

2/16/06

an optional, additional timing spec

INVALID inputs take time to propagate, too...

CONTAMINATION DELAY, t_{CD} A LOWER BOUND on the delay from any invalid input to an invalid output

The Combinational Contract

Acyclic Combinational Circuits

2/16/06

If NAND gates have a t_{PD} = 4nS and t_{CD} = 1nS

Functional Specifications

Any combinational (Boolean) function can be specified as a truth table or an equivalent <u>sum-of-products</u> Boolean expression!

6.004 - Spring 2006

LO4-Gates 5

Basic Gate Repertoire

Are we sure we have all the gates we need? Just how many two-input gates are there?

AND			OR		NAND		NOR	
AB	У	AB	У	AB	У	AB	У	
00		00	0	00	1	00		
01	0	01	1	01	1	-	0	
10	0	10	1	10	1	10	0	
11	1	11	1	11	0	11	0	

Hmmmm... all of these have 2-inputs (no surprise) ... each with 4 combinations, giving 2^2 output cases $2^2 = 2^4 = 16$

How many ways are there of assigning 4 outputs?

There are only so many gates

CMOS gates are inverting; we can always respond positively to positive transitions by cascaded gates. But suppose our logic yielded cheap *positive* functions, while inverters were expensive...

Logic Geek Party Games

You have plenty of ANDs and ORs, but only 2 inverters. Can you invert more than 2 independent inputs?

 $\label{eq:CHALLENGE:Come up with a combinational circuit using ANDs, ORs, and at most 2 inverters that inverts A, B, and C !$

Such a circuit exists. What does that mean?

- If we can invert 3 signals using 2 inverters, can we use 2 of the pseudoinverters to invert 3 more signals?
- Do we need only 2 inverters to make ANY combinational circuit?
- Hint: there's a subtle difference between our 3-inv device and three combinational inverters!

Is our 3-inv device LENIENT?

2/16/06

Fortunately, we can get by with a few basic gates...

AND, OR, and NOT are sufficient... (cf Boolean Expressions):

LO4-Gates 13

One will do!

NANDs and NORs are universal:

Ah!, but what if we want more than 2-inputs

Stupid Gate Tricks

Can we compute N-input XOR faster?

Here's a Design Approach

Truth Table			ele	1) Write out our functional spec as a truth table
С	В	A	У	2) Write down a Boolean expression with
0	0 0 1	0	0	terms covering each '1' in the output:
0	0	1	1	
0	1	0	0	$Y = \overline{C}\overline{B}A + \overline{C}BA + CB\overline{A} + CBA$
0	1	1	1	
1	0	0	0	
1	0 1 1	1	0	3) Wire up the gates, call it a day, and
1	1	0	1	declare success!
1	1	1	1	ueciai e success:
-it's systematic! -it works! ▼ -it's easy!				This approach will always give us Boolean expressions in a particular

Straightforward Synthesis

We can implement SUM-OF-PRODUCTS with just three levels of logic.

INVERTERS/AND/OR

Propagation delay --No more than 3 gate delays (ignoring fan-in)

·it's easy! ·are we done vet???

form: SUM-OF-PRODUCTS

LO4*-Ga*tes 23