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Senseless as beasts, I gave men sense, possessed them

Of mind. I speak not in contempt of man;

I do but tell of good gifts I conferred.

In the beginning, seeing they saw amiss,

And hearing heard not, but, like phantoms huddled

In dreams, the perplexed story of their days

Confounded; knowing neither timber-work

Nor brick-built dwellings basking in the light,

But dug for themselves holes, wherein like ants,

That hardly may contend against a breath,

They dwelt in burrows of their unsunned caves.

Neither of winter’s cold had they fixed sign,

Nor of the spring when she comes decked with flowers,

Nor yet of summer’s heat with melting fruits

Sure token: but utterly without knowledge

Moiled, until I the rising of the stars

Showed them, and when they set, though much obscure.

Moreover, number, the most excellent

Of all inventions, I for them devised,

And gave them writing that retaineth all,

The serviceable mother of the Muse.

Aeschylus, Prometheus Bound, translation by G. M. Cookson

What would life be without arithmetic but a scene of horrors.

Sydney Smith, letter to Miss Lucie Austin

God made the integers, all else is the work of man. (Die ganzen Zahlen hat

der liebe Gott gemacht, alles andere ist Menschenwerk.)

Kroneckecker, reported by Weber, Jahresbericht der Deutschen

Mathematiker-Vereinigung (1893)

‘When I use a word,’ Humpty Dumpty said in rather a scornful tone, ‘it means

just what I choose it to mean — neither more nor less.’

‘The question is,’ said Alice, ‘whether you can make words mean so many

different things.’ ‘The question is,’ said Humpty Dumpty, ‘which is to be master

— that is all.’

Lewis Carroll, Through the Looking Glass



We should never forget that the functions, like all mathematical constructions,

are only our own creations, and that when the definition, from which one begins,

ceases to make sense, one should not ask: what is it, but what is it convenient to

assume so that I can always remain consistent. Thus for example, the product of

minus by minus.

Gauss, letter to Bessel, 1811, Volume 10 of his collected works

I have learnt one thing from my Arab masters, with reason as guide, but you

another [from your teachers in Paris]: you follow a halter, being enthralled by the

picture of authority. For what else can authority be called other than a halter? As

brute animals are led wherever one pleases by a halter, but do not know where or

why they are being led, and only follow the rope by which they are pulled along,

so the authority of written words leads many people into danger, since they just

accept what they are told, without question. So what is the point of having a brain,

if one does not think for oneself?

Adelard of Bath Conversations with his Nephew (Adelard was one of those

who introduced the Indian system of writing numbers to Europe.)

Now you may ask, ‘What is mathematics doing in a physics lecture?’ We have

several possible excuses: first, of course, mathematics is an important tool, but that

would only excuse us for giving the formula in two minutes. On the other hand,

in theoretical physics we discover that all our laws can be written in mathematical

form; and that this has a certain simplicity and beauty about it. So, ultimately,

in order to understand nature it may be necessary to have a deeper understanding

of mathematical relationships. But the real reason is that the subject is enjoyable,

and although we humans cut nature up in different ways, . . . we should take our

intellectual pleasures where we find them.

Feynman, Addition and multiplication Section 22-1 of the Feynman Lectures

of Physics Volume 1

The very important part played by calculation in modern mathematics and

physics has led to the popular idea of a mathematician as a calculator, far more

expert, indeed, than any banker’s clerk, but, of course, immeasurably inferior,

both in resources and accuracy, to what the ‘analytic engine’ will be, if the late

Mr Babbage’s design should ever be carried into execution.

But although much of the routine work of a mathematician is calculation, his

proper work — that which constitutes him a mathematician — is the invention of

methods.

Clerk Maxwell, review of Kelland and Tait’s Introduction to Quaternions in

Nature, 1873
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There is no excellent beauty that hath not some strangeness in the proportion.

Bacon, Essays

Have nothing in your houses that you do not know to be useful, or believe to

be beautiful

William Morris, Hopes and Fears for Art

Mathematical rigour is very simple. It consists in affirming true statements

and in not affirming what is not true. It does not consist in affirming every truth

possible.

Peano, quoted in [17]

There are still people who live in the presence of a perpetual miracle and are

not astonished by it.

Poincaré, The Value of Science

It seems to me, that the only objects of the abstract sciences or of demonstra-

tion are quantity and number, and that all attempts to extend this more perfect

species of knowledge beyond these bounds are mere sophistry and illusion. As

the component parts of quantity and number are entirely similar, their relations

become intricate and involved; and nothing can be more curious, as well as use-

ful, than to trace, by a variety of mediums, their equality or inequality, through

their different appearances.

Hume, An Enquiry into Human Understanding
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Introduction

Faced with questions like ‘What is truth?’ or ‘What is justice?’, practical people

dismiss them as useless speculation, and intellectuals enjoy the vague contem-

plation of matters beyond the reach of practical people. The best philosophers

provide answers which may not be final, but which illuminate the paths that we

follow.

The question ‘What are numbers?’ is clearly less important, but has interested

several important philosophers and mathematicians. The answer given in this

book is essentially that given by Dedekind in two essays ‘Stetigkeit und irrationale

Zahlen’ (‘Continuity and irrational numbers’) and ‘Was sind und was sollen die

Zahlen?’ (‘What are numbers and what should they be?’1) [7].

Starting with the natural numbers N+ (that is to say, the strictly positive inte-

gers), we construct the strictly positive rational numbers Q+ and then use these to

construct the rational numbers Q. We then use the rational numbers to construct

the real numbers R. Once R has been constructed, we construct the complex num-

bers C and we have all the numbers required by modern analysis (that is to say,

calculus).

Of course, we still have to say where N+ comes from. Dedekind showed that

all the properties of the strictly positive integers can be derived from a very small

number of very plausible rules. The question of whether to accept these rules can

now be left to the individual mathematician.

In the real world, we dig the foundations before we start the building. Histori-

cally, mathematicians have tended to install foundations when the building is half

completed. Pedagogically, there are good reasons for only studying the construc-

tion of the various number systems after the student has acquired facility in using

them.

However, there will always be apprentice mathematicians who, when told ‘we

shall assume the standard properties of the real numbers’, demand to know what

these ‘standard properties’ are and why we can assume them. This book is written

for those students and, for that reason, I have tried to follow an arc going from the

relatively easy to the relatively difficult.

1Another possible translation is ‘What are the numbers and what are they playing at?’.

xi



xii INTRODUCTION

After a general discussion setting out some of the properties of the natural

numbers, I show how to construct the strictly positive rational numbers (possibly

better known to the reader as the positive fractions). By modifying the ideas

involved, I then show how to construct negative numbers so that we get all the

rationals.

We then take a long detour during which I discuss induction and modular arith-

metic. The ideas are, I think, interesting in themselves and provide a background

to the rather abstract arguments we then use show how the properties of the natural

numbers can be derived from a small number of postulates (the Peano axioms).

The final part of the book deals with the construction of the reals from the

rationals and involves a substantial increase in the level of difficulty. Both the

question of why we need the real numbers and the techniques used to construct

them require ideas and techniques which only emerged, slowly and painfully, in

the course of the 19th century. The easy construction of the complex numbers

completes the task we have set ourselves.

There are two further chapters, one on polynomials and their roots and one on

quaternions. They do not form part of the main argument, but, I think, help place

it in context. The appendices are just that; the book is complete without them.

The first two of the appendices are included for completeness rather than utility,

the third requires a first year university course in vector methods and the fourth a

first year university course in abstract algebra.

Because of the increasing difficulty of the discussion, the reader should not be

surprised or disappointed if she can only deal with part of the book. I hope that

she will come back later when she has gained more experience and read further.

If the reader finds this text too verbose or insufficiently precise, she should

read Landau’s Foundations of Analysis [20], a little gem of a book which covers

the same ground with great precision2 and without a wasted word. If she becomes

fed up with my homespun philosophy, she will find it perfectly satirised in Lin-

derholm’s Mathematics Made Difficult [21].

There are purported historical remarks scattered throughout this book. The

reader will be protected from their worst effects if she constantly repeats the

mantra ‘But things were more complicated than that’.

Since I have tried to cater for relatively inexperienced mathematicians, readers

who have done a year or more of university courses will find many things that

they know: equivalence classes, isomorphism, induction, countability, . . . (though

sometimes viewed from a different angle). They should skim through those parts

which are already familiar.

2In 1977, Van Benthem Jutting wrote a PhD thesis in which the proofs in Landau’s book were

rewritten in an appropriate computer language and then computer checked [25]. According to

Littlewood, Landau read proof sheets 7 times, once for each of a particular type of error [22].



xiii

Some readers (probably the majority) will read this book to get a general idea

of what is involved in setting up the various number systems. They should read the

statements of the exercises carefully, but only work through the ones that interest

them. Others will be less inclined to take the statements made in the exercises

for granted. They should note that working things out for oneself leads to greater

understanding, but, in case they cannot do an exercise, or they believe that it is

the writer rather than the reader who should do the work, they will find sketch

solutions to most of the exercises on my home page at

http://www.dpmms.cam.ac.uk/˜twk/

together with a list of corrections3.

Mathematicians do not study the construction of number systems to serve any

practical end. Reading this book will not make the standard university mathe-

matics course any easier (except in so far as practising the art of proof in one

branch of mathematics makes it easier to practise the art of proof in another). The

reader must enjoy the contents of this book for their own sake. If she does, I shall

consider myself well rewarded.

The reader should share my gratitude to four anonymous referees, several

keen eyed undergraduates and other readers and, in particular, Mr Guus Fabius

for removing many errors and infelicities. I dedicate this book to two splendid

daughter-in-laws who have recently been kind enough to join my family.

3I will be very grateful to any reader who sends suggested corrections to my e-mail address

twk@dpmms.cam.ac.uk.
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Chapter 1

Counting sheep

1.1 A foundation myth

The main bridge of the Finnish town of Tampere is decorated with four bronze

statues representing the hunter, the maiden, the merchant and the tax gatherer. If

we replace the maiden with the farmer, we obtain a plausible early history of the

concept of number.

The early hunter only needs a few numbers. It may be useful to distinguish

between one tiger and two tigers, but, if there are more than two, counting is rarely

relevant1. It is better to bring home three carcasses of deer rather than one, but,

although it is good to know whether a bush has a few berries, quite a lot of berries

or is loaded with berries, it is more useful to eat the berries than to count them.

The farmer lives in a settled state. He may, perhaps, know the names of every

one of his sheep, but he will find it quicker to count his sheep to see if one is

missing2. He will certainly count the apples or loaves he has in store, rather than

giving them names. Sowing and shearing need to be done at particular times of

the year, so the farmer requires some method of marking the progress of the days

and counting provides a good way of doing this.

Although he does not require it, the farmer may find it useful to memorise

some simple ‘addition sums’. If he introduces three extra sheep into a field which

already contains four, there will be seven sheep in the field. If he puts three apples

into a box which already contains four, there will be seven apples in the box.

Here he is using the fact that sheep-counting numbers3 behave like apple-counting

1It appears to be accepted that the Pirahã tribe of the upper Amazon use a ‘one-two-many’

system. (See [10].)
2To be more specific, counting produces a number. If a sheep is missing, then recounting will

produce a different number. We shall be mainly concerned with number, but we shall look at the

notion of counting in Section 6.4.
3Real life is always more complicated than theory. Shepherds in the Lake District of the UK use

3
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numbers. A very occasional, very unusual, farmer may find this fact intriguing and

justify it by thinking of each apple as being attached to a particular sheep. If he

introduces three extra sheep bearing apples into a field which already contains

four, there will be seven sheep bearing apples and, so, seven apples in the field.

A still more extraordinary farmer may note that, if he puts four sheep into a

field which already contains three sheep, he still gets seven and justify his obser-

vation with the following mental image.

• • • • | • • • = • • • • • • • = • • • | • • • •.

In modern notation, we write down the general law

a + b = b + a

and call it the commutative law of addition.

Note that if I put my shoes on before my socks, the result is not the same as if

I put my socks on before my shoes. Not everything in this world is commutative.

Although the farmer may be self sufficient in principle, there will be things

that he desires, either for utility or for the sheer pleasure of ownership, which he

cannot produce himself. Some of these things he can obtain by exchange with his

neighbours, but other things only come from distant lands. Even in the Neolithic

Age, coracles crossed the English Channel and Irish Sea carrying stone axes. The

merchant will exchange so many stone axes for so many fleeces or, in later ages,

such and such a weight of spices for a certain number of gold coins.

Times change and, in due course, complex societies began to emerge in Egypt,

Babylonia and elsewhere in the Middle East. At its simplest, civilisation consists

of one group of people with swords claiming to defend a group of farmers against

another group of people with swords, but gathering people into cities and then

into empires meant that they could build and manage complex irrigation schemes,

build ports for trade and worship the Gods in the style which the Gods wished to

be worshipped (and which God would not prefer a massive temple complex with

professional priests to the occasional amateur sacrifice of a sheep?). These things

have to be paid for through taxes (possibly in the form of days of labour) and

administered by professional administrators.

In ancient Egypt, the administrative body was formed by scribes who could

write and calculate. Here is an extract from a piece used for writing practice:

See for yourself with your own eye. The occupations lie before

you. The washerman’s day is going up, going down. All his limbs

different numbers to count sheep ‘Yain, Tain, Edderoa, . . . ’ from those used to count other things,

but they appear to be using a relic of some previous language rather than making a philosophical

point.



1.1. A FOUNDATION MYTH 5

are weak, [from] whitening his neighbours’ clothes every day, from

washing their linen. The maker of pots is smeared with soil, like one

whose relations have died. His hands, his feet are full of clay; he is

like one who lives in the bog. The cobbler mingles with vats. His

odour is penetrating. His hands are red with madder, like one who is

smeared with blood. He looks behind him for the kite, like one whose

flesh is exposed. The watchman prepares garlands and polishes vase-

stands. He spends a night of toil just as one on whom the sun shines.

The merchants travel downstream and upstream. They are as busy as

can be, carrying goods from one town to another. They supply him

who has wants. But the tax collectors carry off the gold, that most pre-

cious of metals. The ships’ crews from every house (of commerce),

they receive their loads. They depart from Egypt for Syria, and each

man’s god is with him. (But) not one of them says: ‘We shall see

Egypt again!’ The carpenter who is in the shipyard carries the timber

and stacks it. If he gives today the output of yesterday, woe to his

limbs! The shipwright stands behind him to tell him evil things. His

outworker who is in the fields, his is the toughest of all the jobs. He

spends the day loaded with his tools, tied to his tool-box. When he

returns home at night, he is loaded with the tool-box and the timbers,

his drinking mug, and his whetstones. The scribe, he alone, records

the output of all of them. Take note of it!

Papyrus Lansing, English translation A. M. Blackman and

T. E. Peet

Some suggestions of the kind of task a scribe might expect are given in a long

sarcastic letter berating an incompetent pupil (or perhaps colleague). I give two

extracts.

There is to be constructed a ramp of 730 cubits in length with

a width of 55 cubits, containing 120 compartments provided with

rushes and beams, having a height of 60 cubits at its summit and 30

cubits at its middle, with a batter of 15 cubits, while its base is of 5 cu-

bits. The amount of bricks required for it is asked of the commander

of the workforce. The scribes are all gathered together through lack of

one who knows among them. So they all put their trust in you, saying,

‘You are an expert scribe, my friend. Decide for us quickly. See, your

name is celebrated. Let one be found in this place capable of magni-

fying the other thirty. Don’t let it be said of you that there is anything

of which you are ignorant. Answer for us the amount of bricks re-

quired for it. Look, its dimensions(?) are before you with each one of

its compartments being 30 cubits long and 7 cubits wide.’. . .
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. . . O you scribe, so alert and competent that there is nothing at all

of which you are ignorant, who blazes in the darkness at the head of

the troops and illumines for them, you are dispatched on a mission to

Djahy at the head of the victorious army in order to crush those rebels

who are called Naarin-warriors. The host of soldiers that is under your

charge comprises 1,900 Egyptians, 520 Sherden, 1,600 Kehek, [100]

Meshwesh and 880 Nubians, a total of 5,000 all told, apart from their

captains. There are brought to you bonus rations into your presence:

bread, sheep and goats, and wine. The number of men is too large for

you, and the foodstuff is insufficient for them: only 300 sweet loaves,

1,800 cakes, 120 assorted goats and sheep, and 30 jugs of wine. The

army is so numerous that the foodstuff has been under-estimated as

though you had pilfered from it. You receive it in charge to be de-

posited in the camp. The troops are prepared and ready, so divide it

quickly into portions, each man’s share into his hands . . . Midday is

come, and the camp is hot. One says, ‘It is time to move on. Do not

make the troop marshaler angry. We still have a long march ahead of

us. What bread do we have at all? Our night camp is far away. O

What’s-your-name?, what’s the sense of scourging us so, when you

are supposed to be an expert scribe?’ It is only after six hours have

elapsed in the day that you proceed to distribute the provisions.

Papyrus Anastasi, English translation (slightly altered)

E. F. Wente

I may be mistaken if, across thousands of years, I sense a delight in computa-

tion for its own sake. Certainly we see how a more complex society requires more

complex arithmetic and, in particular, the operation of multiplication. Returning

to mathematics as we see it, rather than as our remote forebears may have seen it,

we shall try to find some of the general laws governing this operation. We have

seen that a + b = b + a. Multiplication follows a similar law

a × b = b × a

(the commutative law of multiplication) illustrated by the following diagram in

which we count the dots in a rectangle and its rotation to obtain 3 × 4 = 4 × 3.

• • • •
• • • •
• • • •

=

• • •
• • •
• • •
• • •

We may also remember the pleasure that reciting the ‘one times’ table gave us in

our youth and add

1 × a = a.
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We have some further observations, which would hardly trouble an Egyptian

scribe working with a clear sequence of calculations, but which are clearly rele-

vant to anyone who has used an electronic calculator. These concern bracketing —

that is to say, specifying the order in which a set of calculations is to be performed.

The first law is the distributive law

a × (b + c) = (a × b) + (a × c).

The statement of the distributive law can be simplified by applying the stan-

dard convention that multiplication has priority over addition unless prevented

by bracketing4. We then have

a × (b + c) = a × b + a × c

illustrated by the following diagram for the calculation 3× (2+ 4) = 3× 2+ 3× 4.

• • | • • • •
• • | • • • •
• • | • • • •

=

• •
• •
• •

+

• • • •
• • • •
• • • •

Exercise 1.1.1. Use the distributive law just stated together with the commutative

law of multiplication to show that

(b + c) × a = (b × a) + (c × a).

The next rule (the associative law of addition)

a + (b + c) = (a + b) + c

would appear obvious to any ancient farmer. If we have three adjoining pens con-

taining sheep and remove the hurdles between the first two pens and then remove

the remaining hurdles we will have the same number of sheep in the enlarged pen

as if we had removed the hurdles in the opposite order. We illustrate the case

2 + (3 + 4) = (2 + 3) + 4

••|(•••|••••) = ••|••••••• = ••••••••• = •••••|•••• = (••|•••)|••••.

However a chemist would not expect that mixing chlorine with sodium and

then mixing the result with water would have the same effect as first mixing

sodium with water and then mixing chlorine with the result5.

4This book is heavily ‘over-bracketed’, but, where the reader finds the bracketing insufficient,

she is invited to use the standard rules.
5Do not try this at home.
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Exercise 1.1.2. Let us define an operation ⊞ by a ⊞ b = 2 × (a + b). Verify the

following results.

(i) a ⊞ b = b ⊞ a.

(ii) a × (b ⊞ c) = (a × b) ⊞ (a × c).

(iii) For some choice of a, b and c, to be given explicitly,

a ⊞ (b ⊞ c) , (a ⊞ b) ⊞ c.

Finally we have an associative law for multiplication, analogous to the asso-

ciative law of addition,

a × (b × c) = (a × b) × c.

Our putative ancient farmer might scratch his head at the idea that it would ever be

necessary to multiply three numbers together. The scribe, accustomed to dealing

with large quantities of identical bricks, would observe that to obtain a stack of

bricks ten bricks in length, twelve bricks in width and five bricks in height we

could either build ten neighbouring walls twelve bricks in width and five bricks in

height or layer floors of bricks ten bricks in length and twelve bricks in width five

times.

1.2 What were numbers used for?

If the reader would like a proper account of ancient Egyptian mathematics, she

could read Imhausen’s excellent book [15], noting her comment that ‘The amount

of available literature on Egyptian mathematics is even more astonishing if we

take into account that the only sources on which almost all these studies were

founded are four papyri (of which half consist only of a number of fragments), a

leather roll, a wooden board and two ostraca6.’

However, since we are considering what might have been, rather than what

was, we can speculate about how ancient civilisations used numbers. If we think

about tax collection, palace organisation or collecting port dues, we see that the

main use of numbers would not be calculation, but record keeping. Record keep-

ing requires, above all, consistency and standardisation. It is very difficult to marry

innovation with consistency and standardisation7, so there were excellent reasons

why societies would stay with whatever methods of writing numbers and whatever

associated methods of calculation they inherited from the previous generation. If

we consider, in addition, mankind’s cultural conservatism8, we see that the correct

6Stone or pottery shards used as writing material.
7In modern times, important information held in obsolete electronic formats may be lost, or, at

least, very difficult to recover.
8A good example of cultural conservatism is given by my internal numbering for exercises and

theorems (see, for example, Theorem 2.3.1).
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question to ask in relation to the history of mathematics (at least up to 1700 AD)

is not ‘why did things stay the same?’ but ‘why did things change?’.

Of course, the use of numbers could not be confined to simple record keeping.

A temple would wish to keep a record of individual donations, but would also

need to know the total sum produced. Temple scribes would thus need to perform

addition. If, as the Egyptians did, we count in units, tens, hundreds and so on

this is easily done using some version of an abacus. At its simplest, this consists

of shallow depressions in the ground containing pebbles. Thus we might have an

arrangement

C B A

•••• •• •••

where the units hole A contains 3 pebbles, the tens hole B contains 2 pebbles and

the hundreds hole C contains 4 pebbles, so we have the number four hundred and

twenty three. Suppose that we wish to add this to four hundred and seven which

we represent using pebbles as before

C′ B′ A′

•••• •••••••

(note that the tens hole B′ is empty). We now just add the contents of hole A′ to

hole A, hole B′ to hole B and so on subject to the additional rule (which will be

familiar to you from school) that, whenever a hole contains ten or more pebbles,

ten pebbles should be removed and one pebble placed in the next hole to the left.

In the example given, we get

C B A

•••••••• •••

that is to say, eight hundred and thirty.

It should be remarked that users of the modern counting frame abacus can add

faster than modern users of paper and pencil9. The use of an abacus will seem less

strange to my readers, who usually confide their calculations to a little electronic

device, than it did to people of my generation who did their own pencil and paper

calculations.

Multiplication is less useful for record keeping unless we are dealing with

standardised objects, for example, calculating the number of bricks required for a

wall or providing one day’s ration for an army.

It is believed that the ancient Egyptians used a procedure for multiplication

close to what is now called ‘Russian peasant multiplication’. Given two numbers

9I can bear personal witness to this, having given out the prizes at a splendid abacus demon-

stration by young school children in Zhenjiang.
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a and b with a < b, we place a in a first column α and b in a second column

β and proceed as follows. Either a is even and we calculate a′ = a/2 and b′ =
b × 2, placing a′ in column α and b′ in column β, or a is odd and we calculate

a′ = (a− 1)/2 and b′ = 2× b, keeping our result in columns α and β as before, but

keeping a note of b in a third column γ. We repeat this process with a′ and b′ and

continue until we obtain the pair 1 and B, say. The product a× b equals B plus the

sum of the values noted in the third column. Here is an example in which we use

the method to multiply 27 by 14.

α β γ

14 27

7 54

3 108 54

1 216 108

We have 216 + 54 + 108 = 378 and 378 is indeed the correct answer.

Exercise 1.2.1. (i) Compute 45 × 103 using Russian peasant multiplication.

(ii) Explain why Russian peasant multiplication works.

[We shall give a couple of explanations in Exercise 4.3.15.]

Simple division sums such as dividing twenty one loaves among seven work-

men could be tackled by enlightened guess work (as indeed most people would

do such sums today) but ‘long division’ must have been very difficult. There were

also problems with what we now call fractions. Faced with the problem of divid-

ing five loaves among six workmen, a natural procedure is to cut three loaves in

half and then cut the remaining loaves into thirds. Each man would receive half a

loaf and a third of a loaf. In modern terms

5

6
=

1

2
+

1

3
.

The ancient Egyptians extended this idea so a number x with 1 > x > 0 would be

represented in terms corresponding to the right hand side of the equation

x =
1

n1

+
1

n2

+ . . . +
1

nk

with 2 ≤ n1 < n2 < . . . < nk. We call this an Egyptian fraction expansion.

Exercise 1.2.2. (i) Does there exist an Egyptian fraction expansion for all rational

x with 1 > x > 0?

(ii) Is it unique?

[Think about these questions, but do not worry if you cannot come to a conclusion.

Part (ii) is answered in the next paragraph and part (i) in Exercise 4.3.14.]
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Unfortunately, although ‘Egyptian fractions’ give a reasonable way of dividing

loaves and recording what we would now call fractions with small denominators10,

they seem deeply unfitted for calculation. How, for example, could one obtain the

equality
1

3
+

1

5
=

1

2
+

1

30
working only in terms of ‘Egyptian fractions’?

To what extent would these limitations have affected the Egyptians? Surely,

the answer must be, hardly at all. It might have taken some time to work out the

daily rations for a work party of eight men, but, once the calculation was made,

it would apply to all work parties of eight men on all days. The construction of

a pyramid would be a major administrative feat and would involve quite a lot of

arithmetic (how much must be a matter of speculation), but the effort involved in

arithmetical calculations must have been dwarfed by the other tasks involved. We

do not even need to guess that the results of difficult calculations must have been

tabulated for reuse, because one of the major pieces of mathematical evidence to

have survived is a table of Egyptian fraction expansions for what we would now

write as 2/(2n + 1).

With no pressure for change and no indication as to what change might be

desirable, ancient societies continued with whatever arithmetical systems their

forefathers had used.

1.3 A Greek myth

As in earlier and later societies, most ancient Greeks spent most of their time

farming, trading and fighting one another. However, it was noted, both by those

who admired their behaviour and by those who despised it, that some Greeks liked

nothing better than abstract speculation and heated argument.

Faced with an account of number along the lines given in the previous sections,

we can imagine one of these trouble-makers raising various objections.

(1) You talk about the number of sheep in a flock as a well-defined unchanging

object. But anyone who owns a large flock of sheep knows that he may go to sleep

the owner of a hundred sheep and wake up the owner of a hundred and one or

ninety nine sheep.

(2) You say that we can derive multiplication by looking at a merchant who

charges two silver pieces for a roll of cloth and six pieces of silver for three rolls

of cloth. But it is common for such a merchant to offer five rolls of cloth for eight

pieces of silver. Should we conclude that 5 × 2 =
?

8?

10But not when the denominators are large. This would not matter for the kind of uses required

by the ancients.
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(3) You say that the truth of the result a+b = b+a can be grasped by dividing

a line of dots in two different ways. I might agree (for the sake of argument) that

we can see that 5 + 3 = 3 + 5 in this way, but you claim that this result continues

to hold for numbers as large as several million. I cannot picture a collection of

several million dots and I do not think you can.

(4) You say that we can use the same numbers for counting sheep, goats or

days. At a pinch, I will agree that adding three sheep to four goats produces seven

animals, but I cannot see how to add three sheep to four days.

(5) Things are even worse when it comes to multiplication. I say that you

cannot multiply three sheep by five sheep and you reply that you mean three flocks

of five sheep — but if, as you claim, multiplication is commutative, why is the

answer fifteen sheep rather than fifteen flocks?

So far as I know, my Greek trouble-maker is entirely imaginary, but we do

know that the Greeks considered similar problems which arise in the study of

space, that is to say, geometry.

One possible solution (but not theirs) to these problems is the following. By

the study of the real world and by introspection, we can come up with a set of

laws which appear to be followed, more or less, by the points, lines, lengths and

angles of the real world. We then study what further laws can be strictly deduced

from our initial set of laws. (In the language of mathematics what theorems can be

deduced from our axioms.) We have made geometry a branch of pure mathematics

(or in Hogben’s hostile account ‘a respectable form of relaxation for the opulently

idle’ [14]).

It is then the job of the applied mathematician to decide under what circum-

stances and to what extent our abstract geometry can be applied to the imperfect

points and lines of the real world.

Unimplemented, these ideas are just hot air. However the ‘Euclidean Geome-

try’ of the Greeks turned out to be one of the most beautiful and influential objects

in the history of mankind. At the same time, the Greek thinkers showed that math-

ematics could be applied to the study of nature including not only the movement of

the stars (where the Babylonians and Egyptians had already made strides) but also

things of this earth. Archimedes moved easily from the most abstract geometry to

the study of the stability of ships.

Hardy in his A Mathematician’s Apology [13] puts it very well:

Greek mathematics is the real thing. The Greeks first spoke a lan-

guage which modern mathematicians can understand; as Littlewood

said to me once; they are not clever schoolboys, or ‘scholarship can-

didates’, but ‘Fellows of another college’11.

11People from other universities may consider this a very Cambridge thing to say. People from

other colleges consider this a very Trinity thing to say.
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Can we produce an axiomatic treatment for the natural numbers? Let us write

down the rules we have obtained so far.

a + b = b + a (Commutative law of addition.)

a × b = b × a (Commutative law of multiplication.)

a + (b + c) = (a + b) + c (Associative law of addition.)

a × (b × c) = (a × b) × c (Associative law of multiplication.)

1 × a = a (One is a unit.)

a × (b + c) = (a × b) + (a × c) (Distributive law.)

We can stare at these rules for a long time whilst they stare back at us, but

nothing happens. There is more to the axiomatic method than writing down a set

of axioms and drawing appropriate consequences. Unless the axioms give inter-

esting results deduced in an interesting way12, the system is not worth studying.

Exercise 1.3.1. Use our axioms to show that

a × 1 = a.

The rules we have collected so far do not capture the nature of the natural

number system. We shall see there are many systems that obey these rules. Here

is a particularly simple one under a slight disguise (think of the rules for addition

and multiplication of odd and even numbers). It consists of two elements θ and 1

with the rules

θ + θ = 1 + 1 = θ, 1 + θ = θ + 1 = 1, θ × θ = θ × 1 = 1 × θ = θ, 1 × 1 = 1.

Exercise 1.3.2. Check, to your own satisfaction, that the system does, indeed,

obey all the stated rules.

[This is a special case of the system (Zp,+,×) which will be discussed in Sec-

tion 5.1 with p = 2.]

On a more practical level, it may occur to us that a hunter prefers to be chased

by one tiger rather than two and a farmer prefers to have fifteen sheep rather than

ten. We therefore introduce the idea of order > linked to addition by the following

definition which we shall call the order rule.

Definition 1.3.3. Let a, b ∈ N+. We have a > b if and only if we can find a natural

number c ∈ N+ such that b + c = a.

12Of course, not all of the results and not all of the deductions need be interesting — just some

of them.
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Lemma 1.3.4. The order > just defined on N+ is transitive, that is to say, if a > b

and b > c, then a > c.

Proof. If a > b and b > c, then, by definition, we can find u and v such that

a = b + u, b = c + v. Using the associative law of addition we have

a = b + u = (c + v) + u = c + (v + u),

so a > c. �

When we write a > b > c, we implicitly refer to transitivity.

In order to make full use of of our order > we need to introduce a new law

which, although it may appear obvious to the tax collector does not follow from

the laws so far introduced.

Trichotomy13. The order > just defined on N+ obeys trichotomy, is to say, exactly

one of the following conditions holds: a > b or b > a or a = b.

Exercise 1.3.5. Consider the system of Exercise 1.3.2. Write x=y if we can find a

u such that x = y+u. Check that x=y whichever x and y we choose. In particular,

θ = 1 and 1 = θ so trichotomy fails.

The idea of trichotomy will appear over and over again throughout this book.

We shall follow standard mathematical practice by writing a ≥ b if a > b or

a = b whilst using a < b to mean b > a and a ≤ b to mean b ≥ a.

Exercise 1.3.6. Show that transitivity and trichotomy are together equivalent to

the following rules

(1) If a ≥ b and b ≥ a, then a = b.

(2) If a ≥ b and b ≥ c, then a ≥ c.

(3) At least one of the following conditions holds: a ≥ b or b ≥ a.

(4) If a > b, then a , b.

[In other words, show that rules (1), (2), (3) and (4) follow from transitivity and

trichotomy and vice versa.]

Exercise 1.3.7. Explain why trichotomy enables us to define max{a, b} (the maxi-

mum of a and b) and min{a, b} (the minimum of a and b).

Show that

max{a, b} +min{a, b} = a + b.

Inequality interacts with our previously defined operations. In particular we

have two further results. which we call the addition and multiplication laws for

inequalities.

13In a dichotomy exactly one of two things is true, in a trichotomy exactly one of three things

is true.
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Lemma 1.3.8. Consider order > just defined on N+.

(i) If a > b, then a + c > b + c.

(ii) If a > b, then a × c > b × c.

Proof. (i) If a > b, then we can find a u such that a = b + u. By the associative

and commutative laws of addition

a + c = (b + u) + c = b + (u + c) = b + (c + u) = (b + c) + u

so a + c > b + c.

(ii) If a > b, then we can find a u such that a = b + u. By the distributive law

and the commutative law of multiplication

a × c = (b + u) × c = c × (b + u) = (c × b) + (c × u) = (b × c) + (c × u)

so a × c > b × c. �

Combining these addition and multiplication laws for inequalities with tri-

chotomy we get a number of useful cancellation laws.

Lemma 1.3.9. If we work with the natural numbers N+, then the following results

hold.

(i) If a + c = b + c, then a = b.

(ii) If a × c = b × c, then a = b.

(iii) If a + c > b + c, then a > b.

(iv) If a × c > b × c, then a > b.

Proof. (i) By trichotomy we know that exactly one of the following holds: a > b,

b > a or b = a. If a > b, then a+c > b+c and (by trichotomy again) a+c , b+c.

If b > a, then b+ c > a+ c and a+ c , b+ c. Thus, if a+ c = b+ c, we have a = b.

(ii), (iii) and (iv) Left as an exercise for the reader. �

Exercise 1.3.10. Prove Lemma 1.3.9 (ii), (iii) and (iv).

Notice that the cancellation law for addition enables us to strengthen the order

rule.

Lemma 1.3.11. If a > b, there is a unique c such that a = b + c.

Proof. Existence follows from the order rule. To prove uniqueness observe that if

a = b + c and a = b + c′, then b + c = b + c′ and Lemma 1.3.9 (i) shows us that

c = c′. �

For more than two thousand years Euclidean geometry was the only example

of an interesting system of complex logical deductions from apparently simple

premises. As such it, rightly, enjoyed enormous prestige.
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In the course of my law reading I constantly came upon the word

demonstrate. I thought, at first, that I understood its meaning, but

soon became satisfied that I did not. I said to myself, What do I do

when I demonstrate more than when I reason or prove? How does

demonstration differ from any other proof? I consulted Webster’s

Dictionary. They told of ‘certain proof,’ ‘proof beyond the possi-

bility of doubt’; but I could form no idea of what sort of proof that

was. I thought a great many things were proved beyond the possi-

bility of doubt, without recourse to any such extraordinary process

of reasoning as I understood demonstration to be. I consulted all the

dictionaries and books of reference I could find, but with no better

results. You might as well have defined blue to a blind man. At last

I said,— Lincoln, you never can make a lawyer if you do not under-

stand what demonstrate means; and I left my situation in Springfield,

went home to my father’s house, and stayed there till I could give any

proposition in the six books of Euclid at sight. I then found out what

demonstrate means, and went back to my law studies.

The Life of Abraham Lincoln Henry Ketcham [18]

Versions of Euclid’s geometry were often placed at or near the centre of the

educational system. I belonged to the last generation in the UK for whom this was

true and I vividly recall the pleasure the subject gave me.

Many attempts were made to produce axiomatic treatments of such subjects as

philosophy, theology and politics but, although some were interesting, none were

successful14.

In the early 19th century, it was discovered that Euclid’s axioms could be

modified to give other geometries. Later, it was found that some of the new sub-

jects which were being introduced into mathematics, like group theory, could be

given an axiomatic presentation. Problems with rigorising calculus led to the kind

of axiomatic treatment of numbers considered in this book. We now have many

examples of axiomatic systems within mathematics to study and compare.

Although the popular image of a mathematician as a lone worker is not entirely

false, it is an over simplification. Mathematical knowledge passes from teacher

to pupil and from colleague to colleague. If the chain is broken, an exceptional

mind is required to reforge it. If only because time for thought has to be paid for,

mathematics will flourish more in a favourable than in an unfavourable society.

Over time, conditions became more unfavourable to the Greek mathematical

school. Cicero says ‘Geometry was in high esteem with [the Greeks], therefore

14Indeed, up to now, even very mathematical parts of physics seem to resist interesting axiomatic

development.
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none were more honourable than mathematicians. But we [the Romans] have

confined this art to just measuring and calculating.’ The later Roman empire was

beset by economic and political problems, and its dominant intellectual system

was more concerned with personal salvation than the subtleties of the Greeks15.

For these, or, perhaps, for other reasons, the direct Greek mathematical tradition

came to an end.

15What has Athens to do with Jerusalem? (Tertullian)





Chapter 2

The strictly positive rationals

2.1 An Indian legend

There are many ways of recording numbers. At the simplest, when counting

sheep, we can just use one stroke to record each sheep so that |||| stands for four

sheep. However, this is no good if the number is large so, for example, the ancient

Egyptians had a sign for ten and for one hundred and so on. If we take ∩ as our

sign for ten and ∪ as our sign for one hundred, we can write three hundred and

twenty four as ∪ ∪ ∪ ∩ ∩||||. Notice that this is reasonably brief and makes it easy

to record numbers from and enter numbers into an abacus1.

The ancient Greeks used a more compact, but more complex, scheme, with

different letters representing different multiples of ten, one hundred and so on.

We can imagine a representing one, A representing ten, α representing one hun-

dred, b representing two, B representing twenty, β representing two hundred, c

representing three and so on. In this notation βCa would be two hundred and

thirty one.

The ancient Indians used a similar scheme, but someone at sometime, or sev-

eral people over a length of time, introduced a clever modification which only

used nine symbols (which we shall represent as 1, 2, . . . , 9 with their usual mean-

ings) and a placeholder ∗. The number written in Greek style as δAc would be

written as 413 where we can tell that 3 represents three because it is in the first

place starting from the right, that 1 represents ten because it is in the second place

and 4 represents four hundred because it is in the third place from the right.

This is clearly a more economical scheme, but how are we to represent the

Greek number δc? The simple, but tremendous, answer is to use the placeholder

∗ to represent the empty second column and write 4 ∗ 3. Sir Thomas Browne tells

1The Roman system of writing I, II, III, IV, V, VI, VII, VIII, IX, X, XI . . . achieves slightly

greater brevity if you wish to record things, but makes computation harder.

19



20 CHAPTER 2. THE STRICTLY POSITIVE RATIONALS

us that ‘What song the Sirens sang, or what name Achilles assumed when he hid

himself among women, though puzzling questions, are not beyond all conjecture.’

Scholars have debated whether the origins of the idea of a placeholder are to be

found in the tables of ancient Babylonian astronomers or whether we should thank

some humble anonymous Indian temple scribe.

Be that as it may, it is not immediately clear why the new system is substan-

tially better than the others we have described. It allows us to represent very large

numbers rather easily, but the ancient and medieval worlds did not need very large

numbers and, had they, it would have been possible to modify the earlier systems

to cope2. The new system is much less intuitive than the old. Anyone can under-

stand that ∪ ∪ ∩ ∩ ∩|| represents two sticks, three bundles of ten sticks and and

two bundles of a hundred sticks, but it requires special training to recognise that

1 in the first place starting from the right in 121 magically becomes one hundred

when placed in the third place.

Exercise 2.1.1. We write our numbers with the size of bundles decreasing as we

move from left to right so that 341 is three hundred and forty one. Spend a little

time using the opposite convention. For example, using the reverse convention

throughout, write down three hundred and seventy nine and two hundred and sixty

five and then use long multiplication to multiply them together, finally translating

the answer back into words.

Exercise 2.1.2. The translation from Indian notation to words is not quite as sim-

ple as my account implies. The reader is invited to translate

2140676912926927

(a purported estimate of the US Federal debt in cents at a particular instant)

into words. She should then write down general instructions for doing such a

translation.

The new system was invented sometime between the first and fourth centuries

in India and spread slowly. In the ninth century AD, the great Persian mathemati-

cian Al-Khwārizmı̄ wrote On Calculation with Hindu Numerals which helped

2Archimedes actually discusses this problem in The Sand Reckoner. ‘There are some, King

Gelon,’ says Archimedes ‘who think that the number of grains of sand is infinite in multitude;

and I mean by the sand not only that which exists about Syracuse and the rest of Sicily but also

that which is found in every region whether inhabited or uninhabited. Again there are some who,

without regarding it as infinite, yet think that no number has been named which is great enough

to exceed its multitude. . . . But I will try to show you by means of geometrical proofs, which

you will be able to follow, that, of the numbers named by me and given in the work which I sent

to Zeuxippus, some exceed not only the number of grains of sand [required to fill a sphere the

size of the earth], but also the number of grains of sand [required to fill the universe theorised by

Aristarchus]’.
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introduce the system to the Arab world and thence onward to Europe where, over

the course of several centuries, it displaced Roman numerals.

The ultimate triumph of the Indian system is generally attributed to the fact

that it allowed the invention of new methods of calculation. It was true that ad-

dition on an abacus remained faster than pen and paper addition with the new

numerals, but the new methods of long multiplication and long division, made

possible by the Indian system, brought previously extremely difficult operations

within the grasp of ordinary people3.

Exercise 2.1.3. (It is very likely that the contents of this exercise are familiar to

the reader.)

(i) The design of the abacus and the pencil and paper methods we learn for

calculating in school take into account the fact that we have ten digits and group

things in ones, tens, hundreds and so on. If, like some characters in cartoon films,

we had eight digits, we would count in ones, eights, sixty-fours and so on. Such a

system (which we say has radix 8) would have the elementary symbols 1, 2, 3, . . . ,

7 together with the placeholder 0. Perform the addition and multiplication sums

indicated, working with radix 8,
153

+672
and

53

×72
.

(ii) Our machines like to work in radix 2, that is to say binary. What binary

expression corresponds to the radix 10 expression 104? What radix 10 expression

corresponds to the binary expression 10011?

[From time to time in this book we shall refer to binary notation, so the reader

should make sure she is happy with the idea.]

Exercise 2.1.4. It is natural that we should consider ‘our’ number system better

than its predecessors and the fact that it has been universally adopted is good

evidence that we are right. What reasons, if any, do you have for believing that

there does not exist one which is substantially better? (Changing the radix would

certainly not justify the work involved.)

The placeholder (or ‘zero’ as we shall now call it) was not the only innovation

of the new Indian arithmetic. It also introduced a new way of writing ‘fractions’

essentially equivalent to our present

numerator

denominator
.

3Notice how apparently unrelated advances reinforce one another. Paper-making, invented in

China a thousand years before, greatly reduced the cost and greatly increased the availability of

writing material in Europe thus making ‘pen and paper’ methods practicable. Gutenberg’s method

of printing with movable type made manuals of arithmetic cheap and plentiful and so aided rapid

transmission of the new ideas.
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This can be contrasted, not only with Egyptian fractions, but with the Roman

system of using twelfths4 and a collection of ad hoc smaller units such as forty-

eighths, each with their own set of symbols.

Previous systems allowed fractions to be used in records, but the new Indian

system allowed ordinary people to add and multiply fractions just as you learned

in school. The instruction manuals for the new arithmetic made much of this new

advance, but who (apart from puzzle lovers) would want it?

The answer returns us to the merchant or, more particularly, to a new class of

merchants. Even when Baghdad and Constantinople looked with disdain at the

uncivilised people of Europe, there were long distance traders, but they practised

the kind of trade in which you ended up rich or dead, and where a sharp sword (or

retinue with sharp swords) was more useful than any but the simplest arithmetic.

Eventually, Europe settled down into a collection of states, often quite small, each

peaceful (more or less) within its own boundaries and each with its own army,

weights and measures, and currency.

Trade now became safer but also more competitive. A London money changer

would need to know the value of a Mark of Lubeck, a Mark of Riga, a Mark

Sundische, a Mark of Cologne, a Mark Wendische, a Pound of Vienna, a Groote

of Holland, a Flemish Mouton, . . . and so on. Moreover, since governments were

always tempted to reduce the amount of precious metal in a coin, the same coin

would have different values if issued at different dates. If he set his rates wrong,

our money changer would lose out against more sophisticated competitors. When

profits depend on fractional advantage, fractional calculations become essential.

As trade increased, so did its financial complexity. Traders wanted letters of

credit. Ship owners sought insurance. How should such insurance be correctly

priced? Wars became more expensive. Under the old system, a subject’s duties

towards his monarch included military service. The new ways of making war

required professionals and professionals had to be paid5. Governments started to

borrow and bankers started to lend to them (a very high risk business, but very

profitable if you got it right). Loans taken out over a long period required the

computation of compound interest. All these things required fractions.

But how and why do these fractions and fractional calculations work? If the

matter is one of intuition, why did the great ancient civilisations fail to develop

such an ‘intuitive’ concept? If the answer is that transactions based on fractions

always work, why did the Spanish Crown, with access to all the wealth of the

Americas, declare bankruptcy four times in half a century?

For the remainder of the chapter, instead of hand-waving, we shall assume that

4Uncia from which we get the English inch and ounce. However, there are 16 ounces in an

English pound and 20 fluid ounces in an English pint (but 16, slightly different, fluid ounces in a

US pint). The South Australian pint contained 15 fluid ounces.
5‘Pas d’argent, pas de Suisse.’ If you do not pay them, your Swiss mercenaries will not fight.
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any satisfactory answer must require work and thought. We shall try to construct

the strictly positive rationals Q+ (that is to say, the positive fractions) from the

natural numbers with the same care with which a watch maker might assemble a

watch.

Exercise 2.1.5. Von Neumann is quoted6 as saying ‘If people do not believe that

mathematics is simple, it is only because then do not know how complicated life

is.’ When judging the difficulty of the rest of this book it may be useful to think

about the following tasks of varying difficulty.

(i) Everybody can walk. Write down instructions for walking in sufficient de-

tail to enable an engineer to produce a two legged walking robot.

(ii) Everybody can talk. Write down instructions on how to to construct and

recognise a sentence in your own language.

(iii) Choose a language that you do not speak. Take down a dictionary and

a grammar book. Translate the first page of a book in the other language into

your own. Now translate the first page of a book in your language into the other

language. Which task is harder and why?

(iv) Choose a game of patience. Explain the rules to someone who has never

seen a pack of cards.

(v) Choose a game of patience. Explain the rules to someone who is familiar

with the rules of other patience games.

2.2 Equivalence classes

Our first problem is to find a suitable language to talk about the positive rationals.

Clearly, saying ‘a positive rational is is a fraction’ is to define one unknown object

in terms of another. We could try to improve on this by saying ‘a positive rational

is an object written p/q with p and q natural numbers’, but we then have to ex-

plain that objects like 2/3 and 4/6 ‘are really the same’ when they are obviously

different. A better approach might be to say that 2/3, 4/6, . . . ‘represent the same

abstract object’ but what is that ‘abstract object’?

Mathematicians have invented the idea of an equivalence class to perform the

role of ‘abstract object’ in this and similar contexts. If the reader feels that we

are constructing a sledge hammer to crack a nut, she should reflect that some nuts

are hard to crack and that, once we have our sledge hammer, we can crack lots

of different nuts in the same way. We will use the notion of equivalence class in

many of the constructions in this book and it occurs in the ‘first chapter’ of several

subjects of pure mathematics (quotient groups in algebra, quotient topologies in

analysis, atlases in differential geometry and so on).

6By Franz L. Alt in Communications of the ACM, volume 15, issue 7, July 1972, page 694.
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We say that a collection A of mathematical objects is a set7 and write a ∈ A to

mean that a belongs to A and a < A to mean that a does not. We say that a set B

is subset of A if, whenever b ∈ B, we have b ∈ A (in other words, A contains B).

In this section, we will be interested in a relation ∼ which may or may not exist

between elements of A. We write a ∼ b if a is related to b and a / b if not.

Here are three properties, which may or may not hold, for a relation ∼ on A.

(1) a ∼ a for all a ∈ A. (We say that ∼ is reflexive.)

(2) If a ∼ b, then b ∼ a. (We say that ∼ is symmetric.)

(3) If a ∼ b and b ∼ c, then a ∼ c. (We say that ∼ is transitive.)

Exercise 2.2.1. Consider the relations =, ≥ and > on N+. Which are reflexive,

which are symmetric and which are transitive?

Exercise 2.2.2. Consider a set X = {x, y, z} containing three distinct elements x, y

and z. In each of the following eight examples we define a relation ∼ which holds

in the specified cases and no other. State, with reasons, whether the relation is

reflexive, whether it is symmetric and whether it is transitive.

(i) x ∼ y, y ∼ z.

(ii) x ∼ x, y ∼ y, z ∼ z, x ∼ y, y ∼ z.

(iii) x ∼ y, y ∼ x.

(iv) x ∼ y, y ∼ z, x ∼ z.

(v) x ∼ y, y ∼ x, x ∼ x, y ∼ y.

(vi) x ∼ x, y ∼ y, z ∼ z, x ∼ y, y ∼ z, x ∼ z.

(vii) x ∼ x, y ∼ y, z ∼ z, x ∼ y, y ∼ x, y ∼ z, z ∼ y.

(viii) x ∼ x, y ∼ y, z ∼ z.

Conclude that relations can have any combination of our three properties.

Exercise 2.2.3. Consider a set X with a relation ∼ which is symmetric and tran-

sitive. Suppose that, given any x ∈ X, we can find a y ∈ X with x ∼ y (that is to

say, everything is related to something). Show that ∼ is actually reflexive.

We now make the following definitions.

Definition 2.2.4. Consider a set A with a relation ∼. We say that ∼ is an equiva-

lence relation if it is reflexive, symmetric and transitive.

Definition 2.2.5. Consider a set A with an equivalence relation ∼. If a ∈ A, we

write [a] for the set of all b ∈ A such that b ∼ a and call [a] the equivalence class

of a. We denote the collection of all such equivalence classes by A/∼.

We make the following remarks.

7Henceforward we shall use the word collection to mean a collection of mathematical objects,

that is to say, a set.
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Lemma 2.2.6. Suppose that we are in the situation described in Definition 2.2.5.

Then the following statements are true.

(i) a ∈ [a].

(ii) If a ∈ [b], then [a] = [b].

Proof. (i) By reflexivity, a ∼ a and so a ∈ [a].

(ii) If x ∈ [a], then x ∼ a and a ∼ b so, by transitivity, x ∼ b. Thus every

member of [a] is a member of [b].

On the other hand, if y ∈ [b], we have y ∼ b and a ∼ b. By symmetry, b ∼ a

and so, by transitivity, y ∼ a. Thus every member of [b] is a member of [a]. �

How can we use this idea to construct the strictly positive rationals? We think

of the notion of a fraction a/a′ already familiar from school and consider the set

A of all (a, a′) with a and a′ natural numbers. (Note that, as the reader will expect,

(a, a′) = (b, b′) if and only if a = b and a′ = b′. The technical term for such an

(a, a′) is an ordered pair. Throughout this book we shall only deal with ordered

pairs.) We define a relation ∼ on A by the condition (a, a′) ∼ (b, b′) if and only if

a× b′ = a′ × b. (Recall the school idea of ‘multiplying out fractions’ by replacing

a/a′ = b/b′ with a × b′ = a′ × b.)

Lemma 2.2.7. The relation ∼ just defined is, indeed, an equivalence relation.

Proof. (i) Since a × a′ = a′ × a, we have (a, a′) ∼ (a, a′). Thus ∼ is reflexive.

(ii) If (a, a′) ∼ (b, b′), then a×b′ = a′×b, so a′×b = a×b′ and (b, b′) ∼ (a, a′).
Thus ∼ is symmetric.

(iii) This is the only non-trivial part. Suppose that (a, a′) ∼ (b, b′) and (b, b′) ∼
(c, c′). Then a × b′ = a′ × b and b × c′ = c × b′. It follows, using the associative

and commutative laws for multiplication (see page 13), that

(a × c′) × b′ = b′ × (a × c′) = (b′ × a) × c′

= (a × b′) × c′ = (a′ × b) × c′

= a′ × (b × c′) = a′ × (b′ × c)

= a′ × (c × b′) = (a′ × c) × b′.

The cancellation law law for multiplication (see page 15) yields

a × c′ = a′ × c,

so (a, a′) ∼ (c, c′) and we are done. �

Exercise 2.2.8. Check the use of the appropriate law at each stage of the long

calculation in the proof of Lemma 2.2.7 (iii).
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In future, we will often not do calculations like the sequence in the first para-

graph of the proof of Lemma 2.2.7 explicitly, but say, ‘using the associative and

commutative laws of multiplication (or addition)’, leaving it to any suspicious

reader to write out the steps.

Exercise 2.2.9. Show, using the associative and commutative laws explicitly, that

(
(a × b) × c

) × d =
(
(d × c) × b

) × a.

We now define addition and multiplication on the collection A/∼ of equiva-

lence classes. We need to proceed with care as the next exercise shows.

Exercise 2.2.10. We might be tempted to write

[(a, a′)] ⊞ [(b, b′)] =
?

[(a + b, a′ + b′)].

Show that [(1, 2)] = [(2, 4)] and [(1, 1)] = [(1, 1)], but

[(1 + 1, 2 + 1)]) ,
[(

(2 + 1), (4 + 1)
)]
.

Conclude that our putative definition makes no sense.

If we define an operation on equivalence classes by considering representative

elements, we must ensure that we get the same result whichever representative we

choose.

Lemma 2.2.11. If (a, a′) ∼ (b, b′) and (n, n′) ∼ (m,m′), then

(
(a × n′) + (a′ × n), a′ × n′

) ∼ (
(b × m′) + (b′ × m), b′ × m′

)
.

Thus we may define

[(a, a′)] ⊕ [(n, n′)] =
[(

(a × n′) + (a′ × n), a′ × n′
)]

unambiguously.

Proof. If we can show that

(
(a × n′) + (a′ × n), a′ × n′

) ∼ (
(a × m′) + (a′ × m), a′ × m′

)
⋆

and (
(a × m′) + (a′ × m), a′ × m′

) ∼ (
(b × m′) + (b′ × m), b′ × m′

)
, ⋆⋆

the required result will follow from the transitivity of ∼.
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Let us prove⋆. Since (n, n′) ∼ (m,m′), we have n′ × m = m′ × n justifying

step (2) in the next calculation.

(
(a × n′) + (a′ × n)

) × (a′ × m′) = (a′ × m′) × (
(a × n′) + (a′ × n)

)

=
(
(a′ × m′) × (a × n′)

)
+

(
(a′ × m′) × (a′ × n)

)
(1)

=
(
(a × m′) × (a′ × n′)

)
+

(
(a′ × a′) × (m′ × n)

)

=
(
(a × m′) × (a′ × n′)

)
+

(
(a′ × a′) × (n′ × m)

)
(2)

=
(
(a′ × n′) × (a × m′)

)
+

(
(a′ × n′) × (a′ × m)

)

= (a′ × n′) × (
(a × m′) + (a′ × m)

)
(3)

=
(
(a × m′) + (a′ × m)

) × (a′ × n′).

Steps (1) and (3) are justified by the distributive law (see page 13) and the unnum-

bered steps by repeated use of the associative and commutative laws of multipli-

cation.

The formula⋆⋆ can be proved similarly or, more quickly, by using⋆ and

the commutative law of multiplication. I leave the choice and the work to the

reader. �

Exercise 2.2.12. Prove⋆⋆.

Remark In stating Lemma 2.2.11, we have been guided by the formula

a

a′
+

b

b′
=
?

ab′ + a′b

a′b′
.

However, we have not established this formula, or even shown that it makes sense.

(Is it supposed to apply to ‘fractions’, whatever they may be, or to rational num-

bers each of which is ‘represented’ by many different fractions?) We break the

vicious circle by defining the operation of addition of positive rationals before

trying to prove results about that operation.

Exercise 2.2.13. If (a, a′) ∼ (b, b′) and (n, n′) ∼ (m,m′), show that

(a × n, a′ × n′) ∼ (b × m, b′ × m′).

Conclude that we may define

[(a, a′)] ⊗ [(n, n′)] = [(a × n, a′ × n′)]

unambiguously.

Which fractional ‘equality’ are we thinking of.
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At this point the reader may object that it is unfair to leave parts of the devel-

opment to her. I remind the reader that, as stated in the introduction, solutions to

exercises like this one will be found on my home page. If this does not satisfy

the reader, then, once again, I recommend Landau’s Foundations of Analysis [20],

where every step is carefully laid out.

Lemma 2.2.14. If (a, a′) ∼ (b, b′), (n, n′) ∼ (m,m′) and a × n′ > a′ × n, then

b × m′ > b′ × m.

Thus we may define a relation = on A/∼ by taking [(a, a′)] = [(n, n′)] if and

only if a × n′ > a′ × n.

Proof. Just as in Lemma 2.2.11, we do the proof in two stages, first showing that

a × m′ > a′ × m.

To this end, we observe that

(a × m′) × n′ = m′ × (a × n′)

> m′ × (a′ × n) (1)

= a′ × (n × m′)

= a′ × (m × n′) (2)

= (a′ × m) × n′.

(Step (1) uses the multiplication law for inequalities from lemma 1.3.8. Step

(2) uses the fact that (n, n′) ∼ (m,m′). The remaining steps use the associative

and commutative laws of multiplication, sometimes condensing several steps into

one.) The cancellation law for multiplication (see Lemma 1.3.9) now gives

a × m′ > a′ × m

as required.

A very similar argument now allows us to deduce that b × m′ > b′ × m. �

Exercise 2.2.15. Give the similar argument just invoked.

We note a useful cancellation law

Lemma 2.2.16. We have [(c × a, c × a′)] = [(a, a′)].

Proof. This is just uses the associative and commutative laws of multiplication to

obtain

(c × a) × a′ = c × (a × a′) = c × (a′ × a) = (c × a′) × a.

�
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2.3 Properties of the strictly positive rationals

We have defined a collection of equivalence classes A/∼ with associated opera-

tions ⊕ and ⊗ and a relation =. We now need to show that they have the properties

we would expect of the strictly positive rationals. To do this we need to state

explicitly what these properties are and this accounts for the list-like character of

the next theorem. The hardest work has already been done when we produced

our definitions and showed that they were coherent and, though the theorem is

composed of many sub-theorems, each of them is easy to prove.

From now on, we economise on brackets by writing [a, a′] = [(a, a′)]. Since

we shall use bold-face letters like a frequently the reader may find it useful to

recall that these are usually hand written as a or a
˜

.

Theorem 2.3.1. Let us write general elements of A/∼ as a, b, . . . . Then the

following results hold.

(i) a ⊕ b = b ⊕ a. (Commutative law of addition.)

(ii) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c. (Associative law of addition.)

(iii) a ⊗ b = b ⊗ a. (Commutative law of multiplication.)

(iv) a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c. (Associative law of multiplication.)

(v) If we write 1 = [1, 1], then 1 × a = a. (Existence of a multiplicative unit.)

(vi) For each a we can find an a−1 such that a × a−1
= 1. (Existence of a

multiplicative inverse.)

(vii) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c). (Distributive law.)

(viii) We can find a c such that a = b ⊕ c if and only if a = b. (Order rule.)

(ix) Exactly one of the following conditions holds: a = b or b = a or a = b.

(Trichotomy.)

Proof. As I said above, all of these results are now easy to demonstrate. (The

reader may murmur under her breath ‘After all, we are just dealing with fractions

in a light disguise’.) I shall prove a selection, leaving the rest as an exercise. We

take a = [a, a′], b = [b, b′] and so on.

(v) Because 1 is a unit for multiplication of natural numbers (see page 13)

1 ⊗ a = [1, 1] ⊗ [a, a′] = [1 × a, 1 × a′] = [a, a′] = a.

(vi) Observe that, if (a, a′) ∼ (b, b′), then a × b′ = a′ × b so a′ × b = a × b′

and (a′, a) ∼ (b′, b). Thus we may define a−1
= [a′, a]. The commutative law of

multiplication for the natural numbers now tells us that

a × a−1
= [a, a′] ⊗ [a′, a] = [a × a′, a′ × a] = [a × a′, a × a′] = [1, 1] = 1.
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(vii) We have

a ⊗ (b ⊕ c) = [a, a′] ⊗ [
(b × c′) + (c × b′), b′ × c′

]

=
[
a × ((b × c′) + (c × b′)), a′ × (b′ × c′)

]

=
[
(a × (b × c′)) + (a × (c × b′)), a′ × (b′ × c′)

]
(1)

=
[
a × (b × c′), a′ × (b′ × c′)

] ⊕ [
a × (c × b′), a′ × (b′ × c′)

]

=
[
c′ × (a × b), c′ × (a′ × b′)

] ⊕ [
b′ × (a × c), b′ × (a′ × c′)

]

= [a × b, a′ × b′] ⊕ [a × c, a′ × c′] (2)

= (a ⊗ b) ⊕ (a ⊗ c).

For step (1) we used the distributive law for natural numbers and for step (2) the

cancellation law stated as Lemma 2.2.16. The remaining steps use definitions and

the associative and commutative laws of multiplication for the natural numbers.

(viii) If a=b, then a×b′ > a′×b, so, by the order rule for the natural numbers,

we can find a d such that a × b′ = (a′ × b) + d. If we set c = [d, a′ × b′], then,

using the distributive law for the natural numbers together with the associative and

commutative laws of multiplication, we have

b ⊕ c =
[(

b × (a′ × b′)
)
+ (b′ × d), b′ × (a′ × b′)

]

=
[(

b′ × (a′ × b)
)
+ (b′ × d), b′ × (a′ × b′)

]

=
[
b′ × (

(a′ × b) + d
)
, b′ × (a′ × b′)

]

=
[
b′ × (a × b′), b′ × (a′ × b′)

]

= [(b′ × b′) × a, (b′ × b′) × a′] = [a, a′] = a.

Conversely, if a = b ⊕ c, then

(a, a′) = ((b × c′) + (b′ × c), b′ × c′),

so, since (b × c′) + (b′ × c) > b × c′, we have, using the multiplication law for

inequalities given in Lemma 1.3.8 (ii),

(a × b′) × c′ = a × (b′ × c′) = a′ × (
(b × c′) + (b′ × c)

)

> a′ × (b × c′) = (a′ × b) × c′.

The cancellation law for multiplication inN+ (Lemma 1.3.9 (ii)) now gives a×b′ >
a′ × b so a = b and we are done. �

Exercise 2.3.2. Prove the remaining parts of Theorem 2.3.1.

Exercise 2.3.3. Show that any system satisfying the conditions laid out in Theo-

rem 2.3.1 will also obey the following rules.
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(ix) If a = b and b = c, then a = c. (Transitivity of order).

(x) If a = b, then a ⊕ c = b ⊕ c. (Order and addition.)

(xi) If a = b, then a ⊗ c = b ⊗ c. (Order and multiplication.)

Prove the cancellation laws

(a) If a ⊕ c,=b ⊕ c, then a = b.

(b) If a ⊗ c = b ⊗ c then a = b.

[See Lemmas 1.3.4, 1.3.8 and 1.3.9 if you need a hint, but notice that the proof of

(b) is simple using the existence of a multiplicative inverse.]

With one exception, the laws discussed above apply to the natural numbers.

The novelty is the existence of a multiplicative inverse a−1.

We have shown the existence of a multiplicative unit and a multiplicative in-

verse as Theorem 2.3.1 (v) and (vi). We now need to check that they are unique.

Lemma 2.3.4. Consider any system satisfying the conclusions of Theorem 2.3.1.

(i) If 1̃ ⊗ a = a for all a, then 1̃ = 1.

(ii) If a ⊗ a∗ = 1, then a∗ = a−1.

Proof. (i) Observe that, taking a = 1, we have

1 = 1̃ ⊗ 1 = 1 ⊗ 1̃ = 1̃,

where we justify the calculation by using the commutativity of ⊗ and the fact that

1 is a multiplicative unit (see Theorem 2.3.1 (iii) and (v)).

(ii) Using the commutative and associative laws for ⊗, we have

a∗ = 1 ⊗ a∗ = (a ⊗ a−1) ⊗ a∗ = (a−1 ⊗ a) ⊗ a∗

= a−1 ⊗ (a ⊗ a∗) = a−1 ⊗ 1 = 1 ⊗ a−1
= a−1.

as required. �

We obtain a couple of useful corollaries.

Lemma 2.3.5. Consider any system satisfying the conclusions of Theorem 2.3.1.

(i) We have (a−1)−1
= a.

(ii) We have (a ⊗ b)−1
= a−1 ⊗ b−1.

Proof. (i) Using the commutative law of multiplication,

a−1 ⊗ a = a ⊗ a−1
= 1

so, by the uniqueness of the multiplicative inverse, (a−1)−1
= a.

(ii) Using the commutative and associative laws of multiplication,

(a ⊗ b) ⊗ (a−1 ⊗ b−1) = (a ⊗ a−1) ⊗ (b ⊗ b−1) = 1 ⊗ 1 = 1,

so, by the uniqueness of the multiplicative inverse, (a ⊗ b)−1
= a−1 ⊗ b−1. �
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If we think about the relation between fractions and ‘whole numbers’ in school

arithmetic, it becomes clear that we would like to say that ‘the strictly positive

rationals contain a copy of the natural numbers’. The difficulty, if any, in showing

this, lies, not in the proof, but in finding a precise way to say what we mean. To

this end, we introduce a simple definition.

Definition 2.3.6. We say that a function f : X → Y is injective if f (x) = f (x′)
implies x = x′ (that is to say, f carries different elements of X to different members

of Y).

Note We write f : X → Y to mean a function taking members of X to members of

Y . I think of a function f : X → Y as a machine which, given a particular x ∈ X,

produces a unique element of Y denoted by f (x).

We can now state what we wish to prove.

Lemma 2.3.7. There is an injective function f : N+ → A/∼ such that

f (n +m) = f (n) ⊕ f (m), f (n ×m) = f (n)⊗ f (m) and n > m implies f (n) = f (m).

Proof. Not surprisingly, we set f (n) = [n, 1]. If f (n) = f (m), then (n, 1) ∼ (m, 1)

and so, by definition, n = n × 1 = m × 1 = m. Thus f is injective. The remaining

verifications are equally easy.

f (n) ⊕ f (m) = [n, 1] ⊕ [m, 1] = [(n × 1) + (m × 1), 1 × 1] = [n + m, 1] = f (n + m)

f (n) ⊗ f (m) = [n, 1] ⊗ [m, 1] = [n × m, 1 × 1] = [n × m, 1] = f (n × m).

Finally, if n > m, then n × 1 = n > m = m × 1 and so

f (n) = [n, 1] = [m, 1] = f (m).

�

Lemma 2.3.7 allows us to use 2 as an abreviation for [2, 1].

2.4 What have we actually done?

Goethe said that ‘Mathematicians are a sort of Frenchmen; if you talk to them,

they translate it into their own language, and then it is immediately something

quite different.’ The reader can legitimately complain that the previous section

just takes the obvious and makes it as incomprehensible as possible. For example,

the first part of proof of Theorem 2.3.1 (viii) is ‘just the calculation’

b

b′
+

ab′ − a′b

a′b′
=

ba′b′ + b′ab′ − a′bb′

a′b′b′
=

b′b′a

b′b′a′
=

a

a′
.
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In reply, I would ask the reader how much she remembers of learning about

fractions in school. Presumably she learned how to calculate with fractions and

about the way fractions behave. Does the reader remember being shown that the

rules of behaviour were consistent with the methods of calculation8? Most of

my readers obtained high marks in examinations involving fractions, but this only

shows that they do well in situations where agreeing with the examiner produces

high marks.

It could be argued that we have clear intuitive understanding of fractions and

this is all we need. Thus, we intuitively understand that

3

14
+

1

10
=

11

35
.

Pressed to explain where this intuitive feeling comes from, we could explain that

we take one apple pie, cut it into 14 equal parts and set aside 3 of them. We now

take another apple pie, cut it into 10 equal parts and set aside 1 of them. We then

cut each of the set aside slices from the first apple pie into 10 equal parts, obtaining

the equivalent of 30 slices of an apple pie cut into 140 parts and cut the set aside

slice from the second apple pie into 14 equal parts, obtaining the equivalent of 14

slices of an apple pie cut into 140 parts. Since the set aside slices from the two

apple tarts are now of equal size, we can put them together to obtain the equivalent

of 44 slices of an apple pie cut into 140 parts. We now recombine the slices 4 at a

time to obtain the equivalent of 11 slices from an apple pie cut into 35 equal bits.

Asked what we do about the crumbs and general stickiness, we reply that we

are not thinking about real life apple pies, but idealised apple pies which come as

identical9 disks which can be divided into as many equal sectors10 as we wish. If

we are going to operate with this kind of idealised object, surely it is better to stick

with the idealised objects N+ and Q+ rather than introduce a new sort of idealised

objects including an inexhaustible source of ‘perfect’ apple pies and a ‘perfectly

sharp’ knife.

If we are sure that fractions work, but we are not sure why we are sure why

they work, then it is reasonable to take the rules for calculation that we were

taught in school and check that the results are indeed consistent with the behaviour

we expect from fractions. If we adopt a different notation from that which we

normally use, then we will have less chance of skipping over essential steps. This

is precisely what we did in the previous section.

Of course, this procedure moves fractions away from the real world of money

changers and apple pie sellers. However, we are free to decide whether and in

8Notice that I do not say that your teacher failed to demonstrate consistency. I merely doubt

that you remember whether she did or not.
9Whatever that means. See Section 3.4 for further discussion.

10A sector is ‘the portion of a disk enclosed by two radii and an arc’.
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what respect our abstract rational numbers apply to the real world. Farmers may

decide that half a sheep is not a useful idea, whilst butchers may be perfectly

happy with the concept. Modern physics does not deal with one twelfth of an

electron or half a photon but is happy with half a metre.



Chapter 3

The rational numbers

3.1 Negative numbers

We might expect that, as people got more used to the Indian system, they would

move from treating ∗ as a placeholder, to treating it ‘as if it were a number’ and

finally saying that ∗, or 0, as we shall now call it, was a number just like any other.

We would not expect the process to be easy. If, after saying that a field contains

three sheep and two cows, you remark that it contains zero horses, should you not

add that it contains zero swans and zero hippopotamuses?

‘I see nobody on the road,’ said Alice.

‘I only wish I had such eyes,’ the King remarked in a fretful tone.

‘To be able to see Nobody! And at that distance, too! Why, its as

much as I can do to see real people, by this light!’

Lewis Carroll, Alice Through the Looking-glass

It must also be said that the admonition to treat zero like any other number

loses some of its force when coupled with a further admonition never to try and

divide by zero.

It is thus not surprising that it took a thousand years for everybody to accept

zero as a number. What is surprising is that, at the beginning of those thousand

years, the great Indian mathematician Brahmagupta not only considered zero as a

number, but went on to introduce entirely new objects which we now call ‘negative

numbers’ and give what we now consider the correct rules1 for operating with

them.

If, as Brahmagupta suggested, we consider negative numbers as debts, so that

a fortune of −3 gold pieces is actually a debt of 3 gold pieces, then adding 7 to −5

1His rule for 0/0, is a minor exception. Since we can not extend both the desirable formulae

1 = a/a and 0/a = 0 to the case a = 0 we leave 0/0 undefined.

35
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is like paying off a debt of 5 gold pieces out of a fortune of 7 gold pieces leaving

a fortune of 2 gold pieces. Thus

7 + (−5) = 2.

On the other hand, if we add 4 to −6, this is like trying to pay off a debt of 6 gold

pieces with a fortune of 4 gold pieces. We will remain 2 gold pieces in debt so

4 + (−6) = −2.

So far so good (and similar ideas can be found a few centuries earlier in China),

but what rules should we use for multiplication?

Before answering the question, we should perhaps ask a more fundamental

question. Who cares? If we look at the farmer, the merchant, the tax collector and

even the astronomer, the answer must be none of them. Calling a debt of 5 gold

pieces an asset of −5 gold pieces makes it no easier to pay.

We need to introduce the mathematical puzzler, the kind of person who de-

lights in finding the initial number of walnuts in this question from Metrodorus

who made a collection of such problems in the 6th century AD.

Exercise 3.1.1. Mother, why dost thou pursue me with blows on account of the

walnuts? Pretty girls divided them all among themselves. For Melission took

two-sevenths of them from me, and Titane took the twelfth. Playful Astyoche and

Philinna have the sixth and third. Thetis seized and carried off twenty, and Thisbe

twelve, and look there at Glauce smiling sweetly with eleven in her hand. This

one nut is all that is left to me.

We can call such problems ‘puzzles’ since they have no practical use. Some of

these problems would now be stated in terms of a linear equation in one variable,

some as simultaneous equations in two variables and some as quadratic equations.

Historians have traced these kinds of problem back to the ancient Babylonians.

Standing as we do on the shoulders of giants, we find them easy to classify and

then solve in a uniform manner.

Here are some quadratic problems from the work of Bhāskarāchārya, perhaps

the greatest mathematician of the classical period of Indian mathematics.

Exercise 3.1.2. The eighth part of a troop of monkeys, squared was skipping in

a grove and delighted with their sport. Twelve remaining were seen on the hill,

amused with chattering to each other. How many were there? (All translations

are taken from [5].)

[In modern notation, (n/8)2
+ 12 = n, where n is the number of monkeys.]

Exercise 3.1.2 has two possible solutions.
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Exercise 3.1.3. (i) Construct a ‘monkey puzzle’ with one strictly positive integer

solution and one strictly negative integer solution. (So the puzzle has exactly one

‘appropriate’ solution.)

(ii) Construct a ‘monkey puzzle’ with two strictly negative integer solution.

(So the puzzle has no ‘appropriate’ solution.)

The solver of ‘monkey puzzles’ has three possible strategies.

(1) Set out the instructions for solving such a puzzle in such a way that negative

numbers never appear. Al-Khwārizmı̄ gave a collection of such instructions, but

this required splitting the problem into a number of cases. In modern algebraic

notation, a quadratic with non-zero coefficients and leading coefficient 1 might

need to be written

x2
+ bx + c = 0, x2

+ bx = c, x2
+ c = bx or x2

= bx + c

to ensure that b and c are positive.

(2) Work through the problem ‘as if negative numbers exist and behave in the

right way’. At the end reject all those solutions which are inappropriate including

any ‘negative numbers’.

(3) State firmly that negative numbers exist and behave in the right way. Neg-

ative solutions of a quadratic are solutions just like any other. If the problem is

about gold coins, the negative solutions represent debts. If the problem is about

monkeys, then the problem is one about finding all positive integer solutions to a

quadratic.

If we look at European mathematicians between 1300 and 1600, we can find

examples of each of these strategies, and, no doubt, some people used different

strategies at different times or on different occasions,

There is a further problem with the first two strategies, illustrated by another

monkey problem from Bhāskarāchārya.

Exercise 3.1.4. The square of the fifth part of a group of monkeys less three [that

is to say, (n/5− 3)2, where n is the number of monkeys] had gone into a cave; and

one monkey was in sight, having climbed on a branch. Say how many there were.

At first sight, this has the two reasonable solutions 50 and 5, but, if n = 5, then

n/5 − 3 is a negative integer and, says Bhāskarāchārya, this solution is not to be

taken ‘For it is incongruous. People do not approve a negative absolute number.’

Here is another problem, where I have modified the original numbers to make

a point.

Exercise 3.1.5. Four pairs out of a flock of geese remained sporting in the water

and saw seven times the square root of the flock proceeding to the shore tired of
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the diversion. Tell me dear girl2 the number of the flock. [In modern notation,

8 + 7
√

n = n, where n is the number of geese and we take the positive square

root.]

Check your answer by substituting back in the problem. Why is there only one

appropriate answer?

As mathematicians began to use symbolic algebra (so that letters replaced first

unknowns and, later, variable parameters), it became harder to ensure that neg-

ative numbers never entered calculations in some disguise or another. However,

the most satisfactory methods for proving things remained geometrical, and the

‘natural’ way of viewing geometrical quantities only allows positive numbers3.

As we shall see with the complex numbers and vectors, new systems are often

adopted not because they are easier to use for existing purposes, but because they

lend themselves to new uses. In the end, objections to negative numbers were

overwhelmed by the new uses which resulted from the scientific revolution.

Ordinary people used the new thermometer whose scale contained zero and

negative numbers. Today northern city dwellers are more likely to say ‘It is minus

five today, so dress up very warm’ than ‘There are five sheep in the field’. War

histories talk about ‘D-day minus two’ or ‘zero hour’4. Descartes’s invention of

coordinate geometry leads directly to the graphs which adorn our serious maga-

zines and which freely use both positive and negative numbers (‘the stock market

continued in negative territory for the third day running’).

Oceanic voyages required new astronomical tables and endless calculations

to prepare and interpret them. The invention of decimals and logarithms (see

page 132) allowed addition to be substituted for multiplication, but required the

use of negative numbers5.

The citizen of today’s world thus has an ‘intuitive idea’ of negative numbers

and the laws which govern their order and addition. I doubt if most citizens have

an intuitive idea of the laws which govern the multiplication of negative numbers.

Minus times minus results in a plus,

The reasons for this we need not discuss.6

I have seen several different ‘intuitive arguments’ for the ‘minus times minus’

rule and accept that the authors of these arguments find them ‘intuitively convinc-

2Bhāskarāchārya is supposed to have written his book as a present for his daughter.
3Modern treatments do allow ‘signed quantities’ so that angles, lengths and areas can be nega-

tive.
4Notice the contrast with the older calendar convention of going directly from 1BC to 1AD.
5Recall that log(1/2) = − log 2. I am old enough to have spent many school hours calculating

with logarithms. The representation actually used was log10 x = n + log10 y where 10 > y ≥ 1 and

n was an integer which could be positive or negative.
6A school mnemonic remembered without affection in Auden’s A Certain World.
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ing’. However, evidence that the average citizen finds these various arguments

intuitively convincing seems to be lacking.

Surely, Brahmagupta gave the rules he did not because he found them intuitive,

but because they worked. I strongly urge the reader to experiment as to which

multiplication rules allow the extended system of positive and negative numbers

to behave as closely as possible to the system of strictly positive numbers. She will

find that only the standard rules ‘minus times plus results in minus’ and ‘minus

times minus results in plus’ will allow rules like the distributive law

a × (b + c) = (a × b) + (a × c)

to be extended to the new system. (See Exercises 3.2.11 and 3.2.14, if you want

to make this precise.)

However, the fact that Brahmagupta’s rules are the only ones that could pos-

sibly work does not prove that they actually work. We thus have, as usual, three

choices.

(1) To shout very loudly that they work. Words like ‘common sense’ and

‘intuition’ are very useful in this context.

(2) To say that generation after generation have used Brahmagupta’s rules in

all sorts of contexts and nothing has gone wrong. This ‘engineer’s justification’

seems to me a very good one7.

(3) To construct an extended system and check that it works.

This book being what it is, I shall pursue the third option.

3.2 Defining the rational numbers

We start from the strictly positive rational numbers Q+, equipped with the op-

erations addition +, multiplication × and the relation greater than > having the

properties set out in the conclusions of Theorem 2.3.1 and Lemma 2.3.7.

In Section 2.2 we constructed the strictly positive rationals from the natural

numbers (that is to say, the strictly positive integers) by using equivalence classes.

If a trick works once, it is natural to try it again. Our first step is almost a word

for word repetition.

We consider the set B of all (a, a′) with a and a′ in Q+. (The reader will recall

from page 25 that (a, a′) = (b, b′) if and only if a = b and a′ = b′.) If we think of

a as our fortune and a′ as our debt it is natural to define a relation ∼ on B by the

condition (a, a′) ∼ (b, b′) if and only if a + b′ = a′ + b. (Notice that we cannot

7As Heaviside complained ‘Shall I refuse my dinner because I do not fully understand the

process of digestion.’ (In his Electromagnetic Theory, Volume II, page 9.) He would undoubtedly

have classed this book with ‘the long and disagreeable demonstrations [of the pure mathematician]

to prove what [the physicist] knows’.
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transform the last equation into the statement a−a′ =
?

b−b′, because the the entire

object of our discussion to provide a framework in which such a statement might

make sense.)

Exercise 3.2.1. Show that the relation ∼ just defined is indeed an equivalence

relation.

We now define addition and multiplication on the collection B/∼ of equiva-

lence classes. Addition is easy.

Exercise 3.2.2. If (a, a′) ∼ (b, b′) and (c, c′) ∼ (d, d′), show that

(a + c, a′ + c′) ∼ (b + d, b′ + d′).

Thus we may define

[(a, a′)] ⊕ [(b, b′)] = [(a + b, a′ + b′)].

Multiplication, as one might expect, is more complicated, but it is not difficult

(perhaps after a little experimentation) to see what is required8.

Lemma 3.2.3. If (a, a′) ∼ (b, b′) and (c, c′) ∼ (d, d′), then

(
(a × c) + (a′ × c′), (a × c′) + (a′ × c)

) ∼ ((b × d) + (b′ × d′), (b × d′) + (b′ × d)
)
.

Thus we may define

[(a, a′)] ⊗ [(b, b′)] =
[(

(a × b) + (a′ × b′), (a × b′) + (a′ × b)
)]
.

Proof. We first show that

(
(a × c) + (a′ × c′), (a × c′) + (a′ × c)

) ∼ ((a × d) + (a′ × d′), (a × d′) + (a′ × d)
)
.

To this end, observe that c + d′ = c′ + d, so

(
(a × c) + (a′ × c′)

)
+

(
(a × d′) + (a′ × d)

)

=
(
(a × c) + (a × d′)

)
+

(
(a′ × c′) + (a′ × d)

)

=
(
a × (c + d′)

)
+

(
a′ × (c′ + d)

)
(1)

=
(
a × (c′ + d)

)
+

(
a′ × (c + d′)

)

=
(
(a × c′) + (a × d)

)
+

(
(a′ × c) + (a′ × d′)

)
(2)

=
(
(a × d) + (a′ × d′)

)
+

(
(a × c′) + (a′ × c)

)

8Although we are not allowed to assume the formula

(a − a′) × (b − b′) =
?

((a × b) + (a′ × b′)) − ((a × b′) + (a′ × b))

or even to claim that that the formula makes sense, we are allowed to use it as a source of ideas.

The recommendation ‘Drive as though everybody else is drunk’ may be good advice even if based

on questionable premises.
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as required. (In addition to the commutative and associative laws of addition and

multiplication, we used the distributive law for Q+at steps (1) and (2).)

A similar calculation (or an appropriate use of the commutative law of multi-

plication) now shows that

(
(a × d) + (a′ × d′), (a × d′) + (a′ × d)

) ∼ ((b × d) + (b′ × d′), (b × d′) + (b′ × d)
)

and the full result follows by the transitivity of ∼. �

Exercise 3.2.4. Obtain the result stated in the last paragraph of the previous

proof.

Exercise 3.2.5. Show that we may define a relation = on B by taking

[(a, a′)] = [(b, b′)]

if and only if a + b′ > a′ + b.

[Hint: You may find Lemma 1.3.9 (iii) useful.]

From now on, we economise on brackets by writing [a, a′] = [(a, a′)].

Exercise 3.2.6. (i) Show that [a, a] = [1, 1] and [a + 1, a] = [1 + 1, 1] for all

a ∈ Q+.
(ii) Show that [a, a′] ⊗ [b, b′] = [a′, a] ⊗ [b′, b].

Theorem 3.2.7. Take 0 = [1, 1], 1 = [1 + 1, 1] and write general elements of B/∼
as a, b, c, . . . . Then the following results hold.

(i) a ⊕ b = b ⊕ a. (Commutative law of addition.)

(ii) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c. (Associative law of addition.)

(iii) 0 ⊕ a = a. (Additive zero.)

(iv) For each a we can find −a such that a ⊕ (−a) = 0. (Additive inverse.)

(v) a ⊗ b = b ⊗ a. (Commutative law of multiplication.)

(vi) a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c. (Associative law of multiplication.)

(vii) 1 ⊗ a = a. (Multiplicative unit.)

(viii) If a , 0, there exists an a−1 such that a ⊗ a−1
= 1. (Existence of a

multiplicative inverse.)

(ix) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c). (Distributive law.)

(x) If a = b and b = c, then a = c. (Transitivity of order.)

(xi) Exactly one of the following conditions holds: a = b or b = a or a = b.

(Trichotomy.)

(xii) If a = b then a ⊕ c = b ⊕ c. (Order and addition.)

(xiii) If a = b and c = 0 then a ⊗ c = b ⊗ c. (Order and multiplication.)

(xiv) 0 , 1. (Non-triviality.)
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Proof. We prove a selection, leaving the remainder to the reader.

(iv) Observe that, if (a, a′) ∼ (b, b′), then a+b′ = a′+b so that (a′, a) ∼ (b′, b).

Thus we may define −[a, a′] = [a′, a]. We have

a ⊕ (−a) = [a + a′, a′ + a] = [a + a′, a + a′] = [1, 1] = 0

as required.

(viii) This is the least smooth part of the proof. Let a = [a, a′]. Since a , 0,

we have a , a′, so either a > a′ or a′ > a (trichotomy).

If a > a′, the order rule tells us that there exists a natural number c with

a = a′ + c. We observe that, if (a, a′) ∼ (b, b′), then

a + (b′ + c) = (a + b′) + c = (a′ + b) + c = (a′ + c) + b = a + b

so, by the cancellation law for addition (Lemma 1.3.9 (i)), b = b′ + c. Thus we

may define a−1
= [1 + c−1, 1] unambiguously.

Since (a, a′) = (a′ + c, a′) ∼ (1 + c, 1) we have a = [1 + c, 1] and

a ⊗ a−1
= [1 + c, 1] ⊗ [1 + c−1, 1]

=
[(

(1 + c) × (1 + c−1)
)
+ (1 × 1),

(
(1 + c) × 1

)
+

(
1 × (1 + c−1)

)]

=
[(

(1 + c) × (1 + c−1)
)
+ 1, (c + 1) + (c−1

+ 1)
]

=
[
(1 + 1) +

(
1 + (c + c−1)

)
, 1 +

(
1 + (c + c−1)

)]
⋆

= [1 + 1, 1] = 1

where I leave it to the reader to perform the calculations required to get to⋆ from

the previous line.

If a′ > a, then the previous two paragraphs tell us that ã = [a′, a] has a

multiplicative inverse ã−1
= [b′, b], say. Writing a−1

= [b, b′], we have, using

Exercise 3.2.6,

a ⊗ a−1
= [a, a′] ⊗ [b, b′] = [a′, a] ⊗ [b′, b] = ã ⊗ ã−1

= 1.

(xiii) We have a + b′ > a′ + b and c > c′, so (using the multiplication law for

inequalities) (a+ b′)× c > (a′ + b)× c and (a′ + b)× c > (a′ + b)× c′. Thus, by the

transitivity of order for the strictly positive rationals, (a+b′)×c > (a′+b)×c′. �

Exercise 3.2.8. Do the calculations required to obtain⋆ in the proof above.

Exercise 3.2.9. Prove the remaining parts of the theorem.

Exercise 3.2.10. By giving an explicit example, show that (xiii) is false if we omit

the condition c = 0.
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Exercise 3.2.11. Consider any system satisfying the conclusions of Theorem 3.2.7.

Prove the following results and briefly explain what they mean.

(i) If 0̃ ⊕ a = a for all a, then 0̃ = 0.

(ii) If a ⊕ a• = 0, then a• = −a.

(iii) If 1̃ ⊗ a = a for all a, then 1̃ = 1.

(iv) If a , 0 and a ⊗ a∗ = 1, then a∗ = a−1.

[Look at Lemma 2.3.4 if you need a hint.]

We sometimes refer to 0 as an additive zero and call −a an additive inverse.

Exercise 3.2.12. Consider any system satisfying the conclusions of Theorem 3.2.7.

By considering inverses, show that it obeys the following cancellation laws.

(i) If a ⊕ c = b ⊕ c, then a = b.

(ii) If a ⊗ c = b ⊗ c, and c , 0, then a = b.

(iii) If a and b are given, there exists a c such that a ⊕ c = b.

(iv) If a and b are given, and a , 0, there exists a c such that a ⊗ c = b.

Exercise 3.2.13. Consider any system satisfying the conclusions of Theorem 3.2.7

for addition and order. If a = 0, show that 0 = −a and, if 0 = b, then −b = 0.

Exercise 3.2.14. Consider any system satisfying the conclusions of Theorem 3.2.7.

(i) Show that −(−a) = a.

(ii) By applying the distributive law to a ⊗ (1 ⊕ 0), show that a ⊗ 0 = 0 for all

a.

(iii) By applying the distributive law to a ⊗ (
b ⊕ (−b)

)
, show that (−a) ⊗ b =

−(a ⊗ b).

(iv) By using (i) and (iii), show that (−a) ⊗ (−b) = a ⊗ b.

[This exercise makes precise our previous assertion that only the multiplication

rules of Brahmagupta allow our extended system to work as we wish. Notice that

you need the uniqueness results of Exercise 3.2.11 to obtain the results of this

exercise.]

Exercise 3.2.15. We continue with the ideas of Exercise 3.2.14.

(i) Show that −(a ⊕ b) = (−a) ⊕ (−b).

(ii) If a, b , 0, show that a ⊗ b , 0 and (a ⊗ b)−1
= a−1 ⊗ b−1.

(iii) (This complements the footnote on page 40.) Show that

(a ⊕ (−a′)) ⊗ (b ⊕ (−b′)) = ((a ⊗ b) ⊕ (a′ ⊗ b′)) ⊕ (−((a′ ⊗ b) ⊕ (a ⊗ b′))).

Exercise 3.2.16. Consider any system satisfying the conclusions of Theorem 3.2.7.

(i) By using Exercise 3.2.14 (iv), or otherwise, show that (−1) ⊗ (−1) = 1.

(ii) If a = 0, show that a ⊗ a = 0.

(iii) Show that, if a , 0, then a ⊗ a = 0.
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(iv) By giving explicit examples, show that part (ii) of Exercise 3.2.12 is false

if we omit the condition c , 0 and part (iv) is false if we omit the condition a , 0.

(v) Show that 1 = 0 and deduce that 0 = −1.

(vi) Show that the equation

a ⊗ a = −1

has no solution.

[As the reader probably expects, part (vi) will be important when we come to look

at complex numbers.]

Our experience with the extension of the natural numbers to the strictly posi-

tive rationals leads us to expect the following companion to Lemma 2.3.7

Exercise 3.2.17. By setting f (a) = [a + 1, 1], show that there is an injective

function f : Q+ → B/∼ such that

f (a + b) = f (a) ⊕ f (b), f (a × b) = f (a) ⊗ f (b) and a > b implies f (a) = f (b).

Just as we eventually set Q+ = A/∼ so now we set Q = B/∼ and replace our

fancy ⊕ with + and so on.

We constructed Q+ from N+ and Q from Q+.

Lemma 3.2.18. There is an injective function F : N+ → Q such that

F(n+m) = F(n)+F(m), F(n×m) = F(n)×F(m) and n > m implies F(n) > F(m).

Proof. By Lemma 2.3.7, there is an injective function f1 : N+ → Q+ such that

f1(n+m) = f1(n)+ f1(m), f1(n×m) = f1(n)× f1(m) and n > m implies f1(n) > f1(m).

By Exercise 3.2.17 there is an injective function f2 : Q+ → Q such that

f2(a+b) = f2(a)+ f2(b), f2(a×b) = f2(a)× f2(b) and a > b implies f2(a) > f2(b).

If we set F(n) = f2( f1(n)) we obtain the desired result. �

We have shown that the natural numbers may be considered as a subset of Q

by identifying n with f (n), but we have not yet defined the integers in general.

Definition 3.2.19. We write Z for the subset of Q consisting of the elements of the

form n − m such that n and m lie in N+.

We call the members of Z, integers.
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Exercise 3.2.20. Prove the following results about Z.

(i) If a ∈ N+, then a ∈ Z.

(ii) If a, b ∈ Z, then a + b, a × b, −a ∈ Z.

When we work in Z we shall consider the two terms ‘natural numbers’ and

‘strictly positive integers’ as synonymous. When we talk about the ‘non-negative

integers’9 we shall mean integers n with n ≥ 0.

We shall often use the customary notations a − b = a + (−b) and

a ÷ b = a/b = a × b−1,

but we shall not treat the four branches of arithmetic10 as being on the same footing

for the reasons given in the next very short exercise.

Exercise 3.2.21. Without worrying about mathematical niceties, just write down

for each part, n, m and p in Q satisfying the following conditions.

(i) n − m , m − n.

(ii) n ÷ m , m ÷ n.

(iii) n − (m − p) , (n − m) − p.

(iv) n ÷ (m ÷ p) , (n ÷ m) ÷ p.

Thus subtraction and division are neither commutative nor associative.

3.3 What does nature say?

So far our examples of ‘real life’ use of negative numbers (debts, temperature

scales, . . . ) have involved addition. The only people to multiply negative num-

bers during the first thousand years of their existence were the puzzlers (or pure

mathematicians, if you prefer), although, towards the end of the period, the puz-

zles became more complicated. (In 1545 Cardano announced the solution of the

general cubic by del Fero and of the general quartic equation by Ferrari11.)

9Many mathematicians refer to the set N of non-negative integers as the natural numbers, so

that 0 is a natural number. Some mathematicians hold strong views on the matter. Others are

content to quote Byrom.

Some say, compar’d to Bononcini,

That Mynheer Handel ’s but a ninny;

Others aver that he to Handel

Is scarcely fit to hold a candle.

Strange all this difference should be

’Twixt Tweedledum and Tweedledee.

10‘The different branches of Arithmetic — Ambition, Distraction, Uglification, and Derision.’

Lewis Carroll, Alice in Wonderland
11A cubic equation has the form x3

+ ax2
+ bx + c = 0 and a quartic equation has the form

x4
+ ax3

+ bx2
+ cx + d = 0.
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It was thus an extraordinary event when Galileo showed that the flight of a

cannon ball was governed by the same mathematics as Bhāskarāchārya’s troops

of monkeys. Henceforward, the multiplication of negative numbers would be a

matter for serious-minded military engineers.

Newton presented his mechanics to the world in geometric form, but his suc-

cessors used the flexibility of negative numbers to develop mechanics further.

Later physical theories like electromagnetism, relativity and quantum mechan-

ics have negative numbers and their multiplication rules built into their deepest

structure. Every time we see an experimental verification of General Relativity

we see a test of the applicability of Brahmagupta’s multiplication rules.

Should we conclude that the multiplication laws are built into nature12? Sup-

pose that we have two cannon balls falling vertically, the first having velocity v1(t)

and the second velocity v2(t) at time t. If v2(s) = v1(0) (that is to say, the second

cannon ball has the same velocity as the first had at time 0, but at time s) we ex-

pect v2(t + s) = v1(t), that is to say that the second cannon ball behaves like the

first but ‘shifted in time’ by an amount s. More generally we expect our physical

theories to be ‘translation invariant’ in time.

Galileo’s law for falling bodies may be expressed as

v(t) = C + (g × t)

where v(t) is the velocity at time t and C is a constant. Thus

v1(t) = A + (g × t) and v2(t) = B + (g × t)

for appropriate constants A and B. It follows that

B +
(
g × (t + s)

)
= A + (g × t).

Taking t = 0, using the natural definition for multiplication by zero and various

laws for the behaviour of addition, we get

A = B + (g × s).

Thus

B +
(
(g × s) + (g × t)

)
=

(
B + (g × s)

)
+ (g × t) = A + (g × t) = B +

(
g × (t + s)

)
,

so, cancelling,

(g × s) + (g × t) = g × (s + t),

12In the next three paragraphs the author ventures far out of his depth. The reader should feel

free to ignore everything in them.
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Thus the distributive law is, in some sense, implicit in Galileo’s law. The distribu-

tive law was our main tool in Exercise 3.2.14 for showing that Brahmagupta’s

rules are the only ones which give the negative numbers the properties we desire.

It appears that ‘translation invariant theories’ demand ‘translation invariant

arithmetic’ and ‘translation invariant arithmetic’ requires Bramahgupta’s rules. A

more modest version of the statement (and, I think, a more correct one) would

be that writing a theory in ‘translation invariant arithmetic’ allows an easy check

that the theory is indeed ‘translation invariant’ in the appropriate sense. However,

such speculations are idle unless considered by an Einstein or an Emmy Noether.

It is more important to remember that nature is not bound by our arithmetic.

Although we have used temperature scales as an example of an extended number

system, deeper study reveals the existence of an ‘absolute zero’ so that ‘natu-

ral’ temperature scales such as those in degrees Kelvin correspond to the positive

numbers only. In modern physics, the positron is, in effect, a ‘negative’ electron.

However, the addition of a positron to an electron does not produce nothingness,

but a burst of energy.

3.4 When are two things the same?

The ideas of this section occur in every university mathematics course, so the

reader may choose merely to skim across the discussion.

We begin with Anne Duncan’s game13.

Example 3.4.1. This game requires nine cards on each of which is written a dif-

ferent word from the sentence

SPIT NOT SO, FAT FOP, AS IF IN PAN!

The two players pick cards alternately and the player (if any) who first gets a set

of three words with the same letter (for example: SPIT, SO, AS) wins.

The reader should spend a few minutes thinking about how to play this game.

Since this section is about things being the same, she may also wish to reflect

on the following paradox of Eubulides14 called the paradox of the masked man.

Example 3.4.2. Consider the following conversation:

‘Do you know this masked man?’

13A variation on Leo Moser’s game taken from the treasure chest Winning Ways for your Math-

ematical Plays [3].
14Eubulides was the author of four splendid paradoxes. These include, in addition to the paradox

of the masked man, the paradox of the liar which finds echoes in Example 6.5.5. One version of

this paradox is the sentence: ‘This statement is false’.
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‘No.’

‘Do you know your father?’

‘Of course.’

‘But the masked man is your father.’

We constructed (a version of) Q from N+ by first constructing (a version of)

Q+ from N+ and then constructing (a version of) Q from (our version of) Q+. But

we could equally well have first constructed (a version of) Z, that is to say, the

integers and then constructed (a version of) Q from our new version of Z.

Exercise 3.4.3. (Just make sure you have the general idea of what is going on.)

By imitating our construction of (a version of) Q from (a version of) Q+ show how

to construct (a version of) Z fromN+ by using ordered pairs. Call your versionA.

Write down the properties that your system has. (It is an ordered integral domain,

so you may check your list against Definitions 10.4.1 and 10.4.7.) Do not do the

calculations to verify the properties unless you are very interested. (The most

interesting check is that of the multiplicative cancellation law for Z: if n ×m = 0,

then n = 0 or m = 0.)

Now, by imitating our construction of (a version of)Q+ from (a version of)N+,

show how to construct (a version of) Q fromA by using ordered pairs. Do not do

the calculations to verify the properties unless you are very interested.

Suppose now that mathematician A constructs her ‘rational number system’

using our first method and mathematician B constructs her ‘rational number sys-

tem’ using the method just outlined. Are they the same? If two cooks bake choco-

late cakes using different recipes, are they the same?

When faced with a deep philosophical problem, the mathematician’s response,

like that of an invading army faced with a fortress, is to bypass it rather than

besiege it. Rather than seeking to resolve the problem, mathematicians seek to

evade it15. To see how we might do this in the present case, let us return to Anne

Duncan’s game.

The nature of the game becomes clearer if we arrange the words in an array as

follows.

NOT IN PAN

SO SPIT AS

FOP IF FAT

If the first player replaces any card she takes with a cross X and the second player

replaces any card she takes with a nought 0, it soon becomes clear that the game

15We shall see further examples of this in Section 6.5.
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they are playing is ‘Noughts and Crosses’ or (if they are on the other side of the

Atlantic) ‘Tic-Tac-Toe’16.

Can we say that Anne Duncan’s game is Noughts and Crosses? Clearly not.

Noughts and Crosses is a game played with pencil and paper, whilst Anne Dun-

can’s game is a game played with nine cards. What we can say, is that there is an

exact translation from the language of one to the language of the other when de-

ciding the legality of moves and the result of the game. Informally, the two games

are identical if we are only interested in the legality of a given game between two

players and in the result. Mathematicians do not ask if two systems are identical

but if two systems are identical for particular purposes. If the two systems are

identical for a particular purpose, they say that the systems are isomorphic for that

purpose.

Exercise 3.4.4. In the game Magic Fifteen17, two players alternately select inte-

gers r with 1 ≤ r ≤ 9 with no integer being used twice. You win by getting three

numbers whose sum is 15. Comment.

[It may be helpful to write out the winning combinations.]

We defined the notion of an injective function in Definition 2.3.6 which the

reader should reread. In order to make the notion of an isomorphism more precise,

we need some further definitions along the same lines.

Definition 3.4.5. We say that a function f : X → Y (that is to say, a function

taking members of X to members of Y) is surjective if, whenever y ∈ Y, there

exists an x ∈ X such that f (x) = y.

Definition 3.4.6. We say that a function f : X → Y is bijective if f is both injective

and surjective.

It will be useful to give an explicit definition for the equality of functions

(which will, I hope, agree with what the reader expects).

Definition 3.4.7. If f : X → Y, g : X → Y are functions, we say that f = g if

f (x) = g(x) for all x ∈ X.

Exercise 3.4.8. Let X = {1, 2} (that is to say, let X be the set with members 1

and 2) and let Y = {1, 2, 3}. For each of the following functions, state, with brief

reasons, whether it is injective, whether it is surjective and whether it is bijective.

(i) f1 : X → X with f1(1) = f1(2) = 1.

16Where the player who succeeds in placing three of their marks in a horizontal, vertical, or

diagonal row wins the game.
17Also taken from Winning Ways for your Mathematical Plays [3], where it is attributed to

E. Pericoloso Sporgersi.



50 CHAPTER 3. THE RATIONAL NUMBERS

(ii) f2 : X → X with f2(1) = 2, f2(2) = 1.

(iii) f3 : X → Y with f3(1) = 1, f3(2) = 2.

(iv) f4 : Y → X with f4(1) = 1, f4(2) = 2, f4(3) = 1.

Exercise 3.4.9. For each of the following functions, state, with brief reasons,

whether it is injective, whether it is surjective and whether it is bijective.

(i) f1 : Z→ Z with f1(r) = 2 × r.

(ii) f2 : Q→ Q with f2(r) = 2 × r.

(iii) f3 : Z→ Z with f3(2 × r) = r, f3

(
(2 × r) + 1

)
= r.

(iv) f4 : Z→ Z with f4(r) = r × r.

We make a couple of simple, but important, observations.

Theorem 3.4.10. (i) If f : X → Y is bijective, then there exists a unique function

g : Y → X such that f
(
g(y)

)
= y for all y ∈ Y.

(ii) The function g : Y → X defined in (i) is bijective and g
(
f (x)

)
= x for all x.

We write f −1
= g and call g the inverse of f .

Proof of Theorem 3.4.10. (i) We first prove existence. If y ∈ Y , then, since f is

injective and surjective, there exists a unique z ∈ X such that f (z) = y. We write

g(y) = z.

We now prove uniqueness. If gi : Y → X satisfies f
(
gi(y)

)
= y for each y ∈ Y

[i = 1, 2], then

f
(
g1(y)

)
= f

(
g2(y)

)

for all y ∈ Y . Since f is injective, we have

g1(y) = g2(y)

for all y ∈ Y and so g1 = g2.

(ii) If x ∈ X, then f (x) ∈ Y , so

f
(
g( f (x))

)
= f (x).

Since f is injective, g( f (x)) = x for all x ∈ X. Automatically, g is surjective.

Next we show g injective. If g(y1) = g(y2), then

y1 = f
(
g(y1)

)
= f

(
g(y2)

)
= y2

so we are done. �
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Exercise 3.4.11. Consider two functions f : X → Y and g : Y → X.

(i) If f
(
g(y)

)
= y for all y ∈ Y, show that f is surjective and g is injective.

(ii) If f
(
g(y)

)
= y for all y ∈ Y and g

(
f (x)

)
= x for all x ∈ X, show that f is

bijective and g = f −1.

(iii) Find X, Y, f and g such that f
(
g(y)

)
= y for all y ∈ Y, but g is not

surjective.

(iv) Find X, Y, f and g such that f
(
g(y)

)
= y for all y ∈ Y, but f is not injective.

Once we have the idea of a bijection, we can see what should be meant by

isomorphism.

Definition 3.4.12. (Note that this is not really a definition, but a blueprint for a

series of definitions.) If A and B are sets with associated operations and relations

we say that the associated systems are isomorphic if there exists a bijection f :

A→ B which preserves the operations and relations. We call f an isomorphism.

Let us see how this works in the case of a single operation.

Definition 3.4.13. Let A and B be sets with associated operations + and ⊕. We

say that (A,+) is isomorphic to (B,⊕) if there exists a bijection f : A → B with

f (x + y) = f (x) ⊕ f (y) for all x, y ∈ A. We call f an isomorphism.

Here is a typical result on isomorphisms.

Lemma 3.4.14. Let A, B and C be sets with associated operations +, ⊕ and ⊞.

Let us write (A,+) ∼ (B,⊕) to mean (A,+) is isomorphic to (B,⊕) and so on. The

following results hold.

(i) If (A,+) ∼ (B,⊕), then (B,⊕) ∼ (A,+).

(ii) (A,+) ∼ (A,+).

(iii) If (A,+) ∼ (B,⊕) and (B,⊕) ∼ (C,⊞), then (A,+) ∼ (C,⊞).

Proof. We prove (i) and leave the rest to the reader. If (A,+) ∼ (B,⊕) then, by

definition, there exists a bijection f : A → B with f (x + y) = f (x) ⊕ f (y) for all

x, y ∈ A. We observe that f −1 is then a bijection and

f ( f −1(u) + f −1(v)) = f
(
f −1(u)

) ⊕ f
(
f −1(v)

)
= u ⊕ v = f

(
f −1(u ⊕ v)

)

so, since f is injective,

f −1(u) + f −1(v) = f −1(u ⊕ v)

for all u, v ∈ B. Thus f −1 is an isomorphism. �

Exercise 3.4.15. Prove the remaining parts of Lemma 3.4.14.
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Example 3.4.16. Let N+ be the set of natural numbers with the usual addition +

and multiplication × and let E be the set of strictly positive even integers with the

same operations now denoted by ⊗ and ⊕. Then the following results hold.

(i) (N+,+) is isomorphic to (E,⊕).

(ii) (N+,×) is not isomorphic to (E,⊗).

Proof. (i) Let us write the elements of E as 2n = 2 × n. Consider f : N+ → E

given by f (n) = 2 × n. The function f is a bijection with

f (n + m) = 2(n + m) = 2n + 2m = f (n) ⊕ f (m).

(ii) Suppose that f : N+ → E is a bijection which preserves multiplication.

Let f (1) = 2N. Then

2N = f (1) = f (1 × 1) = f (1) ⊗ f (1) = (2N) × (2N)

so 1 = 2N, which is not possible. �

Not surprisingly, it turns out that the various constructions of models for the

rationals all give the same answer ‘up to the appropriate isomorphism’. In Ex-

ercise 7.2.8 we shall see the reason (or, at least, a very good reason) why this is

so.

Remark Isomorphism is a relation between systems. If we work within a system

like the natural numbers, then the same thing may have different names. Thus 5,

2 + 3, 3 + 2 and ‘the natural number whose square is 25’ are just different names

for the same thing. (Compare the paradox of Eubulides in Exercise 3.4.2.) When

we write a = b we mean that a and b are both names for the same thing.
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Chapter 4

The golden key

4.1 The least member

We have written down rules for addition, multiplication and order for the natural

numbers, but the result is strangely lifeless. Either the strictly positive integers are

as dull as we have made them seem or there is some property that they have which

we have failed to observe.

Fortunately there is a further property, which seems to have first been recog-

nised explicitly by Fermat. We shall call it the least member principle. It is the

golden key to the understanding of the natural numbers.

Least member principle A non-empty1 collection E of natural numbers always

has a least member.

More formally, if E is a non-empty collection of natural numbers, then we can

find e0 ∈ E such that e ≥ e0 for all e ∈ E.

In more advanced work the least member principle becomes the statement that

‘N+ is well ordered by >’.

We need to make a simple remark.

Lemma 4.1.1. If E is a non-empty collection of natural numbers, then it has a

unique least member.

Proof. In view of the least member principle, we need only show uniqueness. If

e0, e1 ∈ E are such that e ≥ e0 and e ≥ e1 for all e ∈ E, then, in particular, e1 ≥ e0

and e0 ≥ e1 so, by trichotomy, e0 = e1. �

Because of this uniqueness result, we may talk about the least member.

1We say that a collection is empty if it has no members. Thus the collection of square circles

is empty. This convention is useful since it allows us to talk about collections of objects with

property P even if we do not know if any such objects actually exist. As might be expected, we

say that a collection is non-empty if it is not empty.

55
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Exercise 4.1.2. (i) If we consider Z with the usual order >, show that Z has no

least member.

(ii) If we consider Q with the usual order, show that the collection E of q ∈ Q
with q > 1 has no least member.

Even if the least member principle is unfamiliar to the reader, she will probably

know the principle of induction2 (usually attributed to Pascal).

Principle of induction Let P(n) be the statement that a natural number n has a

property P. If P(1) is true and, whenever P(n) is true, so is P(n + 1), then P(n) is

true for all n.

The reader will also, consciously or not, be familiar with another principle

(which would certainly be accepted by any farmer when counting sheep).

Base number principle3 If n is a natural number, then n ≥ 1.

Exercise 4.1.3. Using the subtraction principle, show that the base number prin-

ciple implies that, if r, n ∈ N+ with r > n and n + 1 ≥ r, then r = n + 1.

In this section we shall show that the two principles just given are together

equivalent to the least member principle.

We start by deducing the base number principle from the least member prin-

ciple.

Theorem 4.1.4. The rules we have given for the natural numbers, together with

the least member principle, imply that 1 is the least natural number.

Proof. The least member principle tells us that N+ has a least member, call it e0.

By definition 1 ≥ e0. Suppose, if possible, that 1 > e0. The multiplication law for

inequalities (see Lemma 1.3.8) tells us that, if a > b, then a× c > b× c. Choosing

a = 1 and b = e0, we obtain

e0 = 1 × e0 > e0 × e0.

Since e0 is the least element of N+, this gives a contradiction.

It follows that e0 ≥ 1 and so, since 1 ≥ e0, trichotomy tells us that 1 = e0. �

Theorem 4.1.5. The rules we have given for the natural numbers, together with

the least member principle, imply the principle of induction.

Proof. Let P(n) be the statement that a natural number n has a property P. Sup-

pose that P(1) is true and, whenever P(n) is true, so is P(n + 1). We wish to show

that P(n) is true for all n.

2Often called the principle of mathematical induction to distinguish it from other uses of the

word induction.
3We use this name because P(1) is often called the base case for an induction.
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Let E be the collection of natural numbers such that P(n) is false. If E is

empty, then P(n) is true for all n. Suppose, if possible, that E is non-empty. Then

E has a least member e0. Since P(1) is true, e0 , 1 and, since 1 is the least natural

number (by Theorem 4.1.4), e0 > 1. The order rule (see Page 13) tells us that, if

a > b, then we can find a natural number c such that b + c = a. Taking a = e0

and b = 1, we see that there is a c such that e0 = 1 + c = c + 1. Now e0 is the

least natural number e such that P(e) is false, so P(c) is true and, by hypothesis,

P(e0) = P(c + 1) is true.

Since the assumption that E is non-empty leads to a contradiction, we must

have E empty and we are done. �

We need a preliminary lemma along the lines of Exercise 4.1.3 before we

prove the converse.

Lemma 4.1.6. The rules we have given for the natural numbers, together with the

base number principle, imply that, if r and n are natural numbers with n + 1 > r,

then n ≥ r.

Proof. Suppose, if possible, that it is not true that n ≥ r and so, by trichotomy,

r > n. By the order rule (see Page 13), we can find a natural number c such that

r = n+ c. Since n+1 > r, it follows that n+1 > n+ c and, by the cancellation law

for addition (Lemma 1.3.9 (i)), 1 > c. This contradicts the base number principle,

so our initial assumption must be false. �

Theorem 4.1.7. The rules we have given for the natural numbers, together with

the principle of induction and the base number principle, imply the least member

principle.

Proof. Assume the principle of induction and the base number principle. Let P(n)

be the statement that any collection E of natural numbers containing a natural

number r with r ≤ n has a least member.

If E is a collection of natural numbers containing 1, then the base number

principle tells us that e ≥ 1 for all e ∈ E, so 1 is the least element of E. Thus P(1)

is true.

Now suppose that P(n) is true. If E is a collection of natural numbers contain-

ing a natural number r ≤ n + 1, then either n + 1 is the only member of E and so

n + 1 is certainly the least member of E, or E contains an s with n + 1 > s. In the

second case, Lemma 4.1.6 tells us that n ≥ s and P(n) now tells us that E has a

least member.

We have shown that P(n) implies P(n + 1) and that P(1) is true. The principle

of induction tells us that P(n) is true for all n. Since any non-empty collection of

natural numbers E contains some number m, we know that, since P(m) is true, E

has a least member. �
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The following remark is clearly going to be useful.

Lemma 4.1.8. The rules we have given for the natural numbers together with

the least member principle imply that, if E is a non-empty collection of natural

numbers and we can find an n with n ≥ e for all e ∈ E, then there exists an e1 ∈ E

such that e1 ≥ e for all e ∈ E.

Informally, any non-empty collection of natural numbers which is bounded

above has a greatest member.

Exercise 4.1.9. (i) Show that the greatest member, just referred to, is unique.

(ii) Give an example of a non-empty collection of natural numbers with no

greatest member.

Proof of Lemma 4.1.8. Suppose that E is a non-empty collection of natural num-

bers and we can find an n with n ≥ e for all e ∈ E. If n ∈ E, then n is the greatest

member of E. If not, then, if e ∈ E, we know that n > e and so, by the order rule,

we can find a natural number c(e) such that e + c(e) = n. The collection of c(e)

has a least member c(e1) with e1 ∈ E. Thus, whenever e ∈ E,

e1 + n = e1 +
(
e + c(e)

)
= (e1 + e) + c(e)

≥ (e1 + e) + c(e1) = e +
(
e1 + c(e1)

)
= e + n

and so, by cancellation (see Lemma 1.3.9 (i)), e1 ≥ e. �

Exercise 4.1.10. Use the least member principle and the base number principle to

prove the following version of the principle of induction. Let Q(n) be the statement

that a natural number n has a property Q. If Q(1) is true and, whenever Q(r) is

true for all 1 ≤ r ≤ n, so is Q(n + 1), then Q(n) is true for all n ∈ N+.
Exercise 4.1.11. We work inN+ and take some m ∈ N+. Suppose that P(n) implies

P(n + 1) for all n ≥ m and that P(m) is true. Show that P(n) is true for all n ≥ m.

We conclude this section with a result which is extremely useful when dis-

cussing repetitive calculations, since it gives a method for showing that such cal-

culations will stop. We will illustrate its use in the next section when we discuss

Euclid’s algorithm.

Lemma 4.1.12. Any decreasing sequence4 of natural numbers is eventually con-

stant. In other words, if n j ∈ N+ [ j ≥ 1] and

n1 ≥ n2 ≥ n3 ≥ . . . ,

then there exists an N such that n j = nN for all j ≥ N.

4Unless otherwise stated, sequence will always mean what is sometimes called ‘an infinite

sequence’.
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Proof. The collection of n j must have a least member, nN . If n j = nN then, since

n j ≥ n j+1 transitivity of order tells us that nN ≥ n j+1 and so, since n j+1 ≥ nN ,

trichotomy tells us that n j+1 = nN . The form of induction given in Exercise 4.1.11

now tells us that n j = nN for all j ≥ N. �

Exercise 4.1.13. (i) Show that there does not exist a strictly decreasing sequence

of natural numbers. In other words, we cannot find n j ∈ N+ [ j ≥ 1] such that

n1 > n2 > n3 > . . . .

(ii) Give an example of a strictly decreasing sequence of integers.

4.2 Inductive definition

The use of induction is not restricted to proof. We can also use it to define new

objects.

Informal notion of inductive definition5If we define f (1) and have a procedure

which, given f (n), defines f (n + 1), then f (n) is defined for all n.

The notion of ‘a procedure’ is rather vague so we use the following theorem

which, although it may not capture the full flavour of our informal statement, is

sufficient for the purposes of this book.

Theorem 4.2.1. Let X be a set with x1 ∈ X. Suppose that whenever n ∈ N+ we

have a function gn : X → X. Then there exists a unique f : N+ → X such that

f (1) = x1 and f (n + 1) = gn( f (n)).

The following lemma provides a stepping stone towards the proof of Theo-

rem 4.2.1.

Lemma 4.2.2. Suppose that m ∈ N+ and hypotheses of Theorem 4.2.1 apply.

Then, if S m is the collection of r ∈ N+ with r ≤ m, there exists a unique function

fm : S m → X with such that f (1) = x1 and f (n + 1) = gn( f (n)) whenever n ∈ S m

and n + 1 ≤ m.

Proof. (This proof and the next one make repeated use of Exercise 4.1.3.) We

first prove uniqueness. Let P(m) be the statement that if h, k : S m → X satisfy

h(1) = k(1) = x1 and h(n+ 1) = gn(h(n)), k(n+ 1) = gn(k(n)) whenever n+ 1 ≤ m,

then h(n) = k(n) for all n ∈ S m. We observe that P(1) is automatically true since

there does not exist any n ∈ S 1 with n + 1 ≤ 1.

Now suppose that P(m) is true and h, k : S m+1 → X with h(1) = k(1) = x1 and

h(n + 1) = gn(h(n)), k(n + 1) = gn(k(n)) whenever n + 1 ≤ m + 1. If we define

5Logicians and computer scientists prefer to use the term ‘recursive definition’.
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h̃, k̃ : S m → X by h̃(n) = h(n), k̃(n) = k(n) for n ∈ S m, then h̃(1) = k̃(1) = x1 and

h̃(n + 1) = gn(h̃(n)), k̃(n + 1) = gn(k̃(n)) whenever n + 1 ≤ m. Since P(m) is true

we have h(n) = h̃(n) = k̃(n) = k(n) for n ∈ S m. It now follows that

h(m + 1) = gm(h(m)) = gm(k(m)) = k(m + 1)

so h(n) = k(n) for all n ∈ S m+1. We have shown that P(m + 1) is true and the full

result follows by induction.

We now prove existence. Let Q(m) be the statement that there exists a function

fm : S m → X with such that fm(1) = x1 and fm(n+1) = gn( fm(n)) whenever n ∈ S m

and n + 1 ≤ m. Setting f1(1) = x1, we see that Q(1) is true. On the other hand, if

Q(m) is true we see, by setting

fm+1(n) =


fm(n) if n ∈ S m

gm( fm(m)) if n = m + 1

that Q(m + 1) is true and the full result follows by induction. �

Once we have Lemma 4.2.2 the rest of the proof is straightforward.

Proof of Theorem 4.2.1. We first prove uniqueness. Suppose h, k : N+ → X are

functions with h(1) = k(1) = x1 and h(n + 1) = gn(h(n)), k(n + 1) = gn(k(n)) for

all n ∈ N.

Take any m ∈ N+. If we define h̃, k̃ : S m → X by h̃(n) = h(n), k̃(n) = k(n) for

n ∈ S m, then h̃(1) = k̃(1) = x1 and

h̃(n + 1) = gn(h̃(n)), k̃(n + 1) = gn(k̃(n))

for all n ∈ S m with n + 1 ≤ m. Lemma 4.2.2 now tells us that

h(n) = h̃(n) = k̃(n) = k(n)

for all n ∈ S m and so, in particular, h(m) = k(m).

To prove existence, we observe, using the uniqueness part of Lemma 4.2.2

again, that fn(m) = fp(m), whenever m ≤ n ≤ p. Thus writing f (n) = fn(n) we

have f (1) = f1(1) = x1 and

f (n + 1) = fn+1(n + 1) = gn( fn(n)) = gn( fn(n)) = gn( f (n))

for all n ∈ N as required. �

Exercise 4.2.3. Give the details of the proof of the statement that fn(m) = fp(m),

whenever m ≤ n ≤ p in the first sentence of the last paragraph of the previous

proof.
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We use an inductive definition to obtain a function fa(n), which the reader

should recognise under its very light disguise.

Theorem 4.2.4. If a ∈ Q, then we define fa(n) inductively by setting fa(1) = a and

fa(n + 1) = fa(n) × a. Show that, if a, b ∈ Q and n, m ∈ N+ the following results

hold.

(i) fa(m + n) = fa(m) × fa(n) for all strictly positive integers m and n.

(ii) fa(n) × fb(n) = fa×b(n).

(iii) If u(m) = fa(m), then fu(m)(n) = fa(m × n).

Proof. (i) We show that the result is true for fixed m and any n. Fix m and let P(n)

be the statement that fa(m + n) = fa(m) × fa(n). By definition,

fa(m + 1) = fa(m) × a = fa(m) × fa(1)

so P(1) is true. If P(n) is true, then

fa

(
m + (n + 1)

)
= fa

(
(m + n) + 1

)
= fa(m + n) × a

=
(
fa(m) × fa(n)

) × a = fa(m) × ( fa(n) × a)

= fa(m) × fa(n + 1)

and so P(n + 1) is true and it follows by induction that

fa(m + n) = fa(m) × fa(n)

for all n.

We chose m arbitrarily, so the result is true for all m and all n.

(ii) Let P(n) be the statement that fa(n) × fb(n) = fa×b(n). By definition,

fa(1) × fb(1) = a × b = fa×b(1)

so P(1) is true. If P(n) is true, then

fa(n + 1) × fb(n + 1) = ( fa(n) × a) × ( fb(n) × b) = ( fa(n) × fb(n)) × (a × b)

= fa×b(n) × (a × b) = fa×b(n + 1).

and so P(n + 1) is true. The result follows by induction.

(iii) Fix m and let P(n) be the statement that fu(m)(n) = fa(m × n). From our

definitions,

fu(m)(1) = u(m) = fa(m) = fa(m × 1),

so P(1) is true. If P(n) is true, then, using part (i),

fu(m)(n + 1) = fu(m)(n) × u(m) = fa(m × n) × fa(m)

= fa

(
(m × n) + m

)
= fa

(
(m × n) + (m × 1)

)
= fa

(
m × (n + 1)

)
,
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so P(n + 1) is true. By induction P(n) is true for all n.

Just as in (i), we observe that m was chosen arbitrarily so the full result follows.

�

If we write fa(n) = an, the conclusions of Theorem 4.2.4 take the familiar form

am+n
= am × an, (a × b)n

= an × bn, (am)n
= amn.

These formulae are often called the index laws.

Exercise 4.2.5. If a ∈ Q and a , 0, we define a0
= 1. Check that the index laws

continue to hold for the extended definition6.

Exercise 4.2.6. If a ∈ Q, a , 0 and n is an integer with n ≥ 0, we define a−n
=

(a−1)n.

(i) Show, by induction, that (an)−1
= a−n for all integers n ≥ 1. Deduce that

(an)−1
= a−n for all integers.

(ii) Check that the index laws continue to hold for the extended definition.

The method of proof of Theorem 4.2.4 will be echoed repeatedly when we

consider the consequences of the Peano axioms in Chapter 6. If the reader thinks

we have merely proved the obvious, I will not totally disagree, but I suspect that

she did not find the index laws entirely obvious when she first met them at school7.

More to the point, if the reader tries to explain exactly why these laws are obvious,

she will find it hard to avoid the words ‘and so on’. Mathematical induction makes

the phrase ‘and so on’ precise.

Exercise 4.2.7. (i) Show, by induction, that, if 0 < a < b, and n is an integer with

n ≥ 1, then an < bn.

(ii) Define n! inductively8 and prove that 2n−1 ≤ n! ≤ nn for all integers n ≥ 1.

4.3 Applications

From now on, until Chapter 6, we shall take all the rules governing the integers

as given. We will not only use these rules without comment, but we shall also use

the usual conventions, writing

ab = a × b, abc = a × (b × c), ab + cd = (a × b) + (c × d),

6Notice that we cannot extend both index laws a0
= 1 and 0n

= 0 to the case a = 0, n = 0. For

this reason we leave 00 undefined. (Compare the footnote on page 35.)
7If you did find them obvious, generations of school teachers will sigh that you were an excep-

tional pupil.
8We write n! for the factorial function. If the reader has not met this function before, she should

look it up. It will be used in Chapter 5.
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talking about a − b = a + (−b) and so on.

Our object in this chapter is to show how the least member principle and its

various equivalent forms and consequences can be used in practice. At least ini-

tially, our standpoint will not be that of farmers or tax collectors, but that of puzzle

lovers, interested in numbers for their own sake.

We will need the following easy extension of the least element principle from

N+ to Z.

Lemma 4.3.1. If E is a non-empty collection of integers bounded below (that is

to say, there is a u ∈ Z with e ≥ u for all e ∈ E), then E has a least member.

Proof. Let us write a(e) = e + 1 − u. Then a(e) ≥ 1 for all e ∈ E so, since the

strictly positive integers may be identified with N+, the collection of a(e) with

e ∈ E has a least member a(e0), say. Since

e = a(e) − 1 + u ≥ a(e0) − 1 + u = e0,

we are done. �

Exercise 4.3.2. Show that a non-empty collection of integers bounded above has

a greatest member.

Exercise 4.3.3. (This echos Exercise 4.1.3.) We work in Z. Suppose that P(n)

implies P(n + 1) for all n ≥ m and that P(m) is true. Show that P(n) is true for all

n ≥ m.

Our first result is rather down to earth.

Lemma 4.3.4. [Long division] If n,m ∈ Z and m ≥ 1, then we can find k, r ∈ Z
with m > r ≥ 0 such that n = km + r.

Proof. Consider the collection E of integers of the form n − qm with n − qm ≥ 0.

Taking q = 0, if n ≥ 0, and q = n, if n < 0, we see that E is non-empty. Since

E is bounded below by 0, it has a least member r = n − km, say. If r ≥ m, then

r′ = n−(k+1)m ∈ E and r > r′, contradicting the minimality of r. Thus m > r ≥ 0

and we are done. �

Definition 4.3.5. We use the notation of Lemma 4.3.4. If r = 0, that is to say,

n = km, we say that m divides k.

Exercise 4.3.6. Prove that long division gives a unique answer. More specifically

show that if m ∈ Z with m ≥ 1 and k, k′, r, r′ ∈ Z with m > r ≥ 0, m > r′ ≥ 0 and

km + r = k′m + r′, then r = r′ and k = k′.

Our next result will also be familiar to most of my readers.
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Lemma 4.3.7. If u and v are natural numbers, then there is a largest natural

number s with the property that s divides both u and v.

Proof. Observe that the collection E of natural numbers which divide both u and

v is non-empty since 1 ∈ E. The collection E is bounded above because, if k

divides u, then k ≤ u. Thus E has a greatest member. �

Definition 4.3.8. We use the notation of Lemma 4.3.7. The number s is called the

highest common factor (or the greatest common divisor) of u and v. If s = 1, we

say that u and v are coprime.

Exercise 4.3.9. (i) Find the highest common factor of 156 and 42.

(ii) Find the highest common factor of 107748 and 69126.

[Give part (ii) a good try, but do not worry if you cannot do it.]

Lemma 4.3.7 tells us that a highest common factor exists, but gives no method

other than brute force for finding it. The ancient Greeks discovered a very efficient

way of finding highest common factors which we now call Euclid’s algorithm9.

Euclid’s algorithm. Given an ordered pair (u, v) with u and v integers and u ≥
v ≥ 1, either v divides u and we stop, recording v as our final answer, or v does

not divide u in which case

u = kv + r

for some r with v > r ≥ 1. We replace the pair (u, v) with the pair (u′, v′) where

u′ = v and v′ = r and repeat our initial step.

We claim that the process just described stops and when it stops the answer

recorded is the highest common factor.

Exercise 4.3.10. (i) Check that the algorithm works when we start with the pair

(156, 42). Choose your own pair of numbers and check that the algorithm works

for them.

(ii) Check that the algorithm delivers an answer when we start with the pair

(107748, 69126). Check that the answer divides both integers in the pair. (Of

course this does not show that we have the highest common factor.)

(iii) Write a computer program to implement Euclid’s algorithm.

Our proof that Euclid’s algorithm works splits into two parts.

Lemma 4.3.11. Euclid’s algorithm terminates.

9The Indian mathematicians, who either learned the method from the Greeks or rediscovered

it for themselves, called it the ‘pulveriser’.
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Proof. We start with a pair (u, v) with u ≥ v ≥ 1. If v divides u, the process stops.

If not, we form a new pair (u′, v′) with u′ = v and

u = kv + v′

for some k and some v′ with v > v′ ≥ 1. Since the second term of each successive

pair is strictly smaller than the second term of the previous pair, Exercise 4.1.13

tells us that the process must stop. �

Lemma 4.3.12. Euclid’s algorithm delivers the correct answer (that is to say, it

delivers the highest common factor).

Proof. Suppose that we apply one step of Euclid’s algorithm to a pair (u, v) with

u ≥ v ≥ 1. If v divides u, then v is indeed the highest common factor of u and v,

so the algorithm has delivered the right answer.

If not, then the algorithm delivers a new pair (u′, v′) with u′ = v and

u = kv + v′

for some k and some v′ with v > v′ ≥ 1. We look at d the highest common factor

of u and v and at d′ the highest common factor of u′ and v′.
Observe first that, since d is the highest common factor of u and v, we have

u = ad, v = bd for some natural numbers a and b, so u′ = bd and

v′ = u − kv = ad − kbd = (a − kb)d

Thus d divides u′ and v′ and, by definition, d′ ≥ d.

Next we observe that, since d′ is the highest common factor of u′ and v′, we

have u′ = a′d′, v′ = b′d′ for some natural numbers a′ and b′, so v = u′ = a′d′ and

u = kv + v′ = ka′d′ + b′d′ = (ka′ + b′)d′.

Thus d′ divides u and v and, by definition, d ≤ d′. Combining the results of this

paragraph and its predecessor, we get d = d′

Thus successive pairs in the Euclidean algorithm have the same highest com-

mon factor and, when the algorithm terminates, it will deliver the correct an-

swer. �

We will make constant reference to the Euclidean algorithm during this part

of the book, so it is particularly important that the reader is happy that she under-

stands it.

Exercise 4.3.13. Show that, if e divides u and v, then e divides the highest common

factor d of u and v.

[Hint. Show that, in the notation introduced for Euclid’s algorithm, if e divides u

and v, then e divides u′ and v′. Exercise 4.3.19 (iv) gives another proof.]
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The next two exercises ask the reader to apply the same sort of ideas as we

used to verify the correctness of Euclid’s algorithm to check the correctness of

two other rather old (but much less important) algorithms10.

Exercise 4.3.14. [Egyptian fractions] (i) Let p, q and k be strictly positive in-

tegers with 1/k > p/q. Explain why there is a strictly positive integer k′ > k

with
1

k′ − 1
>

p

q
≥ 1

k′
.

Show that, either p/q = 1/k′, or

p

q
=

1

k′
+

p′

q′
,

where p′ and q′ are strictly positive integers with 1/k′ > p′/q′ and p > p′. Explain

how to calculate k′ by looking at what happens when we divide q by p.

Explain why the result of the previous paragraph shows that every rational

number x with 1 > x > 0 can be written in the form

x =
1

k1

+
1

k2

+ . . . +
1

kn

⋆

with the k j forming a strictly increasing sequence of strictly positive integers.

Sketch a computer program which, given strictly positive integers u and v,

outputs the k j in⋆ associated with the rational x = u/v.

(ii) Apply the method of (i) to obtain

4

17
=

1

5
+

1

29
+

1

1233
+

1

3039345
.

Check that
4

17
=

1

5
+

1

30
+

1

510
,

so that although the method of (i) always produces an answer, it may not be the

‘most economical’.

[The method described in (i) appears in Fibonacci’s Liber Abacus (the central text

for the introduction of Indian and Arabic mathematics to Europe), though as one

only to be used when all else fails. Today we would call it a ‘greedy algorithm’,

since at each stage it takes ‘the largest k′ that will work’.]

10When Adelard of Bath translated Al-Khwārizmı̄’s treatise on Indian numerals into Latin, he

Latinised the author’s name as Algorismus. The methods used for calculating using the new

system became known as algorism and this became algorithm: ‘a set of rules for performing a

calculation’.
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Exercise 4.3.15. [Russian peasant multiplication] (i) Suppose that we have an

ordered triple (n,m, a) of integers with n ≥ m ≥ 1 and a ≥ 0. If m = 1 we stop.

Otherwise we proceed as follows.

If m is even, we set n′ = 2n, m′ = m/2, a′ = a. If m is odd, we set n′ = 2n,

m′ = (m − 1)/2 and a′ = a + n. Show that the new triple (n′,m′, a′) is a triple of

integers with n′ ≥ m′ ≥ 1, m > m′ and n′m′ + a′ = nm + a.

Suppose that we start with the triple (N,M, 0) where N ≥ M ≥ 2 and repeat-

edly apply the process described in the previous paragraph. Show that we must

stop and, when we do stop, we will have a triple (u, 1,w) with MN = u + w. Why

does this justify the Russian peasant multiplication method described on page 9?

(ii) Use standard long multiplication with the binary notation to find 10110 ×
1101. Compare what you have done with Russian peasant multiplication. Give a

justification for Russian peasant multiplication based on the binary system.

The highest common factor takes centre stage in the next result.

Theorem 4.3.16. [Bézout’s identity] If u and v are non-zero integers, then we

can find integers r and s such that

ru + sv = d

where d is the highest common factor of |u| and |v|.

Exercise 4.3.17. (i) Suppose that u and v are non-zero integers and |u| and |v|
have highest common factor d. Use Bézout’s identity to show that we can write

n = au + bv for some integers a and b if and only if d divides n.

(ii) A team can score two types of goal in the game of phutball. The first

is worth u points, the second v points. (Of course, u and v are strictly positive

integers.) Let d be the highest common factor of u and v. Show that only scores

of the form kd with k a non-negative integer are possible. Show, by means of

an example, that some choices of scores of this form may not be possible. Show,

however, that there always exists a K such that all scores of the form kd with k ≥ K

are possible.

Bézout’s identity has a simple ‘non-constructive’ proof (that is to say a proof

which establishes the existence of an object without showing how to calculate

it11).

Non-constructive proof of Theorem 4.3.16. Consider the set E of strictly positive

integers of the form ru+ sv with r and s integers. By taking r = 1 if u > 0, r = −1

11Like most mathematicians and unlike most logicians for whom the term has precise technical

meaning, I use the term ‘non-constructive’ rather loosely.
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if u < 0, s = 1 if v > 0, s = −1 if v < 0, we see that E is a non-empty subset of

the strictly positive integers and so E has a least member e = au + bv.

We claim that e divides u. For if not, then, by long division,

u = te + s

with e > s > 0 and

s = u − te = u − t(au + bv) = (1 − ta)u + (−(tb))v ∈ E,

contradicting the minimality of e. Similarly, e divides v and so e divides d.

However any member of E and so, in particular, e, is divisible by d, so d =

e. �

We can also use the Euclidean algorithm to give a constructive proof of Bézout’s

identity.

Constructive proof of Theorem 4.3.16. We may suppose that u and v are strictly

positive integers with u > v. If we set u = u1, v = v1 and apply Euclid’s algo-

rithm, we obtain a sequence of pairs of strictly positive integers (u1, v1), (u2, v2),

. . . (un, vn) together with strictly positive integers a1, a2, . . . , an satisfying the equa-

tions

u j = a jv j + v j+1, u j+1 = v j ⋆ j

for 1 ≤ j ≤ n − 1 and

un = anvn.

We know that vn = d.

We now ‘reverse our steps’. By the last two sentences of the previous para-

graph we know that

un−1 = an−1vn−1 + d

and so

d = rn−1un−1 + sn−1vn−1

with rn−1 = 1 and sn−1 = −an−1. Now suppose that we have found integers r j+1

and s j+1, such that

d = r j+1u j+1 + s j+1v j+1

for some j with n − 1 ≥ j + 1 ≥ 2. Then the equations in⋆ j give

d = r j+1v j + s j+1(u j − a jv j) = (r j+1 − s j+1a j)v j + s j+1u j = r ju j + s jv j

where

r j = s j+1, s j = r j+1 − s j+1a j.
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Repeating this step for j = n− 2, j = n− 2, . . . , j = 1 we obtain integers r1 and s1

such that

d = r1u1 + s1v1.

Taking r = r1, s = s1, u = u1 and v = v1 we have the desired result. �

Exercise 4.3.18. The first sentence of the proof above asserts that we may take

u and v strictly positive integers. What do we do if u and v are not both strictly

positive?

The method of proof we have just given provides an algorithm for computing

r and s in Bézout’s identity. We call it Bézout’s algorithm.

Exercise 4.3.19. (i) Use Bézout’s identity to show that, if u and v are coprime and

ku = lv, then v divides k.

(ii) Suppose u and v are coprime. Show that, if r and s are integers with

ru + sv = 1,

then integers r′ and s′ also satisfy

r′u + s′v = 1

if and only if there exists an integer k such that r − r′ = kv and s′ − s = ku.

(iii) State and prove the corresponding result when u and v have highest com-

mon factor d.

(iv) Use Bézout’s identity to prove the result of Exercise 4.3.13.

Exercise 4.3.20. It is often much easier to understand an algorithm after work-

ing through it in a few concrete cases. In my opinion, Bézout’s algorithm is no

exception. Apply the algorithm first to the pair 156 and 42. and then to the pair

107748, 69126 considered in Exercise 4.3.10 or to pairs of your own choosing.

Exercise 4.3.21. Write a computer program implementing Bézout’s algorithm.

Remark The reader may object that Euclid’s algorithm pre-dates Fermat and Pas-

cal by two millennia12. Presumably the teachers of Egyptian scribes used the

equivalent of ‘and so on’. I ascribe the principle of the least member to Fermat

and the principle of induction to Pascal because, so far as we know, they were

the first to use these ideas systematically, explicitly and with a clear idea of their

importance.

12If she is particularly well-informed, she will further object that Euclid refers to least elements

when proving some of the results discussed in this section and the next (see Book 7 of [8]).
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4.4 Prime numbers

Hogben in his Mathematics for the Million [14] writes about the primes as follows.

One class of numbers which attracted early interest is the primes.

. . . The recognition of this class of numbers was not a very useful

discovery except in so far as it simplified finding square roots before

modern methods were discovered.

However, we judge a rose or a poem not by its usefulness, but by the pleasure it

gives. In this section we shall give results about the primes which go back to the

ancient Greeks but whose proofs still give pleasure to mathematicians.

Definition 4.4.1. We say that a natural number p is a prime if p , 1 and, when-

ever p = uv with u and v natural numbers, either u = 1 or v = 1.

Theorem 4.4.2. Every natural number m , 1 can be written as the product of

primes. (Here a single prime p is to be considered the product of primes.)

Most mathematicians adopt the convention that 1 is the product of no primes

and omit the condition m , 1.

Note The acute reader may observe that when we talk about the product of n num-

bers we are actually using an inductive definition and that the properties of such

products need to be established by induction. I give such a definition and the as-

sociated proofs in Appendix A. However, we shall only use these products in this

less formal chapter and the next and they form no part of the central arguments of

this book. I suggest that the reader ignores the appendix or reads it after Chapter 6.

Proof of Theorem 4.4.2. Let E be the collection of natural numbers which are nei-

ther 1, nor the product of primes. If E is empty we are done. If not then, by the

least member principle, E must have a least member e. We consider every prime

as the product of primes, so e is not prime. Thus e = uv with u and v natural

numbers and u, v , 1. By the base element principle, u > 1 so, by the multipli-

cation law for inequalities (Lemma 1.3.8), e = u × v > 1 × v = v and, similarly,

e > u. Since e is the least element of E, both u and v can be written as the product

of primes and so e, being the product of u and v, is the product of primes. This

contradiction shows that E must be empty. �

Moreover the ‘prime decomposition’ is unique in the following sense.

Theorem 4.4.3. [Uniqueness of prime factorisation] If pi [1 ≤ i ≤ n] and q j

[1 ≤ j ≤ m] are primes with

p1 ≤ p2 ≤ . . . ≤ pn, q1 ≤ q2 ≤ . . . ≤ qm

and p1 p2 . . . pn = q1q2 . . . qm,

then n = m and pi = qi [1 ≤ i ≤ n].
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Exercise 4.4.4. Let S be the set of natural numbers which, when written in deci-

mal, have a 1 in the unit place (so that 21 ∈ S and 8301 ∈ S , but 23 < S ). Show

that, if a ∈ S and b ∈ S , then ab ∈ S . We say that n ∈ S is irreducible if n > 1 and,

whenever u, v ∈ S satisfy n = uv, then u = 1 or v = 1. Show that every element

n of S , with n > 1, can be written as the product of irreducibles. (An irreducible

element is to be considered the product of irreducibles.) Show, however, that there

exist distinct irreducibles a, b, c, d with ab = cd.

[Hint: Consider 3 × 7 × 13 × 17.]

Our proof of the uniqueness of prime factorisation depends on the following

result which, in turn, depends on Bézout’s identity.

Theorem 4.4.5. If u and v are natural numbers and p is a prime which divides

uv, then p must divide at least one of u and v.

Proof. Write uv = kp. Suppose that p does not divide u. Since the only natural

numbers dividing p are 1 and p itself, the highest common factor of u and p must

be 1. Bézout’s identity (Theorem 4.3.16) thus tells us that there exist integers a

and b such that

au + bp = 1.

Simple algebra gives

v = (au + bp)v = a(uv) + (bv)p = a(kp) + (bv)p = (ak + bv)p,

so p divides v. �

Exercise 4.4.6. If you have done Exercise 4.3.19 (i), check that Theorem 4.4.5 is

a special case of that result.

Exercise 4.4.7. If u1, u2, . . . un are natural numbers and p is a prime which divides

u1u2 . . . un, show, by induction, that p must divide at least one of the u j.

Proof of Theorem 4.4.3. Suppose that there exists a natural number with two dif-

ferent prime factorisations. By the least element principle, there must exist a least

such natural number, call it N. By definition, we can find primes pi [1 ≤ i ≤ n]

and q j [1 ≤ j ≤ m] with

p1 ≤ p2 ≤ . . . ≤ pn, q1 ≤ q2 ≤ . . . ≤ qm

and N = p1 p2 . . . pn = q1q2 . . . qm,

such that either m , n or it is the case that m = n and there exists a k with 1 ≤ k ≤ n

such that pk , qk.

Without loss of generality, we may suppose p1 ≤ q1. We know that p1 divides

N = q1q2 . . . qm so, since p1 is a prime, p1 must divide at least one of the q j.
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Since the q j are primes, this means that p1 must equal at least one of the q j and so

q1 = p1. Using the cancellation law for multiplication, we obtain

p2 ≤ . . . ≤ pn, q2 ≤ . . . ≤ qm

and p2 . . . pn = q2 . . . qm.

Thus the natural number M = p2 . . . pn has two different prime factorisations.

Since M < N, this contradicts the statement that N is the least natural number

with this property. �

Exercise 4.4.8. Suppose that p1, p2, . . . pn are distinct primes and r1, r2, . . . rn, s1,

s2, . . . sn are integers with r j, s j ≥ 0 [1 ≤ j ≤ n].

(i) Show that, if

p
r1

1
p

r2

2
. . . prn

n = p
s1

1
p

s2

2
. . . psn

n ,

then r j = s j for each j.

(ii) State and prove a necessary and sufficient condition on the r j and s j for

p
r1

1
p

r2

2
. . . p

rn
n and p

s1

1
p

s2

2
. . . p

sn
n to be coprime (see Definition 4.3.8).

In his A Mathematician’s Apology [13], Hardy illustrates his account with two

. . . ‘simple’ theorems, simple both in idea and in execution, but

there is no doubt at all about their being theorems of the highest class.

Each is as fresh and significant as when it was discovered — two

thousand years have not written a wrinkle on either of them. Finally,

both the statements and the proofs can be mastered in an hour by any

intelligent reader . . .

His first example is Euclid’s proof of the existence of infinitely many primes.

Theorem 4.4.9. There are infinitely many primes.

Proof. Suppose that we could list the primes as p1, p2, . . . pn say. Consider

N = (p1 p2 . . . pn) + 1.

We observe that if 1 ≤ j ≤ n, then p j does not divide N since it leaves remainder

1 when divided into N. However, we know that N factorises into primes, so there

must be some prime not on our list. �

Exercise 4.4.10. Verify that (2 × 3 × 5 × 7 × 11 × 13) + 1 is divisible by 59. Thus

the N that appeared in our proof of Theorem 4.4.9 need not itself be a prime.

His second theorem (associated with the School of Pythagoras) is very im-

portant for the study of numbers. (Since the Greeks thought geometrically, they

interpreted the result in a different way to us.)
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Theorem 4.4.11. There is no x ∈ Q such that x2
= 2.

Proof. Suppose that x ∈ Q and x2
= 2. By ‘dividing top and bottom by 2 as many

times as necessary’ we may take x = p/q where p and q are integers which are

not both even.

Now p2/q2
= x2

= 2, so p2
= 2q2. Since the square of an odd number is odd

and 2q2 is even, p must be even; that is to say p = 2r, where r is an integer. We

now have 4r2
= 2q2, so 2r2

= q2 and, arguing as before, q is even. We started by

assuming that p and q were not both even, so have arrived at a contradiction. �

We now prove a natural generalisation, also found in Euclid’s Elements.

Theorem 4.4.12. Let m be a strictly positive integer. The equation

x2
= m

has no solution with x ∈ Q unless m is the square of an integer.

Proof. Suppose that x is a rational number with x2
= m. We may suppose x > 0

and so we can write x = u/v with u and v strictly positive integers. Since u and v

are strictly positive integers, we can find distinct primes p1, p2, . . . pn and integers

r j, s j, t j ≥ 0 [1 ≤ j ≤ n] such that

m = p
r1

1
p

r2

2
. . . prn

n , u = p
s1

1
p

s2

2
. . . psn

n and v = p
t1
1

p
t2
2
. . . ptn

n .

Since m = x2
= u2/v2, we have mv2

= u2 and so

p
r1+2t1
1

p
r2+2t2
2
. . . prn+2tn

n = p
2s1

1
p

2s2

2
. . . p2sn

n .

By the uniqueness of factorisation, this gives

r j + 2t j = 2s j

and so r j = 2(s j− t j) for each j. Since r j ≥ 0, it follows that s j− t j ≥ 0 and writing

w = p
s1−t1
1

p
s2−t2
2
. . . psn−tn

n ,

we have m = w2 with w a strictly positive integer. �

Exercise 4.4.13. Suppose that a and b are coprime strictly positive integers. Show

that the equation x2
= a/b has a solution with x ∈ Q if and only if a and b are the

squares of strictly positive integers.
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Exercise 4.4.14. Magic tricks are rather dull without added pizzazz. Here the

reader will have to add her own.

Think of a letter belonging to the collection of sixteen written below.

A = {a, b, c, d, e, f , g, h, i, j, k, l,m, n, o, p}.

For each of the seven collections written below, write down ‘yes’ if the letter you

have thought of belongs to the collection and ‘no’ otherwise. To make things more

interesting, you may (but need not) lie once.

A1 = {b, c, f , g, i, l,m, p}, A2 = {b, d, e, g, i, k, n, p},
A3 = {b, d, f , h, j, l, n, p}, A4 = {c, d, e, f , i, j, o, p},

A5 = {c, d, g, h, k, l, o, p}, A6 = {e, f , g, h,m, n, o, p},
A7 = {i, j, k, l,m, n, o, p}.

I now examine your answers. If you have answered yes an even number of

times when asked about A1, A3, A5 and A7, I set η0 = 0, otherwise I set η0 = 1. If

you have answered yes an even number of times when asked about A2, A3, A6 and

A7, I set η1 = 0, otherwise I set η1 = 1. If you have answered yes an even number

of times when asked about A4, A5, A6 and A7, I set η2 = 0, otherwise I set η2 = 1.

If η0 = η1 = η2 = 0, then you have not lied. Otherwise, you lied about Ak

where k = η0 + 2η1 + 4η2. Moreover I can tell which letter you chose.

How is the trick done?

[Do spend a little time thinking about this. An answer will be revealed in the next

chapter.]



Chapter 5

Modular arithmetic

5.1 Finite fields

There are many objects which share the algebraic properties of the rationals which

we gave earlier.

Definition 5.1.1. A field (F,+,×) is a set F together with two operations + and ×
(with a + b ∈ F, a × b ∈ F whenever a, b ∈ F) having the following properties for

all a, b, c ∈ F.
(i) a + b = b + a. (Commutative law of addition.)

(ii) a + (b + c) = (a + b) + c. (Associative law of addition.)

(iii) There exists an element 0 ∈ F such that, whenever a ∈ F, 0 + a = a.

(Additive zero.)

(iv) For each a there exists an element −a ∈ F such that a+(−a) = 0. (Additive

inverse.)

(v) a × b = b × a. (Commutative law of multiplication.)

(vi) a × (b × c) = (a × b) × c. (Associative law of multiplication.)

(vii) There exists an element 1 ∈ F such that, whenever a ∈ F, 1 × a = a.

(Multiplicative unit.)

(viii) If a , 0, then there exists an a−1 ∈ F such that a×a−1
= 1. (Multiplicative

inverse.)

(ix) a × (b + c) = (a × b) + (a × c). (Distributive law.)

We also demand 1 , 0.

Exercise 5.1.2. Compare Definition 5.1.1 with the statement of Theorem 3.2.7.

Exercise 5.1.3. State results corresponding to Exercise 3.2.11. Either recall the

proofs from that exercise or reprove the results.

75
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Exercise 5.1.4. Show that, if (F,+,×) obeys all the numbered conditions of Defi-

nition 5.1.1, but we take 0 = 1, then F consists of the single element 0.

[See Exercise 3.2.14 (ii) if you need a hint.]

Remark Nobody claims that ‘the hard thing about chess is learning the rules’.

When a child starts playing chess, the first few games they play may be devoted

to learning the rules, but soon the rules are internalised as part of their tactical

and later their strategic thinking. In the same way the reader will find that after

working with various examples of fields the rules (or, as we say, axioms) for a

field appear natural and easy to remember.

We have already written out long lists of rules for N, Q+ and later on we will

rules for objects like ‘ordered fields’ and ‘skew fields’, but they are all related.

When a beginning cook learns a recipe for plum tart and then learns a recipe for

apricot tart, the effort involved in learning the second recipe is much less and

learning the second recipe may well make the general principles underlying the

first recipe easier to understand.

From time to time, we will need two further definitions. The first makes pre-

cise the notion of isomorphism for fields. (We discussed the general notion of

isomorphism in Section 3.4.)

Definition 5.1.5. We say that the field (F,+,×) is isomorphic to the field (G,⊕,⊗)

if there exists a bijection f : F → G such that f (a + b) = f (a) ⊕ f (b) and

f (a × b) = f (a) ⊗ f (b). We say that f is an isomorphism.

Exercise 5.1.6. Suppose the conditions of Definition 5.1.5 hold. If F has additive

zero 0 and multiplicative unit 1, identify f (0) and f (1), giving reasons for your

answer.

Definition 5.1.7. Suppose that (F,+,×) is a field. We say that a subset G of F is a

subfield of F if the following conditions hold.

(i) If a, b ∈ G, then a + b, a × b ∈ G.

(ii) If a ∈ G, then −a ∈ G and if, in addition, a , 0, then a−1 ∈ G.

(iii) 0, 1 ∈ G

Exercise 5.1.8. Suppose the conditions of Definition 5.1.7 hold. Check (this

should not take you very long) that (G,+,×) (where the operations are the natural

inherited ones) is indeed a field.

Exercise 5.1.9. Check (again this should not take you very long) that we can

replace (Q,+,×) by any field (F,+,×) in our discussion of powers an in Theo-

rem 4.2.4, Exercise 4.2.5 and Exercise 4.2.6.

We discuss one collection of fields, first explicitly recognised by Euler and

Gauss.
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Exercise 5.1.10. Consider Z, the collection of integers. Let n be an integer and

write r ∼n s if r − s = kn for some integer k. Show that ∼n is an equivalence

relation on Z (see Definition 2.2.4).

Identify the equivalence classes (see Definition 2.2.5) in the cases n = 1 and

n = 0. Show that the equivalence classes are the same for ∼n and ∼m if and only

if m = n or m = −n.

From now on, we look at the collection of equivalence classes Zn = Z/∼n with

n ≥ 2. It turns out that we can define addition and multiplication on Zn in a simple

manner.

Lemma 5.1.11. We work in Z and take n ≥ 2.

(i) If u ∼n u′ and v ∼n v′, then u + v ∼n u′ + v′.
(ii) If u ∼n u′ and v ∼n v′, then uv ∼n u′v′.

Proof. We do part (ii). Since u − u′ = kn and v − v′ = ln for some integers l and

k, we have

u′v′ = (u − kn)(v − ln) = uv + (−kv − lu + kln)n,

so u′v′ − uv = (−kv − lu + kln)n and uv ∼n u′v′. �

Exercise 5.1.12. Prove part (i) of Lemma 5.1.11.

We can thus make the unambiguous definitions

[a] ⊕ [b] = [a + b], [a] ⊗ [b] = [a × b].

Theorem 5.1.13. Let n ≥ 2. The system (Zn,⊕,⊗) satisfies all the conditions of

Definition 5.1.1 with the possible exception of the existence of a multiplicative

inverse.

Proof. All the verifications are easy, using the corresponding results for Z. We do

four and leave the remainder to the reader.

(i) We have [a] ⊕ [b] = [a + b] = [b + a] = [b] ⊕ [a].

(iii) We have [0] ⊕ [a] = [0 + a] = [a].

(iv) Observe that [a] ⊕ [−a] = [a − a] = [0].

(ix) We have

[a] ⊗ ([b] ⊕ [c]) = [a] ⊗ [b + c] = [a(b + c)] = [(ab) + (ac)]

= [ab] ⊕ [ac] = ([a] ⊗ [b]) ⊕ ([a] ⊗ [c]).

�

Exercise 5.1.14. Prove the remaining parts of Theorem 5.1.13.
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The system of arithmetic on Zn is sometimes known as ‘clock arithmetic’. If

a twelve-hour clock shows u hours now, then after v hours, it will show w hours

where (working in Z12) [u] ⊕ [v] = [w]. However, whilst ‘clock addition’ is easy

to understand1, I cannot see what ‘clock multiplication’ would correspond to.

Exercise 5.1.15. Check that 0 ∼3 3, but 20
/3 23. Thus we cannot define ‘clock

powers’ [a][b].

[We extend this remark in Exercise 5.2.3.]

We shall use the index notation

[a]u
= [au],

but the reader should observe that, whilst [a] ∈ Zn, u is a strictly positive integer.

Exercise 5.1.16. Do the one line check that [a1] = [a] and [an+1] = [an] × [a] for

n ∈ N+. There is thus no problem in writing [a]n
= [an].

Rather than talk about ‘clock arithmetic’ we shall refer to ‘modular arithmetic’

or ‘arithmetic mod n’. In the standard notation, which we shall mainly (but not

always) use, we write

a ≡ c mod n to mean a ∼n c,

a . c mod n to mean a /n c,

a + b ≡ c mod n to mean [a] ⊕ [b] = [c],

ab ≡ c mod n to mean [a] ⊗ [b] = [c].

We say that a and c are ‘distinct modulo n’ if a . c.

Our first result shows that (Zn,+,×) may fail to be a field.

Exercise 5.1.17. (i) Suppose that (F,+,×) is a field. If u , 0, show, by multiplying

by u−1, that the equation uv = 0 implies v = 0.

(ii) Suppose u, v are integers with u, v ≥ 2. If n = uv, show that

u . 0 mod n, v . 0 mod n, but uv ≡ 0 mod n.

Conclude that (Zn,+,×) is not a field.

On the other hand, if p is a prime (and, by the previous result, only if p is

prime), (Zp,+,×) is a field.

Theorem 5.1.18. If p is a prime, (Zp,+,×) satisfies condition (viii) of Defini-

tion 5.1.1 and so, by Theorem 5.1.13, is a field.

1Particularly for earlier generations familiar with clock faces rather than clock read-outs.
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Proof. Suppose that a . 0 mod p. Then p does not divide a. Since p is prime

(and so its only divisors are 1 and p), it follows that a and p have 1 as highest

common factor. Bézout’s identity now tells us that there exist integers u and v

with up + va = 1 and so with va ≡ 1 mod p (or, using our earlier language,

[v] ⊗ [a] = [1]). �

Exercise 5.1.19. Suppose that n ≥ 2, but n is not necessarily a prime. If a is

coprime to n, show that there exists a strictly positive integer c such that ac ≡ 1

mod n and explain how to compute it using Bézout’s algorithm.

It is much easier to study an object if we have other similar objects to compare

it with. In biology, the study of the genetics of fruit flies sheds light on the genetics

of mankind2. In the same way, we might hope that the behaviour of (Zp,+,×) will

shed light on the behaviour of (Q,+,×).

5.2 Some pretty theorems

In this section we prove various results about Zp when p is a prime.

Theorem 5.2.1. [Fermat’s little theorem] If a . 0 mod p, then ap−1 ≡ 1

mod p.

Proof. Since Zp is a field (and, in particular, condition (viii) of Definition 5.1.1

holds), we know that if [a] , [0], then [a]⊗ [r] = [a]⊗ [s] implies [r] = [s]. Thus

[a]⊗ [1], [a]⊗ [2], . . . , [a]⊗ [p−1] are distinct non-zero elements of Zp. Since Zp

has exactly p − 1 non-zero elements (namely [1], [2], . . . , [p − 1]), it follows that

[a] ⊗ [1], [a] ⊗ [2], . . . , [a] ⊗ [p − 1] are the elements [1], [2], . . . , [p − 1] written

down in some order. We thus have

([a] ⊗ [1]) ⊗ ([a] ⊗ [2]) ⊗ . . . ⊗ ([a] ⊗ [p − 1]) = [1] ⊗ [2] ⊗ . . . ⊗ [p − 1].

Rearrangement gives

[a]p−1 ⊗ ([1] ⊗ [2] ⊗ . . . ⊗ [p − 1]) = [1] ⊗ [2] ⊗ . . . ⊗ [p − 1]

and so (using condition (viii) again),

[a]p−1
= [1],

or, in more standard notation, ap−1 ≡ 1 mod p. �

Exercise 5.2.2. Let p be a prime. Show that rp ≡ r mod p for all integers r.

2And, of course, vice versa.
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Exercise 5.2.3. Generalise Exercise 5.1.15 by replacing 3 by p where p is an odd

prime. What happens when p = 2?

Exercise 5.2.4. Let (F,+,×) be a field. If F has n elements, show that xn−1
= 1

whenever x , 0.

Exercise 5.2.5. If the reader knows the binomial theorem, here is another proof

of Fermat’s result. We suppose that p is a prime.

(i) If r is an integer with 1 ≤ r ≤ p − 1, show that p does not divide r! or

(p − r)!. Deduce that
(

p

r

)
≡ 0 mod p.

(ii) Deduce, by using the binomial expansion of (k + 1)p, that

(k + 1)p ≡ kp
+ 1 mod p.

(iii) Use induction to prove that rp ≡ r for all natural numbers r and deduce

Fermat’s little theorem.

We now study square roots in Zp.

Lemma 5.2.6. Let p be an odd prime. The equation

x2 ≡ a mod p ⋆

(with 0 ≤ x ≤ p − 1) has exactly one solution modulo p for x if a ≡ 0. Otherwise,

it has either 2 or 0.

Proof. We leave the second sentence of our statement as an exercise.

If ⋆ has a solution b . 0, then a ≡ b2. Since Zp is a field, we know that, if

x − b . 0 and x + b . 0, we have (x − b)(x + b) . 0 mod p so

x2 − a ≡ x2 − b2
= (x − b)(x + b) . 0.

Thus the only solutions of⋆ are x ≡ b and x ≡ −b.

If b ≡ −b, then 2b ≡ 0 mod p. Since 2 . 0 it follows that b ≡ 0. Thus, if

a . 0,⋆ has 2 or 0 distinct solutions modulo p. �

Exercise 5.2.7. Prove the second sentence in the statement of Lemma 5.2.6.

Exercise 5.2.8. We use the notation of Lemma 5.2.6 and let p be an odd prime.

Show that there are exactly (p + 1)/2 values of a (modulo p) such that ⋆ has a

solution.

Exercise 5.2.9. What can we say about solutions of⋆ if p = 2?

Mathematicians are very interested in square roots of −1. If we deal with Zp,

the matter is rather simple. We use the following result.
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Lemma 5.2.10. [Wilson’s theorem] If p is an odd prime, then (p − 1)! ≡ −1

mod p.

Proof. If u . 1,−1, 0, then (since Lemma 5.2.6 tells us that u2
. 1) we know that

u . u−1. Thus we can pair off those elements u . 1,−1, 0 of Zp as u ↔ v with

uv = 1. Now 2 × 3 × 4 . . . × (p − 2) is the product of these pairs, so

2 × 3 × 4 . . . × (p − 2) ≡ 1 mod p

and

(p − 1)! ≡ 1 × 2 × 3 × 4 . . . × (p − 2) × (p − 1)

≡ 1 × (
2 × 3 × 4 . . . × (p − 2)

) × (p − 1)

≡ 1 × 1 × (−1) ≡ −1 mod p,

as stated. �

Exercise 5.2.11. What happens if p = 2?

Lemma 5.2.12. (i) If p is a prime with p = 4n + 3 for some non-negative integer

n, then the equation

x2 ≡ −1 mod p

has no solution.

(ii) If p is a prime with p = 4n + 1 for some non-negative integer n, then the

equation

x2 ≡ −1 mod p

has exactly two solutions modulo p.

(iii) If p = 2, the equation

x2 ≡ −1 mod p

has exactly one solution modulo p.

Proof. (i) Suppose, if possible, that x2 ≡ −1 mod p. Then, by Fermat’s little

theorem,

−1 ≡ (−1)2n+1 ≡ (x2)2n+1 ≡ x4n+2 ≡ xp−1 ≡ 1 mod p,

which is absurd.

(ii) Set x ≡ 1 × 2 × . . . × 2n. Then, since

2n + r ≡ −(p − (2n + r)
) ≡ −(2n + 1 − r) mod p,
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it follows that

(2n + 1) × (2n + 2) × . . . × 4n ≡ ( − (2n)) × ( − (2n − 1)) × . . . × (−1)

≡ (−1)2n × (2n) × (2n − 1) × . . . × 1 ≡ x.

Thus, using Wilson’s theorem,

x2 ≡ (
1 × 2 × . . . × (2n)

) × (
(2n + 1) × (2n + 2) × . . . × (4n)

) ≡ (4n)! = −1.

Lemma 5.2.6 tells us that there are exactly two solutions x and −x.

(iii) By inspection, 1 is the unique solution. �

Part (iii) of the next lemma will play a very important role in this chapter.

Lemma 5.2.13. (i) If p is an odd prime and a . 0, then a(p−1)/2 ≡ 1 or a(p−1)/2 ≡
−1 mod p.

(ii) If p is a prime with p = 4n+ 3 for some non-negative integer n, and a . 0,

then a(p−1)/2 ≡ 1.

(iii) If p is a prime with p = 4n + 3 for some non-negative integer n, then, if

a ≡ b2 mod p, we have b ≡ a(p+1)/4 or b ≡ −a(p+1)/4 mod p.

Proof. (i) Let c ≡ a(p−1)/2. Then, by Fermat’s little theorem, c2 ≡ ap−1 ≡ 1. Since

the equation x2 ≡ 1 has at most two roots, we know that c ≡ 1 or c ≡ −1 and we

are done.

(ii) We use part (i) together with Lemma 5.2.12 (i).

(iii) If b ≡ 0, the result is trivial. Otherwise, we know that a has exactly 2

square roots and part (ii) gives

(−a(p+1)/4)2 ≡ (a(p+1)/4)2 ≡ a(p+1)/2 ≡ a(p−1)/2 × a ≡ a,

as stated. �

Thus it is easy to find square roots in Zp with p a prime if p ≡ −1 mod 4.

(The problem is harder when p ≡ 1 mod 4.)

5.3 A new use for old numbers

At school we learn to count and to write in different classes. Letters make up

words which describe things, whereas numbers count things. In this section we

use numbers to make up words.

The first extensive system for sending messages over long distances faster than

a man on a horse was the aerial telegraph of Chappe, developed during the French

Revolution, initially for military use. It used semaphore towers with different
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positions of the semaphore arms standing for different letters or words. Each

tower would repeat the signal observed at one of its neighbours and this repeated

signal would, in turn, be observed and repeated by the next tower along the route3.

The system was very successful, but now lives only in literature where it oc-

curs in Napoleonic sea stories, The Count of Monte Cristo and, more recently, as

the ‘clacks towers’ in the novels of Terry Pratchett.

The aerial telegraph was rendered obsolete by the electric telegraph. The suc-

cessful Morse system now required the message to be translated at one end into a

series of dots, dashes and pauses and then translated back at the other end. Thus

M corresponds to −−, O to − − −, R to • − • and so on. If we write ⋆ for pause,

then MORSE CODE becomes

− − ⋆ − − − ⋆ • − • ⋆ • • • ⋆ • ⋆ ⋆ − • − • ⋆ − − − ⋆ − • • ⋆ • ⋆ ⋆ .

Exercise 5.3.1. Write DO MORE in Morse code.

Since the cost of transmitting messages depended on their length, Morse’s

system gave shorter codes for more frequent letters like E. Although mistakes

in transmission must have occurred quite often, the fact that the translation back

from Morse into English was done by a human being meant that grabled messoges

could usually be ungarbled.

As translation into and from code became mechanised, it was realised that the

new systems would operate more smoothly if pauses were dispensed with and

messages written only using • and −. It was natural to think of • as 0 and − as 1

so

• − • • − − − • became 01001110.

Exercise 5.3.2. The object of this exercise is to show that we only need two sym-

bols 0 and 1, say, to transmit messages. We use ‘words’ consisting of five symbols.

3

If you’ll only just promise you’ll none of you laugh

I’ll be after explaining the French Telegraphe!

A machine that’s endowed with such wonderful pow’r

It writes, reads and sends news 50 miles in an hour.

Then there’s watchwords, a spy-glass, an index on hand

And many things more none of us understand,

But which, like the nose on your face, will be clear

When we have as usual improved on them here.

Adieu, penny posts! mails and coaches, adieu!

Your Occupation’s gone, ’tis all over wid you.

In your place telegraphs on our houses we’ll see

To tell time, conduct lightning, dry shirts and send news.

Charles Dibden, Great News or a Trip to the Antipodes, play produced in 1794.
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The word 00000 corresponds to ⋆ and the kth letter of the alphabet corresponds

to the ‘word’ ǫ0ǫ1ǫ2ǫ3ǫ4, where each ǫ j is 0 or 1 and

k = ǫ024
+ ǫ123

+ ǫ222
+ ǫ32 + ǫ4.

(i) Check that L corresponds to 01100.

(ii) Translate the following English message into code: ALL⋆WELL⋆⋆. You

may find this table4 useful.

000 001 010 011 100 101 110 111

00 ⋆ A B C D E F G

01 H I J K L M N O

10 P Q R S T U V W

11 X Y Z

(iii) Translate the following message into English.

1011100101011000110000000001000111101110001010000000000

In the 1940s many of the systems used ‘eight-hole paper-tape’ to record the

message in its two symbol form. Essentially, the message was split into ‘words’

consisting of eight ‘letters’ 0 or 1. The letter 1 was represented by a hole in the

tape and the letter 0 by its absence. Such a tape could be read very quickly by an

optical reader and was used in early computer installations.

Without a human being to detect garbled messages, it became very important

to have some automatic means of detecting errors. This was done by only using

words ζ1ζ2 . . . ζ8 (where each ζ j is either 0 or 1) such that

ζ1 + ζ2 + . . . + ζ8 ≡ 0 mod 2. ⋆

Since ζ j could be chosen freely for 1 ≤ j ≤ 7 and then

ζ8 ≡ ζ1 + ζ2 + . . . + ζ7 mod 2,

the entry ζ8 was usually referred to as the ‘check digit’ and the system itself as a

check digit code.

Exercise 5.3.3. (i) Check the arithmetic connecting the last two displayed formu-

lae. Does anything, apart from human nature, prevent us from considering ζ3 as

the check digit?

(ii) (A very old joke.) Is it possible for 7 people to share 20 lumps of sugar in

such a way that each gets an odd number of lumps in their tea?

4Tables like these are called font tables. The word font comes from the French ‘fondre’ mean-

ing to melt or to cast. It was adopted by printers to mean the collection of cast metal type used to

type set a page. The ‘font tables’ used in producing this book show the correspondence between

the various symbols and their binary representations.
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With this system the machine could check each 8 letter word that it received

and signal an error if⋆ was not satisfied. Of course,⋆ will only fail if there are

an odd number of mistakes, but the system was only used when errors were rare

and it was very unlikely that more than one error would occur in one line (that is

to say, one word).

Exercise 5.3.4. Suppose that ζ j, ζ
′
j
∈ Z2 for 1 ≤ j ≤ 8. Check that, if

ζ1 + ζ2 + . . . + ζ8 ≡ 0 mod 2,

then

ζ′1 + ζ
′
2 + . . . + ζ

′
8 ≡ 0 mod 2

if and only if ζ j , ζ
′
j
for an even number of values of j.

Exercise 5.3.5. If you look at the inner title page of almost any book published

between 1970 and 2006, you will find its International Standard Book Number

(ISBN). The ISBN uses single digits selected from 0, 1, . . . , 8, 9 and X representing

10. Each ISBN consists of nine such digits a1, a2, . . . , a9 followed by a single check

digit a10 chosen so that

10a1 + 9a2 + · · · + 2a9 + a10 ≡ 0 mod 11. (∗)

(i) Find a couple of books published in the given period and check that (∗)
holds for their ISBNs5.

(ii) Show that (∗) will not hold if you make a mistake in writing down one digit

of an ISBN.

(iii) Show that (∗) may hold if you make two errors.

(iv) Show that (∗) will not work if you interchange two distinct adjacent digits

(a transposition error).

(v) Does (iv) remain true if we replace ‘adjacent’ by ‘different’?

Errors of the sort (ii) and (iv) are the most common in typing. In communication

between publishers and booksellers, both sides are anxious that errors should be

detected, but would prefer the other side to query errors rather than to guess what

the error might have been.

(vi) For books published after January 2007, the appropriate ISBN is a 13

digit number x1x2 . . . x13 with each digit selected from 0, 1, . . . , 8, 9 and the check

digit x13 computed by using the formula

x13 ≡ −(x1 + 3x2 + x3 + 3x4 + · · · + x11 + 3x12) mod 10.

Show that we can detect single errors. Give an example to show that we cannot

detect all transpositions.

5In fact, X is only used in the check digit place.
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As a fairly junior researcher, Hamming had access to an early electronic com-

puter, but was low down in the priority list of users. He would submit his programs

encoded on paper-tape to run over the weekend, but often he would have his tape

returned on Monday because the machine had detected an error in the tape. ‘If the

machine can detect an error’, he asked himself, ‘why can the machine not correct

it?’ He now came up with the following scheme.

We work in Z2 and use words of length 7 (so that, in effect, we work with

seven-hole tape). The words c1c2c3 . . . c7 with c j ∈ Z2 are chosen to satisfy the

three conditions

c1 + c3 + c5 + c7 ≡ 0 mod 2 (0)

c2 + c3 + c6 + c7 ≡ 0 mod 2 (1)

c4 + c5 + c6 + c7 ≡ 0 mod 2. (2)

By inspection, we may choose c3, c5, c6 and c7 freely and then c1, c2 and c4 are

completely determined.

Exercise 5.3.6. Write down formulae which give c1, c2 and c4 in terms of the other

c j. Explain why we have exactly 24 possible words.

The way in which Hamming chose his conditions may become clearer if we

use a binary expansion. Observe that (working in Z) each integer r with 1 ≤ r ≤ 7

can be written uniquely as

r = ǫ0(r) + ǫ1(r)2 + ǫ2(r)22

with ǫ j(r) taking the values 0 or 1. Hamming’s three conditions thus become

(The sum of those cr with ǫ j(r) = 1) ≡ 0 mod 2 ( j)

or more briefly ∑

ǫ j(r)=1

cr ≡ 0 mod 2 ( j)

for j = 0, j = 1, j = 2.

Lemma 5.3.7. Suppose that we have cr satisfying Hamming’s conditions and

some k with 1 ≤ k ≤ 7.

Consider c′r with c′r = cr for r , k and ck , c′
k
. Then

∑

ǫ j(r)=1

c′r ≡ 0 mod 2

if ǫ j(k) = 0 and ∑

ǫ j(r)=1

c′r ≡ 1 mod 2

if ǫ j(k) = 1.
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Proof. Observe that, if ǫ j(k) = 0, then r , k if ǫ j(r) = 1, so

∑

ǫ j(r)=1

c′r ≡
∑

ǫ j(r)=1

cr ≡ 0 mod 2.

On the other hand, if ǫ j(k) = 1,

∑

ǫ j(r)=1

c′r ≡ (c′k − ck) +
∑

ǫ j(r)=1

cr ≡ 1 + 0 ≡ 1 mod 2.

�

Suppose that we know that the ‘sent word’ c0c1 . . . c7 satisfies Hamming’s con-

ditions and we know that the ‘received word’ c′
0
c′

1
. . . c′

7
differs from the sent word

in at most one place. Then Lemma 5.3.7 allows us to recover the sent word as

follows.

If the received word satisfies all the Hamming conditions, then it must be the

sent word. Otherwise, we proceed as follows. If the received word satisfies the

jth Hamming condition, that is to say,

∑

ǫ j(r)=1

c′r ≡ 0 mod 2, ( j)

write η j = 0. If the received word fails to satisfy the jth Hamming condition, that

is to say, ∑

ǫ j(r)=1

c′r ≡ 1 mod 2, ( j′)

write η j = 1. Then k = η0 + 2η1 + 22η2 and c j = c′
j
for j , k, ck ≡ c′

k
+ 1 mod 2.

It is easy to see that Hamming’s idea only works for systems where errors are

fairly rare.

Exercise 5.3.8. If the received word differs from the sent word in two or more

places, show that the Hamming scheme will always deliver the wrong answer for

the sent word.

Exercise 5.3.9. Check that, if we replace letters by numbers, as shown below, we

obtain (an isomorphic copy of) the trick in Exercise 4.4.14.

A = {0, 7, 25, 30, 42, 45, 51, 52, 131, 152, 162, 165, 193, 198, 240, 255},
A1 = {7, 25, 45, 51, 131, 165, 193, 255}, A2 = {7, 30, 42, 51, 131, 162, 198, 255},
A3 = {7, 30, 45, 52, 152, 165, 198, 255}, A4 = {25, 30, 42, 45, 131, 152, 240, 255},

A5 = {25, 30, 51, 52, 162, 165, 240, 255}, A6 = {42, 45, 51, 52, 193, 198, 240, 255},
A7 = {131, 152, 162, 165, 193, 198, 240, 255}.
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Explain why the trick works and how to find the number that you have chosen.

(If you have already done Exercise 4.4.14, think how your answer relates to this

section.)

Exercise 5.3.10. (This exercise needs a smidgen of probability.)

(i) Suppose that we use eight-hole tape with the standard check digit code (see

page 84) and the probability that an error occurs at a particular place on the tape

(that is to say, a hole occurs where it should not or fails to occur where it should) is

10−4 independently of what happens at any other place. A program requires about

10 000 lines of tape (each line containing eight places) using the paper-tape code.

Show (by using a calculator or, if you know it, the Poisson approximation) that

the probability that the tape will be accepted as error free by the decoder is less

than 0.04%.

Suppose now that we use the Hamming scheme (making no use of the last

place in each line). Explain why the program requires about 17 500 lines of tape,

but the probability that any particular line will be correctly decoded is about

1−(21×10−8) and the probability that the entire program will be correctly decoded

is better than 99.6%.

(ii) Suppose the error rate is 10−1 rather than 10−4, but the other conditions

remain the same as in (i). Use Exercise 5.3.8 to show that the Hamming scheme

is useless.

Hamming’s scheme is easy to implement. It took a little time for his company

to realise what he had done6, but it was soon trying to patent the idea.

There are entire university courses devoted to the design of codes which work

when the error rate is high. The next exercise suggests what we might do if the

error rate is very low.

Exercise 5.3.11. Construct a Hamming-type code for ‘fifteen-hole tape’. Explain

why it will only be useful when the error rate is very low. By considering the cost

of transmitting a single symbol (that is to say, 0 or 1), explain why the new system

is cheaper to use in this case.

It is much easier to appreciate Newton’s first law that ‘a body will remain in

a state of uniform motion unless acted on by some external force’ if you drive a

sports car, than if you drive a horse and cart. In the same way, it is much easier

for us to understand that a book, a symphony or a picture may be translated into

a series of zeros and ones, that is to say, a number, than it would have been for

our ancestors, since we are surrounded by machines which do just that. However,

Leibniz, who invented the binary notation for representing integers, would not

have been surprised since he thought that his system illustrated

6Experienced engineers came away from working demonstrations muttering ‘I still don’t be-

lieve it’.
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. . . the creation of all things out of nothing through God’s om-

nipotence, it might be said that nothing is a better analogy to, or even

demonstration of such creation than the origin of numbers as here

represented, using only unity and zero or nothing. And it would be

difficult to find a better illustration of this secret in nature or philoso-

phy . . .

Letter to the Duke of Brunswick, January 1697.

5.4 More modular arithmetic

We have seen that Zn is a field if and only if n is a prime. However, we can still

do quite a lot of arithmetic when n is not a prime.

Our main tool is a result called the Chinese remainder theorem which can been

traced back to a third-century Chinese mathematician named Sun Zi who stated

the following problem and gave its solution7.

Now there are an unknown number of things. If we count by

threes, there is a remainder 2; if we count by fives, there is a remainder

3; if we count by sevens, there is a remainder 2. Find the number of

things.

In The Mathematical Classic of Sun Zi.

In our notation, Sun Zi’s problem asks for the solution of

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7.

Let us see if we can find a general method for the simplest version of the

problem, when we have two equations

x ≡ a1 mod n1

x ≡ a2 mod n2

with n1 and n2 coprime.

Reflection suggests that we should start by trying to solve our problem in the

case

x1 ≡ 1 mod n1

x1 ≡ 0 mod n2.

7In A Mathematician’s Apology [13], Hardy refers to the anonymity of mathematical fame. All

we know about Sun Zi is that he wrote the book in which this problem occurs.
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We may then have the happy thought that (since n1 and n2 are coprime) Bézout’s

algorithm gives us a quick procedure for finding integers u1 and u2 such that

u1n1 + u2n2 = 1.

Then, if we set x1 = u2n2,

x1 ≡ u2n2 ≡ 1 − u1n1 ≡ 1 mod n1

x1 ≡ u2n2 ≡ 0 mod n2.

Exercise 5.4.1. Find a solution to the pair of equations

x2 ≡ 0 mod n1

x2 ≡ 1 mod n2.

More generally, we see that, if

x = a1u2n2 + a2u1n1,

then

x ≡ a1 mod n1

x ≡ a2 mod n2

and we have found a solution to our problem.

Lemma 5.4.2. [Chinese remainder theorem for two equations] If n1 and n2 are

coprime integers, the system of equations

x ≡ a1 mod n1

x ≡ a2 mod n2

has exactly one solution x ≡ x0 modulo n1n2.

Proof. We have already seen that the system has a solution y0. Long division

shows that there exists an m such that, setting x0 = y0 − mn1n2, we have 0 ≤ x0 ≤
n1n2 − 1. An easy calculation shows that x0 solves our equations, as does any

x = x0 + kn1n2 with k an integer.

On the other hand, if

y ≡ a1 mod n1

y ≡ a2 mod n2,
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then

y − x0 ≡ 0 mod n1

y − x0 ≡ 0 mod n2.

Since the coprime integers n1 and n2 divide y− x0, we know (using the uniqueness

of factorisation or Bézout’s identity) that n1n2 divides y − x0. Thus y − x0 = kn1n2

with k an integer and so y ≡ x0 mod n1n2. �

We note the useful special case of Lemma 5.4.2.

Lemma 5.4.3. If n1 and n2 are coprime integers, then

x ≡ a mod n1

x ≡ a mod n2

if and only if x ≡ a mod n1n2.

We shall only use the Chinese remainder theorem for two modular equations,

but our method is easily extended. Suppose that n1, n2, n3 are strictly positive

integers with each pair ni, n j [i , j] coprime. We can solve the system

x ≡ a1 mod n1

x ≡ a2 mod n2

x ≡ a3 mod n3

as follows. We use the method for dealing with two equations to find y such that

y ≡ a1 mod n1

y ≡ a2 mod n2.

We now observe that n1n2 and n3 are coprime so we can solve

x ≡ y mod n1n2

x ≡ a3 mod n3.

It is easy to check that x is a solution to our initial problem.

Exercise 5.4.4. Solve Sun Zi’s problem.

The remainder of this section is given over to exercises which the reader may

find interesting, but will not be used later.



92 CHAPTER 5. MODULAR ARITHMETIC

Exercise 5.4.5. [General Chinese remainder theorem] Extend Lemma 5.4.2 to

the system of modular equations

x ≡ a j mod n j [1 ≤ j ≤ m]

(with each pair ni, n j coprime [i , j]) by induction on m.

Exercise 5.4.6. If n is a strictly positive integer with n ≥ 5 which is not a prime,

show that (n − 1)! ≡ 0 mod n.

What happens if 1 ≤ n ≤ 4?

[Compare Wilson’s theorem (Lemma 5.2.10).]

Exercise 5.4.7. Suppose that n1 and n2 are integers with n1, n2 ≥ 2 having highest

common factor d.

(i) Show that, if the system of equations

x ≡ a1 mod n1

x ≡ a2 mod n2

has a solution, then a1 − a2 ≡ 0 mod d.

(ii) Use Bézout’s theorem to show that there exists an integer y such that

y ≡ 0 mod n1

y ≡ d mod n2.

(iii) By considering x = a1+kd, or otherwise, show that, if a1−a2 ≡ 0 mod d,

then the system of equations given in (i) has a solution.

5.5 Problems of equal difficulty

In this section we shall be interested in (Zpq,+,×) where p and q are distinct odd

primes. More specifically, we shall be interested in square roots for this system.

Lemma 5.5.1. Let p and q be distinct odd primes.

(i) The equation x2 ≡ 1 mod pq has 4 distinct roots 1, −1 and two further

roots8 ǫ and −ǫ.
(ii) If a . 0 mod p and a . 0 mod q, then the equation x2 ≡ a2 mod pq

has 4 distinct roots a, −a, ǫa and −ǫa.

8If the reader finds the idea of ‘four square roots’ a bit odd, she should note that still stranger

things happen in other algebraic systems (see Exercise 11.1.10 (iii)).
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Proof. (i) By Lemma 5.2.6, the equation

x2 ≡ 1 mod p ⋆

has solutions x ≡ 1 and x ≡ −1 and Lemma 5.2.6 tells us that these are the only

solutions. The same result holds with p replaced by q, so the Chinese remainder

theorem (Lemma 5.4.2) tells us that the equation x2 ≡ 1 mod pq has 4 distinct

roots given by the four different sets of modular equations


x ≡ 1 mod p

x ≡ 1 mod q


x ≡ −1 mod p

x ≡ −1 mod q


x ≡ 1 mod p

x ≡ −1 mod q


x ≡ −1 mod p

x ≡ 1 mod q
.

The first set of equations has the solution x ≡ 1 mod pq, and the second set has

the solution x ≡ −1. If we denote the solution of the third set by ǫ, then the

solution of the fourth set is −ǫ.
(ii) The argument of part (i) shows that the equation x2 ≡ a2 mod pq has at

most 4 distinct roots. By inspection a, −a, ǫa and −ǫa are distinct roots, so we are

done. �

Exercise 5.5.2. Suppose, as before, that p and q are distinct odd primes.

(i) If a . 0 mod p and a ≡ 0 mod q, show that the equation x2 ≡ a2

mod pq has two roots and identify them.

(ii) What happens if a ≡ 0 mod p and a ≡ 0 mod q and why?

(iii) Show that exactly (p + 1)(q + 1)/4 elements of Zpq are squares.

Exercise 5.5.3. If p = 7 and q = 13, use Bézout’s algorithm to compute the two

solutions of x2 ≡ 1 mod pq with x . ±1.

[If you dislike toy examples, just choose larger primes.]

We now leave the Greek world, where numbers are studied for their own sake,

and re-enter the Egyptian world, where numbers have a practical purpose. Just like

the Egyptian scribes, we will worry about the difficulty or ease of computations

but, for us, a calculation will be considered easy if a computer can do it in a short

time (that is to say, in a few steps) and difficult if it requires a long time (that is

to say, it requires many steps). Actually, we will go a little further and consider

that a calculation is easy if, when we choose the input according to some specified

random method, the probability our computer will fail to complete the required

computation in a short time is very small indeed9.

We now consider large primes p and q (think of numbers of the size of 10400)

such that p = 4n+3 and q = 4m+3 with m and n non-negative integers. We claim

9Say, less than the chance of you being struck by a meteorite in the next twenty-four hours.



94 CHAPTER 5. MODULAR ARITHMETIC

that the following two problems are essentially of equivalent difficulty. Here, we

know the value of N = pq, but are not told p or q.

Problem A (Factorisation) Given N, find p and q.

Problem B (Square roots) Given a, which we know to be a square modulo N, find

x such that x2 ≡ a mod N

Lemma 5.5.4. If we can solve Problem A, we can solve problem B easily.

Proof. Solving Problem A gives us p and q. By Lemma 5.2.13 (iii), x ≡ ±a(p+1)/4

mod p and x ≡ ±a(q+1)/4 mod q. The algorithm for the Chinese remainder theo-

rem now gives all the square roots. �

Lemma 5.5.5. If we can solve Problem B, then there is an easy procedure which

solves Problem A with very high probability in a small number of attempts.

Proof. Suppose that we have a device10 which solves Problem B, that is to say, if

we feed the device a number a, which we know to be a square modulo N = pq, it

will deliver an x such that x2 ≡ a mod N.

We choose an integer a at random with 1 ≤ a ≤ N − 1 (all choices being

equally likely). By applying Euclid’s algorithm to N and a, either we learn that a

is not coprime to N (incredibly unlikely if p and q are really large, but in this case

Euclid’s algorithm gives p or q as the highest common factor of a and N) or we

obtain (via Bézout’s algorithm) c such that ca ≡ 1 mod N.

We now feed the machine b = a2. The machine will return an x such that

x2 ≡ b mod N, but, since a was chosen at random, x is equally likely to be a, −a,

ǫa or −ǫa, where ǫ is defined as in Lemma 5.5.1. If x ≡ a or x ≡ −a mod N,

we have not learned anything, but, with probability 1/2, x . ±a mod N. In this

second case, we calculate η ≡ cx and observe that η ≡ ǫ or η ≡ −ǫ mod N.

By interchanging the names of p and q, if necessary, we may suppose that

η ≡ ǫ mod N. Then

η ≡ 1 mod p

η ≡ −1 mod q.

Since q divides η+ 1, but p does not, the highest common factor of η+ 1 and N is

q. Euclid’s algorithm applied to N and η + 1 now gives q. Knowing N and q, we

obtain p.

If our attempt has failed because the machine returned a known root, we repeat

the attempt with another randomly chosen a. The probability that n successive

attempts will fail is 2−n which becomes very small very rapidly as n increases. �

10In standard mathematical terminology, an oracle.
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Exercise 5.5.6. Suppose N = 437 and you know that N is the product of two

primes of the form 4n + 3. Starting from the observation that 1122 ≡ 308 ≡ 3022

mod 437, carry out the calculations suggested to find the prime factors of 437.

Exercise 5.5.7. Check, if you do not already know this useful fact, that 2−10 < 10−3

(and the associated remark that 210 ≈ 103). Conclude that the probability the

scheme outlined in Lemma 5.5.5 will fail to factorise N in 400 attempts is less

than 10−120.

Exercise 5.5.8. The algorithms described above all rely on the Euclidean algo-

rithm, so we need to check that the algorithm is fast. Recall that starting with a

pair (u, v) with u and v integers and u ≥ v ≥ 1, we either stop or produce a pair

(u′, v′) with u′ = v

u = ku′ + v′

where k ≥ 1. If we now make the next step, we either stop or produce a pair

(u′′, v′′) with u′′ = v′ and

u′ = k′u′′ + v′′

where k′ ≥ 1.

Show that u/2 > u′′. Deduce that, if we start Euclid’s algorithm with a pair

(U,V) where U ≈ 103m, then the process will terminate in less than about 20m

steps. The ‘pulveriser’ deserves its nickname.

Why does the fact that Euclid’s algorithm is fast tell us that Bézout’s algorithm

is fast?

Exercise 5.5.9. We have seen how to find the square roots of a modulo p, where p

is a prime and p = 4n+3, using Lemma 5.2.13 (iii) and computing a(p+1)/2 modulo

p. On the face of it, this involves an immense amount of calculation, but we can

use a simple and very old trick to get around this. Suppose r < 2m+1. Then we can

write r in binary as

r = ζ0 + ζ12 + ζ222
+ . . . ζm2m

with ζ j ∈ {0, 1} for 0 ≤ j ≤ m. Successive squaring allows us to compute a2,

a4
= (a2)2, . . . , a2k

= (a2k−1

)2, . . . , a2m

= (a2m−1

)2. Since

ar
= aζ020 × aζ121

. . . aζk2k × . . . aζm2m

we obtain ar by multiplying together those a2k

with ζk = 1. In standard notation,

ar
=

∏

ζk=1

a2k

.

(i) Check that this procedure only requires at most 2m multiplications.

(ii) Compute 7100 modulo 23.
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The equivalence of problems A and B form the basis for a very good secret

code. The Rabin code works as follows.

Step 1 Choose two very large prime numbers p and q with p ≡ 3 and q ≡ 3

mod 4 according to some random means. (There are non-trivial theorems which

show that this is quite easy to do.)

Step 2 Keep the values of p and q secret, but announce the value of N = pq to the

world.

Step 3 Anyone with a message for you converts it, according to some standard

method, into integers n1, n2, . . . nk with 0 ≤ n j < N for 1 ≤ j ≤ N. They then send

you m1, m2, . . . mk with m j ≡ n2
j

mod N.

Step 4 Since you know p and q, you can find the four possible solutions of x j ≡ m2
j

mod N. Provided that simple precautions are taken11, the probability that more

than one of these roots could be the correct one will be vanishingly small. Thus

you can recover the original message.

Now suppose that someone else has got hold of the coded messages m j. If they

can decode them on a regular basis, then they can extract square roots modulo N.

But, if they can extract square roots modulo N, then, as we have seen, they can

factorise N. If we change our primes frequently, then anyone who can decode

our messages without knowing our secret primes is in possession of a method of

factorising products of two large primes. Since mathematicians have been seeking

such a method for the last 300 years (and with particular fervour for the last 40

years), our prospective code-breaker must be very clever indeed.

If you use a pre-1970 code, then anyone who has sufficient information to

translate messages into that code will also have sufficient information to decode

coded messages. The Rabin and related codes have the property, very valuable

in the age of internet banking, that everybody can translate messages into code,

but only those in possession of a particular secret (here the factorisation of N) can

decode a coded message.

For various reasons, the most used code of this type is not the Rabin code, but

another code called the RSA12 code. The security of the RSA code also depends

on the presumed difficulty of the factorisation problem.

Of course, new mathematical ideas (or new technology, such as quantum com-

putation) may mean that the factorisation problem ceases to be hard. This means

that ‘factorisation codes’ should only be used for secret messages which (like

most secret messages13) need only remain secret for a fairly short time. A sub-

stantial level of security is provided by the high probability that any mathematician

11A particularly clever way of avoiding ambiguity was suggests by Williams. When this idea is

used, people sometimes talk about the Rabin–Williams code.
12Rivest, Shamir, Adleman.
13‘Do not accept any offer under two million.’; ‘The fleet will sail at dawn.’
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who solves the factorisation problem will prefer fame and a professorship at their

favourite university to prolonged and difficult negotiations with rather unsavoury

characters.

The reader who is tempted to use this as an example of an unexpected benefit

of abstract thought should keep two things in mind.

The first is that, by attempting to justify pure mathematics through its useful-

ness, you play straight into the hands of crude utilitarians. You should remember

Hardy’s sour remark14, first made in 1915 and repeated by him in 1940, that ‘a

science is said to be useful if its development tends to accentuate the existing

inequalities of wealth, or more directly promotes the destruction of human life.’

At a second and lower level, you should imagine the effect on a grant-giving

body of the argument that some piece of research might be useful in a couple of

hundred years’ time.

Exercise 5.5.10. This exercise simply shows that there are an infinity of primes of

the form 4n + 3, and not, as stated (correctly) in Step 1 of our description of the

Rabin code, that they are easy to find.

(i) Suppose that q j ≡ 1 mod 4 for 1 ≤ j ≤ r. Show that q1q2 . . . qr ≡ 1

mod 4. Deduce that, if M is a non-negative integer, then 4M + 3 must have a

prime factor p with p ≡ 3 mod 4.

(ii) Use the argument of Theorem 4.4.9 to show that there are an infinity of

primes of the form 4n + 3.

Exercise 5.5.11. Use Lemma 5.2.12 to show that 4M2
+ 1 is not divisible by any

prime of the form 4n + 3. By considering integers of the form

4(p1 p2 . . . pm)2
+ 1

and using the argument of Theorem 4.4.9, show that there are an infinity of primes

of the form 4n + 1.

Exercise 5.5.12. I announce that I shall be using the Rabin scheme with modulus

N. My agent in X’Dofdro sends me a message m (with 1 ≤ m ≤ N − 1) encoded

in the requisite form. Unfortunately, my white Persian cat eats the piece of paper

on which the prime factors of N are recorded, so I am unable to decipher it. I

therefore find a new pair of primes and announce that I shall be using the Rabin

scheme with modulus N′ > N. My agent now recodes the message and sends it to

me again.

The dreaded SNDO of X’Dofdro intercept both code messages. Show that they

can find m. Can they decipher any other messages sent to me using only one of

the coding schemes?

14‘A conscious rhetorical flourish, but perhaps excusable at the time when it was written.’[13]





Chapter 6

Axioms for the natural numbers

6.1 The Peano axioms

We have seen several systems that resemble the natural numbers in one way or

another and we shall see several more. What is special about the natural numbers?

It cannot be the algebraic rules that we started with, since these are shared, to a

greater or lesser extent with the other systems. However, the principle of induction

does appear to be special and it is the wish to recover the principle of induction

which lies behind our choice of axioms for the natural numbers.

We shall use the Peano axioms1. They describe a set N+ which we call the

strictly positive integers, a function S : N+ → N+ (we call S (x) the successor of

x) and a base number 1 ∈ N+ satisfying the following three conditions:

(P1) If x ∈ N+, then S (x) , 1.

(The base number 1 is not the successor of any natural number.)

(P2) If x, y ∈ N+ and S (x) = S (y), then x = y.

(Two natural numbers with the same successor are equal.)

(P3) If E is a set of natural numbers such that 1 ∈ E and, whenever x ∈ E, we

have S (x) ∈ E, then E = N+.

(An axiom of induction. If a collection of natural numbers contains 1 and with

every element its successor, then it contains all the natural numbers.)

The reader should pause and think whether she agrees that these are properties

we would wish the natural numbers to have.

Exercise 6.1.1. It is often useful in trying to understand the meaning of a set of

axioms to consider systems which obey some of the axioms, but not others. Check

the following statements.

1Sometimes called the Peano–Dedekind axioms, since they are a modification of axioms found

by Dedekind.

99
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(i) LetN+
1

consist of the single element 1 and let S 1(1) = 1. The system satisfies

all the axioms except (P1).

(ii) Let N+
2

consist only of the elements 1 and 2 and let S 2(1) = S 2(2) = 2. The

system satisfies all the axioms except (P2).

(iii) Let N+3 consist of all strictly positive integers together with the rational

numbers of the form n + 1/2 with n an integer and let S 3(a) = a + 1. The system

satisfies all the axioms except (P3).

Peano’s axioms seem to capture the properties of natural numbers as ‘ordered

numbers’. Are they powerful enough to give the standard algebraic operations

and relations? We shall see that the answer is yes, but, as might be expected, we

shall need to proceed very carefully to show this. If the reader thinks of a very

heavy freight train very slowly gathering speed from a standing start, she will

have a good image of the succession of results that we need to prove on the way

to Theorem 6.2.8. Once we get to that point, we can relax.

Throughout, we only assume Peano’s axioms. We write x′ = S (x).

We wish to define addition, that is to say, we wish to define x + y for natural

numbers x and y. Unfortunately, the expression x + y involves ‘two variables x

and y’ and our axioms only refer to ‘one variable x’. We get round the problem by

first ‘fixing x and allowing y to vary’ (see the uniqueness part of the proof below)

and then ‘fixing y and allowing x to vary’ (see the existence part of the proof).

Theorem 6.1.2. Let x ∈ N+. There is a unique function θx : N+ → N+ satisfying

the following conditions.

(a) θx(1) = x′.
(b) θx(y

′) =
(
θx(y)

)′
for all natural numbers y.

Proof. Uniqueness We first prove that there is at most one function with the de-

sired properties. Suppose that θx and φx have the properties stated, so that

(a) θx(1) = φx(1) = x′,
(b) θx(y

′) =
(
θx(y)

)′
and φx(y

′) =
(
φx(y)

)′
for all natural numbers y.

Let E be the set of natural numbers y such that φx(y) = θx(y). Condition (a)

tells us that

φx(1) = x′ = θx(1),

so 1 ∈ E. On the other hand, if y ∈ E, condition (b) tells us that

φx(y
′) =

(
φx(y)

)′
=

(
θx(y)

)′
= θx(y

′),

so y′ ∈ E. The induction axiom (P3) now tells us that E = N+, which is what we

wished to prove.

Existence Let E be the collection of natural numbers x such that we can define θx

with properties (a) and (b). Observe that, if we set θ̃1(y) = y′, then
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(a) θ̃1(1) = 1′ and

(b) θ̃1(y′) = (y′)′ =
(
θ̃1(y)

)′
for all natural numbers y.

Thus 1 ∈ E.

We now suppose x ∈ E and so there exists a function θx with properties (a)

and (b). Observe that, if we set θ̃x′(y) =
(
θx(y)

)′
, then

(a′) θ̃x′(1) =
(
θx(1)

)′
= (x′)′ and

(b′) θ̃x′(y
′) =

(
θx(y

′)
)′
=

((
θx(y)

)′)′
=

(
θ̃x′(y)

)′
for all natural numbers y.

Thus x′ ∈ E. The induction axiom (P3) now tells us that E = N+, which is what

we wished to prove. �

Lemma 6.1.3. The functions θx obtained in Theorem 6.1.2 satisfy the equation

θ1(y) = y′

for all natural numbers y and the equation

θx′(y) = θx(y
′)

for all natural numbers x and y.

Proof. Let E be the collection of natural numbers y such that θ1(y) = y′. We have

θ1(1) = 1′, so 1 ∈ E. If y ∈ E, then, by the definition of θ1,

θ1(y′) =
(
θ1(y)

)′
= (y′)′,

so y′ ∈ E. The induction axiom (P3) now tells us that E = N+ and so θ1(y) = y′

for all y.

Let x be a natural number and let Ex be the collection of natural numbers y

such that

θx′(y) = θx(y
′).

We know that

θx′(1) = x′′ =
(
θx(1)

)′
= θx(1

′),

so 1 ∈ Ex. Further, if y ∈ Ex, then

θx′(y
′) =

(
θx′(y)

)′
=

(
θx(y

′)
)′
= θx(y

′′),

so y′ ∈ Ex. Thus, by the induction axiom (P3), Ex = N
+ and this is equivalent to

the statement of the second claim of our theorem. �

We can now remove the asymmetry of x and y by setting x + y = θx(y). The

definition given in Theorem 6.1.2 and the conclusion of Lemma 6.1.3 show that

x + 1 = θx(1) = x′ = θ1(x) = 1 + x
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and

x + y′ = θx(y
′) = (x + y)′ = θx′(y) = x′ + y,

or, more succinctly,

x + 1 = x′ = 1 + x and x + y′ = (x + y)′ = x′ + y ⋆

for all natural numbers x and y.

Initially, proofs like the one just given of Theorem 6.1.2 look totally opaque.

After some practice, the beginner may swing to the opposite opinion. ‘Surely this

proof is trivial? You just define the appropriate E and perform the appropriate

verifications.’ It is worth pointing out that the verifications have to be carried out

in the right order. More importantly, much of the skill of Peano and his prede-

cessors2, lay in choosing a collection of axioms and definitions which make the

proofs run easily.

Once we have got this far, the commutative and associative laws of addition

are easy to obtain.

Lemma 6.1.4. If a, b and c are natural numbers, the following equalities hold.

(i) a + b = b + a. (Commutative law.)

(ii) (a + b) + c = a + (b + c). (Associative law.)

Proof. (i) Fix a and let E be the set of natural numbers b with a + b = b + a. By

⋆,

a + 1 = 1 + a,

so 1 ∈ E. If b ∈ E, then, using⋆ again,

a + b′ = (a + b)′ = (b + a)′ = b′ + a,

so b′ ∈ E. The induction axiom (P3) now tells us that E = N+ and the required

result follows.

(ii) Fix a and b and let E be the set of natural numbers c with (a + b) + c =

a + (b + c). By⋆,

(a + b) + 1 = (a + b)′ = a + b′ = a + (b + 1),

so 1 ∈ E. If c ∈ E, then, using⋆ again,

(a + b) + c′ =
(
(a + b) + c)′ =

(
a + (b + c)

)′
= a + (b + c)′ = a + (b + c′),

so c′ ∈ E. The induction axiom (P3) now tells us that E = N+ and the required

result follows. �

As we shall see in Section 6.3, we can obtain multiplication in a similar man-

ner. For the moment, we turn to the more challenging task of obtaining the usual

order < on N+.

2Including Grassmann, whose work on this, as well as his even more important work on what

we now call vectors (see page 211), was considerably ahead of its time.
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6.2 Order

It is clear that the notion of successor in the Peano axioms is related to the standard

notion of order x < y, but, if the reader reflects, she will see that it is not that

easy to derive the one from the other. We looked at addition first to provide an

appropriate tool. The reader may also have noticed that, in deriving addition, we

only made use of the axiom (P3) (see Exercise 6.3.10). Our treatment of order

will require all the axioms.

We make a start with some fairly easy observations.

Lemma 6.2.1. (i) If x , y, then x′ , y′. (Unequal natural numbers have unequal

successors.)

(ii) x , x′. (No natural number equals its successor.)

(iii) If x , 1, then there exists a unique y with x = y′. (Every natural number,

except 1, has a unique predecessor.)

Proof. (i) If x′ = y′, then, by (P2), x = y.

(ii) Let E be the collection of natural numbers x such that x , x′. By (P1),

1 , 1′, so 1 ∈ E. If x ∈ E, then x , x′ and, by (i), x′ , (x′)′, so x′ ∈ E. The

induction axiom (P3) now tells us that E = N+, which is what we wished to prove.

(iii) Uniqueness is guaranteed by (P2), so we need only prove existence. Let

E be the collection of natural numbers consisting of 1 together with all those x

such that there exists a y with y′ = x. We have 1 ∈ E by definition. Now suppose

x ∈ E. Automatically, x′ is the successor of x, so x′ ∈ E. The induction axiom

(P3) now tells us that E = N+, which is what we wished to prove. �

Results like those of Lemma 6.2.1 are easy to prove, but, if you forget to prove

them, there are problems later. We now combine the axioms with the results

on addition (see, particularly, the formulae labelled ⋆ on page 102). The next

two lemmas say, in effect, that we cannot go round in circles. (Contrast modular

arithmetic.)

Lemma 6.2.2. If x and y are natural numbers, then

y , x + y.

Proof. Fix x and let E be the collection of natural numbers y such that y , x + y.

We know, by axiom (P1), that 1 is not a successor, so

1 , x′ = x + 1.

Thus 1 ∈ E.
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On the other hand, if y ∈ E, then

y , x + y.

Lemma 6.2.1 (i) now tells us that

y′ , (x + y)′ = x + y′

so y′ ∈ E. The induction axiom (P3) now tells us that E = N+ which is what we

wished to prove. �

Lemma 6.2.3. If x, y and z are natural numbers with x + y = x + z, then y = z.

Proof. We prove an equivalent statement: If a, b and c are natural numbers with

b , c, then

a + b , a + c.

To this end, fix b and c with b , c and let E be the collection of natural numbers

a such that a + b , a + c. By⋆ and Lemma 6.2.1 (i), we know that

1 + b = b′ , c′ = 1 + c,

so 1 ∈ E.

On the other hand, if a ∈ E, we have, using⋆ and Lemma 6.2.1 (i) again,

a′ + b = (a + b)′ , (a + c)′ = a′ + c,

so a′ ∈ E. The induction axiom (P3) now tells us that E = N+, which is what we

wished to prove. �

We can now prove a key result.

Theorem 6.2.4. Suppose x and y are natural numbers. Then exactly one of the

following statements must be true.

(1) x = y.

(2) There is a natural number u such that x + u = y.

(3) There is a natural number v such that y + v = x.

Proof. We begin by proving that at most one of the three statements must be true.

Lemma 6.2.2 tells us that (1) and (2) cannot both be true and that (1) and (3)

cannot both be true. Now suppose (2) and (3) are both true. We then have

x + (u + v) = (x + u) + v = y + v = x,

which contradicts Lemma 6.2.2 again.
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We now prove that one of the statements must be true. As usual, we fix x and

consider the collection Ex of natural numbers y for which at least one (and so, by

the first paragraph, exactly one) of the statements are true.

We note first that, if x = 1, then, looking at statement (1), we see that 1 ∈ E1.

If x , 1, then Lemma 6.2.1 (iii) tells us that x = u′ for some u ∈ N+, so x =

u + 1 = 1 + u and, looking at statement (3), we see that 1 ∈ Ex.

Now suppose that y ∈ Ex.

Case 1 If x = y, then y′ = y + 1 = x + 1 and statement (2) holds with y replaced

by y′ and u = 1.

Case 2 If x + u = y, for some u, then

x + u′ = (x + u)′ = y′,

so statement (2) holds with y replaced by y′ and u by u′.
Case 3 If x = y + v for some v, then there are two possibilities. The first is that

v = 1 so that

x = y + 1 = y′

and statement (1) holds with y replaced by y′. The second is that v , 1 and so,

again by Lemma 6.2.1 (iii), there is a w such that v = w′. In this case

x = y + v = y + w′ = (y + w)′ = y′ + w

so statement (3) holds with y replaced by y′ and v by w.

In all three cases, y′ ∈ Ex. The induction axiom (P3) now tells us that we have

Ex = N
+ as required �

The way is now clear to define the notion of inequality exactly as we did on

page 13.

Definition 6.2.5. If a and b are natural numbers, we write a > b if and only if

there exists a natural number c with b + c = a.

We now obtain trichotomy not as a rule but as a theorem.

Theorem 6.2.6. [Trichotomy] If a and b are natural numbers, then exactly one

of the following conditions holds: a > b or b > a or a = b.

Proof. This is the content of Theorem 6.2.4. �

We have now recovered all our rules for addition and inequality with the ex-

ception of our golden key, the least member principle. However, it is pretty clear

that a careful reuse of the argument we used to prove Theorem 4.1.7 will give us

the required rule.

We need a preliminary lemma.
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Lemma 6.2.7. (i) If x is a natural number, then x ≥ 1.

(ii) If y > x, then y ≥ x + 1.

(iii) If a′ > b, then a ≥ b.

Proof. (i) Either x = 1 or, by Lemma 6.2.1 (iii), x = y′ for some y. Then

x = y + 1 = 1 + y

and x > 1.

(ii) By definition, y = x + u for some u. By part (i), u ≥ 1, so either u = 1 or

u > 1. If u = 1, then y = x + 1 and we are done. If u > 1, then u = v + 1 for some

v and

y = x + (v + 1) = x + (1 + v) = (x + 1) + v

so y > x + 1.

(iii) Suppose that b > a. Then, by part (ii), b ≥ a + 1 = a′, which trichotomy

tells us is impossible. �

Theorem 6.2.8. [Least member principle] If A is a non-empty collection of nat-

ural numbers, we can find an a0 ∈ A such that a ≥ a0 for all a ∈ A.

Proof. We call the a0, described in the statement of our theorem, a least member

of A. Let E be the set of natural numbers m such that, if m ≥ r and r ∈ A (a

collection of natural numbers), then A has a least member.

If m = 1 and m ≥ r, then 1 ≥ r and, by Lemma 6.2.7 (i), r ≥ 1. By trichotomy

r = 1. If 1 ∈ A, then, by Lemma 6.2.7 (i) again, 1 is a least member of A. Thus

1 ∈ E.

Now suppose m ∈ E, m′ ≥ r and r ∈ A. There are two possibilities: either

there does not exist an s ∈ A with m′ > s or there does.

If there does not exist an s ∈ A with m′ > s, then m′ = r and m′ is itself a least

member of A.

If there does exist an s ∈ A with m′ > s, then by Lemma 6.2.7 (iii), m ≥ s.

Since m ∈ E, it follows that A has a least member.

In either case, A has a least member. We have thus shown that m′ ∈ E. The

induction axiom (P3) now tells us that E = N+. Since any non-empty A contains

some r we can set r = m to obtain the required result. �

The easy argument of Lemma 4.1.1 shows that there is exactly one least mem-

ber, so we may refer to the least member.
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6.3 Conclusion of the argument

We have done the hard part of the argument, but there remain various tasks to

perform. The introduction of multiplication follows the same pattern as that of

addition.

Theorem 6.3.1. (i) Let x ∈ N+. There is a unique function µx : N+ → N+

satisfying the following conditions.

(a) µx(1) = x.

(b) µx(y
′) = µx(y) + x for all natural numbers y.

(ii) Further, this function satisfies the equation

µ1(y) = y

for all natural numbers y and the equation

µx′(y) = µx(y) + y

for all natural numbers x and y.

Proof. This follows the proof of Theorem 6.1.2 and Lemma 6.1.3 and is left to

the reader. �

Exercise 6.3.2. Write out the proof of part (i) of Theorem 6.3.1.

[This is quite easy to do by copying the proof of Theorem 6.1.2 and making the

appropriate changes. However, it will be more profitable if, from time to time, the

reader thinks about what is happening.]

Exercise 6.3.3. Write out the proof of part (ii) of Theorem 6.3.1.

We can now remove the asymmetry of x and y by setting x × y = µx(y) and

observing that

x × 1 = x = 1 × x, x × y′ = (x × y) + x, x′ × y = (x × y) + y ⋆

for all natural numbers x and y. Notice that⋆ contains the ‘one times multiplica-

tion table’.

Lemma 6.3.4. If a is a natural number, then 1 × a = a.

We can now prove the remaining rules discussed in sections 1.1.

Lemma 6.3.5. Let a, b and c be natural numbers. Then the following results hold.

(i) a × (b + c) = (a × b) + (a × c). (Distributive law.)

(ii) a × b = b × a. (Commutative law for multiplication.)

(iii) (a × b) × c = a × (b × c). (Associative law for multiplication.)
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Proof. (i) Fix a and b. Let E be the collection of natural numbers c such that

a × (b + c) = (a × b) + (a × c).

We note that

a × (b + 1) = a × b′ = (a × b) + a = (a × b) + (a × 1),

so 1 ∈ E.

On the other hand, if c ∈ E, then, using the associative property of addition,

a × (b + c′) = a × (b + c)′ =
(
a × (b + c)

)
+ a

=
(
(a × b) + (a × c)

)
+ a = (a × b) +

(
(a × c) + a

)

= (a × b) + (a × c′),

so c′ ∈ E. The induction axiom (P3) now tells us that E = N+, which is what we

wished to prove.

(ii) (Observe that we shall use (i) both here and in the proof of (iii).) Fix a and

let E be the set of natural numbers b with a × b = b × a. By⋆,

a × 1 = 1 × a

so 1 ∈ E. If b ∈ E, then, using (i), ⋆, the commutative property of addition and

the relation x′ = x + 1,

a × b′ = a × (b + 1) = (a × b) + (a × 1) = (a × b) + a

= (b × a) + a = a + (b × a) = (1 × a) + (b × a)

= (1 + b) × a = (b + 1) × a = b′ × a

so b′ ∈ E. The induction axiom (P3) now tells us that E = N+ and the required

result follows.

(iii) Fix a and b. Let E be the collection of natural numbers c such that

(a × b) × c = a × (b × c).

We note that

(a × b) × 1 = a × b = a × (b × 1),

so 1 ∈ E.

On the other hand, if c ∈ E, then, using (i),

a × (b × c′) = a × (
(b × c) + b

)
=

(
a × (b × c)

)
+ (a × b)

=
(
(a × b) × c

)
+ (a × b) = (a × b) × c′,

so c′ ∈ E. The induction axiom (P3) now tells us that E = N+, which is what we

wished to prove. �
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Exercise 6.3.6. Cast a quick eye over the mathematical part of Section 1.3 to

check that the results of this chapter match up with what is required there.

We complete the discussion by showing that the Peano system is unique (sub-

ject to the standard caveat up to isomorphism). The reader is reminded that (as

our discussion of modular arithmetic shows) the axioms for a field (see Defini-

tion 5.1.1) do not define a unique system. Later we shall see that, even if we add

order axioms, there are many ordered fields.

Theorem 6.3.7. Suppose that A is a set, S a successor function on A and α a base

number such that the Peano axioms are obeyed and that (B, T, β) is another such

system obeying the Peano axioms. Then there is a bijective function f : A → B

such that f (α) = β and T
(
f (a)

)
= f

(
S (a)

)
for all a ∈ A.

The reader should pause to think whether, in her opinion, the theorem just

stated shows that (so far as successor properties go) the Peano system is essentially

unique.

Before beginning the proof of Theorem 6.3.7 we observe that, since any sys-

tem obeying the Peano axioms obeys least element principle, we can obtain all the

results of Chapter 4 and, in particular, Theorem 4.2.1 which we restate in a more

abstract form.

Theorem 6.3.8. Suppose that A is a set, S a successor function on A and α a

base number such that the Peano axioms are obeyed. Let X be a set with xα ∈ X.

Suppose that whenever a ∈ A we have a function ga : X → X. Then there exists a

unique f : A→ X such that f (α) = xα and f (S (a)) = ga( f (a)) for all a ∈ A.

Exercise 6.3.9. Cast a quick eye over the the first two sections of Chapter 4 and

check that Theorem 6.3.8 is indeed a restatement of Theorem 4.2.1.

Proof of Theorem 6.3.7. Since (A, S , α) obeys the Peano axioms, Theorem 6.3.8

allows us to define a function f : A→ B inductively by the formulae

f (α) = β and f
(
S (a)

)
= T

(
f (a)

)
.

Similarly, we can define g : B→ A inductively by the formulae

g(β) = α and g
(
T (b)

)
= S

(
g(b)

)
.

I claim that g
(
f (a)

)
= a for all a ∈ A. To show this, let us write E for the

collection of a ∈ A such that g
(
f (a)

)
= a. We observe that

g
(
f (α)

)
= g(β) = α
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and, that, if a ∈ E, then

g
(
f (S (a))

)
= g

(
T ( f (a))

)
= S

(
g( f (a))

)
= S (a),

so S (a) ∈ E. The induction axiom (P3) for (A, T, α) now tells us that E = A,

which is what we wished to prove.

The same argument tells us that f
(
g(b)

)
= b for all b ∈ B. Thus (see Exer-

cise 3.4.11 (ii)) f is a bijection. �

Can’t sleep, an xkcd cartoon.

Exercise 6.3.10. I said earlier that our definition of addition only made use of

axiom (P3). Now that we have established the properties of N+, we may use

results from Parts I and II of this book to illustrate the point.

Let q be an integer with q ≥ 2. We consider the set Zq of equivalence classes

[r] modulo q (see the discussion starting with Exercise 5.1.10). If we define a

function S : Zq → Zq by S ([x]) = [x + 1], note that [1] ∈ Zq and show that the

system obeys the following conditions.

(Q2) If [x], [y] ∈ Zq and S ([x]) = S ([y]), then [x] = [y].

(Q3) If E is a subset of Zq such that [1] ∈ E and whenever [x] ∈ E, we have

S ([x]) ∈ E, then E = Zq.

Since we obtained addition for the Peano system only using (P3), it follows

that we can use (Q3) to obtain the following analogue of Theorem 6.1.2. Let

[x] ∈ Zq. There is a unique function φ[x] : Zq → Zq satisfying the following

conditions.

(a) φ[x]([1]) = S ([x])

(b) φ[x]

(
S ([y])

)
= S

(
φ[x]([y])

)
for all [y] ∈ Zq.

Show that φ[x]([y]) = [x] + [y] where ‘+’ is our standard addition for modular

arithmetic.

Obtain similar results for multiplication.
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6.4 Order numbers can be used as counting num-

bers

If I look at a field, I can immediately spot if there are no sheep, one sheep or two

sheep in it. If I look at a field with many sheep, I may be able to estimate the

number of sheep in it, but the only way I know of finding the actual number of

sheep in the field is to count them. How do we count sheep?

Typically, we count the sheep as they enter the field, counting ‘First sheep

in’, ‘Second sheep in’, ‘Third sheep in’ and so on until we get to the last and nth

sheep to enter. The sheep now mill around until we open the gate to let them out,

counting ‘First sheep out’, ‘Second sheep out’, ‘Third sheep out’ and so on until

we get to the last and mth sheep to leave. Does m = n? In the real world this is a

matter of experiment3. In the world of mathematics it is a matter of proof.

The Peano axioms give us the kind of order numbers ‘first element’ 1, ‘second

element’ 1′ = 1 + 1, ‘third element’ 1′′ = (1 + 1) + 1 and so on which are used

when counting sheep. Our job is to show that we can use the Peano axioms to

obtain a satisfactory way of counting collections of mathematical objects (that is

to say, sets). In particular, we need to show that, however a set is presented to us,

our counting system will always produce the same number. This is the content of

Lemma 6.4.3, but we shall need to work quite hard to arrive there. Let us write Fn

for the collection of natural numbers r with r ≤ n. We write 2 = 1 + 1.

Lemma 6.4.1. (i) If there exist natural numbers m and n with n > m and an

injective function f : Fn → Fm, then there exists an injective function g : Fm+1 →
Fm.

(ii) If there exists a natural number m and an injective function f : Fm+2 →
Fm+1, then there exists an injective function g : Fm+1 → Fm.

(iii) If n and m are natural numbers with n > m, then there does not exist an

injective function f : Fn → Fm.

(iv) If m and n are natural numbers, then there exists a bijective function f :

Fm → Fn if and only if m = n.

Proof. (i) We know (see Lemma 6.2.7 (ii)) that n ≥ m + 1, so, if r ∈ Fm+1, it

follows that r ∈ Fn. Set g(r) = f (r) for all r ∈ Fm+1.

(ii) There are two possibilities. Either f (r) ≤ m for all r ≤ m+1 or there exists

a u ≤ m + 1 such that f (u) = m + 1.

3‘They walked on, thinking of This and That, and by-and-by they came to an enchanted place

on the very top of the Forest called Galleons Lap, which is sixty-something trees in a circle; and

Christopher Robin knew that it was enchanted because nobody had ever been able to count whether

it was sixty-three or sixty-four, not even when he tied a piece of string round each tree after he had

counted it.’ A. A. Milne The House at Pooh Corner
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If f (r) ≤ m for all r ≤ m + 1, then we set g(r) = f (r) for all r ≤ m + 1 and g is

automatically injective.

If there exists a u ≤ m+1 such that f (u) = m+1, then, since f is injective, we

know that f (m + 2) = v with v , m + 1. By injectivity, f (r) , v for all r ∈ Fm+2

with r , m + 2, that is to say for all r ∈ Fm+1. If we now set

g(u) = v

g(r) = f (r) for r , u,

we obtain a well-defined injective function g : Fm+1 → Fm.

(iii) By part (i), it is sufficient to prove the result when n = m + 1. To this

end, let E be the collection of natural numbers such that there does not exist an

injective function f : Fm+1 → Fm. We observe that, if f is a function from F2 to

F1, then

f (1) = 1 = f (2),

so f is not injective. Thus 1 ∈ E.

On the other hand, part (ii) tells us that, if m ∈ E, then m + 1 ∈ E. The axiom

of induction now tells us that E = N+, which is what we wished to prove.

(iv) If m , n, then either m > n or n > m. If m > n, we know that there is no

injective and so no bijective function f : Fn → Fm. If n > m, then, by the previous

sentence, there is no bijective function g : Fm → Fn and so no bijective function

f : Fn → Fm.

If n = m, the identity function f (r) = r gives a bijection between Fn and

itself. �

Exercise 6.4.2. We obtained Lemma 6.4.1 (iv) by considering injective functions.

Obtain the same result by considering surjective functions. (The most obvious

way of doing this requires you to find ‘surjective analogues’ of the first three parts

of the lemma.)

We have an immediate corollary.

Lemma 6.4.3. If A is a set and there exist bijections f : Fn → A and g : Fm → A

for some natural numbers m and n, then m = n.

Proof. Observe that the function h : Fm → Fn defined by h(r) = f −1
(
g(r)

)
is a

bijection. �

We can thus make the following definition.

Definition 6.4.4. If A is a non-empty set such that there is a bijection f : Fn → A

for some natural number n, we say that A is a finite set with n elements and write

|A| = n. If no such bijection exists for any natural number, we say that A is infinite.

We say that the empty set ∅ (that is to say, the set containing no elements) is

finite and write |∅| = 0.
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If A is finite we call |A| the number4 of elements in A.

Exercise 6.4.5. (i) If A and B are non-empty sets such that there exists a bijection

g : A→ B, show that, if A is finite, then B is finite and |A| = |B|.
(ii) If A and B are non-empty finite sets and |A| = |B| show that there exists a

bijection g : A → B.

Lemma 6.4.6. The set N+ of natural numbers is infinite.

Proof. Suppose, if possible, that N+ were finite. Then we could find a natural

number n and a bijective function f : Fn → N+. If we define g : Fn+1 → Fn, by

g(r) = f −1(r) for r ∈ Fn+1, then g is injective which we know to be impossible by

Lemma 6.4.1 (iii). �

Remark The statement that N+ is infinite is unlikely to have surprised the reader,

but nonetheless marks a significant intellectual parting of the ways. I can picture

a field with 20 sheep, but, although I have frequently visited London and Paris,

I find it very hard to picture 8 000 000 people. How then can I grasp the idea of

an infinite collection of objects? It is perfectly reasonable to reject the existence,

even in an abstract form, of collections of infinitely many objects and, for someone

who rejects such collections, the Peano axiom system (along with the bulk of

modern mathematics in its standard form) is thinly disguised nonsense. Like most

mathematicians, I respect, but do not share, this point of view.

If he’s content with a vegetable love which would certainly not suit

me

Why what a most particularly pure young man, this pure young man

must be.

W. S. Gilbert Patience

Exercise 6.4.7. Check that the statement and proof of Theorem 4.4.9 are consis-

tent with the definition of an infinite set just given.

For the rest of this chapter, I shall assume a little more knowledge of set theory

and its notation than elsewhere. We write E ⊇ F to mean that F is a subset of E.

Lemma 6.4.8. (i) If n is a natural number and Fn ⊇ B, then B is finite and n ≥ |B|.
(ii) If A is a finite set and A ⊇ B, then B is finite and |A| ≥ |B|.

4Our definition of the natural numbers excludes 0, but, when talking about the empty set, it is

useful to work with the non-negative integers N. (See the footnote on page 45.)
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Proof. (i) The result is trivial when B = ∅, so we need only prove the result for B

non-empty. Let E be the collection of natural numbers n such that, whenever B is

a non-empty subset of Fn, B is finite with n ≥ |B|.
We observe that, if n = 1, then the only non-empty subset of F1 is F1 itself,

so 1 ∈ E. Suppose now that n ∈ E and Fn+1 ⊇ B. If n + 1 < B, then B is a

non-empty subset of Fn, so B is finite with n + 1 ≥ n ≥ |B|. If n + 1 ∈ B, we

consider B′ = B \ {n + 1}. If B′ is empty, then f : F1 → B defined by f (1) = n+ 1

is a bijection, so n + 1 ≥ 1 = |B|. If B′ is non-empty, then, since B′ is a subset

of Fn, we know that there exists a natural number m with n ≥ m and a bijection

g : Fm → B. If we define f (r) = g(r) for m ≥ r and f (m + 1) = n + 1, we obtain a

bijection f : Fm+1 → B. Thus B is finite with n + 1 ≥ m + 1 = |B|. The axiom of

induction now tells us that E = N+, which is what we wished to prove.

(ii) The result is trivial if B = ∅, so we may suppose that B and so A are non-

empty. Writing n = |A|, we know that there is a bijection f : Fn → A. The set C

consisting of those r with f (r) ∈ B is a non-empty subset of Fn and so, by part (i),

is finite with n ≥ |C|. Since the function g : C → B given by g(r) = f (r) for r ∈ C

is a bijection, we have B finite with |B| = |C| and |A| ≥ |C| = |B|. �

The reader who has got this far will almost certainly know that A∪B (the union

of A and B) is the set consisting of all the x which belong to A or B (including

those that belong to both) and A × B denotes the set of ordered pairs (a, b) with

a ∈ A and b ∈ B.

Lemma 6.4.9. (i) If A and B are disjoint finite sets (that is to say A and B have

no member in common), then A ∪ B is finite and |A ∪ B| = |A| + |B|.
(ii) If A and B are finite sets, then A × B is finite and |A × B| = |A| × |B|.

Proof. (i) If A or B is the empty set, the result is trivial, so we may suppose |A| = n,

|B| = m for some natural numbers n and m. By definition, we can find bijective

functions f : A→ Fn and g : B→ Fm. If we set

h(r) = f (r) if n ≥ r ≥ 1,

h(n + u) = g(u) if m ≥ u ≥ 1,

then h : Fn+m → A ∪ B is a bijective function and we are done.

(ii) If A or B is empty then, by definition, A×B is empty so the result is trivial.

Thus we may take A, B, n, m, f and g as in part (i). If we set

h(r) =
(

f (r), g(1)
)

for n ≥ r ≥ 1, and

h(un + r) =
(
f (r), g(u + 1)

)

for n ≥ r ≥ 1 and m > u ≥ 1, then h : Fn×m → A × B is a bijective function and

we are done. �
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Exercise 6.4.10. Suppose that we omit the condition A and B disjoint in the state-

ment of Lemma 6.4.9 (i). What can we say about A ∪ B? Prove your answer.

Exercise 6.4.11. Use induction on m to show that, if n is a fixed natural number,

there is a bijective function from Fnm to the collectionFn(m) of functions f : Fm →
Fn.

Deduce that, if A and B are non-empty finite sets and AB is the set of all

functions g : B→ A, then AB is finite with |AB| = |A||B|.

Exercise 6.4.12. Suppose that A and B are finite non-empty sets with |A| = |B|.
Use induction on the number of elements of A to prove the following two state-

ments.

(i) If f : A→ B is injective, then f is bijective.

(ii) If g : A→ B is surjective, then g is bijective.

Show, by means of examples, that the statements may be false if A and B are

not finite.

Exercise 6.4.13. Suppose that A is a non-empty finite set equipped with an order ≻
obeying transitivity and trichotomy (see page 13, if necessary). Show, by induction

on the size |A| of A, that A has a least element.

We have thus seen that ‘order numbers’ of Peano, where one number succeeds

another, can be used as ‘counting numbers’ where two finite sets have the same

number of elements if and only if there is a bijection between them.

The process may be reversed so that we start with ‘counting numbers’ and end

with ‘order numbers’. To do this, we first choose particular finite sets to provide a

scale of sizes.

Example 6.4.14. (To be omitted by those who dislike hand-waving.) One way of

providing scale sets, due to Von Neumann, is to look at 1 = {∅} (the set with one

element consisting of the empty set),

2 = {∅, 1} = {∅, {∅}}
3 = {∅, 1, 2} = {∅, {∅}, {∅, {∅}}}
...

n + 1 = {∅, 1, 2, . . . , n}.

If there is a bijection f : n → E, we say that E is a set of the same size as n, or,

more informally, that E has n elements5.

5(A very small print footnote.) At first sight, it may look as if we are getting the Peano axioms,

and in particular the principle of induction, for free, but we need a set theoretic axiom called ‘the

axiom of infinity’ (see page 44 in [12]) in order to talk about the set of Von Neumann ‘numbers’.
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We can have a bijective function f : A → B even when A and B are infinite.

Cantor used this idea to define cardinal numbers to measure the size of infinite

sets. The following exercise provides a hint (but only a hint) as to how this might

be done.

Exercise 6.4.15. Let us call two non-empty6 sets A and B equipollent if there is a

bijection f : A→ B.

(i) Let A be a collection (that is to say, a set) of non-empty sets. Show that

equipollence is an equivalence relation onA.

(ii) Show, using earlier results in this section, that two non-empty finite sets

are equipollent if and only if they have the same number of elements.

(iii) If A and B are non-empty sets, show that A × B is equipollent to B × A.

(We can think of this as the etherialisation of the diagram on page 6 which gave

us 3 × 4 = 4 × 3.)

(iv) Let A be the set of squares of the natural numbers N+. Show that A is

equipollent to N+ although A is a subset of N+ which does not equal N+. (This

result goes back to Galileo. In Theorem 8.2.7 we shall show that not all infinite

sets are equipollent.)

Cantor also generalised the Peano axioms by introducing ‘transfinite induc-

tion’ to obtain ordinal numbers (that is to say, ordered numbers) ‘beyond’ N+. (It

is worth noting that his first use of this idea arose not in some deliberate attempt

at generalisation, but in trying to solve a concrete problem in Fourier Analysis.)

The new ‘cardinal’ and ‘ordinal’ arithmetics are very different from each other

and from the familiar arithmetic developed in this book. But that is another story.

6.5 Objections

We have seen how to construct the strictly positive rationals from the natural num-

bers and the rationals from the strictly positive rationals. However, we did not

construct the natural numbers, but, instead, presented a set of rules, the Peano

axioms, which they obey, and shown how the other rules that we use follow from

the axioms. In this section, we discuss various objections to this procedure7.

The plain man objection

There exists a school of thought, ably represented by many journalists, En-

glish intellectuals and politicians, which says that anything can be explained in

ten minutes. Holders of this view would consider the hundred pages or so that

we have devoted to going from the Peano axioms to the rationals as airy-fairy

6By convention, the empty set is equipollent to itself and not equipollent to a non-empty set.
7For a serious philosophical treatment of these and related topics, I recommend my father’s

book [19].
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mystification. Since nothing we have done affects the use of numbers for trade,

building pyramids or tax collecting, they are right from their own point of view,

and it would be foolish to argue with them.

However, any reader who has got this far must be someone who enjoys rea-

soning for its own sake. She will have enjoyed the proof that there are an infinity

of primes and be intrigued by the following theorem of Dirichlet.

Theorem 6.5.1. [Dirichlet’s theorem on primes in arithmetic progression] If

a and b are coprime strictly positive integers, then there are an infinity of primes

of the form an + b with n an integer.

Exercise 6.5.2. (i) If a and b are strictly positive integers, but not coprime, explain

why there can be at most one prime of the form an + b.

(ii) Use Exercises 5.5.10 and 5.5.11 to show that Dirichlet’s theorem is true

when a = 4.

I think the reader will agree that such a remarkable theorem requires a cast-

iron proof with every step examined thoroughly8. But every chain of reasoning

must start from somewhere and that somewhere must be a collection of agreed

principles, that is to say, axioms.

The romantic objection

A 19th century mathematician might agree that arguments must start from

common first principles, but object that we have an inherent understanding of

the natural numbers and that we cannot reduce such an understanding to a set of

axioms. If the romantic view is right, then, just as we stumbled across various

properties of arithmetic in the first chapter of this book and then added the prin-

ciple of induction later, so there may be other ‘inherent properties’ of the natural

numbers not deducible from the Peano axioms, still to be discovered.

Although, I think, few people now hold this view, it cannot be refuted. On the

other hand, it is up to the romantic mathematicians to discover such a ‘inherent

property’ and, until they do, we can continue to use the Peano axioms. (And, of

course, even if such a ‘inherent property’ was discovered and the mathematical

world agreed that the Peano axioms needed to be supplemented by a further ax-

iom9 we could still study the consequences of the Peano axioms by themselves.)

The truth seeker’s objection

Until the beginning of the 19th century, the axioms of Euclidean geometry

were regarded as ‘self evident’. It would be comforting if the Peano axioms were

8She will also not be surprised to be told that the only known proofs are quite hard.
9This possibility is not excluded by Theorem 6.3.7 which states that all Peano systems are

isomorphic if we only consider successor properties. Logicians have constructed explicit examples

of statements about Peano systems which cannot be deduced from Peano’s axioms and which do

not contradict them. However I do not know of any claim that these examples reveal ‘inherent

properties’ of the natural numbers.
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‘self evident’, but the question then arises ‘self evident to whom?’ There are many

people, including, I must confess, the present author to whom the existence of the

natural numbers as described by the Peano axioms does appear evident. However,

there are others, including some very clever mathematicians, for whom this is not

the case. If something is not evident to a sufficient number of people it is not self

evident.

If we look at mathematical practice, we do not see philosophers engaged in

a quest for truth, but mathematicians seeking and checking deductions10. Pure

mathematics viewed in this way is a game like chess or go. No one is forced to

play chess, but, if you do play chess, you must make moves in accordance with the

rules. No one is forced to study particular mathematical systems like the natural

numbers or Euclidean geometry, but, once the axioms have been agreed, we must

make our deductions in accordance with these axioms.

As Russell elegantly put it.

Pure mathematics consists entirely of assertions to the effect that,

if such and such a proposition is true of anything, then such and such

another proposition is true of that thing. It is essential not to discuss

whether the first proposition is really true, and not to mention what

the anything is, of which it is supposed to be true. Both these points

would belong to applied mathematics. We start, in pure mathemat-

ics, from certain rules of inference, by which we can infer that if one

proposition is true, then so is some other proposition. These rules of

inference constitute the major part of the principles of formal logic.

We then take any hypothesis that seems amusing, and deduce its con-

sequences. If our hypothesis is about anything, and not about some

one or more particular things, then our deductions constitute math-

ematics. Thus mathematics may be defined as the subject in which

we never know what we are talking about, nor whether what we are

saying is true.

Russell in Mathematics and the metaphysicians11 [28]

The problem of existence

When Glendower boasts12

I can call spirits from the mighty deep.

Hotspur replies

10A minor complication is introduced by the mathematician’s habit of saying ‘hence X is true’

when she means ‘hence X follows from our premises’.
11Russell says ‘The tone [of the article] is partly explained by the fact that the editor begged me

to make the article “as romantic as possible”.’
12Shakespeare, Henry IV, part I.
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Why so can I, or so can any man

But will they come when you do call for them.

As Poincaré pointed out, laying out an axiomatic system like Peano’s does not

mean that a system of the type described by the axioms actually exists. I can

describe a unicorn as a hoofed animal with a single horn, but the definition does

not force a unicorn to exist.

One answer to this objection is that the axioms of set theory allow us to con-

struct the natural numbers, but this is a bit like saying ‘Since fairyland and all its

inhabitants exist, it follows that unicorns exist’.

Another answer, which I favour, is that existence, like truth, is not a very

useful concept when applied to complex mathematical systems. If we talk about

the system (Z2,+,×) of integers modulo 2, first introduced on Page 13, then even

the most sceptical must admit that such a system exists. However, anyone who

asks for a proof that an abstract infinite system like N+ exists, must be prepared to

explain what sort of proof, if any, they would be prepared to accept.

Exercise 6.5.3. Produce an upper estimate for the number of people who have

lived since the invention of writing. Produce an upper estimate on the number of

integers that someone can write down during their lifetime. Write down an integer

n which (with very high probability) no one has ever written down before. In what

sense did the number exist before you wrote it down? In what sense does it now

exist?

Suppose you now write down another such integer m. Why are you confident

that m × n = n × m although (with very high probability) no one has done the

calculation?

You may care to recall the size of the numbers involved in our discussion of

the Rabin code on page 93.

In my opinion, a reasonably clever and informed person has to be very clever

and very brave to doubt the existence of very large integers. As his life shows,

Yessenin-Volpin was very clever, very brave and doubted the existence of very

large integers. When Friedman objected to this view

. . . he asked me to be more specific. I then proceeded to start with

21 and asked him whether this is real or something to that effect. He

virtually immediately said yes. Then I asked about 22, and he again

said yes, but with a perceptible delay. Then 23, and yes, but with more

delay. This continued for a couple of more times, till it was obvious

how he was handling this objection. Sure, he was prepared to always

answer yes, but he was going to take 2100 times as long to answer yes

to 2100 than he would to answering 21. [9]
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Exercise 6.5.4. Which of the following statements do you consider true? Why do

you consider them true and in what sense?

(i) The Alan Turing featured in the science fiction novel Cryptonomicon actu-

ally existed.

(ii) The Alan Turing portrayed in the film The Imitation Game actually existed.

(iii) The Alan Turing described in the fine biography by Andrew Hodges actu-

ally existed.

(iv) The Alan Turing who wrote On Computable Numbers, with an Application

to the Entscheidungsproblem actually existed.

It should be noted that, although we consider existence to be an important

property for physical objects like our next dinner, we are far less concerned about

existence for more abstract things. I enjoy reading The Pickwick Papers although

I do not believe that Mr Pickwick existed or, indeed, that anybody resembling Mr

Pickwick ever existed.

The problem of consistency

Pure mathematicians, like the author and the mathematicians described by

Russell, see mathematics as a kind of game. Provided we obey the rules of the

game, it is meaningless (or, at least, unnecessary) to ask if the rules are ‘true’

or if the game ‘exists’. Unfortunately, it does make sense to ask if the rules are

consistent. If we can prove that some proposition is true and we can prove that the

same proposition is false, then the standard logic used by mathematicians tells us

that every proposition is true13.

Informal proof of the statement just made. Suppose that the proposition P is true

(where ‘true’ is shorthand for ‘deducible from our axioms’) and P is not true. If

Q is any proposition, we can prove it as follows:

Since P is true, the statement S , which says that at least one of P or Q is true,

is itself true. Since P is false and the statement S is true, it follows that Q is

true. �

The game of proving theorems in a system where every theorem is automati-

cally true is not a very interesting one. Thus the problem of consistency cannot be

evaded in the way we have evaded the problem of truth and existence14.

13Traditionally, we say ‘Ex falso quodlibet’, you can deduce anything from a falsehood. Most

mathematicians will be familiar with the way that what appears to be a great theorem turns out to

be the consequence of a tiny error.
14Although most mathematicians would be happy to work with a consistent system without

worrying about truth or existence, some would not. As Brouwer, one of the leaders of the minority

view, put it ‘An incorrect theory which is not stopped by a contradiction is nonetheless incorrect,

just as a criminal policy unchecked by a reprimanding court is nonetheless criminal’ [31] page 336.

It should also be pointed out that, if a system exists, it is automatically consistent.
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One of the most important mathematical themes of the first third of the 20th

century was the search for a proof of the consistency of the Peano axioms and

mathematics in general. In order to set about such a proof it is necessary to codify

the informal rules of inference (for example, if P implies Q and Q implies R,

then P implies R). This was not too hard, but was followed by a dreadful shock

when Russell and others showed that standard mathematical modes of argument

produced inconsistencies.

Example 6.5.5. [Russell’s paradox] Consider the set B of all sets E such that

E < E. If B ∈ B, then B < B and if B < B, then B ∈ B.

These paradoxes showed the necessity for rules restricting the way that we de-

fine mathematical objects. The standard set of rules called the Zermelo–Fraenkel

axioms tells us how we can construct sets (and so how we can define mathe-

matical objects) and the rules of mathematical logic tell us how to recognise a

mathematical statement. Once the task of producing these rules was completed,

mathematicians could return to a search for consistency.

Surprisingly enough, it turned out that proofs of consistency could be given for

quite interesting parts of mathematics such as the elementary Euclidean geometry

of lines and circles15.

However, in 1931, Gödel produced another tremendous shock by showing

that we cannot prove the consistency of the kind of number theory16 discussed in

Chapter 4. Naturally, there was a certain amount of small print in the statement of

his theorem, but the nature of his proof and that of a related theorem of Turing is

so general that most mathematicians now believe that there is no acceptable way to

show that a system of axioms rich enough to allow us to do standard mathematics

is consistent17.

Since most mathematicians wish to do standard mathematics, they must do

it without the comfort blanket of a proof of consistency. What cannot be cured

must be endured, but the reader may be somewhat comforted by the thought that

although there has been an active search for inconsistency in standard mathematics

15We have to be very careful not to introduce wider ideas when describing this system. Lines

are simply things which intersect at points (otherwise we could introduce the real numbers by the

back door) and though we can consider triangles and quadrilaterals we cannot talk about general

n-gons since we do not have the Peano axioms.
16In particular, the kind of number theory which permits the statement and proof of results like

the existence and uniqueness of factorisation into primes.
17The word ‘acceptable’ involves some more small print. There are many non-technical ac-

counts of Gödel’s theorem. An old, but good, one was written by Nagel and Newman [24]. There

is a good technical account in [16], a book which forms an excellent starting point for an ambitious

student anxious to know about mathematical logic and advanced set theory. As Huckleberry Finn

might say ‘The statements is interesting, but tough’.
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(that is to say mathematics based on standard mathematical logic and Zermelo–

Fraenkel set theory) for the last century, no inconsistency has been found.

If an inconsistency is found, then it could be one of two types. It is possible

that it could be a ‘technical problem’ solved by tinkering with the rules governing

the construction of sets18. Such an outcome would be the mathematical sensation

of the decade.

Alternatively, the inconsistency could lie deep and force mathematicians to go

against Hilbert’s rallying cry ‘No one shall expel us from the paradise that Cantor

has created’ by greatly restricting (or, in the worst case, abandoning) the use of

infinite sets. Such an outcome would be the intellectual sensation of the century.

18Mathematicians have produced a variety of set theories. Conway likens the situation to a

rowing boat labelled ZF towing a long line of similar boats. If ZF sinks, we simply transfer to

another boat.
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Chapter 7

What is the problem?

7.1 Mathematics becomes a profession

Writing about the time around 1630, Rouse Ball speaks of it as being

manifestly characterised by the feeling that mathematics should

be studied for the sake of its applications to astronomy (including

astrology1 therein), navigation, mensuration and surveying; but it was

tacitly assumed that even in these subjects its uses were limited and

that a knowledge of it was in no way necessary to those who applied

the rules deduced therefrom while it was generally held that its study

did not form any part of a liberal education. [2]

The only example of mathematics studied for its own sake was Euclidean geom-

etry and this was felt (essentially correctly) to be a completed subject in which

only minor improvements could be made.

There was no such thing as a professional research mathematician, that is to

say, someone who makes a living by finding new mathematics or novel applica-

tions of old mathematics.

In the two hundred years following the invention of the calculus, everything

changed. When the Queen of Prussia asked Leibniz about Newton, he replied

‘that, taking Mathematicks from the beginning of the world to the time of [New-

ton] what [Newton] had done was much the better half’ [32]. Men like Leibniz

and Newton were no longer content to interpret the ancients, they were determined

to surpass them.

The new mathematics gave promise of valuable practical applications. The

celestial mechanics of Newton and his successors converted the heavens into a

1TWK’s note. If we take astrology in the wider sense of the confident application of inap-

propriate mathematics to predict the future, then we still have plenty of astrologers. See, for

example, [23].
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clock accurate enough to allow the determination of longitude, though, in the

end, terrestrial clock makers produced even more accurate clocks. Sometimes

the promise would take time to materialise. Static mechanics did revolutionise

bridge design, but only after new materials like iron and steel were introduced.

Sometimes, other ideas would prove superior. It could be said (and in England

it often was said) that the French studied the theory of steam engines, but the

English built them2. Often the promise would not materialise at all3. But when the

promise was fulfilled as in the design of fortifications and the pricing of insurance,

the benefits were great.

From the time of the French Revolution, the French State supported a system

whose main purpose was to produce mathematically trained engineers and school

teachers, but which also produced a small cohort of professional mathematicians4.

Similar developments took place in Prussia and other German states and, in time,

these were echoed elsewhere.

As mathematics lecturers know, it is easy to give wrong or incomplete proofs

in a lecture provided you are not aware that you are doing so. Once you are aware

of the fallacy or the gap, lecturing becomes much harder. The reconstruction of

calculus during the 19th century owes much to the needs of conscientious teach-

ers within the new systems of advanced education. (Complaints about Cauchy’s

courses show that this conscientiousness was not necessarily appreciated by stu-

dents or colleagues.)

7.2 Rogue numbers

The everyday life of the farmer involves natural numbers. The everyday life of

a money changer or a tax collector involves rationals. However, the abstract ge-

ometry of the Greeks revealed objects which looked like numbers but which were

not (or might not be) rational numbers. The reader has met such objects in school

when she was told to solve problems involving
√

2 and π. The Greeks knew that

2However, Carnot’s theory is applicable to everything from power stations to jet engines and

hurricanes.
3There is story of a meeting of a modern British research-grant-giving body whose represen-

tative boasted that 90% of its grants had a successful outcome. A senior member of his audience

replied that such a high success rate was a disgrace.
4An example of a mathematical lineage dating back to the Revolution is given by Aline Bonami

whose thesis adviser was Yves Meyer, whose thesis adviser was Kahane, whose thesis adviser was

Mandelbrojt, whose thesis adviser was Hadamard, whose thesis adviser was Picard, whose thesis

adviser was Darboux, whose thesis adviser was Chasles, whose thesis adviser was Poisson, whose

thesis adviser was Lagrange.
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√
2 was not rational5 (see Theorem 4.4.12) and strongly suspected that π was not6.

We have seen a proof that the equation

x2
= 2

has no rational solution (see Theorem 4.4.12) and Lambert proved that ‘π is irra-

tional’ in 1768.

Experience shows that even the most exceptional child is happy to treat these

objects as numbers and accept without question such statements as

π + 3 = 3 + π and 3 × π = π × 3.

Now that the reader is older, she should, perhaps, be more sceptical. When she

was in infant school, the formula 2 + 3 = 3 + 2 may have been illustrated by a

pattern of dots

• • | • • • = • • • | • •
as in our first chapter. When she was introduced to fractions, the formula

3

4
+

2

5
=

2

5
+

3

4

may have been proved by ‘clearing the denominator’ (here, by multiplying both

sides by 20) to get

15 + 8 = 8 + 15

which in turn may be replaced by a pattern of dots. What picture of dots permits

us to intuit that 3 + π = π + 3?

The reader may well reply that π and 3 should be thought of as lengths. We

take a piece of string of length π and attach a piece of string of length 3 to it to

obtain a string of length 3 + π which we place on a revolving table. Turning the

table through half a revolution, we get a piece of string of length π to which is

attached a piece of string of length 3. Of course, this now means that we have

sheep numbers for counting with and string numbers for measuring with7 and it is

not entirely clear how they are to be connected.

Things are even less clear when we turn to multiplication. Our first thought

might be to define a × b as the area of a rectangle of sides a and b, but this

5That is to say, they were in possession of a geometric version of this statement which simple-

minded people like the present author would consider equivalent.
6The second part of the sentence is even more ahistorical than the first. What the Greeks

actually studied was the problem known as the squaring of the circle.
7Those philosophers who considered the problem used the word ‘number’ for what we have

called ‘sheep numbers’ and ‘quantity’ for what we have called ‘string numbers’. (See the quotation

from Hume at the beginning of this book.)
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involves the new undefined notions of rectangles and areas. The reader may feel

happy visualising √
2 × 3 = 3 ×

√
2,

but an expression like

√
2 × π2

+ 2 ×
√

3 =
√

2 × (π2
+

√
6)

looks to me like a geometric mess. There is a further dimensional problem when

we look at the formula

l = 2πr,

connecting the length l of the circumference of a circle with its radius r. If we

follow our naive approach to multiplication, then on the one side we have l a length

and on the other side (considering 2π as a single number) an area or (considering

2 and π as distinct numbers) a volume.

It is believed that the first person to face and conquer these difficulties was Eu-

doxus of Cnidus8. His work is reported in Euclid’s fifth book On Proportion (that

is to say, On Ratio; the title tells us how Eudoxus avoided dimensional problems).

The fifth book of Euclid was widely held to be the most difficult part of the Ele-

ments and it is possible that most of the students who studied it and many of those

who taught it failed to understand the problem it solved. The mathematicians like

Dedekind who produced the first constructions of the real numbers R acknowl-

edged that Eudoxus had solved similar problems in a similar manner. However,

the modern treatment, as I hope to show, is inspired by a different question and

goes rather deeper.

Our discussion needs the notion of an ordered field.

Definition 7.2.1. An ordered field, (F,+,×, >) is a field (F,+,×) (see Defini-

tion 5.1.1) together with an order > having the following properties.

(x) If a > b and b > c, then a > c. (Transitivity of order.)

(xi) Exactly one of the following conditions holds: a > b or b > a or a = b.

(Trichotomy.)

(xii) If a > b, then a + c > b + c. (Order and addition.)

(xiii) If a > b and c > 0, then a × c > b × c. (Order and multiplication.)

Exercise 7.2.2. Show that conditions (x) and (xiii) can be replaced by the follow-

ing conditions.

(x)′ If a > 0 and 0 > b, then a > b.

(xiii)′ If a > 0 and c > 0, then a × c > 0.

8Also the first person to give a coherent account of planetary motion. His treatment, with many

further additions, remained dominant until Copernicus.
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Exercise 7.2.3. Suppose that (F,+,×, >) is an ordered field and G is a subfield of

(F,+,×) (see Definition 5.1.7). Show that (G,+,×, >) is an ordered field with the

inherited relation > for order.

More vividly, a subfield of an ordered field is automatically an ordered sub-

field.

Exercise 7.2.4. We work in an ordered field (F,+,×, >), taking a, b ∈ F. We define

|a| =


a if a ≥ 0,

−a if a < 0.

(i) Show that |a| = 0 if and only if a = 0.

(ii) Show that | − a| = |a|.
(iii) Show that |a × b| = |a| × |b|.
(iv) Show that |a| + |b| ≥ |a + b|.
(v) Show that

(a + b) + |a − b| = 2 max{a, b}.
Find and prove a similar formula for min{a, b}.

It is fairly easy to see that any ordered field contains a copy of N+.

Exercise 7.2.5. Let (F,+,×, >) be an ordered field with identity 1 and zero 0.

(i) Prove that 1 > 0.

(ii) Let f : N+ → F be defined inductively by the conditions f (1) = 1 and

f (n + 1) = f (n) + 1. Show, by induction on n, that f (m) > f (n) whenever m > n.

Why does this show that f is injective?

(iii) Show that f (m + n) = f (m) + f (n) and f (m × n) = f (m) × f (n) for all

n, m ∈ N+.
(iv) Suppose that u : N+ → F is an injective function which preserves >, +

and ×. By considering u(1) × u(1), or otherwise, show that u(1) = 1. Show, by

induction, that u(n) = f (n) for all n ∈ N+.

Conclusion (iv) may be interpreted as saying that the copy of N+ is unique.

Exercise 7.2.6. Give an example of a field which does not contain a copy of N+.

Where does the argument of Exercise 7.2.5 break down?

It is now easy to see that any ordered field contains a unique copy of Q.

Exercise 7.2.7. Let (F,+,×, >) be an ordered field.

(i) Use Exercise 7.2.5 to show that there exists an injective function g : Q+ →
F which preserves +, × and >. (Be careful to show that your chosen g is well-

defined.)
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(ii) Show that g is unique.

(iii) Show that there exists an injective function h : Q→ F which preserves +,

× and >. (Be careful to show that your chosen h is well-defined.)

(iv) Show that h is unique.

Exercise 7.2.7 sheds light on the various different ways in which we can con-

struct models of the rationals. In particular, it concludes the discussion at the end

of Section 3.4.

Exercise 7.2.8. Show that an ordered field (F,+,×, >) has no subfields apart from

itself if and only if it is isomorphic to (Q,+,×, >).

Thus, whenever we find a smallest extension of the natural numbers to an

ordered field, we obtain the same object (up to isomorphism). We follow our

standard procedure and write Q for the image of Q under h.

Exercise 7.2.9. In Exercise 2.3.7 we showed, in effect, that there was a map f :

N+ → Q+ which preserved >, + and ×. Use the method of Exercise 7.2.5 (iv) to

show that it is unique.

What missing ingredient allows us to prove uniqueness now which we did not

have when we first looked at Exercise 2.3.7?

State the analogous extension of Lemma 3.2.18.

So far Q is the only ordered field that we have seen, but it is easy to manufac-

ture others.

Exercise 7.2.10. (The reader should follow the outline of this exercise, but should

not take it too seriously.) Consider Q[
√

2] with elements a = (a1, a2) where

a1, a2 ∈ Q. (Secretly a =
?

a1 + a2

√
2.) We equip Q[

√
2] with two operations ⊕

and ⊗ defined by

a ⊕ b = (a1 + b1, a2 + b2)

a ⊗ b = (a1b1 + 2a2b2, a1b2 + a2b1)

and a relation = given by a = b if and only if at least one of the following three

conditions hold:

(1) a1 − b1 ≥ 0, a2 − b2 ≥ 0 and a , b.

(2) a1 − b1 ≥ 0, (a1 − b1)2 > 2(a2 − b2)2.

(3) a2 − b2 ≥ 0, 2(a2 − b2)2 > (a1 − b1)2.

(i) Show that, if (a1, a2) , (0, 0), then

(a1,−a2) ⊗
(

a1

a2
1
− 2a2

2

,
a2

a2
1
− 2a2

2

)
= (1, 0)
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.

(ii) Verify as many of conditions (i) to (ix) for a field as you feel you ought to.

(iii) Observe that f : Q → Q[
√

2] defined by f (a) = (a, 0) is a bijection

preserving addition, multiplication and order.

(iv) Show that the equation a ⊗ a = f (2) has a solution in Q[
√

2].

(v) Show that the equation a ⊗ a = f (3) has no solution in Q[
√

2].

(vi) Convince yourself informally that the order conditions hold, but that the

proof is tedious. The reader should not waste time on writing things out, since

once we have constructed R, the result is immediate (see Exercise 8.1.20) by iden-

tifying Q[
√

2] with a sub-ordered-field of R.

Exercise 7.2.10 shows that the statement ‘We introduce the reals so that we

can talk about the square root of two’ is a bit simple-minded. We can accom-

modate rogue roots in the manner of Exercise 7.2.10. However, we suspect that

not all rogue numbers are roots (a suspicion confirmed in Section 10.3) and that

Exercise 7.2.10 is irrelevant to the more general problem.

Far more relevant is a little booklet published in 1585 by Simon Stevin first in

Dutch and then in French as La Disme.

What is it that is here propounded? Some wonderful invention?

Hardly that, but a thing so simple that it scarce deserves the name

invention . . . . But, just as a mariner who has found an unknown isle,

may declare all its riches to the king, as, for instance, it having beau-

tiful fruits, pleasant plains, precious minerals etc., without it being

imputed to him as conceit; so I may speak freely of the great use-

fulness of this invention, a usefulness greater than I think any of you

anticipates.. . .

The more important [the calculations of astronomy, navigation,

land surveying, running a mint, and commerce] are, and the more

laborious their execution, so much the greater is this discovery of

decimal numbers which does away with all these difficulties. To speak

briefly. La Disme teaches how all computations of the type of the

four principles of arithmetic addition, subtraction, multiplication and

division may be performed by whole numbers with as much ease as

in counter-reckoning.

Stevin La Disme, translation from [29]

The discovery, in which Stevin takes such justifiable pride, is the method of

writing and calculating with decimal numbers. Stevin ends by advocating the

decimalisation of measures of quantities, such as length and weight, and the dec-

imalisation of currency. The first country to follow Stevin’s advice was the rev-

olutionary United States which, at the instigation of Jefferson, chose a decimal
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currency. The dime preserves the memory of La Disme. Stevin had predecessors

(though he may not have known of them) and his notation was simplified and ex-

tended by his successors, but it is to his little booklet that we owe the introduction

of decimals both to mathematics and to ordinary life. Si monumentum requiris,

circumspice9.

The following exercises illustrate Stevin’s remarks.

Exercise 7.2.11. (i) The old British system of distance measurements had 12

inches to the foot, 3 feet to the yard, 22 yards to the chain, 10 chains to the furlong

and 8 furlongs to the mile. Add the length 5 miles, 6 furlongs, 6 chains, 12 yards,

2 feet and 3 inches to the length 7 miles, 6 furlongs, 2 chains, 14 yards, 2 feet and

7 inches.

(ii) Add 3065.731 metres to 9731.468 metres.

Exercise 7.2.12. (i) Which is larger: 3/19 or 4/23?

(ii) Which is larger: 0.353 or 0.361?

(iii) Find the average of 3/19, 4/23 and 4/21 expressing the result as a frac-

tion.

(iv) Find the average of 0.353, 0.361 and 0.362 correct to 3 places of decimals.

Exercise 7.2.13. (i) The old British system of currency dated back to Charlemagne

who reintroduced and modified an ancient Roman system. There are 4 farthings

in a penny (one pence), 12 pence in a shilling and 20 shillings in a pound10.

The sum of 56 pounds, 12 shillings, 5 pence and 2 farthings is lent out at a

rate of 3% per year interest. If no money is paid back, what will be the total debt

(in pounds, shilling, pence and farthings correct to the nearest farthing) after one

year?

[You may use a calculator, but my school days took place in the time of the old

currency and before the ‘hand calculator’. In real life such questions would be

answered by using a booklet of tables.]

(ii) The US dollar is divided into 100 cents. The sum of 56 dollars and 53

cents is lent out at a rate of 3% per year interest. If no money is paid back, what

will be the total debt (correct to the nearest cent) after one year?

The first major use of Stevin’s idea came with the invention of logarithms by

Napier and their development by Briggs.

9If you seek his monument, look around you.
10There were also coins worth three pence, six pence, two shillings (called a florin), two

shillings and sixpence (called a half crown) and a ten shilling note. Lawyers’ and doctors’ bills

used units of a guinea (twenty one shillings) — this was felt to be a gentlemanly way of disguising

a 5% mark up.
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Example 7.2.14. The logarithm to base 10, log10 is an injective function (whose

existence we shall not prove in this book) defined for the strictly positive numbers

with the property that log10 a × b = log10 a + log10 b and log10 10 = 1. For three

centuries it provided the fastest method of multiplying two numbers together. For

example, to compute 2.345 × 3.679, we set a = 2.345, b = 3.679. We now consult

a table of logarithms11 and see that log10 2.345 = 0.3701, log10 3.679 = 0.5657.

Adding gives

log(2.345 × 3.679) = log10 2.345 + log10 3.679 = 0.3701 + 0.5657 = 0.9358.

Consulting our table of logarithms again, we see that

log10 8.626 = 0.9358

and we conclude that 2.345 × 3.679 = 8.626 (to the appropriate accuracy12).

Exercise 7.2.15. Show how to divide using logarithms using as examples 8.626÷
3.679 and 2.345 ÷ 3.679.

[ log10 6.374 = 0.8044.]

Exercise 7.2.16. (i) If x > 0 and n is an integer, show that n log10 x = log10 xn.

(ii) Let a, b, u, v be strictly positive integers. If

a

b
= log10

u

v

show that 10avb
= ub. If u and v are coprime, use uniqueness of factorisation

(Theorem 4.4.3) to show that v = 1 and u = 10k for some strictly positive integer

k.

(iii) Let x > 0. Show that x and log10 x will both be rational if and only if

x = 10n for some integer n.

As Exercise 7.2.16 shows, even if a is rational, we will only have log10 a ra-

tional in very special cases. There is no reasonable way of marrying the use of

logarithms with fractional representation and anybody who did serious calcula-

tions, whether astronomer, engineer, surveyor or ship’s captain was forced to use

decimals.

Exercise 7.2.17. Go to your nearest scientific library, which probably still has a

dusty shelf dedicated to ‘Mathematical Tables’. (Otherwise find a copy of loga-

rithm tables on the internet, but that is not quite the same.) Take down a volume,

11Notice, once again, the importance printing which allowed cheap and accurate reproduction

of such tables.
12As with any calculation where we work with a fixed number of decimals, the accuracy de-

grades with the number of steps, but the degradation is slow and easy to control.
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open it and think of the work and ingenuity involved, not merely in computing the

results by hand, but in typesetting and proof reading such a set of tables. Think too

of the generation after generation for whom mastery of calculation using tables

was the first step in any technical or scientific career.

Wondrous is this foundation – the fates have broken

and shattered this city; the work of giants crumbles.

The roofs are ruined, the towers toppled,

frost in the mortar has broken the gate,

torn and worn and shorn by the storm,

eaten through with age. The earths grasp

holds the builders,

The Ruin13 translation by R. M. Liuzza

Let us have an informal look at the decimal world based on what we learned

at school. (There is a more formal treatment in Exercises 8.2.3 to 8.2.5.) It is a

world very different from that we have discussed so far. When we write a number

in decimal, it performs a dance of the seven veils, with each place of decimals

revealing a little more about the number. When we write down 4/7 as a fraction,

we know exactly what it is, but the decimal notation just gives us a better and

better idea of what it is, without ever giving us the number exactly14

0.5, 0.57, 0.571, 0.5714, 0.57142, . . . .

Because no number is ever fully revealed, decimal representation is democratic

between rational numbers and the rest.

The reader will recall that a number is rational if and only if its decimal ex-

pansion is periodic from some place on. However large N is, we cannot tell from

the first N places

.a1a2 . . . aN

of a decimal expansion if the number is rational (even if you detect periodicity,

that periodicity may break down when you see the next place) or not (if you do

not detect periodicity, this may be because the period is too long or because you

have not yet reached the point where periodicity kicks in).

Speaking vaguely, periodicity is a rather special property and this suggests a

picture in which the irrationals (that is to say, the non-rationals), instead of being

the occasional rogue number, are in fact representative of the ‘real numbers’ and

13An Anglo–Saxon poem, possibly about the ruins of Roman Bath, found in the Exeter Book.
14This way of looking at things chimed in rather well with the rise of precision measurement in

science and engineering. One generation measured things correct to the nearest inch, the next to

the nearest tenths of an inch, their successors correct to the nearest hundredth and so on.
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the rationals are the exceptions. Further, if we think a little more about the discus-

sion of the last paragraph, we see that it shows that the rationals and irrationals are

tightly intermingled, with every rational arbitrarily close to irrationals and every

irrational arbitrarily close to rationals.

We shall not use the technology of decimal representation in what follows,

but, like the 19th century mathematicians who sought to make analysis rigorous,

we shall keep the general decimal picture in mind.

7.3 How can we justify calculus?

The invention of the calculus and its development by Newton, Leibniz, Euler and

others produced an enormously powerful mathematical tool, but failed to provide

a clear understanding of its underlying assumptions, When applied to physics, the

guiding hand of nature allowed practitioners to avoid paradox. When practised

for its own sake, it produced many beautiful formulae which could be admired

without worrying too much about what they meant15.

Example 7.3.1. (i) 1 +
1

2
+

1

22
+

1

23
+ . . . =

?
2.

(ii)
9

10
+

9

102
+

9

103
+ . . . =

?
1. (In decimal notation 0.99999 . . . =

?
1.)

(iii) 1 + 2 + 22
+ 23
+ . . . =

?
−1. Thus∞ =

?
−1.

Proof? (i) Let

S =
?

1 +
1

2
+

1

22
+

1

23
+ . . . .

Then, multiplying by 2,

2S =
?

2 + 1 +
1

2
+

1

22
+

1

23
+ . . . =

?
2 + S .

so S =
?

2.

(ii) Let

S =
?

9

10
+

9

102
+

9

103
+ . . . .

Then, multiplying by 10,

10S =
?

9 +
9

10
+

9

102
+

9

103
+ . . . =

?
9 + S

15‘My mathematical tutors had never shown me any reason to suppose the Calculus anything

but a tissue of fallacies.’ Bertrand Russell in his Autobiography. Of course, the standards Russell

demanded from others were unusually high.
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so 9S =
?

9 and S =
?

1.

(iii) Let

S =
?

1 + 2 + 4 + 8 + . . . + 2n
+ . . . .

Then, multiplying by 2,

2S =
?

2 + 4 + 8 + . . . =
?
−1 + (1 + 2 + 4 + 8 + . . .) =

?
−1 + S

so S =
?
−1. But S =

?
∞, so∞ =

?
−1. �

Various proposals were put forward to provide foundations. Some mathe-

maticians hoped to obtain certainty by grafting the calculus onto Greek geometry.

This may have been one reason why Newton wrote his Principia in geometric

language. Others, like Leibniz, may have hoped that, by using the same kind of

trickery by which we incorporated
√

2 into the number system (a better analogy

is given by the construction of C in Section 9.1), they could produce ‘infinitesi-

mally small’ elements and justify calculus that way. For a time, it was hoped that

considering functions f as Taylor series, that is to say,

f (x) =
?

a0 + a1x + a2x2
+ a3x3

+ . . .

would provide an answer16. It seems likely that most of those who thought about

foundations underestimated the difficulties they faced.

The decisive steps in providing firm foundations for the calculus were taken

by Cauchy. Many of the definitions and results we shall need are in every first

course on analysis17. The well-informed reader can do some judicious skipping.

Cauchy’s most important decision was to base calculus on the notion of a limit.

Definition 7.3.2. Let us work in an ordered field F. We say that an → a (or, in

words, an tends to a limit a) if, given ǫ > 0, we can find an N such that |a− an| < ǫ
for all n ≥ N.

Lemma 7.3.3. We use the notations and assumptions of Definition 7.3.2.

(i) If an tends to a limit, then that limit is unique.

(ii) If an → a and bn → b, then an + bn → a + b as n→ ∞.

(iii) If an → a and bn → b, then anbn → ab as n→∞.

16The influence of Newton meant that Cambridge mathematicians, in contrast to the rest of

Europe, placed their hopes in geometry. They switched to Taylor series, just as the best European

mathematicians began to realise that Taylor series did not provide a suitable foundation. ‘An

exploded theory or a disadvantageous practice, like a rebel or a patriot in distress, seeks refuge on

our [English] shores to spend its last days in comfort if not in splendour.’ (Todhunter The Conflict

of Studies)
17One of the problems when teaching beginning analysis in France is that, quite properly, almost

every theorem is called Cauchy’s theorem.
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Remark We shall follow the usual practice of writing ab−1
= a/b and use the

fact that any ordered field contains a unique copy of Q, so that we may consider

rationals like 2 and 1/2 as members of F.

Proof of Lemma 7.3.3. (i) Suppose that an → a and bn → b as n → ∞. If a , b,

set ǫ = |a − b|/4. Since ǫ > 0, we can find N′ and N′′ such that |an − a| < ǫ for

n ≥ N′ and |bn − b| < ǫ for n ≥ N′′. If we take N = max{N′,N′′}, then

|a − b| =
∣∣∣(a − aN) + (aN − b)

∣∣∣ ≤ |a − aN | + |aN − b| < 2ǫ = |a − b|/2

which is impossible. The result follows by reductio ad absurdum18.

(ii) Let ǫ > 0. We can find N′ and N′′ such that |an − a| < ǫ/2 for n ≥ N′ and

|bn − b| < ǫ/2 for n ≥ N′′. If we take N = max{N′,N′′}, then

∣∣∣(an + bn) − (a + b)
)
=

∣∣∣(an − a) − (bn − b)
∣∣∣ ≤ |an − a| + |bn − b| < ǫ/2 + ǫ/2 = ǫ

for all n ≥ N.

(iii) Let ǫ > 0. We can find N′ and N′′ such that

|an − a| < min

{
1,

ǫ

2(|b| + 1)

}

for n ≥ N′ and

|bn − b| < ǫ

2(|a| + 1)

for n ≥ N′′. If we take N = max{N′,N′′}, then

|anbn − ab| = |an(bn − b) + b(an − a)| ≤ |an(bn − b)| + |b(an − a)|
= |an||bn − b| + |b||an − a| ≤ (|an − a| + |a|)|bn − b| + |b||an − a|
≤ (1 + |a|)|bn − b| + |b||an − a| < (1 + |a|) ǫ

2(|a| + 1)
+ |b| ǫ

2(|b| + 1)
< ǫ

for all n ≥ N. �

Exercise 7.3.4. We use the notation and assumptions of Definition 7.3.2. Show

that the following results are true.

(i) If an = a for all n, then an → a as n→ ∞.

(ii) If an → a, then −an → −a as n→ ∞.

(iii) If an → a, bn → b as n → ∞ and there exists an M such that bm ≥ am for

all m ≥ M, then b ≥ a.

(iv) (Special cases of part (iii).) If bn → b and bn ≥ a for all n, then b ≥ a. If

an → a and b ≥ an for all n, then b ≥ a.

18If we prove A is true by showing that the assumption A is not true leads to a contradiction, the

argument is called reductio ad absurdum.
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We now make precise our notion of a continuous function.

Definition 7.3.5. Let F be an ordered field and let f : F → F be a function. We

say that f is continuous at a ∈ F if, whenever an → a, we have f (an) → f (a). We

say that f is continuous if it is continuous at every point a of F.

Exercise 7.3.6. Use Lemma 7.3.3 to show that, if f , g : F → F are continuous

functions, then the sum function h = f + g, defined by h(t) = f (t) + g(t) for all

t ∈ F, and the product function k = f ×g, defined by k(t) = f (t)×g(t) for all t ∈ F,
are continuous.

It is a futile business to try and show that our definition of continuity corre-

sponds to non-mathematical usage (as in ‘They were awakened by a continuous

hammering’) because it does not19.

7.4 The fundamental axiom of analysis

The object of this part of the book is to provide suitable foundations for the cal-

culus. The reader may be surprised not to find any mention of derivatives or

integrals. However, the decision to choose continuity as fundamental is part of the

Cauchy programme. (If the reader looks at a modern calculus text like [30], she

will find that the first major theorems deal with continuous functions.)

We start with a property that we would wish every continuous function to have.

Definition 7.4.1. Let F be an ordered field. We say that a function f : F → F has

the intermediate value property if, whenever a < b and f (a) ≤ 0 ≤ f (b), we can

find a c with a ≤ c ≤ b and f (c) = 0.

We shall show that every continuous function has the intermediate value prop-

erty if and only if F obeys the fundamental axiom of analysis.

Definition 7.4.2. Let F be an ordered field. We say that F satisfies the fundamental

axiom of analysis if every increasing sequence bounded above tends to limit, that

is to say, if un ∈ F, un ≤ un+1 for all n ∈ N+ and there exists a U ∈ F such that

un ≤ U for all n ∈ N+, then there exists a u ∈ F such that un → u as n→∞.

We first prove the ‘only if’ part of our statement.

19Some indication of the cloud of confusion which surrounded the notion of continuity in Paris

during the eighteenth century and in Oxford during the nineteenth is given by the definition of

‘continuous function’ which still appeared in the Oxford English Dictionary in 2018: ‘a function

that varies continuously, and whose differential coefficient therefore never becomes infinite.’ If

this ‘definition’ meant anything, it would say that the cube root function given by f (x) = x1/3 was

not continuous at 0.
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Theorem 7.4.3. Let F be an ordered field. If every continuous function f : F→ F
has the intermediate value property, then F satisfies the fundamental axiom.

Proof. Suppose that un ∈ F, un ≤ un+1 for all n ∈ N+ and there exists a U such

that un ≤ U, yet un does not tend to limit. We show how to construct a continuous

function f : F→ F which does not have the intermediate value property.

Explicitly, we set

f (x) =


−1 if there exists an m with x < um,

1 otherwise.

We observe that f is well-defined, that f (u1) = −1, that f (U + 1) = 1 and that f

never takes the value 0. Thus f does not have the intermediate value property.

We need to show that f is continuous at every point t. More precisely, we

need to show that, if tn → t, then f (tn) → f (t) as n → ∞. There are two cases to

consider.

Case 1 Suppose that t < um for some m and tn → t. Taking ǫ = um − t, we know,

from the definition of a limit, that we can find an N such that |tn − t| < um − t

for all n ≥ N. Automatically, tn < um and so f (tn) = −1 for all n ≥ N. Thus

f (tn)→ −1 = f (t) as n→ ∞ and f is continuous at t.

Case 2 Suppose t ≥ um for all m and tn → t. We claim that there exists an N such

that tn ≥ um for all n ≥ N and all m. We argue by contradiction.

Suppose our claim is false, that is to say, that, given any N, we can find an

n′ ≥ N and an M such that uM > tn′ . Since tn → t, we know that, given any ǫ > 0,

we can find an N such that |tn − t| < ǫ for all n ≥ N. We can now find an n′ ≥ N

and an M such that tn′ < uM. Automatically

tn′ < uM ≤ um ≤ t

and so

|t − um| ≤ |t − tn′ | < ǫ
for all m ≥ M. Since ǫ can be chosen freely (at the cost of changing M), we see

that um → t, as m → ∞ contrary to our initial assumption that the sequence does

not tend to a limit.

Thus, by reductio ad absurdum, there exists an N such that tn ≥ um for all

n ≥ N and all m. It follows that f (tn) = 1 for all n ≥ N. Thus f (tn) → 1 = f (t) as

n→∞ and f is continuous at t. �

Our proof of the converse of Theorem 7.4.3 uses ideas which are of great

interest in themselves. Recall that any ordered field contains a unique copy of the

rationals Q which we identify with Q itself.
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Definition 7.4.4. [Axiom of Archimedes]20 We say that ordered field F satisfies

the axiom of Archimedes if 1/n→ 0 as n→ ∞.

Exercise 7.4.5. Let F be an ordered field. Show that F satisfies the axiom of

Archimedes if and only if, given a, b ∈ F with a > 0, we can find an n ∈ N+ such

that na > b.

[This statement is closer to the way that Eudoxus and Archimedes presented the

axiom.]

Exercise 7.4.6. Let F be an ordered field which satisfies the axiom of Archimedes.

Show that if c ∈ F we can find integers n and m such that m ≤ c ≤ n.

We need a simple observation.

Exercise 7.4.7. Let F be an ordered field. By considering −an, show that the

fundamental axiom is equivalent to the statement that, if we have a decreasing

sequence21 (an) bounded below, then an tends to a limit.

Theorem 7.4.8. An ordered field F which satisfies the fundamental axiom must

satisfy the axiom of Archimedes.

We have no difficulty in thinking of ordered fields like Q for which the axiom

of Archimedes holds. The reader may experience greater difficulty in thinking of

an ordered field for which it does not, but we shall give an example in Section 10.4.

The existence of such examples shows that the proof of Theorem 7.4.8 can not be

entirely trivial.

Proof of Theorem 7.4.8. Consider the sequence (1/n). This is a decreasing se-

quence bounded below by 0 and so must tend to a limit α. Thus, given any ǫ > 0,

we can find an N such that |α − 1/n| < ǫ for all n ≥ N and so, automatically,

|α − 1/n2| < ǫ for all n ≥ N. Thus 1/n2 → α as n→ ∞.

However, taking an = bn = 1/n in Lemma 7.3.3 (iii), we see that

1

n2
=

1

n
× 1

n
→ α × α = α2,

as n→ ∞, so the uniqueness of limits (Lemma 7.3.3 (i)) tells us that

α2
= α.

Thus α = 0 or α = 1. Since 1/2 ≥ 1/n for all n ≥ 2, Exercise 7.3.4 (i) tells us that

1/2 ≥ α and so α = 0. �

20In spite of its name, the axiom was ascribed by Archimedes to his great predecessor Eudoxus

(see Page 128).
21We write (an) to mean the infinite sequence a1, a2, a3, . . . .
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Exercise 7.4.9. We work in an ordered field F which satisfies the fundamental

axiom. Show, by imitating the proof of Theorem 7.4.8, that, if 1 > x ≥ 0, we have

xn → 0 as n→ ∞. Deduce that, if |x| < 1, then xn → 0 as n→ ∞.

We shall look at an important consequence of the axiom of Archimedes in

Theorem 7.4.11, but we first prove the promised converse of Theorem 7.4.3.

Theorem 7.4.10. Let F be an ordered field which satisfies the fundamental axiom

of analysis. Then every continuous function f : F → F satisfies the intermediate

value condition.

This may be considered the first major theorem of modern analysis. It was

proved independently by Bolzano and Cauchy using a method not far removed

from the one we shall use.

Proof. Suppose that f : F→ F is continuous, that a < b and that f (a) ≤ 0 ≤ f (b)

We make an inductive definition as follows. We establish our base case by

setting a0 = a and b0 = b and observing that a0 < b0, f (a0) ≤ 0 ≤ f (b0). We

now suppose that we have found an < bn such that f (an) ≤ 0 ≤ f (bn). We set

cn = (an + bn)/2 (informally, cn is the mid-point of an and bn). If f (cn) ≤ 0 we set

an+1 = cn, bn+1 = bn. If f (cn) > 0 we set an+1 = an, bn+1 = cn. In either case we

now have

(i)n an ≤ an+1 < bn+1 ≤ bn,

(ii)n f (an+1) ≤ 0 ≤ f (bn+1),

(iii)n bn+1 − an+1 = (bn − an)/2.

Conditions (i)n and (ii)n complete the inductive step.

A simple induction shows that

a = a0 ≤ an ≤ an+1 < bn+1 ≤ bn ≤ b,

so the an form an increasing sequence bounded above by b. The fundamental

axiom now shows that an → c for some c. Since a ≤ an ≤ b, we have a ≤ c ≤ b.

Since f is continuous, f (an) → f (c) and, since f (an) ≤ 0, we have f (c) ≤ 0.

(Notice the repeated use of Exercise 7.3.4 (iv).)

We now consider the behaviour of bn. Another simple induction shows that

bn − an = (b0 − a0)2−n

for all n. The axiom of Archimedes shows that 2−n → 0 and so bn − an → 0,

whence

bn = (bn − an) + an → 0 + c = c

as n → ∞. Since f is continuous, f (bn) → f (c) and, since f (bn) ≥ 0, we have

f (c) ≥ 0. The previous paragraph showed us that f (c) ≤ 0, so f (c) = 0. �
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The method of proof we used above is called successive bisection or lion hunt-

ing (at every stage, we halve the size of an interval which we believe contains a

lion22).

The axiom of Archimedes can be expressed in another way which readers who

have done a first course in analysis may find more familiar.

Theorem 7.4.11. Let F be an ordered field. The following statements are equiva-

lent.

(i) F satisfies the axiom of Archimedes.

(ii) If x ∈ F and ǫ > 0, then we can find u ∈ Q such that |x − u| < ǫ.

We shall not use the term, but the customary statement of (ii) is that ‘Q is

dense in F’.

Proof of Theorem 7.4.11. We first show that (ii) implies (i). Suppose that (ii) is

true and we are given ǫ′ > 0. Since ǫ′/2 ∈ F and ǫ′/4 > 0, setting x = ǫ′/2 in (ii)

tells us that there is a u ∈ Q such that |u − ǫ′/2| < ǫ′/4. Automatically 0 < u < ǫ′.
Since u is a strictly positive rational, we may write u = p/q where p and q are

strictly positive integers. Automatically

0 <
1

q
≤ p

q
= u < ǫ′

and so 0 < 1/n < ǫ′ for all n ≥ q. The axiom of Archimedes follows.

We now show that (i) implies (ii). Suppose that F satisfies the axiom of

Archimedes, that x ∈ F and ǫ > 0. We wish to show that there is a u ∈ Q
such that |x − u| < ǫ. Since |(−x) − (−u)| = |x − u|, we may assume that x ≥ 0. If

x = 0, we may take u = 0. Thus we may suppose x > 0.

By the axiom of Archimedes, we can find a strictly positive integer n such that

1/n < ǫ. We now look at the set E of non-negative integers r such that r/n ≤ x.

Since 0 ∈ E the set is non-empty. However, the axiom of Archimedes tells us

that there is a strictly positive integer N such that 1/N < 1/(nx) and so x < N/n.

Automatically, all the members e of E must satisfy e < N. Thus E is bounded

and we know (see Lemma 4.1.8) that a bounded non-empty set of integers has a

largest element m, say. We now have m/n ≤ x < (m + 1)/n and so

∣∣∣∣∣x −
m

n

∣∣∣∣∣ <
1

n
< ǫ.

Setting u = m/n, we have the desired result. �

22See Method 4 of the paper entitled A mathematical contribution to big game hunting by H.

Pétard which appeared in the American Mathematical Monthly 1938 and is reprinted in [4].
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We use the intermediate value theorem (Theorem 7.4.10) to show that every

non-negative number in an ordered field obeying the fundamental axiom has a

square root. (Contrast Theorem 4.4.12.)

Lemma 7.4.12. If we work in an ordered field F, obeying the fundamental axiom,

then, if a ≥ 0, the equation y2
= a has unique solution with y ≥ 0.

Proof. Let f : R→ R be given by f (t) = t2−a. By Exercise 7.3.6, f is continuous.

Since f (0) = −a ≤ 0 ≤ (1+a)2 −a = f (a+1), the intermediate value theorem

tells us that there exists a y with 0 ≤ y ≤ a + 1 such that f (y) = 0, and so y2
= a.

We remark that, if t2
= a and t , y, then

0 = t2 − y2
= (t − y)(t + y)

with t − y , 0 so, since F is a field, t + y = 0 and t = −y. �

As is standard, we write
√

a for the non-negative solution of the equation

y2
= a with a ≥ 0.

Exercise 7.4.13. We continue with the notation and assumptions of Lemma 7.4.12.

If a > b > 0, show that
√

a >
√

b.

Exercise 7.4.14. We work in an ordered field F obeying the fundamental axiom.

Throughout, n is a strictly positive integer.

(i) Show, by induction, that the function fn : F → F defined by fn(x) = xn is

continuous. Show also that fn(y) > fn(x) > 0 whenever y > x > 0.

(ii) Show that, if a > 0, the equation xn
= a has a solution.

(iii) Let a > 0. For which values of n does the equation xn
= −a have a

solution? For which values of n does the equation xn
= a have a unique solution?

Give reasons.

7.5 Dependent choice

From time to time in the work that follows we shall use arguments of the form:

‘choose an appropriate x1. Once xn has been chosen appropriately, choose an

appropriate xn+1 and so on. In this way we obtain a sequence of appropriate x j

for all j ∈ N+.’ At first sight this looks as though we are using definition by

induction, but, looking at Theorem 4.2.1, we see that we have replaced a well-

defined procedure for finding xn+1, given xn, by the words ‘chosen appropriately’.

Notice that, having defined n! by induction, I am confident that, provided we

were prepared to do the work and careful to avoid mistakes, the reader and I would

obtain the same value for 20! or 100!. However, if we were each to write an essay
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on the factorial function, then, even if we were to use the same first sentence and

choose our words ‘appropriately’, it is very probable that my 20th sentence would

bear little or no relation to her 20th sentence23.

It turns out that, whilst there is no problem in making a finite number of

choices, we need to add a specific extra rule of reasoning to allow an infinite

sequence of choices.

Axiom of dependent choice Let X be a non-empty set and S a set of ordered

pairs (g, h) with g, h ∈ X. Suppose that whenever g ∈ X there exists an h ∈ X with

(g, h) ∈ S . Then if x1 ∈ S there exists a sequence (xn) with (xn, xn+1) ∈ S for all

n ≥ 1.

Remark It may be helpful to think of S as the set of ordered pairs (g, h) where h

is a permitted successor of g.

The axiom of dependent choice has the following useful consequence known

as ‘countable choice’.

Theorem 7.5.1. Let E1, E2, . . . be non-empty sets. Then there exists a sequence

(yn) with yn ∈ En for all n ≥ 1.

Proof. Take X to be the collection of ordered pairs x
˜
= (u, n) with u ∈ En and

n ∈ N+. Let S be the collection of ordered pairs
(
(v, n), (u, n + 1)

)
such that

(v, n), (u, n + 1) ∈ X (so we have an ordered pair of ordered pairs).

If g
˜
= (v, n) ∈ X, then since En+1 is non-empty there exists a u ∈ En+1 and

taking h
˜
= (u, n + 1) we have (g

˜
, h
˜

) ∈ S .

Since E1 is non-empty, there exists a y1 ∈ E1. If we take x
˜1
= (y1, 1), the

axiom of dependent choice tells us that there exists a sequence (x
˜n

) in X with

(x
˜n
, x
˜n+1

) ∈ S for all n ≥ 1. By induction, x
˜n
= (yn, n) so yn ∈ En and we have a

sequence (yn) of the required type. �

Russell used to illustrate this result by considering a millionaire who owns a

chest of drawers with an infinite number of drawers labelled 1, 2, 3, . . . . Each

drawer contains a pair of shoes and a pair of socks. If he wants one shoe from

each drawer, then he can always choose the left shoe, but, if he wants one sock

from each drawer, he needs countable choice24.

It is often the case that, by using a little thought, we can replace a use of

the axiom of dependent choice by a more complicated inductive definition along

the lines of Theorem 4.2.1 (think of the shoes in Russell’s example). However,

logicians have shown that several central theorems of analysis require us to use

the axiom of dependent choice.

23This idea is played with in Borge’s Pierre Menard, Author of the Quixote, a story which

should also be considered when comparing this book with [20].
24See, for example My Philosophical Development Bertrand Russell, page 70.
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A good example of the use of countable choice is given by the proof of the

following theorem which we shall not use, but which appears in some form in

almost every first course of analysis. It shows that, provided we accept countable

choice, if we work over an Archimedian field (that is to say, a field satisfying the

axiom of Archimedes), we may think of continuous functions as ‘machines such

that sufficiently small changes in inputs produce small changes in outputs’.

Theorem 7.5.2. Let F be an ordered field satisfying the axiom of Archimedes and

let f : F→ F be a function. The following two statements are equivalent.

(i) f is continuous at a (that is to say, f (xn) → f (a) whenever xn → a as

n→∞).

(ii) Given any ǫ > 0, there exists a δ > 0 (depending on a and ǫ) such that

| f (a) − f (b)| < ǫ whenever |a − b| < δ.
Proof. The proof that (ii) implies (i) is straight forward. Suppose (ii) is true and

an → a. We know that, given ǫ > 0, we can find a δ > 0 such that | f (a)− f (b)| < ǫ
whenever |a − b| < δ. We also know that we can find an N such that |an − a| < δ
for all n ≥ N and so

| f (a) − f (an)| < ǫ
for all n ≥ N. Thus (ii) implies (i).

Our proof that (i) implies (ii) uses Theorem 7.5.1. Suppose (ii) is false. Then

we can find an ǫ > 0 such that, given any δ > 0, we can find a b such that |a−b| < δ,
but | f (a) − f (b)| ≥ ǫ. In particular, we can find an such that |a − an| < 1/n, but

| f (a) − f (an)| ≥ ǫ. Thus an → a, but f (an) 9 a, so (i) is false. Thus (i) implies

(ii). �

Of course, the fact that we have used countable choice in our proof does not

tell us that countable choice is required, but logicians have shown that a version

of countable choice is indeed needed.

If the reader feels that the axiom of dependent choice is a natural rule of rea-

soning, she is in good company. Most mathematicians accept it without hesita-

tion and many of the remainder accept it because they believe that it produces

richer (or, at least, more convenient) mathematical systems. Gödel showed that, if

the Zermelo–Fraenkel system is consistent, then adding the axiom of dependent

choice (or indeed the much stronger ‘axiom of choice’) will not make it inconsis-

tent.

We now return to the study of the fundamental axiom.

7.6 Equivalent forms of the fundamental axiom

In this section we collect some equivalent forms of the fundamental axiom. This

is not a simple academic exercise. Each equivalent form is a powerful tool in its
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own right and each suggests different ways of generalising analysis to systems

which are not ordered fields.

Because of the importance of these equivalent forms, most first courses in

analysis contain an extensive discussion of them. The reader will thus be meeting

ideas which she has met before or can expect to meet in the future and should feel

free to run through the section quite quickly.

We start with the Bolzano–Weierstrass property.

Definition 7.6.1. Let F be an ordered field. We say that F has the Bolzano–

Weierstrass property if, whenever we have a sequence (x j) with x j ∈ F such that

there exists an A ∈ F with |x j| ≤ A for all j ≥ 1, we can find 1 ≤ j(1) < j(2) < . . .

and x ∈ F such that x j(n) → x as n→∞.

In other words, an ordered field has the Bolzano–Weierstrass property if every

bounded sequence has a convergent subsequence.

Theorem 7.6.2. Let F be an ordered field. The following two statements are equiv-

alent.

(i) F has the Bolzano–Weierstrass property.

(ii) F obeys the fundamental axiom of analysis.

Proof. We split the proof into two parts.

The Bolzano–Weierstrass property implies the fundamental axiom.

Suppose that F satisfies (i) and (a j) is an increasing sequence bounded above. By

the Bolzano–Weierstrass property, we can find 1 ≤ j(1) < j(2) < . . . and a ∈ F
such that a j(n) → a as n→ ∞. We claim that an → a as n→ ∞.

We observe that, since the a j(n) form an increasing sequence, a j(n) ≤ a for each

n. Given ǫ > 0 we know that we can find an N such that |a j(n) − a| < ǫ for n ≥ N

and so a−ǫ < a j(n) ≤ a for n ≥ N. Now suppose m ≥ j(N). We can find an M > N

such that j(M) > m ≥ j(N), so

a − ǫ < a j(N) ≤ am ≤ a j(M) ≤ a

and |a − am| < ǫ. Thus am → a as m→∞.

The fundamental axiom implies the Bolzano–Weierstrass property.

Suppose that F satisfies (i) and (a j) is sequence such that |a j| ≤ A for all j.

Let us call a strictly positive integer j ‘far-seeing’ if a j ≥ ar for all r ≥ j.

Either the set of far-seeing integers is finite or it is not. If there are only finitely

many far-seeing integers, then there exists an N such that no j with j ≥ N is

far-seeing. We now define j(1) = N and, once j(n) is defined, we let j(n + 1) be

the least integer r > j(n) such that ar > a j(n). This inductive definition gives an

increasing sequence (a j(n)) bounded above by A and the fundamental axiom tells

us that there exists an a with a j(n) → a as n→ ∞.
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If there are infinitely many far-seeing integers, we can list them as m(1) <

m(2) < m(3) < . . .. By definition,

am(1) ≥ am(2) ≥ am(3) ≥ . . . ,

so the am(n) form a decreasing sequence bounded below by −A. A simple variation

on the fundamental axiom (see Exercise 7.4.7 if necessary) tells us that there exists

an a with am(n) → a as n → ∞. Combining the results of the last two paragraphs

gives the required result. �

Our next equivalence makes use of the definition which follows a preliminary

remark.

Lemma 7.6.3. We work in an ordered field F. Suppose that A is a non-empty set

and ai satisfies the following properties for i = 0, 1.

(1)i ai ≥ a for all a ∈ A.

(2)i If b ≥ a for all a ∈ A, then b ≥ ai.

Then a0 = a1.

Proof. By (1)1, a1 ≥ a for all a ∈ A. Thus, by (2)0, a1 ≥ a0. Similarly, a0 ≥ a1, so

a0 = a1. �

Definition 7.6.4. We work in an ordered field F and suppose that A is a non-empty

set in F. We say that a0 is the supremum of A if a0 satisfies the following conditions

(1) a0 ≥ a for all a ∈ A,

(2) If b ≥ a for all a ∈ A, then b ≥ a0.

We write supa∈A = a0.

(Notice that Lemma 7.6.3 tells us that, if a supremum exists, it is unique. We

can thus talk about the supremum.) The supremum is also called the least upper

bound on the not unreasonable grounds that this is exactly what it is,

Exercise 7.6.5. Let F be an ordered field. Consider the following choices of A and

state with reasons if the supremum exists and, if it does exist, whether it lies in A.

(i) A consists of those a ∈ F with a ≥ 1.

(ii) A consists of those a ∈ F with a ≤ 1.

(iii) A consists of those a ∈ F with a < 1.

Definition 7.6.6. Let F be an ordered field. We say that F has the supremum

property if, whenever A is non-empty subset of F which is bounded above (that is

to say, there exists a K with K ≥ a for all a ∈ A), the set A has a supremum.

In other words, F has the supremum property if any non-empty subset, which

has an upper bound, has a least upper bound.
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Exercise 7.6.7. We work in an ordered field F. We say that e0 is the infimum (or

greatest lower bound) of E if e0 satisfies the following conditions

(1) e0 ≤ e for all e ∈ E,

(2) If c ≤ e for all e ∈ E, then c ≤ e0.

By considering the set A of −e with e ∈ E, or otherwise, show that, if F has

the supremum property, then every non-empty set bounded below has an infimum.

Theorem 7.6.8. Let F be an ordered field. The following two statements are equiv-

alent.

(i) F has the supremum property.

(ii) F obeys the fundamental axiom of analysis.

Proof. We split the proof into two parts.

The supremum property implies the fundamental axiom.

Suppose that F satisfies (i) and (a j) is an increasing sequence bounded above. If

we write A for the set consisting of the members of the sequence (a j), then A is

bounded above and so, by the supremum property, has a supremum a.

By definition,

(1) a ≥ a j for all j ≥ 1,

(2) if b ≥ a j for all j ≥ 1, then b ≥ a.

We claim that an → a. To see this, suppose ǫ > 0. Since a > a − ǫ, condition (2)

tells us that there exists an N such that aN > a − ǫ. Condition (1), together with

the fact that we have an increasing sequence, tells us that

a − ǫ < aN ≤ an ≤ a

and so |an − a| < ǫ for all n ≥ N. The required result follows.

The fundamental axiom implies the supremum property.

We recall that Theorem 7.4.8 tells us that the fundamental axiom implies the ax-

iom of Archimedes.

Let A be a non-empty set with a < K for all a ∈ A. Clearly we may suppose

K > 0. Since A is non-empty, we can find an a0 ∈ A and, using the axiom of

Archimedes (see Exercise 7.4.6 if necessary), we can then find an integer u0 with

u0 ≤ a0. For each strictly positive integer n, we consider the set En of integers k

such that 2−nk ≤ a for some a ∈ A. The set En is non-empty since u02n ∈ En and it

is bounded above since k < K2n whenever k ∈ En. Since any non-empty collection

of integers which is bounded above has a largest element, En has a largest element

which we call kn. We set bn = 2−nkn and make the following observations.

(1)n For each n, we can find some an ∈ A such that bn ≤ an.

(2)n bn + 2−n > a for all a ∈ A.

We first look at inequality (2)n. This tells us that k2−(n+1) < bn + 2−n whenever

k ∈ En+1 so that kn+1 ≤ 2kn + 1 and bn+1 ≤ bn + 2−n−1. A simple induction now



7.6. EQUIVALENT FORMS OF THE FUNDAMENTAL AXIOM 149

gives bm ≤ bn + 2−n for all m ≥ n and, in particular, bm ≤ b1 + 1 for all m ≥ 1. On

the other hand, looking at the definition of kn, we see that 2kn ∈ En+1 so 2kn ≤ kn+1

and bn ≤ bn+1. Thus the bn form an increasing sequence bounded above and, by

the fundamental axiom, bn → b as n → ∞ for some b ∈ F. We claim that b is the

supremum of A.

To prove this, we first observe that, if a ∈ A, then, by the definition of bn, we

have bn + 2−n ≥ a. Allowing n → ∞ and using the axiom of Archimedes to show

that 2−n → 0, we obtain b = b + 0 ≥ a. Thus b is indeed an upper bound.

Now suppose c ≥ a for all a ∈ A. By inequality (1)n we have

c ≥ an ≥ bn

for each n ≥ 1. Allowing n → ∞, we obtain c ≥ b. Thus b is the least upper

bound, that is to say, the supremum of A. �

Our final equivalence involves the notion of a Cauchy sequence.

Definition 7.6.9. We work in an ordered field F. We say that a sequence (an) is a

Cauchy sequence if, given ǫ > 0, we can find an N such that |an − am| < ǫ for all

n, m ≥ N.

The next exercise is easy, but important.

Exercise 7.6.10. We work in an ordered field F. Show that, if an → a as n → ∞,

then the an form a Cauchy sequence.

Thus every convergent sequence is a Cauchy sequence.

Definition 7.6.11. We say that an ordered field F is complete (or ‘Cauchy com-

plete’) if every Cauchy sequence converges, that is to say, if, whenever (an) is a

Cauchy sequence, there exists an a ∈ F such that an → a as n→∞.

The following remarks are very useful when dealing with Cauchy sequences.

Lemma 7.6.12. We work in an ordered field F. If some subsequence of a Cauchy

sequence (an) converges to a limit a, then the sequence converges to the limit a.

Proof. Suppose that we have a Cauchy sequence (an) and a sequence n(1) <

n(2) < . . . such that an( j) → a as j → ∞. Given any ǫ > 0, the definition of

a Cauchy sequence tells us that we can find an N such that |an − am| < ǫ/2 for all

n, m > N. On the other hand, the definition of a limit tells us that we can find a J

such that n(J) > N and |an( j) − a| < ǫ/2 for all j ≥ J. Thus, if n ≥ N, we have

|a − an| ≤ |an − an(J)| + |an(J) − a| < ǫ/2 + ǫ/2 = ǫ.

Since ǫ was arbitrary, we are done. �
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Exercise 7.6.13. We work in an ordered field F. Show that any Cauchy sequence

(an) is bounded (that is to say, there exists a constant K such that |an| ≤ K for

every n).

Theorem 7.6.14. Let F be an ordered field. The following two statements are

equivalent.

(i) F is complete and obeys the axiom of Archimedes.

(ii) F obeys the fundamental axiom of analysis.

Proof. We split the proof into two parts.

The fundamental axiom implies completeness and the Archimedean axiom

Suppose the fundamental axiom holds. We have already seen that the fundamental

axiom implies the Archimedean axiom (see Theorem 7.4.8). We also know (from

Theorem 7.6.2) that the fundamental axiom implies the Bolzano–Weierstrass con-

dition. We shall use the Bolzano–Weierstrass condition to prove that F is complete

as follows.

Suppose that we have a Cauchy sequence (an). Then the sequence must be

bounded (Exercise 7.6.13) and so, by the Bolzano–Weierstrass property, must

have a convergent subsequence. By Lemma 7.6.12, any Cauchy sequence with

a convergent subsequence converges, so we are done.

Completeness and the Archimedean axiom25 together imply the fundamental ax-

iom

Let F be an ordered field which is complete and satisfies the Archimedean

axiom. The desired result will follow if we can show any increasing sequence

bounded above is a Cauchy sequence and so converges by completeness.

Suppose therefore that (an) is an increasing sequence bounded above by M.

If it were not a Cauchy sequence we could find an ǫ > 0 such that, given any N,

we could find m > n > N with |am − an| > ǫ and so (since we have an increasing

sequence) am > aN + ǫ. Thus, given any J, we can find

1 = n(0) < n(1) < n(2) < . . . < n(J + 1) such that an( j+1) − an( j) ≥ ǫ for 0 ≤ j ≤ J.

It follows by a simple induction, that

an(J) ≥ Jǫ + a1,

so

M − a1 ≥ Jǫ

25The reader may ask if we cannot deduce the Archimedean axiom from completeness. It is

beyond the scope of this book, but there exist ordered fields F such that every Cauchy sequence

(an) is eventually constant (that is to say, there exists an N such that an = aN for n ≥ N). Since

every convergent sequence is Cauchy, the convergent sequences for such a field are exactly those

which are eventually constant. The field is complete (though for an uninteresting reason), but does

not satisfy the axiom of Archimedes.
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for all J, contradicting the Archimedean axiom in the form given by Exercise 7.4.5.

�

Exercise 7.6.15. Logically speaking, this exercise is unnecessary, since it follows

from other results thatQ does not satisfy the fundamental axiom of analysis and so

cannot satisfy any of its equivalent forms. However, the reader may find it helpful

to prove these results explicitly. Recall that the equation x2
= 2 has no solution in

Q (see Theorem 4.4.11 if necessary). Throughout, we work in the ordered field Q.

(i) (Easy) Show that Q satisfies the axiom of Archimedes.

(ii) Explain why we can find a strictly positive integer rn with the property that

r2
n ≤ 22n+1 < (rn + 1)2.

(iii) Set an = rn2−n. Show that, if an → a as n → ∞, then a2
= 2. Deduce that

the sequence (an) has no limit.

(iv) Show that the sequence (an) is increasing and bounded above. Conclude

that Q does not satisfy the fundamental axiom of analysis.

(v) Let A be the set consisting of the points an [n ≥ 1]. Show that, if b ∈ Q and

b ≥ an for all n, then b2 ≥ 2 and so b2 > 2. If we set

c =
1

2

(
b +

2

b

)

(an idea that goes back to the ancient Babylonians), show that c ∈ Q with b > c

and c2 ≥ 2. Show that c ≥ an for all n and deduce that A has no supremum.

(vi) Show that an ≤ an+1 ≤ an+2−n. Deduce that |an−am| ≤ 2−n+1 for all m ≥ n

and so the an form a Cauchy sequence with no limit.





Chapter 8

And what is its solution?

8.1 A construction of the real numbers

We have seen, in Theorem 7.4.3, that, if we wish to base calculus on limits, use

the associated definition of continuous function and demand that the intermediate

value condition holds, we need an ordered field which obeys the fundamental

axiom of analysis.

We shall now construct such a field and show that it is unique (up to the ap-

propriate isomorphism). We call this field the field of real numbers.

When we constructed the strictly positive rationals, we looked at ‘equivalence

classes of fractional representations’. When we constructed the rationals, we

looked at ‘equivalence classes of representations by differences’. Now we look

at ‘equivalence classes of representations as limits of sequences of rationals’.

More formally, we look at S, the collection of Cauchy sequences in Q

a = (a1, a2, a3, . . .).

(We can think of the a j as successive rational approximations to a putative ‘real

number’.)

Exercise 8.1.1. If a, b ∈ S, we say that a ∼ b if

an − bn → 0 as n→∞.

Show that ∼ is an equivalence relation. (See Definition 2.2.4.)

We shall write [a] for the equivalence class of a.

The definition of addition and multiplication and the proof that they give a field

follow the well-worn track of our constructions of the strictly positive rationals

and the rationals.

153
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Lemma 8.1.2. (i) If a, b ∈ S and we write

a + b = (a1 + b1, a2 + b2, . . .),

then a + b ∈ S.

(ii) If a, a′, b, b′ ∈ S and a ∼ a′, b ∼ b′, then

a + b ∼ a′ + b′.

(iii) If a, b ∈ S and we write

a × b = (a1 × b1, a2 × b2, . . .),

then a × b ∈ S.

(iv) If a, a′, b, b′ ∈ S and a ∼ a′, b ∼ b′, then

a × b ∼ a′ × b′.

Remark If the reader wishes to replace a + b by a ⊕ b and so on, she should feel

free to do so, but I shall make much less use of such notation from now on.

Proof. We prove parts (iii) and (iv), leaving the slightly easier parts (i) and (ii) to

the reader. Remember that we are working in Q so ‘Cauchy’ means ‘Cauchy in

Q’.

(iii) We know that Cauchy sequences are bounded (see Exercise 7.6.13), so we

can find an M > 0 such that |a j|, |b j| ≤ M for all j. If ǫ > 0, then, since we have

two Cauchy sequences, we can find an N such that

|am − an|, |bm − bn| <
ǫ

2M

for all m, n ≥ N. It follows that

∣∣∣(am × bm) − (an × bn)
∣∣∣ =

∣∣∣(am × (bm − bn)
)
+

(
bn × (am − an)

)∣∣∣
≤

∣∣∣am × (bm − bn)
∣∣∣ +

∣∣∣bn × (am − an)
∣∣∣

=
(|am| × |bm − bn|

)
+

(|bn| × |am − an|
)

< M
ǫ

2M
+ M

ǫ

2M
= ǫ

for all m, n ≥ N. Thus a × b is a Cauchy sequence.

(iv) We use a similar argument to (iii). We know that Cauchy sequences are

bounded, so we can find an M > 0 such that |a j|, |a′j|, |b j|, |b′j| ≤ M for all j. If

ǫ > 0, then, since a ∼ a′ and b ∼ b′, we can find an N such that

|an − a′n|, |bn − b′n| <
ǫ

2M
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for all n ≥ N. It follows that
∣∣∣(an × bn) − (a′n × b′n)

∣∣∣ =
∣∣∣(an × (bn − b′n)

)
+

(
b′n × (an − a′n)

)∣∣∣
≤

∣∣∣an × (bn − b′n)
∣∣∣ +

∣∣∣b′n × (an − a′n)
∣∣∣

=
(|an| × |bn − b′n|

)
+

(|b′n| × |an − a′n|
)

< M
ǫ

2M
+ M

ǫ

2M
= ǫ

for all n ≥ N. Since ǫ was arbitrary, we have shown that

a × b ∼ a′ × b′

as required. �

Exercise 8.1.3. Prove parts (i) and (ii) of Lemma 8.1.2.

We can thus make the following definition.

Definition 8.1.4. Using the notation of Lemma 8.1.2, we write

[a] + [b] = [a + b], [a] × [b] = [a × b]

Let 0 = (0, 0, 0, . . .) and 1 = (1, 1, 1, . . .). We observe that 0, 1 ∈ S.

Lemma 8.1.5. If we write R for the collection of equivalence classes [a], then R

with addition +, multiplication ×, additive zero [0] and multiplicative unit [1] is a

field (see Definition 5.1.1).

Proof. All the verifications are easy apart from condition (viii), that is to say, the

existence of a multiplicative inverse. We shall prove this condition in a separate

lemma below.

For the moment, we prove two of the other conditions, leaving it to the reader

to check the rest.

(iv) (Additive inverse.) Let a ∈ S. If we write

−a = (−a1,−a2,−a3, . . .),

then, since |(−an) − (−am)| = |an − am|, we have −a ∈ S. Automatically

[a] + [−a] = [a + (−a)] = [0].

(ix) (Distributive law.) The distributive law for Q gives

an × (bn + cn) = (an × bn) + (an × cn)

for all n, so a × (b + c) = (a × b) + (a × c) and

[a] × ([b] + [c]) = ([a] × [b]) + ([a] × [c]).

�
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Exercise 8.1.6. Verify the remaining conditions (apart from (viii)).

The proof of condition (viii) in Lemma 8.1.5 follows an expected path, but we

have to be careful since we must avoid division by zero and we have to ensure that

division by small numbers does not produce unexpected large numbers.

Lemma 8.1.7. We use the hypotheses and notation of Lemma 8.1.5.

(i) If [a] , [0], we can find strictly positive integers M and N such that |an| ≥
1/M for all n ≥ N.

(ii) If [a] , [0], we can find an a′ ∈ S and a strictly positive integer M such

that a′ ∼ a and |a′n| ≥ 1/M for all n.

(iii) Suppose that [a] , [0] and a′ satisfies the conclusions of (ii). Then, if we

write bn = 1/a′n, we have b ∈ S and

[a] × [b] = [1].

Proof. (i) Suppose that a ∈ S, but there do not exist strictly positive integers M

and N such that |an| ≥ 1/M for all n ≥ N. We can then find n(1) < n(2) < n(3) <

. . . such that

|an( j)| < 1/ j.

By the axiom of Archimedes for Q, it follows that an( j) → 0 as j → ∞. We

know that, if any subsequence of a Cauchy sequence converges to limit, then the

sequence converges to that limit (see Lemma 7.6.12), so an → 0 as n → ∞. Thus

a ∼ 0 and [a] = [0].

(ii) Let M and N be as in (i). Set

a′n =


1/M if 1 ≤ n ≤ N,

an otherwise.

(iii) Let ǫ > 0. Since a′ is a Cauchy sequence we can find a strictly positive

integer P such that

|a′n − a′m| <
ǫ

M2

for all n, m ≥ P. Automatically
∣∣∣∣∣∣

1

a′n
− 1

a′m

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a′m − a′n
a′n × a′m

∣∣∣∣∣∣ =
|a′m − a′n|
|a′n| × |a′m|

<
ǫ

M2
× M2

= ǫ

for all n, m ≥ P. We have shown that b ∈ S.

We finish the proof by observing that

[a] × [b] = [a′] × [b] = [a′ × b] = [1].

�
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We now seek to define an order on R. The reader will see that our sequence of

temporary definition, lemma and final definition follows a standard pattern.

Definition 8.1.8. Let a, b ∈ S. We say that a ≻ b if there exist strictly positive

integers M and N such that

a j ≥ b j +
1

M

for all j ≥ N.

Lemma 8.1.9. Let a, a′, b, b′ ∈ S. If a ∼ a′, b ∼ b′ and a ≻ b, then a′ ≻ b′.

Proof. By definition, there exist strictly positive integers M and N such that

a j ≥ b j +
1

M

for all j ≥ N. Since a ∼ a′ and b ∼ b′, we can find an N′ ≥ N such that

|a j − a′j|, |b j − b′j| ≤
1

3M

for all j ≥ N′.
We now have

a′j ≥ a j −
1

3M
≥ b j +

2

3M
≥ b′j +

1

3M

for all j ≥ N′ and so a′ ≻ b′. �

Lemma 8.1.9 allows us to make the following definition.

Definition 8.1.10. Let a, b ∈ S. We say that [a] > [b] if a ≻ b.

Lemma 8.1.11. The field (R,+,×) obtained in this section is an ordered field for

the inequality > of Definition 8.1.10. More specifically,

(x) If [a] > [b] and [b] > [c], then [a] > [c]. (Transitivity of order.)

(xi) Exactly one of the following conditions holds: [a] > [b] or [b] > [a] or

[a] = [b]. (Trichotomy.)

(xii) If [a] > [b], then [a] + [c] > [b] + [c]. (Order and addition.)

(xiii) If [a] > [b] and [c] > [0], then [a] × [c] > [b] × [c]. (Order and

multiplication.)

Proof. We leave the proof of (x), (xii) and (xiii) to the reader and concentrate on

proving (xi).

We need to show that at most one of the relations [a] > [b] or [b] > [a] or

[a] = [b] can hold. First we show that, if [a] > [b], then it is not the case that
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[a] = [b]. For, if [a] > [b], then there exist strictly positive integers M and N such

that

a j ≥ b j +
1

M

and so |a j − b j| ≥ 1/M for all j ≥ N. In particular, a j − b j 9 0 as j→ ∞, so

[a] − [b] = [a − b] , [0]

and [a] , [b]. Similar arguments show that if [a] > [b], then it is not the case that

[b] > [a]. The symmetry between [b] and [a] covers the remaining cases.

We now need to show that at least one of the relations [a] > [b] or [b] > [a] or

[a] = [b] must hold. Suppose, therefore, that neither of the conditions [a] > [b]

and [b] > [a] hold.

If ǫ > 0, then we can find a strictly positive integer M such that ǫ/3 ≥ 1/M.

Since a and b are Cauchy sequences, we can find an N such that

|an − am|, |bn − bm| <
1

M

for all n, m ≥ N. Since it is not the case that [a] > [b], we can find an n′ ≥ N such

that

an′ < bn′ +
1

M
.

We thus have

an < |an − an′ | + an′ <
2

M
+ bn′ <

2

M
+ bn + |bn − bn′ | <

3

M
+ bn

for all n ≥ N. Similarly, since it is not the case that [a] < [b], we have

bn <
3

M
+ an

for all n ≥ N. We have shown that

|an − bn| <
3

M
< ǫ

for all n ≥ N. Since ǫ was chosen freely, we have an − bn → 0 as n→∞, so

[a] − [b] = [a − b] = [0],

that is to say [a] = [b]. �

Exercise 8.1.12. Prove conditions (x), (xii) and (xiii) of Lemma 8.1.11.
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So far, we have dealt with the algebraic aspects of (R,+,×, >), showing that it

is an ordered field. We now turn to the ‘analysis’ side of the argument and seek to

show that our ordered field satisfies the fundamental axiom of analysis.

Before beginning the argument proper, we have to resolve a notational diffi-

culty. We saw earlier that every ordered field contains a unique copy of Q, so it

is natural to call this copy Q. However, when we seek to construct R from Q we

need to distinguish the copy from the original. To do this, we write

u(q) = (q, q, q, . . .)

where q ∈ Q, that is to say, we write u(q) for the sequence each element of which

is q.

Exercise 8.1.13. Check that the following statements are true. We take q, q′ ∈ Q.

(i) We have u(q) ∈ S.

(ii) The function f : Q→ R given by f (q) = [u(q)] is injective.

(iii) We have f (q + q′) = f (q) + f (q′), f (q × q′) = f (q) × f (q′) and, whenever

q > q′, we have f (q) > f (q′).

Thus the [u(q)] give the model of Q in R. Note also that [u(0)] = [0] and

[u(1)] = [1].

Lemma 8.1.14. [The Archimedean property for R] We have [u(1/n)] → [0] as

n→∞.

Proof. Suppose that [ǫ] > [0]. Then, by definition, we can find strictly positive

integers M and N such that

ǫ j ≥
1

M

for all j ≥ N. Thus

ǫ j >
1

2M
+

1

n

for all j ≥ N and n ≥ 2M + 1. We have shown that

[ǫ] > [u(1/n)] > [u(0)] = [0]

for n ≥ 2M + 1. Since [ǫ] was arbitrary, it follows that [u(1/n)] → [0] as n →
∞. �

Theorem 7.4.11 has the following useful consequence.

Lemma 8.1.15. If [a] ∈ R and [ǫ] > [0], then we can find some q ∈ Q such that

|[a] − [u(q)]| < [ǫ].
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We also need the following observation.

Lemma 8.1.16. If q = (q1, q2, q3, . . .) ∈ S, then [u(q j)]→ [q] as j→∞.

Proof. Suppose [ǫ] > [0]. By the axiom of Archimedes in the form given in

Exercise 7.4.5, we can find a strictly positive integer M such that [ǫ] > [u(1/M)].

Since q ∈ S, we can find an N such that |qn − qm| < 1/M for all n, m ≥ N. We

thus have

|um(qn) − qm| = |qn − qm| < 1/M

for all n, m ≥ N and so

|[u(qn)] − [q]| = |[u(qn) − q]| ≤ [u(1/M)] < [ǫ]

for all n ≥ N. The required result follows. �

Theorem 8.1.17. The ordered field (R,+,×, >) satisfies the fundamental axiom of

analysis.

Proof. We already know that R satisfies the axiom of Archimedes, so, by Theo-

rem 7.6.14, we need only show that R is complete.

To this end, suppose that [a(1)], [a(2)], [a(3)], . . . form a Cauchy sequence

in R. (Thus we have a Cauchy sequence in R of equivalence classes of Cauchy

sequences in Q.) By Lemma 8.1.15, we can find qn ∈ Q such that

|[a(n)] − [u(qn)]| < u(1/n)

for each n. We claim that the qn form a Cauchy sequence in Q.

Suppose ǫ ∈ Q and ǫ > 0. We can find a strictly positive integer M such that

ǫ/3 > 1/M. Since [a(n)] is a Cauchy sequence in R, we can find an N > M such

that

|[a(n)] − [a(m)]| < u(1/M)

for all n, m ≥ N. We now have

|[u(qn − qm)]| = |[u(qn)] − [u(qm)]|
≤ |[u(qn)] − [a(m)]| + |[u(qm)] − [a(m)]| + |[a(n)] − [a(m)]|
≤ u(1/n) + u(1/m) + u(1/M) < u(3/M)

and so |qn − qm| ≤ 3/M < ǫ for all n, m ≥ N. We have proved that the qn form a

Cauchy sequence in Q and so, in particular,

a = (q1, q2, q3, . . .) ∈ S.

By Lemma 8.1.16,

u(qn)→ a
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and, by the choice of qn made in the second paragraph of the proof (together with

the axiom of Archimedes),

[a(n)] − [u(qn)]→ [0]

as n→ ∞. Thus

[a(n)] = [u(qn)] +
(
[a(n)] − [u(qn)]

)→ [a] + [0] = [a]

and we have proved that R is complete. �

We have shown how to construct an ordered field satisfying the fundamental

axiom, that is to say, an object on which we can do calculus in the Cauchy manner.

We now show that (with our standard disclaimer ‘up to isomorphism’) there is

only one such field. We start with some simple exercises.

Exercise 8.1.18. We shall take (F,+,×, >) and (G,+,×, >) to be ordered fields.

We suppose that h : F→ G is a bijection which preserves +, × and >.

(i) Show that h−1 : G → F preserves +, × and >. (See the proof of part (i) of

Lemma 3.4.14 if you need a hint.)

(ii) Show that, if a ∈ F, then |h(a)| = h(|a|).
(iii) Show that, if an → a as n→ ∞ in F, then h(an)→ h(a) in G.

(iv) If the sequence (xn) is Cauchy in F, show that the sequence
(
h(xn)

)
is

Cauchy in G,

Theorem 8.1.19. Suppose that (F,+,×, >) and (G,+,×, >) are ordered fields sat-

isfying the fundamental axiom. Then there exists a bijection h : F → G which

preserves +, × and >.

Proof. Exercise 7.2.7 tells us that F and G contain a ‘natural copy’ of Q. More

precisely, there exist injective functions, f : Q → F and g : Q → G which

preserve +, × and >. Let us write QF for the image of Q under f (that is to say,

the collection of f (q) with q ∈ Q) and QG for the image of Q under g.

By Theorem 7.4.11, every element of F is the limit of a sequence in QF. Sup-

pose that f (qn)→ u for some sequence qn ∈ Q. Then f (qn) is Cauchy in F and so

in QF. It follows from Exercise 8.1.18 (iv) that the qn form a Cauchy sequence in

Q, so the g(qn) form a Cauchy sequence in QG and so (since we have the axiom of

Archimedes) in G. Thus g(qn) converges to some limit v in G.

Now suppose f (q′n)→ u for some sequence of q′n ∈ Q. We have

| f (qn − q′n)| = | f (qn) − f (q′n)| ≤ | f (qn) − u| + | f (q′n) − u| → 0

as n→ ∞. It follows from Exercise 8.1.18 (iii) that qn − q′n → 0 as n→ ∞ and so

g(qn) − g(q′n)→ 0. Thus

g(q′n) = u +
(
g(q′n) − g(qn)

)
+

(
g(qn) − u

)→ u + 0 + 0 = u
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as n→ ∞.

We can thus define a unique function h : F → G by the condition that, if

f (qn) → u for some sequence of qn ∈ Q, then h(u) is the limit of g(qn). Similarly,

there exists a unique function k : G→ F given by the condition that, if g(qn) → v

for some sequence of qn ∈ Q, then k(v) is the limit of f (qn).

We now show that h and k are bijective with k = h−1. If u ∈ F, choose a

sequence of qn ∈ Q such that f (qn) → u. By definition, g(qn) → h(u), so, again

by definition, k
(
h(u)

)
= u. Similarly h

(
k(v)

)
= v for all v ∈ G. Thus h and k are

inverse functions and we are done.

Finally, we need to check that h preserves +, × and >. To see that h preserves

+, observe that, if u, u′ ∈ F, then we can find sequences qn, q′n ∈ Q such that

f (qn) → u and f (q′n) → u′. We have g(qn) → h(u) and g(q′n) → h(u′). On the

other hand, qn + q′n ∈ Q and f preserves +, so

f (qn + q′n) = f (qn) + f (q′n)→ u + u′

so g(qn + q′n)→ h(u + u′). Since g preserves +,

g(qn + q′n) = g(qn) + g(q′n)→ h(u) + h(u′)

and h(u+u′) = h(u)+h(u′). A similar argument shows that h(u×u′) = h(u)×h(u′).

The proof that h preserves > requires a little more care1. Suppose that u, u′ ∈ F
and u > u′. By the axiom of Archimedes, we can find a strictly positive integer M

such that f (1/3) × (u − u′) > f (1/M). We now choose qn, q′n ∈ Q such that

| f (qn) − u| ≤ f (1/M) and | f (q′n) − u′| ≤ f (1/M) for all n

and f (qn)→ u, f (q′n)→ u′ as n→∞. With this choice,

f (qn − q′n) = f (qn) − f (q′n) ≥ (
u − f (1/M)

) − (
u′ + f (1/M)

)

= (u − u′) − f (2/M) ≥ f (3/M) − f (2/M) = f (1/M),

so

g(qn − q′n) ≥ g(1/M).

Allowing n→ ∞, we have

h(u) − h(u′) = h(u − u′) ≥ g(1/M)

and so h(u) > h(u′) as required. �

1Recall that we may have xn → x, yn → y, xn > yn for all n, but x = y.
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We call the elements of R the real numbers.

The construction of the real numbers from the rationals by Dedekind (and,

more or less simultaneously, by others2) was an important achievement, but, viewed

in retrospect, the main outcome of the Cauchy programme was the identification

of how the real numbers and the calculus based on them actually worked. Most

university courses now begin with the statement that R is an ordered field satisfy-

ing the fundamental axiom and proceed from there.

Exercise 8.1.20. This is easy exercise completes unfinished business from Exer-

cise 7.2.10. We know (by Lemma 7.4.12) that R contains
√

2. If Q[
√

2] is de-

fined as in Exercise 7.2.10, show that the function g : Q[
√

2] → R given by

g(a) = a1 + a2

√
2 is an injection preserving addition and multiplication, in other

words a field isomorphism of Q[
√

2] with

G = {a1 + a2

√
2 : a1, a2 ∈ Q}.

Show that a = b if and only if g(a) > g(b). Conclude that Q[
√

2] is an ordered

field.

8.2 Some consequences

Any university mathematics course with the words analysis in its title and many

without (differential geometry, advanced probability, . . . ) may be viewed as the

study of R and objects constructed from it. This section is a pause to admire the

view at the beginning of a long climb.

We start by giving a ‘Cauchy calculus’ treatment of Example 7.3.1.

Example 8.2.1. (i) 1 +
1

2
+

1

22
+

1

23
+ . . . +

1

2n
→ 2 as n→ ∞.

(ii)
9

10
+

9

102
+

9

103
+ . . . +

9

10n
→ 1 as n→ ∞.

(iii) 1 + 2 + 22
+ 23
+ . . . + 2n does not converge as n→ ∞.

Proof. We give proofs echoing Example 7.3.1.

(i) Let

S n = 1 +
1

2
+

1

22
+

1

23
+ . . . +

1

2n
.

Then (S n) is an increasing sequence bounded above by 2 (since a simple induction

gives S n = 2 − 1/2n). It follows that S n converges to some limit S say. We now

observe that

2S n−1 − S n = 2

2The construction given in this section is due to Cantor. I have chosen this method because it

is echoed by similar constructions in advanced analysis.
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so, allowing n→∞, we have 2S − S = 2, that is to say, S = 2.

(ii) Left to the reader.

(iii) Let

S n = 1 + 2 + 4 + 8 + . . . + 2n.

Then |S n − S n+1| ≥ 1 so (S n) is not Cauchy and so does not converge. �

Exercise 8.2.2. Here is a more workaday method of attacking Example 8.2.1.

(i) (Summing a geometric series.) Consider a field F and some x ∈ F with

x , 1. If we set S 0(x) = 1 and S n(x) = S n−1(x) + xn, show, by induction, that

S n(x) =
1 − xn+1

1 − x

or, more informally, that

1 + x + . . . + xn
=

1 − xn+1

1 − x
.

(ii) We now take F = R. Use (i) and Exercise 7.4.9 to show that, if |x| < 1, then

1 + x + . . . + xn → 1

1 − x

as n→∞ and hence obtain the results of the first two parts of Example 8.2.1.

We can also show that every decimal corresponds to a real number and every

real number can be written in decimal form.

Exercise 8.2.3. If a j is an integer with 9 ≥ a j ≥ 0 for all j ≥ 1, show that

a1

10
+

a2

102
+ . . .

an

10n
→ x

as n→∞, for some x ∈ R with 0 ≤ x ≤ 1.

Exercise 8.2.4. If x is a real number with 1 > x ≥ 0, let us write T x for the integer

part of 10x (so that T x = m, where m is an integer and m + 1 > 10x ≥ m) and

S x = 10x − T x. If 1 > a ≥ 0, let us set a1 = Ta, b1 = S a and then, proceeding

inductively, set an+1 = Tbn and bn+1 = S bn.

(i) Show that 9 ≥ an ≥ 0 and 1 > bn ≥ 0.

(ii) Let us define x1 = a110−1 and xn+1 = an+110−n−1
+ xn. Show that 10na =

10nxn + bn Conclude that 10−n > a − xn ≥ 0 and deduce, using the axiom of

Archimedes, that xn → a as n→ ∞.

(iii) Explain, in simple terms, the relevance of this construction to decimal

expansion.
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Exercise 8.2.5. We continue with the ideas and notation of Exercise 8.2.4

(i) Suppose that a = u/v with u and v non-negative integers and v > u ≥ 0.

Show that bn = un/v where un is an integer with v > un ≥ 0. By looking at possible

values for ur when v + 1 ≥ r ≥ 1, show that there exist integers p and q with

v + 1 ≥ p > q ≥ 1 and up = uq.

Show that am+(p−q) = am for all m ≥ q + 1.

(ii) Suppose, conversely, that there exist integers t, s ≥ 1 such that am+s = am

for all m ≥ t. Show that a is rational.

Although it is possible to construct the reals using decimal expansions rather

than Cauchy sequences3, there are technical problems hinted at by the next exer-

cise.

Exercise 8.2.6. (i) Suppose that a, b, c, d are real numbers with 1/2 > c > 0,

1/2 > d > 0 and a = c + d, b = c × d. Let a, b, c, d have decimal expansions

a = .a1a2a3 . . . , b = .b1b2b3 . . . , c = .c1c2c3 . . . , d = .d1d2d3 . . . .

(i) Does there exist an N (independent of the particular choice of c and d) such

that, knowing c j and d j for 1 ≤ j ≤ N, we can calculate a1? Why?

(ii) Does there exist an M (independent of the particular choice of c and d)

such that, knowing c j and d j for 1 ≤ j ≤ M, we can calculate b1? Why?

So far, so routine. We now come to an extraordinary discovery of Cantor. (If

you do not consider it extraordinary, you must explain why nobody before Cantor

asked the appropriate question, let alone answered it.) The real numbers cannot

be enumerated!

Theorem 8.2.7. Consider any sequence of xn ∈ R. There exists a y ∈ R with

y , xn for all n ≥ 1,

Proof. (This proof is closer to Cantor’s original proof than the one usually given.)

We define two sequences δ j > 0 and y j ∈ R inductively. We set δ0 = 1 and y0 = 0.

Once δ j and y j have been defined, we look at x j+1.

There are two possibilities. Either y j ≥ x j+1 and we take δ j+1 = δ j/2 and set

y j+1 = y j + δ j+1, or y j < x j+1, in which case we take

δ j+1 = min{δ j, x j+1 − y j}/2

and set y j+1 = y j.

3If you feel that this is more natural, it is worth asking why the fact that we have eight fingers

and two thumbs should enter into the construction of R.



166 CHAPTER 8. AND WHAT IS ITS SOLUTION?

We observe that, in both cases, 0 < δ j+1 ≤ δ j/2 and y j ≤ y j+1 ≤ y j + δ j+1.

Using an inductive argument, we obtain 0 < δ j+k ≤ 2−kδ j for all k ≥ 0 and j ≥ 0.

A second inductive argument now shows that

y j ≤ y j+k ≤ y j + (1 − 2−k)δ j, ⋆

for all k ≥ 0 and j ≥ 0. Taking j = 0, we see that y j form an increasing sequence

bounded above by y0 + δ0 = 1 and so converge to some limit y. By⋆, we have

y j ≤ y ≤ y j + δ j.

As in the second paragraph of our proof, there are two possibilities. Either

y j ≥ x j+1, so that

y ≥ y j+1 = y j + δ j+1 ≥ x j+1 + δ j+1 > x j+1

or x j+1 > y j, so that

y ≤ y j+1 + δ j+1 = y j + δ j+1 ≤ y j + (x j+1 − y j)/2 = (y j + x j+1)/2 < x j+1.

Thus y , x j+1 for all j ≥ 0 and we are done �

Cantor’s theorem says that we cannot count off the real numbers in the same

way as we count off the natural numbers: one, two, three, . . . . Mathematicians

say that ‘the reals are uncountable4’ and murmur ‘Toto, I’ve a feeling we’re not in

Kansas anymore.’

Note that the rational numbers Q can be enumerated.

Theorem 8.2.8. There exists a sequence of xn ∈ Q such that, if y ∈ Q, there exists

an n with y = xn.

Proof. Suppose that n = 2k3u5v with k = 1 or k = 2 and u, v natural numbers.

(The uniqueness of prime factorisation tells us that k, u and v are uniquely de-

fined.) We set

xn =


u
v

if k = 1,
−u
v

if k = 2.

If n does not factorise as shown in the first sentence, we just set xn = 0. �

Exercise 8.2.9. Theorem 8.2.8 shows that there is a surjection g : N → Q. Use

this result to show that there is, in fact, a bijection f : N→ Q.

4A set is called countable if it is enumerable and uncountable if not.
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How was it possible to start from the enumerable system of the rationals and

end up with the non-enumerable system of the reals? A little thought shows that

the break occurred when we considered S, the set of all Cauchy sequences of

rationals. Earlier, we mentioned that there exist a few mathematicians who con-

sider the use of the infinite set N+ as illegitimate. They are now joined by another

small, but respectable, group of mathematicians who are willing to talk about N+,

but view the use of objects like ‘all sequences of rationals’ as a step too far.

The great majority of mathematicians are happy to talk about ‘the set of all

continuous functions F : R→ R’, ‘the set of all sequences of rationals’ and simi-

lar objects. However, as I remarked earlier, experience has shown that unrestricted

use of such definitions can lead to paradoxes. Here is another one.

Example 8.2.10. Berry’s paradox Consider the smallest positive integer not de-

scribable in an English sentence containing less than one hundred words.

As I said in Section 6.5, mathematicians have therefore adopted a set of rules

(typically the Zermelo-Fraenkel axioms together with rules about what constitutes

a mathematical statement) governing how we may construct sets and so restricting

how we can define mathematical objects. Thus, for example, given sets A and B,

the Zermelo–Fraenkel axioms permit us to consider the product set A× B consist-

ing of all ordered pairs (a, b) with a ∈ A, b ∈ B and the power set P(A) consisting

of all subsets of A.

When we constructed the strictly positive rationals from the natural numbers,

we looked at the set of ordered pairs (n, n′) ∈ N+ ×N+. We then looked at equiva-

lence classes [(n, n′)]. These are members5 ofP(N+×N+). The Zermelo–Fraenkel

axioms form a padded playpen for mathematicians, permitting us to do what we

wish to do and preventing us from doing things, like using self-referential defini-

tions, which we have no wish to do. A good discussion of the Zermelo-Fraenkel

axioms will be found in [12].

Although, as the previous paragraph indicates, set theory may form part of the

background, it is not necessarily required for the day-to-day study of countable

objects like the natural numbers. However, whereas every natural number has a

name: one, two, . . . , seventeen billion, . . . the fact that the reals are uncountable

means that ‘most real numbers have no name’. (Recall from our discussion of

codes in Section 5.3 that we can associate every English sentence with a unique

natural number and then every named real number like ‘two sevenths’ or ‘the area

of a circle radius one’ is associated with a natural number and each natural number

is associated with at most one such sentence.) Thus a ‘typical real number’ forms

5The alert reader may observe that we have introduced an uncountable set P(N+ × N+). We

could have confined ourselves to countable objects here and in the construction of the rationals Q,

but this would involve more work for no particular gain.
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part of an anonymous mass whose purpose is to form members of sets (like the

set of all real numbers x with 0 < x < 1). Under these circumstances, use of the

language of sets becomes essential.

8.3 Are the real numbers real?

To the ancient Egyptians and Greeks, the sun was a unique object. To us, the sun

is merely one star among many. As I have remarked several times before, it is

much easier to study an object if it is one among many. The real number system

seems to play such a unique role in our understanding of the world around us that

it is difficult to find anything to compare it with.

However, I think that a comparison with the status of Euclidean geometry may

be useful. Until the beginning of the 19th century, few people doubted the truth of

Euclidean geometry (that is to say the geometry described in Euclid’s Elements).

Indeed, few people even asked themselves what it meant to say that Euclidean

geometry was ‘true’. Those philosophers, like Kant, who considered the matter

suggested either that space was inherently Euclidean or, more interestingly, that

the only way the human mind could understand space was through Euclidean

geometry.

Bolyai and Lobachevsky showed that it was possible to develop other axioms

to produce different geometries (in particular, ones in which ‘the angles of a tri-

angle do not add up to 180 degrees’). Riemann (following his teacher Gauss)

approached the matter from a different direction.

If we do geometry on the earth’s surface, then lines are replaced by ‘great

circles’ and, although on a sufficiently small scale ‘the angles of a triangle formed

by great circles add up to 180 degrees to any desired degree of accuracy6’, this is

not true on a large scale, and navigation requires ‘spherical geometry’ rather than

‘flat geometry’. We say that the rules of Euclidean geometry apply locally but that

the sphere is ‘curved’.

In the picture just given, the spherical surface is pictured as lying in three-

dimensional Euclidean space so the ‘true geometry is Euclidean’, but, when we

restrict ourselves to the ‘curved surface’, it is more convenient to use a non-

Euclidean geometry.

Riemann threw away the comfort blanket of a Euclidean space containing

our surface and simply considered the surface. Thus, for Riemann, a surface

(or manifold) was simply something whose local structure was Euclidean, but

whose global structure could be very different. Of course, there is no need to re-

strict ourselves to two-dimensional surfaces. A manifold could be an object that

6The higher the required accuracy, the smaller we must take our triangles.
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looked locally like n-dimensional Euclidean space. Riemann and his successors

(including Christoffel, Ricci-Curbastro and Levi-Civita) developed the mathemat-

ical methods required by this new conception.

In his theory of special relativity, Einstein replaced the picture of a universe

in which the laws of nature conspired (by aether drift or contracting rulers) to

make it impossible to measure the differing speeds of light in systems moving

with different velocities with respect to each other, by one simple law of nature

stating that the velocity of light is constant in all such systems.

A couple of years later, Einstein had what he called the ‘happiest thought

of [his] life’. In classical physics, the effects of gravitation and acceleration are

indistinguishable. Instead of trying to distinguish the indistinguishable, why not

treat them as identical? Such a new theory required new mathematics. There

is a pleasant story, told by Einstein himself, that he explained his problem to

his mathematician friend Grossmann ‘and asked him please to go to the library

and see if there was an appropriate geometry to handle such questions. The next

day Grossmann returned . . . and said that there was such a geometry, Riemannian

geometry’7. When, after several years of hard thinking, Einstein completed his

general theory of relativity, his new universe was not a surface embedded in some

Euclidean space, but a universe described by Riemannian geometry.

Compared with most parts of modern physics, special relativity is mathemat-

ically quite simple and experimentally quite easy to test. General relativity is not

only mathematically complicated, but also hard to test, since the effects it predicts

are small and subtle.

When the first navigational satellite was to be launched, some engineers in-

volved in the project assumed that they would only need to take into account

special relativity, whilst others worried about general relativity. To be on the safe

side, a committee was set up to consider the matter. When the committee reported

that a general relativistic correction would be required (since, for example, general

relativity demands that clocks run faster in lower gravity) the engineers installed

a ‘general relativity switch’ which would be operated if this turned out to be the

case. Observations after the launch showed that the committee (and so general

relativity) had made the right prediction and the switch was turned on. Without

correction, the system would have given positions out by 10 kilometres within a

day8.

Is it possible that, just as Euclidean geometry turned out not to be the only way

of viewing the world and, indeed, not the best way of viewing the world, so the

real numbers may not be as fundamental as we think them to be? Since the time

of Galileo, physics has viewed the world through ‘Stevinian’ eyes. The particles

7The story is taken from [26], where it is placed in its proper context.
8This account is taken from [1].
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of Newtonian mechanics have position and momentum and, by taking sufficient

care, we can persuade nature to reveal a further decimal place in their values.

However, quantum mechanics tells us that we cannot know both position and

momentum to arbitrary accuracy. If we continue with the Stevinian view that

the pair (position, momentum) exists, although we cannot measure it to arbitrary

accuracy, are we not repeating the same mistake as those who held that we can

only understand nature through Euclidean eyes?

I am not suggesting that modifying our notion of real number is the way to

resolve the problems of modern physics. However, it would not surprise me if,

in due course, resolving the problems of modern physics led to a change in our

notion of number.

And new philosophy calls all in doubt;

The element of fire is quite put out;

The sun is lost, and th’ earth, and no mans wit

Can well direct him where to look for it.

And freely men confess that this world’s spent,

When in the planets, and the firmament

They seek so many new; they see that this

Is crumbled out again to his atomies.

‘Tis all in pieces, all coherence gone,

All just supply, and all relation.

Donne An Anatomy of the World



Chapter 9

The complex numbers

9.1 Constructing the complex numbers

It is easy to postulate new numbers to ‘solve’ previously insoluble problems. It

is, as we have seen, much harder (and usually impossible) to introduce them in

a manner which is consistent with other uses of numbers. And, even when it is

possible to introduce them in a consistent manner, it is often not very useful. (See,

for example, Exercise 7.2.10.) It is easy to introduce i as a root of x2
= −1, but it

is by no means clear why we should do so.

Cardano, who was the first person to explicitly consider the square roots of

negative numbers, ended his discussion with the words: ‘This subtlety results from

arithmetic of which this final point is, as I have said, as subtle as it is useless.’

That i might be interesting, at least for those studying mathematical puzzles, is

indicated by the formula, familiar to all my readers,

−b ±
√

b2 − 4ac

2a

which, if we permit the introduction of i, solves all quadratics

at2
+ bt + c = 0

with a , 0.

More particularly, if we allow ourselves to consider i as a number, we can

factorise a quadratic into linear factors

at2
+ bt + c = a(t − α)(t − β).

Over time, it became clear that a similar thing occurs for cubics and quartics

without the need to introduce any further fictitious numbers, and there was a strong

suspicion that the same might be true for all polynomials.
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Later, adventurous mathematicians like Leibniz and Euler tried to introduce

the standard recipe ‘treat fictitious numbers in the same way as ordinary numbers’,

which had worked so well in algebra, into the new calculus. Some of the formulae

which emerged were striking, but others were nonsensical.

Example 9.1.1. If the reader has done advanced school calculus, she may wish to

consider which parts of the argument that follows are definition, which parts are

provable, which parts seem plausible and which parts are bluff. Otherwise she

can skip the whole thing.

By using Taylor’s theorem, we have

eix
=
?

∞∑

n=0

(ix)n

n!

=
?

∞∑

r=0

(−1)r x2r

(2r)!
+ i

∞∑

r=0

(−1)r x2r+1

(2r + 1)!

=
?

cos x + i sin x.

In particular, setting x = π, we have

eiπ
=
?
−1,

so, taking logarithms,

log(−1) =
?

iπ

and so

0 =
?

log 1 =
?

log
(
(−1)2)

=
?

2 log(−1) =
?

2πi.

If complex numbers were to be used in these new ways, they would need to be

better understood.

In view of the work we had to do in earlier constructions and the use of words

like ‘complex’ and ‘imaginary’ in describing the new numbers, the construction

of the complex numbers C from R turns out to be surprisingly easy.

Definition 9.1.2. We write C for the collection of ordered pairs

a = (a1, a2)

of real numbers a1, a2. We take

(a1, a2) + (b1, b2) = (a1 + a2, b1 + b2)

(a1, a2) × (b1, b2) =
(
(a1 × a2) − (b1 × b2), (a1 × b2) + (a2 × b1)

)
.



9.1. CONSTRUCTING THE COMPLEX NUMBERS 173

Theorem 9.1.3. With the definitions just given, (C,+,×) forms a field with unit

1 = (1, 0) and zero 0 = (0, 0). More specifically, whenever a, b, c ∈ C, we have

(i) a + b = b + a. (Commutative law of addition.)

(ii) a + (b + c) = (a + b) + c. (Associative law of addition.)

(iii) 0 + a = a. (Additive zero.)

(iv) If we write −a = (−a1,−a2), then a + (−a) = 0. (Additive inverse.)

(v) a × b = b × a. (Commutative law of multiplication.)

(vi) a × (b × c) = (a × b) × c. (Associative law of multiplication.)

(vii) We have 1 × a = a. (Multiplicative unit.)

(viii) If a , 0, then writing

a−1
=

(
a1

a2
1
+ a2

2

,
−a2

a2
1
+ a2

2

)

we have a × a−1
= 1. (Multiplicative inverse.)

(ix) a × (b + c) = (a × b) + (a × c). (Distributive law.)

We note that 1 , 0.

Proof. This is all routine verification. We check statements (vi), (viii) and (ix),

leaving the rest to the reader.

(vi) Making free use of the laws governing computation in R, we have

a × (b × c) = (a1, a2) × (
(b1 × c1) − (b2 × c2), (b1 × c2) + (b2 × c1)

)

=

((
a1 ×

(
(b1 × c1) − (b2 × c2)

)) − (
a2 ×

(
(b1 × c2) + (b2 × c1)

))
,

(
a1 ×

(
(b1 × c2) + (b2 × c1)

))
+

(
a2 ×

(
(b1 × c1) − (b2 × c2)

)))

=

(((
(a1 × b1) − (a2 × b2)

) × c1

) − ((
(a2 × b1) + (a1 × b2)

) × c2

)
,

((
(a1 × b1) − (a2 × b2)

) × c2

)
+

((
(a1 × b2) + (a2 × b1)

) × c1

))

= (a × b) × c.

(viii) We have

a × a−1
= (a1, a2) ×

(
a1

a2
1
+ a2

2

,
−a2

a2
1
+ a2

2

)

=

(
(a1 × a1) − (a2 × −a2)

a2
1
+ a2

2

,
(a1 × −a2) + (a2 × a1)

a2
1
+ a2

2

)

=

(
a2

1
+ a2

2

a2
1
+ a2

2

,
(a1 × a2) − (a1 × a2)

a2
1
+ a2

2

)

= (1, 0) = 1.
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(xi) We have

a × (b + c) = (a1, a2) × (b1 + c1, b2 + c2)

=
((

a1 × (b1 + c1)
) − (

a2 × (b2 + c2)
)
,
(
a1 × (b2 + c2)

)
+

(
a2 × (b1 + c1)

))

=

((
(a1 × b1) − (a2 × b2)

)
+

(
(a1 × c1) − (a2 × c2)

)
,

(
(a1 × b2) + (a2 × b1)

)
+

(
(a1 × c2) + (a2 × c1)

))

=
(
(a1 × b1) − (a2 × b2), (a1 × b2) + (a2 × b1)

)

+
(
(a1 × c1) − (a2 × c2), (a1 × c2) + (a2 × c1)

)

= (a × b) + (a × c).

�

Exercise 9.1.4. Prove as many of the remaining parts of Theorem 9.1.3 as you

wish in as much detail as you feel appropriate.

Check that, writing i = (0, 1), we have i × i = −1.

Exercise 9.1.5. Consider the function f : R → C given by f (x) = (x, 0). Show

that f is an injection which preserves addition and multiplication.

[We develop this idea further in Exercise 9.3.4.]

The reader will observe that our construction is direct and does not use equiv-

alence classes1. From now on, we use the standard notations such as a = a1 + ia2,

0 = 0, 1 = 1, z × w = zw and use the various algebraic laws for a field freely. We

also make use of Exercise 9.1.5 to consider R as a subset of C. If z = x + iy with

x, y ∈ R, we refer to x as the real part of z and y as the imaginary part of z. We

writeℜz = x and ℑz = y so that z = ℜz + iℑz.

We have obtained a field in which −1 has a square root. If we were only

interested in algebra, there would be little more to be said, but the model of C

(due to Argand) is much more interesting than that. From our point of view,

what Argand did is to equip a geometrical object (the two-dimensional (x, y) plane

familiar from Cartesian geometry) with an algebraic structure2. This means that

we can use our geometric intuition to guide our algebraic steps.

In fact, as Cauchy discovered, even more is true; we can do analysis with C in

a way which reflects the geometry of the plane. Cauchy’s complex analysis3 has

1I give a construction using equivalence classes in Exercise 10.4.20 together with an explana-

tion of why I prefer the one given here.
2From the point of view of his contemporaries, Argand gave an algebraic object a geometric

interpretation. Argand published his idea as an anonymous booklet and the first paper to discuss it

ends with an appeal to the author of this booklet to make himself known.
3Another subject with lots of results named after Cauchy.
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been a major subject of study for the last two centuries and finds uses everywhere

from number theory through the stability of electronic devices to the central limit

theorem of probability.

We will not treat complex analysis in this book, but in the next section will

show how the idea of a continuous function can be generalised to this new context.

Since we have laid so much emphasis on ordered fields and bounded increasing

sequences, it is by no means clear how we shall deal with C, which cannot be

ordered.

Exercise 9.1.6. Suppose that F is an ordered field. Show that the equation x2
= −1

has no solution.

[See Exercise 3.2.16 if you need a hint.]

9.2 Analysis for C

The key to the extension of calculus to more general objects than R is the notion

of distance. We write X2 for the set of ordered pairs (a, b) with a, b ∈ X.

Definition 9.2.1. Let X be a non-empty set. We call a function d : X2 → R a metric

(or distance function) if the following conditions hold for every a, b, c ∈ X.

(i) d(a, b) ≥ 0. (The distance between two points a and b is always positive.)

(ii) d(a, b) = 0 if and only if a = b. (The distance between a point and itself is

zero and, if two points are at zero distance, they are identical.)

(iii) d(a, b) = d(b, a). (The distance from a to b is the same as the distance

from b to a.)

(iv) (Triangle inequality.) d(a, b) + d(b, c) ≥ d(a, c). (The distance from a to c

is no greater than the distance from a to c via b.)

Our distance will be derived from the modulus function

|x + iy| =
√

x2 + y2

for x, y ∈ R. (Note that the existence and uniqueness of the square root is guaran-

teed by Lemma 7.4.12.)

Lemma 9.2.2. (i) If z, w ∈ C, then |zw| = |z||w|.
(ii) If we write d(z,w) = |z − w|, then d is a metric on C.

Lemma 9.2.2 can be easily verified by direct calculation. I give a slightly more

subtle proof in the next exercise which uses the notion of the complex conjugate.
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Definition 9.2.3. We work in C. If x and y are real, we write

(x + iy)∗ = x − iy.

We say that z∗ is the complex conjugate of z.

Exercise 9.2.4. We take z, w ∈ C.

(i) Show that (z∗)∗ = z, |z∗| = |z|, (z + w)∗ = z∗ + w∗ and (zw)∗ = z∗w∗.

(ii) Show that zz∗ = |z|2.

(iii) By considering (zw)(zw)∗, show that |zw| = |z||w|.
(iv) Show that, if x, y ∈ R, then (x + iy) + (x + iy)∗ = 2x. Deduce that z + z∗ is

real and z + z∗ ≤ 2|z|.
(v) By considering (z + w)(z + w)∗, show that |z + w| ≤ |z| + |w|.
(vi) Show that d(z,w) = |z − w| defines a metric on C.

[We remark that (i) shows that the function f : C → C defined by f (z) = z∗ is

a field isomorphism (see Definition 5.1.5) of C with itself. The existence of this

isomorphism reflects the fact that i and −i have equal status as square roots of

−1.]

We make the following easy, but necessary, remark.

Exercise 9.2.5. (i) We have already defined the modulus |x|R for x real (see Exer-

cise 7.2.4). We have now defined the modulus |z|C for z complex. Show that

|x + i0|C = |x|R

for all x real. Thus the modulus function is backwards compatible and we can

write | | rather than | |R or | |C.

(ii) If x and y are real, show that

|x|, |y| ≤ |x + iy| ≤ |x| + |y|.

We define the limit of a sequence in C in the same way that we did for ordered

fields.

Definition 9.2.6. We work in C. We say that zn → z (or, in words, zn tends to a

limit z) if, given ǫ > 0, we can find an N such that |z − zn| < ǫ for all n ≥ N.

Notice, however, that we have a vivid geometric picture of points zn getting

closer to a point z in the complex plane. The proofs of the elementary properties

of limits are the same as we gave in Lemma 7.3.3 and are left as an exercise.
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Exercise 9.2.7. We use the notations and assumptions of Definition 9.2.6. Prove

the following results.

(i) If zn tends to a limit, then that limit is unique.

(ii) If zn → z and wn → w, then zn + wn → z + w as n→ ∞.

(iii)If zn → z and wn → w, then znwn → zw as n→ ∞.

(iv) If zn = z for all n, then zn → z as n→ ∞.

Exercise 9.2.8. Prove the following results.

(i)
∣∣∣|a| − |b|

∣∣∣ ≤ |a − b| for a, b ∈ C.

(ii) If zn → z in C as n→∞, then |zn| → |z| in R.

(iii) If zn → z in C as n→ ∞ and |zn| ≤ A for all n, then |z| ≤ A.

Exercise 9.2.9. Suppose that zn = xn + iyn, z = x + iy with xn, yn, x, y real. Show

that zn → z in C if and only if xn → x and yn → y in R as n→ ∞. Show also that,

if zn → z, then z∗n → z∗ as n→ ∞.

In section 7.6 we discussed various equivalent forms of the fundamental ax-

iom. The fundamental axiom itself and the supremum principle make direct use of

the fact that R is ordered, so we cannot expect them to extend to C. However, the

Bolzano–Weierstrass property and the notion of completeness can be extended.

We start with the Bolzano–Weierstrass property4.

Theorem 9.2.10. Bolzano–Weierstrass for C Let R be a fixed strictly positive

real number. If zn ∈ C and |zn| ≤ R for each n, then we can find 1 ≤ j(1) < j(2) <

j(3) < . . . and z ∈ C such that z j(n) → z as n→ ∞.

Proof. Write zn = xn + iyn with xn and yn real. We have |xn| ≤ |zn| ≤ R so,

by the Bolzano–Weierstrass property of R, we can find x ∈ R and integers 1 ≤
k(1) < k(2) < . . . such that xk(n) → x in R. We now have |yk(n)| ≤ |zk(n)| ≤ R so,

again, by the Bolzano–Weierstrass property of R, we can find y ∈ R and integers

1 ≤ l(1) < l(2) < . . . such that yk(l(n))) → y in R. If we now set j(n) = k(l(n)) we

see that

1 ≤ j(1) < j(2) < . . . and x j(n) → x, y j(n) → y in R as n→ ∞.

Thus, writing z = x + iy, we have

|z − z j(n)| ≤ |x − x j(n)| + |y − y j(n)| → 0 + 0 = 0

as n→ ∞, so we are done. �

We next extend the notion of Cauchy sequence and completeness. As before,

the reader should note that, although the words remain the same, the geometric

picture becomes richer.

4In more advanced work the Bolzano–Weierstrass property is called sequential compactness.
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Definition 9.2.11. We work inC. We say that a sequence (zn) is a Cauchy sequence

if, given ǫ > 0, we can find an N such that |zn − zm| < ǫ for all n, m ≥ N.

Exercise 9.2.12. We work in C. Show that every convergent series is Cauchy.

Theorem 9.2.13. Every Cauchy sequence in C converges.

I give two alternative proofs as exercises. Both provide useful practice in

working with C.

Our first proof (like our proof of Theorem 9.2.10) depends on splitting into

real and imaginary parts.

Exercise 9.2.14. Suppose that we have a Cauchy sequence (zn) in C. Let us write

zn = xn + iyn with xn, yn ∈ R.

(i) Show that xn and yn form Cauchy sequences in R.

(ii) Deduce that we can find x, y ∈ R such that xn → x and yn → y as n→ ∞.

(iii) Set z = x + iy and show that zn → z as n→∞.

Our second proof is considerably longer, but, by avoiding the special technique

of splitting into real and imaginary parts, gives greater promise of generalisation.

Exercise 9.2.15. (i) Reread the paragraph on page 150 beginning ‘Suppose that

we have a Cauchy sequence (an)’.

(ii) If (zn) is a Cauchy sequence in C, show that there exists an R with |zn| ≤ R

for all n.

(iii) Deduce from the Bolzano–Weierstrass theorem for C that the sequence

(zn) has a convergent subsequence.

(iv) Conclude that the sequence (zn) converges.

9.3 Continuous functions from C

We can define continuous functions from the complex plane in much the same

way as we defined continuous functions on R.

Definition 9.3.1. Let F = R or F = C and let f : C → F be a function. We say

that f is continuous at z ∈ C if, whenever zn → z, we have f (zn) → f (z). We say

that f is continuous if it is continuous at every point z of C.

Exercise 9.3.2. Let F = R or F = C. Show that, if f , g : C → F are continuous

functions, then the sum function h = f + g, defined by h(z) = f (z) + g(z) for all

z ∈ C, and the product function k = f × g, defined by k(z) = f (z) × g(z) for all

z ∈ C, are continuous.
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Exercise 9.3.3. Show that, if f : C → C is continuous, then, writing g(z) = | f (z)|
we have g : C→ R continuous.

Exercise 9.3.4. Write down the appropriate definition for a continuous function

h : R→ C.

Consider the function f : R → C given by f (x) = (x, 0) (where we revert to

the notation (x, y) = x+ iy). Show that f is a continuous injection which preserves

addition and multiplication.

Show that if g : R → C is continuous function which preserves addition and

multiplication and g(t) , 0 for some t ∈ R, then f (x) = g(x) for all x.

If the reader reflects, she will see that it is by no means clear what sort of

theorem would correspond to the intermediate value theorem when we consider

general continuous functions f : C→ C.

However, we can prove another powerful theorem.

Theorem 9.3.5. Suppose that f : C → C is continuous and R > 0. Then we can

find w, w′ ∈ C such that |w|, |w′| ≤ R and

| f (w′)| ≤ | f (z)| ≤ | f (w)|

for all z with |z| ≤ R.

The reader who doubts the usefulness of this should have her doubts removed

in Section 10.2. The reader who thinks the theorem is obvious should look at

Exercise 9.3.9.

We shall prove a very slightly stronger theorem.

Theorem 9.3.6. Suppose that g : C → R is continuous and R > 0. Then we can

find w, w′ ∈ C such that |w|, |w′| ≤ R and

g(w′) ≤ g(z) ≤ g(w)

for all z with |z| ≤ R.

Proof of Theorem 9.3.5 from Theorem 9.3.6. Write g(z) = | f (z)| and observe that

g : C→ R is continuous. �

Our proof of Theorem 9.3.6 passes through a preliminary result.

Theorem 9.3.7. Suppose that g : C→ R is a continuous function. Then, if R > 0,

we can find a K and K′ such that

K′ ≤ g(z) ≤ K

for all z with |z| ≤ R.
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Proof. We prove the existence of K. The existence of K′ follows by a similar

argument or by considering −g.

Suppose, if possible, that g : C → R is a continuous function and R > 0, but

we cannot find a K such that g(z) ≤ K for all z with |z| ≤ R.

Set w1 = 0 and construct a sequence wn as follows. Given wn our hypothesis

tells us that it is not true that g(z) ≤ g(wn) + 1 for all z with |z| ≤ R. Thus we may

choose wn+1 with |wn+1| ≤ R, but g(wn+1) ≥ g(wn) + 1.

By the Bolzano–Weierstrass theorem for C (Theorem 9.2.10), we can find a

w ∈ C and a sequence n(1) < n(2) < . . . such that wn( j) → w as j → ∞. By the

continuity of g, this implies that g(wn( j))→ g(w) so

|g(wn( j)) − g(wn( j+1))| ≤ |g(wn( j)) − g(w)| + |g(wn( j+1)) − g(w)| → 0

and so g(w j(n)) → g(w) as j → ∞. By construction, g(wn( j)) + 1 ≤ g(wn( j+1)), so,

taking limits, g(w) + 1 ≤ g(w) and we have a contradiction. �

Proof of Theorem 9.3.6. We prove the existence of w. The proof of the existence

of w′ follows by a similar argument or by considering −g.

By Theorem 9.3.7, the set E of g(z) with |z| ≤ R forms a non-empty subset of

R which is bounded above. By the supremum property of R, it follows that E has

a supremum, that is to say, there exists an a ∈ R with the following properties.

(1) a ≥ g(z) for all z with |z| ≤ R.

(2) If b ≥ g(z) for all z with |z| ≤ R, then b ≥ a.

By condition (2), there exist zn with |zn| ≤ R such that g(zn) ≥ a − 1/n. Using

(1), we see that a−1/n ≤ g(zn) ≤ a and so, by the axiom of Archimedes, g(zn)→ a.

By the Bolzano–Weierstrass theorem for C, we can find a w ∈ C and a sequence

n(1) < n(2) < . . . such that zn( j) → w as j → ∞. By the continuity of g, we have

g(zn( j)) → g(w). By the uniqueness of limits g(w) = a. By (1), g(a) ≥ g(z) for all

z with |z| ≤ R.

Finally we note that |zn( j)| ≤ R and |zn( j)| → a so |a| ≤ R and we are done �

In Appendix B we shall need a minor variation on Theorem 9.3.7.

Exercise 9.3.8. Suppose that g : C→ R is continuous and R > 0. Show that there

exist w, w′ ∈ C such that |w|, |w′| = R and

g(w′) ≤ g(z) ≤ g(w)

for all z with |z| = R.

Exercise 9.3.9. Consider A consisting of those z ∈ C of the form z = a + bi with

a, b ∈ Q.
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(i) Show that, if z1, z2 ∈ A, then z1 + z2, z1 × z2, −z1, z∗
1
∈ A. Show that, if

z1 ∈ A and z1 , 0, then z−1
1 ∈ A. Conclude that A with the operations inherited

from C is a field.

(iii) Show that 2 ∈ A, but there is no w ∈ A with w2 − 2 = 0.

(vi) Show that 2 ∈ A, but there is no w ∈ A with |w2−2| ≤ |z2−2| for all z ∈ A.





Chapter 10

A plethora of polynomials

10.1 Preliminaries

We have completed our construction of number systems starting from the Peano

axioms and ending with the complex numbers.

However, we extended the rationals to the reals not for the sake of the reals

themselves, but for the sake of studying functions f : R → R. The standard

first course in analysis thus consists of the major theorems (the intermediate value

theorem, the fact that a continuous function on a closed bounded interval attains its

bounds1 and the mean value theorem), followed by methods such as power series

and differential equations for constructing a wide range of interesting functions.

The only general class of functions we have immediately to hand are the poly-

nomials and we shall use them in this penultimate chapter to illustrate some points

raised earlier.

In this first section we establish some properties of polynomials. Since most

of these are already familiar to the reader and since we wish to use, rather than

discuss, these properties, the reader should feel free to skim or, indeed, skip these

preliminaries.

If the reader reflects, she will see that the polynomials are, in effect, defined

inductively.

Definition 10.1.1. We work in a field F. We say that P : F→ F is a polynomial of

degree at most 0 if there is an a ∈ F such that P(u) = a for all u. If a = 0 we say

that P is the zero polynomial. If a , 0, we say that P has degree 0 and leading

coefficient a. If n ≥ 1, we say that P : F → F is a polynomial of degree at most n

if P(u) = aun
+ Q(u) for all u ∈ F where a ∈ F and Q is a polynomial of degree

at most n − 1. If a , 0 in the previous sentence, we say that P is a polynomial of

1A variation on the theme of Theorem 9.3.7.

183
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degree n with leading coefficient a. We say that the zero polynomial has leading

coefficient 0.

(There is no particular advantage in defining the degree of the zero polynomial.

If we talk about a polynomial of degree n we shall always take n ≥ 0.)

Although our definition and many of the results in this section work for a

general field F, the reader is advised to stick to F = R, Q or C, particularly in view

of the next exercise.

Exercise 10.1.2. We work in Z2. Check that if P(u) = u2
+ u, then P(u) = 0 for all

u ∈ Z2.

Show that if Q(u) = u2 and R(u) = u, then Q(u) = R(u) for all u ∈ Z2. Thus

two polynomials Q and R of different degree can take the same values.

[In Exercise 10.1.10 we show that this phenomenon does not occur for R, Q or C.

More precisely, we show that, for these fields, a polynomial of degree at least zero

cannot vanish everywhere. The successful study of polynomials over fields like

Z2 requires algebraists to consider polynomials as ‘defined by their coefficients

rather than their values’, but that is another story.]

We can establish properties of polynomials by repeated (and rather routine)

use of induction.

Exercise 10.1.3. We use the notation of Definition 10.1.1. Prove whichever of the

following results you wish.

(i) A polynomial of degree at most n is either the zero polynomial or a polyno-

mial of degree r for some r with 0 ≤ r ≤ n.

(ii) Suppose that P is a polynomial of degree n with leading coefficient a and

R is a polynomial of degree m with leading coefficient b. If n > m ≥ 0, then P + R

is a polynomial of degree n with leading coefficient a. If n = m ≥ 0 and a+ b , 0,

then P +R is a polynomial of degree n with leading coefficient a+ b. If n = m ≥ 1

and a + b = 0, then P + R is a polynomial of degree at most n − 1.

(iii) If c ∈ F, c , 0 and P is a polynomial of degree n with leading coefficient

a, then the function R = cP (defined by R(u) = cP(u)) is a polynomial of degree n

with leading coefficient ca.

(iv) If P is a polynomial of degree n with leading coefficient a, then the function

R defined by R(u) = uP(u) is a polynomial of degree n+ 1 with leading coefficient

a.

(v) If b ∈ F, then the formula Pn(u) = (u − b)n defines a polynomial of degree

n.

(vi) If b ∈ F and P is a polynomial of degree n, then the function R defined by

R(u) = P(u − b) is a polynomial of degree n.

(vii) If P is a polynomial of degree n with leading coefficient a and Q is a

polynomial of degree m with leading coefficient b, then P × Q, defined by the
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formula (P × Q)(u) = P(u)Q(u), is a polynomial of degree n + m with leading

coefficient ab.

We now introduce long division. (Compare Lemma 4.3.4.)

Lemma 10.1.4. If P is a polynomial of degree n with n ≥ 1 and b ∈ F, then we

can find an r ∈ F and a polynomial Q of degree n − 1 such that

P(u) = (u − b)Q(u) + r

for all u ∈ F.

Proof. We use induction. If n = 1, then, by definition,

P(u) = au + d

for some a, d ∈ F with a , 0. Thus

P(u) = (u − b)a + r

with r = ab + d.

Suppose now that the result is true for all n ≤ m and P is a polynomial of

degree m + 1. We then have

P(u) = aum+1
+ R(u)

for some a , 0 and some polynomial R of degree at most m. Thus

P(u) = a(u − b)um
+ R1(u),

where R1(u) = abum
+R(u) and so R1 is a polynomial of degree at most m. If R1 is

a constant function, we are done. Otherwise, by the inductive hypothesis, we can

find a polynomial Q1 of degree at most m − 1 and an r ∈ F such that

R1(u) = (u − b)Q1(u) + r.

Thus

P(u) = a(u − b)um
+ (u − b)Q1(u) + r = (u − b)(aum

+ Q1(u)) + r.

Since Q(u) = aum
+ Q1(u) defines a polynomial of degree m (by various parts of

Exercise 10.1.3), we are done. �

A simple remark allows us to improve Lemma 10.1.4.
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Theorem 10.1.5. If P is a polynomial of degree n ≥ 1 and b ∈ F, then we can find

a polynomial Q of degree n − 1 such that

P(u) = (u − b)Q(u) + P(b)

for all u ∈ F.

Proof. If P(u) = (u − b)Q(u) + r for all u ∈ F, then, setting u = b, we obtain

P(b) = r. �

Theorem 10.1.5 has various useful consequences.

Exercise 10.1.6. Give one line proofs of the following statements about a polyno-

mial P.

(i) If P has degree n ≥ 1 and P(a) = 0, then

P(u) = (u − a)Q(u),

where Q is a polynomial of degree n − 1.

(ii) If P has degree n ≥ 1 and a ∈ F, then

P(u) − P(a) = (u − a)Q(u),

where Q is a polynomial of degree n − 1.

Theorem 10.1.7. If P is a polynomial of degree at most n and we can find distinct

a1, a2, . . . , an+1 ∈ F such that P(a j) = 0 for 1 ≤ j ≤ n + 1, then P = 0. (In other

words, if a polynomial of degree at most n vanishes at n+1 points, then P vanishes

everywhere. The result is sometimes stated as ‘a polynomial of degree n can have

at most n roots’.)

Proof. The result is immediate if n = 0. Suppose that it is true for n = m and P

is a polynomial of degree at most m + 1 such that we can find distinct elements

a1, a2, . . . , am+2 ∈ F with P(a j) = 0 for 1 ≤ j ≤ m + 2. Since P(am+2) = 0,

Exercise 10.1.6, tells us that

P(u) = (u − am+2)Q(u)

for all u ∈ F where Q is a polynomial of degree at most m. Now a j − am+2 , 0 and

0 = (a j − am+2)Q(a j)

so Q(a j) = 0 for 1 ≤ j ≤ m + 1. Our inductive hypothesis tells us that Q = 0 and

so P = 0. �
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Exercise 10.1.8. If P and Q are polynomials of degree at most n and we can find

distinct a1, a2, . . . , an+1 ∈ F such that P(a j) = Q(a j) for 1 ≤ j ≤ n + 1, show that

P(u) = Q(u) for all u ∈ F.

Exercise 10.1.9. Suppose that P is a non-zero polynomial of degree at most n such

that P(a) = 0 for some a ∈ F. Show that there is an integer m with n ≥ m ≥ 1 and

a polynomial Q of degree at most n − m such that Q(a) , 0 and

P(u) = (u − a)mQ(u)

for all u ∈ F.

Exercise 10.1.10. (i) Suppose that F is infinite. Use Theorem 10.1.7 to show that,

if P is a polynomial of degree at least 0, then there exists a u ∈ F such that

P(u) , 0.

(ii) Explain why your argument for part (i) fails for the example given in Ex-

ercise 10.1.2.

We now specialise to the cases F = R or F = C.

Exercise 10.1.11. Let F = R or F = C.

(i) Use Exercise 7.3.6 or Exercise 9.3.2 and induction to show that the function

fn : F→ F given by fn(u) = un is continuous for all n ≥ 1.

(ii) Show that polynomials are continuous.

We shall need results on the growth of |P(u)| when |u| becomes large.

Lemma 10.1.12. Let F = R or F = C. If P is a polynomial of degree n (where

n ≥ 0), then we can find real numbers A, B, R > 0 (all depending on P) such that

A|u|n ≥ |P(u)| ≥ B|u|n

whenever |u| ≥ R.

Proof. As usual, we prove the result by induction. The result is trivial when n = 0,

for then P(u) = a for some a , 0 and all u, so we may take A = B = |a| and R = 1.

Now suppose the result is true for all polynomials of degree m or less. If P is

a polynomial of degree m + 1, we know that

P(u) = aum+1
+ Q(u)

where a , 0 and Q is a polynomial of degree at most m. If Q = 0, we may take

R = 1 and A = B = |a|. Otherwise, Q is a polynomial of degree k with m ≥ k ≥ 0.

By the inductive hypothesis, we can find A′, B′, R′ > 0 (all depending on Q) such

that

A′|u|k ≥ |Q(u)| ≥ B′|u|k
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for |a| ≥ R′. We may certainly assume, in addition, that R′ ≥ 1.

We first observe that, provided |u| ≥ R′,

|P(u)| ≤ |a||u|m+1
+ A′|u|k ≤ |a||u|m+1

+ A′|u|m+1
= (|a| + A′)|u|m+1.

We also note that, provided |u| ≥ R′,

|P(u)| ≥ |a||u|m+1 − |Q(u)| ≥ |a||u|m+1 − A′|u|k

= |a||u|m+1 − A′|u|m = |u|m(|a||u| − A′).

Thus, if |u| ≥ max{R′, 2A′/|a|},

|P(u)| ≥ |u|m(|a||u|/2) = |a||u|m+1/2.

Taking A = |a| + A′, B = |a|/2 and choosing R so that R ≥ R′ and R ≥ 2A′/|a|, we

have

A|u|m+1 ≥ |P(u)| ≥ B|u|m+1

whenever |u| ≥ R. The required result now follows by induction. �

Exercise 10.1.13. Let F = R. Suppose P is a polynomial of degree n with n odd.

Show that we can find a and b such that P(a) < 0 < P(b). Deduce, using the

intermediate value theorem, that there exists a c with P(c) = 0

We shall also need the following result, for which the reader may already know

a number of proofs but which can also be proved directly by induction.

Exercise 10.1.14. Let F = R or F = C. For each integer n ≥ 1 we can find an

An > 0 and a δn > 0 such that

|(1 + u)n − 1 − nu| ≤ An|u|2

for all u ∈ F with |u| ≤ δn.

10.2 The fundamental theorem of algebra

Much of the work on extending the number system from the strictly positive ra-

tionals to the rationals, from the rationals to the reals and from the reals to the

complex numbers was inspired by the desire to provide solutions first for linear,

then for quadratic and then for more general polynomial equations. The funda-

mental theorem of algebra shows that this programme was successful.

Theorem 10.2.1. [Fundamental theorem of algebra] If we work over C, then, if

P is a polynomial of degree n with n ≥ 1, there exists an α ∈ C with P(α) = 0.
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It is, I think, no coincidence that the first mathematicians to produce acceptable

proofs of the fundamental theorem2 were Argand and Gauss, who grasped the

geometric meaning of C.

It should be noted that the fundamental theorem of algebra is a theorem of

analysis, since it ultimately depends on the fundamental axiom of analysis for R.

(Exercise 9.3.9 (iii) illustrates this.) It should also be noticed that although the

fundamental theorem tells us that roots exist it does not give a method for finding

them3.

There are many proofs of the fundamental theorem of algebra. The one we

shall give goes back to Argand’s original proof and depends on Theorem 9.3.5 to

tell us that a certain function attains a minimum.

By the time students meet the fundamental theorem of algebra in a standard

university course, they will know a geometric proof (depending on the notion of

angle) for the following very special case of the fundamental theorem.

Lemma 10.2.2. If a ∈ C, a , 0 and m is an integer with m ≥ 1, then the equation

azm
= |a|

has a solution.

In order to make the book self-contained, I include a proof of Lemma 10.2.2

in Appendix B which does not depend on the idea of angle. However, the reader

should feel free to ignore this and should certainly concentrate on understanding

the rest of this section before looking at the appendix.

Returning to our main theme, we observe that the fundamental theorem of

algebra (Theorem 10.2.1) will follow if we can prove the following two comple-

mentary results.

Theorem 10.2.3. If P is a polynomial of degree n with n ≥ 1, there exists an α ∈ C
with |P(α)| ≤ |P(z)| for all z ∈ C.

Theorem 10.2.4. [Argand’s lemma] If P is a polynomial of degree n with n ≥ 1,

and α ∈ C has the property that |P(α)| ≤ |P(z)| for all z ∈ C, then P(α) = 0.

Theorem 10.2.3 is a consequence of Theorem 9.3.5.

Proof of Theorem 10.2.3. By Lemma 10.1.12, we can find real numbers B > 0

and R′ > 0 such that

|P(z)| ≥ B|z|n

2The word ‘acceptable’ complicates matters. We shall return to this point at the end of the

section.
3The search for such a method is another story, indeed, at least two other stories.
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whenever |z| ≥ R′. Now choose R ≥ R′ such that BRn > |P(0)|. Automatically,

|P(z)| ≥ B|z|n ≥ BRn > |P(0)|

for all z ∈ C with |z| ≥ R.

By Theorem 9.3.5, we can find α ∈ C such that |α| ≤ R and

|P(z)| ≥ |P(α)|

for all z ∈ C with |z| ≤ R. Automatically, |P(0)| ≥ |P(α)|, and the result of the

previous paragraph tells us that |P(z)| > |P(0)| for all z ∈ C with |z| ≥ R. It follows

that

|P(z)| ≥ |P(α)|
for all z and we are done. �

In order to prove Argand’s lemma we make a series of simplifications.

Lemma 10.2.5. The following statements are equivalent.

(i) If P is a polynomial of degree n with n ≥ 1 and α ∈ C has the property that

|P(α)| ≤ |P(z)| for all z ∈ C, then P(α) = 0.

(ii) If P is a polynomial of degree n with n ≥ 1 which has the property that

|P(0)| ≤ |P(z)| for all z ∈ C, then P(0) = 0.

(iii) If P is a polynomial of degree n with n ≥ 1 such that P(0) is real, P(0) ≥ 0

and |P(0)| ≤ |P(z)| for all z ∈ C, then P(0) = 0.

(iv) Suppose that P is a polynomial of the form P(z) = a + zmQ(z) with a real,

a ≥ 0, m an integer, m ≥ 1 and Q a polynomial with Q(0) , 0. If |P(0)| ≤ |P(z)|
for all z ∈ C, then P(0) = 0.

(v) Suppose that P is a polynomial of the form P(z) = a + zmQ(z) with a real,

a ≥ 0, m an integer, m ≥ 1 and Q a polynomial with Q(0) real and Q(0) < 0. If

|P(0)| ≤ |P(z)| for all z ∈ C, then P(0) = 0.

(vi) Suppose that P is a polynomial of the form P(z) = a− bzm
+ zm+1V(z) with

a, b real, a ≥ 0, b > 0, m an integer, m ≥ 1 and V a polynomial. If |P(0)| ≤ |P(z)|
for all z ∈ C, then P(0) = 0.

Proof. (ii) implies (i) Suppose P satisfies the hypotheses of (i). Then P1(z) =

P(z + α) satisfies the hypotheses of (ii) and P1(0) = 0 implies P(α) = 0.

(iii) implies (ii) Suppose P satisfies the hypotheses of (ii). If P(0) , 0, then

if we set P1(z) = P(z)/P(0), we see that P1 satisfies the hypotheses of (iii) so

P1(0) = 0 and (contrary to our assumption) P(0) = 0.

(iv) implies (iii) Suppose P satisfies the hypotheses of (iii). Set a = P(0) and

consider the polynomial U defined by U(z) = P(z)− a. We have U(0) = 0 and so,

by Exercise 10.1.9, U(z) = zmQ(z) with m an integer, m ≥ 1 and Q a polynomial

with Q(0) , 0. We have P(z) = a + zmQ(z).
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(v) implies (iv) Suppose P satisfies the hypotheses of (iv). Since Q(0) , 0,

Lemma 10.2.2 tells us that there exists a w ∈ C with

−Q(0)wm
= |Q(0)|.

If we set P1(z) = P(zw), then

P1(z) = a + zmQ1(z)

with Q1(0) = wmQ(0) = −|Q(0)|. Thus P1 satisfies the hypotheses of (v). Since

P1(0) = 0 implies P(0) = 0, we are done.

(vi) implies (v) Suppose P satisfies the hypotheses of (v). Then, setting b =

Q(0) and U(z) = Q(z)−b, we have U(0) = 0 so U(z) = zV(z) with V a polynomial.

Thus P satisfies the hypotheses of (vi).

(i) implies (vi) Trivial. �

We can now prove Argand’s lemma.

Proof of Theorem 10.2.4. By Lemma 10.2.5, it suffices to show that, if P is a poly-

nomial of the form P(z) = a − bzm
+ zm+1V(z) with a, b real, a ≥ 0, b > 0, m an

integer, m ≥ 1 and V a polynomial such that |P(0)| ≤ |P(z)| for all z ∈ C, then

P(0) = 0, that is to say a = 0.

Suppose a > 0. Then, since b(1/n)m → 0 as n → ∞, there exists an N1 such

that a − b(1/n)m > 0 for all n ≥ N1 We also observe that

1

n
V(1/n)→ 0 × V(0) = 0

so there exists an N ≥ N1 such that

b

2
≥

∣∣∣∣∣
1

n
V(1/n)

∣∣∣∣∣

for all n ≥ N. If n ≥ N we have

|P(1/n)| = |a − b(1/n)m
+ (1/n)m+1V(1/n)| ≤ |a − b(1/n)m| + |(1/n)m+1V(1/n)|

=
(
a − b(1/n)m)

+ (1/n)m|(1/n)V(1/n)| ≤ (
a − b(1/n)m)

+ (1/n)m × (b/2)

= a − (b/2)(1/n)m < a = P(0).

Thus, by reductio ad absurdum, we must have a = 0 and we are done. �

Exercise 10.2.6. We work inC. Let us writeP0 for the set of polynomials of degree

0 (that is to say the constant non-zero polynomials) and define Pn inductively by

taking Pm+1 to be the collection of functions f : C→ C given by

f (z) = (z − a)P(z),
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where a ∈ C and P ∈ Pm.

Show that if n ≥ 1, then Pn is the set of polynomials of degree n. (In other

words, every polynomial over C factorises completely into linear factors.)

Exercise 10.2.7. We work in C.

(i) Show that (z − α)(z − α∗) = z2
+ az + b, where a and b are real.

(ii) Give an inductive definition of what it means for a polynomial of degree n

to have real coefficients. (Look at Definition 10.3.1 if you need a hint).

(iii) Show that any polynomial P can be written as P(z) = P1(z) + iP2(z)

where P1 and P2 are polynomials with real coefficients. Deduce that P has real

coefficients if and only if P(x) is real whenever x is real.

(iv) Suppose P is a polynomial with real coefficients. Show, by induction, that

P(α)∗ = P(α∗). and deduce that, if P(α) = 0, then P(α∗) = 0.

(v) Suppose P is a polynomial with real coefficients of degree n ≥ 1. Show that

at least one of the following statements must be true.

(a) There exists a real β such that P(z) = (z−β)Q(z), where Q is a polynomial

of degree n − 1 with real coefficients.

(b) We have n ≥ 2 and there exists an α such that P(z) = (z − α)(z − α∗)V(z),

where V is a polynomial of degree n − 2 with real coefficients.

(vi) Deduce that any polynomial of degree n ≥ 1 with real coefficients can be

written as the product of linear and quadratic polynomials with real coefficients.

One modern use of the fundamental theorem of algebra in the form given to it

in Exercise 10.2.6 occurs in linear algebra, where we use the fact that the charac-

teristic polynomial factorises completely overC. We use the fundamental theorem

of algebra in an essential way in Appendix D (see the proof of Theorem D.2).

Note Argand did not prove a result corresponding to Theorem 10.2.3, but assumed

that a minimum must exist. From the modern point of view, what he showed was

that the very implausible statement ‘every polynomial has a root’ followed from

the very plausible statement that ‘the modulus of a polynomial attains a minimum

value’.

In the absence of clear foundations for analysis, this is the best that can be

done. During his lifetime, Gauss gave four different proofs of the fundamental

theorem based on four different (and very fruitful) ideas, but, again, from the

modern point of view, they can only show that an implausible statement follows

from a plausible statement.

Argand’s idea4 generalises in several directions, and Dirichlet and Riemann

used the idea of ‘inspecting the minimum’ to obtain remarkable results. However,

4There is no direct connection. Argand’s work on the fundamental theorem was not noticed by

the general mathematical world.
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Weierstrass gave examples to show that, in analogous situations to those consid-

ered by Dirichlet and Riemann, there may be no minimum.

Fortunately, as we have seen in Theorem 9.3.5 and elsewhere, the Cauchy

program completes Argand’s proof by giving conditions under which we may be

sure that a continuous function has a minimum5.

10.3 Liouville numbers

In this section we will be looking at the real numbers. I have implied that we

cannot obtain the real numbers by taking the rational numbers and adjoining roots

of appropriate polynomials. This rather vague statement is made precise by a

theorem of Liouville.

The limited number of tools available to us means that we require a further

definition (compare Definition 10.1.1).

Definition 10.3.1. We say that P : R→ R is a polynomial of degree at most 0 with

integer coefficients if P is a constant function with value an integer. If n ≥ 1, we

say that P : R→ R is a polynomial of degree at most n with integer coefficients if

P(u) = axn
+ Q(x) for all x ∈ R, where a is an integer and Q a polynomial with

integer coefficients of degree at most n − 1.

Theorem 10.3.2. [Liouville’s theorem] There exists an α ∈ R such that α is not

the root of a polynomial with integer coefficients (that is to say, P(α) , 0 whenever

P is a non-zero polynomial with integer coefficients).

Exercise 10.3.3. We define the collection of polynomials with rational coefficients

by replacing the word ‘integer’ by ‘rational’ in Definition 10.3.1.

(i) Show, by induction on the degree of P, that, if P is a polynomial with

rational coefficients, we can find an integer N ≥ 1 such that U(x) = NP(x) defines

a polynomial with integer coefficients.

(ii) Deduce that we can replace the words ‘integer coefficients’ by ‘rational

coefficients’ in Liouville’s theorem.

The first proof of Liouville’s theorem that most readers will meet at university

is due to Cantor and follows the lines of Theorem 8.2.8 by showing that the col-

lection of real roots of polynomials with integer coefficients can be enumerated

and therefore cannot be the whole of R.

Our proof will follow the original proof of Liouville. The key observation is

the following.

5If the reader has met the standard proof of Rolle’s theorem, she will recall that it too depends

on ‘inspecting a minimum or maximum’.
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Theorem 10.3.4. If P is a non-zero polynomial with integer coefficients and de-

gree at most n and α is real but not rational with P(α) = 0, then we can find an

A > 0, depending on P and α, such that

∣∣∣∣∣α −
p

q

∣∣∣∣∣ >
A

qn

whenever p and q are integers with q ≥ 1.

We say that the non-rational roots of a polynomial are badly approximable by

rationals.

We need the following simple results.

Exercise 10.3.5. (i) Let n be an integer with n ≥ 0. Use induction to show that, if

P is a polynomial with integer coefficients and degree at most n and p and q are

integers with q ≥ 1, then qnP(p/q) is a integer.

(ii) Give an inductive proof that, if P is a polynomial and R > 0, there exists a

K > 0 (depending on P and R) such that |P(x)| ≤ K whenever |x| ≤ R. Obtain the

same result by using earlier results on continuous functions.

Proof of Theorem 10.3.4. Set R = |α| + 1. Since P has at most n roots (by Theo-

rem 10.1.7), we can find an integer q0 ≥ 1 such that, if |β−α| < 2/q0 and P(β) = 0,

then β = α.

Since P(α) = 0, we know from our results on factorisation (Theorem 10.1.5)

that there exists a polynomial Q such that

P(x) = P(x) − P(α) = (x − α)Q(x).

By Exercise 10.3.5 (ii), we can find K > 1 such that |Q(x)| ≤ K for all |x| ≤ R.

Now suppose p and q are integers with q ≥ q0. If |p/q| > R then, by our choice of

R, ∣∣∣∣∣
p

q
− α

∣∣∣∣∣ ≥ 1 ≥ 1

qn
.

If |p/q| ≤ R, we have

|P(p/q)| =
∣∣∣∣∣∣

(
p

q
− α

)
Q(p/q)

∣∣∣∣∣∣ =
∣∣∣∣∣
p

q
− α

∣∣∣∣∣ |Q(p/q)| ≤ K

∣∣∣∣∣
p

q
− α

∣∣∣∣∣ . ⋆

Since q ≥ q0, either ∣∣∣∣∣
p

q
− α

∣∣∣∣∣ ≥
2

q0

,

so that ∣∣∣∣∣
p

q
− α

∣∣∣∣∣ ≥
1

qn
,
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automatically, or P(p/q) , 0. In the second case, Exercise 10.3.5 (i) tells us that

qnP(p/q) is a non-zero integer and so, since 1 is the least strictly positive integer,

|qnP(p/q)| ≥ 1. The inequality⋆ now gives

K

∣∣∣∣∣
p

q
− α

∣∣∣∣∣ ≥
1

qn
.

We have shown that the inequality just stated holds for all q ≥ q0. Since α is

irrational, we can find an A with K−1 > A > 0 such that

∣∣∣∣∣
p

q
− α

∣∣∣∣∣ > A

for all integers p and each integer q with q0 > q ≥ 1. We now have

∣∣∣∣∣α −
p

q

∣∣∣∣∣ >
A

qn

whenever p and q are integers with q ≥ 1, as required. �

The approximation theorem just stated allows us to write down a number

which is not the root of a polynomial with integer coefficients, and thus prove

Liouville’s theorem.

Lemma 10.3.6. If a0 = 0 and ar = ar−1 + 10−r!, then ar → α as r → ∞, where α

is not the root of a polynomial with integer coefficients.

Exercise 10.3.7. Write down the number α just defined in decimal notation to 30

places of decimals.

Proof of Lemma 10.3.6. Observe that, if k > r, then 10−k! ≤ 10−(r+1)! × 10−k+r+1

and so (by induction or summing a geometric series)

ar ≤ as ≤ ar +
10

9
(1 − 10r−s)10−(r+1)! ≤ ar + 2 × 10−(r+1)!

for all s ≥ r. Thus the as form an increasing sequence bounded above and so

as → α for some α ∈ R. Further, we have

ar ≤ α ≤ ar + 2 × 10−(r+1)!.

A simple induction shows that 10r!ar is an integer. Thus, if we write qr = 10r!

and pr = 10r!ar, we have pr and qr integers with qr ≥ 1 and

∣∣∣∣∣α −
pr

qr

∣∣∣∣∣ = |α − ar| ≤
2

10(r+1)!
=

2

qr+1
r

.
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Thus, if we choose any integer n with n ≥ 1 and any real number A with A > 0,

we have ∣∣∣∣∣α −
pr

qr

∣∣∣∣∣ <
A

qn
r

for r sufficiently large. Since A was arbitrary, Theorem 10.3.4, tells us that α can-

not be the root of a polynomial of degree n or less with integer coefficients. Since n

was arbitrary, α cannot be the root of any polynomial with integer coefficients. �

Exercise 10.3.8. Let e( j) take the value 1 or 2 [ j ≥ 1] (for example, we could take

e(1) = 1, e(2) = 2, e(3) = 2, e(4) = 1 and so on). If x0 = 0 and xn = xn−1 +

e(n)10−n!, show that xn → x as n → ∞ where x is not the root of a polynomial

with integer coefficients.

It is natural to ask for an example ‘not constructed for the purpose’. Her-

mite showed the number e is not the root of a polynomial with integer coefficients

(again by showing that it is too well approximable) and Lindemann extended Her-

mite’s argument to show that this is also true for π.

10.4 A non-Archimedean ordered field

All the ordered fields that we have looked at so far can be considered as subfields

of R and so are automatically Archimedean. In this final section of the chap-

ter, we use polynomials to construct a ‘big ordered field’ in which the axiom of

Archimedes fails.

Since we are only doing our construction to show that such an object exists

and not because we wish to use the object, I suggest that the reader does not work

too hard, but merely seeks to understand the, by now, familiar kind of construction

we use.

Definition 10.4.1. Let (A,+,×) be a set together with operations + and times ×
such that, whenever P, Q ∈ A we have P + Q, P × Q ∈ A. We say that (A,+,×)

is an integral domain if, whenever P, Q, R ∈ A, the following results hold.

(i) P + Q = Q + P. (Commutative law of addition.)

(ii) P + (Q + R) = (P + Q) + R. (Associative law of addition.)

(iii) There exists a 0 ∈ A such that 0 + P = P for all P. (Additive zero.)

(iv) For each P, we can find −P such that P + (−P) = 0. (Additive inverse.)

(v) P × Q = Q × P. (Commutative law of multiplication.)

(vi) P × (Q × R) = (P × Q) × R. (Associative law of multiplication.)

(vii) There exists a 1 ∈ A such that 1 × P = P for all P. (Multiplicative unit.)

(viii) If P , 0 and P × Q = 0 then Q = 0. (Multiplicative cancellation law.)

(ix) P × (Q + R) = (P × Q) + (P × R). (Distributive law.)

We also demand 0 , 1.
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If the reader compares the laws for an integral domain with the laws for a field,

she will see that they are the same, except that the existence of a multiplicative

inverse is replaced by the weaker multiplicative cancellation law.

Exercise 10.4.2. (The reader should recognise this as standard.) State and prove

theorems to the effect that the zero and unit of an integral domain are unique.

Show also that the additive inverse is unique.

Exercise 10.4.3. Let R be an integral domain and let P, Q, R ∈ R.

(i) Show that 0 × R = 0.

(ii) Show that, if P , 0 and P × Q = P × R, then Q = R.

We now consider the collection of polynomials P over a field F, where F is R,

Q or C. Notice that, if P, Q ∈ P, then, by Exercise 10.1.3, P+Q, P×Q, −P ∈ P.

Exercise 10.4.4. Let P(u) = u. Show that there does not exist a Q ∈ P such that

P × Q = 1. (Thus P is not a field.)

Theorem 10.4.5. (P,+,×) is an integral domain.

Proof. With the exception of the multiplicative cancellation law, all the proofs are

immediate. We illustrate with (i) and leave the rest (apart from (viii)) to the reader.

Proof of (i) Since F is a field, we have

(P + Q)(u) = P(u) + Q(u) = Q(u) + P(u) = (Q + P)(u)

for all u ∈ F and so P + Q = Q + P.

Proof of (viii) Suppose that P and Q are non-zero polynomials. Then P is a poly-

nomial of degree n ≥ 0 with leading coefficient a , 0 and Q is a polynomial of

degree m ≥ 0 with leading coefficient b , 0. By Lemma 10.1.3, P×Q is a polyno-

mial of degree n+m with leading coefficient ab , 0. Thus, by Exercise 10.1.10 (an

easy consequence of Theorem 10.1.7), there exists a t ∈ R such that (P×Q)(t) , 0

and so P × Q , 0. �

Exercise 10.4.6. Check (possibly in your head) that the remaining rules for inte-

gral domains are satisfied by (P,+,×).

We are also interested in order.

Definition 10.4.7. We say that an integral domain(A,+,×) together with a rela-

tion > is an ordered integral domain if the following rules hold for P, Q, R ∈ A.

(x) If P > Q and Q > R, then P > R. (Transitivity of order.)

(xi) Exactly one of the following conditions holds: P > Q or Q > P or P = Q.

(Trichotomy.)

(xii) If P > Q, then P + R > Q + R. (Order and addition.)

(xiii) If P > Q and R > 0, then P × R > Q × R. (Order and multiplication.)
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Notice that (Z,+,×, >) is an ordered integral domain. If we now specialise to

the case F = R, the collection P = PR turns out not only to be an integral domain,

but an ordered integral domain for the appropriate definition of order.

Definition 10.4.8. Let P ∈ PR. We say that P ≻ 0 if the leading coefficient a of P

satisfies a > 0.

If P, Q ∈ PR and P − Q ≻ 0, we say that P ≻ Q.

Exercise 10.4.9. Give an example of a polynomial P such that P ≻ 0, but P(0) <

0.

Theorem 10.4.10. (PR,+,×,≻) is an ordered integral domain.

Proof. (x) If P ≻ Q and Q ≻ R, then P−Q has leading coefficient a > 0 and Q−R

has leading coefficient b > 0. Depending on the degree of P − Q and Q − R, this

implies that the leading coefficient of

P − R = (P − Q) + (Q − R)

is a, b or a + b. Since a, b, a + b > 0, it follows that P − R ≻ 0 and so P ≻ R.

(xi) Either P − Q = 0, so P = Q and P ⊁ Q, Q ⊁ P or P − Q has leading

coefficient c , 0. If c > 0, then P ≻ Q and Q ⊁ P, P , Q. If c < 0, then Q ≻ P

and P ⊁ Q, P , Q.

(xii) If P ≻ Q, then

(P + R) − (Q + R) = P − Q ≻ 0,

so P + R ≻ Q + R.

(xiii) If P ≻ Q and R ≻ 0, then P − Q has leading coefficient a > 0 and R has

leading coefficient b > 0. Thus

P × R − Q × R = (P − Q) × R

has leading coefficient ab > 0 and P × R ≻ Q × R. �

The reader who recalls the construction Q will see a clear path from integral

domains to fields. We sketch this path leaving the reader to perform any verifica-

tions she wishes.

Exercise 10.4.11. Let (A,+,×) be an integral domain and write B for the set of

ordered pairs (P,Q) with P, Q ∈ A and Q , 0. We define a relation ∼ on B by

the condition (P,Q) ∼ (R, S ) if and only if P × S = R × Q. Show that ∼ is an

equivalence relation.

[ See Lemma 2.2.7 if you need a hint.]
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Exercise 10.4.12. Consider (Z6,+,×), the system of integers modulo 6. Write B
for the set of ordered pairs ([u], [v]) with [u], [v] ∈ Z6 and [v] , [0]. We define

a relation ∼ on B by the condition ([a], [b]) ∼ ([c], [d]) if and only if [a] × [d] =

[b] × [c]. Show that

([2], [2]) ∼ ([3], [3]), ([3], [3]) ∼ ([4], [2]), but ([2], [2]) / ([4], [2]).

Why does the result of Exercise 10.4.11 fail?

Exercise 10.4.13. We continue with the chain of thought of Exercise 10.4.11.

Let (Pi,Qi), (Ri, Ui) ∈ B. and suppose that (P1,Q1) ∼ (P2,Q2) and (R1,U1) ∼
(R2,U2).

(i) Show that

(P1 × R1) × (Q2 × U2) = (P2 × R2) × (Q1 × U1)

and deduce that (P1 × R1,Q1 × U1) ∼ (P2 × R2,Q2 × U2).

(ii) Conclude that we can define multiplication on B/∼ by

[(P,Q)] × [(R,U)] = [(P × R,Q × U)].

(iii) Show that

(
(P1 × U1) + (Q1 × R1)

) × (Q2 × U2) =
(
(P2 × U2) + (Q2 × R2)

) × (Q1 × U1).

(iv) Conclude that we can define addition on B/∼ by

[(P,Q)] + [(R,U)] = [((P × U) + (Q × R),Q × U)].

[ See Lemma 2.2.11 if you need a hint.]

Theorem 10.4.14. With the notation of the previous exercises, (B/∼,+,×) is

a field with zero [(0, 1)], unit [(1, 1)], additive inverse of [(P,Q)] the element

[(−P,Q)] and multiplicative inverse of a non-zero element [(P,Q)] the element

[(Q, P)].

Proof. Left to the reader. �

Exercise 10.4.15. Carry out as much of the proof of Theorem 10.4.14 as you feel

is necessary.

If we start with an ordered integral domain, we end with an ordered field.
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Exercise 10.4.16. Let (A,+,×, >) be an ordered integral domain. We use the

notation already established.

(i) Show that, if P > 0, then 0 > −P and, if 0 > P, then −P > 0.

(ii) Show that, if 0 > P,Q, then P × Q > 0, but, if P > 0 > Q, then 0 > P × Q.

(iii) Show that (P,Q) ∼ (0, 1) if and only if P = 0.

(iv) Show that, if (P,Q) ∼ (R,U), then, if P ×Q > 0, it follows that R×U > 0.

(v) Conclude that we may define [(P,Q)] > [(0, 1)] by the condition P×Q > 0.

Theorem 10.4.17. We use the notation of Theorem 10.4.14. Suppose that we

work with an ordered integral domain (A,+,×, >). Show that, if we extend the

definition of Exercise 10.4.16 by writing

[(P,Q)] > [(R,U)] if [(P,Q)] − [(R,U)] > [(0, 1)],

then (B/∼,+,×, >) is an ordered field.

Proof. Left to reader. �

Exercise 10.4.18. Carry out as much of the proof of Theorem 10.4.17 as you feel

is necessary.

Theorem 10.4.19. If we perform the construction outlined in this section with the

ordered integral domain A = PR formed by the real polynomials, the resulting

ordered field F = B/∼ does not satisfy the axiom of Archimedes.

Proof. Observe that θ : Q → F given by θ(m/n) = [(vm, vn)] (where vk is the

constant polynomial vk(x) = k) for m, n ∈ Z, n , 0 gives the unique isomorphism

from Q to a subfield of F . If we let U(x) = x for all x ∈ R then

θ(1/n) = [(v1, vn)] > [(1,U)] > 0

for all n ∈ Z, n ≥ 1. Thus θ(1/n) 9 0 as n → ∞ and the axiom of Archimedes

fails. �

Remark The reader may ask why we do not simply write P(x)/Q(x) in place of

[(P,Q)]. She should consider the problem of assigning meaning to 1/x or to x2/x4

when x = 0.

Exercise 10.4.20. This fairly long exercise gives what might be called an alge-

braist’s construction of C. Throughout, F is one of Q, R or C. We suppose v ∈ F
and work with the collection P = PF of polynomials over F.

(i) Show, by induction, that any P ∈ P can be written as

P(t) = Q(t) × (t2 − v) + (at + b)
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for some Q ∈ P and a, b ∈ F
(ii) Show, by using Exercise 10.1.10, that a and b are uniquely defined in (i)

once P is given.

(iii) Let us write P1 ∼v P2 if

P1(t) − P2(t) = Q(t) × (t2 − v)

with Q ∈ P. Show that ∼v is an equivalence relation. We write [P] for the equiva-

lence class of P

(iv) Show that, if P1 ∼v P2 and R1 ∼v R2, then P1 + R1 ∼ν P2 + R2 and

P1 × R1 ∼v P2 × R2. Conclude that we may make the unambiguous definitions

[P] + [R] = [P + R] and [P] × [R] = [P × R].

(v) Show that, with this addition and multiplication, P/∼v obeys all the rules

for an integral domain (see Definition 10.4.1) with the possible exception of (viii).

(Note that this is as easy as it looks.)

(vi) Suppose that F = R and v = 1. By observing that, if P(u) = u − 1 and

Q(u) = u + 1, then [P] × [Q] = [0], show that P/∼v is not an integral domain.

Obtain similar results when F = R and v ≥ 0 and when F = C and v = −1.

(vii) Suppose that F = R and v = −1. Show that P/∼v is a field by observing

that, if P(u) = au + b with a and b not both zero and we set

Q(u) =
−a

a2 + b2
u +

b

a2 + b2
,

then [P] × [Q] = [1]. Obtain a similar result when F = Q and v = 2.

(viii) Continuing with the ideas of (vi), show that, if F = R and v = −1, the

function f : C/∼v→ P/∼v defined by f (b + ai) = [Q] with Q(t) = at + b (where

a, b ∈ R) is a bijection which preserves addition and multiplication (that is to say

a field isomorphism).

[Remark. The construction of C using equivalence classes has the advantage

of lending itself to many generalisations. We can take any field in place of the

three we considered and any polynomial in place of t2
+ v and see what happens.

The disadvantage is that we lose the geometric interpretation on which complex

analysis relies. For the analyst this is a very serious loss.]





Chapter 11

Can we go further?

11.1 The quaternions

Once it is realised that the complex numbers can actually be constructed from the

reals and that they form a useful tool for geometry and physics, it is natural to

seek further generalisations. The complex numbers give an interesting algebraic

structure associated with the two-dimensional plane R2, but we live in the three-

dimensional1 space R3. Can we repeat the trick by looking not at x + yi, but at

x + yi + w j?

Among those who pondered this question was the great Irish mathematician,

Hamilton. He seems to have thought about it, on and off, for ten years leading up

to a climax described in the following letter to his elder son.

Every morning in the early part of [October 1843], on my coming

down to breakfast, your (then) little brother William Edwin, and your-

self, used to ask me, ‘Well, Papa, can you multiply triplets ?’ Whereto

I was always obliged to reply, with a sad shake of the head ‘No, I can

only add and subtract them’.

But on the 16th day of the same month which happened to be

Monday, and a Council day of the Royal Irish Academy, I was walk-

ing in to attend and preside, and your mother was walking with me,

along the Royal Canal, to which she had perhaps driven and although

she talked with me now and then, yet an under-current of thought was

going on in my mind, which gave at last a result, whereof it is not

too much to say that I felt at once the importance. An electric cir-

cuit seemed to close; and a spark flashed forth, the herald (as I fore-

saw, immediately) of many long years to come of definitely directed

1Potential readers of this chapter are unlikely not to recognise Rn as the collection of ordered

n-tuples of reals.

203
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thought and work, by myself if spared, and at all events on the part

of others, if I should even be allowed to live long enough distinctly

to communicate the discovery. Nor could I resist the impulse — un-

philosophical as it may have been — to cut with a knife on a stone of

[Broome] Bridge, the fundamental formula with the symbols, i, j, k

namely

i2
= j2
= k2

= i jk = −1.

In Volume II of Grave’s Life of Hamilton [11].

Hamilton’s new system, which he called the quaternions (often denoted by H),

involved not ‘triplets’ but ‘quadruplets’

x = x0 + x1i + x2 j + x3k

with addition, as might be expected, given by

x + y = (x0 + y0) + (x1 + y1)i + (x2 + y2) j + (x3 + y3)k.

However, multiplication used the rules

i2
= j2
= k2

= −1, i j = k, ji = −k, jk = i, k j = −i, ki = j, ik = − j,

so that

x ⊗ y = (x0y0 − x1y1 − x2y2 − x3y3) + (x0y1 + x1y0 + x2y3 − x3y2)i

+ (x0y2 + x2y0 + x3y1 − x1y3) j + (x0y3 + x3y0 + x1y2 − x2y1)k.

Exercise 11.1.1. (i) Check that the last sentence makes sense (at least informally).

(ii) Check (again informally) that we can derive the rules

i2
= j2
= k2

= −1, i j = k, ji = −k, jk = i, k j = −i, ki = j, ik = − j

from the rules

i2
= j2
= k2

= i jk = −1

and vice versa.

We may remember the usefulness of the conjugacy operation for C (see Defi-

nition 9.2.3) and define conjugacy for quaternions by

x⋆ = x0 − x1i − x2 j − x3k.

Part (i) of the next exercises formalises our construction for the quaternions and

part (ii) gives an alternative construction.
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Exercise 11.1.2. Consider the systems (H1,+,⊗,⋆ ) and (H2,+,⊗,⋆ ) defined as

follows:

(1) H1 consists of ordered quadruples x = (x0, x1, x2, x3) of real numbers and

we use the rules

x + y = (x0 + y0, x1 + y1, x2 + y2, x3 + y3)

x ⊗ y = (x0y0 − x1y1 − x2y2 − x3y3, x0y1 + x1y0 + x2y3 − x3y2,

x0y2 + x2y0 + x3y1 − x1y3, x0y3 + x3y0 + x1y2 − x2y1)

x⋆ = (x0,−x1,−x2,−x3).

(2) H2 consists of ordered pairs z = (z1, z2) of complex numbers and we use

the rules

z + w = (z1 + w1, z2 + w2)

z ⊗ w = (z1w1 − z2w∗2, z1w2 + z2w∗1)

z⋆ = (z∗1,−z2).

Show that the function f : H1 → H2 given by

f
(
(x0, x1, x2, x3)

)
= (x0 + ix1, x2 + ix3)

is a bijection that preserves +, ⊗ and ⋆, that is to say, an isomorphism.

We shall use whichever (isomorphic) model of the quaternions seems most

appropriate. Notice that our version (2) mimics our earlier construction of C from

R.

Remarkably, Hamilton’s insight gives us a system with all the properties of a

field except that multiplication ceases to be commutative.

Definition 11.1.3. A skew-field (A,+,⊗) is a set A together with two operations

+ and ⊗ (with a + b ∈ A, a ⊗ b ∈ A whenever a, b ∈ A) having the following

properties.

(i) a + b = b + a. (Commutative law of addition.)

(ii) a + (b + c) = (a + b) + c. (Associative law of addition.)

(iii) There exists an element 0 ∈ A such that 0 + a = a. (Additive zero.)

(iv) For each a ∈ A, there exists an element −a ∈ A such that a + (−a) = 0.

(Additive inverse.)

(v) a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c. (Associative law of multiplication.)

(vi) There exists an element 1 ∈ A such that 1 ⊗ a = a ⊗ 1 = a. (Multiplicative

unit.)

(vii) If a , 0, then there exists a a−1 ∈ A such that a ⊗ a−1
= a−1 ⊗ a = 1.

(Multiplicative inverse.)
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(viii) We have

a ⊗ (b + c) = (a ⊗ b) + (a ⊗ c)

and

(b + c) ⊗ a = (b ⊗ a) + (c ⊗ a).

(Distributive laws.)

We also demand 1 , 0.

Comparing Definition 11.1.3 with Definition 5.1.1, we see that the omission

of the commutative law for multiplication has led us to modify the law governing

the multiplicative unit (vi), the law governing the multiplicative inverse (vii) and

the distributive law (viii).

Exercise 11.1.4. State results corresponding to Exercise 3.2.11 for a skew-field

and prove them.

Theorem 11.1.5. The quaternions form a skew-field.

We split the proof into two steps. We start with some direct verifications.

Exercise 11.1.6. Show that (H,+,⊗) satisfies the conditions of Definition 11.1.3,

with the possible exception of the existence of a multiplicative inverse.

[The calculations are slightly easier if we use the definition of quaternions in terms

of ordered pairs of complex numbers.]

Our proof of the existence of a multiplicative inverse will be embedded in the

study of quaternion conjugation.

Exercise 11.1.7. In this exercise, we consider quaternions as ordered quadruples

of the reals x = (x0, x1, x2, x3) (following representation (1) of Exercise 11.1.2)

and write

‖x‖ =
√

x2
0
+ x2

1
+ x2

2
+ x2

3

(where we take the positive square root).

(i) If i = (0, 1, 0, 0) and j = (0, 0, 1, 0), verify that (i ⊗ j)⋆ , i⋆ ⊗ j⋆.

(ii) Show that (x ⊗ y)⋆ = y⋆ ⊗ x⋆.

(iii) Show that

y ⊗ y⋆ = y⋆ ⊗ y = (‖y‖2, 0, 0, 0).

(iv) If x , (0, 0, 0, 0) and we write

x−1
=

(
x0

‖x‖2 ,−
x1

‖x‖2 ,−
x2

‖x‖2 ,−
x3

‖x‖2
)
,

show that

x ⊗ x−1
= x−1 ⊗ x = (1, 0, 0, 0).
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(v) If x, y , (0, 0, 0, 0), show that (x ⊗ y)−1
= y−1 ⊗ x−1.

(vi) Give an example of x, y , (0, 0, 0, 0) such that (x ⊗ y)−1
, x−1 ⊗ y−1.

(vii) Show that (x + y)∗ = x∗ + y∗ and (x⋆)⋆ = x.

Part (iv) of the previous exercise completes the proof that the quaternions form

a skew-field.

Exercise 11.1.8. Version (2) of Exercise 11.1.2 looks a bit complicated. In this

exercise we see what happens if we try to simplify things by imitating the con-

struction of C from R exactly.

Suppose thatH consists of ordered pairs z = (z1, z2) of complex numbers and

we use the rules

z + w = (z1 + w1, z2 + w2)

z ⊠ w = (z1w1 − z2w2, z1w2 + z2w1).

Explain briefly why (taking (1, 0) as our multiplicative unit and (0, 0) as our addi-

tive zero) (H ,+,⊠) satisfies all the rules for a field given in Definition 5.1.1 with

the exception of the existence of a multiplicative inverse (condition (viii)). Show,

however, that

(1, i) ⊠ (i, 1) = (0, 0)

and deduce that (viii) fails.

Exercise 11.1.9. We continue with the ideas of Exercise 11.1.7.

(i) By considering (x ⊗ y) ⊗ (x ⊗ y)∗, show that

‖x ⊗ y‖ = ‖x‖‖y‖.

(ii) Deduce that, if n j and m j are integers [0 ≤ j ≤ 3], we can find integers q j

such that

q2
0 + q2

1 + q2
2 + q2

3 = (n2
0 + n2

1 + n2
2 + n2

3) × (m2
0 + m2

1 + m2
2 + m2

3).

(This result goes back to Euler.)

Exercise 11.1.10. The lack of a commutative law of multiplication can have unex-

pected consequences. In this exercise we consider quaternions as ordered quadru-

plets of the reals x = (x0, x1, x2, x3).

(i) Write down

x2
= x ⊗ x

as an ordered quadruplet.

(ii) Solve the equation x2
= (1, 0, 0, 0), showing that there are exactly two

solutions.
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(iii) Solve the equation x2
= (−1, 0, 0, 0), showing that there are infinitely

many solutions.

[Some of the strangeness of part (iii) vanishes when we recall that our treatment

of quadratics over a field involves equations like

(x + a)(x + b) = x2
+ ax + xb + ab = x2

+ (a + b)x + ab

which may cease to be true in the absence of a commutative law of multiplication.]

Exercise 11.1.11. Speaking very roughly, Exercise 7.2.7 tells us that there is only

one way of embedding the rationals in the reals in a natural manner and Exer-

cise 9.3.4 tells us that there is only one way of embedding the reals in the complex

numbers. However this exercise shows that are many ways of embedding the com-

plex numbers in the quaternions.

Let u be a solution of the equation x2
= (−1, 0, 0, 0) discussed in part (iii) of

the previous exercise. If we define f : C → H by f (a + ib) = a + bu for a and b

real prove that f is injective and

f (z1 + z2) = f (z1) + f (z2), f ((z1 × z2) = f (z1 ⊗ f (z2), f (z∗) = f (z)∗

for all z1, z2.

[Exercise C.6 explores related ideas.]

11.2 What happened next

Hamilton’s quaternions created a sensation. Older systems (even the complex

numbers) had been around long enough that people thought of them as ‘natural

systems’ which had been discovered. Hamilton’s new numbers looked very much

as if they had been created. Laws like commutativity which (if anybody thought

about them at all2) were seen as embedded in the nature of things, now became

properties which might, or might not, be possessed by an operation. Adjectives

like associative (invented by Hamilton himself) and distributive had to be added

to the mathematician’s vocabulary.

However, Hamilton had invented his system for use rather than admiration.

Complex numbers were two-dimensional, and the world is three-dimensional.

Hamilton had sought ‘triplets’ to match the three dimensions. His new system

consisted of quadruplets. Fortunately, as the reader has probably already noticed,

it contains a very natural three-dimensional object. If, instead of looking at

x = x0 + x1i + x2 j + x3k,

2Euclid did. In modern notation, Proposition 17 of Book 7 in [8] states that n × m = m × n.
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we consider

x = x0 + x

with x = x1i + x2 j + x3 j then x corresponds in an obvious way to the point with

Cartesian coordinates (x1, x2, x3). Hamilton called x0 the scalar part and x the

vector part of the quaternion x.

Hamilton wrote many papers explaining the geometric and physical uses of

quaternions, but failed to convince most practising mathematicians and physicists

of the usefulness, as opposed to the ingenuity, of his system. One of those pre-

pared to invest time and energy in mastering the new system was Tait, who helped

to extend the appropriate calculus notions to quaternions. (It was only when cal-

culus was developed for the complex numbers by Cauchy and his students that

they became an important tool for physicists.) Maxwell was a friend and cor-

respondent of Tait, and the introductory chapter of his revolutionary Treatise on

Electricity and Magnetism contains the following passage

. . . for many purposes in physical reasoning apart from calcula-

tion, it is desirable to avoid explicitly introducing the Cartesian co-

ordinates, and to fix the mind at once on a point of space instead of

its three coordinates, and on the magnitude and direction of a force

instead of its three components. This mode of contemplating geomet-

rical and physical quantities is more primitive and more natural than

the other, although the ideas connected with it did not receive their

full development till Hamilton made the next great step in dealing

with space by the invention of his Calculus of Quaternions

. . . I am convinced . . . that the introduction of the ideas, as distin-

guished from the operations and methods of Quaternions, will be of

great use to us in the study of all parts of our subject, and especially

in electrodynamics, where we have to deal with a number of physi-

cal quantities, the relations of which to each other can be expressed

far more simply by a few words of Hamilton, than by the ordinary

equations.

Maxwell did not use quaternions for calculation, but presented some of his re-

sults and, in particular, the fundamental equations of electromagnetism, in quater-

nionic form. Physicists like Gibbs and Heaviside carried the program further, but,

rather than use the entire quaternion x, they simply used the vector part x.

If we write x as a triple

x = (x1, x2, x3),

then, since

(x1i + x2 j + x3k) + (y1i + y2 j + y3k) = (x1 + y1)i + (x2 + y2) j + (x3 + y3)k,
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we obtain the notion, familiar to the present day reader, of vector addition

x + y = (x1 + y1, x2 + y2, x3 + y3).

What happens to multiplication?

It turned out that physicists needed three sorts of ‘products’ derived from

quaternion multiplication3. If x = x0 and y = y1i + y2 j + y3k, then

x ⊗ y = x0y1i + x0y2 j + x0y3k

and we obtain the operation of ‘multiplication by a scalar’. Setting λ = x0, this

has the familiar form

λy = (λy1, λy2, λy3).

Next, we observe that, if

x = x1i + x2 j + x3k and y = y1i + y2 j + y3k,

then

x ⊗ y = −(x1y1 + x2y2 + x3y3) + (x2y3 − x3y2)i + (x3y1 − x1y3) j + (x1y2 − x2y1)k,

and this suggests two further products, the inner product (called the scalar product

in older texts) given by

x · y = x1y1 + x2y2 + x3y3

and the cross product

x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Exercise 11.2.1. Show that

(x0, x) ⊗ (y0, y) = (x0y0 − x · y, x0y + y0x + x ∧ y).

Notice that we have wandered quite far from multiplication in the sense of

earlier chapters. Multiplication by a scalar takes a real number λ and a vector

x and produces a vector λx. The inner product takes two vectors x and y and

produces a real number x · y. The cross product does, indeed, take two vectors and

produce a vector, but the formula

y ∧ x = −x ∧ y

takes some getting used to.

It must be remembered that all the fine results which adorn a first course on

vector calculus were obtained by 19th century mathematicians using coordinates.

If you have the physical instincts of a Kelvin or a Helmholtz, you have no need of

vectorial props. When Kelvin writes

3The key point about these products, which is proved in any respectable first course in vector

calculus, is that they are ‘vectorial’, that is to say relations involving such products remain true

when we rotate coordinate axes.
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I do think however, that you would lose nothing by omitting the

word ‘vector’ throughout. It adds nothing to the clearness or simplic-

ity of the geometry, whether of two-dimensions or three-dimensions.

Quaternions came from Hamilton after his really good work had been

done; and though beautifully ingenious have been an unmixed evil to

those who have touched them in any way, including Clerk Maxwell.

Quotation taken from [6]4

we are listening to the man who first wrote down the result known as Stokes’

theorem.

Most people now side with Maxwell rather than Kelvin and, when we move

from 3 dimensions to n dimensions, vectors continue to provide a natural lan-

guage. We still have addition, multiplication by a scalar, and the inner product

(x1, x2, . . . , xn) + (y1, y2 . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)

(x1, x2, . . . , xn) · (y1, y2 . . . , yn) = x1y1 + x2y2 + . . . + xnyn.

Nor do we have to confine ourselves to n dimensions. Consider real valued con-

tinuous functions f with f (t) defined for 0 ≤ t ≤ 1. We can define f + g, λ f and

f · g by

( f + g)(t) = f (t) + g(t)

(λ f )(t) = λ × f (t)

f · g =
∫ 1

0

f (t)g(t) dt.

Looked at in this generality, the idea of a vector space appears throughout math-

ematics from statistics to the study of simultaneous equations and quantum me-

chanics.

What about the cross product? As the switch from quaternions to vectors took

place, it became clear that, at much the same time as Hamilton made his initial

discovery, Grassmann had put forward a very general notion of vector space in a

brilliant but almost unreadable (and certainly unread5) form. His treatment of the

cross product allowed generalisation to many dimensions as what is now called a

wedge product, but that is another story.

The quaternions are now seen as a very special system. Appendix D contains

the exact statement and proof of the following theorem of Frobenius.

4In addition to its many other merits, Crowe’s book is a delight to those who enjoy the spectacle

of very clever people being rude about other very clever people.
5Crowe quotes a letter from Grassmann’s publisher telling him that ‘Your book . . . has been

out of print for some time. Since your work sold hardly at all, roughly 600 copies were . . . used as

waste paper and the remainder, a few odd copies, have now been sold.’ [6]
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Theorem 11.2.2. (Informal statement.) If Rn can be given the structure of a skew-

field, then n = 1, n = 2 or n = 4. The associated structures are R, C and H.

This theorem shows that any direct attempt to find further systems analogous

to C is doomed to failure. The complex numbers constitute the largest system of

objects that most people are content to call numbers.

As discussed in Appendix C, quaternions provide a very useful tool for the

study of rotations in 3 dimensions and so are of particular interest to roboticists

and designers of computer games.

11.3 Valedictory

The orchestra is now in place. We have caught a shadowy glimpse of the instru-

ment makers — Egyptians, Greeks, Indians, Arabs, Germans, Frenchmen . . . and

their callings — clerks, merchants, philosophers, physicists, mathematicians, . . . .

We have heard one or two of the tunes the orchestra has played in the past, but

must wait to listen to the music of the future.



Appendix A

Products of many elements

When we talked about factorisation in Theorem 4.4.2 and the results that followed,

we used products like

x1x2 . . . xn

freely. Anyone who has done Exercise 2.2.9 will agree that this is reasonable.

However, we have not provided formal definitions and proofs. It is the object of

this appendix to show how this can be done. We start by formalising the notion of

the product of many elements.

We work with system (A,×) consisting of a non-empty setAwith an operation

of multiplication × obeying the commutative law a×b = b×a and the associative

law a×(b×c) = (a×b)×c. However the reader will loose nothing if she considers

the special case A = Q.

Definition A.1. If x j ∈ A, then we define
∏n

j=1 x j inductively by the rules

1∏

j=1

x j = x1 and

n+1∏

j=1

x j =


n∏

j=1

x j

 × xn+1.

If the reader reflects, she will see that, when we used such products in Chap-

ter 4, we needed the following result.

Theorem A.2. If y1, y2, . . . , yn form a rearrangement of x1, x2, . . . , xn, then

n∏

j=1

x j =

n∏

j=1

y j

Exercise A.3. Check that the result of Exercise 2.2.9 is a special case of Theo-

rem A.2.

213
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Proof of Theorem A.2. Let P(n) be the statement made by the theorem. We prove

P(n) for all n by induction. Observe first that P(1) is the obvious statement x1 = x1

and P(2) is true by the commutative law of multiplication.

Now suppose that n ≥ 2 and P(n) is true. Suppose that b1, b2, . . . , bn+1 form a

rearrangement of a1, a2, . . . an+1. We have two cases to consider.

If an+1 = bn+1, then b1, b2, . . . , bn form a rearrangement of a1, a2, . . . , an. By

our inductive hypothesis,
n∏

j=1

a j =

n∏

j=1

b j

and so, by definition,

n+1∏

j=1

a j =


n∏

j=1

a j

 × an+1 =


n∏

j=1

b j

 × bn+1 =

n+1∏

j=1

b j.

If an+1 , bn+1 we need a more complicated argument. Observe first that we

can find c1, c2, . . . , cn−1 so that c1, c2, . . . , cn−1, bn+1, an+1 form a rearrangement of

a1, a2, . . . , an+1. Now observe that c1, c2, . . . , cn−1, an+1 must form a rearrangement

of b1, b2, . . . , bn and so, since P(n) is true,

n∏

j=1

b j =


n−1∏

j=1

c j

 × an+1.

Similarly
n∏

j=1

a j =


n−1∏

j=1

c j

 × bn+1.

Thus, using the associative and commutative properties of multiplication,

n+1∏

j=1

b j =


n∏

j=1

b j

 × bn+1 =




n−1∏

j=1

c j

 × an+1

 × bn+1

=


n−1∏

j=1

c j

 × (an+1 × bn+1) =


n−1∏

j=1

c j

 × (bn+1 × an+1)

=




n−1∏

j=1

c j

 × bn+1

 × an+1 =


n∏

j=1

a j

 × an+1 =

n+1∏

j=1

a j.

Putting the two cases together, we see that we have proved that P(n+1) is true

and this completes the induction. �

We also need to know that the ‘product of two products forms a product in a

natural way’. (Notice that we use this result in the proof of Theorem 4.4.2.)
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Lemma A.4. If a j ∈ A we have


m∏

j=1

a j

 ×


n∏

k=1

am+k

 =
m+n∏

j=1

a j.

Proof. This is a routine induction. Let m be fixed and let P(n) be the statement

that 
m∏

j=1

a j

 ×


n∏

k=1

am+k

 =
m+n∏

j=1

a j.

We observe that P(1) follows directly from the definition


m∏

j=1

a j

 × am+1 =

m+1∏

j=1

a j.

Suppose now that P(n) is true. Then, using the definition of a product and the

associative law for multiplication, we have


m∏

j=1

a j

 ×


n+1∏

k=1

am+k

 =


m∏

j=1

a j

 ×



n∏

k=1

am+k

 × am+n+1



=




m∏

j=1

a j

 ×


n∏

k=1

am+k



 × am+n+1

=


m+n∏

j=1

a j

 × am+n+1 =

m+n+1∏

j=1

a j.

Thus P(n + 1) is true and the induction is complete. �

Our most spectacular use of Theorem A.2 and Lemma A.4 is perhaps in the

proofs of Lemmas 5.2.10 (Wilson’s theorem) and Lemma 5.2.12 (ii), but Chapter 5

and our work on factorisation in Chapter 4.1 made repeated use of these results.

When we think of an operation + rather than × we replace
∏

by
∑

.

Exercise A.5. Let F be a field. Write down the appropriate versions of Defini-

tion A.1, Theorem A.2 and Lemma A.4 for

x1 + x2 + . . . + xn =

n∑

j=1

x j

with x j ∈ F.
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We use the
∑

notation when discussing geometric series in Exercise 8.2.2,

decimal expansions in Exercises 8.2.3 and 8.2.4 and elsewhere.

Here is a simple example.

Exercise A.6. In this exercise we show how to use the ideas of the appendix to

obtain the binary notation for strictly positive integers. The formula ζ j ∈ {0, 1}
just means that ζ j takes the value 0 or 1.

(i) If ζ j ∈ {0, 1}, show, by induction, that

n∑

j=0

ζ j2
j ≤ 2n+1 − 1.

(ii) If n ≥ m ≥ 0, ζ j ∈ {0, 1} for 0 ≤ j ≤ n, ηk ∈ {0, 1} for 0 ≤ k ≤ m, ζn = 1

and
n∑

j=0

ζ j2
j
=

m∑

k=0

ηk2
k,

show that m = n and ηn = 1.

(iii) If ζ j, η j ∈ {0, 1} for 0 ≤ j ≤ n, and

n∑

j=0

ζ j2
j
=

n∑

j=0

η j2
j,

show that ζ j = η j for 0 ≤ j ≤ n.

(iv) Show that, if 2n+1 − 1 ≥ r ≥ 2n, then we can find ζ j ∈ {0, 1} with ζn = 1

such that

r =

n∑

j=0

ζ j2
j.

(v) Deduce that every integer u ≥ 1 can be written as

u =

m∑

j=0

ζ j2
j,

with ζ j ∈ {0, 1} for 0 ≤ j ≤ m − 1 and ζm = 1, in exactly one way.

(vi) (This links with Exercise 5.5.9.) Show, by induction, that, if a is a strictly

positive integer and

r =

n∑

j=0

ζ j2
j

with ζ j ∈ {0, 1} for 0 ≤ j ≤ n, then

ar
=

∏

ζ j=1

a2 j

.
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(vii) Do you think that this exercise adds anything to what is already contained

in Exercise 2.1.31?

1Recall the story of the lawyer F. E. Smith, who, when a judge complained that ‘I have listened

to you for an hour and I am none the wiser’, replied ‘None the wiser, perhaps, my lord, but certainly

better informed’.
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nth complex roots

The object of this appendix is to provide a proof of the following result (Lemma 10.2.2)

using only the methods of this book.

Lemma B.1. If a ∈ C, a , 0 and m is an integer with m ≥ 1, then the equation

azm
= |a|

has a solution.

Our proof runs along similar lines to that of Argand’s lemma (Theorem 10.2.4)

and I would strongly advise mastering the proof of that theorem before studying

this appendix.

We start with some inequalities. (Note that we looked at the square root func-

tion in Lemma 7.4.12.)

Lemma B.2. Throughout this lemma, η will be real and |η| < 1/2.

(i) We have

1 − η2 ≤
√

1 − η2 ≤ 1.

(ii) For each integer m ≥ 1 there exists a Cm > 0 depending on m such that

∣∣∣∣∣
( √

1 − η2 + iη
)m − 1 − imη

∣∣∣∣∣ ≤ Cmη
2

whenever |η| ≤ 1/4.

Proof. (If the reader has some experience with this sort of thing she will be able

to produce a much quicker proof of (ii).)

(i) Since 0 < 1 − η2 ≤ 1,

(1 − η2)2 ≤ (1 − η2) ≤ 1,

219
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so (see Exercise 7.4.13)

1 − η2 ≤
√

1 − η2 ≤ 1.

(ii) Set u = (
√

1 − η2 + iη) − 1. By Exercise 10.1.14, we can find an Am > 0

such that

|(1 + u)m − 1 − mu| ≤ Am|u|2

whenever |u| ≤ 1/2.

Now

|u|2 = (
√

1 − η2 − 1)2
+ η2

= (1 − η2) − 2
√

1 − η2 + 1 + η2

= 2
(
1 −

√
1 − η2) ≤ 4η2

so |u| ≤ 2|η| and we have

|(1 + u)m − 1 − mu| ≤ Am|u|2 ≤ 4Amη
2

whenever |η| ≤ 1/4.

We also have

∣∣∣(1 − mu) − (1 − imη)
∣∣∣ = m|u − iη| = m

(
1 −

√
1 − η2

)

≤ m
(
1 − (1 − η2)

)
= mη2

so, combining the results of this paragraph and the previous one,

∣∣∣∣∣
( √

1 − η2 + iη
)m − 1 − imη

∣∣∣∣∣ ≤ |(1 + u)m − 1 − mu| +
∣∣∣(1 − mu) − (1 − imη)

∣∣∣

≤ 4Amη
2
+ mη2

= (4Am + m)η2

whenever |η| ≤ 1/4. Setting Cm = 4Am + m, we have the desired result. �

We can now prove Lemma B.1.

Informal proof of Lemma B.1. Our formal proof of the lemma is obscured by no-

tation. Informally, we observe that, if we write g(z) = ℜ(azm) then g has a maxi-

mum at some point w = x + iy on the circle Γ defined by |z| = 1. If η is real,

zη = w
( √

1 − η2 + iη)

also lies on Γ and, if η is small, lies close to w. In fact, if η is small,

zm
η = wm(

√
1 − η2 + iη)m

= wm(
1 + iη + O(η2)

)m
= wm(

1 + miη + O(η2)
)
,
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so

ℜ(azm) = ℜ(awm) − ηℑ(awm) + O(η2),

where O(η2) is to be read as ‘with an error no more than Aη2 for some A’. Unless

awm is real we can now choose some small real (positive or negative) η such that

ℜ(azm
η ) > ℜ(awm).

Thus awm is real so (since |w| = 1) awm
= ±|a|. If awm

= −|a| then, since

g(w) is a maximum, g(z) = −|a| for all z with |z| = 1. Since this is impossible,

awm
= |a|. �

Formal proof of Lemma B.1. We know that the function f : C → C given by

f (z) = azm is a polynomial and so is continuous. If we take g(z) = ℜ f (z), that is

to say we take g(z) to be the real part of f (z) (see page 174), we know that

|g(z) − g(w)| =
∣∣∣ℜ(

f (z) − f (w)
)∣∣∣ ≤ | f (z) − f (w)|

so g : C→ R is continuous.

By Exercise 9.3.8, we can find a w ∈ C such that |w| = |a| and

g(w) ≥ g(z)

for all z with |z| = |a|. We write g(w) = x + iy with x and y real.

By Lemma B.2, there exists a C > 0 such that

Cη2 ≥
∣∣∣∣∣
( √

1 − η2 + iη
)m − 1 − imη

∣∣∣∣∣

whenever η is real and |η| ≤ 1/4. Since |ℜv| ≤ |v|, we have, in particular,

Cη2 ≥
∣∣∣∣∣ℜ

((√
1 − η2 + iη

)m − 1 − imη
))∣∣∣∣∣

=

∣∣∣∣∣ℜ
(
(
√

1 − η2 + iη)m) − 1

∣∣∣∣∣

and, since |ℑv| ≤ |v|,

Cη2 ≥
∣∣∣∣∣ℑ

((√
1 − η2 + iη

)m − 1 − imη

)∣∣∣∣∣

=

∣∣∣∣∣ℑ
(
(
√

1 − η2 + iη)m) − mη

∣∣∣∣∣

for all η real and |η| ≤ 1/4.

From now on, we suppose that the conditions on η just stated are satisfied and

set

zη = w(
√

1 − η2 + iη).
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We observe that |zη| = |w| and (by a simple induction, if necessary)

f (zη) = a
(
w(

√
1 − η2 + iη)

)m
= f (w)(

√
1 − η2 + iη)m

so that

g(zη) = ℜ
(
f (w)(

√
1 − η2 + iη)m)

= ℜ(
(x + iy)(

√
1 − η2 + iη)m)

= xℜ(
(
√

1 − η2 + iη)m) − yℑ((
√

(1 − η2) + iη)m)

Thus, using the results of the previous paragraph,

|g(zη) − x + myη| ≤ (|x| + |y|)Cη2 ≤ 2|a|Cη2.

Since g(w) = x, this gives

|g(zη) − g(w) + myη| ≤ (|x| + |y|)Cη2 ≤ 2|a|Cη2.

Suppose that y > 0. Observing that all the terms in the final inequality are real,

we now have

g(zη) ≥ g(w) − myη − 2|a|Cη2.

Choosing η with 0 > η > −(2|a|C)/my gives g(zη) > g(w), contrary to our def-

inition of w. If y < 0, a similar argument (left to the reader) gives the same

contradiction. Thus we must have y = 0 and g(w) real.

We have shown that g(w) = |a| or g(w) = −|a|. If g(w) = −|a|, then, since g

takes its maximum value at w, and g(z) ≥ −|a| for all z with |z| = 1, it follows that

g(z) = −|a| and so f (z) = −|a| for all z with |z| = 1. Since a polynomial of degree

m cannot take the same value at more than m points, it follows that g(w) , −|a|.
Thus g(w) = |a|, and so awm

= |a|. �

Exercise B.3. Prove the result left to the reader in the second to last paragraph

of the preceding proof.



Appendix C

How do quaternions represent

rotations?

The contents of this section are easy, but we shall require results from courses

which use vectors to study R3. The reader will need to know the geometric mean-

ing of the inner product a · b and the cross product a ∧ b where c denotes a vector

in R3. She will also need to know the result, going back to Euler, which states that

every rotation in R3 has an axis. (When we speak of a rotation, we will assume

that it leaves the origin 0 fixed.)

We write quaternions in the form suggested in Exercise 11.1.2 (i),

x = (x0, x) = (x0, x1, x2, x3)

so x is a vector in R3. We write ‖x‖ =
√

x2
1
+ x2

2
+ x2

3
. If ‖x‖ = 1, we say that x has

unit length. We wish to prove the following result.

Theorem C.1. If q has unit length, θ is a real number and we form the quaternion

q =

(
cos
θ

2
, sin
θ

2
q

)
,

then, whenever x ∈ R3,

q ⊗ (0, x) ⊗ q−1
= (0, y)

where y is the rotation of x about the axis q by an angle θ.

Our proof of Theorem C.1 is a long calculation using the formula

(a0, a) ⊗ (b0, b) = (a0b0 − a · b, a0b + b0a + a ∧ b),

together with lots of elementary results on vector geometry for R3.

223
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Exercise C.2. Suppose that q and n are perpendicular unit vectors and θ ∈ R.

Recall or prove the following results.

(i) q · q = 1, q · n = 0, q ∧ n = −n ∧ q and q ∧ q = 0.

(ii) q, n and q∧ n are mutually orthogonal unit vectors. In particular, we have

(q ∧ n) · q = 0.

(iii) (q ∧ n) ∧ q = n.

(iv) 2(cos θ/2)(sin θ/2) = sin θ, (cos θ/2)2 − (sin θ/2)2
= cos θ.

Proof of Theorem C.1. By using Exercise 11.1.7 or direct computation, we check

that

q−1
=

(
cos
θ

2
,− sin

θ

2
q

)
.

We first consider the case when x = q. We then have

(q ⊗ (0, q)) ⊗ q−1
=

(
((cos θ/2), (sin θ/2)q) ⊗ (0, q)

) ⊗ q−1

= (−(sin θ/2), (cos θ/2)q) ⊗ ((cos θ/2),−(sin θ/2)q)

= (0, ((sin θ/2)2
+ (cos θ/2)2)q) = (0, q)

Next we look at the case when x = n a unit vector perpendicular to q. We then

have

(
q ⊗ (0, n)

) ⊗ q−1
=

(
((cos θ/2), (sin θ/2)q) ⊗ (0, n)

) ⊗ q−1

= (0, (cos θ/2)n + (sin θ/2)q ∧ n) ⊗ ((cos θ/2),−(sin θ/2)q)

= (0, ((cos θ/2)2 − (sin θ/2)2)n + 2(cos θ/2)(sin θ/2)q ∧ n)

= (0, (cos θ)n + (sin θ)q ∧ n).

Now consider a general vector x. We can find a unit vector n perpendicular to

q together with real numbers α and β such that

x = αq + βn.

Using the previous paragraph,

q ⊗ (0, x) ⊗ q−1
= q ⊗ (0, αq + βn) ⊗ q−1

= α(q ⊗ (0, q)) ⊗ q−1
+ β(q ⊗ (0, n)) ⊗ q−1

= (0, αq + β(cos θ)n + β(sin θ)q ∧ n) = (0, y)

where y is the vector obtained by rotating x through an angle θ about the axis

q. �
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Exercise C.3. Suppose that p is a non-zero quaternion. Show that the formula

p ⊗ (0, x) ⊗ p−1
= (0, y)

defines a rotation taking x to y. What is the axis of the rotation and by what angle

does it rotate?

Remark The contents of this appendix show that the kind of over-bracketing

adopted in this book can be positively harmful. An expression like p⊗ (0, x)⊗p−1

should be considered as a single item and not artificially cut up as
(
p⊗ (0, x)

)⊗p−1

or p ⊗ (
(0, x) ⊗ p−1

)
. We say that (0, x) is conjugated by p.

Exercise C.4. Suppose that q j is a unit quaternion corresponding to a rotation R j

in the manner described above. Show that q2 ⊗ q1 corresponds to the rotation R1

followed by the rotation R2.

The quaternionic representation of rotation is a particularly natural one be-

cause, given the appropriate quaternion, we can read off the rotation axis and

rotation angle. It comes into its own when we wish to find the effect of many

successive rotations, since then, as Exercise C.3 shows, we only need to multiply

the appropriate quaternions.

Exercise C.5. (Only if you know about matrices and only if you are interested in

computation.)

(i) Check that the standard method for multiplying 3 × 3 matrices requires 27

multiplications and 18 additions (because we use negative numbers, addition and

subtraction are not distinguished). Check that the obvious method for multiplying

two quaternions requires 16 multiplications and 12 additions.

(ii) Observe that, if a unit quaternion p is slightly perturbed to q, then q/‖q‖ is

a unit quaternion which is close to p. Suppose that Q a rotation matrix is slightly

perturbed to obtain a matrix P. Think about the problem of using P to find a

rotation matrix R close to Q.

[This exercise merely indicates why quaternionic methods might be useful, it does

not state that they will be useful.]

Exercise C.6. Let p be a non-zero quaternion. Show that the function f : H→ H
given by f (u) = p ⊗ u ⊗ p−1 is a skew-field isomorphism with f (u∗) = f (u)∗.

Show, in particular, that if we set î = f (i), ĵ = f ( j) and k̂ = f (k), then

î2
= ĵ2
= k̂2

= î ⊗ ĵ ⊗ k̂ = −1.





Appendix D

Why are the quaternions so special?

The object of this final appendix is to give an exact statement and proof of Theo-

rem 11.2.2. The result is due to Frobenius, and I shall follow the proof given by

Palais [27].

I have put this material in an appendix because it requires the knowledge of

vector spaces contained in a first university course in abstract algebra. However,

the proof of our first theorem only requires the reader to understand the statement

of the following lemma and accept its truth.

Lemma D.1. If U is a vector space of dimension n overR, then, if u0, u1, . . . , un ∈
U, we can find λ0, λ1, . . . , λn ∈ R, not all zero, such that

λ0u0 + λ1u1 + . . . + λnun = 0.

This result just stated becomes particularly plausible if we think in terms of

U = Rn.

Theorem D.2. Consider the system (U,+,⊗,R). Suppose that (U,+,R) is a finite-

dimensional vector space over R, that (U,+,⊗) is a field and that the multiplica-

tive unit e
˜

of (U,+,⊗) satisfies the condition

(λe
˜

) ⊗ u
˜
= λu

˜
for all λ ∈ R and u

˜
∈ U.

Either the vector space U is one-dimensional and the field U is field isomor-

phic to R or the vector space U is two-dimensional and the field U is field isomor-

phic to C.

Proof. Observe that f : R → U given by f (λ) = λe
˜

is an injective function

which preserves the field operations. We identify the one-dimensional subspace

generated by e
˜

with R and write λ = λe
˜

. In particular, e
˜
= 1 and 0

˜
= 0.

227
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Notice, for future use that, since U is a field, the equation u
˜

2
+ e
˜
= 0 either has

no solution or has exactly two solutions which we denote by i
˜

and −i
˜
.

If U is one-dimensional, we are done. If not, then, thinking of U as vector

space, there are elements of U which are not scalar multiples of e
˜

. Let d
˜

be such

an element. If U has dimension n, then applying Lemma D.1 to the vectors e
˜

, d
˜

,

d
˜

2, . . . , d
˜

n (obtained by taking powers in the field U), we know that there exist

λ0, λ1, . . . , λn ∈ R not all zero such that

λ0e
˜
+ λ1d

˜
+ . . . + λnd

˜
n
= 0

˜
.

Thus there exists an m with 0 ≤ m ≤ n, λm , 0 and

λ0e
˜
+ λ1d

˜
+ . . . + λmd

˜
m
= 0

˜
.

Since d
˜

is not a scalar multiple of e
˜

we have m ≥ 1.

Set

P(t) = λ0 + λ1t + . . . + λmtm.

By the fundamental theorem of algebra (see, in particular Exercise 10.2.7 (vi)),

working over R,

P(t) = Q1(t)Q2(t) . . .Qr(t)

where the Q j are linear or quadratic polynomials with real coefficients. Thus

P(te
˜

) = Q1(te
˜

) ⊗ Q2(te
˜

) ⊗ . . . ⊗ Qr(te˜
)

for all t ∈ R. By Exercise 10.1.8, this means that

P(u
˜

) = Q1(u
˜

) ⊗ Q2(u
˜

) ⊗ . . . ⊗ Qr(u˜
)

for all u
˜
∈ U. Thus

Q1(d
˜

) ⊗ Q2(d
˜

) ⊗ . . . ⊗ Qr(d˜
) = P(d

˜
) = 0

˜
.

Since U is a field, we must have Q j(d˜
) = 0

˜
for some j. We cannot have Q j

linear, since this would make d
˜

a scalar multiple of e
˜

. Thus Q j is quadratic and

we can find a, b, c ∈ R such that

ad
˜

2
+ bd

˜
+ ce

˜
= 0

˜
with a , 0. By multiplying through by a−1, we may suppose that a = 1 and

d
˜

2
+ bd

˜
+ ce

˜
= 0

˜
.

Recalling that we identify e
˜

with 1, completing the square yields

(d
˜
+ b/2)2

= (b2 − 4c)/4.
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If (b2 − 4c) ≥ 0, then d
˜
= (−b ±

√
b2 − 4c)/2 ∈ R which we have excluded. Thus

b2 − 4c < 0 and we have (
2d
˜
+ b

√
4c − b2

)2

+ 1 = 0.

We have shown that U is a field in which u
˜

2
+ 1 = 0 (that is to say, u

˜
2
+ e
˜
= 0

˜
) has

a root. Recalling that we have agreed to call the two roots i
˜

and −i
˜
, we see that

d
˜
= Ae

˜
+ Bi

˜
for appropriate A, B ∈ R.

We have shown that every element u
˜

of U may be written as

u
˜
= xe

˜
+ yi

˜
with x, y ∈ R. It follows that the function g : C→ U defined by g(x+ iy) = xe

˜
+yi

˜is a bijection. A simple check shows that g is a field isomorphism. �

Exercise D.3. Do the simple check just mentioned.

Theorem D.2 shows why Hamilton had to abandon one of the field laws. Our

final theorem explains why, even if we jettison the commutative law of multipli-

cation, the only additional object we obtain is the quaternion algebra. The proof

requires substantially more abstract algebra.

Theorem D.4. Consider the system (V,+,⊗,R). Suppose that (V,+,R) is a finite-

dimensional vector space over R, that (V,+,⊗) is a skew-field and that the multi-

plicative unit e
˜

of (V,+,⊗) satisfies the condition

(λe
˜

) ⊗ v
˜
= λv

˜
= v

˜
⊗ (λe

˜
)

for all λ ∈ R and v
˜
∈ V.

Either the vector space V is one-dimensional and V is a field isomorphic to R

or the vector space V is two-dimensional and V is a field isomorphic to C or V is

four-dimensional and is skew-field isomorphic to H

Notice how much more detail we need to put in compared with our informal

statement in Theorem 11.2.2. We are dealing not with sets but with structures and

how those structures interact.

Exercise D.5. We use the notation and hypotheses of Theorem D.4. Show that

λ(v
˜
⊗ w

˜
) = (λv

˜
) ⊗ w

˜
= v

˜
⊗ (λw

˜
)

for all λ ∈ R and v
˜
, w
˜
∈ V.
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The key to the proof of Theorem D.4 is the following lemma.

Lemma D.6. Consider the system (V,+,⊗,R). Suppose that (V,+,R) is a finite-

dimensional vector space over R, that (V,+,⊗) is a skew-field and that the multi-

plicative unit e
˜

of (V,+,⊗) satisfies the condition

(λe
˜

) ⊗ v
˜
= λv

˜
= v

˜
⊗ (λe

˜
)

for all λ ∈ R and v
˜
∈ V.

Suppose that d
˜
∈ V and there is no x ∈ R such that d

˜
= xe

˜
. Then

E = {xe
˜
+ yd

˜
: x, y ∈ R}

is a sub-skew-field with commutative multiplication (and so, by Theorem D.2, a

field isomorphic to C). Further E consists precisely of those u
˜
∈ V with u

˜
⊗ d

˜
=

d
˜
⊗ u

˜
.

Proof. We consider the subspace E of all elements xe
˜
+ yd

˜
with x, y ∈ R and

observe that, if z
˜
= xe

˜
+ yd

˜
and z

˜
′
= x′e

˜
+ y′d

˜
, then

z
˜
⊗ z
˜
′
= xx′e

˜
+ (xy′ + yx′)d

˜
+ yy′d

˜
2
= x′xe

˜
+ (x′y + y′x)d

˜
+ y′yd

˜
2
= z

˜
′ ⊗ z

˜
.

In other words, every element of E commutes multiplicatively with every other.

Since V is finite-dimensional, there must be a subspace F of largest dimension

containing E such that every element of F commutes multiplicatively with every

other1. We claim that any v
˜
∈ V which commutes multiplicatively with every

element of F actually lies in F. To see this, observe that, if F′ is the vector

subspace of elements f
˜
+ yv

˜
with f

˜
∈ F and y ∈ R, then essentially the same

computation as in the previous paragraph shows that any element of F′ commutes

multiplicatively with every other. Since F has maximal dimension and F′ contains

F, we must have F′ = F and v
˜
∈ F.

We use the fact that any v
˜
∈ V which commutes multiplicatively with every

element of F actually lies in F to show that F is a sub-skew-field of U. Observe

that, if a
˜
, b
˜
∈ F, then, using the two sided distributive law,

f
˜
⊗ (a

˜
+ b

˜
) = ( f

˜
⊗ a

˜
) + ( f

˜
⊗ b

˜
) = (a

˜
⊗ f

˜
) + (b

˜
⊗ f

˜
) = (a

˜
+ b

˜
) ⊗ f

˜
for all f

˜
∈ F and so a

˜
+b
˜
∈ F. The same kind of argument shows that, if a

˜
, b
˜
∈ F,

then a
˜
⊗ b

˜
∈ F.

1Note that, at this point, we do not know that there is only one such subspace.
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We must also show that multiplicative inverses behave correctly. Suppose that

a
˜
∈ F and a

˜
, 0. A standard algebraic manipulation shows that

a
˜
−1 ⊗ f

˜
= (a

˜
−1 ⊗ f

˜
) ⊗ e

˜
= (a

˜
−1 ⊗ f

˜
) ⊗ (a

˜
⊗ a

˜
−1)

= (a
˜
−1 ⊗ ( f

˜
⊗ a

˜
)) ⊗ a

˜
−1
= (a

˜
−1 ⊗ (a

˜
⊗ f

˜
)) ⊗ a

˜
−1

= ((a
˜
−1 ⊗ a

˜
) ⊗ f

˜
)) ⊗ a

˜
−1
= (e

˜
⊗ f

˜
) ⊗ a

˜
−1
= f

˜
⊗ a

˜
−1

for all f
˜
∈ F and so a

˜
−1 ∈ F.

If we consider F as a stand-alone object, we see that F is a vector space of

dimension greater than 1. Since F is a field and a vector space of dimension

greater than 1, Theorem D.2 tells us that F has dimension 2. Since F ⊇ E and E

has dimension 2 we have E = F and we are done. �

Exercise D.7. (i) Perform the ‘essentially the same’ calculation referred to in the

third paragraph of our proof to show that every element of F′ commutes multi-

plicatively with every other.

(ii) Prove the statement made at the end of the fourth paragraph of the proof

above that, if a
˜
, b
˜
∈ F, then a

˜
⊗ b

˜
∈ F.

The next two exercises are easy but intended to give some insight into the

proof that follows.

Exercise D.8. Consider the quaternionsH. We write E+ for the set of quaternions

x + yi with x and y real and E− for the set of quaternions E+ ⊗ j, that is to say, we

take E− to be the collection of quaternions u ⊗ j with u ∈ E+.

(i) Identify E−. Check that E+ and E− are subspaces of dimension 2.

(ii) Show that a ⊗ i = i ⊗ a if and only if a ∈ E+ and that b ⊗ i = −i ⊗ b if and

only if b ∈ E−.
(iii) Show that H is the direct sum of E+ and E−, that is to say, E+ ∩ E− = {0}

and every u ∈ H can be written as u = a + b with a ∈ E+ and b ∈ E−.
(iv) Show that, if u ∈ E−, then u ⊗ u is real and, if u , 0, then u ⊗ u < 0.

Exercise D.9. We work with the notation and conditions of Theorem D.4.

Consider u
˜
, v
˜
∈ V such that u

˜
⊗ v
˜
= −v

˜
⊗ u

˜
and u

˜
⊗ u

˜
= v

˜
⊗ v
˜
= −1

(i) If a
˜
= cu

˜
+ dv

˜
with c, d ∈ R, show that

ce
˜
= −1

2
(a
˜
⊗ u

˜
+ u

˜
⊗ a

˜
).

Deduce that

cu
˜
=

1

2
(a
˜
+ u

˜
⊗ a

˜
⊗ u

˜
)

Find a similar expression for dv
˜

in terms of a
˜

and u
˜

.

(ii) Show that if a, b ∈ R and au
˜
+ bv

˜
= 0

˜
, then a = b = 0 (that is to say, u

˜
and

v
˜

are linearly independent).
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We are now in a position to prove Theorem D.4, but the reader is warned,

once again, that our proof involves concepts and notations which, though part of

elementary abstract algebra, have not been dealt with in this book.

Proof of Theorem D.4. If V has dimension 1, then by inspection V is field isomor-

phic to R. From now on we assume that V has dimension greater than 1.

By Lemma D.6, this means that V contains a sub-skew-field E which is a field

isomorphic to C. In particular it contains an element i
˜

with i
˜

2
= −1

˜
. We write

D+ = E observing that D+ is the set of a
˜

such that a
˜
⊗ i
˜
= i
˜
⊗ a

˜
(that is to say, the

set of all elements which commute under multiplication with i
˜
) and take D− to be

the set of a
˜

such that a
˜
⊗ i
˜
= −i

˜
⊗ a

˜
(that is to say, the set of all elements which

‘anti-commute’ with i
˜
). We note that D+ and D− are vector subspaces of V .

If a
˜
∈ D+ ∩ D− we have

a
˜
⊗ i
˜
= i
˜
⊗ a

˜
= −a

˜
⊗ i
˜
,

so a
˜
⊗ i
˜
= 0

˜
and, since i

˜
, 0

˜
and we are in a skew-field, a

˜
= 0

˜
. Thus D+∩D− = {0

˜
}.

On the other hand, direct calculation shows that, whenever a
˜
∈ V ,

i
˜
⊗ (a

˜
− i
˜
⊗ a

˜
⊗ i
˜
) = i ⊗ a

˜
+ a

˜
⊗ i = (a

˜
− i
˜
⊗ a

˜
⊗ i
˜
) ⊗ i

˜
and

i
˜
⊗ (a

˜
+ i
˜
⊗ a

˜
⊗ i
˜
) = i

˜
⊗ a

˜
− a

˜
⊗ i
˜
= −(a

˜
+ i
˜
⊗ a

˜
⊗ i
˜
) ⊗ i

˜
.

Thus
1

2
(a
˜
− i
˜
⊗ a

˜
⊗ i
˜
) ∈ D+,

1

2
(a
˜
+ i
˜
⊗ a

˜
⊗ i
˜
) ∈ D−.

Since
1

2
(a
˜
− i
˜
⊗ a

˜
⊗ i
˜
) +

1

2
(a
˜
+ i
˜
⊗ a

˜
⊗ i
˜
) = a

˜
,

we have shown that V is the direct sum of D+ and D−. It follows, by a standard

theorem, that

dim V = dim D+ + dim D−,

where dim F denotes the dimension of F.

We know that dim D+ = 2. If dim D− = 0, then D− = {0} and V = D+, so

V has dimension 2 and is field isomorphic to C. From now on, we suppose that

dim D− , 0 and so, in particular, there exists a non-zero p
˜
∈ D−.

If a
˜
∈ D+, we have

(a
˜
⊗ p

˜
) ⊗ i

˜
= a

˜
⊗ (p

˜
⊗ i
˜
) = −a

˜
⊗ (i

˜
⊗ p

˜
)

= −(a
˜
⊗ i
˜
) ⊗ p

˜
= −(i

˜
⊗ a

˜
) ⊗ p

˜
= −i

˜
⊗ (a

˜
⊗ p

˜
).
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Thus we may define a function T : D+ → D− by T (a
˜

) = a
˜
⊗ p

˜
. We observe that T

is a linear function.

We note that, since p
˜
∈ D−, it follows (using the ‘standard algebraic manip-

ulation’ in the proof of Lemma D.6) that p
˜
−1 ∈ D− and an argument along the

lines of the previous paragraph shows that S (b
˜

) = b
˜
⊗ p
˜
−1 defines a linear function

S : D− → D+. Since S T : D+ → D+ and TS : D− → D− are identity functions, T

is an isomorphism. Thus dim D− = dim D+ and dim V = 4.

We have shown why it is impossible to produce a ‘quaternionic system’ unless

we work in dimension 4. We still have to prove that there is only one quaternionic

system, that is to say, in the formal language of this theorem, that V is a skew-field

isomorphic to H.

To do this, we look at p
˜

and p
˜

2. Since

i
˜
⊗ p

˜
2
= (i

˜
⊗ p

˜
) ⊗ p

˜
= (−p

˜
⊗ i
˜
) ⊗ p

˜
= −p

˜
⊗ (i

˜
⊗ p

˜
) = p

˜
⊗ (p

˜
⊗ i
˜
) = p

˜
2 ⊗ i

˜
we know that p

˜
2 ∈ D+. However, Lemma D.6 tells us that the set F of elements

xe
˜
+ yp

˜
with x, y ∈ R form a field and so p

˜
2 ∈ F and

p
˜

2 ∈ D+ ∩ F.

Since p
˜
< D+, D+ ∩ F is the one dimensional space of elements of the form xe

˜
with x ∈ R and, in particular, p

˜
2
= ce

˜
for some real c.

We cannot have c = 0, so c > 0 or c < 0. If c > 0, then c = d2 for some d ∈ R
with d , 0. It follows that the three distinct elements de

˜
, −de

˜
and p

˜
of F are all

solutions of

a
˜

2 − ce
˜
= 0

˜
.

Since a polynomial of degree n in a field can have at most n roots (see Theo-

rem 10.1.7), this is impossible. Thus c < 0 and c = −d2 for some d ∈ R with

d , 0. If we set j
˜
= d−1 p

˜
, we see that j

˜
∈ D− and j

˜
2
= −1.

The rest of the proof is plain sailing. We set k
˜
= i
˜
⊗ j
˜

and observe that (since

j
˜
∈ D−) we must have j

˜
⊗ i
˜
= −k

˜
. Simple calculations now give

k
˜

2
= −( j

˜
⊗ i
˜
) ⊗ (i

˜
⊗ j
˜

) = −( j
˜
⊗ i
˜

2) ⊗ j
˜
= j

˜
2
= −1

and

j
˜
⊗ k
˜
= j

˜
⊗ (i

˜
⊗ j
˜

) = − j
˜
⊗ ( j

˜
⊗ i
˜
) = − j

˜
2 ⊗ i

˜
= i
˜
.

Similarly, k
˜
⊗ j
˜
= −i

˜
and k

˜
⊗ i
˜
= −i

˜
⊗ k
˜
= j

˜
.

If we consider D+ and D− as vector spaces over R, then e
˜

and i
˜

form a basis

for D+ and j
˜

and k
˜

form a basis for D− (since D− has dimension 2 and the two
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vectors do not commute and so are linearly independent), so e
˜

, i
˜
, j
˜

, k
˜

form a basis

for V . The function f : H→ U given by

f (x0 + x1i + x2 j + x3k) = x0e
˜
+ x1i

˜
+ x2 j

˜
+ x3k

˜
for xr ∈ R is a skew-field isomorphism. �

Of course, we have not shown that it is impossible to generalise some aspects

of the quaternions, but merely that we cannot generalise them all simultaneously.

Exercise D.10. Consider our proof of Theorem D.4

(i) Check that D− and D+ are vector subspaces of V.

(ii) Check that T is linear.

(iii) Show that, if p
˜
∈ D−, then p

˜
−1 ∈ D−.

(iv) Check that S takes D− to D+.

(v) Check the values of k
˜
⊗ j
˜

, k
˜
⊗ i
˜

and i
˜
⊗ k
˜

.

(vi) Check, in as much detail as you consider necessary, that f is a skew-field

isomorphism.
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bridge, Massachusetts, 1967.

[32] R. Westfall. Never at Rest. Cambridge University Press, Cambridge, 1980.





Index

additive

inverse, 43

zero, 43

Adelard of Bath, iv, 66

Al-Khwārizmı̄

explains Indian number system, 20

gives name to algorithm, 66

solution of quadratic, 37

ancestry, mathematical, 126

Anne Duncan’s game, 47

another story, 116, 184, 189, 211

Argand

fundamental theorem of algebra, 189

model for C, 174

associative law

of addition, 7

of multiplication, 8

astrologers, 125

author

confession of, 118

reminiscences, 9, 16, 38, 132

axiom of Archimedes, 140

axiom of dependent choice, 144

badly approximable, 194

base number, 99

base number principle, 56

Bézout’s

algorithm, 68

identity, 67

Bhāskarāchārya’s monkeys, 36

bijective function, 49

Bolzano–Weierstrass

for C, 177

for ordered fields, 146

bounded

above, 58

below, 63

Brahmagupta’s rules, 35, 39, 43, 46

C, the complex numbers, xi

cancellation laws, 15

Cantor

cardinal and ordinal numbers, 116

construction of R, 163

extraordinary theorem, 165

paradise created by, 122

Cardano, imaginary numbers, 171

Cauchy

complex analysis, 174

foundations of analysis, 136

many things named after, 136, 174

not appreciated by students, 126

Cauchy sequence

for C, 178

for ordered field, 149

check digit code, 84

Chinese remainder theorem, 89

clacks towers, 83

collection, used as synonym for set, 24

comfort blanket, absence of, 121, 168

commutative law

of addition, 4

of multiplication, 6

complete ordered field, 149

conjugate

complex, 175

quaternion, 204

continuous function

for ordered field, 138

from C, 178

Conway, metaphor, 122

coprime, 64

countable choice, 144

countable set, 166

counting sheep

method used, 111

modular arithmetic unsuitable for, 110

useful, 3

cross product, 210

240



INDEX 241

definition by induction, 59

density and axiom of Archimedes, 142

Dirichlet, primes in arithmetic progression, 117

distance, 175

distributive law, 7

∈, belongs to, 24

<, does not belong to, 24

Egyptian fraction expansion, 10, 66

Einstein, name dropped, 47, 169

empty, 55

enumerable, synonym for countable, 166

equality of functions, 49

equipollence, 116

equivalence

class, 24

relation, 24

Eubulides, splendid paradoxes, 47

Euclid

infinity of primes, 72

irrationality of
√

2, 73

Euclid’s algorithm, 64

Euclidean geometry

consistent, 121

essentially complete, 125

model axiomatic system, 12

other systems possible, 168

testimonial, 16

Eudoxus, 128, 140

Euler

every rotation has an axis, 223

four squares formula, 207

modular arithmetic, 76

ex falso quodlibet, 120

Fermat

least member principle, 55

little theorem, 79

Fibonacci, Liber Abacus, 66

field

agricultural, 3

algebraic, definition of, 75

Archimedian, 145

ordered, definition of, 128

skew-, 205

sub, 76

finite set, 112

font tables, 84

Frobenius, uniqueness of quaternions, 227

function

bijective, 49

continuous, 138, 178

injective, 32

surjective, 49

fundamental

axiom of analysis, 138

theorem of algebra, 188

Galileo

falling bodies, 46

infinite sets, 116

Gauss

fundamental theorem of algebra, 189, 192

geometry of surfaces, 168

modular arithmetic, 76

general relativity switch, 169

Gödel

axiom of choice, 145

no consistency proof, 121

Goethe, on mathematicians, 32

Grassmann, unappreciated, 102, 211

greatest common divisor, see highest common

factor

H, the quaternions, 204

Hamilton, invents quaternions, 203

Hamming, error correcting code, 86

hand written a, 29

Hardy, obiter dicta, 12, 72, 89, 97

Heaviside, does not refuse dinner, 39

highest common factor, 64

Hogben, grouch, 12, 70

home computer, anticipated, 83

index laws, 62

inductive definition, 59

infimum, 148

infinite set, 112

injective function, 32

inner product, 210

integers, 44

integral domain, 196

intermediate value

property, 138

theorem, 141

inverse of a bijective function, 50

ISBN, 85

isomorphism, 49, 51

isomorphism of fields, 76
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Kelvin, no use for vectors, 210

Landau, classic text, xii, 144

large numbers, problems with, 3, 20, 119

least member principle

deduced from Peano axioms, 106

statement, 55

least upper bound, 147

Leibniz

foundations of calculus, 136

invents binary notation, 88

praises Newton, 125

limit

in C, 176

in ordered field, 136

Liouville’s theorem, 193

logarithms, 38, 132

long division

integers, 63

polynomials, 185

Magic Fifteen, 49

magic trick, 74

mathematical induction, 56

Maxwell

on mathematicians, iv

on vectors, 209

metric, 175

Metrodorus, puzzle, 36

modular arithmetic, 78

modulus of a, |a|
for C, 175

for ordered field, 129

monkey business, 36

multiplicative

cancellation law, 196

inverse, 31

unit, 6

N, non-negative integers, 45

N+, the natural numbers (strictly positive inte-

gers), xi

Noether, Emmy, 47

non-empty, 55

non-negative integers, 45

oracle, 94

order, 13

order rule, 13

ordered integral domain, 197

ordered pair, 25

over-bracketing

harmful, 225

in this book, 7

Oxford, home of lost causes, 138

Palais, neat proof, 227

paradox

Berry’s, 167

from hand-waving, 135, 172

of the liar, 47

of the masked man, 47

Russell’s, 121

Pascal and induction, 56

Peano axioms, 99

Pierre Menard, Author of the Quixote, 144

playpen, 167

polynomial

inductive definition, 183

with integer coefficients, 193

with rational coefficients, 193

pride, filial, 116

prime, 70

principle of induction, 56

printing, importance of, 21, 133

problems

believed hard, 94

with socks and shoes, 4, 144

professorship, better than alternative, 97

pulveriser, 64

Q, the rationals, xi

Q+, the strictly positive rationals, xi

quartic, 45

quaternions

and rotation, 223

defined, 205

succeeded by vectors, 209

R, the real numbers, xi

Rn, 203

Rabin secret code, 96

radix, 21

real and imaginary parts, 174

recursive definition, 59

reductio ad absurdum, 137

relation

equivalence, 24

reflexive, 24

symmetric, 24
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transitive, 24

Riemann, new concept of geometry, 168

RSA secret code, 96

Russell

has problems choosing socks, 144

high standards, 135

on pure mathematics, 118

paradox, 121

Russian peasant multiplication, 9, 67

science, usefulness of, 97

sequential compactness, 177

set, 24

skew-field, 205

Sporgersi, E. P., 49

strictly positive integers, 45

subfield, 76

subset, 24

successor number, 99

sum geometric series, 164

Sun Zi, 89

supremum, 147

surjective function, 49

telegraph

aerial, 82

electric, 83

temperature and negative numbers

bad example, 47

good example, 38

transitivity, 14

triangle inequality, 175

trichotomy for order, 105

uncountable set, 166

uniqueness of prime factorisation, 70

vectors, from quaternions, 209

Von Neumann

bon mot, 23

numbers, 115

well ordering of N+, 55

Wilson’s theorem, 81

Z, the integers, 44

Zermelo–Fraenkel set theory, 121, 145, 167


