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Abstract

An analysis of Stochastic Diffusion Search, a novel and efficient opti-

misation and search algorithm, is presented, resulting in a derivation of

the minimum acceptable match resulting in a stable convergence within

a noisy search space. The applicability of SDS can therefore be assessed

for a given problem.



Introduction: Stochastic Diffusion Search (SDS), first described in [1], is

an efficient probabilitistic multi-agent global search and optimisation technique

that has been applied to diverse problems such as site selection for wireless net-

works [2], mobile robot self-localisation [3], object recognition [4] and text search

[5]. Additionally, a hybrid SDS and n-tuple RAM [6] technique has been used

to track eyes in video sequences [7]. Previous analysis of SDS has investigated

its convergence [8] and resource allocation [5] using Markov Chains and Ehren-

fest Urn models under a variety of noise conditions. This paper will outline the

derivation of a simpler convergence condition, (underpinning that suggested in

[10]), and illustrates its implications through appropriate numerical simulations.

Stochastic Diffusion Search: SDS can be used for pattern search and matching.

Such problems can be cast in terms of optimisation by defining the objective

function, F (x), for a hypothesis x about the location of the solution, as the

similarity between the target pattern and the corresponding region at x in the

search space and finding x such that F (x) is maximised. In general SDS can

most easily be applied to optimisation problems where the objective function is

decomposable into components that can be evaluated independently:

F (x) =
n
∑

i=1

Fi (x) , (1)

where Fi(x) is defined as the ith partial evaluation of F (x).

In order to locate the optima of a given objective function SDS employs a

population of k agents, each of which maintains a hypothesis about the optima.

In operation the algorithm entails the iteration of Test and Diffusion Phases

until agents converge upon the optimum hypothesis.

Initialisation: Typically the initial hypothesis of each agent is selected uni-

formly randomly over the search space. If information about probable solutions

is available a priori this can be used to bias the initial selection of hypotheses.

Test Function: The boolean Test Function returns whether a randomly selected

partial evaluation of the objective function is indicative of a ‘good’ hypothe-

sis. E.g. In pattern matching the Test Function may return True if the ith
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sub-feature of the target pattern is present at position (x, i) in the search space.

The Test Score for a given hypothesis, x, is the probability that the Test

Function will return true, and is hence representative of the value of F (x).

Test Phase: Each agent applies the Test Function to its current hypothesis.

If the Test Function returns true the agent becomes active and otherwise be-

comes inactive.

Diffusion Phase: Each inactive agent, A, select another agent B at random.

If B is active then the hypothesis of B is copied to A. Conversely, if B is also

inactive then A selects another hypothesis randomly over the entire search space.

Convergence: As iterations progress clusters of agents with the same hypothesis

form. At convergence the largest cluster of agents defines the optimal solution.

Expected cluster size formulation of SDS: In this section the minimum Test

Score, αmin, for which a stable cluster of agents can form will be derived. A

simplifying assumption is that, by considering only the mean transition of agents

between different clusters, rather than the full probability distribution (as in-

vestigated in [5]), a sufficiently accurate model of SDS may be produced. The

noise model that will be assumed is that of ‘homogeneous background noise’,

where every non-optimal hypothesis corresponds to a distractor of Test Score β.

It is also assumed that there is a single optimal solution with Test Score α that

has a negligible probability of being selected. Let c̄i be the mean number of

active agents with the optimal solution as a proportion of the total population.

During the diffusion phase, the mean number of inactive agents selecting

an agent within the optimal cluster is given by g(c̄i, α, β)c̄i, where g yields

the number of inactive agents for a given iteration. From Figure 1 g can be

immediately written as

g(c̄i, α, β) =
1− α

α
c̄i + (1− β)

(

1−
c̄i

α

)

. (2)

Therefore, the function f that defines the mean 1-step optimal cluster size

evolution is

c̄i+1 = f(c̄i, α, β) = α (c̄i + g(c̄i, α, β)c̄i) . (3)
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Figure 2 considers (3) as a 1 dimensional iterated map, and graphically it

can be seen that for a non-zero attractor to exist the condition

df

dc̄i

> 1 (4)

must hold for c̄i = 0. Differentiating (3) wrt c̄i yields

df

dc̄i

= α (2− β)− 2c̄i (α− β) (5)

and it follows that the minimum value of α for which the constraint in (4) holds

is

αmin =
1

2− β
. (6)

Hence, for any α < αmin the size of the cluster will tend to zero for any initial

cluster size and the search will fail.

Numerical Results: SDS was performed on two simulated search spaces, one

with an optimal solution α = αmin + 0.01 and the other α = αmin − 0.01, while

homogeneous background noise was varied between 0 and 0.99 in increments

of 0.01. Initially all agents were associated with the optimal solution but the

probability of an agent subsequently selecting it from the search space was zero.

10000 agents were used in each case and the cluster size of the optimal solution

was measured after 5000 iterations.

Figure 3 shows that after 5000 iterations the cluster size of the search with

α < αmin had returned to zero (as expected), while SDS successfully retained a

cluster for α > αmin. The experimental value of αmin has therefore been shown

to be ±0.01 of the theoretical, validating the theory.

Conclusion: This paper has described a novel formulation for the SDS al-

gorithm that allows the calculation of the minimum match, αmin, in a given

search space that will guarantee stable convergence of SDS. In practical situ-

ations when the simplifying assumptions are violated (such as the background

noise showing deviation from homogeneity) this value will still provide a useful

estimate.
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List of captions and subcaptions for figures

Figure 1. Illustration of the current state of the agent population in iteration

i in terms of c̄i, α and β.

Figure 2. A 1 dimensional iterated map showing how different values of α

and β can either result in a stable optimal cluster or a return to zero.

Figure 3. A graph showing the cluster size after 5000 iterations for values

of α = αmin ± 0.01. Insets show the evolution of the optimal cluster size for

β = 0.8, α = αmin ± 0.01.
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