Gates

A Quick Review

- A combinational device is a circuit element that has

Static discipline

- one or more digital inputs
- one or more digital outputs
- a functional specification that details the value of each output for every possible combination of valid input values
$\{$ - a timing specification consisting (at minimum) of an upper bound $t_{P D}$ on the required time for the device to compute the specified output values from an arbitrary set of stable, valid input values

VTC and the Static Discipline

Static Discipline requires that we avoid gray areas, which correspond to valid inputs but invalid outputs. Net result: combinational devices must have GAIN and be NONLINEAR.

The good news: CMOS gates do all this with the added bonus of no static power!

Due to unavoidable delays...

Propagation delay ($t_{\text {PD }}$):
An UPPER BOUND on the delay from valid inputs to valid outputs.

Contamination Delay

an optional, additional timing spec
INVALID inputs take time to propagate, too...

Do we really need $\mathrm{t}_{c \mathrm{D}}$?
Usually not... it'll be important when we design circuits with registers (coming soon!)

If $t_{C D}$ is not specified, safe to assume it's 0 .

CONTAMINATION DELAY, $t_{C D}$

A LOWERBOUND on the delay from any invalid input to an invalid output

Acyclic Combinational Circuits

If NAND gates have a $t_{P D}=4 n S$ and $t_{C D}=1 n S$

$$
\begin{aligned}
& t_{P D}=12 n S \\
& t_{C D}=2 n
\end{aligned}
$$

$\mathrm{t}_{C D}$ is the minimum cumulative contamination delay over all paths from inputs to outputs

The Combinational Contract

1. No Promises during
2. Default (conservative) spec: $t_{C D}=O$

Functional Specifications

There are many ways of specifying the
function of a combinational device, for example:

Argh... l'm tired of word games

Concise alternatives:
truth tables are a concise description of the combinational system's function.
Boolean expressions form an algebra in whose operations are AND (multiplication), OR (addition), and inversion (overbar).
$Y=\bar{C} \bar{B} A+\bar{C} B A+C B \bar{A}+C B A$

Any combinational (Boolean) function can be specified as a truth
table or an equivalent sum-of-products Boolean expression!

Oh yeah... one last issue

A	B	Z
0	0	1
0	1	0
1	0	0
1	1	0

A

Recall the rules for combinational devices:
Output guaranteed to be valid when all inputs have been valid for at least $t_{P D}$, and, outputs may become invalid no earlier than $t_{C D}$ after an input changes!

Many gate implementations--e.g., CMOSadhere to even tighter restrictions.

What happens in this case?

CMOS NOR:

LENIENTCombinational Device:

Output guaranteed to be valid when any combination of inputs sufficient to determine output value has been valid for at least $t_{P D}$.
Tolerates transitions -- and invalid levels -- on irrelevant inputs!

NOR: | A | B | Z | Lenient | A | B | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | O | 0 | 1 | NOR: | 0 | 0 |
| | 1 | A | | | | |
| 0 | 1 | 0 | | 1 | 0 | B |
| 1 | 0 | 0 | | 1 | X | 0 |

Basic Gate Repertoire

Are we sure we have all the gates we need? Just how many two-input gates are there?

AND		OR		NAND		NOR	
$A B$	y	$A B$	y	$A B$	y	$A B$	Y
00	0	00	0	00	1	00	1
01	0	01	1	01	1	01	0
10	0	10	1	10	1	10	0
11	1	11	1	11	0	11	0

Hmmmm... all of these have 2 -inputs (no surprise)
... each with 4 combinations, giving 2^{2} output cases
How many ways are there of assigning 4 outputs? $\quad 2^{2^{2}}=2^{4}=16$
How many ways are there of assigning 4 outputs?

There are only so many gates

There are only 16 possible 2 -input gates
... some we know already, others are just silly

How many of these gates canbe
implement implemented using a single
CMOS gate?

CMOS gates are inverting; we can always respond positively to positive transitions by cascaded gates. But suppose our logic yielded cheap positive functions, while inverters were expensive...

Logic Geek Party Games

You have plenty of ANDs and ORs, but only 2 inverters. Can you invert more than 2 independent inputs?

CHALLENGE: Come up with a combinational circuit using ANDs, ORs, and at most 2 inverters that inverts A, B, and C !
Such a circuit exists. What does that mean?

- If we can invert 3 signals using 2 inverters, can we use 2 of the pseudoinverters to invert 3 more signals?
Do we need only 2 inverters to make ANY combinational circuit?
Hint: there's a subtle difference between our 3-inv device and three combinational inverters!

Is our 3-inv device LENIENT?

Fortunately, we can get by with a few basic gates...
AND, OR, and NOT are sufficient... (cf Boolean Expressions):

How many different gates do we really need?
6.004-Spring 2006

2/16/06

One will do!

NANDs and NORs are universal:

Ah!, but what if we want more than 2-inputs

Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

$$
\begin{aligned}
& t_{p d}=1 \\
& t_{c d}=0
\end{aligned}
$$

A	B	C
O	0	0
0	1	1
1	0	1
1	1	0

And we want an N -input XOR:

output = 1 iff number of 1 s input is ODD ("ODD PARITY")
$\mathrm{t}_{\mathrm{pd}}=O(\underline{\mathrm{~N}})-$ - WORST CASE.
Can we compute N -input XOR faster?

I think that I shall never see

a circuit lovely as...

N -input TREE has $\mathrm{O}(\underline{\log N}$) levels...
Signal propagation takes $O(\underline{\log N})$ gate delays.

Question: Can EVERY N-Input Boolean function be implemented as a tree of 2-input gates?

Here's a Design Approach

1) Write out our functional spec as a truth table
2) Write down a Boolean expression with terms covering each ' 1 ' in the output:

$$
Y=\bar{C} \bar{B} A+\bar{C} B A+C B \bar{A}+C B A
$$

3) Wire up the gates, call it a day, and declare success!

This approach will always give us Boolean expressions in a particular form: SUM-OF-PRODUCTS

Straightforward Synthesis

We can implement
SUM-OF-PRODUCTS
with just three levels of logic.

INVERTERS/AND/OR

Propagation delay --
No more than 3 gate delays
(ignoring fan-in)

Oh, by the way...

That Gate has a Name!

The gate we've been designing for this lecture is a relatively important one:

2-input Multiplexer
A

c
Gate
symbol
6.004-Spring 2006

(one) implementation

Logic Simplification

Can we implement the same function with fewer gates? Before trying we'll add a few more tricks in our bag.
BOOLEAN ALGEBRA:

OR rules:	$a+1=1, a+O=a, a+a=a$
AND rules:	$a 1=a, a O=O, a a=a$
Commutative:	$a+b=b+a, a b=b a$
Associative:	$(a+b)+c=a+(b+c),(a b) c=a(b c)$
Distributive:	$a(b+c)=a b+a c, a+b c=(a+b)(a+c)$
Complements:	$a+\bar{a}=1, a \bar{a}=0$
Absorption:	$a+a b=a, a+\bar{a} b=a+b$
	$a(a+b)=a, a(\bar{a}+b)=a b$
Reduction:	$a b+\bar{a} b=b,(a+b)(\bar{a}+b)=b$
DeMorgan's Law:	$\bar{a}+\bar{b}=\bar{a}, \bar{a} \bar{b}=\overline{a+b}$

Boolean Minimization:

An Algebraic Approach

For any expression $\boldsymbol{\alpha}$ and variable A :

Summary

- Timing specs
- $t_{p D}$: upper bound on time from valid inputs to valid outputs
- $t_{C D}$: lower bound on time from invalid inputs to invalid outputs
- If not specified, assume $t_{C D}=0$
- Combinational logic
- Any function that can be specified by a truth table or, equivalently, in terms of AND/OR/NOT (Boolean expression)
- Lenience: optional, more demanding functional guarantee. Rarely needed; assume non-lenient logic by default.
- Minimally, we can get away with just 2 -input NANDs or NORs
- Sum-of-products canonical form
- Comes directly from truth table
- "3-level" implementation of any logic function
- Limitations on number of inputs (fan-in) increases depth
- Next time: logic simplification, other canonical forms

