISRA
1998 standard detected all detectable faults, and this is far from clear, the ratio
(f/g) is around (1/50). In other words, if adherence to this standard were forced
by some conformance requirement, then p, the fault injection rate reported by
[1], would have to be less than around 0.02 in order to have the desired effect
of reducing the total number of faults. Unfortunately, this appears significantly
less than values quoted for this ratio including the value of 0.15 actually quoted
by Adams. It follows that in an unadulterated form, there is a significant chance
that strictly adhering to MISRA C 1998 might actually make things worse by
increasing the number of faults.

The goals of MISRA C 2004 The essential goals of the MISRA C 2004
update were:-

1. To remove ambiguity in the wording of some of the rules, (c.f. [4] for
examples).

2. To correct some of the rules which were actually wrong due to misunder-
standings of the underlying ISO C standard, ISO 9899:1990.

3. To preserve the relatively simple nature of the wording for better accessi-
bility to engineers

4. To reduce the noise so that the standard was much closer in transgression
rates to the actual failure data.

The re-write of the standard took some 3 years after it was decided upon and in
the end turned out to be a major re-write in which all the rules were renumbered,
some rules removed and a number of rather complex rules related to arithmetic
conversions added. Table 1 summarises:-

4



Version Rules Sections Pages
MISRA C 1998 127 17 69
MISRA C 2004 141 21 111

Table 1: Size comparison between the two versions

15 rules in MISRA C 1998 were rescinded and 29 rules added leading to an
overall increase of 14. Unfortunately, the update certainly fails on the first and
third of its goals, although it partially addresses the second, (the fourth will
be considered shortly). Some of the rules are still ambiguous and the standard
suffers from creating its own words and concepts which were not used by the
international committee which produced the underlying C standard, ISO C
9899, (1990). For example, an extraordinarily complex section in MISRA C 2004
more than 12 pages long introduces a number of concepts such as ”underlying
type” and ”complex expression”, the latter conflicting with the introduction of
the complex type in ISO C 9899, (1999). The whole point of this section is
to attempt to enforce the following long-established reliability principle in any
programming language:-

Significant bits shall not be lost nor change their signedness (if
relevant) by an implicit conversion.

Unfortunately, apparently from over-complication, the MISRA C 2004 version
also makes statements like:-

float32 = 1.5;

non-compliant, (because 1.5 is of type double in C leading to an implicit and
entirely safe conversion). It is very difficult to see what possible contribution this
distraction can make towards improving reliability. Distraction is an appropriate
word here. When applying static rules, an obligation to comply is passed to the
programmer which may be distracting from more important areas like algorithm
correctness. Unless the static rule is directly relevant to a failure mode, the rule
is simply a distraction and may therefore make things worse.

To assist users of the original standard in view of the renumbering and
very significant rewording, an appendix in MISRA C 2004 conveniently cross-
references the rule numbers where appropriate in the standard. This cross-
reference table was used in the generation of the data which follows in the
next section. It should also be noted that the original MISRA C standard was
aimed specifically at automobile developments. MISRA C 2004 targets itself
at the general purpose market-place making it all the more important that its
intended goals should be met. The fourth and in the view of the author, the
most important of these goals, will now be considered.

3 Signal to noise in MISRA C 1998 and 2004

In order to compare the two standards in terms of static rule noise, the same
population of commercially released software was used. This consisted of seven
packages totalling around 135,000 lines of source code. The packages were as
follows:-

5



• Racing car control system

• The Javascript interpreter

• A digital television controller (set-top box)

• Car instrument package

• Engine management system

• Satellite communication system

• A government agency system

The biggest package used was around 61,000 lines and the smallest around
2,200 lines of source code. Note that this population is a little different to that
studied by [4] for accessibility reasons.

In each case, the relevant MISRA C standard was set up by defining rules
within a tool, the ”Safer C toolset”. For further confidence in the measure-
ments, a second tool, ”PC Lint” was used in parallel. Unfortunately, significant
ambiguities remain within MISRA C 2004 so it was only possible to set up
about 80% of the standard in each case but within this subset, no surprises
resulted in using the two tools. It should be noted however that very significant
differences were noted between different toolsets operating on MISRA C 1998
when this was not done, [9]. This also of course implies that the transgression
rates reported here in the two standards are under-estimates.

The results are rather disturbing and the two comparisons on this population
are shown in Figure 1 (MISRA C 1998) and 2 (MISRA C 2004). Note that in
these figures, only rule 1 is common to both, being the requirement to comply
with the underlying ISO C 9899 (1990) standard. Rule renumbering and in
a number of cases complete rewording, affects all the other rules and there
is no longer a one to one relationship between them. However, the overall
transgression rates tell the story sufficiently well.

As can be clearly seen, the overall reduction in false positives is a disap-
pointing 29%, meaning that the real to false positive ratio is still no higher
than about (1/35). This leaves MISRA C 2004 still squarely in the zone where
correcting all the transgressions is likely to increase the total number of faults
rather than decrease them according to the argument above and the data of
[1], and once again it must be concluded that the standard is unsuitable for
use in an unadulterated form. Very careful and selective rule deviation will be
necessary to recover any value.

A further disturbing feature of this analysis is that 5 out of the 7 packages
contained features which unintentionally violated the underlying ISO C 9899
(1990) standard and which the corresponding compilers clearly did not flag.
This does not include any deliberate extensions to the ISO standard associated
with embedded control system concepts such as the handling of interrupts. The
aggregated rate at which this occurred was around 4 per 1000 lines of source code

6



with one package (the Satellite Communication system) being particularly bad
contributing about 80% of these. This may be evidence of growing departures
in compilers from compliance since the demise of compiler validation testing for
any programming language by any of the national standards bodies in the year
2000. This does not bode well for the future.

3.1 Identifying noisy rules

It is immediately clear from Figures 1 and 2 that a relatively small number of
rules contribute much of the noise and it is of interest to compare the offending
rules in the two versions. However, simple identification of the most frequently
occurring transgressions is not sufficient because this might be influenced by
unusually high transgression rates in one or two packages and there was evidence
of this in the 7 commercial packages used. It is important therefore to distinguish
between noise in the standard, (i.e. noise which affects all packages more or less)
and noise in the package, (where the programmers had a penchant for breaking
some rules unusually often compared with the population at large). It is the
former which is of the most concern here. In order to discriminate those rules
which were transgressed frequently and which affect all packages more or less
equally, the following statistic D based on the mean number of transgressions
modulated by a statistic which is capable of discriminating data containing
peaks will be used.

D = { 1
N

N∑

i=1

ai}.{{
∑N

i=1 ai
2}2∑N

i=1 ai
4
} (4)

where N is the number of packages used and ai is the number of transgressions
of a particular rule in package i. Here the first term on the right hand side is
the average and the second term is the inverse of the varimax statistic which
discriminates against data with large peaks compared with more uniform data
as can be seen by substituting a few sequences of numbers. The results of
calculating this statistic for the two versions of MISRA C are shown in figures
3 and 4. As can be seen by comparing these with the corresponding figures 1
and 2, the distribution of noisiest rules changes somewhat.

Using the D statistic, the noisiest 8 rules for each of the two versions are
shown in decreasing order of importance in Tables 2 and 3 for MISRA C 1998
and MISRA C 2004 respectively.

Rule Rule type
18 Suffixing of numeric constants
49 Explicit tests of values against zero in predicates
59 if, while and for statements are brace-enclosed
45 No type casting between pointers
37 No bitwise operations on signed integer types
47 No dependence on operator precedence - must use paren-

theses
77 function arguments and defined parameters must be com-

patible
34 Operands of logical operators must be primary expressions

7



Figure 1: Transgression rates in warnings per 1000 lines of source code on a test
population of commercial C software using the MISRA 1998 standard

8



Figure 2: Transgression rates in warnings per 1000 lines of source code on a test
population of commercial C software using the MISRA 2004 standard

9



Table 2: The noisiest rules in decreasing value of D statistic in MISRA
C 1998

Rule Rule type
10.1 Implicit conversion of integer types
13.1 No assignment in Boolean valued expressions
14.8/14.9 if, while and for must be compound statements
11.1-4 Conversions between pointers
12.7 No bitwise operations on signed types
12.5 Operands of logical operators must be primary expressions
16.8 All exits in non-void function must have a return
14.7 A function shall have a single point of exit

Table 3: The noisiest rules in decreasing value of D statistic in MISRA
C 2004

As can be seen, in spite of the complete re-structuring and non-simple re-
lationship between the rules in the two versions, the noisiest rules essentially
embody the same concepts. The conclusion is very simple. Unless these con-
cepts are refined to be much closer to the underlying failure modes or excluded
by a deviation policy, both versions of the MISRA C standard are far too noisy
to be of any real use.

4 Conclusions

In view of the apparent widening influence of the MISRA C standard, this paper
attempts to assess whether important deficiencies in the original standard have
been addressed satisfactorily. Unfortunately, they have not and the important
real to false positive ratio is not much better in MISRA C 2004 than it was in
MISRA C 1998 and it is unacceptably low in both. A novel method of using a
varimax-modulated statistic to demonstrate this was also presented.

Two of the other three goals (the first and third in the list quoted earlier)
also do not appear to have been met satisfactorily and overall, little progress
appears to have been made unfortunately as MISRA C 2004 is bigger, very
much more complex certainly in some of its rules and has not solved the most
fundamental problem of MISRA C 1998, viz. that its unadulterated use as a
compliance document is likely to lead to more faults and not less because of
the fault re-injection phenomenon first noted by [1]. A simple model of this
behaviour was also introduced in this paper.

In its present form, the only people to benefit from the MISRA C 2004 update
would appear to be tool vendors and it is to be hoped that steps will be taken
both to simplify the wording and to reduce the false positive ratio in future
revisions by taking a little more notice of published experimental data and
being less tempted to invent rules on the basis that they seem a good idea.
Otherwise it will go the way of many of its predecessors and fail to have any
beneficial impact in this important area and may even make things worse.

10



Figure 3: The D statistic of the text plotted against rule number for MISRA C
1998

11



Figure 4: The D statistic of the text plotted against rule number for MISRA C
2004

12



References

[1] E. Adams. Optimising preventive service of software products. IBM Journal
of Research and Development, 1(28):2–14, 1984.

[2] B. Carre and J. Garnsworthy. Spark - an annotated Ada subset for safety-
critical programming. Proceedings of conference on TRI-ADA ’90, pages
p.392–402, 1990. ISBN 0-89791-409-0.

[3] L. Hatton. Safer C: Developing software in high-integrity and safety-critical
systems. McGraw-Hill, 1995. ISBN 0-07-707640-0.

[4] L. Hatton. Safer language subsets: an overview and a case history, MISRA
C. Information and Software Technology, 46:465–472, 2004.

[5] L. Hatton. EC– a measurement based safer subset of ISO C suitable for em-
bedded system development. Information and Software Technology, 47:181–
187, 2005.

[6] A. Koenig. C Traps and Pitfalls. Addison-Wesley, 1989. ISBN 0-201-17928-
8.

[7] MIRA Ltd. Guidelines for the use of the programming language C in vehicle
based systems, 1998. http://www.misra.org.uk/.

[8] J. Moore. Proposal to SC 22 future directions study group regarding
support of high-integrity applications. Web, 2005. http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1109.pdf.

[9] S. Parker. Comparison of MISRA C testing tools. Web, 2001.
http://www.pitechnology.com/downloads/files/MISRA C tools.pdf.

[10] S.L. Pfleeger and L. Hatton. Do formal methods really work ? IEEE
Computer, 30(2):p.33–43, 1997.

13


