
L04 - Gates 16.004 – Spring 2006 2/16/06

Gates

The book says something
about NAND...

maybe an in-law.

WARD &
HALSTEAD

NERD KIT
6.004

Is he talking about
BILL???

L04 - Gates 26.004 – Spring 2006 2/16/06

A Quick Review
• A combinational device is a circuit element that has

– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each output for

every possible combination of valid input values

– a timing specification consisting (at minimum) of an upper bound

tPD on the required time for the device to compute the specified

output values from an arbitrary set of stable, valid input values

Static

discipline

If C is 1 then copy A to Y,

otherwise copy B to Y

I will generate a valid

output in no more than

2 weeks after

seeing valid inputs

input A

input B

input C

output Y

L04 - Gates 36.004 – Spring 2006 2/16/06

VTC and the Static Discipline

Vil

Vol

Vih

Voh

Vout

Vin

Vol Vil Vih Voh

Static Discipline requires that we avoid gray areas, which correspond to valid

inputs but invalid outputs. Net result: combinational devices must have GAIN

and be NONLINEAR.

The good news: CMOS gates do all this with the added bonus of no static

power!

Inverting gates Non-inverting gates

L04 - Gates 46.004 – Spring 2006 2/16/06

Due to unavoidable delays…

Propagation delay (tPD):
An UPPER BOUND on the delay from valid inputs
to valid outputs.

GOAL:
minimize

propagation
delay!

ISSUE:
keep

Capacitances
low and
transistors
fast

VOUT < tPD< tPD

VIN

VOL

VOH

VIL

VIH

time constant
 τ = RPD•CL

time constant
 τ = RPU•CL

L04 - Gates 56.004 – Spring 2006 2/16/06

Contamination Delay
an optional, additional timing spec

INVALID inputs take time to propagate, too...

CONTAMINATION DELAY, tCD

A LOWER BOUND on the delay from any invalid input to an invalid output

VOUT > tCD
> tCD

VIN

VOL

VOH

VIL

VIH

Do we really need tCD?

Usually not… it’ll be

important when we

design circuits with

registers (coming

soon!)

If tCD is not specified,

safe to assume it’s 0.

Do we really need tCD?

Usually not… it’ll be

important when we

design circuits with

registers (coming

soon!)

If tCD is not specified,

safe to assume it’s 0.

L04 - Gates 66.004 – Spring 2006 2/16/06

The Combinational Contract

A B
A B

0 1
1 0

tPD propagation delay
tCD contamination delay

A

B

Must be ___________

Must be ___________

Note:
1. No Promises during
2. Default (conservative) spec: tCD = 0

< tPD

> tCD

L04 - Gates 76.004 – Spring 2006 2/16/06

Acyclic Combinational Circuits

If NAND gates have a tPD = 4nS and tCD = 1nS

B

C

A

Y

tPD = _______ nS

tCD = _______ nS

12

2

tPD is the maximum cumulative

propagation delay over all paths

from inputs to outputs

tCD is the minimum cumulative

contamination delay over all

paths from inputs to outputs

L04 - Gates 86.004 – Spring 2006 2/16/06

Functional Specifications

There are many ways of specifying the

function of a combinational device, for

example:

A

B YIf C is 1 then

copy B to Y,

otherwise copy

A to YC

Concise alternatives:
truth tables are a concise description of the combinational

system’s function.
Boolean expressions form an algebra in whose operations are

AND (multiplication), OR (addition), and inversion

(overbar).

Any combinational (Boolean) function can be specified as a truth

table or an equivalent sum-of-products Boolean expression!

Argh… I’m tired of word games

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

CBAACBBACABCY +++=

L04 - Gates 96.004 – Spring 2006 2/16/06

Oh yeah… one last issue

Recall the rules for combinational devices:

Output guaranteed to be valid when all inputs have been

valid for at least tPD, and, outputs may become invalid no

earlier than tCD after an input changes!

Many gate implementations--e.g., CMOS—

adhere to even tighter restrictions.

A

B

Z

tPD

tCD

A
Z

B

0

0

1

1

0

1

0

1

1

0

0

0

A B Z

NOR:
A

B

Z

tPD

tCD

L04 - Gates 106.004 – Spring 2006 2/16/06

What happens in this case?

A

B

Z

tPD

tCD

Input A alone is
sufficient to

determine the
output

A

B

Z

A

B

Z

0

X

1

0

1

X

1

0

0

A B Z
0

0

1

1

0

1

0

1

1

0

0

0

A B ZNOR: Lenient

NOR:

LENIENT Combinational Device:
Output guaranteed to be valid when any combination of inputs

sufficient to determine output value has been valid for at least tPD.

Tolerates transitions -- and invalid levels -- on irrelevant inputs!

CMOS NOR:

L04 - Gates 116.004 – Spring 2006 2/16/06

Basic Gate Repertoire

Are we sure we have all the gates we need?

Just how many two-input gates are there?

AB Y
00 0
01 0
10 0
11 1

AND

AB Y
00 0
01 1
10 1
11 1

OR

AB Y
00 1
01 1
10 1
11 0

NAND
AB Y
00 1
01 0
10 0
11 0

NOR

S
U

R
G

E

2 = 24 = 16
2

2

Hmmmm… all of these have 2-inputs (no surprise)

… each with 4 combinations, giving 22 output cases

How many ways are there of assigning 4 outputs? ________________

L04 - Gates 126.004 – Spring 2006 2/16/06

There are only so many gates

There are only 16 possible 2-input gates

… some we know already, others are just silly

I
N
P
U
T
AB

Z
E
R
O

A
N
D

A
>
B

A

B
>
A

B

X
O
R

O
R

N
O
R

X
N
O
R

N
O
T
‘B’

A
<=
B

N
O
T
‘A’

B
<=
A

N
A
N
D

O
N
E

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

How many of

these gates

can be

implemented

using a single

CMOS gate?

CMOS gates are inverting; we can always respond positively to positive

transitions by cascaded gates. But suppose our logic yielded cheap

positive functions, while inverters were expensive…

L04 - Gates 136.004 – Spring 2006 2/16/06

Logic Geek Party Games
You have plenty of ANDs and ORs, but only 2 inverters. Can you invert

more than 2 independent inputs?

CHALLENGE: Come up with a combinational circuit using ANDs, ORs, and

at most 2 inverters that inverts A, B, and C !

Such a circuit exists. What does that mean?

- If we can invert 3 signals using 2 inverters, can we use 2 of the pseudo-

inverters to invert 3 more signals?

- Do we need only 2 inverters to make ANY combinational circuit?

Hint: there’s a subtle difference between our 3-inv device and three

combinational inverters!

A
B
C

A
B
C

3-inv

Is our 3-inv device LENIENT?

L04 - Gates 146.004 – Spring 2006 2/16/06

Fortunately, we can get by with a few basic gates…

How many different gates do we really need?

AB Y
00 0
01 1
10 0
11 0

B>A

A

B
y

AB Y
00 0
01 1
10 1
11 0

XOR

A
B

Y

AND, OR, and NOT are sufficient… (cf Boolean Expressions):

A
B

y
AB=A+B

That is just
DeMorgan’s
Theorem!

AB=A+B

A+B = AB

A
B

Y

L04 - Gates 156.004 – Spring 2006 2/16/06

One will do!

NANDs and NORs are universal:

Ah!, but what if we want more than 2-inputs

=

=

=

=

=

=

L04 - Gates 166.004 – Spring 2006 2/16/06

Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

And we want an N-input XOR:

A
0
0
1
1

B
0
1
0
1

C
0
1
1
0

tpd = 1
tcd = 0

tpd = O(___) -- WORST CASE.

output = 1
iff number of 1s
input is ODD
(“ODD PARITY”)

Can we compute N-input XOR faster?

N

A1

A3 A4 AN

A2

A
B

C

L04 - Gates 176.004 – Spring 2006 2/16/06

I think that I shall never see
a circuit lovely as...

N-input TREE has O(______) levels...

Signal propagation takes O(_______) gate delays.

Question: Can EVERY N-Input Boolean function be implemented as a
tree of 2-input gates?

log N

log N

2122

2
log2N

A1

A2

A4

A3

AN

L04 - Gates 186.004 – Spring 2006 2/16/06

Are Trees Always Best?

Alternate Plan: Large Fan-in gates

� N pulldowns with complementary pullups

� Output HIGH if any input is HIGH = “OR”

� Propagation delay: O(____)

since each additional MOSFET adds C

...

Didn’t he say

“ONE LAST ISSUE”

back on Slide 9?

Lets design stuff!

N

N

tpd

O(log N)

O(N)

~4

You asking

me??

Don’t be mislead by the “big O” stuff…

the constants in this case can be much

smaller… so for small N this plan might

be the best.

L04 - Gates 196.004 – Spring 2006 2/16/06

Here’s a Design Approach

1) Write out our functional spec as a
truth table

2) Write down a Boolean expression with
terms covering each ‘1’ in the output:

3) Wire up the gates, call it a day, and
declare success!

This approach will always give us
Boolean expressions in a particular
form: SUM-OF-PRODUCTS

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

-it’s systematic!

-it works!

-it’s easy!

-are we done yet???

CBAACBBACABCY +++=

L04 - Gates 206.004 – Spring 2006 2/16/06

Straightforward Synthesis

We can implement

SUM-OF-PRODUCTS

with just three levels of

logic.

INVERTERS/AND/OR

Propagation delay --

No more than 3 gate delays

(ignoring fan-in)

A

B

C

A

B

C

A

B

C

A

B

C

Y

L04 - Gates 216.004 – Spring 2006 2/16/06

Oh, by the way…
That Gate has a Name!

The gate we’ve been designing for this lecture is a

relatively important one: C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

A

B
Y

C

If C is 1 then

copy B to Y,

otherwise copy

A to Y

2-input Multiplexer

A

B

C

0

1
Gate

symbol
(one) implementation

B

C

A

Y

Hey, isn’t that

Circuit simpler

Than the SOP

Version???

L04 - Gates 226.004 – Spring 2006 2/16/06

Logic Simplification

Can we implement the same function with fewer gates?

Before trying we’ll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

OR rules: a + 1 = 1, a + 0 = a, a + a = a

AND rules: a1 = a, aO = 0, aa = a

Commutative: a + b = b + a, ab = ba

Associative: (a + b) + c = a + (b + c), (ab)c = a(bc)

Distributive: a(b+c) = ab + ac, a + bc = (a+b)(a+c)

Complements:

Absorption:

Reduction:

DeMorgan’s Law:

0aa1,aa ==+
babaaa,aba +=+=+

abb)aa(a,b)a(a =+=+

bb)ab)((ab,baab =++=+
baba,abba +==+

L04 - Gates 236.004 – Spring 2006 2/16/06

Boolean Minimization:
An Algebraic Approach

BACCBAACBABCY +++=

Lets (again!) simplify

Using the identity

ααα =+ AA

BACCBAACBABCY +++=

CBACY +=

BACCBABCY ++=

Can’t he come up

with a new example???

For any expression α and variable A:

Hey, I could write

A program to do

That!

L04 - Gates 246.004 – Spring 2006 2/16/06

Summary
• Timing specs

• tPD: upper bound on time from valid inputs to valid outputs

• tCD: lower bound on time from invalid inputs to invalid outputs

• If not specified, assume tCD = 0

• Combinational logic

• Any function that can be specified by a truth table or, equivalently,

in terms of AND/OR/NOT (Boolean expression)

• Lenience: optional, more demanding functional guarantee. Rarely

needed; assume non-lenient logic by default.

• Minimally, we can get away with just 2-input NANDs or NORs

• Sum-of-products canonical form

• Comes directly from truth table

• “3-level” implementation of any logic function

• Limitations on number of inputs (fan-in) increases depth

• Next time: logic simplification, other canonical forms

