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1 Introduction

Loosely speaking, “homotopy theory” is a perspective which treats objects as equivalent
if they have the same “shape” which, for a category theorist, occurs when there exists
a certain class W of morphisms that one would like to invert, but which are not in fact
isomorphisms. Model categories provide a setting in which one can do “abstract homotopy
theory” in subjects far removed from the original context of topological spaces. Given a
model category, one can form its homotopy category, in which the weak equivalences W
become isomorphisms, but it is the additional structure provided by two other distinguished
classes of morphisms - cofibrations and fibrations - that enables one to understand the
morphisms that result from formally inverting the weak equivalences, in effect allowing one
to “do homotopy theory.”

The study of higher dimensional categories, which are a weak notion in their most useful
form, can benefit immensely from homotopy theory. Hence, it is worthwhile to first gain a
thorough understanding of model categories and their properties, which in turn make use of
2-categorical notions. This is the object of this paper. In Section 2, we begin by introducing
a few useful concepts from 2-category theory. Then, in Section 3, we define a model category,
which will be one of two central topics in this paper. In Sections 3.1 and 3.2, we develop
some of the basic theory of model categories and of chain complexes, which will provide
one of the main examples. Sections 3.3 and 3.4 give a thorough discussion of two algebraic
examples of model categories: ChR and Cat. Section 3.5 gives Quillen’s well-known small
object argument, completing the discussion of model categories.

In Section 4, we change perspectives somewhat to discuss weak factorisation systems in
general, and in the sections that follow we prove some results connecting factorisations to
limits and colimits. Notably, we define a stronger natural weak factorisation system in Sec-
tion 4.5, which applies to our two example model categories, providing additional algebraic
structure. We conclude with a few suggestions for further study and our acknowledgments.
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This paper endeavors to be as self-contained as possible, and includes the basic exposition,
rather than referring the reader to outside sources. The material in Section 2 is based on [8]
and [7]. The material in Section 3 draws from [6] and [4], though the proofs in those sources
are often omitted or incomplete. Section 4 is based upon [5], [11], and [9].

2 2-Categories

The definition of a 2-category is originally due to C. Ehresmann.

Definition 2.1. A 2-category K consists of objects or 0-cells A,B etc., arrows or morphisms
or 1-cells, f, g : A→ B etc., and 2-cells α : f ⇒ g:

A B

f

��

g

DD
α
��

such that identities exist and subject to axioms that say that the various composites one
might form are unambiguous.

2-cells can be composed in two distinct ways. When two objects A and B are fixed,
K(A,B) and the 2-cells between these arrows form a category under the operation of vertical
composition:

A B//

f

��

g

DD

α
��
β
��

= A B

f

��

g

DD
β·α
��

The operation of horizontal composition of 2-cells is given by

A B

f

��

g

DD
α
�� B C

h

��

k

DD
β
��

= A B

hf

��

kg

DD
β∗α
��

(1)

Finally, a distributive law requires that when

A B//

f

��

g

DD

α
��
β
��

B C//

h

��

k

DD

γ
��
δ
��

then the composites

(δ ∗ β) · (γ ∗ α) = (δ · γ) ∗ (β · α) : hf ⇒ kg.
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Notation 2.2. In describing composites, we adopt the usual convention of writing A for 1A
and f for 1f when the context is clear. For example, if h = k and β = 1h in (1), we write
the composite β ∗ α as h ∗ α.

The objects and arrows of K form a category called the underlying category of K, which
may also be denoted K, when the meaning is clear from the context.

The prototypical example of a 2-category is Cat, whose objects are small categories,
morphisms are functors, and 2-cells are natural transformations. With this example in mind,
2-dimensional category theory can be thought of as “abstract category theory,” as its results
will apply to the 2-category Cat in particular. The study of natural weak factorisation
systems in Section 4.5 will require a particular 2-category Cat/K.

Definition 2.3. Given a categoryK, the slice 2-category over K, Cat/K, has objects (A, VA)
consisting of a categoryA together with a functor VA : A → K; arrows F : (A, VA)→ (B, VB),
which are functors F : A → B such that

A F //

VA   @@@@@@@ B

VB���������

K

commutes; and 2-cells α : F ⇒ G, which are natural transformations α : F ⇒ G such that
VB ∗ α = 1VA , i.e.,

A B

F

��

G

DD
α
�� B K

VB // = A K

VA

��

VA

DD
1VA
��

Definition 2.4. A 2-functor F : K → P sends objects of K to objects of P , morphisms of
K to morphisms of P , and 2-cells of K to 2-cells of P in such a way that preserves domains,
codomains, identity, and composition. A 2-natural transformation η : F ⇒ G : K → P is a
map that assigns each object A of K a map ηA : FA → GA in P in such a way that η is a
natural transformation on the underlying categories of K and P but is also 2-natural in the
sense that, for each 2-cell α : f ⇒ g : A→ B in K, we have:

FA FB

Ff

��

Fg

DD
Fα
�� FB GB

ηB // = FA GA
ηA // GA GB

Gf

��

Gg

DD
Gα
��

Many of the familiar concepts in category theory are definable purely in terms of objects,
arrows, and 2-cells, allowing one to “do category theory” in a 2-category. For example:

Definition 2.5. A monad in a 2-category K on an object B of K is an endomorphism
t : B → B together with 2-cells η : 1 ⇒ t and µ : t2 ⇒ t called the unit and multiplication
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respectively such that the following diagrams commute:

t
ηt +3

1t
�"

========

======== t2

µ

��

t,
tηks

1t
|� ��������

�������� t3
tµ +3

µt

��

t2

µ

��
t t2 µ

+3 t.

A comonad in a 2-category is defined dually.

Example 2.6. A monad on Cat is just a usual monad. For any category K, a monad on
the 2-category Cat/K consists of an object VA : A → K, a functor T : A → A satisfying
VAT = VA, and 2-cells η : 1 ⇒ t, µ : t2 → t such that VA ∗ η = 1VA = VA ∗ µ and such that
(T, η, µ) is a monad on A in Cat.

Remark 2.7. The notion of a comonad on Cat/K can be defined dually: a comonad on an
object VA : A → K of Cat/K is simply a comonad (G, ε, δ) on A such that G is a morphism
of Cat/K and ε and δ are 2-cells.

Remark 2.8. We say (G, ε, δ) is a comonad on dom when (G, ε, δ) is a comonad on the object
dom : K2 → K in the 2-category Cat/K. Dually, (T, η, µ) is a monad on cod when (T, η, µ)
is a monad on the object cod :K2 → K in Cat/K. These objects will appear again in Section
4.5.

There are many notions of 2-categorical limits. One general type are indexed limits,
defined with respect to a 2-functor F : P → Cat, called the indexing type. A general
definition is given in [7]; however, we present only the special case that we will need in
Section 3.4. Let 1 be the category with a single object and identity morphism, let

2 = • // •

be the category consisting exactly two objects with one morphism between them, and let

I = • // •oo

be the category with two objects and one isomorphism between them.

Definition 2.9. Let F,G : 2 → Cat be 2-functors such that F2 = 1 → 2 and G2 =

A
f→ B. Then the pseudo-limit of f is the limit F,G indexed by F . Specifically, the limit is

the universal diagram of the form

B

{F,G}

A

u

��













v

��1
11111111111

f
//

η

6>tttt
tttt

where η is invertible.
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3 Model Categories

Definition 3.1. A model structure on a category K consists of three distinguished classes of
morphisms - fibrations, cofibrations, and weak equivalences - subject to the following axioms:

1. Each distinguished class of morphisms is closed under retracts, where a morphism
f : A→ B is a retract of g : X → Y if there is a commutative diagram:

A //
=

((

f

��

X //

g

��

A

f

��
B //

=

55Y // B

2. (2 of 3) If f, g ∈ morK are such that two out of three of f, g, or fg is a weak equivalence,
so is the third.

3. (Lifting) Every lifting problem

A //

j

��

X

q

��
B //

>>}
}

}
}

Y

where j is a cofibration, q is a fibration, and one of j or q is also a weak equivalence
has a solution so that both diagrams commute.

4. (Factorisation) Any f : A→ B can be factored in two ways:

(i) A
i−→ X

q−→ B, where i is a cofibration and q is a fibration and a weak equivalence.

(ii) A
j−→ Z

p−→ B, where j is a cofibration and a weak equivalence and p is a fibration.

A model category is a complete and cocomplete category (i.e., a category K with all small
limits and colimits) with a model structure.

A cofibration that is also a weak equivalence is called trivial and similarly for fibrations.
Maps j and q that satisfy Axiom 3 are said to have the left lifting property (respectively the
right lifting property) with respect to each other. Hence, Axiom 3 asserts that the trivial
cofibrations have the left lifting property with respect to the fibrations and the cofibrations
have the left lifting property with respect to the trivial fibrations.

Following Hovey [6], we amend the usual definition of a model structure on a category
slightly to require that the factorisations in Axiom 4 are functorial. Given a category K, we
can form a category K2 whose objects are morphisms in K and whose arrows are commutative
squares. This category is also called Arr(K) or Map(K) and is isomorphic to the category
K2 of functors 2→ K, hence the notation used here. Let dom: K2 → K and cod: K2 → K
denote the functors that send an arrow to its domain and codomain, respectively. A functorial
factorisation a pair of functors L,R : K2 → K2 so that

domL = dom, codR = cod, codL = domR,
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and f = R(f)L(f) for every f ∈ morK.
We modify the definition of a model category to stipulate that both factorisations given

by Axiom 4 are functorial. Let α, β be the pair of functors that sends a morphism f to
an acyclic cofibration followed by a fibration, and let γ, δ be the functors that send f to a
cofibration followed by an trivial fibration. The functorial hypothesis has the following nice
consequence: a commutative square

· u //

f
��

·
g

��
· v

// ·

yields · u //

α(f)
��

·
α(g)
��

· //

β(f)

��

·
β(g)

��
· v

// ·

where the unlabled central arrows and objects are determined by the functors that specify
this factorisation.

Hovey asserts that in practise the factorisations in all model categories can be made
functorial, though it is still not common to define model categories with this requirement.
The advantage to doing so, besides for convenience, is that it will allow us to show that
various constructions are natural with respect to maps of model categories. For example, in
the presence of a functorial model category structure, the definition of a derived functor can
be made to depend only on the model category K and not on a particular choice of cofibrant
replacement (see [6, pp 16] and the definition below).

3.1 Basic Properties

Remark 3.2. The axioms for a model category are self-dual. Specifically, if K is a model
category then Kop is as well, where the cofibrations of Kop are the fibrations of K, the
fibrations of Kop are the cofibrations of K, and the weak equivalences are the same. The
functor α of Kop is the opposite of the functor δ of K and so on.

Remark 3.3. Axiom 4 implies that for every object in K there exists a weak equivalence with
that object as its domain. Hence, it follows from Axiom 2 that every identity morphism
is a weak equivalence. Using closure under retracts, any isomorphism f with gf = 1A and
fg = 1B is a weak equivalence as well, as shown by the diagram:

A
1 //

f

��

A
1 //

1
��

A

f

��
B g

// A
f
// B

We will show furthermore that isomorphisms are also fibrations and cofibrations. Let 1A = kh
be a factorisation into a cofibration followed by a fibration (the previous argument implying
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that both are trivial). The diagram

B
g //

g

��

A
f //

h
��

B

g

��
A

h
// C

k
// A

shows that g is a cofibration as well, while

A
h //

f
��

C

k
��

k // A

f
��

B g
// A

f
// B

shows that f is a fibration. Repeating this argument with a factorisation of 1B gives that
every isomorphism in a model category is both an trivial fibration and an trivial cofibration.

A model category has all small limits, so in particular it contains both an initial and
a terminal object (as a colimit and limit, respectively, for an empty diagram). Hence, the
following definition makes sense:

Definition 3.4. An object X in a model category K is cofibrant if the unique morphism
from the initial object to X is a cofibration. More generally, a cofibrant replacement for an
object Z is a weak equivalence X → Z with X cofibrant. A cofibrant replacement exists
for any object Z by the factorisation axiom. The terms fibrant and fibrant replacement are
defined dually.

By applying the functors γ and δ to the map from the initial object to Z, we get a
functor Z 7→ QZ such that QZ is cofibrant called the cofibrant replacement functor of K.
This functor comes equipped with a natural transformation q : Q→ 1K such that the maps
qZ : QZ → Z are trivial fibrations. Dually, there is a fibrant replacement functor RZ → Z
equipped with a natural transformation r : 1K → R, with each rZ : Z → RZ an trivial
cofibration.

Remark 3.5. The axioms for a model structure on a category are overdetermined, as is shown
by the following lemma.

Lemma 3.6 (The Retract Argument). Let f = qj in a category K and suppose that f has
the left lifting property with respect to q. Then f is a retract of j. Dually, if f has the right
lifting property with respect to j, then f is a retract of q.

Proof. Suppose f : A→ B has the left lifting property with respect to q : X → B. Then we
have a lift h : B → X in the following diagram.

A
j //

f

��

X

q

��
B

h
>>}

}
}

}
B
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Hence, the diagram

A

f

��

A

j

��

A

f

��
B

h
// X q

// B

commutes, and the identity qh = 1B shows that f is a retract of j. The dual statement
follows similarly.

Lemma 3.7. A morphism in a model category K is a cofibration (trivial cofibration) if and
only if it has the left lifting property with respect to all trivial fibrations (fibrations). Dually,
a morphism is a fibration (trivial fibration) if and only if it has the right lifting property with
respect to all trivial cofibrations (cofibrations).

Proof. We prove that a morphism is a cofibration if and only if it has the left lifting property
with respect to all trivial fibrations; the other proofs are similar. If f is a cofibration, then
it has the requisite lifting property by Axiom 3, so there is nothing to prove. Conversely,
assume f has the left lifting property with respect to all trivial fibrations. Factorise f = qj
into a product of a cofibration followed by an trivial fibration. By assumption f has the
left lifting property with respect to q and so Lemma 3.6 implies that f is a retract of j, and
hence a cofibration.

Remark 3.8. This gives another proof that every isomorphism in a model category is both
an trivial cofibration and an trivial fibration.

Corollary 3.9. The classes C and C ∩W are closed under cobase change, meaning that if
i ∈ C and j is the morphism given by a pushout diagram

· //

i
��

·
j

���
�
�

· //___ ·
then j ∈ C and likewise for C ∩W. Dually, the classes F and F ∩W are closed under base
change.

Proof. We show that C is closed under cobase change using Lemma 3.7; the other proofs are
similar. Let i ∈ C and let j be a cobase change of i. For any f ∈ F ∩W , a lifting problem
(u, v) : j → f gives a lifting problem

· //

i
��

·
j

��

u // ·
f
��

·
w

77ppppppp // · v
// ·

(2)

by composing with the pushout diagram, which has a solution w by Axiom 3. Because j
is part of a pushout diagram, the map w and the top row of (2) induce a lift h from the
codomain of j to the domain of f . By definition, h · j = u. Similarly, the universal mapping
property of a pushout square implies that f · h = v, as the map from the codomain of j to
the codomain of f such that (2) commutes must be unique.
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Remark 3.10. In addition to being closed under retracts, the class C of cofibrations is closed
under various colimits. Specifically C is closed under coproducts (which will be proven
in Section 4.3), cobase change (by Corollary 3.9), and sequential colimits (which will be
discussed in Section 3.5). The trivial cofibrations C ∩W are closed under these colimits as
well, and fibrations and trivial fibrations are closed under products and sequential limits,
dually. However, in general the classes C and F fail to be closed under all colimits and limits.
This will be discussed further in Section 4.3.

Before proceeding further, we introduce two algebraic examples of model categories: ChR,
the category of non-negatively indexed chain complexes of modules over a commutative ring
with identity, and Cat, the category of small categories. Cat has two well-known model
structures, and we choose to describe the “categorical” structure. Readers interested in
the “topological” model structure on Cat are referred to [13]. Before describing the model
structure on ChR, we given some algebraic preliminaries.

3.2 ChR, homology, and projective resolutions

The object of this and the following section will be to show first that chain complexes of
R-modules form a model category. This result is well-known, though because our study of
weak factorisation systems makes repeated use of their functoriality, we prove explicitly that
the two factorisations are functorial, something that is not often done. But first, we provide
some preliminaries, in consultation with [14]:

Let R be a commutative ring with identity; the category of R-modules will be denoted
ModR. This is a complete and cocomplete abelian category. An R-module P is projective
if and only if for every surjection f : M � N and every map g : P → N there exists an
h : P →M such that the following commutes:

M

f
����

P g
//

∃h
>>}

}
}

}
N

Clearly any free module is projective, for the map h can be constructed by lifting the image
of the basis vectors. Similarly, direct summands of free modules are projective, and these
encompass all examples of projective modules.

Proposition 3.11. An R-module is projective if and only if it is a direct summand of a free
module.

Proof. Let P be a projective module, and let F (P ) denote the free module on the set
underlying P . There is a canonical surjection π : F (P ) � P ; hence, there must exist a lift i
such that the diagram

F (P )

π
����

P
1
//

i
<<z

z
z

z
P
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commutes. As πi = 1, i must be an inclusion P ↪→ F (P ). Hence, P is a direct summand of
the free module F (P ).

Over fields or division rings, the only projectives are free modules, but this is not always
the case. For example, if R = R1×R2 then P1 = R1× 0 and P2 = 0×R2 are projective but
not free, since (0, 1)P1 = (1, 0)P2 = 0.

We say that an abelian category A has enough projectives if for every A ∈ obA there
exists a projective P and surjection P � A. We show that ModR has enough projectives by
using the fact that the moduleR is projective and the isomorphism of sets ModR(R,M) = M
given by evaluation at 1 ∈ R. For M ∈ ob ModR define

P (M) = ⊕f :R→MR,

where the sum runs over all morphisms f : R → M in ModR. Then define e : P (M)→ M
to be the unique morphism given by the following diagram:

R
iR

""EEEEEEEEE

f

��3
333333333333333 · · · R

iR

||yyyyyyyyy

f ′

������������������

P (M)
e

���
�
�

M

The set isomorphism ModR(R,M) = M implies that this map is surjective, and P (M) is
a projective module because it is free. Note that P : ModR → ModR is a functor. Given
h : M → N , the map P (h) : P (M) → P (N) is induced by the maps R → P (N) that
include the component of P (M) corresponding to f : R → M into the component of P (N)
corresponding to hf : R→ N . This fact will be useful later.

Definition 3.12. A chain complex of R-modules

C• = · · · → C3 → C2 → C1 → C0

is a collection {Cn}n∈Z of R-modules together with R-module homomorphisms ∂ = ∂n :
Cn → Cn−1 such that ∂2 : Cn → Cn−2 is zero.

Definition 3.13. Let ChR denote the category of non-negatively indexed chain complexes
of R-modules. A morphism f : M• → N• of chain complexes is a family of module homo-
morphisms fn : Mn → Nn such that

· · · //Mn+1
∂ //

fn+1

��

Mn

fn
��

∂ //Mn−1

fn−1

��

// · · ·

· · · // Nn+1 ∂
// Nn ∂

// Nn−1
// · · ·

commutes for all n.
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ChR is an abelian category with addition of chain maps defined in each degree by the
modules HomR(Mn, Nn). It has all small limits and colimits, taken degreewise, as these exist
in ModR. In this paper, any chain complex is assumed to be an object in ChR; in particular,
we adopt the convention that Mn = 0 for all n < 0 for any chain complex M•.

Definition 3.14. Let C• be a chain complex. The kernel

Zn(C•) := ker(Cn
∂n→ Cn−1)

is a R-module called the n-cycles of C•, while the image

Bn(C•) := im (Cn+1
∂n+1→ Cn)

is an R-module called the n-boundaries. Because ∂2 = 0, Bn ⊂ Zn ⊂ Cn for all n, so we may
form the quotient

Hn(C•) := Zn(C•)/Bn(C•),

called the n-th homology module of C•.

It is easy to check that a morphism f : M• → N• of chain complexes maps cycles to
cycles and boundaries to boundaries, hence inducing morphisms fn : Hn(M•) → Hn(N•) of
homology modules. Indeed, homology is a covariant functor ChR → ModR for each n ∈ Z.

Definition 3.15. A projective resolution of an R-module M is a chain complex P• together
with a map e : P0 →M such that each Pi is projective and the sequence

· · · → P2 → P1 → P0
e→M → 0

is exact. Equivalently, if we regard M as a chain complex concentrated in degree zero, a
projective resolution is a chain map e : P• →M which induces an isomorphism on homology.

Lemma 3.16. Every R-module M has a projective resolution.

Proof. Choose a projective P0 and surjection e0 : P0 � M , and let M0 be the kernel of this
map. Similarly, choose a projective P1 and surjection e1 : P1 � M0. Define ∂ : P1 → P0 to
be the composite of e1 with the inclusion M0 ↪→ P0. Proceed inductively. Let M1 be the
kernel of e1 and choose a projective P2 and surjection e2 : P2 � M1, and so forth. This
construction produces the following diagram, with diagonals and horizontal sequence exact.

0

!!CCCCCCCC 0

M1

!!BBBBBBBB

=={{{{{{{{

· · ·P3

e3

##GGGGGGGG
∂ // P2

e2
==||||||||
∂ // P1

e1

!!BBBBBBBB
∂ // P0

e0 //M // 0

M2

!!CCCCCCCC

==||||||||
M0

==||||||||

!!CCCCCCCC

0

;;wwwwwwwww
0 0

=={{{{{{{{
0
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The map e : P• →M is the desired projective resolution.

Note Lemma 3.16 is also true for any abelian category A with enough projectives.

Proposition 3.17. Let e : P• → M be a projective resolution and g : M → N a module
homomorphism. Then for any resolution Q• → N (not necessarily with the Qn projective),
there exists a chain map f : P• → Q•.

Proof. Because Q• → N is a resolution, the map h : Q0 → N is a surjection, so the fact that
P0 is projective gives a map f0 : P0 → Q0 such that

P0
e // //

f0
��

M

g

��
Q0 h

// // N

commutes. We construct the remainder of the chain map f : P• → Q• by induction. Assume
that fk : Pk → Qk exists for k = 0, . . . , n and is a chain map so far as it is defined. By
definition Qn+1 � Bn(Q•); similarly the image of ∂ : Pn+1 → Pn is Bn(P•), so fn |Bn ◦ ∂ gives
a map Qn+1 → Bn(Q•). Because Pn+1 is projective, this induces a map fn+1 : Pn+1 → Qn+1

such that ∂ ◦ fn+1 = fn ◦ ∂; hence, this construction gives a chain map f : P• → Q•.

3.3 Model structure on ChR

The object of this section is to prove the following theorem.

Theorem 3.18. The category ChR has a model structure with weak equivalences W, cofi-
brations C, and fibrations F given by:
W = {f : M → N | Hnf is an isomorphism for all n ≥ 0}
C = {f |Mn → Nn is an injection with projective cokernel for n ≥ 0}
F = {f |Mn → Nn is surjective for n ≥ 1}.

The substance of this theorem will be in proving that these classes satisfy Axioms 3 and
4. Indeed, we prove the other two axioms now. A morphism f of chain complexes is a weak
equivalence if and only if its image under each of the homology maps Hn : ChR →ModR
is an isomorphism. The class W satisfies the 2 of 3 Axiom precisely because homology is
functorial. Similarly, the functoriality of homology shows that W is closed under retracts.
Apply the homology functor Hn to a retract diagram

A• //

g

��

M•

f
��

// A•

g

��
B• // N• // B•

with f ∈ W . Because Hnf is an iso, there exists a lift h : Hn(B•) → Hn(A•) such that the
upper-left and lower-right triangles commute. This map h is an inverse for Hng, so g ∈ W
as desired.
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We will show in Section 4.1 that any class of morphisms, which is defined to be precisely
those maps that have the left lifting property (or right lifting property) with respect to
another class of morphisms, is closed under retracts, completing the proof of Axiom 1.

Note that ChR has all small limits and colimits, which are taken degreewise, so Theorem
3.18 implies that ChR is a model category. The proofs of Axioms 3 and 4 will require some
preliminary work.

Recall that a pullback of a diagram

B

��
A // C

is given by A×C B

���
�
�

//___ B

��
A // C

such that this diagram commutes and A ×C B is universal in the sense that for any object
Z and maps x, y such that

Z

y

  

x

&&

(x,y)
H

H

$$H
H

A×C B //

��

B

��
A // C

commutes, there exists a unique map Z → A ×C B that gives a factorisation of x and y.
The category ChR has pullbacks as it clearly has products and equalisers.

The proof of this theorem relies in several instances on the following lemma, which is
stated but not proven in [4].

Lemma 3.19. Let f : M• → N• be a morphism of chain complexes. Then the following
statements are equivalent:

(1) f is a trivial fibration
(2) The induced map

Mn → Zn−1M ×Zn−1N Nn

is a surjection for n ≥ 0.

Proof. For simplicity of notation, let X = Zn−1M ×Zn−1N Nn. We construct X as the
equaliser of the maps ∂πN , fn−1πM : Zn−1M × Nn → Zn−1N . We treat X as a subobject
of Zn−1M ×Nn whose elements are precisely those ordered pairs (a, b) ∈ Zn−1M ×Nn such
that fn−1(a) = ∂(b).

((1) → (2)). For n = 0 the induced map is simply M0 → N0, and the fact that H0f
is an isomorphism implies that this is surjective. For n > 0, the induced map Mn → X is
surjective if and only if for every ordered pair (a, b) ∈ Zn−1M ×Nn such that fn−1(a) = ∂(b)
there exists some m ∈Mn such that a = ∂(m) and b = fn(m), as is clear from the following
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diagram.
Mn

fn

&&

V U U T T S S R Q Q
P

P
O

O
N∂

$$

!!BBBBBBBB

X � s

&&MMMMMMMMMMM

Zn−1M ×Nn
πN //

πM
��

Nn

∂
��

Zn−1M
fn−1 // // Zn−1N

Let (a, b) ∈ X. By definition, fn−1(a) = ∂(b) ∈ Bn−1N , and because Hn−1f is an isomor-
phism, this implies that a ∈ Bn−1M . The coset ∂−1(a) = z+ZnM for some z ∈Mn, and its
image under fn is fn(∂−1(a)) = fn(z) + ZnN as fn induces a surjection on the cycles. But
∂(fn(z)) = ∂(b), so this coset is the fibre of ∂ that contains b, which implies that there is
some m ∈ z + ZnM such that ∂(m) = a and fn(m) = b, and the induced map Mn → X is
surjective.

((2)→ (1)). We now assume that for every (a, b) ∈ Zn−1M×Nn such that fn−1(a) = ∂(b)
there exists some m ∈ Mn such that ∂(m) = a and fn(m) = b, which for the case n = 0
tells us that f0 is surjective. Let n > 0. Given a ∈ Zn−1M such that fn−1(a) ∈ Bn−1N ,
then by definition fn−1(a) has a lift to Nn under ∂. Thus, the surjection Mn � X gives
us m ∈ Mn such that ∂(m) = a, which implies that a ∈ Bn−1M . So Hnf is injective for
all n ≥ 0. We observe that the ordered pair (0, b) satisfies fn−1(0) = ∂b for any b ∈ ZnN ,
so the surjection Mn � X gives us m ∈ ZnM such that fn(m) = b. Hence, fn restricts
to a surjection ZnM � ZnN for n > 0, which tells us that Hnf is an isomorphism for all
n ≥ 0. Finally, any b ∈ Nn gives ∂(b) ∈ Zn−1N , which we now know can be lifted to some
a ∈ Zn−1M under fn−1. Once again, surjectivity of the induced map Mn � X supplies an
m ∈Mn such that fn(m) = b, so fn : Mn � Nn is surjective as well.

Proof of Theorem 3.18. It remains to show that the three classes of morphisms satisfy the
lifting and factorisation axioms. We begin with the trivial cofibration - fibration half of the
factorisation axiom.

For k > 0, let Dk denote the chain complex where Dk
k = Dk

k−1 = R and Dk
n = 0

for n 6= k, k − 1, with ∂ : Dk
k → Dk

k−1 the identity. For any chain complex N•, the set
ChR(Dk, N•) = Nk as each morphism picks out an element of Nk as the image of 1 in R.
Analogously to our construction in ModR, define

P (N•) = ⊕f :Dk→ND
k,

which gives a natural map e : P (N•)→ N• with the component functions en : P (N•)n → Nn

surjective for n ≥ 1. The map N• 7→ P (N•) is functorial and each component of the resulting
chain complex is projective. Note also that P (N•) is a direct sum of exact sequences, so it
is also exact.
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Now let f : M• → N• be any morphism of chain complexes. Then f map be factorised
as

M•
f //

iM• &&LLLLLLLLLLL N•

M• ⊕ P (N•)
[f,e]

99rrrrrrrrrrr

where the first factor is injective with projective cokernel and the second is surjective in
positive degrees. Furthermore, iM• : M• →M•⊕P (N•) induces an isomorphism on homology
because P (N•) is exact. Therefore, this gives a fibration into a trivial cofibration followed
by a fibration. This factorisation is clearly functorial, as required.

The cofibration-trivial fibration factorisation is constructed inductively. Let f : M• → N•
be a chain map. At n > 0, we assume that there exists a factorisation up to that point;
namely, assume for k = 0, . . . , n−1 that there exist R-modules Qk and morphisms ∂ : Qk →
Qk−1, i : Mk → Qk, q : Qk → Nk such that f = qi, ∂2 = 0, and i and q are chain maps as far
as they are defined. So that the resulting factorisation will have the desired form we assume
also that i is injective with projective cokernel and that the map Qk → Zk−1Q ×Zk−1N Nk

induced by ∂ and q is surjective. Lemma 3.19 then implies that Hkq is an isomorphism and
q is surjective. Hence, if we can complete the induction step, this construction will give a
factorisation into a cofibration followed by a trivial fibration.

For n = 0, Z−1Q×Z−1NN0 = 0×0N0 ' N0 and the factorisation M0

iM0−→M0⊕P (N0)
[f0,e]−→

N0 suffices. For the inductive step, we wish to construct a factorisation to complete the top
row of the diagram

Mn

∂
��

Nn

∂
��

Mn−1

∂
��

in−1 // Qn−1

∂
��

qn−1 // Nn−1

∂
��

Mn−2
in−2 //

��

Qn−2
qn−2 //

��

Nn−2

��
...

...
...

Note that Nn maps into Zn−1N and the commutativity of the right hand square implies that
Zn−1Q does as well. Form the pullback Zn−1Q×Zn−1N Nn. Because ∂2 : Mn →Mn−2 is zero,
the composite in−1∂ defines a map from Mn to Zn−1Q. This, together with fn : Mn → Nn
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induces a map j : Mn → Zn−1Q×Zn−1N Nn factorising fn as seen from the diagram:

Mn

in−1∂

$$

fn

))

j

''PPPPPPP

Zn−1Q×Zn−1N Nn
//

��

Nn

∂
��

Zn−1Q
qn−1 // Zn−1N

Because ModR has enough projectives, we may choose a projective P such that there is a
factorisation of j as

Mn
i //Mn ⊕ P // Zn−1Q×Zn−1N Nn

with the second map a surjection. We set Qn = Mn ⊕ P and call the first map of this
factorisation i and the composite of the second with the map to Nn given by the pullback
q. The chain maps i : M• → Q• and q : Q• → N• thus constructed are a cofibration and a
trivial fibration, respectively, as desired.

It is less obvious that this map is functorial, but this is true. Let f : M• → N• and
g : A• → B• be two chain maps with factorisations M• → Q• → N• and A• → C• → B•
respectively, and let (u, v) : f → g be a morphism in (ChR)2. This factorisation is functorial
if there exists a morphism h : Q• → C• such that

M•
f //

!!BBBBBBBB

u

��

N•

v

��

Q•

h

���
�
�
�
�
�
�

>>||||||||

A•

!!CCCCCCCC
g // B•

C•

>>||||||||

commutes. This is true in degree zero because P is a functor on ModR. Hence, we may
assume that such a map exists for k = 0, . . . , n− 1 and is a chain map as far as it is defined.
For the inductive step, we must construct a morphism hn : Qn → Cn such that

Mn
//

��

��5555555555555555 Qn
//

��

��5
5

5
5

5
5

5
5 Nn

��

��5555555555555555

Mn−1
//

��6666666666666666
Qn−1

//

55555555

��55555555

Nn−1

55555555

��55555555An //

��

Cn //

��

Bn

��
An−1

// Cn−1
// Bn−1
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commutes. By the inductive hypothesis, we are given that the solid-arrow diagram com-
mutes, so there exists a map k : Qn → Zn−1C ×Zn−1B Cn. By construction, Cn = An ⊕ PC ,
where PC is a projective module mapping surjectively onto this pullback. Because Qn =
Mn ⊕ PQ with PQ projective, the map k induces a lift e : PQ → PC . It follows that

Qn = Mn ⊕ PQ
[iAnu,iPC e] // An ⊕ PC = Cn

is the desired map hn, which shows that this factorisation is indeed functorial.
The following two propositions demonstrate that the three classes have the required lifting

properties, completing the proof that ChR is a model category.

Proposition 3.20. In ChR, every cofibration satisfies the left lifting property with respect
to every trivial fibration.

Proof. Consider the following lifting problem

A•
u //

i
��

M•

q

��
B• v

// N•

We construct a lift inductively. As we saw in the proof of Lemma 3.19, the fact that a
fibration is also a weak equivalence implies that the map q0 : M0 → N0 is a surjection
as well. Because i0 : A0 → B0 is injective with projective cokernel, it is isomorphic to a
morphism of the form A0 → A0 ⊕ P0 where P0 is projective. Hence, the lifting property of
projective modules allows us to construct a lift k0 : P0 →M0 such that

A0

iA0

��

A0
u //

i0

��

M0

q0
��

A0 ⊕ P0

[i0,k0]

55llllllll
// B0 v

//∼oo N0

commutes, giving the required lift. For the induction step, we assume that a lift exists for
all k < n and that it is a chain map as far as it is defined. By Lemma 3.19, the map
Mn → Zn−1M ×Zn−1N Nn is a surjection, so the fact that in : An → Bn is injective with
projective cokernel, means that we can solve the lifting problem

An //

in
��

Mn

��
Bn

//

gn

77nnnnnnn
Zn−1M ×Zn−1N Nn

as in the base case. The use of the pullback guarantees that the morphisms gn constructed
in this matter form a chain map g : B• →M•, which is the desired lift.
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Lemma 3.21. A chain map q : Q• → N• is a fibration if and only if q has the right lifting
property with respect to the maps 0→ Dn for all n > 0.

Proof. For any chain map f : Dn → N• with n > 0, there exists a lifting problem

0 //

��

Q•

q

��
Dn

f
// N•

The morphism f : Dn → N• is determined uniquely by the element fn(1) ∈ Nn, where 1 is the
multiplicative unit of R = Dn

n. Assume that q is a fibration. Then a lift gn exists in degree n
because Dn

n = R is projective and qn : Qn → Nn is surjective. The map gn−1 : Dn
n−1 → Qn−1

is then determined by the image under ∂ : Qn → Qn−1 of fn(1), so the resulting g : Dn → Q•
is a chain map and gives the desired lift.

Conversely, assume that q satisfies the right lifting property with respect to all morphisms
0 → Dn for all n > 0. For any x ∈ Nn, there exists some f ′ : R → Nn such that f ′(1) = x
and this can be extended to a chain map f : Dn → N•. By hypothesis, there exists a lift
g : Dn → Q• such that qg = f ; in the n-th degree, this implies that x is in the image of qngn
and hence qn. So qn is surjective for all n > 0. Hence, q is a fibration.

Proposition 3.22. In ChR, every trivial cofibration satisfies the left lifting property with
respect to every fibration.

Proof. It follows from Lemma 3.21 that any fibration p : M• → N• has the right lifting
property with respect to maps 0 → P (B•) for any chain complex B•, and hence also for
maps A• → A•⊕P (B•). Let j : A• → B• be any trivial cofibration. The trivial cofibration-
fibration factorisation given in Theorem 3.18 gives rise to a lifting problem

A•

j

��

iA• // A• ⊕ P (B•)

[j,e]

��
B• B•

and the 2-out-of-3 property gives that the fibration is a weak equivalence as well. By Propo-
sition 3.20, j has the left lifting property with respect to [j, e], so Lemma 3.6 implies that j
is a retract of iA• . Because iA• has the left lifting property with respect to any fibration, j
must as well, completing the proof.

3.4 Model structure on Cat

Let Cat be the category of all small categories with functors as morphisms.

Definition 3.23. A functor P : E → B in Cat is a categorical fibration if for every map
f : b′ → b in B and object e lying over b there exists an object e′ and a map g : e′ → e in
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E lying over f and universal in the following sense: given h : e′′ → e such that Ph factors
through f in B, there exists a unique k : e′′ → e′ lying above this factorisation such that
gk = h. We say P is a fibration for isos if this is only required for all isomorphisms b′

∼→ b.

It is easy to see that if P is a fibration for isos, the lift of an isomorphism f : b′
∼→ b is

also an isomorphism in E .

Theorem 3.24. The category Cat has a model structure where:
• weak equivalences W are categorical equivalences, that is, functors which are full, faith-

ful, and essentially surjective on objects
• cofibrations C are functors which are injective on objects
• fibrations F are functors which are fibrations for isos.

Once again, the substance of this theorem is the proof of the lifting and factorisation
axioms. Categorical equivalences clearly satisfy the 2 of 3 property. The following Lemma
will show that the three classes C,F , and W are closed under retracts.

Lemma 3.25. Let C, F , and W be classes of morphisms defined as in Theorem 3.24. Then
each class is closed under retracts.

Proof. Consider a retract diagram

A //

1G
��

E //

F
��

2

A
G
��

B // K // B

Because the horizontal composites are the identity, the upper and lower arrows of 1 and 2
must be injective and surjective on both objects and arrows, respectively. Hence, if F ∈ C,
then from 1 , G ∈ C as well. If F ∈ W , then 1 implies that G is faithful, and 2 implies
that G is full and essentially surjective on objects, so G ∈ W . Finally, if F ∈ F , we use
surjectivity of 2 to lift an iso b′

∼→ b in B to K, then lift it to a morphism in E satisfying the
required universal mapping property, using the fact that F is a fibration for isos. Finally,
we map this lift forward to A using the top edge of 2 , to show that G is a fibration for isos
as well. Hence, all three classes are closed under retracts, as required.

Proof of Theorem 3.24. We begin by showing that these classes satisfy the required lifting
properties. Consider a lifting problem

A F //

I
��

C
P
��

B

H
>>~

~
~

~

G
// D

where I is a cofibration and P is a fibration. Objects in the image of I lift uniquely to
A as I is injective on objects, so H can be defined on these objects simply by taking the
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image under F of their lifts. Indeed, this definition is required to make the upper triangle
commute. It remains to define the rest of the map.

Assume that I is also a weak equivalence. Then every b ∈ obB is isomorphic to some
Ia for a ∈ A. The image of the isomorphism b

∼→ Ia under the functor G is also an
isomorphism with codomain GIa = PFa. Because P is a fibration, this map lifts to an
isomorphism c

∼→ Fa in C, and we define Hb = c. To define H on morphisms of B, consider
h : b′ → b with b ' Ia and b′ ' Ia′. Composing h with these isomorphisms gives a map
g : Ia′ → Ia in B, which lifts to a map f : a′ → a in A as I is full. Hence, Ff : Fa′ → Fa is
a morphism in C and composition with the isos Hb′

∼→ Fa′ and gives a map k : Hb′ → Fa
whose image under P factors through Gb

∼→ PFa.

Hb′
∼ //

k ,,XXXXXXXXXX Fa′ Ff

&&LLLLL

Hb ∼
// Fa C

Gb′

Gh ##
GGGG

Pk ,,XXXXXXXXX
∼ // PFa′ Gg

&&LLLLL

Gb ∼
// PFa D

Hence, it must have a factorisation Hb′ → Hb in C, which is defined to be the image of h
under H. This defines the functor H in such a way that both triangles commute, so the
lifting property is satisfied in this case.

Now assume that P is a weak equivalence and drop this assumption for I. Again take
b ∈ obB, not in the image of I. Because P is essentially surjective, the image Gb

∼→ Pc for
some c ∈ ob C. Since P is a fibration for isos, this map lifts to some c̃

∼→ c in C. Define
Hb = c̃. Given a morphism b′ → b, its image under G, composed with the isomorphisms
from Gb′ and Gb, gives a morphism Pc′ → Pc. Because P is full, this lifts to a morphism
c′ → c, and as before the fact that P is a fibration for isos gives a map Hb′ = c̃′ → c̃ = Hb,
which we define to be the image of this map under H.

c̃′
∼ // c′

##FFFFF

c̃
∼ // c C

Gb′

##FFFF
∼ // Pc′

Gb
∼ // Pc D

To define the functorial factorisations of Cat, we construct pseudo-limits and colimits
in the sense of Section 2. We begin with the trivial cofibration-fibration factorisation. For
reasons that will become clear in Section 4, we would like the functor F : Cat2 →Cat, which
sends a functor H : A → B to the category K through which it factorises, to absorb some
of the “choosing” that took place in constructing lifting maps. For the trivial cofibration-
fibration lifting problem, the principal choice was that of an isomorphism b

∼→ Ha. Hence,
we let K be the category whose objects are triples (a, b, b

∼→ Ha) with a ∈ obA, b ∈ obB,
and b

∼→ Ha an isomorphism in B. Morphisms are pairs a → a′ and b → b′ that commute
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with the specified isomorphisms. Note that the commuting requirement implies that the
pair is completely determined by the morphism a→ a′. This category comes equipped with
some obvious forgetful functors:

B

K

A

UA

��













UB

��1
11111111111

H
//

α

6>tttt
tttt

(3)

and we define the 2-cell α by using the isomorphisms given with each object of K. It is
easy to check that (3) is universal, so that K is the pseudo-limit of H; hence, F is indeed a
functor. It remains to show that this construction yields a factorisation.

Define a functor I : A → K by

a 7→ (a,Ha, 1Ha : Ha
∼→ Ha).

Then H = UBI. The functor I is clearly injective on objects, full, and faithful. It is also
essentially surjective: given (a, b, b

∼→ Ha), the pair 1a : a → a and b
∼→ Ha gives an

isomorphism to (a, a, 1Ha) : Ha
∼→ Ha) = Ia. So I is a trivial cofibration. Furthermore, the

forgetful functor UB is a fibration for isos. Given b′
∼→ b, with b = UB(a, b, b

∼→ Ha) then b′

lifts to (a, b′, b′
∼→ b

∼→ Ha). If

(a′′,

��

b′′,

��

b′′
∼ //

��

Ha′′)

��
(a, b, b

∼ // Ha)

is a map in K such that b′′ → b factors through b′
∼→ b, then

b′′
∼ //

��

Ha′′

��
b′

∼ // Ha

commutes, by definition of the bottom map, so the lift factorises as well. Hence, UB is a
fibration, and we have exhibited one half of the factorisation axiom.

For the cofibration-trivial fibration factorisation, we simply dualise this construction.
However, the pseudo-colimit E of H : A → B is less natural to describe. We define a
category E with

ob E = {(a,Ha) | a ∈ obA} ∪ {(∗, b) | b ∈ obB},

where the ∗ is just a formal symbol. Morphisms in E are simply morphisms in B between
the objects in the second coordinate. There exist two obvious functors: VA : A → K with
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a 7→ (a,Ha) and VB : B → K with b 7→ (∗, b). These functors define the pseudo-colimit:

B

E

A

VA

��1
11111111111

VB

��












H //

β

v~ tttt
tttt

(4)

where β is an invertible 2-cell whose components are the identity maps 1Ha : (∗, Ha) →
(a,Ha). The universal mapping property of (4) follows easily; given functors M : A → D
and N : B → D to some category D, the map E → D is the obvious one. Furthermore, VA
is clearly injective on objects and hence a cofibration in Cat.

Define a functor P : E → B to be the forgetful functor that projects to the second
coordinate, and note that H = PVA. By definition, E(y, z) = B(Py, Pz) for any y, z ∈ ob E ,
so P is automatically full and faithful, and by the construction of ob E , P is surjective. Hence
P is a weak equivalence. Furthermore, P is a fibration for isos. Because P is surjective
and full, any morphism in B has a lift. Because B is faithful, once lifts of objects are
chosen, the lifts of the morphisms between them must be unique, which gives the required
universal property. Hence, P is a trivial fibration, so our factorisation, and hence the proof,
is complete.

3.5 Quillen’s Small Object Argument

Recall that an ordinal is the well-ordered set of all smaller ordinals. Formally, the ordinals
can be constructed using a transfinite recurrence as follows:
• ∅ is an ordinal denoted by 0.
• If α is an ordinal then α + 1 = α ∪ {α} is its successor ordinal.
• If A is a set of ordinals, then ∪α∈A α is an ordinal.

It is clear from this definition that every ordinal has a successor, but not every ordinal has an
immediate predecessor. An ordinal that is neither 0 nor a successor ordinal is called a limit
ordinal. The first of these is ω, the limit of the set of ordinals denoted by natural numbers.
The collection of all ordinals is denoted ON and is not itself a set, for if this were a case
then it would also be an ordinal, by the above definition; in this case, it would be equal to
a member of itself, contradicting the axiom of regularity.

An ordinal can be thought of as a category with a unique map α → β if and only if
α ≤ β. Given an ordinal γ and a category K with all small colimits, a γ-sequence is a
functor X : γ → K that is colimit preserving. Since X preserves colimits, the induced map

colimα<βXα→ Xβ

is an isomorphism for all ordinals β < γ. Note that an ω-sequence is simply a sequence.
Given a set A, its cardinality is defined to be the smallest ordinal γ such that there is

a bijection γ → A. This ordinal is denoted |A|; it is called an initial ordinal, for it is the
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smallest ordinal having a given cardinality. Infinite initial ordinals are denoted ωα and have
cardinality denoted ℵα. A cardinal is an ordinal κ such that κ = |κ|. For finite sets, the
notions of cardinals and ordinals coincide, but this is not true for infinite sets (e.g., the
ordinal ω defined above an its successor ω + 1 both have cardinality ℵ0).

Definition 3.26. Let K be a category and F ⊂ morK be a class of morphisms. Then an
object A of K is F -small if whenever

X0
e0 // X1

e1 // X2
e2 // · · ·

is a ω-sequence of morphisms in F , then the map of sets

colimK(A,Xn)→ K(A, colimXn)

is an isomorphism. An object is small if it is small relative to the entire class morK.

The colimit colimK(A,Xn) is taken in Set, where it can be constructed as a coproduct
followed by a coequaliser. More specifically, form the coproduct∐

n≥0

K(A,Xn),

which is simply the set of maps A→ Xk for some k, equipped with inclusions

K(A,Xk)
ik //

∐
n≥0K(A,Xn).

Next, form a coequaliser for each pair of maps ij, ikek−1 · · · ej for all j < k. This construction
produces colimK(A,Xn) as a quotient of the coproduct by relations of the form ij(f) =
ikej,k(f) for each f ∈ K(A,Xj) and each j < k, where ej,k is the composite ek−1 · · · ej. By
transitivity, this means that distinct morphisms f, g : A → Xj are identified if for some
k > j, ej,kf = ej,kg. This shows that the map colimK(A,Xn) → K(A, colimXn) is well-
defined since maps f : A → Xj, g : A → Xk represent the same element in the colimit if
there is some m such that ej,mf = ek,mg, in which case their image is

A
ej,mf // Xm

// colimXn.

If we mimicked this construction for a finite sequenceX0 → · · · → Xm, then colimK(A,Xn)
is precisely the set K(A,Xm) = K(A, colimXn) as Xm is the colimit of this diagram. Return-
ing our attention to ω-sequences, we see that colimK(A,Xn)→ K(A, colimXn) is surjective
if and only if every map A → colimXn factorises through some Xk. Injectivity says that
given f, g : A→ Xk such that ek,mf 6= ek,mg for all m ≥ k, then the composites of these maps
with maps to the colimit are also distinct. But, by the nature of the colimit construction in
Set, this will always be the case for certainly

imek,mf 6= imek,mg : A→
∐
n≥0

Xn,
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which means that the coequaliser will not project these maps onto the same element.
Hence, this discussion can be summed up by saying that an object A of a category K is

small if a map from it to the colimit of any ω-sequence factors through some stage of that
sequence.

Example 3.27. In Set, every finite set A is small. Given an ω-sequence

X0 → X1 → X2 → · · ·

let f : A→ colimXn be any map. For each a ∈ A, f(a) is in the image of some Xk(a), because
a colimit in Set is constructed a coequaliser of a coproduct, which is simply a disjoint union.
Let

k = sup{k(a) | a ∈ A}.

Then f factors through a map g : A → Xk, which shows that the map colimK(A,Xn) →
K(A, colimXn) is surjective as required.

Example 3.28. Similarly, any bounded chain complex of finitely presented R-modules is small
in ChR.

Definition 3.29. A model category K is cofibrantly generated if there are sets of morphisms
I and J such that

(1) The domain of every morphism in I is C-small where C is the class of all cofibrations
and the trivial fibrations are exactly those maps that have the right lifting property with
respect to all of I.

(2) The domain of every morphism in J is C ∩ W-small where C ∩ W is the class of
all trivial cofibrations and the fibrations are exactly those maps that have the right lifting
property with respect to all of J .

Remark 3.30. The name comes from the fact that the sets I and J generate the cofibrations
and the trivial cofibrations, respectively, in the sense that the cofibrations are the smallest
class of maps that contains I and is closed under coproducts, cobase change, sequential
colimits, and retracts, and likewise for the trivial cofibrations and J . By Lemma 3.7, it is clear
that C ⊃ I and C ∩W ⊃ J , and Remark 3.10 shows that these classes are closed under the
required limits. Conversely, Garner makes the more specific claim that the cofibrations are
realisable as “a retract of a transfinite composition of pushouts of coproducts of generating
cofibrations” [3, pp 47].

The conclusion in the following theorem repeats a fact that we have already asserted in
requiring that the factorisations given by a model structure on a category are functorial.
However, the proof of this result sheds considerably light into why the constructions given
in Sections 3.3 and 3.4 worked. The argument is called Quillen’s small object argument and
first appeared in [10].

Theorem 3.31 (Quillen’s small object argument). If K is a cofibrantly generated category
with a model structure, then the factorisations given by this structure can be chosen to be
functorial.
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Proof. We prove this for the cofibration-trivial fibration factorisation. The proof for the
other half is obtained by replacing I with J , “cofibration” with “trivial cofibration,” and
“trivial fibration” with “fibration.” Let f : Y → Z be any map, and let X0 = Y . Let S0 be
the set of commutative squares

A //

i
��

Y

f

��
B // Z

with i ∈ I. Define X1 to be the pushout given by the diagram

⊕S0A //

��

X0

j1
��

⊕S0B // X1

which exists because K is cocomplete. The maps f = q0 : X0 → Z and ⊕S0B → Z induce a
map q1 : X1 → Z. Inductively, let Sn be the set of commutative squares

A //

i
��

Xn

f

��
B // Z

with i ∈ I, and define Xn+1 to be the pushout

⊕SnA //

��

Xn

jn+1

��
⊕SnB // Xn+1

(5)

inducing a map qn+1 : Xn+1 → Z. This construction yields a cocone Z over an ω-sequence

Y = X0
j1 //

f=q0 $$IIIIIIIIII X1
j2 //

q1

��

X2

q2
}}{{{{{{{{

// · · ·

Z

Let X = colimXn, and let j : Y → X and q : X → Z be the induced maps to and from the
colimit. Closure under coproducts implies that the left hand side of (5) is a cofibration, so
closure under cobase change implies that each jn is as well. Finally, closure under sequential
colimits implies that the map j is a cofibration. Hence, it remains only to show that q is a
trivial fibration, which we do by showing that q has the right lifting property with respect
to any i ∈ I. Given a commutative square

A
u //

i
��

X

q

��
B v

// Z
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with i ∈ I, A is small, so there exists a factorisation

A
ũ //

u
  AAAAAAAA Xn

��
X

for some n. This gives a commutative diagram

A
ũ //

i
��

Xn
//

qn

��

X

~~||||||||

B v
// Z

Hence, the construction of Xn+1 as a pushout over coproducts of such diagrams defines maps
ṽ and w satisfying

A
ũ //

i

��

Xn

jn+1

��
B

ṽ //

w
""EEEEEEEEE Xn+1

��

qn+1

""DDDDDDDD

X q
// Z

(6)

We claim that w : B → X is the desired lift. The composite of the arrows from A to X in
a clockwise direction in (6) equals u, so the upper triangle commutes. By definition of the
pushout Xn+1, v = qn+1ṽ, so the parallelogram at the bottom of (6) shows that the lower
triangle commutes as well, completing the proof.

In light of Theorem 3.31, it should come as no surprise that ChR is cofibrantly generated.
The proof of this fact will illuminate connections between the small object argument and
the factorisations we had previously established.

Recall that Dn denotes the chain complex where Dn
n = Dn

n−1 = R and Dn
k = 0 for

k 6= n, n − 1, with ∂ : Dn
n → Dn

n−1 the identity. Let Sn be the chain complex with Snn = R
and Snk = 0 for k 6= n.

Proposition 3.32. ChR is cofibrantly generated with I = {Sn−1 → Dn | n ≥ 1}∪{0→ S0}
and J = {0→ Dn | n ≥ 1}.

Proof. Clearly, the maps in I and J are cofibrations and the maps in J are also weak
equivalences. Lemma 3.21 shows that the fibrations are precisely those maps that satisfy the
right lifting property for J . It remains to show that a map is a trivial fibration if and only if
it satisfies the right lifting property for all maps in I. Let q : Q• → N• be a trivial fibration.
Then q0 is surjective, which implies that q has the right lifting property with respect to
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0→ S0. Thus, we need only consider lifting problems of the form

Sn−1 u //

��

Q•

q

��
Dn

v
// N•

(7)

A lift w : Dn → Q• is trivial in all but degrees n and n− 1, so we need only construct maps
wn and wn−1 such that

0 //

��

  AAAAAAAA R

��

un−1

""DDDDDDDD

Qn

∂Q //

qn

��

Qn−1

qn−1

��

R //

vn   AAAAAAAA

wn
>>}

}
}

}
R

""DDDDDDDD

wn−1

<<z
z

z
z

Nn ∂N
// Nn−1

(8)

commutes. In order for the upper triangle on the right face of the cube to commute, we
need wn−1(1) = un−1(1) = z ∈ Qn−1. Extending this diagram to degree n − 2, 1 ∈ Sn−1

n−1

gets mapped to 0, so z is a cycle. Furthermore, qn−1(z) = ∂Nvn(1), so qn−1(z) ∈ Bn−1N ,
which means that z ∈ Bn−1Q, since q is a homology isomorphism. Hence z is in the image
of ∂Q. Pick x ∈ Qn such that ∂Q(x) = z. Then ∂Nqn(x) = qn−1(z) = ∂Nvn(1), so vn(1) −
qn(x) ∈ ZnN . Because qn is a homology isomorphism, there is some x̃ ∈ ZnQ such that
qn(x̃) = vn(1) − qn(x). Then x̃ + x maps to vn(1) under qn and to z under ∂Q. Take
wn(1) = x̃+ x and this defines a lift such that the entire diagram commutes.

Conversely, we assume that q : Q• → N• has the right lifting property with respect to
every element of J . The right lifting property of q with respect to 0 → S0 implies that q0
is surjective. We prove that qn is surjective by induction. Assuming this is true for qn−1,
we can construct a lifting problem (7) for every chain map v : Dn → N•. More specifically,
there is a chain map v that sends 1 ∈ R = Dn

n to any element x ∈ Nn, and by surjectivity
of qn−1, this can extended to a lifting problem (7). The existence of a lift wn in (8) implies
that qn is surjective. Hence, q is a fibration.

More precisely, the set of diagrams of the form (7) are in bijection with the set

{(x, y) ∈ Nn × Zn−1Q | qn−1y = ∂Nx}.

A lift (8) corresponds to an element z ∈ Qn such that ∂Qz = y and qnz = x. This perspective
will make it clear that that q induces an isomorphism on homology. Let x ∈ ZnN . Then
(x, 0) is a lifting problem with solution z ∈ Qn such that ∂Qz = 0. Hence, z ∈ ZnQ and
Hnq is surjective for n > 0 (when n = 0, surjectivity is immediate because Z0Q = Q0 and
Z0N = N0). For injectivity, let y ∈ Zn−1Q be such that qn−1y = ∂Nx for any x. Then (x, y)
is a lifting problem with solution z such that ∂Qz = y. Hence, y ∈ BnQ and Hnq is injective
for all n.
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4 Weak Factorization Systems

The trivial cofibration-fibration and cofibration-trivial fibration factorisations given by a
model structure provide examples of a more general categorical notion of a weak factorisation
system. To better understand the relationship between these factorisations and the lifting
property of Axiom 3, we now study such systems in general.

4.1 Definitions

Let K be a category. A morphism f has the left lifting property with respect to a morphism
g, or equivalently, g has the right lifting property with respect to f if every lifting problem

·
f

��

u // ·
g

��
· v

//

w
@@�

�
�

� ·

(9)

has a solution w such that both triangles commute, and denote this by f ≤ g.

Definition 4.1. A weak factorisation system in a category K is a pair (L,R) of distinguished
classes of morphisms such that

(1) Every h ∈ morK can be factorised as h = gf with f ∈ L and g ∈ R.
(2) R = L≤ is precisely the class of morphisms that have the right lifting property with

respect to each f ∈ L.
(3) L = ≤R is precisely the class of morphisms that have the left lifting property with

respect to each g ∈ R.

Recall that a morphism f is a retract of g if there is a commutative diagram

· //

f

��

·
g

��

// ·
f

��
· // · // ·

with horizontal composites the identity.
Conditions 2 and 3 imply:
(2’) f ≤ g for every f ∈ L and g ∈ R.
(3’) L and R are closed under retracts.

The first statement is obvious. For the second, let h be a retract of f ∈ L and let g ∈ R.
Given a lifting problem

· //

h
��

·
g

��
· // ·

and a retract diagram ·
h
��

// ·
f

��

// ·
h
��

· // · // ·
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with horizontal composites the identity. Combining these diagrams, we obtain an expanded
picture of the same lifting problem with an obvious solution:

·
h
��

// ·
f

��

// ·
h

��

// ·
g

��
· // · //

s

77ppppppp · // ·

In the above, s is the lift provided by the fact that f has the left lifting property with respect
to g. Thus, h has the left lifting property with respect to g, and so h ∈ L, proving that L is
closed under retracts. The proof for R is similar.

Condition 3’ implies:
(3”) If s is a split monic and s ·f ∈ L, then f ∈ L. Dually if t is a split epic and g · t ∈ R,

then g ∈ R. This follows from the following retract diagram:

·
f

��

1 // ·
sf

��

1 // ·
f

��
· s // · s−1

// ·

Proposition 4.2. If (L,R) is a pair of classes of morphisms satisfying (1),(2’), and (3”),
then (L,R) is a weak factorisation system.

Proof. We must show that L = ≤R; R = L≤ will follows dually. Clearly L ⊂ ≤R. Given
f ∈ ≤R, factorize f as f = rl with l ∈ L and r ∈ R. By the lifting property for f , there
exists a lift s in the diagram

· l //

f
��

·
r

��
·

1
//

s
@@�

�
�

� ·

and by commutativity of the lower triangle, s is split monic. Hence (3”) implies that f ∈ L
as desired.

Given a category K, we can form a category K2 whose objects are morphisms in K and
whose arrows (u, v) : f → g are commutative squares

· u //

f
��

·
g

��
· v

// ·

(10)

Let dom: K2 → K and cod: K2 → K denote the functors that send an arrow to its domain
and codomain, respectively, and let κ : dom → cod be the natural transformation given by
κf = f for all morphisms f in K.
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Definition 4.3. A weak factorisation system (L,R) is functorial if there is a pair of functors
L,R : K2 → K2 so that

domL = dom, codR = cod, codL = domR,

and f = Rf · Lf with Lf ∈ L and Rf ∈ R for every f ∈ morK.

The functors L and R can be equivalently described by the functor

F = codL = domR : K2 → K

and natural transformations λ : dom→ F and ρ : F → cod such that κ = ρ · λ and λf ∈ L
and ρf ∈ R for all morphisms f . Hence, the factorisation of a morphism f in K is given by

dom f
κf=f

//

λf ##GGGGGGGG
cod f

Ff

ρf

<<xxxxxxxx

We call the triple (F, λ, ρ) a functorial realisation for the weak factorisation (L,R). Natu-
rality of λ and ρ implies that for any commutative square (10), the diagram

· u //

λf
��

·
λg
��

· F (u,v) //

ρf

��

·
ρg

��
· v

// ·

(11)

commutes.
Surprisingly, a functorial realisation of a weak factorisation system determines the system

itself. Given such a triple (F, λ, ρ), define

LF :={f | ∃s : λf = s · f, ρf · s = 1}, (12)

RF :={g | ∃t : ρg = g · t, t · λf = 1}. (13)

Given f ∈ LF and g ∈ RF the lifts s and t allow one to construct a solution to the lifting
problem (9)

· u //

λf
��

·
λg
��

·
ρf

��

F (u,v) // ·
t

OO�
�
�

ρg

��
·
s

OO�
�
�

v
// ·

(14)

by taking w = t · F (u, v) · s. The equations defining the lifts s and t guarantee that the
required triangles commute.
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Theorem 4.4. (1) For every weak factorisation system (L,R) with functorial realisation
(F, λ, ρ), the classes L = LF and R = RF .

(2) For any triple (F : K2 → K, λ : dom→ F, ρ : F → cod) with κ = ρ · λ and such that
λf ∈ LF and ρf ∈ RF for every morphism f in K, then (LF ,RF ) is a weak factorisation
system with functorial realisation (F, λ, ρ).

Proof. (1) By definition f ∈ LF satisfies s · f = λf ∈ L with s a split monic, so LF ⊂ L
by (3”) and similarly RF ⊂ R. Conversely, if f ∈ L, factorise f = ρfλf and use f ≤ ρf as
in the proof of Proposition 4.2 to find a lift s such that λf = s · f and ρf · s = 1. Hence,
L ⊂ LF and dually R ⊂ RF .

(2) The equality κ = ρ · λ gives factorisation and (14) shows that LF ≤ RF . We show
that LF and RF are closed under retracts. Given a retract diagram

· u //

h
��

· p //

f

��

·
h
��

· v
// · q

// ·

factorise f and h to obtain

· u //

λh
��

· p //

λf
��

·
λh
��

· F (u,v)//

ρh
��

· F (p,q) //

ρf

��

·
ρh
��

· v
// ·
s

OO�
�
�

q
// ·

If f ∈ LF there exists a lift s such that λf = s · f and ρf · s = 1. Define j = F (p, q) · s · v.
Then using that the outer horizontal composites are the identity, j satisfies λh = j · h and
ρh · j = 1. Hence, h ∈ LF and a dual argument shows RF is closed under retracts as well.
This implies that (LF ,RF ) satisfies (3”). Hence, this pair is a weak factorisation system
with functorial realisation (F, λ, ρ).

Definition 4.5. An orthogonal factorisation system is a weak factorisation system such that
every lifting problem (9) has a unique solution w such that both triangles commute.

Example 4.6. In Set, (E ,M) is an orthogonal factorisation system where E is the class of
epis andM is the class of monos. Given a lifting problem (9) with f epic and g monic, it is
easy to construct a unique lift. For each object x in the codomain of f , its preimage under
f must be mapped to a single element of the domain of g, because g is monic. Define w(x)
to be this element; it is clear that both triangles commute.

Example 4.7. Similarly, in Top, orthogonal factorisation systems are given by either E0 =
surjections and M0 = embeddings or E1 = quotients and M1 = injections.

It is well known that in an orthogonal factorisation system, the classes L and R enjoy
many good stability properties. For example, L is closed under all colimits, R is closed
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under all limits, and both L and R are closed under composition. But these properties
are not enjoyed by all weak factorisation systems. Various restrictions of weak factorisation
systems have been proposed to recover the closure properties enjoyed by orthogonal systems,
including most recently the notion of natural weak factorisation systems in [5]. We show that
comonad-monad structure of this system is not necessary to achieve closure of the classes L
and R under colimits and limits. Indeed, it is not even necessary to assume that the lifts in
(9) are natural, as the authors suggest. Instead, a simple assumption about the behavior of
the factorisation with regard to identity morphisms suffices.

In Section 4.2, we describe this assumption and prove a key theorem showing that the
morphism F (u, v) is unique in a certain sense. In Section 4.3, we show that this uniqueness
implies that the classes L and R are closed under colimits and limits, respectively. In Section
4.4, we give a generalisation of these results. Finally, in Section 4.5, we define the natural
weak factorisation systems of [5], an algebraisation of the notion of a weak factorisation
system that will describe other circumstances under which the classes L and R are closed
under all (co)limits.

The author was introduced to this topic through [5], [9], and [11], and in discussions with
J.M.E. Hyland. The preceding section owes a great debt to [11] and the last to [5]. The
lemma and theorem from Section 4.2 are proven in a slightly different form in [9].

4.2 Uniqueness Theorem

Let E : K → K2 be the embedding functor A 7→ 1A and f 7→ (f, f) : 1→ 1 for all A ∈ obK
and f ∈ morK. We will prove the following theorem.

Theorem 4.8. If (L,F) is a weak factorisation system with functorial realisation (F, λ, ρ)
such that

(F, λ, ρ)E = 1, (15)

then for any commutative square (10), F (u, v) is the unique morphism k such that both
squares of

· u //

λf
��

·
λg
��

· k //

ρf

��

·
ρg

��
· v

// ·

(16)

commute.

By (F, λ, ρ)E = 1, we mean that FE = 1K and λE, ρE = 1 : 1K → 1K. Specifically, this
means that F (1A) = A and λ1A = ρ1A = 1A for all A ∈ obK, and F ((f, f) : 1 → 1) = f
for all f ∈ morK. Hence, (15) is equivalent to the assertion that the factorisation of a
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commutative square (f, f) : 1→ 1 determined by (F, λ, ρ) is

·
1
��

f // ·
1
��

· f //

1
��

·
1
��

·
f
// ·

The implications of this theorem on the question of colimits and limits in L and R will be
explored in Section 4.3.

Recall that L,R : K2 → K2 are functors sending a morphism f to λf and ρf , respectively.
For future notational convenience, define natural transformations α : L→ 1K2 and β : 1K2 →
R by

αf = (1, ρf ) : λf → f and βf = (λf , 1) : f → ρf .

For any functorial weak factorisation system, λf ∈ LF and ρf ∈ RF implies that there
exists s and t such that ρλf · s = 1 and t · λρf = 1. So for any morphism f , λρf = λRf is
always monic and ρλf = ρLf is always epic.

Lemma 4.9. Let (L,F) be a functorial weak factorisation system satisfying (15). Then
λR = Fβ and ρL = Fα.

Proof. We must show that λRf = Fβf and ρLf = Fαf for all f ∈ morK. The diagram

·
λf //

λf
��

·
λRf
��

· z //

ρf

��

·
ρRf

��
·

1
// ·

commutes for z = Fβf and z = λRf . Hence, the morphism (λRfλf , ρf ) : λf → ρRf factorises
as

·
λf
��

λf // ·
1
��

z // ·
ρRf

��
·

1
// · ρf

// ·

(17)

for both choices of z. Because ρE = 1, the map F (λf , 1) must satisfy 1 · F (λf , 1) = 1 · ρLf ,
that is, F (λf , 1) = ρLf . Applying the functor F to the factorisation (17) with each value of
z yields

F (Fβf , ρf ) · ρLf = F (λRf , ρf ) · ρLf ,
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and since ρLf is epic it can be canceled from this equation. Hence, z = F (z, ρf ) is independent
of the choice of the value for z. For either value of z, the diagram

·
1
��

z // ·
λRRf
��

· z //

1
��

·
ρRRf

��
· ρf

// ·

commutes. Hence, λRRfFβf = λRRfλRf , but λRRf is monic, so Fβf = λRf . Dually, ρL =
Fα.

Proof of Theorem 4.8. Let k be a morphism such that (16) commutes. Then the diagram

· u //

f

��

·
g

��

λg

��=======

·

1

@@�������

λf
��=======

λf
��

· v
// ·

=== 1

��===

·
ρg

��
·

ρf

���

@@���

1 ��======= · k //

1
��

· 1

@@�������

1
��

·

·
k
// ·

ρg

@@�������

commutes. The first and last K2-morphisms on the back of the hexagon are αf and βg.
Recall that ρE = 1 implies that F (λf , 1) = ρLf ; dually, λE = 1 implies that F (1, ρg) = λRg.
Apply the functor F to the hexagon to get

λRg · F (k, k) · ρLf = Fβg · F (u, v) · Fαf .

From Lemma 4.9 and FE = 1, this is equivalent to

λRg · k · ρLf = λRg · F (u, v) · ρLf .

Because λRg is monic and ρLf is epic, it follows that F (u, v) = k, as desired.

We conclude this section with a corollary to Theorem 4.8 that will prove useful in the
discussion to follow, but first, we clarify some terminology. By a lift of a morphism in L or
R, we mean the map s or t specified by (12) or (13). By contrast, a lift of a commutative
square (9) means the map w such that both triangles commute.

Corollary 4.10. Given a functorial weak factorisation system (L,R) satisfying (15), let
f, g ∈ R with lifts i and j respectively. Then, given a commutative square (10), the diagram

· u // ·

·
i

OO

F (u,v)
// ·
j

OO
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commutes. Dually, given f, g ∈ L with lifts i and j, the diagram

· F (u,v)// ·

·
i

OO

v
// ·
j

OO

commutes.

Proof. We prove this lemma for the case f, g ∈ R. The other statement follows dually. We
wish to show that j · F (u, v) = u · i. Let

k = λg · j · F (u, v) · λf · i.

We wish to show that k is a morphism such that (16) commutes, so that Theorem 4.8 implies
that k = F (u, v). That is, we must show that k · λf = λg · u and ρg · k = v · ρf . For the first
equation,

k · λf = λg · j · F (u, v) · λf · i · λf
= λg · j · (F (u, v) · λf ) as i · λf = 1

= λg · j · λg · u by commutativity of (11)

= λg · u as j · λg = 1,

as desired. For the second equation,

ρg · k = ρg · λg · j · F (u, v) · λf · i
= ρg · F (u, v) · λf · i as g · j = ρg

= v · f · i by commutativity of (11)

= v · ρf as f · i = ρf ,

as desired.
Hence, F (u, v) = k = λg · j · F (u, v) · λf · i. Composing on the left by j gives

j · F (u, v) = j · F (u, v) · λf · i = j · λg · u · i = u · i.

4.3 Limits

If K has limits of a given type, then K2 will as well. We illustrate this general fact by giving
constructions of products and equalisers in K2, assuming that they exist in K and leave the
proofs that these objects satisfy the required universal mapping properties as an exercise.
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Assume that K has binary products, and consider two objects f : A→ B and g : C → D
of K2. Define the product f × g : A×C → B ×D to be the unique morphism given by the
following diagram:

A

f

��

A× CπAoo

! f×g
���
�
�

πC // C

g

��
B B ×DπBoo πD // D

Given any z : X → Y that maps to both f and g, there exists a unique K2-morphism
z → f × g, whose domain arrow is given by the unique induced K-morphism X → A × C
and whose codomain arrow is the unique K-morphism Y → B ×D.

Now assume that K has equalisers. Given two parallel morphisms (u, v), (u′, v′) : f → g,
form the equalisers eu and ev of the pairs u, u′ and v, v′ respectively. Because f · eu equalises
v and v′, there exists a unique K-morphism e : Eu → Ev such that the left hand side of the
following diagram commutes with either square on the right hand side.

Eu

! e

���
�
�

eu // A
u //

u′
///o/o/o

f

��

C

g

��
Ev

ev // B
v //

v′
///o/o/o D

(Note that the squares formed with exactly one squiggly edge will not commute in general.)

Proposition 4.11. Let (L,R) be a weak factorisation system. Then L is closed under
coproducts and R is closed under products.

Proof. We show that R is closed under products; closure of L under coproducts will follow
dually. Suppose f, g ∈ R and consider a lifting problem

·
l
��

p // ·
f×g
��

· q
// ·

for some l ∈ L. The map (p, q) : l→ f×g induces maps πf ·(p, q) : l→ f and πg·(p, q) : l→ g,
giving two more lifting problems. As f, g ∈ R, these have solutions wf and wg respectively,
and these maps induce a map

w : cod l→ dom f × g = dom f × dom g.

Commutativity of the two triangles follows from the fact that wf and wg are lifts and the
universal mapping property of the K-products dom f × g and cod f × g. Hence f × g ∈
L≤ = R.

Note that the proof of Proposition 4.11 does not even require that the weak factorisation
system be functorial. However, this will not be the case for the next proposition, which
requires the use of Corollary 4.10, and hence depends on the condition (15).
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Proposition 4.12. Let (L,R) be a functorial weak factorisation system satisfying (15).
Then L is closed under coequalisers and R is closed under equalisers.

Proof. We show that R is closed under equalisers; closure of L under coequalisers will follow
dually. Let f, g ∈ R with parallel K2-morphisms (u, v), (u′, v′) : f → g, and let (eu, ev) : e→
f be their equaliser. Given l ∈ L and a lifting problem (x, y) : l → e, extend this diagram
to the lifting problem

·
l
��

x // ·
e

��

eu // ·
f
��

· y
//

z

77ppppppp · ev
// ·

(18)

Let i be a lift of f , j be a lift of g, and k be a lift of l. which has a solution z since f ∈ R.
Then (18) has a solution z = i · F (eu · x, ev · y) · k. We can use this to construct lifts u · z,
u′ · z of

·
l
��

x // ·
e

��

eu // ·
f
��

u // ·
g

��
· y

//

z

77ppppppp · ev
// · v

// ·

and ·
l
��

x // ·
e

��

eu // ·
f
��

u′ // ·
g

��
· y

//

z

77ppppppp · ev
// ·

v′
// ·

respectively.
We wish to show that u · z = u′ · z, because it would follow that z factorises through the

equaliser eu of u and u′. We have

u · z = u · i · F (eu · x, ev · y) · k
= j · F (u, v) · F (eu · x, ev · y) · k by Corollary 4.10

= j · F (u · eu · x, v · ev · y) · k by functoriality of F

= j · F (u′ · eu · x, v′ · ev · y) · k since e is an equaliser

= j · F (u′, v′) · F (eu · x, ev · y) · k by functoriality of F

= u′ · i · F (eu · x, ev · y) · k by Corollary 4.10

= u′ · z.

Hence, z = eu · w.

·
l
��

x // ·
e

��

eu // ·
f

��
· y

//

w
@@�������

z

77ppppppppppppp · ev
// ·

We note that eu · x = z · l = eu ·w · l and eu is monic, so x = w · l. Similarly, ev · y = f · z =
f · eu ·w = ev · e ·w and ev is monic, so y = e ·w. Hence, w is indeed the lift we sought, and
e ∈ L≤ = R.

Proposition 4.11 and Proposition 4.12, together with the well-known result that all limits
can be constructed from products and equalisers, prove the following theorem.

Theorem 4.13. If (L,R) is a weak factorisation system with functorial realisation (F, λ, ρ)
such that (F, λ, ρ)E = 1, then L is closed under all colimits and R is closed under all limits.
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4.4 Generalisation

In fact, in Theorems 4.8 and 4.13, the requirement that (F, λ, ρ)E = 1K can be relaxed
somewhat. Suppose that the functor FE is not identically 1K , but instead there exists a
natural isomorphism γ : FE → 1K . We define a functor F ′ : K2 → K by

F ′(1A) = A,∀A ∈ obK; F ′(f) = F (f), ∀f 6= 1.

Given a K2-morphism (10), define

F ′(u, v) = δg · F (u, v) · δ−1
f

where δ1A = γA,∀A ∈ obK and δf = 1Ff ,∀f 6= 1.

Lemma 4.14. Let (F, λ, ρ) determine a functorial weak factorisation system (L,R) and
suppose γ : FE → 1K is a natural isomorphism. Then there exists a functor F ′ : K2 → K
and natural isomorphism δ : F → F ′ such that F ′E = 1K and (F ′, δ · λ, ρ · δ−1) determines
the functorial weak factorisation system (L,R).

Proof. Define F ′ and δ as above. It is not difficult to check that F ′ is indeed a functor, and
the equation F ′E = 1K is clear from construction. The definition of F ′(u, v) gives that

F (f)

F (u,v)

��

δf // F ′(f)

F ′(u,v)
��

F (g)
δg
// F ′(g)

commutes for any square (10); it follows from the definition of δ that δ : F → F ′ is a natural
isomorphism.

Let λ′ = δ · λ and ρ′ = ρ · δ−1. It remains to show that (F ′, λ′, ρ′) determines the same
weak factorisation system as (F, λ, ρ). By the definition of a functorial realisation of a weak
factorisation system, it suffices to show that λ′ and ρ′ take values in L and R respectively.
But this follows easily. Given a lifting problem

·
λ′f
��

u // ·
g

��
· v

// ·

with g ∈ R, the fact that L ≤ R gives a lift s for the related problem

·
λf
��

u // ·
g

��
·

δf
//

s

77ppppppp · v
// ·

Hence, s · δ−1
f is a solution to the original lifting problem, and λ′f has the left lifting property

with respect to all of R and is thus in L. Similarly, ρ′ takes values in R, completing the
proof.

38



Corollary 4.15. Let (F, λ, ρ) be a functorial realisation of a weak factorisation system (L,R)
such that there exists a natural isomorphism γ : FE → 1K. Suppose further that γA · λ1A =
1A = ρ1A · γ−1

A for all A ∈ obK. Then
(1) F (u, v) is the unique morphism k such that both squares of (16) commute.
(2) L is closed under all colimits and R is closed under all limits.

Proof. It suffices to prove the first statement as the proof of Theorem 4.13 will then apply in
this case. By Lemma 4.14, we may construct a functor F ′ : K2 → K, naturally isomorphic
to F , such that F ′E = 1K. The extra condition on λ and ρ ensures that λ′E = ρ′E = 1K
as well. Hence, given a commutative square (10), Theorem 4.8 implies that F ′(u, v) is the
unique morphism such that

· u //

λ′f
��

·
λ′g
��

· F
′(u,v) //

ρ′f
��

·
ρ′g
��

· v
// ·

commutes. Suppose k is a morphism such that both squares of (16) commute. Then

· u //

δf ·λf=λ′f
��

·
λ′g=δg ·λg
��

·
δg ·k·δ−1

f //

ρf ·δ−1
f =ρ′f

��

·
ρ′g=ρg ·δ

−1
g

��
· v

// ·

commutes, so by Theorem 4.8,

δg · k · δ−1
f = F ′(u, v) = δg · F (u, v) · δ−1

f .

Of course, δf and δg are isos, so it follows that F (u, v) = k as claimed.

4.5 Natural Weak Factorisation Systems

While it is reasonable to expect that a generic weak factorisation system gives a well-behaved
factorisation of identity morphisms, this is not often the case for model categories, where
cofibrations and fibrations are defined with regard to the category’s more complicated struc-
ture. Of course, well-behaved factorisations of identity morphisms into identity morphisms,
which are simultaneously trivial cofibrations and trivial fibrations, always exist, but these
are likely not provided by the functorial factorisation, as is required by Theorem 4.8. In-
deed, this is one of the reasons why functorial factorisations are not required in the standard
definition of a model category; often, “simpler” non-functorial factorisations are preferable.

Nonetheless, some model categories such as ChR and Cat have a rich algebraic structure
that turns the functors α and γ into comonads and β and δ into monads. It turns out that
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this additional structure provides the algebraic data necessary to make the lifts given by
Axiom 3 natural, which in turn implies that the classes C, C ∩W , F , and F ∩W are closed
under all colimits and limits, respectively. In this section, we prove this fact in the general
setting of functorial weak factorisation systems.

Let (L,R) be a weak factorisation system with functorial realisation (F, λ, ρ) and consider
a K2-morphism (10). Recall that the natural transformation λ is equivalently described by
a functor L : K2 → K2 satisfying

domL = dom, codL = F, κL = λ.

Then ρ can be encoded in a natural transformation ε : L → 1K2 given by the following
diagram:

· 1 //

u

��=======

λf

��

·
u

��=======

f

��

·

λg

��

1 // ·

g

��

· ρf
//

F (u,v) ��======= ·
v

��=======

· ρg
// ·

The morphisms εf and εg are, respectively, the back and front faces of this cube. The natural
transformation ρ : F → cod is given by the bottom face.

Similarly, we may describe ρ by a functor R : K2 → K2 satisfying

codR = cod, domR = F, κR = ρ.

Then λ is encoded by a natural transformation η : 1K2 → R given by the following diagram:

·
λf //

u

��=======

f

��

·
F (u,v)

��=======

ρf

��

·

g

��

λg // ·

ρg

��

·
1
//

v
��======= ·

v

��=======

·
1

// ·

The morphisms ηf and ηg are, respectively, the back and front faces of this cube. This time,
the natural transformation λ : dom→ F is given by the top face.

In order to construct natural solutions to lifting problems between elements of L and R,
we need the splittings s and t of Section 4.1 to be given by natural transformations. More
precisely, we require natural transformations σ : F → FL and τ : FR→ F such that

λL = σλ, ρLσ = 1F , ρR = ρτ, and τλR = 1F (19)
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where these equations ensure that σ and τ satisfy

· f //
λf

��=======
λLf

���������
·

·
ρLf

// ·
σfoo_ _ _ _ _ _

ρf
@@�������

λRf
// ·

ρRf
^^=======τfoo_ _ _ _ _ _

and are such that (14) commutes.
Analogously, σ can be encoded by a natural transformation δ : L → L2 given by the

diagram

· 1 //

u

��=======

λf

��

·
u

��=======

λλf

��

·

λg

��

1 // ·

λλg

��

· σf
//

F (u,v)
��======= ·

F (u,F (u,v))
==

��====

· σg
// ·

where we assume also that εLδ = 1L to ensure that ρLσ = 1F . The morphisms δf and
δg are, respectively, the back and front faces of the cube, and the natural transformation
σ : F → FL is given by the bottom face.

Likewise, τ can be encoded by a natural transformation µ : R2 → R given by the diagram

·
τf //

F (F (u,v),v)
===

��==
ρρf

��

·
F (u,v)

��=======

ρf

��

·

ρρg

��

τg // ·

ρg

��

·
1
//

v

��======= ·
v

��=======

·
1

// ·

where again we also assume that µηR = 1R to ensure that τλR = 1F . The morphisms µf
and µg are, respectively, the back and front faces of the cube, and the natural transformation
τ : FR→ F is given by the top face.

At this point, it seems natural to assume that the triples (L, ε, δ) and (R, η, µ) form
a comonad and a monad on K2, respectively. In fact, the particular properties of these
triples that describe their behavior with respect to the weak factorisation system (L,R) are
captured by requiring that (L, ε, δ) and (R, η, µ) are respectively a comonad on the functor
dom and a monad on the functor cod in the 2-category Cat/K.

This leads to the following definition, originally due to Grandis and Tholen [5].
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Definition 4.16. A natural weak factorisation system in a category K is a pair (L,R) such
that

(1) L = (L, ε, δ) is a comonad on dom in Cat/K,
(2) R = (R, η, µ) is a monad on cod in Cat/K,
(3) codL=domR, cod ε = κR, dom η = κL.

Example 4.17. The model categories ChR and Cat described in Sections 3.3 and 3.4 give
rise to natural weak factorisation systems for both types of factorisation. Proving this fact
is a useful exercise for the reader interested in developing a greater familiarity with these
notions.

In a natural weak factorisation system, the natural transformations σ and τ are given by
the algebraic data associated to morphisms in the Eilenberg-Moore categories of L and R.
Recall the following definition.

Definition 4.18. The Eilenberg-Moore category KT of a monad (T, η, µ) on a category K
has objects (A,α), where A ∈ obK and α : TA→ A ∈ morK such that

T 2A
Tα //

µA

��

TA

α

��
TA α

// A

and A
1

!!CCCCCCCC

ηA
��

TA α
// A

commute. Morphisms h : (A,α)→ (B, β) in KT are arrows h : A→ B such that

TA
Th //

α

��

TB

β
��

A
h
// B

commutes.

Define functors U : KT → K by U(A,α) = A and Uh = h and G : K → KT by
GA = (TA, µA) and Gh = Th. One can show that G is left adjoint to U and this adjunction
gives rise to the monad T (see, e.g., [1, pp 229-232]). A dual construction exists for comonads.

Returning to the case at hand, let KL and KR be the Eilenberg-Moore categories for the
comonad L and the monad R respectively. An object of KL is a pair

(f, (i, s) : f → Lf) ∈ obK2 ×morK2.

By definition, εf · (i, s) = 1f , so i must be the identity on dom f . Hence,

obKL = {(f, s) | λf = s · f, ρf · s = 1, σf · s = F (1, s) · s}.

42



A morphism (u, v) : (f, s) → (g, p) in KL is a morphism (u, v) : f → g in K2 such that
p · v = F (u, v) · s; i.e., such that the bottom dotted arrow square of

· u //

λf
��

·
λg
��

· F (u,v) //

ρf

��

·
ρg

��
· v

//

s

OO�
�
�

·
p

OO�
�
�

commutes. Hence, (f, s) ∈ obKL if and only if s is a lift of f in the sense of (12) and if

(1, s) : (f, s)→ (λf , σf )

is a morphism in KL.
Likewise,

obKR = {(f, t) | ρf = f · t, t · λf = 1, t · τf = t · F (t, 1)}

and morphisms (u, v) : (f, t) → (g, q) are morphisms (u, v) : f → g in K2 such that
u · t = q · F (u, v). So, (f, t) ∈ obKR if and only if t is a lift of f in the sense of (13) and if
(t, 1) : ρf → f is a morphism in KR.

Suppose we have a functorial weak factorisation system (L,R) on a category K that can
be described as a natural weak factorisation system (L,R). Then, objects of KL are mor-
phisms of LF that come with a given splitting s, and likewise, objects of KR are morphisms of
RF that come with a given splitting t. With this construction, we have proven the following
theorem.

Theorem 4.19. Let (L,R) be a natural weak factorisation system of K. Then, in the
notation of this section, every morphism f factorises as f = ρf · λf with (λf , σf ) ∈ KL and
(ρf , τf ) ∈ KR. Furthermore, for all (f, s) ∈ KL, (g, t) ∈ KR, and (u, v) : f → g, there is a
naturally chosen diagonal morphism w such that

·
f
��

u // ·
g

��
· v

//

w
@@�

�
�

� ·

commutes; namely, w = t · F (u, v) · s.

In a sense, we have not accomplished much because these lifts existed from the beginning
and naturality only follows because we have taken the lifting data to be a part of the objects
in the categories KL and KR. However, these categories do have nice closure properties
regarding limits and isomorphisms.

Theorem 4.20. If K has colimits of a given type, then KL has them, formed as in K2.
Dually, if K has limits of a given type, then KR has them.

43



Proof. The forgetful functors UL : KL → K2 and UR : KR → K2 create colimits and limits,
respectively. More generally, any category of coalgebras for a comonad on K2 is closed under
colimits, and dually any category of algebras for a monad on K2 is closed under limits.

Proposition 4.21. The categories KL and KR contain the isomorphisms of K, in that every
isomorphism f can be equipped with a unique coalgebra and algebra structure.

Proof. Given an iso f in K, let s = λf · f−1 and t = f−1 · ρf . Then it is easy to check that
(f, s) ∈ obKL and (f, t) ∈ obKR. Conversely, if (f, s) is a coalgebra, then the Eilenberg-
Moore axioms imply that s · f = λf , so s = λf · f−1. A similar argument shows that t is
unique.

Remark 4.22. Note, however, that unlike weak factorisation systems, it is not clear that
KL and KR are closed under retracts. Suppose (f, s) ∈ KL and that we are given a retract
diagram

·
g

��

u // ·
f

��

p // ·
g

��
· v

// · q
// ·

The only logical lift for g is r = F (p, q) · s · v and indeed this satisfies the lifting conditions
of (12). However, there is no reason why (1, r) : (g, r) → (λg, σg) must be a morphism of
KL. Garner explores this problem further, introducing a looser notion of retract equalisers
to describe the instances when (1, r) is KL morphism and hence (g, r) ∈ KL (see [3, 40-41]).

5 Further Study

At the commencement of this project, the author had two primary questions in mind:
(1) Is the full comonad/monad structure of a natural weak factorisation system necessary

for the classes (L,R) of functorial weak factorisation system to be closed under limits?
(2) Given the considerable algebraic structure of certain model categories such as ChR

and Cat, is there some relationship between the two factorisations of a weak equivalence
given by Axiom 4?

Theorem 4.13 provides an answer to (1) though, unfortunately, not one that is applicable
for most model categories. However, (2) remains unanswered, though I remain optimistic
that a thorough examination of the examples provided by the model categories ChR and
Cat will provide some insight into this question.
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