
Some aspects of homological algebra

Alexandre Grothendieck1

November 11, 2011

1The essential content of Chapters 1, 2, and 4, and part of Chapter 3 was developed in the spring
of 1955 during a seminar in homological algebra at the University of Kansas. Received March 1,
1957.





Contents

Introduction iii
0.1 Content of the article. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
0.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
0.3 Omissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Translator’s preface vi

1 Generalities on abelian categories 1
1.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Additive categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Abelian categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Infinite sums and products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Categories of diagrams and permanence properties . . . . . . . . . . . . . . 10
1.7 Examples of categories defined by diagram schemes . . . . . . . . . . . . . . 11
1.8 Inductive and projective limits . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Generators and cogenerators . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.10 Injective and projective objects . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.11 Quotient categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Homological algebra in abelian categories 20
2.1 ∂-functors and ∂∗-functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Universal ∂-functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Derived functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Spectral sequences and spectral functors . . . . . . . . . . . . . . . . . . . . 26
2.5 Resolvent functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Cohomology with coefficients in a sheaf 36
3.1 General remarks on sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Definition of the Hp

Φ(X,F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



ii CONTENTS

3.3 Criteria for Acyclicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Applications to questions of lifting of structure groups . . . . . . . . . . . . 43
3.5 The exact sequence of a closed subspace . . . . . . . . . . . . . . . . . . . . 49
3.6 On the cohomological dimension of certain spaces . . . . . . . . . . . . . . . 50
3.7 The Leray spectral sequence of a continuous function . . . . . . . . . . . . . 54
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Introduction

0.1 Content of the article.

This work originates from an attempt to take advantage of the formal analogy between
the cohomology theory with of a space with coefficients in a sheaf [4, 5] and the theory
of derived functors of a functor on a category of modules [6], in order to find a common
framework to encompass these theories and others.

This framework is sketched in Chapter 1, whose theme is the same as that of [3]. These
two expositions do not overlap, however, except in 1.4. I have particularly wished to pro-
vide usable criteria, with the aid of the concepts of infinite sums and products in abelian
categories, for the existence of sufficiently many injective or projective objects in abelian
categories, without which the essential homological techniques cannot be applied. In ad-
dition, for the reader’s convenience, we will give a thorough exposition of the functorial
language (1.1, 1.2, and 1.3). The introduction of additive categories in 1.3 as a preliminary
to abelian categories provides a convenient language (for example to deal with spectral
functors in Chapter 2).

Chapter 2 sketches the essential aspects of homological formalism in abelian categories.
The publication of [6] has allowed me to be very concise, given that the Cartan-Eilenberg
techniques can be translated without change into the new context. Sections 2.1 and 2.2
however, were written so as not to exclude abelian categories that do not contain sufficiently
many injectives or projectives. Later sections are based on resolutions, employing the usual
techniques. Sections 2.4 and 2.5 contain a variety of additional material and are essential for
understanding what follows them. In particular, Theorem 2.4.1 gives a mechanical method
for obtaining most known spectral sequences (or, in any case, all those encountered in this
work).

In Chapter 3, we redevelop the cohomology theory of a space with coefficients in a
sheaf, including Leray’s classical spectral sequences. The treatment provides additonal
flexibility compared with [4, 15], in particular, given that all the essential results are found
without any restrictive hypotheses on the relevant spaces, either in this chapter or any
later one, so that the theory also applies to the non-separated spaces that occur in abstract
algebraic geometry or in arithmetical geometry [15, 8]. Conversations with Roger Godement
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iv INTRODUCTION

and Henri Cartan were very valuable for perfecting the theory. In particular, Godement’s
introduction of flabby sheaves and soft sheaves, which can useful be substituted for fine
sheaves in many situations, has turned out to be extremely convenient. A more complete
description, to which we will turn for a variety of details, will be given in a book by
Godement in preparation [9].

Chapter 4 deals with the non-classical question of Ext of sheaves of modules; in particu-
lar, it contains a useful spectral sequence that relates global and local Ext. Things get more
complicated in Chapter 5, in which, in addition, a group G operates on the space X, the
sheaf O of rings over X and the sheaf of O-modules under consideration. Specifically, in 5.2,
we find what seems to me to be the definitive form of the Čech cohomology theory of spaces
acted on, possibly with fixed points, by an abstract group. It is stated by introducing new
functors Hn(X;G,A) (already implicit in earlier specific cases); we then find two spectral
functors with remarkable initial terms that converge to it.

0.2 Applications

In this article, for want of space, I have been able to provide only very few applications
of the techniques used (mainly in 3.4 and 3.6), restricting myself to noting only a few in
passing. We indicate the following applications.

(a) The notion of Ext of sheaves of modules allows the most general formulation known of
Serre’s algebraic duality theorem: If A is a coherent algebraic sheaf [15] on a projective
algebraic variety of dimension n without singularities, then the dual of Hp(X,A) is
canonically identified with Extn−pO (X;AΩn), where O (respectively Ωn) is the sheaf
of germs of regular functions (respectively, of regular n-forms) over X.

(b) All the formalism developed in Chapters 3, 4, and 5 can apply to abstract algebraic
geometry. I will show elsewhere how it makes possible the extension of various results
proved by Serre [15, 16, 17] for projective varieties, to complete algebraic varieties.

(c) It seems that the Hn(X;G,A) are the natural intermediaries for a general theory
of reduced Steenrod powers in sheaves, and the cohomology of symmetric powers of
arbitrary spaces, a theory which also applies in algebraic geometry in characteristic
p.

0.3 Omissions

To avoid making this memoir overly long, I have said nothing about questions on multi-
plicative structures, although they are essential for applying the concepts in Chapters 3, 4,
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and 5. Note, moreover, that there does not yet seem to be any satisfactory theory of multi-
plicative structures in homological algebra that have the necessary generality and simplicity
([6, Chapter II] being a striking illustration of this state of affairs).1

′
For multiplication

in sheaf cohomology a satisfactory description can be found in [9]. The reader will notice
numerous other omissions.

I am happy to express my thanks to Roger Godement, Henri Cartan, and Jean-Pierre
Serre, whose interest was the indispensable stimulus for the writing of this memoir.

1′
Pierre Cartier has recently found a satisfactory general formulation for multiplicative structures in

homological algebra which he will announce himself.



Translator’s preface

We found and fixed (mostly silently) innumerable errors in the text and doubtless introduced
many of our own. In a number of cases, we have simplified Grothendieck’s somewhat
tortured sentences that sometimes went on interminably with parenthetical inserts. In a
few cases, we have updated the language (for example, replacing “functor morphism” by
“natural transformation”). In one or two places, we were unable to discern what he meant.

One curiosity is that Grothendieck seems to have had an aversion to the empty set.
Products and sums are defined only for non-empty index sets and even finitely generated
modules are required to have at least one non-zero generator. The zero module is not
considered free (although it is, obviously, finitely generated). Except that his definition of
complete is incomplete, this aversion does not really affect anything herein.

Grothendieck treats a category as a class of objects, equipped with a class of morphisms.
This differs from both the original view expressed in Eilenberg and Mac Lanea and in later
and current views, in which a category consists of both the objects and arrows (or even of
the arrows alone, since the objects are recoverable). This shows up in several ways, not
least that he writes A ∈ C to mean that A is an object of C and, most importantly, he says
“C is a set” to say what we would express as “C has a set of objects”.

One point to be made is that Grothendieck systematically uses “=” where we would
always insist on “∼=”. The structualists who founded Bourbaki wanted to make the point
that isomorphic structures should not be distinguished, but category theorists now recognize
the distinction between isomorphism and equality. For example, all of Galois theory is
dependent on the automorphism group which is an incoherent notion in the structuralist
paradigm. For the most part, we have replaced equality by isomorphism, when it seems
appropriate.

These comments would be incomplete without a word about copyright issues. We do
not have Grothendieck’s permission to publish this. His literary executor, Jean Malgoire
refused to even ask him. What we have heard is that Grothendieck “Does not believe in”
copyright and will have nothing to do with it, even to release it. So be it. We post this at

aTranslator’s note: S. Eilenberg and S. Mac Lane, General theory of natural equivalences. Trans. A. M.
S. 58, 1945, 231–244.

vi



vii

our peril and you download it, if you do, at yours. It seems clear that Grothendieck will not
object, while he is alive, but he has children who might take a different view of the matter.

Despite these comments, the carrying out of this translation has been an interesting,
educational, and enjoyable activity. We welcome comments and corrections and will consider
carefully the former and fix the latter.

Update, March, 2010. Since the above was written in Dec. 2008, there has been a new
development. Grothendieck has asked that all republication of any of his works (in original
or translation) be ended. He has not actually invoked copyright (which, as stated above,
he does not believe in), but asked this as some sort of personal privilege. This makes
no sense and Grothendieck never expressed such a wish before. I personally believe that
Grothendieck’s work, as indeed all mathematics including my own modest contributions,
are the property of the human race and not any one person. I do accept copyright but
only for a very limited time. Originally in the US, copyright was for seven years, renewable
for a second seven. These periods were doubled and then doubled again and the copyright
has now been extended essentially indefinitely, without the necessity of the author’s even
asking for a copyright or extension. This is a perversion of the original purpose of copyright,
which was not to make intellectual achievements a property, but rather to encourage the
publication, eventually into the public domain, of creative efforts.

In any case, you should know that if you copy, or even read, this posting you are violating
Grothendieck’s stated wishes, for what that is worth.

Marcia L. Barr

Michael Barr



Chapter 1

Generalities on abelian categories

1.1 Categories

Recall that a category consists of a non-empty class C of objectsb together with, for
A, B ∈ C, a set Hom(A,B) collectively called morphisms of A into B, and for three objects
A, B, C ∈ C a function (called composition of morphisms) (u, v) 7→ vu of Hom(A,B) ×
Hom(B,C) //Hom(A,C), which satisfy the following two axioms: the composition of mor-
phisms is associative; for A ∈ C, there is an element iA ∈ Hom(A,A) (called the identity
morphism of A) which is a right and left unit for the composition of morphisms. (The
element iA is then unique.) Finally, it will be prudent to suppose that a morphism u de-
termines its source and target. In other words, if A,B and A′, B′ are two distinct pairs of
objects of C, then Hom(A,B) and Hom(A′, B′) are disjoint sets.

If C is a category, we define the dual category Co as the category with the same objects
as C, and where the set Hom(A,B)o of morphisms of A into B is identical to Hom(B,A),
with the composite of u and v in Co being identified as the composite of v and u in C. Any
concept or statement about an arbitrary category admits a dual concept or statement (the
process of reversing arrows), which will be just as useful in the applications. Making this
more explicit is usually left to the reader.

Suppose we are given a category C and a morphism u : A // B in C. For any C ∈ C,
we define a function v 7→ uv : Hom(C,A) // Hom(C,B) and a function w 7→ wu :
Hom(B,C) // Hom(A,C). We say that u is a monomorphism or that u is injective (re-
spectively, u is an epimorphism or u is surjective) if the first (respectively, the second) of
the two preceding functions is always injective; u is called bijective if u is both injective
and surjective. We call a left inverse (respectively, a right inverse) of u a v ∈ Hom(B,A)

bTranslator’s note: Modern usage would move the C to before the word “consists”. That is, a category
consists of both the objects and the morphisms. Also we allow the existence of an empty category, having
no objects and no arrows.

1



2 CHAPTER 1. GENERALITIES ON ABELIAN CATEGORIES

such that vu = iA (respectively uv = iB); v is called the inverse of u if it is both a left
inverse and a right inverse of u (in which case it is uniquely determined). u is called an
isomorphism if it has an inverse. If u has a left inverse (respectively, a right inverse) it is
injective (respectively surjective). Thus an isomorphism is bijective (the converse being, in
general, false).

The composite of two monomorphisms (respectively, epimorphisms) is a monomorphism
(respectively, epimorphisms), hence the composite of two bijections is a bijection; similarly
the composite of two isomorphisms is an isomorphism. If the composite vu of two morphisms
u, v is a monomorphism (respectively, an epimorphism), then u (respectively, v) is as well.
Although the development of such trivialitiesc is clearly necessary, we will subsequently
refrain from setting them forth explicitly, feeling it sufficient to indicate the definitions
carefully.

Consider two monomorphisms u : B // A and u′ : B′ // A. We say that u′ majorizes
or contains u and we write u ≤ u′ if we can factor u as u′v where v is a morphism from B to
B′ (which is then uniquely determined). That is a preorder in the class of monomorphisms
with target A. We will say that two such monomorphisms u, u′ are equivalent if each one
contains the other. Then the correponding morphisms B // B′ and B′ // B are inverse
isomorphisms. Choose (for example, using Hilbert’s all-purpose symbol τ) a monomorphism
in each class of equivalent monomorphisms: the selected monomorphisms will be called
subobjectsd of A. Thus a subobject of A is not simply an object of C, but an object B,
together with a monomorphism u : B // A called the canonical injection of B into A.
(Nonetheless, by abuse of language, we will often designate a subobject of A by the name B
of the corresponding object of C.) The containment relation defines an order relation (not
merely a preorder relation) on the class of subobjects of A. It follows from the above that
the subobjects of A that are contained in a subobject B are identified with the subobjects
of B, this correspondence respecting the natural ordere. (This does not mean, however,
that a subobject of B is equal to a subobject of A, which would require A = B.)

Dually, consideration of a preorder on the class of epimorphisms of A makes it possible
to define the ordered class of quotient objects of A.

Let A ∈ C and let (ui)i∈I be a non-empty family of morphisms ui : A //Ai. Then for any

cTranslator’s note: Grothendieck used the word “sorites” here, apparently in the sense of a connected
string of inferences

dTranslator’s note: Grothendieck used the word “sous-truc”, but modern usage has hardened on “sub-
object”

eTranslator’s note: When we read this, we first thought that Grothendieck was making a claim, which
would have been false, that in any category, it would be possible to choose a subobject in each equivalance
class of monomorphisms in such a consistent way that a subobject of a subobject was a subobject. But,
having seen how Grothendieck uses “identified with” later on, I now think he is making no such claim.
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B ∈ C, the functions v 7→ uiv : Hom(B,A) //Hom(B,Ai) define a natural transformation

Hom(B,A) //
∏
i∈I

Hom(B,Ai)

We say that the ui define a representation of A as a direct product of the Ai if for any B,
the preceding displayed function is bijective. If this holds and if A′ is another object of C
represented as a product of the A′i by morphisms u′i : A′ // A′i (the set of indices being
the same), then for any family (vi) of morphisms vi : Ai //A′i, there is a unique morphism
v : A // A′ such that u′iv = viui for all i ∈ I. From this we conclude that if the vi are
equivalences, this holds for v: in particular, if the vi are identity IAi we see that two objects
A, A′ represented as products of the family Ai are canonically isomorphic. It is therefore
natural to select among all the (A, (ui)), as above, a particular system, for example using
Hilbert’s τ symbol that will be called the product of the family of objects (Ai)i∈I . It is
therefore not a simple object A of C, but such an object equipped with a family (ui) of
morphisms to Ai, called the canonical projections from the product to its factors Ai. We
indicate the product of the Ai (if it exists) by

∏
i∈I Ai. If I is reduced to a single element i,

then the product can be identified with Ai itself. We say that C is a category with products
if the product of two objects of C always exists (then it holds for the product of any non-
empty finite family of objects of C).f We say that C is a category with infinite products if
the product of any non-empty family of objects of C always exists. We have seen that if
there are two products, A =

∏
i∈I Ai and B =

∏
i∈I Bi corresponding to the same set I of

indices, then a family (vi) of morphisms Ai to Bi canonically defines a morphism v from
A to B, called product of the morphisms vi and sometimes denoted

∏
i∈I vi. If the vi are

monomorphisms, so is their product. But the analogous statement for epimorphisms fails
in general (as we see, for example, in the category of sheaves over a fixed topological space).

Dual considerations of the preceding can be used to define the notions of a representation
of an object as a sum of a family of objects Ai by means of morphisms ui : Ai // A (for
any B ∈ C, the natural transformation

Hom(A,B) //
∏
i∈I

Hom(Ai, B)

is bijective), of a direct sum
⊕

i∈I Ai, equipped with canonical injections Ai //
⊕

i∈I Ai
(which, however, are not necessarily monomorphisms, despite their name), and also equipped
with with a sum morphism

⊕
i∈I ui of a family of morphisms ui : Ai // Bi. If the ui are

epimorphisms, their sum is as well.

fTranslator’s note: Nowadays, we would not say that a category has products unless it has products over
all index sets I, including the empty set, so the definition does not even define finite products.
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1.2 Functors

Let C and C′ be categories. Recall that a covariant functor from C to C′ consists of
a “function” F which associates an object F (A) ∈ C′ to each A ∈ C and a morphisms
F (u) : F (A) // F (B) in C′ to each morphism u : A // B in C, such that we have
F (IA) = IF (A) and F (vu) = F (v)F (u). There is an analogous definition of contravariant
functor from C to C′ (which are also covariant functors from Co to C′ or from C to
C′o). We similarly define functors of several variables (or multifunctors), covariant in some
variables and contravariant in others. In order to simplify, we will generally limit ourselves
to functors of one variable. Functors are composed in the same way as functions are, this
composition is associative and “identify functors” play the role of units.

Let C and C′ be fixed categories, F and G covariant functors from C to C′. A functorial
morphism f from F to G (also called a “natural transformation” from F to G by some
authorsg) is a “function” that associates a morphism f(A) : F (A) //G(A) to any A ∈ C,
such that for any morphism u : A //B in C the following diagram

G(A) G(B)
G(u)

//

F (A)

G(A)

f(A)

��

F (A) F (B)
F (u) // F (B)

G(B)

f(B)

��

commutes. Natural transformations F //G and G //H are composed in the usual way.
Such composition is associative, and the “identity transformation” of the functor F is a
unit for composition of natural transformations. (Therefore, if C is a seth the functors from
C to C′ again form a category.) Note that the composite GF of two functors F : C //C′

and G : C′ // C′′ is, in effect, a bifunctor with respect to the arguments G and F : a
natural transformation G // G′ (respectively, F // F ′) defines a natural transformation
GF //G′F (respectively, GF //GF ′).

An equivalence of a category C with a category C′ is a system (F,G, φ, ψ) consisting of
covariant functors:

F : C //C′ G : C′ //C

gTranslator’s note: It is now called a “natural transformation” by all authors and this phrase will be
used subsequently

hTranslator’s note: He means that C should be small, not that it be discrete.
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and of natural equivalencesi

φ : 1C //GF ψ : 1C′ // FG

(where 1C and 1C′ are the identity functors of C and C′, respectively) such that for any
A ∈ C and A′ ∈ C′, the composites

F (A)
F (φ(A)) // FGF (A)

ψ−1(F (A)) // F (A)

G(A′)
G(ψ(A′)) //GFG(A′)

φ−1(G(A′)) //G(A′)

are the identities of F (A) and G(A′), respectively. Then for any pair A, B of objects of
C, the functions f 7→ F (f) from Hom(A,B) to Hom(F (A), F (B)) is a bijection whose
inverse is the function g 7→ G(g) from Hom(F (A), F (B)) to Hom(GF (A), GF (B)), which
is identified with Hom(A,B) thanks to the isomorphisms φ(A) : A // GF (A) and φ(B) :
B //GF (B). Equivalences between categories compose like functors. Two categories are
called equivalent if there is an equivalence between them. Current usage will not distinguish
between equivalent categories. It is important, however, to observe the difference between
this notion and the stricter notion of isomorphism (which applies if we wish to compare
categories that are sets). Let C be a non-empty set. For any pair of objects A, B ∈ C,
suppose that Hom(A,B) consists of one element. Then under the unique composition
laws Hom(A,B) × Hom(B,C) // Hom(A,C), C becomes a category, and two categories
constructed by this procedure are always equivalent, but they are isomorphic only if they
have the same cardinality. None of the equivalences of categories that we encounter in
practice is an isomorphism.

1.3 Additive categories

An additive category is a category C for which is given, for any pair A, B of objects of C
an abelian group law in Hom(A,B) such that the composition of morphisms is a bilinear
operation. We suppose also that the sum and the product of any two objects A, B of C
exist. It is sufficient, moreover, to assume the existence of the sum or the product of A
and B exists; the existence of the other can be easily deduced and, in addition, A ⊕ B is
canonically isomorphic to A×B. (Supposing, for example, that A×B exists, we consider
the morphisms A // A × B and B // A × B whose components are (iA, 0), respectively,
(0, iB), we check that we obtain thereby a representation of A × B as a direct sum of A

iTranslator’s note: That is, natural transformations that are isomorphisms at each object. Many thanks
to George Janelidze for pointing out that Grothendieck’s original definition, which assumed only that φ and
ψ are natural transformations (“homomorphismes de foncteurs”), is insufficient. In fact, he observed that,
according to this definition, any two pointed categories would be equivalent.
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and B.) Finally, we assume the existence of an object A such that iA = 0; we call it a zero
object of C. It comes to the same thing to say that Hom(A,A) is reduced to 0, or that for
any B ∈ C, Hom(A,B) (or Hom(B,A)) is reduced to 0. If A and A′ are zero objects, there
exists an unique isomorphism of A to A′ (that is, the unique zero element of Hom(A,A′)!).
We will identify all zero objects of C to a single one, denoted 0 by abuse of notation.

The dual category of an additive category is still additive.
Let C be an additive category and u : A // B a morphism in C. For u to be injective

(respectively, surjective) it is necessary and sufficient that there not exist a non-zero mor-
phism whose left, respectively, right, composite with u is 0. We call a generalized kernel of
u any monomorphism i : A′ // A such that morphisms from C // A which are right zero

divisors of u are exactly the ones that factor through C //A′
i //A. Such a monomorphism

is defined up to equivalence (cf. Section 1), so among the generalized kernels of u, if any,
there is exactly one that is a subobject of A. We call it the kernel of u and denote it by
Keru. Dually we define the cokernel of u (which is a quotient object of B, if it exists),
denoted Cokeru. We call image (respectively, coimage) of the morphism u the kernel of its
cokernel (respectively, the cokernel of its kernel) if it exists. It is thus a subobject of B (a
quotient object of A).1

′′
We denote them as Imu and Coimu. If u has an image and a

coimage, there exists a unique morphism u : Coimu // Imu such that u is the composite

A // Coimu
u // Imu //B, the extreme morphisms being the canonical ones.

A functor F from one additive category C to another additive category C′ is called an
additive functor if for morphisms u, v : A //B in C, we have that F (u+v) = F (u)+F (v).
The definition for multifunctors is analogous. The composite of additive functors is additive.
If F is an additive functor, F transforms a finite direct sum of objects Ai into the direct
sum of F (Ai).

1.4 Abelian categories

We call an abelian category an additive category C that satisfies the following two additional
conditions (which are self-dual):

AB 1). Any morphism admits a kernel and a cokernel (cf. 1.3).

AB 2). Let u be a morphism in C. Then the canonical morphism u : Coimu // Imu (cf.
1.3) is an isomorphism.

In particular, it follows that a bijection is an isomorphism. Note that there are numerous
additive categories that satisfy AB 1) and for which the morphism u : Coimu // Imu

1′′
A more natural definition of the image of u would be to take the smallest subobject B′ of B (if one

exists), such that u comes from a morphism of A to B′. This definition is equivalent to the one given in the
text only in the case where C is an abelian category (cf. 1.4).
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is bijective without being an isomorphism. This is true, for example, for the additive
category of separated topological modules over some topological ring, taking as morphisms
the continuous homomorphisms as well as for the category of filtered abelian groups. A less
obvious example: the additive category of holomorphic fibered spaces with vector fibers
over a holomorphic variety of complex dimension 1. These are some non-abelian additive
categories.

If C is an abelian category, then the entire usual formalism of diagrams of homomor-
phisms between abelian groups can be carried over if we replace homomorphisms by mor-
phisms in C, insofar as we are looking at properties of finite type, i.e. not involving infinite
direct sums or products (for which special precautions must be taken—see 5). We content
ourselves here with indicating a few particularly important facts, referring the reader to [3]
for additional details.

In what follows we restrict ourselves to a fixed abelian category C. Let A ∈ C. To any
subobject of A there corresponds the cokernel of its inclusion (which is thereby a quotient
of A), and to each quotient object of A there corresponds the kernel of its projection (which
is thereby a subobject of A). We thus obtain one-one correspondence between the class
of subjects of A and the class of quotient objects of A. This correspondence is an anti-
isomorphism between natural order relations. Moreover, the subobjects of A form a lattice
(therefore so do the quotient objects): if P and Q are subobjects of A, their sup is the
image of the direct sum P ⊕ Q under the morphism whose components are the canonical
injections of P and Q into A, and their inf is the kernel of the morphism of A to the product
(A/P ) × (A/Q), whose components are the canonical surjections to A/P and A/Q. (In
accordance with usage, we indicate by A/P the quotient of A corresponding to the cokernel
of the inclusion of P into A; it seems natural to use a dual notation such as A\R for the
subobject of A that corresponds to the quotient object R. There are dual interpretations
for the inf and sup of a pair of quotients objects of A.)

Let u : A // B be a morphism. If A′ is a subobject of A, we define the image of A′

under u, denoted u(A′), as Imui, where i is the canonical injection A′ // A. Dually, we
define the inverse image u−1(B′) of a quotient B′ of B; it is a quotient of A. If B′ is now a
subobject of B, we define the inverse image of B′ under u, denoted u−1(B′), as the kernel
of ju, where j is the canonical surjection B // B/B′. We define dually, the direct image
u(A′) of a quotient A′ of A; it is a quotient of B. We show all the usual formal properties
for these notions.

Recall that a pair A
u // B

v // C of two consecutive morphisms is said to be exact if
Ker v = Imu; more generally, we can define the notion of an exact sequence of morphisms.
For a sequence 0 //A //B //C to be exact it is necessary and sufficient that for X ∈ C,
the following sequence of homomorphisms of abelian groups be exact:

0 //Hom(X,A) //Hom(X,B) //Hom(X,C)
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There is a dual criterion for A // B // C // 0 to be exact. Finally, a necessary and

sufficient condition that the sequence 0 // A′
u // A

v // A′′ // 0 be exact is that u is a
monomorphism and that v is a generalized cokernel of u.

Let F be a covariant functor of one abelian category C to another C′. Following the
terminology introduced in [6], we say that F is a half exact functor (respectively, left exact,
respectively, right exact) if for any exact sequence 0 // A′ // A // A′′ // 0 in C, the
corresponding sequence of morphisms 0 //F (A′) //F (A) //F (A′′) //0 is exact at F (A)
(respectively, exact at F (A) and F (A′), respectively, exact at F (A) and F (A′′)). F is called
an exact functor if it is both left exact and right exact, i.e. transforms an exact sequence
of the preceding type into an exact sequence; then F transforms any exact sequence into
an exact sequence. If F is left exact, F transforms an exact sequence 0 // A // B // C
into an exact sequence 0 // F (A) // F (B) // F (C). There is a dual statement for right
exact functors. If F is a contravariant functor, we say that F is half exact (respectively,
F is left exact, etc.) if F has the corresponding property, as a covariant functor Co to
C′. The composite of left exact, respectively, right exact, covariant functors is of the same
type. We refer back to [6] for further trivialities and for the study of exactness properties of
multifunctors. As a significant example, we note that Hom(A,B) is an additive bifunctor
on Co ×C, with values in the abelian category of abelian groups, contravariant in A and
covariant in B, and left exact with the respect to each argument (that is, in the terminology
of [6], a left exact bifunctor).

1.5 Infinite sums and products

In some constructions we will require the existence and certain properties of both infinite
direct sums and infinite direct products. Here, in order of increasing strength, are the most
commonly used axioms

AB 3). for any family, (Ai)i∈I of objects of C, the direct sum of the Ai exists (cf. 1).

This axiom implies that for any family of subobjects (Ai) of an A ∈ C the sup of the
Ai exists. It suffices to take the image of the direct sum

⊕
Ai under the morphism whose

components are the canonical injections Ai //A. We have seen that the direct sum of any
family of surjective morphisms is surjective, (no. 1); in fact, we even see that the functor
(Ai)i∈I 7→

⊕
i∈I Ai, defined over the “product category”, CI with values in C, is right exact.

It is even exact if I is finite, but not necessarily if I is infinite, for the direct sum of an
infinite family of monomorphisms is not necessarily a monomorphism, as we have noted in
1.1 for the dual situation. Consequently we introduce the following axiom

AB 4). Axiom AB 3) is satisfied and a direct sum of a family of monomorphisms is a
monomorphism.
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The following axiom is strictly stronger than AB 4).

AB 5). Axiom AB 3) is satisfied, and if (Ai)i∈I is an increasing directed family of subobjects
of A ∈ C, and B is any subobject of A, we have

(∑
i∈I Ai

)
∩B =

∑
i∈I(Ai ∩B).

(In accordance with normal usage we have denoted by
∑
Ai the sup of the Ai, and by

P ∩Q the inf of the subobjects P and Q of A.) AB 5) can also be expressed thus: AB 3) is
satisfied, and if A ∈ C is the sup of an increasing directed family of subobjects Ai, and if for
any i ∈ I we are given a morphism ui : Ai //B such that when Ai ⊆ Aj, ui = uj |Ai, then
there is a morphism u (obviously unique) from A // B such that ui = u|Ai. We mention
the following axiom that strengthens AB 5), which we will not require in this memoir:

AB 6). Axiom AB 3) holds and for any A ∈ C and any family (Bj)j∈J of increasing directed

families of Bi = (Bj
i )i∈Ij of subobjects Bj of A, we have:

⋂
j∈J

∑
i∈Ij

Bi
j

 =
∑

(ij)∈
∏
Ij

⋂
j∈J

Bi
ij


(This axiom implicitly assumes the existence of the inf of any family of subobjects of
A.)

We leave it to the reader to state the dual axioms AB 3∗), AB 4∗), AB 5∗), AB 6∗),
pertaining to infinite products, By way of example, let us point out that the category of
abelian groups (or more generally the category of modules over a unital ring), satisfies, with
respect to direct sums, the strongest axiom AB 6); it also satisfies axioms AB 3∗) and AB 4∗),
but not AB 5∗). The situation is reversed for the dual category, which by the Pontrjagin
duality is equivalent to the category of compact topological abelian groups. (This shows
that AB 5∗) is not a consequence of AB 4∗) and hence neither is AB 5) a consequence of
AB 4). The abelian category of sheaves of abelian groups over a given topological space X
satisfies axioms AB 5) and AB 3∗), but not AB 4∗), for we have already noted that a product
of surjective morphisms need not be surjective. We finish by noting that if C satisfies both
AB 5) and AB 5∗), then C is reduced to the zero object (for we then easily see that for
A ∈ C, the canonical morphism A(I) //AI is an isomorphism and we may verify that that
is possible only when A is zero.j)

The preceding axioms will be particularly useful for the study of inductive and pro-
jective limits that we will need to provide usable existence conditions for “injective” and
“projective” objects (see (10)). To avoid repetition we will first study a very general and
widely used procedure for forming new categories using diagrams.

jTranslator’s note: It is clear from the claim that by A(I) he means the direct sum of an I-fold of copies
of A.
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1.6 Categories of diagrams and permanence properties

A diagram scheme is a triple S = (I,Φ, d) made up of two sets I and Φ and a function d
from Φ to I×I. The elements of I are vertices, the elements of Φ are arrows of the diagram
and if φ is an arrow of the diagram, d(φ) is called its direction, characterized as the source
and target of the arrow (these are therefore vertices of the scheme). A composite arrow
with source i and target j is, by definition, a non-empty finite sequence of arrows of the
diagram, the source of the first being i, the target of each being the source of the next and
the target of the last one being j. If C is a category, we call diagram in C from the scheme
S a function D which associates to each i ∈ I an object D(i) ∈ C and to any arrow φ ∈ Φ
with source i and target j, a morphism D(φ) : D(i) //D(j). The class of such diagrams
will be denoted CS ; it will be considered a category, taking as morphisms from D to D′ a
family of morphisms vi : D(i) //D′(i) such that for any arrow φ with source i and target
j the following diagram commutes:

D(j) D′(j)
v(j)

//

D(i)

D(j)

D(φ)

��

D(i) D′(i)
vi // D′(i)

D′(j)

D′(φ)

��

Morphisms of diagrams compose in the obvious way, and it is trivial to verify the category
axioms. If D is a diagram on the scheme S, then for any composite arrow φ = (φ1, . . . , φk)
in S, we define D(φ) = D(φk) · · ·D(φ1); it is a morphism from D(i) // D(j) if i and j
are, respectively, the source and target of φ. We call D a commutative diagram if we have
D(φ) = D(φ′) whenever φ and φ′ are two composite arrows with the same source and same
target. More generally, if R is a set consisting of pairs (φ, φ′) of composite arrows having
the same source and target, and of composite arrows whose source equals its target, we
consider the subcategory CS,R of CS consisting of diagrams satisfying the commutativity
conditions D(φ) = D(φ′) for (φ, φ′) ∈ R and D(φ) is the identity morphism of D(i) if φ ∈ R
has i as its source and target.

We have to consider still other types of commutation for diagrams, whose nature varies
according to the category in question. What follows seems to cover the most important
cases. For any (i, j) ∈ I × I we take a set Rij of formal linear combinations with integer
coefficients of composite arrow with source i and target j, and, if i = j, of an auxiliary
element ei. Then if D is a diagram with values in an additive category C, then, for any
L ∈ Rij , we can define the morphism D(L) : D(i) //D(j), by replacing, in the expression
of L, a composite arrow φ by D(φ) and ei by the identity element of D(i). If we denote by
R the union of the Rij , we will say that D is R-commutative if all the D(L), L ∈ R, are 0.
We call a diagram scheme with commutativity conditions a pair (S,R) = Σ consisting of a
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diagram scheme S and a set R as above. For any additive category C, we can then consider
the subcategory CΣ of CS consisting of the R-commutative diagrams.

1.6.1 Proposition. Let Σ be a diagram scheme with commutativity conditions and C an
additive category. Then the category CΣ is an additive category and if C has infinite direct
(respectively, infinite direct sums), so does CΣ. Moreover, if C satisfies any one of the
axioms AB 1)–AB 6) or the dual axioms AB 3∗)–AB 6∗), so does CΣ.

Moreover, if D,D′ ∈ CΣ, and if u is a morphism from D to D′, then its kernel (respec-
tively, cokernel, image, coimage) is the diagram formed by the kernels (respectively, . . . )
of the components ui, the morphisms in this diagram (corresponding to the arrows of the
scheme) being obtained from those of D (respectively, those of D′, . . . ) in the usual way by
restriction (respectively, passage to the quotient). We interpret analogously the direct sum
or the direct product of a family of diagrams. Subobjects D′ of the diagram D are identified
as families (D′(i)) of subobjects of D(i) such that for any arrow φ with source i and target
j we have D(φ) : D′(i) �

� // D′(j); then D′(φ) is defined as the morphism D′(i) // D′(j)
defined by D(φ). The quotient objects of D are defined dually.

If S is a diagram scheme, we call the dual scheme and denote it by So, the scheme with
the same vertices and the same sets of arrows as S, but with the source and target of the
arrows of S interchanged. If, moreover, we give a set R of commutativity conditions for S,
we will keep the same set for So. Using this convention, for an additive category C, the
dual category of CΣ can be identified as (Co)Σo .

Let C and C′ be two additive categories and Σ be a diagram scheme with commutativity
conditions. For any functor F from C to C′, we define in the obvious way the functor FΣ

from CΣ to C ′Σ, called the canonical extension of F to the diagram. FΣ behaves formally
like a Functor with respect to the argument F , in particular, a natural transformation
F //F ′ induces a natural transformation FΣ //F ′Σ. Finally we note that for a composite
functor, we have (GF )Σ = GΣFΣ, and the exactness properties of a functor are preserved
by extension to a class of diagrams.

1.7 Examples of categories defined by diagram schemes

(a) Take I reduced to a single element and the empty set of arrows. Then the commuta-
tivity relations are of the form nie = 0, and thus can be reduced to a unique relation
ne = 0. Then CΣ is the subcategory of C consisting of objects annihilated by the
integer n. If n = 0, we recover C.

(b) Take any I, no arrows, no commutativity relations. Then CΣ can be identified with
the product category CI . If we suppose we are given commutativity relations, then
we get the kind of product category described in 1.5.
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(c) Take I reduced to two elements a and b, with a single arrow with source a and target b;
we find the category of morphisms u : A //B between objects of C. The introduction
of commutativity relations would leave those (a, b, u) that are annihilated by a given
integer.

(d) Categories of functors. Let C′ be another category, and suppose that it is small.
Then the covariant functors from C′ to C form a category, taking as morphisms the
natural transformations (cf. 1.1). This category can be interpreted as a category CΣ,
where we take I = C′, the arrows with source A′ and target B′, being by definition the
elements of Hom(A′, B′) and the commutativity relations being those that express the
two functorial axioms. If C′ is also an additive category, the additive functors from C′

to C can also be interpreted as a category CΣ (we add the necessary commutativity
relations).

(e) Complexes with values in C. I = Z (the set of integers), the set of arrows being
(dn)n∈Z where dn has source n and target n + 1, the commutativity relations being
dn+1dn = 0. We can also add relations of the form en = 0 if we want to limit
ourselves to complexes of positive degrees or to those of negative degrees. We obtain
bicomplexes, etc. analogously.

(f) The category CG, where G is a group. Let G be a group and C a category (not
necessarily additive). We call an object with a group G of operators in C, a pair
(A, r) consisting of an object A ∈ C and a representation r of G into the group of
automorphisms of A. If (A′, r′) is a second such pair, we call a morphism from the
first to the second a morphism A to A′ which commutes with the operations of G.
The class CG of objects in C with group G of operators thus becomes a category. We
can interpret it as a class CΣ in which we take for Σ = Σ(G) the following scheme
with relations: the set of vertices is reduced to one element iG, the set of arrows is
G, the commutativity relations are (s)(t) = (st) (where the left hand side denotes a
composed arrow), and (e) = ei0 (where e denotes the unit element of G). In particular,
if C is additive, the same is true of CG; in that case our construction is contained in
the one that follows (by considering the algebraic relations in the group G).

(g) The category CU where U is a unital ring. we consider the additive category consisting
of pairs (A, r) of an object A of C and a unitary representation of U into the ring
Hom(A,A), the morphisms in this category being defined in the obvious way. It is
interpreted as above as a category CΣ(U), where Σ(U) is the scheme with relations
having a single vertex, with U as a set of arrows, and with commutativity relations
that we omit.

(h) Inductive systems and projective systems. We take as a set of vertices a preordered
set I, with arrows being pairs (i, j) of vertices with i ≤ j, the source and target of
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(i, j) being i and j, respectively. The commutativity relations are (i, j)(j, k) = (i, k)
and (i, i) = ei. The corresponding diagrams (for a give category C, not necessarily
additive) are known as inductive systems over I with values in C. If we change I to
the opposite preordered set, or change C to Co we get projective systems over I with
values in C. An important case is the one in which I is the lattice of open sets of a
topological space X, ordered by containment: we then obtain the notions of presheaf
over X with values in C.

1.8 Inductive and projective limits

We will discuss only inductive limits, since the notion of projective limit is dual. Let C be a
category, I be a preordered set and A = (Ai, ui,j), be an inductive system over I with values
in C (uij is a morphism Aj // Ai, defined for i ≥ j). We call a (generalized) inductive
limit of A a system consisting of A ∈ C and a family (ui) of morphisms ui : Ai // A,
satisfying the following conditions: (a) for i ≤ j, we have ui = ujuji; (b) for every B ∈ C
and every family (vi) of morphisms vi : Ai //B, such that for any pair i ≤ j, the relation
vi = vjuji holds, we can find a unique morphism v : A //B such that vi = vui for all i ∈ I.
If (A, (ui)) is an inductive limit of A = (Ai, uij), and if (B, (vi)) is an inductive limit of a
second inductive system, B = (Bi, vij) and finally if w = (wi) is a morphism from A to
B, then there exists a unique morphism w : A // B such that for all i ∈ I, wui = viwi.
In particular, two inductive limits of the same inductive system are canonically isomorphic
(in an obvious way), so it is natural to choose, for every inductive system that admits an
inductive limit, a fixed inductive limit (for example, using Hilbert’s τ symbol) which we will
denote by lim // A or lim

i∈I
// Ai and which we will call the inductive limit of the given inductive

system. If I and C are such that lim // A exists for every system A over I with values in C,

it follows from the preceding that lim // A is a covariant functor defined over the category

of inductive systems on I with values in C.

1.8.1 Proposition. Let C be an abelian category satisfying Axiom AB 3) (existence of
arbitrary direct sums) and let I be an increasing filtered preordered set. Then for every
inductive system A over I with values in C, the lim // A exists, and it is a right exact

additive functor on A. If C satisfies Axiom AB 5) (cf. 1.5), this functor is even exact, and
then the kernel of the canonical morphism ui : Ai // lim // A is the sup of the kernels of the

morphisms uji : Ai //Aj for j ≥ i (in particular, if the uji are injective, so are the ui).

To construct an inductive limit of A = (Ai, uij) we considerk S =
⊕

i∈I Ai and for

kTranslator’s note: Grothendieck’s argument becomes more or less incoherent at this point and we have
substituted a modern argument here. Note that this is valid for any not necessarily abelian category that
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every pair i ≤ j, T =
⊕

i≤j Ai. If vi : Ai // S and wij : Ai // T are the inclusions into
those coproducts, there are two maps d, e : T // S defined as the unique maps for which
dwij = vi and ewi = vjuijs, for all i ≤ j. Then lim // A is the inductive limit of the two

vertex diagram whose arrows are d and e (called coequalizer of d and e and equivalent, in
the case of an pre-additive category, to the cokernel of d−e). We leave the rest of the proof
this proposition to the reader.

1.9 Generators and cogenerators

Let C be a category, and let (Ui)i∈I be a family of objects of C. We say that it is a family
of generators of C if for any object A ∈ C and any subobject B 6= A, we can find an i ∈ I
and a morphism u : Ui // A which does not come from a morphism Ui // B. Then for
any A ∈ C, the subobjects of A form a set : in effect, a subobject B of A is completely
determined by the set of morphisms of objects Ui //A that factor through B. We say that
an object U ∈ C is a generator of C if the family {U} is a family of generators.

1.9.1 Proposition. Suppose that C is an abelian category satisfying Axiom AB 3) (ex-
istence of infinite direct sums). Let (Ui)i∈I be a family of objects of C and U =

⊕
Ui its

direct sum. The following conditions are equivalent:

(a) (Ui)i∈I is a family of generators of C.

(b) U is a generator of C.

(c) Any A ∈ C is isomorphic to a quotient of a direct sum U (I) of objects that are all
identical to U .

The equivalence of (a) and (b) is an almost immediate consequence of the definition. (b)
implies (c), for it is sufficient to take for I the set Hom(U,A) and to consider the morphism
from U (I) to A whose component corresponding to u ∈ I is u itself: the image B of this
morphism is A since otherwise there would exist a u ∈ Hom(U,A) = I that does not factor
through B, which would be absurd. Thus A is isomorphic to a quotient of U (I). (c) implies
(b), for it is immediate that if A is a quotient of U (I), then for any subobject B of A,
distinct from A there exists i ∈ I such that the canonical image in A of the ith factor of
U (I) is not contained in B, whence a morphism from U to A that does not factor through
B (it can be noted that the additive structure of C has not been used here).

1.9.2 Examples. If C is the abelian category of unital left modules on a unital ring U ,
then U (considered as a left module over itself) is a generator. If C is the category of
sheaves of abelian groups over a fixed topological space X, and if for any open U ⊆ X, we

has the sums and coequalizers.
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denote by ZU the sheaf on X which is 0 over CU and the constant sheaf of integers over
U , the family of ZU forms a system of generators of C. This example can be immediately
generalized to the case in which there is a sheaf O of rings given over X, and in which we
consider the category of sheaves of O-modules over X. There are other examples in the
following proposition:

1.9.3 Proposition. Let Σ be a diagram scheme with commutativity relations (cf. Section
1.6), and let C be an abelian category and (Ui)i∈I a family of generators of C. Assume
that for any arrow of Σ, the source and target of the arrow are distinct, and that the
commutativity relations do not involve any identity morphism es (where s is a vertex of
Σ).2 Then for any A ∈ C and any vertex s of the scheme, the diagram Es(A) whose value
is A at the vertex s and 0 at all other vertices, and whose value at each arrow is 0, belongs
to CΣ. In addition, the family of Es(Ui), (where s and i are variables) is a system of
generators for C.

The proof is immediate; it suffices to note, for the last assertion, that the morphisms of
Es(A) in a diagram D can be identified with the morphisms of A ∈ D(s).

We leave it to the reader to develop the dual notion of family of cogenerators of an
abelian category. We can show that if C is an abelian category that satisfies Axiom AB 5)
(cf. 1.5), then the existence of a generator implies the existence of a cogenerator. (We will
not make use of this result.) Thus the category of unitary left modules over a unital ring
U always admits a cogenerator: if for example, U = Z, we can take as a cogenerator the
group of rational numbers (or the circle T = R/Z).

1.10 Injective and projective objects

Recall that an object M of an abelian category C is said to be injective if the functor
A 7→ Hom(A,M) (which in any case is left exact) is exact, i.e. if for any morphism u :
B //M of a subobject B of an A ∈ C, there is a morphism of A //M that extends it. A
morphism A //M is called an injective effacement of A if it is a monomorphism, and if for
any monomorphism B //C and any morphism B //A, we can find a morphism C //M
making the diagram

A M//

B

A
��

B C// C

M
��

2The category CΣ of inductive systems in C constructed over a set of ordered indices I is relevant in
this case. Indeed it suffices, in example 1.7.h to consider the arrows (i, j) for i < j, and the commutativity
relations (i, j)(j, k) = (i, k), where the es play no role.
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commute. Thus, for the identity arrow of M to be an injective effacement, it is necessary and
sufficient that M be injective. Any monomorphism into an injective object is an injective
effacement.

1.10.1 Theorem. If C satisfies Axiom AB 5) (cf. 1.5) and admits a generator (cf. 1.9),
then any A ∈ C has a monomorphism into an injective object.

We will even construct a functor M : A 7→ M(A) (non-additive in general!) from C
into C and a natural transformation f of the identity functor into M such that for any
A ∈ C, M(A) is injective and f(A) is a monomorphism of A into M(A). Since the proof is
essentially known, we will sketch only the main points.

Lemma 1. If C satisfies Axiom AB 5), then the object M ∈ C is injective if and only if for
any subobject V of the generator U , any morphism V //M can be extended to a morphism
U //M .

It suffices to prove that the condition is sufficient. Thus let u be a morphism from a
subobject B of A ∈ C to M . We show that there is a morphism of A to M that extends u.
We consider the set P of extensions of u to subobjects of A that contain B (it is certainly
a set, because by virtue of the existence of a generator, the subobjects of A form a set).
We order it by the extension relation. By virtue of the second formulation of Axiom AB 5)
(cf. 1.5), this set is inductive. It therefore admits a maximal element; we are thus reduced
to the case that u is itself maximal, and to showing that then B = A. We prove then
that if B 6= A, there is an extension of u to a B′ 6= B. In fact, let j : U // A be a
morphism such that j(U) 6⊆ B; set B′ = j(U) +B (therefore B′ 6= B). Let V = j−1(B) be
the inverse image of B under j, let j′ : V // B be the morphism induced by j, consider

the sequence of morphisms V
φ′ // U × B

φ // B′ // 0, where the morphism φ′ has as
components the inclusion function of V �

� // U and −j′, and φ has as components j and
the inclusion function B �

� //B′. We can see immediately that this sequence is exact, so to
define a morphism v : B′ //M , it suffices to define a morphism w : U ×B //M such that
wφ′ = 0. Now let k be an extension to U of uj′ : V //M . We take for w the morphism
from U × V to M whose components are k and u. We show immediately that wφ′ = 0
and that the morphism v : B′ //M induced by w extends u, which completes the proof of
Lemma 1.

Let A ∈ C and let I(A) be the set of all the morphisms ui from subobjects Vi(U) to
A. Consider the morphism

⊕
Vi //A×U (I(A)) whose restriction to Vi has as components

−ui : Vi // A and the canonical injection of Vi into the ith factor of the direct sum
U (I(A)). Let M1(A) be the cokernel of the desired morphism, f(A) : A //M1(A) be the
morphism induced by the canonical epimorphism of A × U(I(A)) over its quotient. Then
f(A) is a monomorphism (easily proved thanks to the fact that the canonical morphism⊕
Vi //U (I(A)) is a monomorphism by AB 4)) and, in addition, any morphism ui : Vi //A
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“can be extended” to a morphism U //M1(A) (in other words, the morphism induced
on the ith factor of U (I(A)) by the canonical epimorphism of A × U (I(A)) onto its quotient
M1(A)). We define by transfinite induction, for any ordinal number i the object Mi(A),
and for two ordinal numbers i ≤ j, an injective morphism Mi(A) //Mj(A), such that the
Mi(A), for i < i0 (i0 being a fixed ordinal number) form an inductive system. For i = 0,
we will take M0(A) = A; for i = 1, M1(A) and M0(A) //M1(A) are already defined. If
the construction has been carried out for the ordinals less than i, and if i has the form
j+ 1, we set Mi(A) = M1(Mj(A)) and the morphism Mj(A) //Mj+1(A) will be f(Mj(A))
(which defines at the same time the morphisms Mk(A) //Mi(A) for k ≤ i). If i is a limit
ordinal, we will set Mi(A) = limj<iMj(A), and we will take as morphisms Mj(A) //Mi(A),
for j < i, the canonical morphisms, which are certainly injective (Proposition 1.8). Now
let k be the smallest ordinal whose cardinality is larger than that of the set of subobjects
of U (we take M(A) = Mk(A)); everything comes down to proving that Mk is injective,
i.e. satisfies the condition of Lemma 1. With the notation of this lemma, we prove that
v(V ) is contained in one of the Mi with i < k (which will complete the proof). In fact,
from Mk = supMi we get V = supi<k v

−1(Mi) (by virtue of AB 5)). Thus since the set of
subobjects of V has cardinality less than k, and since any set of ordinal numbers less than
k and having k as its limit must itself have cardinality k (since k is not a limit ordinal),
it follows that v−1(Mi) stays constant starting from some i0 < k, whence V = v−1(Mi0),
which completes the proof.

Remark 1. Variant of Theorem 1.10.1: If C satisfies axioms AB 3), AB 4), and AB 3∗) and
admits a cogenerator T , then any A ∈ C admits an injective effacement. We will not have
to use this result.

Remark 2. The fact that M(A) is functorial in A may be convenient, for example, to prove
that any A ∈ CG (i.e. an object A ∈ C with a group G of operators—cf. 1.7, Example f)
which is injective in CG is also injective in C.

Remark 3. In many cases, the existence of a monomorphism of A into an injective object
can be seen directly in a simpler way. Theorem 1 has the advantage of applying to many
different cases. Moreover, the conditions of the theorem are stable under passage to certain
categories of diagrams (cf. Propositions 1.6.1 and 1.9.2), in which the existence of sufficiently
many injective is not always visible to the naked eye.

Remark 4. We leave it to the reader to provide the dual statements relative to the projective
objects and projective effacements.
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1.11 Quotient categories

Although they will not be used in the remainder of this work, the considerations of this
section, which systematize and make more flexible, the “language modulo C” of Serre, [17],
are convenient in various applications.

Let C be a category. We call a subcategory of C a category C′ whose objects are
objects of C, such that for A,B ∈ C′, the set HomC′(A,B) of morphisms from A to B
in C′ is a subset of HomC(A,B) of morphisms from A to B in C, the composition of
morphisms in C′ being induced by the composition of morphisms in C, and the identity
morphisms in C′ being the identity morphisms in C. The last two conditions mean that the
function that assigns to each object or morphism of C′ the same object or morphism of C
is a covariant functor from C′ to C (called the canonical injection from C′ to C). If C,C′

are additive categories, C′ is called an additive subcategory if, in addition to the preceding
conditions, the groups HomC′(A,B) are subgroups of HomC(A,B). Suppose that C is an
abelian category. Then C′ is called a completel. It is actually a full abelian subcategory.
if (i) for A,B ∈ C′, we have HomC′(A,B) = HomC(A,B); (ii) if in an exact sequence
A // B // C //D // E, the four extreme terms belong to C′, so does the middle term
C. In accordance with (i) the subcategory C′ is completely determined by its objects. (ii)
is equivalent to saying the for any morphism P // Q with P,Q ∈ C′, the kernel and the
cokernel belong to C′ and for any exact sequence 0 // R′ // R // R′′ // 0, whenever
R′, R′′ ∈ C′, then R ∈ C′. We see immediately that then C′ is itself an abelian category
and that for a morphism u : A // B in C′, the kernel, cokernel, (and thus the image, and
coimage) are identical to the corresponding constructions in C.

The subcategory C′ of C is called thick if it satisfies Condition (i) above and the following
strengthening of Condition (ii): (iii) If in an exact sequence A //B //C, the outer terms
A and C belong to C′, so does B. If C is the abelian category of abelian groups, we find
the notion of “class of abelian groups” of [17].m We see how in [17], (iii) is equivalent to
the conjunction of the following three conditions: any zero object belongs to C′; any object
that is isomorphic to a subobject or quotient object of C′, belongs to C′; any extension of
an object of C′ by an object of C′ belongs to C′.

Let C be an abelian category and C′ a Serre subcategory. We will define a new abelian
category, denoted C/C′ and called the quotient category of C by C′. The objects of C/C′

are, by definition, the objects of C. We will define the morphisms in C/C′ from A to B,
called “morphisms mod C′ from A to B”. We say that a subobject A′ of A is equal mod
C′ or quasi-equal to A if A/A′ belongs to C′; then any subobject of A containing A′ is
also quasi-equal to A; moreover, the inf of two subobjects of A that are quasi-equal to A
is also quasi-equal to A. Dually, we introduce the notion of quotient of B quasi-equal to
B: such a quotient B/N is quasi-equal to B if N ∈ C′. A morphism mod C′ from A

lTranslator’s note: We would not today call such a subcategory complete
mTranslator’s note: This is now called a Serre subcategory.
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to B is then defined by a morphism f ′ from a subobject A′ of A, quasi-equal to A, to a
quotient B′ of B quasi-equal to B, it being understood that a morphism f ′′ : A′′ // B′′

(satisfying the same conditions) defines the same morphism mod C′ if and only if we can
find A′′′ ≤ (A′ ∧A′′), B′′′ ≤ (B′ ∧B′′), A′′′ quasi-equal to A, B′′′ quasi-equal to B such that
the morphisms A′′′ //B′′′ induced by f ′ and f ′′ are the same. This last relation between f ′

and f ′′ is certainly an equivalence relation and the preceding definition of morphisms mod
C′ is therefore coherent. Suppose that for any A ∈ C, the subobjects of A form a set (which
is true for all known categories). Then we can consider the set of morphisms mod C′ from A
to B, denoted HomC/C′(A,B). HomC/C′(A,B) appears as the inductive limit of the abelian
groups HomC(A′, B′) where A′ ranges over the subobjects of A quasi-equal to A, and B′

ranges over the quotients of B quasi-equal to B and is consequently an abelian group. We
similarly define a pairing HomC/C′(A,B)×HomC/C′(B,C) //HomC/C′(A,C) as follows.
Let u ∈ HomC(A′, B′) represent u′ ∈ HomC/C′(A,B) and v ∈ HomC(B′′, C ′) represent
v′ ∈ HomC/C′(B,C). Let Q be the image of the canonical morphism B′′ // B′ of the
subobject B′′ of B in the quotient B′; Q is also isomorphic to the coimage of this morphism
and is therefore both a subobject of B′ and a quotient object of B′′. By decreasing, if
necessary, the subobject A′ of A and the quotient object C ′ of C, we can assume that
u and v come from morphisms (denoted by the same letters), A′ // Q and Q // C ′.
We can now take the composite vu ∈ HomC(A′, C ′) and we verify that the element of
HomC/C′(A,C) that this defines depends only on u′ and v′. We denote it v′u′. There is
no difficulty in proving that the law of composition thus defined is bilinear and associative,
and the that the class in HomC/C′(A,A) of the identity morphism iA is a universal unit, so
C/C′ is an additive category, and finally that it is even an abelian category. We will not
complete the extremely tedious proof. Thus C/C′ appears as an abelian category; moreover
the identity functor F : C // C/C′ is exact (and, in particular, commutes with kernels,
cokernels, images, and coimages), F (A) = 0 if and only if A ∈ C′, and any object of C/C′

has the form F (A) for some A ∈ C. These are the facts (which essentially characterize
the quotient category) which allow us to safely apply the “mod C′” language, since this
language signifies simply that we are in the quotient abelian category. It is particularly
convenient to use, when we have a spectral sequence (cf. 2.4) in C, the fact that some
terms of the spectral sequence belong to C′: reducing mod C′ (i.e. applying the functor
F ), we find a spectral sequence in C/C′ in which the corresponding terms vanish, whence
we have exact sequences mod C′, with the help of the usual criteria for obtaining exact
sequences from spectral sequences in which certain terms have vanished.



Chapter 2

Homological algebra in abelian
categories

2.1 ∂-functors and ∂∗-functors

Let C be an abelian category, C′ an additive category, and a and b be two integers (which
can be equal to ±∞) such that a + 1 < b. A covariant δ-functor from C to C′ in degrees
a < i < b, is a system T = (T i) of additive covariant functors from C to C′, (a < i < b),
in addition to giving, for any i such that a < i < b − 1 and for any exact sequence
0 //A′ //A //A′′ // 0, a morphism

∂ : T i(A′′) // T i+1(A′)

(the “boundary” or “connecting” homomorphism). The following axioms are assumed to
be satisfied:

(i) If we have a second exact sequence 0 //B′ //B //B′′ // 0 and a homomorphism
from the first exact sequence to the second, the corresponding diagram

T i(B′′) T i+1(B′)
∂

//

T i(A′′)

T i(B′′)
��

T i(A′′) T i+1(A′)
∂ // T i+1(A′)

T i+1(B′)
��

commutes.
(ii) For any exact sequence 0 // A′ // A // A′′ // 0, the associated sequence of

morphisms

(2.1.1) · · · // T i(A′) // T i(A) // T i(A′′) // T i+1(A′) // · · ·

20
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is a complex, i.e. the composite of two consecutive morphisms in this sequence is 0.

There is an analogous definition for a covariant ∂∗-functor, the only difference being
that the ∂∗ operator decreases the degree by one unit instead of increasing it. There
are analogous definitions for contravariant ∂-functors and ∂∗-functors. The T i are then
contravariant additive functors and the boundary operators go from T i(A′) //T i+1(A′′) or
T i(A′) // T i−1(A′′). If we change the sign of the i in T i, or if we replace C′ by its dual,
the ∂-functors become ∂∗-functors. Thus, one can always stick to the study of covariant
∂-functors. Note that if a = −∞, b = +∞, a ∂-functor is a connected sequence of functors
as in [6, Chapter III].

Given two ∂-functors T and T ′ defined in the same degrees, we call a morphism (or
natural transformation) from T // T ′ a system f = (f i) of natural transformations f i :
T i //T ′i subject to the natural condition of commutativity with ∂: for any exact sequence
0 //A′ //A //A′′ // 0, the diagram

T ′i(A′′) T ′i+1(A′)
∂

//

T i(A′′)

T ′i(A′′)
��

T i(A′′) T i+1(A′)
∂ // T i+1(A′)

T ′i+1(A′)
��

commutes. Morphisms of ∂-functors add and compose in the obvious way.

Assume that C′ is also an abelian category. A ∂-functor is exact if for any exact sequence
0 //A′ //A //A′′ // 0 in C, the corresponding sequence (2.1.1) is exact. We say that a
cohomological functor (respectively homological functor) is an exact ∂-functor (respectively
exact ∂∗-functor) defined for all degrees.

2.2 Universal ∂-functors

Let T = (T i) for 0 ≤ i ≤ a be a covariant ∂-functor from C to C′, where a > 0. T is
called a universal ∂-functor if for any ∂-functor T ′ = (T ′i) defined in the same degrees, any
natural transformation f0 : T 0 // T ′0 extends to a unique ∂-functor f : T // T ′ which
reduces to f0 in degree 0.n We use the same definition for contravariant ∂-functors. In the
case of ∂∗-functors we have to consider morphisms from T ′ // T rather than T // T ′.

By definition, given a covariant functor F from C to C’, and an integer a > 0, there
can exist, up to unique isomorphism, at most one universal ∂-functor defined in degrees
0 ≤ i ≤ a and reducing to F in degree 0. Its components are then denoted SiF and called
the right satellite functors of F . If i ≤ 0, we also set SiF = S−iF , where the SiF are left

nTranslator’s note: The original is more or less incoherent (for example, uses notation T i0, where we have
T 0) and we have changed it to what has to be intended.
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satellites of F , defined as SiF , by considering the universal ∂∗-functors, defined in degrees
0 ≤ i ≤ a, such that T 0 = F . We can then show immediately that for a given i, if SiF
exists, it is independent of the choice of a.

In all cases I am aware of, the satellite functors of any additive functor F exist. Moreover,
if C,C′ are given, to show that for any additive covariant functor F : C // C′ there is
a universal ∂-functor in all degrees and reducing to F in degree 0 (i.e. all the satellites
SiF exist), it clearly suffices to prove that S1F and S−1F exist, thanks to the equations
S1(SiF ) = Si+1F if i > 0 and S−1(SiF ) = Si−1F , if i ≤ 0 (for which the proof follows
trivially from the definition). Moreover, the search for S1F and S−1F are dual problems;
these functors exchange if we replace C and C′ by the dual categories.

An additive functor F : C // C′ is called effaceable if for any A ∈ C we can find a
monomorphism u : A //M such that F (u) = 0; if C is such that any A ∈ C admits an
injective effacement (cf. Remark 1.10.1) this is equivalent to saying that F (u) = 0 for any
injective effacement u; if C is such that any object A ∈ C admits a monomorphism into an
injective object M (cf. 1.10.1), it is equivalent to saying that F (M) = 0 for any injective
object M . Dually, F is said to be coeffaceable if for any A ∈ C, we can find an epimorphism
u : P //A such that F (u) = 0.

2.2.1 Proposition. Let C and C′ be two abelian categories and T = (T i), 0 < i < a an
exact ∂-functor (covariant or contravariant) from C to C′ with a > 0. If T i is effaceable
for i > 0 then T is a universal ∂-functor, and the converse is true if C is such that any
object A ∈ C admits an injective effacement (cf. 1.10).

It suffices for the direct part to prove, for example, that if (T ′0, T ′1) is a ∂-functor
defined in degrees 0 and 1 and f0 is a natural transformation T 0 // T ′0 then there exists
a unique morphism f1 : T 1 // T ′1 such that (f0, f1) : (T 0, T 1) // (T ′0, T ′1) is a natural
transformation of ∂-functors (we have chosen to consider case that T is covariant). Let
A ∈ C. We consider an exact sequence 0 //A //M //A′ // 0 such that the morphism
T 1(A) // T 1(M) is zero. If we have been able to construct f1 we will have a commutative
diagram

T ′0(M) T ′0(A′)// T ′0(A′) T ′1(A)//

T 0(M) T 0(A′)//T 0(M)

T ′0(M)
��

T 0(A′) T 1(A)//T 0(A′)

T ′0(A′)
��

T 1(A)

T ′1(A)
��

T 1(A) T 1(M)
0 //

Since the first line is exact, we conclude that the morphism T 0(A′) // T 1(A) is surjective,
and consequently the morphism f1(A) : T 1(A) //T ′1(A) is completely determined by pas-
sage to the quotient starting from f0(A′) : T 0(A′) // T ′0(A′). This proves the uniqueness
of f1(A). Moreover, the preceding diagram without f1(A), taking into account that the
composite of the two morphisms of the second row is 0, allows us to define a morphism



2.2. UNIVERSAL ∂-FUNCTORS 23

T 1(A) // T ′1(A) determined uniquely by the condition that the diagram remain commu-
tative. Standard reasoning shows that the morphism thus defined does not depend on the
particular choice of the exact sequence 0 //A //M //A′ //0, thus showing that the mor-
phism is functorial and “commutes with ∂”. That proves the first part of the proposition.
The second part is contained in the following existence theorem:

2.2.2 Theorem. Let C be an abelian category such that any object A ∈ C admits an
injective effacement (cf. 1.10). Then for any covariant additive functor F on C, the
satellites SiF , (i ≥ 0) exist and are effaceable functors for i > 0. For the universal ∂-
functor (SiF )i≥0 to be exact, it is necessary and sufficient that F satisfy the following
condition: F is half exact, and for P ⊆ Q ⊆ R in C, the kernel of F (Q/P ) // F (R/P ) is
contained in the image of F (Q) // F (Q/P ) (conditions always satisfied if F is either left
or right exact).2

′

S The proof is essentially contained in [6, Chapter III]. For the first part, it suffices to
prove the existence of S1F . LetA ∈ C. We consider an exact sequence 0 //A //M //A′ //0
where the first morphism is an injective effacement of A. Let S1F (A) = F (A′)/ Im(F (M)).
We see as in [6] that the second term is independent of the particular exact sequence chosen
(modulo canonical isomorphisms) and can be considered a functor in A. The definition
of the boundary homomorphism, the proof of axioms (1) and (2) of 2.1 and the fact that
the ∂-functor obtained (F, S1F ) is universal is also standard. Similarly, we will omit the
proof of the exactness criterion. We point out the dual statement. If in C, every object
admits a projective effacement, then the satellites SiF (i ≤ 0) exist and are coeffaceable
functors; the condition for the ∂-functor SiFi≤0 to be exact is the same as in the statement
of Theorem 2.2.2. Consequently, if every object of C admits both an injective and a pro-
jective effacement then every additive covariant functor F admits satellites SiF for any i;
and for the universal ∂-functor SiF to be exact, it is necessary and sufficient that F satisfy
the condition given in the statement of Theorem 2.2.2. If F is a contravariant functor, it
is necessary, in the above statements, to exchange the negative and positive indices and
replace the exactness condition by a dual condition.

Remark. We point out another case, very different from the one in Theorem 2.2.2, where
we can construct the satellite functors of an arbitrary functor from C to C′. Suppose that
we can find a set C0 ⊆ C such that any A ∈ C is isomorphic to an object in C0, and
suppose that C′ is an abelian category in which infinite direct sums exist. Then for any
additive functor F : C // C′, the satellites (SiF ), i ≥ 0 exist. Moreover, if C′ satisfies
axiom AB 5) (cf. 1.5) and if F satisfies the condition at the end of Theorem 2.2.2, then
the ∂-functor (SiFi≥0) is exact. Since, in particular, the category of abelian groups satisfies
condition AB 5), we can apply the preceding result to the functor Hom(A,B) with values

2′
(Note added in proof) This condition is automatically satisfied if every object of C is isomorphic to a

subobject of an injective object, cf. [6, Chapter III].
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in the category of abelian groups, and thereby define the functors Exti(A,B) as satellites
of Hom(A,B), considered either as a covariant functor in B or a contravariant functor in
A. (But it remains to be proved that two procedures give the same result.) The above-
mentioned condition on C is satisfied for categories whose objects are subject to certain
finiteness conditions (and where, in particular, infinite direct sums do not in general exist).
Example: the abelian category of those algebraic groups (not necessarily connected) defined
over a fixed field K of characteristic 0, which are complete as algebraic varieties and abelian
as groups, i.e. the category of algebraic abelian groups defined over K whose connected
component at 0 is an “abelian variety” (we are forced to assume that the characteristic
is 0, otherwise a bijective homomorphism would not necessarily be an isomorphism). We
indicate only that we prove the result stated above by constructing SiF (A) as an inductive
limit of the objects F (M/A)/ Im(F (M)) for “all” monomorphisms A // //M in C, preordered
by saying A // //M is below A // //M ′ if we can find a morphism M //M ′ that restricts to
the identity on A.

2.3 Derived functors

Let C and C′ be abelian categories. The theory of derived functors of an additive functor
F : C //C′ is developed as in [6, Chapter V], subject to the assumption that any object
of A ∈ C is isomorphic to a subobject of an injective object or to a quotient object of a
projective object or both. Thus, in order to define right derived functors of a covariant
functor or left derived functors of a contravariant functor, it is necessary to assume that
every object A ∈ C is isomorphic to a subobject of an injective object, whence we conclude
that every A ∈ C admits an injective resolution3: 0 // A // C0 // C1 // · · ·, whence
the definition of RiF (A) = H i(F,C) (where C denotes the complex of the Ci). If we wish
to define the left derived functors of a covariant functor or the right derived functors of
a contravariant functor, it is similarly necessary to assume that every object A ∈ C is
isomorphic to a quotient of a projective object. And finally, to define the derived functors
of a mixed functor in several variables, it is necessary to make the appropriate assumption
about the domain category of each variable, adapting the exposition of [6] as necessary.
In particular, if F is, for example, covariant and if we can form its right derived functors
RiF , then (setting RiF = 0 when i < 0) RF = (RiF ) is a cohomological functor (called
the right derived cohomological functor of F ), and we have a canonical morphism of ∂-
functors of positive degrees SF // RF (where SF = (SiF ) is the universal ∂-functor of
positive degrees, the satellite of F , which exists by virtue of Theorem 2.2.2); this last is an

3A right resolution A //C is, by definition, a complex C of positive degree equipped with an “augmen-
tation homomorphism” A //C (A being considered as a complex concentrated in degree 0), such that the
sequence 0 // A // C0 // C1 // · · · is exact. We call an injective resolution of A a resolution C of
A such that the Ci are injective objects. Left resolutions of A and projective resolutions of A are defined
dually.
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isomorphism if and only if F is left exact. We note that it seems that the consideration
of the RiF is not very interesting unless F is left exact, i.e., when they coincide with the
satellite functors. However, the simultaneous definition of the RiF by injective resolutions
is easier to deal with than the recursive definition of the SiF and, in particular, lends itself
better to the construction of the most important spectral sequences (see 2.4).

Let C1,C2,C
′ be three abelian categories. Let T (A,B) be an additive bifunctor C1 ×

C2
// C′ which, to fix the ideas, we will assume to be contravariant in A and covariant

in B. Suppose that every object of C2 is isomorphic to a subobject of an injective object.
Then we can construct the right partial derived functors of T with respect to the second
variable B.

Ri2T (A,B) = H i(T (A,C(B)))

where C(B) is the complex defined by a right resolution of B by injective objects. Of
course, the Ri2T are bifunctors. We now suppose that for any injective object B in C2,
the functor defined on C1 by A 7→ T (A,B) is exact. We will show that for any B ∈ C2

the sequence (Ri2T (A,B)) can be considered a cohomological functor in A. Let C(B)
be the complex defined by a right resolution of B by injective objects. For any exact
sequence 0 // A′ // A // A′′ // 0 in C1, the sequence of homomorphisms of complexes
0 //T (A′′, C(B)) //T (A,C(B)) //T (A′, C(B)) //0 is exact (according to the assumption
on T , the terms of C(B) are injective), and it thus defines an exact cohomology sequence,
that is,

· · · //Ri2T (A′′, B) //Ri2T (A,B) //Ri2T (A′, B)
∂ //Ri+1

2 T (A′′, B) // · · ·

We can immediately verify that the morphism ∂ in this sequence does not depend on
the specific choice of the complex C(B) and that it commutes with homomorphisms of
exact sequences, which shows that, for fixed B, (Ri2T (A,B)) is a cohomological functor in
A. Moreover, we can also verify immediately that, for a morphism B // B′ in C2, the
corresponding morphisms Ri2T (A,B) //Ri2T (A,B′) define a morphism of ∂-functors in A.
If we assume that in C1, every object is isomorphic to a quotient of a projective object,
and for every projective object A ∈ C1, the functor T (A,B) is exact in B (in which case,
we say, in accordance with the terminology of [6], that T is “right balanced”), then the
Ri2T (A,B) are also the right derived functors RiT (A,B) of T , and also coincide with the
partial derived functors Ri1T (A,B); in this case, the boundary homomorphisms constructed
above are nothing other than the natural boundary morphisms of RiT and Ri1T with respect
to their first variable.

The preceding considerations were mainly developed for the case of an abelian category
C in which every object is isomorphic to a subobject of an injective object, but in which
we do not assume that every object is isomorphic to a quotient of a projective object. We
then take C1 = C2 = C and C′ is the category of abelian groups, T (A,B) = Hom(A,B);
according to the definition of injective object, Hom(A,B) is exact in A if B is injective.
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Denoting by Extp(A,B) the right derived functors with respect to B, we see that the
Extp(A,B) form a cohomological functor in B and in A. We have Ext0(A,B) = Hom(A,B)
since Hom(A,B) is left exact; it is easy to see that Ext1(A,B) can also be interpreted as
the group of classes of extensions of A (quotient) by B (subobject), [6, Chapter 14].

An important case in which the abelian category C contains enough injectives but not
enough projectives is the one in which C is the category of sheaves of modules over a given
sheaf of rings on a topological space X. In Chapter IV we will study in greater detail the
groups Extp(A,B) in this case.

2.4 Spectral sequences and spectral functors

For the theory of spectral sequences, we refer to [6, Chapters XV and XVII] confining
ourselves to specifying our terminology and emphasizing the most useful general cases in
which spectral sequences can be written.

Let C be an abelian category. Let A ∈ C. A (decreasing) filtration on A is a family
(Fn(A)) (n ∈ Z) of subobjects of A with Fn(A) ⊆ Fn

′
(A) if n ≥ n′. A filtered object in

C is an object of C equipped with a filtration. If A and B are two filtered objects of C,
a morphism u : A // B is said to be compatible with the filtration if u(Fn(A)) ⊆ Fn(B)
for any n. With this notion of morphism, the objects with filtration in C form an additive
category (but not an abelian category, for a bijection in this category is not necessarily an
isomorphism!). We call the family of Gn(A) = Fn(A)/Fn+1(A) the graded object associated
with the filtered object A; we denote it by G(A).4 G(A) is a covariant functor with respect
to the filtered object A. A spectral sequence in C is a system E = (Ep,qr , En) consisting of

(a) objects Ep,qr ∈ C defined for integers p, q, r with r ≥ 2 (We can replace 2 by any
integer r0 but in the applications, only the cases r = 2 and r = 1 seem interesting);

(b) morphisms dp,qr : Ep,qr // Ep+r,q−r+1
r such that dp+r,q−r+1

r dp,qr = 0;

(c) isomorphisms αp,qr : ker(dp,qr )/ Im(dp−r,q+r−1
r ) // Ep,qr+1;

(d) filtered objects En ∈ C, defined for any integer n. We assume that for any fixed pair
(p, q), we have dp,qr = 0 and dp−r,q+r−1

r = 0 for r sufficiently large, from which we
conclude that Ep,qr is independent of r for a sufficiently large r; we denote this object

4These definitions are not self-dual. We re-establish the duality by associating with any “decreasing
filtration” of A by the Fn(A) the associated “decreasing cofiltration” by F ′n = A/F1−n(A). Then passing
from a category to the dual category, these two filtrations become, respectively, a decreasing cofiltration
and an associated decreasing filtration. It is still convenient to set Fn(A) = F 1−n(A), F ′n(A) = F ′1−n(A)
(the increasing filtration and cofiltration associated with the preceding filtrations), and depending on the
case, one of the four will be the most convenient of the associated filtrations to consider. Setting Gn(A) =
Coker(Fn(A) // Fn−1(A)), Gn(A) = ker(F ′n(A) // F ′n−1(A)), we will have Gn(A) = G−n(A). Thus
functors Gn and Gn exchange as we pass from C to the dual category.
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by Ep,q∞ . We assume, in addition, that for any fixed n, F p(En) = En for a sufficiently
small p and is 0 for a sufficiently large p.

(e) We assume given isomorphisms βp,q : Ep,q∞ //Gp(Ep+q).o

The family (En) without filtrations is called the abutment of the spectral sequence E.

A morphism u from one spectral sequence E = (Ep,qr , En) to another E′ = (E′p,qr , E′n)
consists of a system of morphisms up,qr : Ep,qr //E′p,qr , and un : En //E′n compatible with
the filtrations, these morphisms being subject to commutativity with morphisms dp,qr , αp,qr ,
and βp,q. The spectral sequences in C then form an additive category (but not, of course,
abelian). We call a spectral functor an additive functor defined on an abelian category, with
values in a category of spectral sequences5. A spectral sequence is said to be a cohomological
spectral sequence if Ep,qr = 0 when p < 0 or when q < 0. Then we have Ep,qr = Ep,q∞ when
r > sup(p, q + 1), En = 0 for n < 0, Fm(En) = 0 if m > n, and Fm(En) = En if m ≤ 0.

For example, let K be a bicomplex 6 in C, K = (Kp,q), and assume that for any integer n
there are only finitely many pairs (p, q) such that p+q = n and Kp,q 6= 0. Then we can find
two spectral sequences, both convergent to H(K) = (Hn(K)) (cohomology of the single
complex Kn associated to K, Kn =

∑
p+q=nK

p,q) and whose first terms are, respectively,

(2.4.1) Ip,q2 (K) = Hp
I H

q
II(K) IIp,q2 (K) = Hp

IIH
q
I (K)

(using the notation of [6, Chapter XV, no. 6]). These spectral sequences are spectral
functors in K. Moreover they are cohomological spectral sequences if the degrees of K are
positive.

Let F be a covariant functor from one abelian category C to another C′. We assume
that in C every object is isomorphic to a subobject of an injective object. Let K = (Kn)
be a complex in C bounded on the left (i.e. Kn = 0 for all sufficiently small n). Then
the considerations of [6, Chapter XVII] apply and allow the construction of two spectral
sequences, (IF p,qr (K), IFn(K)) and (IIF p,qr (K), IIF p(K)), convergent to the same graded
object R F (K) = (R nF (K)) (for two appropriate filtrations) and whose initial terms are,
respectively,

(2.4.2) IF p,q2 (Kp) = H(RqF (K)) IIF p,q2 (K) = RpF (Hq(K))

oTranslator’s note: In the original, the domain of βp,q is given as Epq, which makes little sense. This is
out best guess as to what it should have been, especially since that notation has just been defined and is
not subsequently used. In any case this approach to spectral sequences does not appear to have caught on.

5It seems that for all the known spectral functors, the abutment is, in fact, a cohomological functor. The
relations between boundary homomorphisms and the other constituents of the spectral functor remain to be
examined.

6Contrary to the terminology introduced in [6], we assume that the two boundary operators d′ and d′′ of
a bicomplex K commute, and we therefore take as the total boundary operator the morphism d, defined by
dx = d′x+ (−1)pd′′x for x ∈ Kp,q.
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(As is customary, a functor applied to a complex K denotes the complex gotten by applying
the functor to each term of the complex.) These spectral sequences are functorial in K and
the variance of the initial and final terms is evident from their explicit form. We have thus
defined two spectral functors on the category of complexes in C that are bounded on the
left; we call them the right derived spectral functors of F or the hyperhomology right spectral
functors of F . The functors R nF (K) are called the hyperhomology functors of F .

We recall the principle of the construction, limiting ourselves to the case that K is of
positive degree in order to fix the ideas. Let L = (Lp,q) be a double complex, of positive
degrees, equipped with an augmentation K // L (where K is considered a bicomplex in
which the second degree is 0); we assume that for every p, the complex Lp,∗ = (Lp,q)q is
a resolution of Kp and that for any p, q, we have RnF (Lp,q) = 0 for n > 0. Here are
two specific ways, both unique up to homotopy equivalences of bicomplexes, to construct
such a bicomplex: (a) we consider K an object of the abelian category K of complexes
in C of positive degree, and we take for L an injective resolution of the object K. We
can easily see that the injective objects in K are the complexes A = (Ai) of positive
degree such that every Ai is injective and H i(A) = 0 for i > 0, which “decompose” (i.e.
the subobjects Z(Ai) of cycles are direct summands of Ai). Moreover, every object of K
embeds into an injective object. (b) We take an “injective resolution” of K in the sense
of [6, Chapter XVII] (the quotation marks are necessary because the terminology of [6] is
patently ambiguous), i.e., we assume that the Lp,q are injective, and that for fixed p, if
we take the cycles (respectively the limits, respectively the cohomology) of the Lp,∗ with
respect to the first differential operator, we find an injective resolution of the object of cycles
(respectively limits, respectively cohomology), of Kp. This having been said, if L is as above,
then H∗F (L) is essentially independent of the choice of L, and moreover is identified as
R∗(FoH0)(K) (where H0 is considered a left exact covariant functor K //C, and FoH0

is the composite functor K // C′). To see this, it suffices to take an injective resolution
L′ of K (in the sense of (a)): there is therefore a homomorphism (unique up to homotopy)
from the resolution L to the resolution L′, whence a homomorphism F (L) //F (L′), which
induces an isomorphism Ip,q2 (F (L)) // Ip,q2 (F (L′)) (the two members can be identified with
Hp(R1F (K))) thus an isomorphism of HF (L) onto HF (L′). This last becomes explicit as a
result of second spectral sequence of the bicomplex F (L′): we have Hq

1(F (L′)) = 0 for q > 0
as we see immediately. We therefore find HnF (L′) = Hn(H0(L′∗,n)); the second member is,
by definition, Rn(FoH0)(A). Whence the definition and the general method of calculating
the hyperhomology R F (K) = R ∗(FH0)(K) of the functor F with respect to the complex
K and of the first spectral sequence, whose initial term is Ip,q2 F (K) = Hp(RqF (K)) which
converges to it. If we now take for L an “injective resolution” of K as in (b), then the second
spectral sequence of the bicomplex F (L) is essentially independent of L (since L is unique
up to homotopy equivalence); it converges to R F (K) and its initial term is the one given
in 2.4.2. It would suffice, moreover, to have RnF (Lp,q) = 0 for n > 0 (instead of injective
Lp,q) in the statement of the conditions in (b) in order for the second spectral sequence of
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the complex F (L) to be the one in 2.4.2. We note once more that, if the degrees of K are
positive, the two spectral sequences derived from F are cohomological spectral sequences.
We could even define the spectral sequences derived from F on K if we no longer assume
that K has degrees bounded below, provided F has finite injective dimension, i.e. RpF = 0
for some p. This fact does not seem to be found in [6], but since we will not be using it
subsequently, we confine ourselves to mentioning it here without proof. Of course we could
also define the left derived spectral functors of F provided C has enough projectives, and
we can also imagine the case of a contravariant functor. In [6], we find the case that F is a
multifunctor but we will not require that case.

Let C,C′ and C′′ be three abelian categories. We consider two covariant functors
F : C //C′ and g : C′ //C′′. We assume that every object of C and every object of C′

is isomorphic to a subobject of an injective object, which allows us to consider the right
derived functors of F,G, and GoF . We propose to establish the relation between these
derived functors. Let A ∈ C; let C(A) be the complex associated with a right resolution of
A by injectives. We consider the complex F (C(A)) in C′. It is determined up to homotopy
when we vary C(A). It immediately follows that the spectral sequences defined by G and
this complex F (C(A)) depend only on A. Thus these are cohomological spectral functors
on C, converging to the same place, called spectral functors of the composite functor GoF .
The formulas given above immediately give their initial terms:

Ip,q2 (A) = (Rp((RqG)F ))(A) IIp,q2 (A) = RpG(RqF (A))

The most important case by far for obtaining non-trivial spectral sequences is the one in
which F transforms injectives into objects annihilated by the RqG for q ≥ 1 (such objects
are called G-acyclic), and in which R0G = G (i.e. G is left exact); then Ip,q2 = 0 if q > 0,
and reduces to Rp(GF ) when q = 0 the result of which is that the common abutment of the
two spectral sequences is identified with the right derived functor of GF . We thus obtain:

2.4.1 Theorem. Let C,C′ and C′′ be abelian categories. Assume that every object of
C and every object of C′ is isomorphic to a subobject of an injective. We consider the
covariant functors F : C // C′ and G : C′ // C′′; we assume that G is left exact and
that F transforms injectives into G-acyclic objects (i.e. annihilated by the RqG for q > 0).
Then there exists a cohomological spectral functor on C, with values in C′′, converging to
the right derived functor R (GF ) of GF (appropriately filtered), and whose initial term is

(2.4.3) Ep,q2 (A) = RpG(RqF (A))

Remarks 1. The second assumption about the pair (F,G) means that functors (RqG)F
for q > 0 are effaceable (cf. 2.2), or even that for every A ∈ C we can find a monomorphism
from A into an M such that (RqG)(F (M)) = 0 for q ≥ 1. This is how we will usually verify
this hypothesis.
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2. We immediately verify that in order to calculate the second spectral sequence of
a composite functor (i.e. the one in question in Theorem 2.4.1), it is sufficient to take a
resolution C(A) of A by some Ci that are F -acyclic (and not necessarily injective) and to
take the second hyperhomological spectral sequence of the functor G with respect to the
complex FC(A).

3. We note two important special cases in which one of the two hyperhomological spec-
tral sequences of a functor F with respect to a complex K is degenerates if K is a resolution
of an object A ∈ C, then R nF (K) = RnF (A) and thus the graded object (RnF (A)) is the
abutment of the spectral sequence with the initial term Ip,q2 (K) = Hp(RqF (K)). If the
Kn are F -acyclic (i.e. RmF (Kn) = 0 for m > 0), then R nF (K) = Hn(F (K)), so the
graded object (Hn(F (K))) is the abutment of a spectral sequence with the initial term
IIp,q2 (K) = RpF (Hq(K)). Combining these two results, we find therefore: If K is a reso-
lution of A by F -acyclic objects, we have RnF (A) = Hn(F (K)). The isomorphisms thus
obtained are moreover also the morphisms induced by a homomorphism from K into an
injective resolution of A; they also coincide up to sign with the homomorphisms defined by
the “iterated connecting homomorphism” in K [6, Chapter V.7].

2.5 Resolvent functors

Let C and C′ be abelian categories. We suppose that every object of C is isomorphic to
a subobject of an injective. Let F be a left exact covariant functor from C to C′. We call
a resolvent functor of F a covariant functor F defined on C, with values in the category
of complexes of positive degree in C′. F(A) = (Fn(A)) equipped with an augmentation
F // F (i.e. with a homomorphism from the functor F // Z0(F) of the 0-cocycles of
F), satisfying the following conditions: (i) the functor F is exact; (ii) F // Z0(F) is an
isomorphism; (iii) if A is injective, F(A) is acyclic in degrees > 0.

Let F be a resolvent functor for F . We consider the functors HnF(A) on C, with values
in C′. Because of condition (i), they form a cohomological functor; because of (ii) it reduces
to F in dimension 0; because of (iii) the HnF(A) for n > 0 are effaceable. Consequently:

2.5.1 Proposition. If F is a resolvent functor for F , then for every A ∈ C we have
unique isomorphisms HnF(A) = RnF (A), defining an isomorphism of cohomological func-
tors, and reducing in dimension 0 to the augmentation isomorphism.

We are going to give another proof of the preceding proposition allowing an easy com-
putation of these isomorphisms:

2.5.2 Proposition. Let F be a resolvent functor for F . Let A ∈ C and let C = (Cp(A))
be a right resolution of A by F -acyclic objects. We consider the bicomplex FC(A) =
(FqCp(A))p,q and the natural homomorphisms

(2.5.1) F (C(A)) // F(C(A)) oo F(A)
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defined respectively by the augmentation F //F and by the augmentation A //C(A). Then
the corresponding homomorphisms

(2.5.2) HnF (C(A)) = RnF (A) //HnF(C(A)) oo HnF(A)

are isomorphisms, and the corresponding isomorphism HnF(A) ∼= RnF (A) is the one in
Proposition 2.5.1.

We consider F (C(A)) (respectively F(A)) as a bicomplex whose second (respectively
first) degree is 0. The first spectral sequence of F(C(A)) has as its initial term H(F (C(A)))
(since Hq

II(F(C(A))) vanishes for q > 0 and can be identified as F (C(A)) for q = 0, from
Proposition 2.5.1 and the fact that the Cp(A) are F -acyclic), hence the first homomorphism
(2.5.1) induces an isomorphism for the initial terms of the spectral sequence I and therefore
induces an isomorphism on cohomology. Similarly, HI(F(C(A)))p,q vanishes for p > 0 and
equals F(A) for p = 0 (since F is an exact functor and C(A) is a resolution of A), therefore
the second homomorphism (2.5.1) induces an isomorphism of the initial terms of the spectral
sequences II, and therefore also induces an isomorphism of the cohomology. To show that
the isomorphism obtained from HnF(A) to RnF (A) is really the one in Proposition 2.5.1,
we can take an injective resolution C ′(A) of A and a homomorphism from C(A) to C ′(A),
and imagine the associated homomorphism from diagram (2.5.2) to the analogous diagram
for C ′(A), which shows us that the isomorphism obtained is independent of the choice of
C(A). If we limit ourselves from now on to injective resolutions, we see immediately that
the isomorphisms obtained are functorial and commute with coboundary homomorphisms;
moreover, they reduce in dimension 0, to the augmentation isomorphism (or rather, its
inverse), and therefore these isomorphisms are really those of Proposition 1.

Examples. (a) We consider the identity functor I : C // C. A resolvent functor of
I (also called identity resolution in C) is therefore an exact covariant functor C from C
to the category of complexes of positive degrees in C, equipped with an augmentation
A // C(A) that is an isomorphism from A to Z0C(A), and such that C(A) is a reso-
lution of A if A is injective; C(A) is a resolution of A, no matter what A is, according
to Proposition 2.5.1 (since the functor I is exact, we have RnI = 0 for n > 0). Let C
be a resolution of the identity in C and let F be a left exact covariant functor from C
to C′; we assume RnF (Ci(A)) = 0 for all n > 0 (i.e. the Ci(A) are F -acyclic). Then
F(A) = F (C(A)) is a resolvent functor for F . In effect, this functor is exact, since if we
have an exact sequence 0 //A′ //A //A′′ // 0, we conclude from this the exactness of
0 //Ci(A′) //Ci(A) //Ci(A′′) //0, from which, since RiF (Ci(A′)) = 0, we get an exact
sequence 0 // F (Ci(A′)) // F (Ci(A)) // F (Ci(A′′)) // 0. Thus (i) is proved; similarly
(ii) is proved since F is left exact and C is exact; and (iii) is proved since we have (C(A)
being an F -acyclic resolution of A) Hn(C(A)) = RnF (A), which vanishes if n > 0 and
A is injective. A convenient way to construct a resolution of the identity in C is to take
an exact functor C0(A) : C // C and a functorial monomorphism A // C0(A); we then
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define by recursion the Cn(A) (n ≥ 0) and the homomorphisms dn−1 : Cn−1 // Cn taking
C1(A) = C0(C0(A)/ Im(A)), and for n ≥ 2, Cn(A) = C0(Cn−1(A)/ ImCn−2(A)), dn−1 be-
ing defined with the help of the augmentation homomorphism of Q = Cn−1(A)/ ImCn−2(A)
in C0(Q). We thus obtain a resolution of the identity; for the Ci(A) to be F -acyclic, it is
sufficient for C0(A) to be.

(b) Let P = (Pn) be a projective resolution of an object A of C. Let F be the functor
F (B) = Hom(A,B) from C to the category of abelian groups. Then F admits the resolvent
functor Hom(P,B).

Now we will show that the most important spectral sequences can be calculated using
resolvent functors. Let F be a resolvent functor of a left exact functor F : C // C′.
Let K be a complex in C with degrees bounded on the left. Consider the bicomplex
F(K) = (Fq(Kp))p,q, which depends functorially on K. So do its spectral sequences and
their abutments. The initial terms of these two spectral sequences can easily be written
using the exactness of the functor F and Proposition 2.5.1; we find

(2.5.3) Ip,q2 (F(K)) = Hp(RqF (K)) IIp,q2 (F(K)) = RpF (Hq(K))

These are natural transformations with the initial terms of the hyperhomology spectral
sequences (2.4.2) of F with respect to the complex K.

2.5.3 Proposition. The isomorphisms (2.5.3) come from natural equivalences of the first,
respectively the second, spectral sequence of the bicomplex F(K) with the first, respectively
second, spectral sequence of hyperhomology of the functor F with respect to the complex K.

These isomorphisms will be made explicit in the following proof. Let C(K) = (Cp,q(K))p,q
be an “injective resolution” of K in the sense of [6, Chapter XVII]; considering K as bicom-
plex whose second degree is zero, we have an augmentation homomorphism K // C(K).
Consider the bicomplex M(K) = F(C(K)) given by

Mp,q(K) =
∑

q′+q′′=q

Fq′′(Cp,q
′
(K))

M(K) is not uniquely determined by K; However, the two spectral sequences of M(K)
and their common abutments are uniquely determined (since C(K) is determined up to
homotopy equivalence of bicomplexes); these are well-determined spectral functors in the
variable K. Set L(K) = F (C(K)); the augmentation homomorphisms K // C(K) and
F // F define homomorphisms of bicomplexes

L(K) = F (C(K)) //M(K) = F(C(K)) oo F(K)

whence natural transformations for the corresponding spectral sequences (independent of
the choice of C(K)):

(2.5.4)
IL(K) // IM(K) oo I F(K)
IIL(K) // IIM(K) oo II F(K)
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defining the same homomorphism for the abutments

HL(K) //HM(K) oo HF(K)

For the initial terms, the homomorphisms (2.5.4) give:

(2.5.5)
Ip,q2 L(K) // Ip,q2 M(K) oo Ip,q2 F(K)
IIp,q2 L(K) // IIp,q2 M(K) oo IIp,q2 F(K)

We will prove that the homomorphisms are isomorphisms, and that the corresponding
isomorphisms between the extreme terms of (2.5.5) (which are the initial terms of the
hyperhomology spectral sequences of F for K, respectively for the bicomplex F(K)) are
those resulting from the formulas (2.5.3). It follows that the homomorphisms (2.5.4) are
isomorphisms, whence isomorphisms between the extreme terms; these will obviously be
the desired isomorphisms. Everything comes down to proving that the middle terms of
lines (2.5.5) have, respectively, the form Hp(Rq(F (K))) and RpF (H(K)) (the proof that
the homomorphisms in (2.5.5) are in, fact, natural equivalences is purely mechanical, and
moreover, implicitly contained in the following argument).

We will show thatHII(M
p,q) = RqF (Kp) (from which we immediately see that Ip,q2 (M) =

Hp(RqF (K))). Thus for fixed p, M (p∗) = (Mp,q)q is the simple complex associated to the
bicomplex (Fi′′(Cp,q

′
(K))q′,q′′) = F(C(Kp)), where C(Kp) denotes the complex Cp∗(K),

which is an injective resolution of Kp. It follows that Hq(Mp∗) = Hq(F(C(Kp))), and the
last term is identified with RqF (Kp) by virtue of Proposition 2.5.2.

It remains to calculate the middle term of the second line (2.5.5). First we have

HI(M)p,q =
∑

q′+q′′=q

Hp(Fq′′(C∗q
′
(K)))

Since Fq′′ is an exact functor we get for the general term of the sum of the second term
Fq′′(Hp(C∗q

′
(K))) = Fq′′(Cq

′
(Hp(K))), where C(Hp(K)) denotes an injective resolution

of Hp(K) (recall the definition of an “injective resolution” C(K) of the complex K!). We
therefore find (HII(HI(M)))p,q = Hq(F(C(Hp(K)))), which is identified with RqF (Hp(K))
by virtue of Proposition 2.5.2, Q.E.D.

Since F is always a resolvent functor for the left exact functor FC //C′, we assume in
addition that we have a covariant functor G from C′ to an abelian category C′′, and that in
C′ every object is isomorphic to a subobject of an injective. For every A ∈ C we consider
the second hyperhomology spectral sequence of the functor G with respect to the complex
F(A); it is a spectral functor in A whose initial term, by virtue of Proposition 2.5.1, can be
readily calculated:

(2.5.6) IIp,q2 G(F(A)) = RpG(RqF (A))

This is a natural transformation with the initial term of the second spectral sequence of the
composite functor GF .
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2.5.4 Proposition. The isomorphism (2.5.6) comes from a natural transformation of
the second hyperhomology spectral sequence of G with respect to the complex F(K), to the
second spectral sequence of the composite functor GF .

Let C(A) be an injective resolution of A. Consider F(C(A)) to be a single complex in
C′, and consider the natural homomorphisms, 2.5.1, whence we get corresponding homo-
morphisms for the second spectral sequences of hyperhomology of G:

IIG(F (C(A))) // IIG(F(C(A))) oo IIG(F(A))

Again everything comes back to showing that these are isomorphisms, and to do so, showing
that the corresponding homomorphisms for the initial terms are isomorphisms. Now by
virtue of Proposition 2.5.1, the homomorphisms H(F (C(A))) //H(F(C(A))) oo H(F(A))
are isomorphisms, from which the desired conclusion is readily obtained.

Let C,C′,C′′ and C′′′ be abelian categories. For the first three, we assume that every
object of each is isomorphic to a subobject of an injective. Consider the covariant functors
F,G, F ′, G′ (see the diagram below).

C′ C′′
G

//

C

C′

F,F

��

C C′′′
G′ // C′′′

C′′

F ′,F′

��

We take as given a resolvent functor F for F and a resolvent functor F′ for F ′ satisfying
the commutativity conditions F′G′ = GF.7 In addition we assume that F sends injective
objects to G-acyclic objects.

2.5.5 Proposition. Assume the preceding conditions. For any A ∈ C, consider the
two hyperhomology spectral sequences of G with respect to the complex F(A); these are the
spectral functors in A. They are isomorphic respectively to the second spectral functor of
the composite functors F ′G′ and GF .

The assertion about the composite functor GF is nothing but Proposition 2.5.4. As for
the second spectral sequence of the composite functor F ′G′, it is by definition the second
spectral sequence of F ′ with respect to the complex G′(C(A)) (where C(A) denotes an
injective resolution of A), therefore is identified, by virtue of Proposition 2.5.3 with the
second spectral sequence of the bicomplex F′G′(C(A)) (whose first degree is the one that
comes from C(A)); thus we have F′G′ = GF. It is therefore necessary to calculate the

7It is understood that this isomorphism is natural and respects the coboundary homomorphism in the
complexes F′G′(A) and GF(A).
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spectral sequence II(GF(C(A))). Thus for any fixed q, FqC(A) is a resolution of Fq(A)
(since Fq is exact) by G-acyclic objects, therefore F(C(A)) becomes, by exchanging its two
degrees, a resolution of F(A) by G-acyclic objects. It follows from 2.4 that the second
spectral sequence of GF(C(A)) can be identified with the first hyperhomology spectral
sequence of G with respect to the complex F(A).

Corollary. If C,C′,C′′,C′′′ and F,G, F ′, G′ are as above (see diagram), we assume as
given resolvent functors F,G,F′,G′ for F,G, F ′, G′. We assume F′iG′j = GjFi (natural
transformations compatible with the boundary operators in the resolving functor), and we
also assume that F (respectively, G′) transforms injective objects into objects that are G-
acyclic (respectively F ′-acyclic). Then for every A ∈ C, the second spectral sequences of the
composite functors F ′G′ and GF for A are identified with the first and second hyperhomolo-
gyspectral sequences of G for the complex F(A), or with the first and second hyperhomology
spectral sequence of F ′ for the complex G′(A), or with one or the other of the two spectral
sequences of the bicomplex G(F(A)) = F′(G′(A)).



Chapter 3

Cohomology with coefficients in a
sheaf

3.1 General remarks on sheaves

Let X be a topological space (not necessarily separated). Recall (1.7, Example H) that we
call presheaves of sets on X any inductive system of sets defined on the open non-empty
subsets of X, ordered by ⊇. A presheaf consists, therefore, in giving for every open U ⊆ X,
a set F (U), and for every open non-empty pair U, V with U ⊇ V of a restriction function
φV,U : F (U) //F (V ), such that φU,U is the identity function of F (U) and φW,V φV,U = φW,U
if U ⊇ V ⊇ W . We say that the presheaf F is a sheaf provided for every cover (Ui) of an
open set U ⊆ X by non-empty sets, and every family (fi) of elements fi ∈ FUi such that
φUijUifi = φUijUjfj for each pair (ij) such that Uij = Ui ∩ Uj 6= ∅, there exists a unique
f ∈ F (U) such that φUiUf = fi for every i. If in the preceding definition, we assume
that the F (U) are groups (respectively rings, etc.) and that the φV U are homomorphisms,
we obtain the notion of presheaf or sheaf of groups, (respectively of rings, etc.); more
generally we might define the notion of presheaf or sheaf with values in a given category
(cf. 1.1). The presheaves or sheaves on X with values in a given category form a category,
the morphisms being defined as morphisms of inductive systems. The presheaves or sheaves
on X with values in an additive category, for example the category of abelian groups, form
an additive category, and in the case of presheaves and sheaves of abelian groups, even an
abelian category. (For the sake of brevity, we will say abelian sheaf and abelian presheaf
for a sheaf or presheaf of abelian groups). But we will take care that the identity functor,
which associates to an abelian sheaf the corresponding abelian presheaf, is left exact but not
exact: if we have a homomorphism of sheaves u : F //G its cokernel as a homomorphism
of presheaves is the presheaf Q(U) = G(U)/ ImF (U), which in general is not a sheaf; its
cokernel as a homomorphism of sheaves is the sheaf associated with the presheaf Q (see

36



3.1. GENERAL REMARKS ON SHEAVES 37

below). We will cease emphasizing these questions, which are already rather well known
(cf. [4] and Godement’s book [9]).

Let F be a presheaf of sets on X. We set for every x ∈ X: F (x) = lim // F (U), the

inductive limit being taken over the filtered set of open neighborhoods U of x. On the set
F =

⋃
F (x), we put the topology generated by the set of subsets of F that have the form

A(f) where, for every open set U ⊆ X and every f ∈ F (U) we denote by A(f) the set of
canonical images f(x) of f in F (x), for x ∈ U . When F is equipped with this topology,
the natural function of F to X is a local homeomorphism (i.e. every point in F has an
open neighborhood mapped homeomorphically on an open set of X) and we say (following
Godement) that F is the total space over X. Moreover, a total space over X, called E,
defines a sheaf F (E) in a natural way, namely the one that to an open set U associates the
set of continuous sections of E over U ; moreover, the total space associated to F (E) can
be canonically identified with E. If we begin with a presheaf F on X we have, moreover, a
canonical homomorphism F // F (F ), since every f ∈ F (U) defines a continuous section,
x 7→ f(x) of F over U ; this homomorphism is an isomorphism if and only if F is a sheaf.
These considerations prove: (1) the notion of sheaf of sets on X is equivalent to the notion
of total space over X (specifically, we have defined an equivalence of the category of sheaves
of sets on X with the category of total spaces over X). (2) To every presheaf F on X there
corresponds a sheaf F (F ) and a homomorphism F //F (F ), which is an isomorphism if and
only if F is a sheaf (moreover, F (F ) is a functor in F , and the homomorphism F //F (F )
is natural in F ). If we wish to interpret the notion of sheaf of groups (or of sheaf of abelian
groups, etc.) in terms of total spaces, we have to give on each stalk of the total space a group
law (respectively, abelian group law, etc.) so as to satisfy a natural continuity condition:
we then recover the definition of [4, XIV]. We see immediately on the corresponding total
spaces when a homomorphism F //G of sheaves is a monomorphism or an epimorphism:
it is necessary and sufficient that on each stalk F (x) the corresponding homomorphism
F (x) // G(x) is a monomorphism or an epimorphism, respectively. Similarly, the stalk
over x of the kernel, cokernel, image, coimage of a homomorphism of sheaves of abelian
groups is obtained by taking the kernel, cokernel, etc. of the homomorphism of abelian
groups F (x) //G(x).

Let O be a sheaf of unital rings on X. A sheaf of left O-modules or in short, a left O-
module on X is a sheaf of abelian groups F together with the giving for each open U ⊆ X
of a structure of a left unitary O(U)-module structure on F (U) such that the restriction
operations F (U) //F (V ) are compatible with the operations of O(U) and O(V ) on F (U),
respectively F (V ) (we can also express this by saying that we are given a homomorphism of
the sheaf of rings O into the sheaf of rings of the germs of endomorphisms of the sheaf F of
abelian groups). We define right O-modules similarly; for the sake of brevity we will simply
say O-module instead of left O-module. The notion of homomorphism of O-modules and
of the composition and addition of such homomorphisms is obvious. We then obtain the
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additive category of O-modules on X, denoted CO. If, for example, k is a unital ring, we
can consider on X the corresponding constant sheaf of rings, denoted kX . The category of
kX -modules is none other than the category of sheaves of k-modules on X; if, for example,
k = Z, we get the category of sheaves of abelian groups. We recall the following fact,
mentioned in passing in 1.5 and 1.9:

3.1.1 Proposition. Let O be a sheaf of unital rings on a space X. Then the additive
category CO of O-modules on X is an abelian category satisfying Axioms AB 5) and AB 3∗),
and admits a admits a generator.

We should note that the direct sum S of a family (Fi) of sheaves Fi is constructed simply
by taking for each open U the direct sum of the Fi(U) and passing to the sheaf associated
to the just-constructed presheaf; the process is the same for the construction of the product
P of sheaves Fi. The essential difference between the two cases is that for every x ∈ X,
S(x) is indeed the direct sum of the Fi(x), but P (x) is not the direct product of the Fi(x).
We can readily see that Axiom AB 4∗) is not satisfied in general (for example, by taking
for O the constant sheaf ZX). Finally, recall that if, for any open U ⊆ X we denote by OU

the sheaf of O-modules whose restriction to {U is zero and which coincides with O on U [4,
XVII, Proposition 1], the family of OU is a family of generators of CO which follows easily
from Definition 1.9 and from the fact that the homomorphisms of OU to an O-module F
are identified with the elements of F (U). Taking into account Theorem 1.10.1, we find:

Corollary. Every O-module is isomorphic to a sub-O-module of an injective O-module.

We indicate a direct proof, due to Godement, of this corollary. For every x ∈ X, let Mx

be an Ox-module and let M be the sheaf on X defined by M(U) =
∏
x∈XMx; the restriction

functions and the operations of O(U) on M(U) are defined in the obvious way. M is an
O-module on X, by construction isomorphic to the product of the O-modules Mx (x ∈ X)
obtained by defining Mx(U) = Mx for x ∈ U and zero otherwise. From this remark, we
immediately deduce that for every O-module F , the homomorphisms from F to M are
identified with the families (ux)x∈X , where for every x ∈ X, ux is an O(x)-homomorphism
from F (x) to Mx. From this we conclude:

3.1.2 Proposition. If for every x ∈ X, Mx is an injective Ox-module then the product
sheaf M defined above is an injective O-module.

Let F be an arbitrary O-module. It is classic (and, moreover, a consequence of Theorem
1.10.1) that for every x ∈ X, F (x) can be embedded an injective Ox-module, namely Mx,
it follows that we get an embedding of F into the injective O-module M defined by the Mx.

We also point out for later use:

3.1.3 Proposition. Let M be an injective O-module on X, U be an open subset of X,
and OU , (respectively MU be the restriction of O, (respectively M) to U . Then MU is an
injective OU -module.
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MU is clearly an OU -module. Let F be an OU -module, G a submodule, and u a
homomorphism of G to MU . We prove that u can be extended to a homomorphism from F
to MU . For every OU -module H on U , let H be the O-module obtained, in terms of total
spaces, by “extending H by zero on {U”, cf. [4, Chapter XVII, Proposition 1]. Then giving
a homomorphism of OU -modules u : G //Mu is equivalent to giving a homomorphism of
O-modules G //M since G is a submodule of F and M is injective, u can be extended to
a homomorphism of G to M , which induces the desired homomorphism of G to MU . We
note that Proposition 3.1.3 becomes false if we assume that U is closed rather than open.
We prove in a completely analogous way:

3.1.4 Proposition. Let M be an injective O-module on a closed subset Y of X. Then
the O-module MX that coincides with M on Y and is zero on its complement, is injective.

3.2 Definition of the Hp
Φ(X,F )

Let X be a topological space. We denote by CX the abelian category CZ
X of abelian sheaves

on X. If F is such a sheaf and A is a subset of X, we denote by Γ(A,F ) the group of sections
of F (considered to be a total space) over A, and we set Γ(F ) = Γ(X,F ) so that we have
Γ(A,F ) = Γ(F |A) where F |A indicates the restriction of F to A. More generally, let Φ be
an increasing filter of closed non-empty subsets of X, such that A ∈ Φ, B ⊆ A implies that
B ∈ Φ. For the sake of brevity, we say that Φ is an cofilter of closed subsets of X. We denote
by ΓΦ(F ) the subgroup of Γ(F ) consisting of sections f whose support (the complement of
the largest open set in X on which the restriction of f vanishes) is an element of Φ. We see
immediately that ΓΦ(F ) is a left exact functor defined on CX with values in the category
of abelian groups. We must consider its right derived functors to be identical to the right
satellites (cf. 2.3) which exists by virtue of the corollary to Proposition 3.1.1. We denote
them by Hp

Φ(X,F ) (where p is an arbitrary integer). According to the theory:

3.2.1 Proposition. The system of functors Hp
Φ(X,F ) (−∞ < p < +∞) is characterized

by the following conditions: they form a cohomological functor on CX with values in the
category of abelian groups, and Hp

Φ(X,F ) vanishes for p < 0, coincides with ΓΦ(F ) for
p = 0 and is effaceable, that is, vanishes when F is injective, for p > 0.

To calculate the Hp
Φ(X,F ) we take a right resolution of F by injective sheaves Ci or,

more generally, such that we know in advance that the Hp
Φ(X,Ci) = 0 for p > 0 (we then

the say that the Ci are ΓΦ-acyclic), we consider the complex C(F ) formed by the Ci, and
we get

Hp
Φ(X,F ) = HpΓΦ(C(F ))

To apply this method, it is thus important to know the criteria that allow us to assert that
a sheaf is ΓΦ-acyclic; we will indicate them below (cf. 3.3).
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Let f be a continuous function from a space X to a space Y . For every sheaf F on Y ,
we define in a natural way the inverse image sheaf of F under f (denoted f−1(F ) by abuse
of notation): if we consider F as a total space over Y , it is sufficient to use the definition of
the inverse image of a fibered space.p We thus obtain an exact additive covariant functor
F // f−1(F ) from CY to CX , which we are going to call g. For every F ∈ CY , we have an
obvious homomorphism Γ(F ) // Γ(g(F )), which moreover is functorial, that is, we have a
natural transformation ΓY // ΓXg (where we have put as the exponent the space relative
to which we consider the functor Γ). More generally, consider a cofilter Φ of closed subsets
of X and a cofilter Ψ of closed subsets of Y such that for every B ∈ Ψ, we have f−1(B) ∈ Φ.
Then for every f ∈ CY , the homomorphism Γ(F ) // Γ(g(F )) applies ΓΨ(F ) to ΓΦ(g(F )),
whence a natural transformation ΓΨ

// ΓΦg. Moreover, since g is an exact functor, the
functor (RΓΦ)g can be considered to be a cohomological functor on CY , reducing to ΓXΦ g
in dimension 0; since the cohomological functor RΓYΨ is “universal” (Proposition 2.2.1),
the natural transformation ΓYΨ

// ΓXΦ g extends uniquely to a natural transformation of
cohomological functors RΓΨ

// (RΓΦ)g. Thus we have proved:

3.2.2 Proposition. Let f be a continuous function from a space X to a space Y and
Φ (respectively Ψ) be a cofilter of subsets of X (respectively Y ), such that B ∈ Ψ implies
f−1(B) ∈ Φ. We can find, for any sheaf F of abelian groups on Y , unique homomorphisms

Hp
Ψ(Y, F ) //Hp

Φ(X, f−1(F )), −∞ < p < +∞

in order to get a natural transformation of cohomological functors that reduces to the natural
homomorphism in dimension 0.

These homomorphisms will be called the natural homomorphisms. From their unique-
ness there results an obvious property of transitivity, whose formulation is left to the reader.

In particular, if Y is a subset of X, and if we set Hp
Ψ(Y, F ) = Hp

Ψ(Y, F |Y ), where
F |Y indicates the “restriction” of the sheaf F to Y , we have “restriction homomorphism”
Hp

Φ(X,F ) //Hp
Φ∩Y (Y, F ), where Φ ∩ Y indicates the trace of Φ on Y .

3.3 Criteria for Acyclicity

What we develop in this section, which will subsequently be very useful, is attributable
to Godement and will be dealt with in detail in the book by Godement mentioned in the
introduction, [9].

3.3.1 Lemma. Let F be a covariant functor from an abelian category C to another one
C′. We assume that every object of C is isomorphic to a subobject of an injective object.

pTranslator’s note: Now known as a fibered product or pullback.
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Let M be a class of objects of C that satisfies the following conditions: (i) for every ele-
ment A ∈ C, there is a monomorphism from A to an M ∈ M; (ii) every A ∈ C that is
isomorphic to a direct factor of an M ∈ M belongs to M; (iii) for every exact sequence
0 //M ′ //M //M ′′ // 0 in C, if M ′ and M belong to M, then M ′′ ∈ M, and the
sequence 0 // F (M ′) // F (M) // F (M ′′) // 0 is also exact. Under these conditions,
every injective object of C belongs to M, and for every M ∈M, we have RpF (M) = 0 for
p > 0.

First let I be an injective object in C. I can be embedded into an M ∈M by virtue of
(i), and is thus isomorphic to a direct factor of M (since I is injective) and hence belongs
to M, by virtue of (ii). Let M ∈M. We show that RpF (M) = 0 for p > 0. To see this, we
consider a right resolution of M by injective objects Ci (i ≥ 0). Let Zi be the subobject of
cycles in Ci. It suffices to prove that the sequences 0 // F (M) // F (C0) // F (Z1) // 0,
0 //F (Z0) //F (C0) //F (Z1) // 0, etc. are all exact, and for this it suffices to prove by
virtue of (iii) that the Zi and Ci are in M. We know this already for the Ci because they
are injective, and for the Zi, it follows from (iii) by induction on i.

Corollary. For every A ∈ C, we can calculate the RpF (A) with the aid of an (arbitrary)
resolution of A by Ci ∈M.

In effect, such a resolution exists by virtue of (i), making it possible to calculate the
RpF (A) since the Ci are F -acyclic by virtue of the lemma.

A sheaf F of sets on a space X is said to be flabby (respectively soft) if for every open
(respectively closed) subset A ⊆ X every section of F over A is the restriction of a section
of F over X. If for every x ∈ X we are given a set Ex, the sheaf E whose set of sections over
an open set U ⊆ X is given by E(U) =

∏
x∈U Ex (with the obvious restriction functions;

compare the example dealt with before Proposition 3.1.2) is obviously both flabby and
soft. We thereby conclude that every sheaf of sets can be embedded in a flabby sheaf of
sets; similarly, every sheaf of abelian groups (respectively of O-modules, if O is a sheaf of
rings on X) can be embedded in a flabby sheaf of abelian groups (respectively, O-modules).
We should note that if a closed subset A ⊆ X admits a paracompact neighborhood, then
any section on A of a sheaf F defined on X is the restriction of a section defined in a
neighborhood of A. It follows immediately that if X is paracompact, a flabby sheaf is soft.
Now let Φ be a family of closed subsets of X satisfying the general conditions set forth
in 3.2. A sheaf F of abelian groups on X is called Φ-soft if for every A ∈ Φ and every
section of F over A, there is an f ∈ ΓΦ(F ) inducing the given section. We say that Φ is
a paracompatifying family if, in addition to the conditions already set forth, it satisfies the
following additional conditions (first introduced in [4]): every A ∈ Φ is paracompact and
has a neighborhood B ∈ Φ. We can easily see, as above, that a flabby sheaf of abelian groups
is Φ-soft for every paracompactifying family Φ, whence it follows in particular that every
sheaf of abelian groups can be embedded in a Φ-soft sheaf (since it can even be embedded
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in a flabby sheaf). The preceding definitions are of interest because of following:

3.3.2 Proposition. Let X be a topological space equipped with a “family Φ”. We consider
the functor ΓΦ defined on the category CX of sheaves of abelian groups on X, with values in
the category of abelian groups. Then the conditions of Lemma 3.3.1 are satisfied in both of
the following cases: (1) M is the family of flabby sheaves on X. (2) Φ is paracompactifying
and M is the family of Φ-soft sheaves on X.

Corollary. Hp
Φ(X,F ) = 0 for p > 0 if F is flabby or if F is Φ-soft and the family Φ is

paracompactifying.

Condition (i) of the lemma has already been verified. It is trivial to verify condition (ii);
only condition (iii) requires a proof, for which we go back to Godement’s book (or suggest
that the reader do it as an exercise).

Remark. If the family Φ is paracompactifying it is easy to verify that the fine sheaves
[4, Chapter XV] are Φ-soft, and therefore show that Hp

Φ(X,F ) = 0. From this it follows
that the cohomology theory given in [4] for paracompactifying families Φ is in fact a special
case of the one developed here. We also refer to Godement’s book for a particularly elegant
definition of fine sheaves in terms of soft sheaves.

Resolution of the identity. For a sheaf F , let C0(F ) be the product sheaf defined by
the family F (x) of sets; we have a natural transformation F // C0(F ), which moreover
is injective. If we restrict ourselves to taking F in the category of abelian sheaves over
X, the method in 2.5, Example (a) makes it possible to construct a resolution of the
identity, C(F ), which is reduced to C0(F ) in dimension 0, and is defined by Cn(F ) =
C0(Cn−1(F )/ Im(Cn−2(F ))) in dimensions n ≥ 2. The Cn(A) are flabby and therefore
ΓΦ-acyclic whatever the cofilter Φ of closed subsets, so ΓΦC(A) is a resolving functor for
ΓΦ, and we subsequently have Hn

Φ(X,F ) = Hn(ΓΦC(F )). C(F ) is called the canonical
resolution of F (introduced and systematically used by Godement). If the family Φ is
paracompactifying, we find another resolving functor for ΓΦ by taking a fixed resolution
C of the constant sheaf Z by fine and torsion-free sheaves and by taking for every F the
complex of sheaves F ⊗ C. What results is a resolution of F (because C is torsion free).
It is an exact functor in F (same reason); moreover the F ⊗ Cn are also fine and therefore
ΓΦ-acyclic. Therefore the ΓΦ(F ⊗ C) is a resolving functor for ΓΦ, and we subsequently
have Hn

Φ(X,F ) = Hn(ΓΦF ⊗C). F ⊗C will be called the Cartan resolution of F . We recall
that it can be used only if Φ is paracompactifying.

An amusing example. A space X is said to be irreducible if it is not the union of two
proper closed subsets, that is to say if the intersection of two non-empty open subsets is non-
empty; it comes to the same thing to say that every open subset of X is connected. Then
every constant sheaf F on X is clearly flabby (the converse is also true if X is connected,
as we see by taking a fibered constant sheaf not reduced to a point). In particular, if F is
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a constant sheaf of abelian groups over the irreducible space X, we have Hp(X,F ) = 0 for
p > 0.

3.4 Applications to questions of lifting of structure groups.8

Let X be an irreducible algebraic variety over an algebraically closed field k (see [15, Chapter
II], whose terminology we follow), let O be its sheaf of local rings (= sheaf of germs of regular
functions on X), and let K be the sheaf of germs of rational functions on X. K is a constant
sheaf (loc. cit., Proposition 9). Let O∗ and K∗ be, respectively, the subsheaves of O and
K formed from invertible germs; clearly K∗ is still a constant sheaf of abelian groups and
O∗ is a subsheaf of it. The quotient sheaf K∗/O∗ = D is the sheaf of germs of locally
principal divisors over X, and coincides with the sheaf of germs of divisors over X if the
local rings O(x). for x ∈ X, are unique factorization domains (UFDs) (for example, if X
has no singularities), which we will henceforth assume. Moreover, it can readily be seen
that the sheaf D of germs of divisors over X is flabby since a section of D on an non-empty
open set U ⊆ X is a formal linear combination

∑
niVi of irreducible hypersurfaces Vi ⊆ U ,

and is thus the restriction of the section
∑
niVi of D over X. Consequently, the exact

sequence 0 //O∗ //K∗ //D // 0 // 0 // · · · is a resolution of O by flabby sheaves
(K∗ is flabby since it is constant and X is irreducible) (cf. the end of 3.3). From this we
derive the values of the Hp(X,O∗) (we omit the symbol Φ when we take for Φ the family
of all closed subsets of X): H1(X,O∗) = Γ(D)/ Im(Γ(K∗)) = the group of the classes of
divisors modulo the principal divisors (this fact is well known and results immediately from
the exact cohomology sequence), and H i(X,O∗) = 0 if i ≥ 2 (a result that I first obtained
much more simply by the Čech cover method). We note, moreover, that this result can be
extended without modification to the case where X is a “variety scheme” in the meaning of
[5′], more generally in the case of “arithmetic varieties” defined by “gluing” using “spectra”
of commutative rings, [8]. The application above can also be described in the framework of
arithmetic varieties:

3.4.1 Proposition. Let X be an irreducible algebraic variety (over an algebraically closed
field k) whose local rings are UFDs (for example, a variety without singularities); then we
have H i(X,O∗) = 0 for i ≥ 2. If E is a locally trivial algebraic fibered space over X whose
structure group is the projective group GP (n− 1, k) (cf. [20]), then E is isomorphic to the
fibered space associated with a locally trivial algebraic fibered space whose structure group is
GL(n, k).

For any algebraic group G, we denote by O(G) the sheaf of groups of germs of regular
functions from X to G. Then the first statement of the proposition to be proved is written

8Reading this section is not necessary for understanding what follows.
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H i(X,O(k∗)) = 0 for i ≥ 2, and has already been proved; the second is written, using the
notions and terminology developed in [11]: the canonical function

H1(X,O(GL(n, k))) //H1(X,O(GP (n− 1, k)))

is surjective. To prove it we consider the exact sequence of algebraic groups

e // k∗ //GL(n, k) //GP (n− 1, k) // e

where the first homomorphism is the natural isomorphism from k∗ to the center of GL(n, k).
We can easily see that the fibration of GL(n, k) by the subgroup k∗ is locally trivial (i.e
there is a rational section), so the preceding exact sequence gives rise to an exact sequence
of sheaves

e //O(k∗) //O(GL(n, k)) //O(GP (n− 1, k)) // e

where O(k∗) is in the center of O(GL(n, k)). The proposition then results fromH2(X,O(k∗)) =
0 and from the corollary of the following result, which generalizes [11, Proposition 5.7.2,
corollary], in which we were obliged to assume paracompactness:

3.4.2 Proposition. Let X be a topological space and e //F //G //H //e be an exact
sequence of sheaves of groups on X, where F is abelian. Let E be a fibered space on X with
structure sheaf H, [11, Chapter IV], and let FE be the sheaf of groups associated with E, and
with the operations of H on F defined using the inner automorphisms of G (which operate
on the invariant sheaf F ). We can then define a “coboundary element” ∂E ∈ H2(X,F ),
“functorially”, such that the necessary and sufficient condition for ∂E = 0 is that the class
c(E) of E in H1(X,H) [11, Chapter V], belong to the image of H1(X,G).

This statement can be simplified when F is in the center of G, since in that case FE = F
no longer depends on the fiber space E and we conclude;

Corollary. Let e // F // G // H // e be an exact sequence of sheaves of groups on
the space X with F in the center of G. Then we can find a (“natural”) function ∂ :
H1(X,H) //H2(X,F ) such that ∂−1(0) = Im(H1(X,G)).

Proof of 3.4.2.. We embed every sheaf M on X into the sheaf M whose set of sections
on an open set U is the set

∏
x∈U M(x); M is thus a flabby sheaf and M is identified with

a subsheaf of M . If M is a sheaf of groups (respectively abelian groups), the same is true
of M . Moreover, we can readily show that if L is a flabby sheaf of groups (not necessarily
abelian) then H1(X,L) is reduced to 0 (in other words, every principal sheaf under L [11,
Definition 3.2.4] admits a section; we can easily construct such a section by “Zornification”
on the set of sections constructed on the open sets of X). From this it follows that for
sheaves F of abelian groups, the group H1(X,F ), as defined in [11] (by the method of
Čech), is the same as the one defined axiomatically in this work (that is, the first right
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satellite S1Γ of the functor Γ on CX). We can then return to the conditions of Proposition
3.4.2. We have a homomorphism of exact sequences:

F G// G H//

F G//F

F
��

G H//G

G
��

H

H
��

e F//

e

e

e F// F

F H e//

H

H

H e// e

e F ∩G = F

G and F are given subsheaves of groups G and F . Let F · G be the sheaf of subgroups of
G generated by F and G. Let

P = F ·G F ′ = F/F

We define in the obvious way an exact sequence of homomorphisms of sheaves of groups

e // F // P //H // e

We show that the corresponding function H1(X,P ) // H1(X,H) is bijective. It is a
monomorphism by virtue of the exact cohomology sequence of [11, Proposition 5.6.2], given
that H1(X,L) = 0 if L is locally isomorphic to F (since we easily see that sheaf that is
locally isomorphic to a flabby sheaf is also flabby). It is an epimorphism, since if we let
(hij) be a 1-cocycle of H relative to an open cover (Ui) of X; since H1(X,H) = 0, there
exists hi ∈ Γ(Ui, H) such that hij = h−1

i hj . Moreover, we can obviously lift the hi to
sections gi(G) (it suffices to recall the definitions of G and H). Letting pij = g−1

i gj , we
can readily see that the section of H over Uij defined by pij is hij , whence we conclude
that pij ∈ Γ(Uij , P ), and therefore (pij) is a 1-cocycle of P defining the 1-cocycle given by
passage to the quotient.

From the preceding result, we conclude that the fibered space E is isomorphic to the
fibered space associated to a fibered space Q of structure space P which, moreover is well
determined up to isomorphism. We note, moreover, that if we have P = FG ⊆ G operating
on G by inner automorphisms, F remains stable under these operations (since F operates
trivially on itself and F is invariant in G), so P operates naturally on F . In addition, F is
stable under the operations of P and the operations of P on F thus obtained are none other
than those obtained by composing P //H with the natural representation of H under the
operations on F . From this we deduce that the associated sheaf FE is also identified with
the associated sheaf FQ. Moreover, the operations of P also pass to the quotient F ′ = F/F ;
the representations of P by germs of automorphisms of F, F , F ′ will be denoted by σ. We
note now that there is an exact sequence of sheaf homomorphisms:

e //G // P
u // F ′ // e
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The homomorphism G // P = FG is the injection homomorphism, and therefore a homo-
morphism of sheaves of groups, and the homomorphism u : P // F ′ is defined by making
the class of f in F ′(x) correspond to a product fg (f ∈ F (x), g ∈ G(x); (this definition is
meaningful thanks to the fact that G ∩ F = F ). In general, this homomorphism does not
respect multiplicative structures. but satisfies the following conditions: (i) u is surjective,
and two elements of P have the same image if and only if they are congruent under right
operations by G (i.e. if they define the same element of P/G); (ii) u is a crossed homomor-
phismq from P to F ′ (with P operating on F ′ as above), i.e. in each fiber P (x) we have
u(e) = e and u(pp′) = u(p)σ(p)u(p′). This situation and the datum of the fiber space Q
with structure sheaf P will give rise to an element d(Q) ∈ H1(X,F ′Q) (where F ′Q is the
sheaf associated to Q (where the relevant operations of P on F ′), such that the vanishing
of d(Q) is necessary and sufficient for the class c(Q) ∈ H1(X,P ) of Q to be in the image
of H1(X,G). Then Proposition 3.4.2 will be proved (modulo straightforward verifications
of naturality). In fact, the condition we have found is necessary and sufficient for the class
c(E) ∈ H1(X,H) to be in the image of H1(X,G) (as we can readily see in the commutative
diagram;

H1(X,G) H1(X,H)//

H1(X,G)

H1(X,G)
��

H1(X,G) H1(X,P )// H1(X,P )

H1(X,H)
��

where the vertical arrows are bijections). Moreover, H1(X,F ′Q) is canonically isomorphic
to H2(X,FQ) = H2(X,FE) since from the exact sequence 0 // F // F // F ′ // 0 we

deduce the exact sequence 0 // FQ // F
Q // F ′Q // 0, and F

Q
is flabby because it is

locally isomorphic to a flabby sheaf F , then H i(X,F
Q

) = 0 for i > 0. Then it will be
sufficient to let ∂(E) = −d(Q) ∈ H2(X,FE) to satisfy the desired conditions. We have to
define d(Q), so that it has the desired properties of functoriality and “exactness”. That
is what we will do under the following more general hypotheses in which the notation is
changed slightly.

Let P be a sheaf of groups on X and A be a sheaf of groups with left operations from P ,
with the operation defined by p ∈ P denoted by σ(p). Let u be a crossed homomorphism
from P to A, i.e. a sheaf homomorphism such that on each fibre F (x), we have u(e) = e
and u(pp′) = u(p)σ(p)u(p′). Then the subsheaf G of P , the inverse image of the null section
of A under u, is a subsheaf of groups, and two elements of P have the same image in A
if and only if they define the same right coset mod G. For every x ∈ X, p ∈ P (X), and
a ∈ A(x), set

ρ(p)a = u(p)(σ(p)a)

qTranslator’s note: Now generally known as “derivation”
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To say that u is a crossed homomorphism means precisely that the preceding formula defines
a representation ρ of P by germs of automorphisms of the sheaf of sets A. Moreover, the
homomorphism of sheaves of sets A × A // A defined by the product in A is compatible
with the operations of P operating respectively by ρ, σ, ρ:

ρ(P (ab)) = (ρ(p)a)(σ(p)b)

From this we infer, for every fibered space E with structure sheaf P , a homomorphism from
the sheaf of the associated sets A(ρ)E ×A(σ)E //A(ρ)E , and it is readily seen that A(ρ)E

thus becomes a sheaf of sets on which the which the sheaf of groups A(σ)E acts on the right
and, more specifically, A(ρ)E is a principal sheaf (on the right) on A(σ)E . We can consider
its class c(A(ρ)E) ∈ H1(X,A(σ)E), which we will also denote by d(E). Its vanishing is
the necessary and sufficient condition for the existence of a section of the sheaf A(ρ)E . We
can also observe that the monomorphism P/G // A induced by u is compatible with the
operations of P , operating on P/G in the canonical fashion and on A using ρ, whence a
natural monomorphism between the associated sheaves: (P/G)E //A(ρ)E , bijective if and
only if u is surjective. Consequently the existence of a section of (P/G)E , which is the
necessary and sufficient condition for the class c(E) ∈ H1(X,P ) of E to be in the image
of H1(X,G), implies the existence of a section of A(ρ)E , i.e. the vanishing of d(A), and
the converse is true if u is an epimorphism of P onto A. These considerations complete the
proof of Proposition 3.4.2.

Remark 1. We put the minus sign in the formula ∂(E) = −d(Q) in the proof of Proposition
3.4.2 so that we can find the usual boundary operator of the exact cohomology sequence
corresponding to the exact sequence 0 // F // G // H // 0 in the case that G (and
therefore also F and H) is abelian. In that case, we have a diagram of horizontal and
vertical exact sequences

F0 // F G// G H// H 0//

F0 // F

0

��
F G//F

F
��

G H//G

G
��

G

0

��
H

H
��

H

0

��
H 0//

F ′0 // F ′

0
��

F ′ G′// G′ H ′//G′

0
��

H ′ 0//H ′

0
��

F

F ′
��

G

G′
��

H

H ′
��
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whence we conclude [6, III, 4.1] that the following diagram of coboundary homomorphisms

H1(X,H) H2(X,F )//

H0(X,H ′)

H1(X,H)
��

H0(X,H ′) H1(X,F ′)// H1(X,F ′)

H2(X,F )
��

is anticommutative. The left vertical homomorphism is surjective, and we can show that
in the construction above d(Q) is obtained from the class c(E) ∈ H1(X,H) by passage to
the quotient in the composite homomorphism H0(X,H ′) //H1(X,F ′) //H2(X,F ), and
therefore equals −∂c(E).

Remark 2. We should not forget that to apply to apply Proposition 3.3.1 to a projective
algebraic fibered space, we must first prove that it is locally trivial. Unfortunately, this
proof, when we do not know a priori that we can lift the structure group, can seem difficult.
Example: On a complex projective variety without singularities, we have a holomorphic
fibred space E whose fibre is a projective space. We know from Kodaira-Borel that E
is also an algebraic variety; does it come from a holomorphic fibered vector space? The
response is affirmative in accordance with Proposition 3.4.1 if E is locally trivial from an
algebraic standpoint, i.e., every point of the base has a rational section passing through it;
moreover the converse is true because, according to [16], every holomorphic fibered vector
space on X is algebraically locally trivial.

Remark 3. The situation u : P // A (where u is a crossed homomorphism of sheaves)
described above is encountered in a variety of interesting situations, for example: X is a
holomorphic variety, G is a complex Lie group having the Lie algebra V , P is the sheaf
of germs germs of holomorphic functions from X to G, A is the sheaf of holomorphic
differential 1-forms on X with values in V , on which P acts via the adjoint representation,
and we set u(g) = (dg)g−1. This allows us to associate to each holomorphic fibered space
E on X with structure group G a class d(E) ∈ H1(X,Ω1(ad(E))), where ad(E) denotes
the “adjoint” fibered vector space (with fibre V ) of E, and Ω1(ad(E)) denotes the sheaf of
germs of holomorphic differential 1-forms with values in ad(E). Since the kernel of u is the
subsheaf of P formed from the germs of constant functions from X to G, we see that the
vanishing of d(E) is a necessary condition for the structure sheaf of E to be reducible to
the constant sheaf G, i.e., for the existence of an integrable holomorphic connection; and
this condition is sufficient when X has complex dimension 1 (since then u surjective). The
invariant d(E) was first introduced by Weil [21]; a more geometric definition by Atiyah [1]
proves that the vanishing of d(E) is in all cases necessary and sufficient for the existence of
a holomorphic connection (not necessarily integrable) on E.
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3.5 The exact sequence of a closed subspace

Let Y be a locally closed subspace (i.e. the intersection of an open subset and closed subset)
of the space X. For each abelian sheaf F over Y , there exists a unique abelian sheaf over
X whose to restriction to Y is F and whose restriction to {Y is 0. To see this, we are
immediately led to the case in which Y is either open or closed for which the simple proof
is given in [4, XVII, Proposition 1]. This sheaf over X will be denoted FX . F // FX is
an exact functor CY // CX ; moreover, if Z ⊆ Y ⊆ X (Z locally closed in Y and hence
in X), and if F is an abelian sheaf over Z, then (F Y )X = FX . Now if F is an abelian
sheaf over X, we set FY = (F |Y )X ; this is the sheaf over X characterized by the condition
that its restriction to Y is the same as that of F , while the restriction to {Y is 0. FY is
an exact functor CX // CX ; moreover, we have the transitivity property (FY )Z = FZ if
Z ⊆ Y ⊆ X as above. If we assume that Y is closed and that therefore U = {Y is open, we
have a well-known exact sequence

0 // FU // F // FY // 0

for every abelian sheaf F over X. Recall that we have Γ(FY ) = Γ(Y, F ) = Γ(F |Y ), while
Γ(FU ) is identified with the subgroup of Γ(F ) consisting of sections whose support is con-
tained U . Let Φ be a cofilter of closed subsets of X. For every subset Z of X, let ΦZ be
the “induced” cofilter consisting of the A ∈ Φ that are contained in Z (not to be confused
with the trace Φ ∩ Z of Φ over Z). We can readily see that if Z is locally closed and Φ
is paracompactifying (cf. 3.3), then ΦZ is also paracompatifying. If Z is locally closed, Φ
arbitrary, we can easily deduce from the formulas above that the following more general
formula (which holds. in particular, when Z is open or closed):

ΓΦ(X,FZ) = ΓΦZ (Z,F |Z)

which is valid for any abelian sheaf over X. Moreover, this is equivalent to the following:

ΓΦZ (Z,G) = ΓΦ(X,GX)

which is valid for any abelian sheaf over Z. Since GX is an exact functor in G, the
Hp

Φ(X,GX) form a cohomological functor on CZ and, since the universal cohomological
functor (Hp

ΦZ
(Z,G)) coincides with the first in dimension 0, we can derive canonical homo-

morphisms
Hp

ΦZ
(Z,G) //Hp

Z(X,GX)

(characterized by the definition of homomorphism of cohomological functors that reduces
in dimension 0 to the one above); or, starting from a sheaf F over X:

Hp
ΦZ

(Z,F |Z) //Hp
Φ(X,FZ)
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3.5.1 Theorem. The preceding homomorphisms are isomorphisms in each of the two cases
below:

01. Z is closed;

02. Φ is paracompactifying and Z is open.

Proof. It is sufficient in each case to show that the functors Hp
Φ(X,GX) on CZ are efface-

able for p ≥ 1. If Z is closed, that results from the fact that when G is injective, GX is
injective (Proposition 3.1.4). If Z is open and if Φ is paracompactifying, the same is true
for ΦZ ; therefore every G ∈ CZ is embedded in a ΦZ-soft sheaf (cf. 3.3). It is then sufficient
to note that if G is ΦZ-soft, then GX is Φ-soft (a fact that is readily proved), and to apply
the corollary to Proposition 3.3.2.

To continue, the exact sequence 0 // FU // F // FY // 0 corresponding to a closed
subspace Y and its open complement U gives rise to an exact sequence of cohomology which
can be written, thanks to the preceding theorem:

· · · //HP
Φ (X,FU ) //Hp

Φ(X,F ) //Hp
ΦY

(Y, F ) //Hp+1
Φ (X,FU ) // · · ·

(where, to simplify, we have written F in place of F |Y in the third term). If Φ is paracom-
pactifying, we can in addition replace terms of the form Hp(X,FU ) by Hp

ΦU
(U,F ), and we

then obtain the well-known exact sequence from [4, XVII].

3.6 On the cohomological dimension of certain spaces

3.6.1 Proposition. Let X be a topological space and (T p) be a covariant cohomological
functor defined on the category CX of sheaves of abelian groups on X with values in a
category C′. We assume that C′ satisfies condition AB 4) (cf. 1.5), which implies that we
can form inductive limits in C′ (Proposition 1.8), and we assume that the T p commute with
inductive limits. Let F ∈ CX ; then T p(F ) belongs to any thick subcategory (cf. 1.11) of C′′

of C′ stable under infinite direct sums, in which all the objects of the form T i(ZU ), where
U is an arbitrary open set in X and i = p, p+ 1, or p+ 2.

(The meaning of ZU is the same as in the preceding section.) Consider a family (fi)i∈I
of sections of F over open sets Ui. Each fi defines a homomorphism from ZUi to F , so (fi)
defines a homomorphism from the direct sum

⊕
i ZUi to F . We say that (fi) is a system

of generators of F if the preceding homomorphism is an epimorphism. It is trivial to show
that a family of generators exists for any F , from which it immediately follows that F is an
inductive colimit of an increasing filtered family of subsheaves Fj , each of which admits a
finite family of generators. Since C′′ is thick and stable under infinite direct sums, it is also
stable under inductive limits (because an inductive limit of objects in C′ is isomorphic to a
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quotient of their direct sum). Since T p(F ) = lim
j
// Tp(Fj), to prove T p(F ) ∈ C′′, it suffices

to show that T p(Fj) ∈ C′′ for every j, which reduces to the case that F admits a finite
family of generators (fi)1≤i≤k. We denote by Fn (0 ≤ n ≤ k) the subsheaf of F generated
by the Fi with 1 ≤ i ≤ n. The Fn form a finite increasing sequence of subsheaves of F
whose successive quotients Fn/Fn−1 (1 ≤ n ≤ k) each admit a single generator. Reasoning
by recursion on the length k of the sequence, and using the fact that Tp is half exact, we
can prove that T p(Fn/Fn−1) ∈ C′′ for every n. This reduces to the case that F is generated
by a single generator, that is, when there is an exact sequence of sheaves

0 //R // ZU // F // 0

where R is a subsheaf of ZU and therefore also of Z. From this we get the exact sequence
T p(ZU ) // T p(F ) // T p+1(R) and since we assume T p(ZU ) ∈ C′′, we can prove that
T p+1(R) ∈ C′′. Thus the subsheaf R of the constant sheaf Z is generated by the family
(fi)i∈I of constant sections ni of Z over open sets Ui. Proceeding as above, we reduce to
the case that the family is finite. We can assume, of course, that the ni < 0. Moreover,
we can assume that the fi are chosen so that for every x ∈ X, there exists, among those
ni for which Ui contains x, a generator of the subgroup R(x) of the group Z(x) = Z of
integers. To do so for any subset (i1, . . . , ip) of the set [1, k] of the first k positive integers,
it suffices to consider the section fi1,....ip of F on Ui1 ∩ · · · ∩ Uip whose value is the gcd of
ni1 , . . . , nip and to adjoin these sections to the system of generators. We thus conclude that
the assumption about the fi is satisfied. We assume n1 ≤ n2 ≤ · · · ≤ nk. If we denote by
Rm (0 ≤ m ≤ k) the subsheaf of R generated by the sections fi with 1 ≤ i ≤ m, the Rm form
a finite increasing sequence of subsheaves of R, and we again show, as above, by recursion
on k, and by using the fact that T p+1 is half exact, that to prove T p−1(R) ∈ C′′, it suffices
to prove that T p+1(Fm/Fm−1) ∈ C′′ for 1 ≤ m ≤ k. Now for any m, let Vm be the union
of the Ui for 1 ≤ i ≤ m, and let Ym = Um − Vm−1. I claim that Fm/Fm−1 is isomorphism
to ZYm . In fact, its restriction to {Vm is obviously 0 (since {Fm is already 0), and the same
is true for its restriction to Vm−1. It is sufficient to prove it for any x ∈ Vm−1 ∩ Um. By
assumption, among the ni corresponding to the Ui ⊆ X, is included their gcd ni0 which
must therefore divide both nm and an ni with i < m (take an index i < m with x ∈ Ui,
which exists because x ∈ Vm−1). Then either i0 < m, which proves that fnm(x) ∈ Fm−1(x),
or i0 ≥ m, whence ni0 ≥ nm and thus ni0 = nm, therefore nm (dividing ni and ≥ ni)
is equal to ni, from which fnm(x) ∈ Fm−1(x), so in both cases Fm−1(x) = Fm(x). Thus
the restriction of Fm/Fm−1 to {Vm ∪ Vm−1 i.e., to {Ym, is 0. Moreover, the restriction of
Fm/Fm−1 to Ym = Um−Vm−1 is isomorphic to the restriction of Fm (since the restriction of
Fm−1 is 0) and is generated by the restriction of the section fm and therefore is isomorphic
to the constant sheaf Z. This proves that Fm/Fm−1 is isomorphic to ZYm , so we can prove
that T p+1(ZY ) ∈ C′′ if Y is a locally closed subset of X. Then we have Y = V − U ,
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where U and V are two open subsets of X. Let W = U ∪ V which is open in X. We
have an obvious exact sequence: 0 // ZU // ZW // ZY // 0, whence an exact sequence
T p+1(ZW ) // T p+1(ZY ) // T p+2(ZU ). By assumption, the extreme terms of this exact
sequence are in C′′; the same is therefore true of T p+1(ZY ), which completes the proof of
the proposition.

3.6.2 Proposition. Let C and C′ be two abelian categories satisfying Axiom AB 5) (cf.
1.5). We assume that C admits a generator (cf. 1.9). Let T be a covariant functor from C
to C′. For the right derived functors RpT to commute with inductive limits, it suffices that:

(a) T commutes with the inductive limits;

(b) If M = lim
i
// Mi ∈ C where the Mi are injective, then M is T -acyclic, i.e. RpT (M) = 0

for p > 0.

(Condition (b) is clearly necessary for the conclusion to hold and (a) is necessary if T
is left exact, and thus R0T = T .) We note first that the RpT are well defined by virtue of
Theorem 1.10.1. Let (Ai)i∈I be an inductive system in C and A its inductive limit. We
wish to prove that the natural morphisms lim // R

pT (Ai) // RpT (A) are bijective. We will

first show that there exists an inductive system (Ci)i∈I of complexes (with values in C) and
an “augmentation” (Ai) // (Ci) such that for every i ∈ I, Ai // Ci is a right resolution
of A by injectives. We consider the category I(C) of inductive systems on I with values
in C. It is a category of diagrams, which according to Proposition 1.6.1 satisfies the same
assumptions as C. According to Theorem 1.10.1, every object in this category thus admits
a right resolution by injectives. We can readily show that if (Mi) is an injective object of
I(C), then the Mi are injectives in C (this is a general fact for categories of diagrams for a
scheme Σ satisfying the general conditions of Proposition 1.9.2.) Next we consider a right
resolution of (Ai) by injectives of I(C), 0 // (Ai) // (C0

i ) // (C1
i ) // · · ·. For every i,

let Ci be the complex 0 //C0
i

//C1
i

// · · ·. Then we see that the system Ci answers the
question. Since the functor lim // on I(C) is exact (Proposition 1.8), we obtain a resolution

C of A by the Cp = lim
i
// C

pi . Under Condition (b), the Cp are T -acyclic, therefore we have

RpT (A) = Hp(T (C)). Since T commutes with inductive limits, by virtue of (a), we have
T (C) = lim // T (Ci). Thus by virtue of the exactness of the functor lim // on I(C′) (resulting

from Axiom AB 5) using Proposition 1.8), we obtain Hp(T (C)) = lim // H
p(T (Ci)). Since Ci

is the complex associated with an injective resolution of Ai, we have HpT (Ci) = RpT (Ai),
whence the desired conclusion RpT (A) = lim // R

pT (Ai).



3.6. ON THE COHOMOLOGICAL DIMENSION OF CERTAIN SPACES 53

3.6.3 Proposition. Let X be a topological space equipped with a cofilter Φ of closed sub-
sets. Then the functors Hp

Φ(X,F ) on CX commute with the inductive limit in the following
two cases:

1. X is locally compact and Φ is the family of compact subsets;

2. X is a Zariski space and Φ is the family of all its closed subsets.

(We call a Zariski space a space in which every decreasing sequence of closed subsets is
stationary (cf. [15, Page 223]).) It is sufficient to verify Conditions (a) and (b) of Proposition
3.6.2 for the functor ΓΦ. Verifying (a) is an easy exercise using compactness and is left to
the reader (see also [9]). Condition (b) will result from the corollary to Proposition 3.3.1
and from Lemma 3.6.4.

3.6.4 Lemma. In case 1 every inductive limit of Φ-soft sheaves is Φ-soft. In case 2, every
inductive limit of flabby sheaves is flabby.

Let us assume Condition 1. Let (Fi) be an inductive system of soft sheaves on X, F the
inductive limit, and f a section of F on an A ∈ Φ, i.e. on a compact subset A. If we apply
Proposition 3.6.2 (a) to the compact set A, f comes from a section fi of an Fi over A, and
since Fi is Φ-soft, this fi is the restriction of a gi ∈ ΓΦ(Fi), therefore f is the restriction to
A of the g ∈ ΓΦ(F ) defined by gi. Case 2 works analogously by noting that a subset U of
a Zariski space is a Zariski space, therefore (a) applies to it.

We will say that a space X is of cohomological dimension ≤ n if H i(X,F ) = 0 for i > n
for every abelian sheaf F on X. Combining Propositions 3.6.1 and 3.6.3, we find

Corollary. Let X be a space that is either compact or a Zariski space. Let n be a non-
negative integer. For X to be of cohomological dimension ≤ n, it is necessary and sufficient
that H i(X,ZU ) = 0 for i > n and for every open set U ⊆ X.

We are coming to the essential results of this section. Let X be a Zariski space. We say
that X is of combinatorial dimension ≤ n if every strictly decreasing sequence of irreducible
closed subsets has length at most n+ 1. That said:

3.6.5 Theorem. Let X be a Zariski space of combinatorial dimension ≤ n. Then X is
of cohomological dimension ≤ n, i.e. we have H i(X,F ) = 0 for i > n and for every abelian
sheaf F on X.

We argue by induction on the combinatorial dimension n of X; the theorem is trivial
if n = 0 (then X is a discrete finite set). Suppose this has been proven for spaces of
combinatorial dimension < n, where n ≥ 1, and we will prove it if X has combinatorial
dimension ≤ n. Let Xk range over the irreducible components of X [15, Chapter 2,
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Proposition 2]. If F is an abelian sheaf on X, we have a natural monomorphism from F to
the direct sum of the Fk = FXk , whence an exact sequence

0 // F //
⊕

Fk //R // 0

where R is a sheaf whose support is contained in Y =
⋃
k 6=l(Xk ∩Xl), which is of combina-

torial dimension ≤ n− 1. From this we derive an exact sequence

H i−1(X,R) //H i(X,F ) //
⊕
k

H i(X,Fk)

If i > n (whence i − 1 > n − 1), we have H i−1(X,R) = H i−1(Y,R) = 0 by induction.
To prove that H i(X,F ) = 0, it therefore suffices to prove that H i(X,Fk) = 0. Then we
have H i(X,Fk) = H i(Xk, Fk), from which we are reduced to proving the theorem for the
irreducible space Xk. We therefore assume that X is irreducible. From the corollary to
Theorem 3.6.3, it is sufficient to prove that H i(X,ZU ) = 0 for i > n and for every open
subset U of X. We can assume U 6= ∅ so Y = {U is a proper closed subset of X, thus of
combinatorial dimension ≤ n− 1. From the exact sequence 0 //ZU //Z //ZY // 0 we
get, since Z is flabby (cf. end of 3.3), H i(X,ZU ) = H i−1(X,ZY ) = H i−1(Y,Z) which is 0
by induction.

Remark 1. The preceding theorem generalizes an earlier theorem of Serre [18].

Remark 2. We can find Zariski spaces of cohomological dimension 0 and of arbitrarily large
finite or of infinite combinatorial dimension. It is sufficient to consider on a finite or infinite
well-ordered set X the topology whose closed sets are sets of the form Xx, where for every
x ∈ X, Xx denotes the set of y ∈ X such that y < x.

3.7 The Leray spectral sequence of a continuous function

Let f be a continuous function from a space Y to a space X. We assume given in Y an
cofilter Ψ of closed subsets. For every open subset U ⊆ X, let Ψ(U) be the cofilter of
closed subsets in f−1(U) formed from the A ⊆ f−1(U) such that for every x ∈ U there is a
neighborhood V ⊆ U of x such that the closurer of A∩ f−1(V ) belongs to Ψ. In particular,
Ψ(X) denotes a cofilter of closed subsets of Y . Let F be a sheaf of abelian groups on Y .
For every open U ⊆ X, we consider the group ΓΨ(U)(f

−1(U), F ). It is easy to verify that
for the functions with obvious restrictions (relative to inclusions V ⊆ U), these groups form
a sheaf on X, denoted f(F ) and called the direct image of F by f relative to Ψ. If Ψ is
the family of all closed subsets of Y , we simply write f∗(F ) instead of fΨ(F ), and f∗(F ) is
called the direct image of F by f . Moreover, in this case, Ψ(U) is the set of all the closed

rTranslator’s note: The French word was “adhérence”, not “fermeture”.
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subsets of the space f−1(U), therefore Γ(U, f∗(F )) = Γ(f−1(U), F ) (which also makes sense
even if we assume only that F is a sheaf of sets). By definition we have, in the general case:

Γ(U, f(F )) = ΓΨ(U)(f
−1(U), F )

We readily verify the formula

suppX(φ) = cl(f(suppY φ))

for every φ ∈ Γ(fΨ(F )) = ΓΨ(X)(F ) (for which we consider the supports in X and in Y ,
which we distinguish in the notation by putting the name of the space as a subscript to
the supp). Now let Φ be an cofilter of closed subsets in X. We denote by Ψ′ the cofilter of
those closed subsets A of Y which are in Ψ(X) and are such that the closure of f(A) is in
Φ. Then the preceding formulas imply the formula:

ΓΦ(fΨ(F )) = ΓΨ′(F )

(The families Φ and Ψ are called adapted (relative to f) if we have Ψ = Ψ′. This is the
case, for example, if Φ and Ψ consist of all the closed subsets of X, respectively Y .)

fΨ is a left exact functor from the category CY of abelian sheaves on Y to the category
CX ; moreover, the preceding formula denotes a natural equivalence. We can write it

ΓΨ′ = ΓΦfΨ

We wish to apply Theorem 2.4.1 to this. To do so, it is necessary to give the conditions by
which fΨ transforms an injective sheaf into a ΓΦ-acyclic sheaf.

3.7.1 Lemma. 1. If Ψ is the set of all closed subsets of Y , fΨ transforms injective sheaves
into injective sheaves.

2. If Φ is paracompactifying, fΨ transforms flabby sheaves into Φ-soft sheaves.

Proof. 1. We assume that F is injective. For every y ∈ Y , let M(y) be an injective abelian
group containing F (y) and let M be the product sheaf defined by the M(x) (cf. 3.1). F is a
subsheaf of M and thus a direct factor of M since it is injective, therefore fΨ(F ) is a direct
factor of fΨ(M), and it is sufficient to prove that fΨ(M) is injective. For every x ∈ X,
let N(x) be the product of the M(y) for y ∈ f−1(x). It follows by definition that f(M)
is the product sheaf N defined by the family of N(x). Each N(x) is an injective abelian
group, being a product of injective groups, therefore N is injective (Proposition 3.1.2) and
therefore f(M) is injective.

2. Assume that F is flabby. We will prove that fΨ(F ) is Φ-soft. Let g be a section of
fΨ(F ) over B ∈ Φ. We are looking for an h ∈ ΓΦ(fΨ(F )) = ΓΨ′(F ) s whose restriction to

sTranslator’s note: The first character on the subscript to Γ was missing, but Ψ′ appears later and we
are guessing that this formula defines it.
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B is g. Since Φ is paracompactifying, B has a paracompact neighborhood B′ ∈ Φ, thus g
is the restriction of a section g′ of fΨ(F ) defined on an appropriate neighborhood U ⊆ B′

of B. Since B′ is normal, there is a closed neighborhood B1 of B contained in U ; let U1

be its interior. We consider g′ to be an element of ΓΨ(U)(f
−1(U), F ). Its support A is a

closed subset of f−1(U), therefore A ∩ f−1(B1) is a closed subset of Y , and therefore its
complement in Y is open. Since the intersection of this open set with the open set f−1(U1)
is contained in {A, g′y = 0, there is a section g1 of f on the open set that is the union of
f−1(U1) and {(A∩f−1(B1)) which coincides with g′ on the first and vanishes on the second.
Finally, since F is flabby there is a section h of F on Y that induces g1. The support of h
is contained in A ∩ f−1(B1), whence it follows immediately that it is Ψ′. Therefore h can
be considered to be an element of ΓΦ(fΨ(F )), obviously inducing on U1 the same section
as g′, and consequently inducing g on B.

It follows from the corollary to Proposition 3.3.1 that in each of the conditions of Lemma
3.7.1, we can apply Theorem 2.4.1 to the composite functor ΓΨ′ = ΓΦfΨ: there is a co-
homological spectral functor on CY converging to the graded functor (Hn

Ψ′(Y, F )), whose
initial term is

Ep,q2 = Hp
Φ(X, (RqfΨ)(F ))

It remains to make the sheaves (RqfΨ)(F ) explicit. In general:

3.7.2 Lemma. Let T be a covariant functor from an abelian category C to the category CX

of abelian sheaves on X. We assume that every object of C is isomorphic to a subobject of
an injective such that the right derived functors RqT exist. Then for every A ∈ C, the sheaf
RqT (A) can be identified with the sheaf associated (cf. 3.1) with the presheaf that associates
to every open set U ⊆ X, Rq(ΓUT )(A) (where ΓU denotes the functor F 7→ Γ(U,F ) on
CX).

Let C(A) be the complex associated to a right resolution of A by injectives; we thus
have RqT (A) = Hq(T (C(A))). The qth cohomology sheaf of the complex of sheaves K =
(Ki) is none other than the sheaf associated to the presheaf that associates the group
H i(Γ(U,K)) to the open set U . Thus RqT (A) is the sheaf associated to the presheaf
U 7→ H i(Γ(U, T (C(A)))) = Rq(ΓUT )(A), which proves the lemma.

In the present case T = fΨ, we see that RqfΨ(F ) is the sheaf associated to the presheaf
U 7→ Rq(ΓUfΨ)(F ) = RqΓΨ(U)(F ). We have already noted, as an immediate consequence
of Proposition 3.1.3, that the derived functors of ΓΨ(U)(f

−1(U), F ) are none other than the
Hq

Ψ(U)(f
−1(U), f). We thus obtain:

3.7.3 Theorem. Let f be a continuous function from a space Y to a space X. We
assume that X and Y are equipped with cofilters Φ and Ψ, respectively, of closed subsets.
The notation Ψ(U), fΨ, and Ψ′ are the same as at the beginning of this section. We assume
that Φ is paracompactifying or that Ψ is the set of all closed subsets of Y . Then there is a
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cohomological spectral functor on the category CY of abelian sheaves F over Y , converging
to the graded functor (Hn

Ψ′(Y, F )) whose initial terms is

Ep,q2 (F ) = Hp
Φ(X,RqfΨ(f))

In this formula, RqfΨ(F ) is the sheaf over X associated to the presheaf that associates the
group Hq

Ψ(U)(f
−1(U)F ) to the open set U in X.

The simplest case is the one in which Φ and Ψ are the sets of all closed subsets of X
and Y , respectively. Then, without any assumptions about X, Y , or f , we find a spectral
functor converging to (Hn(Y, f)) whose initial term is Hp(X,Rqf(F )), where Rq(f)(F ) is
the sheaf associated to the presheaf U 7→ Hq(f−1(U), F ). This statement can be usefully
applied, for example, in the cohomology theory of algebraic varieties (equipped with their
Zariski topology).

We will limit ourselves here to this statement of the natural validity conditions of the
Leray spectral sequence, which we will not study any further.

3.8 Comparison with Čech cohomology

We refer to [15] for the definition of “cohomology groups” of X with coefficients in an
abelian sheaf F , calculated using the method of Čech covers. We will denote these groups by
Ȟp(X,F ) to distinguish them from the groups Hp(X,F ) defined in Section 2. (To simplify,
we will not consider any “Φ-family” other than the set of all closed sets.) We note, however,
that these groups can be defined by assuming only that F is a presheaf of abelian groups:
for every open cover U = (Ui) of X, we can form the complex C(U, F ) =

∑
pC

p(U, F ) of
the cochains of U with values in the presheaf F and we can set Hp(U, F ) = Hp(C(U, F )),
and then take

Ȟp(X,F ) = lim // H
p(U, F )

with the inductive limit taken over the filtered partial order of all “classes of open covers”
of X (two open covers being considered equivalent if each refines the other).

Unfortunately, the Ȟp(X,F ) do not in general form a cohomological functor on the
category CX of sheaves of abelian groups over X (see the example at the end of this section).
But (Ȟ0, Ȟ1) forms an exact ∂-functor, [15, 11]. In addition, the Ȟp are effaceable functors
for p > 0: for this, it is sufficient to show, for example, that if M is the product sheaf
defined by a family (Mx)x∈X of abelian groups (cf. Section 1), then the Ȟp(X,M) vanish
for p > 0. In fact, we even prove Hp(U,M) = 0 for every open cover U of X, using the
well-known homotopy operator, employed classically in the case that M is fine and X is
paracompact. It follows that, if X is such that the Ȟp can be considered as the components
of a cohomological functor, then the Ȟp are canonically isomorphic to the functors Hp. This
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is true if X is paracompact (cf., for example [15, Section 25]) or if X arbitrary, but then it
holds only for p = 0 and p = 1 (as we have already remarked in Section 4).

More specific results are connected to the Cartan-Leray spectral sequence of a cover, as
was pointed out to me by H. Cartan (whose idea I am borrowing). Let U be a fixed open
cover of X. We set C(F ) = C(U, F ) for every sheaf F . We thus obtain a left exact covariant
functor from C = CX to the category C′ of complexes of abelian groups of non-negative
degree. Moreover, we have seen that the Hp(C(F )) are effaceable. We easily derive from
this a spectral functor converging to the right derived functor R(H0C) of the functor H0C
whose initial term is Ep,q2 = Hp(RqC). We can see this either directly by taking an injective
resolution of F ∈ C and looking at the spectral sequences of the bicomplex obtained by
transforming this resolution by C or, even better, by remarking that if we consider H0(K)
to be a left exact covariant functor on C′ (with values in the category of abelian groups),
its right derived functors are the Hp(K), so that our spectral sequence is simply a special
case of Theorem 2.4.1. Of course, (RqC)(F ) is the complex whose components are the
(RqCp)(F ) if the Cp are the components of C. In the case we are interested in, the RpCq

remain to be specified. By virtue of

CpF =
∏
σp

Γ(Uσp , F )

(with the product extended to all sequences σp = (i0, . . . , ip) of the p+1 indices of the cover
U = (Ui)i∈I), we readily see that

RqCp(F ) =
∏
σp

Rq(Γ(Uσp , F ))

If V is an open subset of X, the right derived functors of the functor Γ(V, F ) = Γ(F |V )
can be easily specified thanks to the fact that the restriction functor F 7→ F |V from CX

to CV is exact and transforms injectives into injectives (Proposition 3.1.3): we will have
Rq(Γ(V, F )) = (RqΓV )(V |F ) = Hq(V, F ). Thus we can denote by Hq(F ) the presheaf on
X whose value on an open set V is Hq(V, F ). We then have

RqCp(F ) =
∏
σp

Γ(Uσp , H
q(F )) = Cp(U, Hq(F ))

Of course, the boundary operator on RqC(F ) = ΣpR
qCp(F ) is the one on C(U, Hq(F )),

from which we finally have Ep,q2 (F ) = Hp(U, Hq(F )). As for the convergence of the spectral
sequence, it is the right derived functor of H0C(F ) = Γ(X,F ), i.e. the functor (Hn(X,F ))
whence:

3.8.1 Theorem. Let X be a topological space equipped with an open cover U. Then there
exists a cohomological spectral functor on the category CX of sheaves of abelian groups over
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X, converging to the graded functor (Hn(X,F )) whose initial term is

Ep,q2 = Hp(U, Hq(F ))

where Hq(F ) denotes (for every sheaf F ∈ CX) the presheaf V 7→ Hq(V, F ) over X.

We will note that this spectral sequence is constructed without any hypothesis of para-
compactness of X or local finiteness on U. The preceding spectral sequence gives natural
transformations

Hp(U, F ) //Hp(X,F )

and also:

Corollary 1. The preceding natural transformations are equivalences if all the Ui0,...,ip
t

are F -acyclic (that is they satisfy Hp(Ui0,...,ip , F ) = 0 for p > 0).

We restrict ourselves now to the cover U = (Ux)x∈X indexed by the points x ∈ X such
that x ∈ Ux for every x ∈ X; we order them by writing U ≤ U′ if Ux ⊆ U ′x for all x. If CU

and CU′ are the corresponding functor-complexes on CX , we have a natural transformation
CU

//CU′ from which we get a natural transformation between the corresponding spectral
functors. An immediate passage to the inductive limit gives:

Corollary 2. Let X be an arbitrary topological space. There exists a spectral functor
on the category CX of sheaves of abelian groups on X, converging to the graded functor
(Hn(X,F )), whose initial term is given by

Ep,q2 (F ) = Ȟp(X,Hq(F ))

(Hq(F ) being the presheaf defined in Theorem 3.5.1). We have

E0,q
2 (F ) = 0, for q > 0

This last formula results from the definition of H0(X,Hq(F )) and from the following
result:

3.8.2 Lemma. Let U be a neighborhood of x and let cq ∈ Hq(U,F ). Then there exists a
neighborhood V ⊆ U of x such that the image of cq in Hq(U,F ) vanishes.

To see this it suffices to take an injective resolution of F |U , with C being the corre-
sponding complex, and to represent cq by an element of Hq(Γ(U,C)), defined by a cocycle
z ∈ Γ(U,Cq); in accordance with the acyclicity of C in dimension q, the restriction of
z to an appropriate neighborhood V of x is a coboundary, whence the result. We also

tTranslator’s note: This notation has not appeared before; it seems likely that he means that Ui0,i1,...,ip =⋂
Uij .
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note that C|V is an injective resolution of F |V by virtue of Proposition 3.1.3, and thus
Hq(V, F ) = Hq(Γ(C|V )).

The spectral sequence of Corollary 2 gives natural transformations

Ȟp(X,F ) //Hp(X,F )

and the formula E0,1
2 = 0 shows that:

Corollary 3. The preceding natural transformations are equivalences if p = 0 or 1 (which
we already knew) and monomorphisms if p = 2.

We recall, moreover, that if X is paracompact then Ȟp = Hp and, more precisely, the
canonical natural transformations above are then equivalences. In effect, we show in this
case (thanks to the fact that the sheaf associated to the presheaf Hq(F ) vanishes when
q > 0) that Ep,q2 = 0 for q > 0; cf. [9].

Corollary 3 can be generalized as follows: if Ȟp(X,Hq(F )) = 0 for 0 < q < n, then the
natural transformation Ȟ i(X,F ) //H i(X,F ) is an equivalence for i ≤ n and a monomor-
phism for i = n+ 1. From this we infer (with H. Cartan):

Corollary 4. Let U be a set of open sets forming a base for the topology of X. Let F be an
abelian sheaf on X such that, for every non-empty sequence (U1, . . . , Uk) of open sets of U,
their intersection U satisfies Ȟ i(U,F ) = {0} for i > 0. Then we also have H1(U,F ) = {0},
and for every open subset V of X, the natural transformation Ȟ i(V, F ) = H i(V, F ) is an
equivalence.

It is sufficient to prove that H i(U,F ) = {0} since V admits arbitrarily fine covers R by
open sets from U, and we conclude from Corollary 1 that for such an R the homomorphism
Ȟ i(R, F ) //H i(V, F ) is an isomorphism, which proves at the same time (R being arbitrarily
fine) that Ȟ i(V, F ) //H i(V, F ) is an isomorphism. To prove H i(U,F ) = {0} we prove by
induction on n that H i(U,F ) = {0} for 0 < i ≤ n and for every U as described. This
is trivial if n = 0. We assume n ≥ 1 and that the statement holds for n′ = n − 1.
There are arbitrarily fine covers R of U by open sets from U; for such an R, we have
C(R, Hq(F )) = 0 for 0 < q < n by induction, a fortiori, Hp(R, Hq(F )) = 0 for such q,
whence Ȟp(U,Hq(F )) = 0 for such U , which, by virtue of the paragraph preceding Corollary
4, implies that Hn(U,F ) = Ȟn(U,F ), which is zero.

Corollary 4 applies, for example, to the case that X is an algebraic variety equipped
with its Zariski topology, U is the set of affine open sets in X and F is a coherent algebraic
sheaf over X [15]. According to [15], the affine open sets form a basis for the topology of X,
and the intersection of two affine open sets is an affine open set. If U is an affine open set,
we have Ȟ i(U,F ) = 0 for i > 0. Thus we have H i(X,F ) = Ȟ i(X,F ); moreover, Corollary
1 above shows that we can calculate the H i(X,F ) using a single arbitrarily chosen cover of
X by affine open sets.



3.8. COMPARISON WITH ČECH COHOMOLOGY 61

Remark. There are other cases besides the one in Theorem 3.8.1 in which the Leray spectral
sequence is valid. The best known is the case of a locally finite cover of X, assumed to be
paracompact, by closed sets (the case assumed by Leray); the simplest way to treat it is
as above for open covers, thanks to the fact that the restriction of a soft sheaf to a closed
subset is still a soft sheaf (replacing Proposition 3.1.3). Another case, handled by Godement
using a different method, is that of a finite cover of X by closed sets (without assuming
paracompactness). When both hypotheses hold, the two spectral sequences fortunately
coincide.

3.8.3 Example. To conclude this section, we will describe a simple example in which the
monomorphism Ȟ2(X,F ) //H2(X,F ) is not an isomorphism, and in which we even have
Ȟ2(X,F ) = 0 and H2(X,F ) 6= 0. Since we can infer from Corollary 2 of Theorem 3.8.1 an
exact sequence

0 // Ȟ2(X,F ) //H2(X,F ) // Ȟ1(X,H1(F )) // 0

it suffices to show a case in which H2(X,F ) 6= 0 and H2(X,F ) // Ȟ1(X,H1(F )) is an
isomorphism.

Let X be an irreducible space (cf. end of 3.3), Y1 and Y2 be two irreducible closed
subsets of X which meet at exactly two points x1 and x2 (for example, two intersecting
circles in the plane equipped with the Zariski topology), and Y be their union. By abuse
of notation, we denote by Z the constant sheaf of integers over X, and we consider, using
the notation of 3.5, the exact sequence of sheaves

0 // Z{Y
// Z // ZY // 0

We claim that the sheaf F = Z{Y satisfies the desired conditions. First, since Hp(X,Z) = 0
for p > 0 according to the end of 3.3, we have H2(X,Z{Y ) = H1(X,ZY ) = H1(Y,Z). We
show that this group is not 0, and specifically that it is isomorphic to Z. In fact, we have a
natural monomorphism from the constant sheaf Z over Y to the direct sum of the sheaves
ZY1 and ZY2 , from which we have an exact sequence of sheaves over Y :

0 // ZY // (ZY1 ⊕ ZY2) // ZY1∩Y2
// 0

Since Yi is irreducible, we have Hp(Y,ZY1) = Hp(Yi,Z) = 0 for p > 0, from which we get
H1(Y,Z) = Γ(ZY1∩Y2)/ Im(Γ(ZY2)). This is the cokernel of the homomorphism of groups
Z2 // Z2 given by (n1, n2) 7→ (n1 − n2, n1 − n2), that is, a group isomorphic to Z from
which we get

H2(X,Z{Y ) = H1(X,Z) = Z

It remains to be proved that Ȟ1(X, Ȟ1(Z{Y )) is isomorphic to Z (since, given the preceding
relation, the epimorphism Ȟ2(X,F ) //H1(X,H1(F )) will necessarily be an isomorphism).
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We calculate H1(Z{Y ); for any open set V , H1(V,Z{Y ) can be calculated using the following
exact sequence of sheaves over V :

0 // Z{Y
// Z // ZY ′ // 0

in which we have set Y ′ = Y ∩ V . Since V is also irreducible, we see H1(V,Z{Y ) =

H0(Y ′,Z)/ ImH0(V,Z) = H
0
(Y ′,Z) where the last group denotes the reduced integer co-

homology group in dimension 0, which here is the free abelian generated by the connected
components of Y ′ modulo the diagonal subgroup. Here Y ′ = Y ∩ V is an open subspace of
Y = Y1 ∪ Y2, and thus has 0, 1, or 2 connected components, the last case arising exactly
in the case that V meets both Y1 and Y2 without meeting their intersection; thus we have
H1(V,Z{Y ) = 0, except in that last case.

To calculate H1(X,H1(F )) = lim // H
1(U, H1(F )), we can restrict ourselves to the covers

U = (Ux)x∈X such that each Ux meets at most one of the two closed sets Y1 and Y2, except if
x is one of the two points x1 or x1 of Y1∩Y2, in which case we assume it does not contain the
other. For such a U we immediately see that C0(U, H1(F )) = 0, therefore H1(U, H1(F ))
is identified with the group Z1(U, H1(F )) of the 1-cocycles of U with coefficients in H1(F ),
or (fx,y)x,y∈X . But we have Γ(Ux ∩Uy, H1(F )) = 0 unless x = x1 and y = x2 or vice versa.
From this we have C1(U, H1(F )) ∼= Z2, and we readily see that the cocycles are identified
with the pairs (n,−n), where (n = fx1,x2). We thus have H1(U, H1(F )) = Z whence we
see immediately that at the limit Ȟ1(H1(F )) = Z, which completes the proof.

3.9 Acyclicity criteria by the method of covers

Let X be a topological space and S be a non-empty set of subsets of X. For every A ∈ S
we assume given a non-empty set R (A) of covers R(A) by sets from S and their finite
intersections. We assume that if B ∈ R ∈ R (A), then the trace RB of R on B belongs to
R (B). We assume, in addition, that we have one of the three following conditions (which
allow us to write the Leray-Cartan spectral sequence for each of the covers R ∈ R (A) with
A ∈ S): (1) the A ∈ S are open; (2) the A ∈ S are closed and the covers R ∈ R (A) are
finite; (3) the A ∈ S are closed, X is paracompact, and the R ∈ R (A) are locally finite.

3.9.1 Theorem. Under the preceding conditions, we assume given an abelian sheaf F over
X and a natural number n ≥ 0. We assume that the following conditions are satisfied:

A(n): H i(R, F ) = 0 for 1 ≤ i ≤ n and every R ∈ R (A), A ∈ S .
B(n−1): For every A ∈ S , every ci ∈ H i(A,F ) (with 1 ≤ i ≤ n−1) there exists a finite

subset L of R (A) such that if RL denote the “intersection” cover of the covers R ∈ L, the
restriction of ci to any set B ∈ RL vanishes.

Under these conditions, for every A ∈ S , we have H i(A,F ) = {0} for 1 ≤ i ≤ n − 1,
and if cn ∈ Hn(A,F ), then cn = 0 if and only if we can find a finite subset L of R (A) such
that the restriction of cn to any B ∈ RL is zero.



3.9. ACYCLICITY CRITERIA BY THE METHOD OF COVERS 63

We state right away the most interesting corollaries:

Corollary 1. Using the notation of Theorem 3.9.1, in order for H i(A,F ) = {0} for every
A ∈ S and 1 ≤ i ≤ n, it is necessary and sufficient for conditions A(n) and B(n) to be
satisfied.

The sufficiency results immediately from the theorem. Conversely, we assumeH i(A,F ) =
{0} for A ∈ S and 1 ≤ i ≤ n. Then B(n) is trivially proved. We prove A(n) as follows.
The Leray spectral sequence for the cover R(A) (Theorem 3.8.1 Remark 3.8.2) converges
to H∗(A,F ) and has as its initial term Ep,q2 = Hp(R, Hq(F )), which is zero if 1 ≤ q ≤ n,
since C(R, Hq(F )) = 0 for those values of q (since the finite intersections of sets in R
belong to S). Classically we can conclude that H i(A,F ) = H i(R, F ) for 0 ≤ i ≤ n, whence
H i(R, F ) = 0 for such i.

Corollary 2. Assume (using the notation of 3.9.1) that for every A ∈ S and every open
cover of A, we can find a finer cover of the form RL, where L is a finite subset of R (A).
Then for H i(A,F ) = {0} for every A ∈ S and 1 ≤ i ≤ n, it is necessary and sufficient that
H i(R, F ) = 0 for every R ∈ R (A) where A ∈ S and 1 ≤ i ≤ n.

Condition B(n) is proved (for any n > 0) using Lemma 3.8.2, thus it suffices to apply
Corollary 1.

Corollary 3. Suppose the preliminary condition of the preceding corollary is satisfied.
Assume in addition that the nerves of the covers R ∈ R (A) have dimension at most n.
Then the equivalent conditions of the preceding corollary imply H i(A,F ) = 0 for A ∈ S and
every i > 0.

We automatically have H i(R, F ) = 0 for R ∈ R (A) and i > n, thus for every i, i.e.
condition A(m) will be proved for ( every) m, so it is sufficient to apply the corollary with
sufficiently large m.

Proof. of Theorem 3.9.1. We will proceed by induction on n. Since the result is trivial
when n = 0, we assume that n ≥ 1 and we also assume the theorem holds for integers less
than n. From the induction hypothesis, H i(A,F ) = {0} for 1 ≤ i ≤ n − 1, so it remains
to prove the vanishing of cn ∈ Hn(A,F ) under the condition that there is a finite subset L
of R (A) such that the restriction of cn to every B ∈ RL is zero. Let k be the number of
elements of L, we proceed by induction on k. The conclusion is trivial if k = 0; we prove
it for k = 1. By assumption, there is an R ∈ R (A) such that the restriction of cn to every
B ∈ R vanishes. Since the B ∈ R are in S , we have H i(B,F ) = {0} for 1 ≤ i ≤ n− 1, then
the term Ep,q2 of the Leray spectral sequence relative to R vanishes for 1 ≤ q ≤ n− 1. We
classically derive an exact sequence Hn(R, F ) //Hn(A,F ) //H0(R, Hn(F )) // · · ·. Since
the first time vanishes as a result of A(n), the second homomorphism is injective, therefore
by assumption the image of cn under the latter homomorphism vanishes and hence cn = 0.
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We now assume k ≥ 2 and the that the conclusion holds for integers less than k. Let
L = (R1, . . . ,Rk). It suffices to prove, as we have seen, that the restriction cnB of cn to
every B ∈ R1 vanishes. Now for i = 2, . . . , k, the restriction Ri

B of Ri to B belongs to
R (B); moreover, the restriction of cnB to any set belonging to the intersection of the covers
Ri
B (2 ≤ i ≤ k) vanishes by assumption on cn. Applying our induction hypothesis, for k−1,

to cnB and to B, we find that cnB = 0, which completes the proof of the theorem.

3.9.2 Proposition. The preliminary assumption of Corollary 2 is satisfied in the follow-
ing case: X is quasi-compact, the A ∈ S are closed, X ∈ S , the R ∈ R (X) are finite, and
for two distinct points x, y ∈ X, there exists a R ∈ R (X) no element of which contains both
x and y.

(We will say that a space is quasi-compact if it satisfies the axiom of open covers of
compact spaces, without necessarily being separated.u)

Proof. For a cover R of X and x ∈ X we denote by Ex(R) (star of R on x) the union of
the A ∈ R that contain x. Let Ox(R) be the complement of the union of the A ∈ R that do
not contain x. We thus have x ∈ Ox(R) ⊆ Ex(R); moreover, for every y ∈ Ox(R) we have
Ey(R) ⊆ Ex(R). If R is a finite cover of X by closed sets, Ox(R) is an open neighborhood
of x. Under the conditions of the proposition, let U be an open cover of X, let x ∈ X,
and Ux ∈ U with x ∈ Ux. The intersection of the Ex(R) for R ∈ R (X) is, by assumption,
reduced to x, and from this we conclude, by quasi-compactness, that there is a finite subset
Lx of R (X) such that the intersection of the Ex of R, for R ∈ Lx, i.e. Ex(RLx), is contained
in Ux. The Ox(RLx) form an open cover of X, therefore there is a finite set Y ⊆ X such
that the Ox(RLx) corresponding to the x ∈ Y cover X. Let L be the union of the Lx for
x ∈ Y . We claim that the cover RL of X is finer than U. Let A ∈ RL be non-empty and
a ∈ A. There exists x ∈ Y such that a ∈ Ox(RLx), whence Ea(R

Lx) ⊆ Ex(RLx) ⊆ Ux,
and, a fortiori, A ⊆ Ea(R

L) ⊆ Ea(R
Lx) ⊆ Ux, a fortiori A ⊆ Ea(R

L) ⊆ Ea(R
Lx) ⊆ Ux

which establises our claim. Applying this result, for every A ∈ S to the set of covers of A,
induced by the covers R ∈ R (X), the desired conclusion follows.

The most striking application of Corollary 3 is the one in which X is the compact cube
0 ≤ xi ≤ 1 of Rm with S the family of compact cubes A of the type ai ≤ xi ≤ bi ⊆ X,
R (A) being the family of covers of A defined by hyperplanes parallel to the coordinate
hyperplanes. To show that H i(A,F ) = 0 for i > 0 and every A, it suffices to show that for
every A and every section f ∈ F over A1 ∩ A2, we have f = f1 − f2, where fi is a section
of F on Ai. This is the reduction performed by H. Cartan in his proof of the fundamental
theorems on Stein varieties [5].

Remark. If n = 1, Theorem 3.9.1 is still meaningful and can easily be proved directly
if we assume that F is a sheaf of not necessarily abelian groups. This makes it possible to

uTranslator’s note: “Quasicompact” is what everybody who has not been polluted by Bourbaki calls
“compact”.
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simplify the proof of the theorem [5, Chapter XVII] on invertible holomorphic matrices.

3.10 Passage to the limit in sheaf cohomology

We will give only two results of this type (one of which we will use in Chapter 5, Section
7), special cases of the following general result in homological algebra:

3.10.1 Proposition. Let C and C′ be abelian categories. We assume that every object of
C is isomorphic to a subobject of an injective, and that C′ satisfies Axiom AB 5) (cf. 1.5),
which in particular makes it possible to take inductive limits in C′ (cf. Proposition 1.8). Let
(Fi)i∈I be an inductive system of covariant additive functors from C to C′. Let F = lim // Fi

be the inductive limit functor of the Fi, defined by F (A) = lim // Fi(A) for every A ∈ C. The

homomorphisms Fi //F define natural transformations of ∂-functors (RpFi) //RpF from
which we derive a natural transformation of ∂-functors

(3.10.1) lim // R
pFi(A) //RpF (A)

(the coboundary homomorphisms for the sequence of functors lim // R
pFi are defined as the

inductive limit of the coboundary homomorphisms relative to the RpFi). The natural trans-
formations (3.10.1) are equivalences.

To see this, it suffices to take an injective resolution C = C(A) of A. Then the left hand
side of (3.10.1) is lim // H

p(FiC(A)) and the right side is Hp( lim // FiC(A)). They are thus

isomorphic since the functor lim // on the category of inductive systems on I with values in C′

is exact (Proposition 1.8) and, in particular, commutes with taking homology of complexes.

Corollary 1. Let X be a space equipped with a paracompactifying family Φ. Then we
have, for every abelian sheaf F on X,

Hp
Φ(X,F ) = lim

U
// H

p(X,FU )

the inductive limit taken over the set of open sets U ∈ Φ directed by containment. (FU
denotes the sheaf over X whose restriction to U is F |U and to {U is zero.)

By Theorem 3.5.1 we haveHp(X,FU ) = Hp
ΦU

(U,F ), where ΦU is the set of closed subsets

of U . Setting ΓΦU (F ) = H0(X,FU ), we can also write Hp(X,FU ) = RpΓΦU (F ) (using
Proposition 3.1.3), from which we have by Proposition 3.10.1: lim // H

p(X,FU ) = RpΓΦ(F ),

since lim // ΓΦU (F ) = ΓΦ(F ). Q.E.D.

The preceding corollary can be useful for reducing the cohomology with “support in Φ”
to cohomology with arbitrary support and was pointed out to me by H. Cartan.
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Corollary 2. Let X be a topological space and Y be a subspace of X admitting a basis of
paracompact neighborhoods (it suffices, for example, that X be metrisable or locally compact
paracompact). Then for every abelian sheaf F over X, we have

Hp(Y, F ) = lim // H
p(U,F )

the limit taken over the decreasing directed set of open neighborhoods U ⊆ Y .

In fact, this follows from the assumption that H0(Y, F ) = lim // H
0(U,F ) [11, 2.2.1]. The

derived functors of F 7→ H0(U,F ) are the Hp(U,F ) so that Corollary 2 is a special case of
the proposition. We should note that we also have H0(Y, F ) = lim // H

0(U,F ) and therefore

Corollary 2 follows if Y is closed and is contained in a single paracompact neighborhood (a
proof analogous to the one in [11]); in loc. cit. we also find a simple counter-example (with
p = 0) for the case in which no hypothesis of paracompactness is made.

By way of completeness, we indicate the following result without proof, a special case
of general results on projective systems. Let X be a locally compact space. We consider
the increasing directed set of the relatively compact open subspaces U of Xv. Then for
every abelian sheaf F over X, the restriction homomorphism Hp(X,F ) //Hp(U,F ) define
canonical homomorphisms (which are obviously natural transformations of ∂-functors):

(3.10.2) Hp(X,F ) // limoo Hp(U,F )

which are obviously bijective for p = 0.

3.10.2 Proposition. Suppose that the locally compact space X is σ-compact w. Then the
homomorphisms 3.10.2 (where the projective limit is taken over the increasing directed set
of relatively compact open subspaces U ∈ X) are surjective. If p > 1, in order that it to be
bijective, it is sufficient that for every relatively compact open subspace U , there exist another
V ⊇ U such that for every relatively compact open subset W ⊇ V , the image in Hp−1(U,F )
of Hp−1(W,F ) by the restriction homomorphism is identical to that of H(p−1)(V, F ). If
p = 1, for the homomorphism H1(X,F ) // limoo H1(U,F ) to be bijective, it suffices to

equip H0(U,F ) with topologies of complete metrizable topological groups in such a way that
the restriction homomorphisms are continuous, and that for every relatively compact open
subset U there exists V ⊇ U such that for every relatively compact subset W ⊇ V , the image
of H0(W,F ) in H0(U,F ) is dense in the image of H0(V, F ).

vTranslator’s note: This means that their closures are compact
wTranslator’s note: The original phrase, “d’énombrable à l’infini” was unknown to us. We thank Jonathan

Chiche for pointing out the reference to the paper Cohomologies à coefficients dans un faisceau by Michel
Zisman, available at http://archive.numdam.org/ARCHIVE/SD/SD_1957-1958__11_1/SD_1957-1958__11_

1_A8_0/SD_1957-1958__11_1_A8_0.pdf. Theorem 4.1 of that paper says that a locally compact space that
is ‘dénombrable à l’infini’ [i.e. σ-compact] is paracompact.”
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(Of course, in this statement, we could replace relatively compact open subsets by
compact subsets.) This proposition, which can be proved by a process of approximation
à la Mittag-Leffler, is essential, for example, in the proof of the fundamental theorems on
Stein varieties [5]. For p = 1 it remains true if F is a sheaf of not-necessarily abelian groups
taking the form: if the stated approximation condition (in the case p = 1) holds, every
element of the left hand side of 3.10.2 whose image is the identity element is the identity.x

xTranslator’s note: This seems to be an especially obscure way of saying that the homomorphism of
3.10.2 is injective.



Chapter 4

Ext of sheaves of modules

4.1 The functors HomO(A,B) and HomO(A,B)

Let X be a topological space equipped with a sheaf O of unital rings, and let CO be the
abelian category of left O-modules over X (cf. 3.1). If A and B are two O-modules, we
denote by HomO(A,B) the group of O-homomorphisms of A to B (this group is, in fact, a
module over the center of Γ(O)). If U is an arbitrary subset of X, we set

HomO(U ;A,B) = HomO|U (A|U,B|U)

(where F |U denotes, as usual, the restriction of the sheaf F to U). Of course, if V ⊆ U ,
we have a natural homomorphism HomO(U ;A,B) //HomO(V ;A,B), and we can readily
see that if we restrict ourselves to open subsets U ⊆ X, the groups HomO(U ;A,B) form a
sheaf on X denoted HomO(A,B). Thus we have, by definition

(4.1.1) Γ(U,HomO(A,B)) = HomO(U ;A,B)

and specifically, if we set U = X:

(4.1.2) HomO(A,B) = Γ(HomO(A,B))

Moreover, HomO(A,B) can also be considered a sheaf of modules over the center O\ of O.

Recall that HomO(A,B) is a left exact additive functor in both arguments A,B ∈ CO

with values in abelian groups. We conclude from this that HomO(A,B) can also be regarded
as a left exact functor in the two arguments A,B ∈ CO with values in the category CX

of abelian sheaves over X (or even with values in the category CO\
). As usual, all the

homomorphisms we will write will be “natural”. This section gives some auxiliary properties
of the desired functors as a preliminary to the study of their derived functors.

68
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Let A,B ∈ CO and x ∈ X. For every open subset U containing x, there is an obvious
homomorphism HomO(U ;A,B) // HomO(x)(A(x), B(x)) from which, by passing to the
inductive limit over the open neighborhoods of x, we get a natural homomorphism

(4.1.3) HomO(A,B)(x) //HomO(x)(A(x), B(x))

which we are going to study. We say that A is of finite type at x if we can find an open
neighborhood U of x such that A|U is isomorphic to a quotient of (O|U)n for some finite
integer n > 0. A is said to be pseudo-coherenty at x if we can find an open neighborhood U
of x, and over U an exact sequence of homomorphisms Om //On //A //0 (where m and
n are finite integers > 0).z We say that A is of finite type, respectively pseudo-coherent,
if it is so at every point. Thus:

4.1.1 Proposition. The homomorphism (4.1.3) is a monomorphism if A is of finite type
at x and an isomorphism if A is pseudo-coherent at x.

Suppose that A is of finite type at x. Then by restricting ourselves as necessary to a
suitable open neighborhood of x, we have an exact sequence On // A // 0, from which
we get an exact sequence 0 // HomO(A,B) // HomO(On, B) and an exact sequence
On(x) //A(x) // 0, and whence an exact sequence

0 //HomO(x)(A(x), B(x)) //HomO(x)(O
n(x), B(x))

From this we deduce a homomorphism of exact sequences

0 HomO(x)(A(x), B(x))//

0

0

0 HomO(A,B)(x)// HomO(A,B)(x)

HomO(x)(A(x), B(x))
��

HomO(x)(A(x), B(x)) HomO(x)(O
n(x), B(x))//

HomO(A,B)(x)

HomO(x)(A(x), B(x))
��

HomO(A,B)(x) HomO(x)(O
n, B)(x)// HomO(x)(O
n, B)(x)

HomO(x)(O
n(x), B(x))
��

Now we have HomO(On, B) = HomO(O, B)n = Bn since there is a canonical isomorphism

(4.3.4) HomO(O, B) ∼= B

The groups in the last column of the diagram are thus identified, respectively, with B(x)n

and HomO(x)(O(x), B(x))n = B(x)n, so the last vertical homomorphism is an isomorphism,
from which we readily conclude that the first homomorphism is a monomorphism. Now
suppose that A is pseudo-coherent at x, that is (by restricting ourselves if necessary to a

yTranslator’s note: Now called quasi-coherent
z Translator’s note: These restrictions to positive integers serve no purpose whatever, although they also

cause no harm.
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suitable neighborhood of x), we have an exact sequence Om //On //A // 0. Using the
left exactness of the Hom functors, we derive a homomorphism of exact sequences

0 HomO(x)(A(x), B(x))//

0

0

0 HomO(A,B)(x)// HomO(A,B)(x)

HomO(x)(A(x), B(x))
��

HomO(x)(A(x), B(x)) HomO(x)(O
n(x), B(x))//

HomO(A,B)(x)

HomO(x)(A(x), B(x))
��

HomO(A,B)(x) HomO(On, B)(x)// HomO(On, B)(x)

HomO(x)(O
n(x), B(x))
��

HomO(x)(O
n(x), B(x)) HomO(x)(O

m(x), B(x))//

HomO(On, B)(x)

HomO(x)(O
n(x), B(x))

HomO(On, B)(x) HomO(Om, B)(x)// HomO(Om, B)(x)

HomO(x)(O
m(x), B(x))
��

We have already noted that the last two vertical homomorphisms are bijective, from which
it follows immediately that the first one is an isomorphism.

Now suppose that B is injective in the abelian category CO. Can we conclude from this
that B(x) is an injective O(x)-module? By Lemma 1 of 1.10, it suffices to show that for
any left ideal a of O(x), any O(x) homomorphism from a to B(x) extends to an O(x) ho-
momorphism from O(x) to B(x). Since the restriction of an injective O-module to an open
set is still injective (Proposition 3.1.3), it is sufficient, given a homomorphism a //B(X),
to find an open neighborhood U of x, a submodule A of O|U , and a homomorphism u from
A to B|U such that A(x) = a and such that the homomorphism from A(x) to B(x) defined
by u is the given homomorphism. Moreover, if A is pseudo-coherent at x, the existence of
u follows automatically from Proposition 4.1.1. We then prove:

Lemma 1. Suppose that O is a coherent sheaf of rings [15, Chapter I.2]. Let M be a O-
coherent module (“coherent sheaf of modules” according to the terminology of [15]) and let
n be a submodule of finite type of M(x). Then there exists a neighborhood U of x and a
coherent subsheaf N of M on U such that N(x) = n.

Let (ni) be a finite system of generators of n (1 ≤ i ≤ k). For every i, we have ni ∈M(x)
so that ni = fi(x) where fi is a section of M defined in an open neighborhood of x. We
can assume that all the fi are defined on the same open neighborhood U . Then they define
a homomorphism Ok //M over U . We will take for N the image of this homomorphism,
which is coherent, being a submodule of finite type of the coherent sheaf M . Taking into
account the comments preceding the statement of this lemma, we find:

4.1.2 Proposition. Suppose that O is a coherent sheaf of left Noetherian rings. Then
for every injective O-module B and every x ∈ X, B(x) is an injective O(x)-module.

Finally, we point out:

4.1.3 Proposition. Let A and B be two O-modules. If B is injective, then HomO(A,B)
is a flabby sheaf (cf. 3.3).

In effect, a section of this sheaf over the open set U is identified with a homomorphism
from the O-module AU to B (the notation AU is as in 3.5), therefore (since B is injective)
extends to a homomorphism from A to B, i.e., to a section of HomO(A,B) over every X.
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4.2 The functors ExtpO(X;A,B) and ExtpO(A,B) and the fundamen-
tal spectral sequence.

By virtue of the corollary to Proposition 3.1.1, we can take the derived functors of any
additive covariant functor defined on CO. In particular, this makes it possible to construct
in the usual way the functors Extp(A,B) in CO as right derived functors of the functor
B 7→ Hom(A,B) in CO with values in the category of abelian groups. To avoid notational
confusion, we are going, however, to denote these functors ExtpO(X;A,B) (indicating in the
notation both the space X and the sheaf O of rings). We set, for every subset U ⊆ X:

(4.2.1) ExtpO(U ;A,B) = ExtpO|U (U ;A|U,B|U)

Given Proposition 3.1.3 and the fact that the functor B 7→ B|U is exact, we see that the
ExtpO(U ;A,B) are the right derived functors of the functor B 7→ HomO(U ;A,B) on CO.
The natural transformations HomO(U ;A,B) // HomO(V ;A,B) therefore define transfor-
mations for the right derived functors

(4.2.2) ExtpO(U ;A,B) // ExtpO(V ;A,B), V ⊆ U

thanks to which the system of the ExtpO(U ;A,B), varying over open U , becomes an abelian
presheaf on X, denoted ExtpO(−;A,B).

We can also consider the right derived functors of HomO(A,B) with respect to B;
we denote them by ExtpO(A,B). Here, given Proposition 3.1.3 and the obvious relation
HomO(A,B)|U = HomO|U (A|U,B|U), we find isomorphisms

(4.2.3) ExtpO(A,B)|U ∼= ExtpO|U (A|U,B|U)

(for this reason, we do not bother to specify the ambient space in the notation). Loosely,
the functors ExtpO(A,B) are local (in contrast to the functors ExtpO(X;A,B), which are
essentially “global”). By Lemma 3.7.2, ExtpO(A,B) can also be considered as the sheaf
associated to the presheaf ExtpO(−;A,B) defined above.

The considerations at the end of 2.3 show that the ExtpO(X;A.B), respectively ExtpO(A,B),
form not only covariant cohomological functors with respect to B but also contravariant co-
homological functors with respect to A, thanks to the fact that for injective B, the functors
A 7→ HomO(A,B) and A 7→ HomO(A,B) are exact. (The second fact can be readily
verified using the first, thanks to Proposition 3.1.3.)

To complete the circle, we note that the ExtpO(X;A,B) are modules over the center of
Γ(O) and that the ExtpO(A,B) are modules over the sheaf of rings O\, the center of O.

The formula 4.1.2 can also be written, denoting by hA, respectively hA the covariant
functor from CO to the category C of abelian groups, respectively CX , defined by

(4.2.4) hA(B) = HomO(A,B), hA(B) = HomO(A,B), hA = ΓhA
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Thus hA appears as a composite functor, which is justified by Theorem 2.4.1 by virtue of
Proposition 4.1.3 and the corollary to Proposition 3.3.1. We thus obtain:

4.2.1 Theorem. Let X be a topological space equipped with a sheaf O of unital rings, and
let CO be the category of O-modules over X. Let A ∈ CO be a fixed O-module. Then on CO

there is a cohomological spectral functor converging to the graded functor (ExtpO(X;A,B)),
whose initial term is

(4.2.5) Ip,q2 (A,B) = Hp(X,ExtqO(A,B))

In particular, we derive from this “edge homomorphisms”

(4.2.6)
Hp(X,HomO(A,B)) // ExtpO(X;A,B)
ExtpO(X;A,B) //H0(X,ExtpO(A,B))

(the latter resulting from interpreting ExtpO(A,B) as the sheaf associated to the presheaf
ExtpO(−;A,B)) and we derive an exact 5-term sequence

(4.2.7) 0 //H1(X,HomO(A,B)) // Ext1
O(X;A,B)

//H0(X,Ext1
O(A,B)) //H2(X,HomO(A,B)) // Ext2

O(X;A,B)

This exact sequence specifically characterizes the structure of the group Ext1
O(X;A,B) of

the classes of O-modules that are extensions of A (quotient modules) by B (submodule).

To be able to use this spectral sequence, it is also necessary to specify the computation
of the ExtpO(A,B). Since the functor F 7→ F (x), which associates to an abelian sheaf
F its point group F (x) is exact, the ExtpO(A,B)(x) can be considered, for fixed A and
variable p, B to be forming a universal covariant cohomological functor in B, reducing to
HomO(A,B)(x) in dimension 0. Similarly, the ExtpO(x)(A(x), B(x)) form a cohomological

functor in B, reducing to HomO(x)(A(x), B(x)) in dimension 0. We therefore conclude from
the natural transformation (4.1.3), using the definition of universal cohomological functors,
homomorphisms

(4.2.8) ExtpO(A,B)(x) // ExtpO(x)(A(x), B(x))

(which are characterized by the definition of homological functors that reduces to the ho-
momorphism (4.1.3) in dimension 0). Since A is fixed, in order that these homomorphisms
be isomorphisms for arbitrary p and B, it is necessary and sufficient that (i) this be true
for p = 0 and (ii) ExtpO(x)(A(x), B(x)) = 0 for all p > 0 and all injective O-modules B.

Propositions 4.1.1 and 4.1.2 were clearly created expressly to verify conditions (i) and (ii).
We thus get:



4.2. THE FUNCTORS EXTP
O(X;A,B) AND EXTP

O(A,B) 73

4.2.2 Theorem. Assume that O is a coherent sheaf of left Noetherian rings and that A
is a coherent O-module. Then the homomorphisms (4.2.8) are isomorphisms for all B and
p.

Finally we note the following trivial case in which the homomorphisms (4.2.8) are iso-
morphisms, the two terms being 0:

4.2.3 Proposition. Assume that A is locally isomorphic to On (where n is a given finite
positive integer). Then ExtpO(A,B) = 0 for all p > 0 and all O-modules B.

In fact, because of the local nature of ExtpO(A,B), we can assume that A = On, but
then HomO(A,B) = Bn is an exact functor in B, whence the conclusion.

Corollary. If A is locally isomorphic to On, we have

ExtpO(X;A,B) = Hp(X,HomO(A,B))

for any O-module B.

In fact, this is an immediate result of the spectral sequence of Theorem 4.2.1. In
particular, if we take A = O, we find:

(4.2.9) Hp(X,B) = ExtpO(X; O, B)

which is valid without any assumption on O or the O-module B, and which is, moreover
immediately trivial, since the Hp(X,B) are derived functors, in CO (thanks to Proposition
4.1.3) of the functor Γ(B) = HomO(O, B).

To complete this section, we describe a method for calculating the spectral sequence
of Theorem 4.2.1 which is more convenient than the one that would result from simply
applying the definition.

4.2.4 Proposition. Let L = (Li) be a left resolution of A by locally finitely free O-
modules such that Li is locally isomorphic to Oni. Consider the functor hL on CO, with
values in the complexes of positive degree in C, defined by hL(B) = HomO(L, B). We
similarly set hA(B) = HomO(A,B). Then hL resolves the functor hA (cf. 2.5).

In fact, hL is an exact functor (Proposition 4.2.3); moreover, H0(hL(B)) = hA(B),
given that the functor C 7→ HomO(C,B) is left exact in C; and if B is injective, hL(B) is
an acyclic complex in positive dimensions, since in that case, the functor C 7→ HomO(C,B)
is exact.
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Corollary 1. Under the conditions of the preceding proposition, we have

(4.2.10) Extn(A,B) = Hn(HomO(L, B))

whence

(4.2.10′) Extn(A,B)(x) = ExtnO(x)(A(x), B(x))

In fact, it is sufficient to apply Proposition 2.5.1.

Applying Proposition 2.5.4, we get:

Corollary 2. Under the preceding conditions, the spectral functor of Theorem 4.2.1 is
isomorphic to the spectral functor II Γ(HomO(L, B)); in particular, we have

ExtnO(X;A,B) = R nΓHomO(L, B)

where the second term is the nth hyperhomology group of Γ computed from the complex
HomO(L, B) (cf. 2.4).

Since we also have available a resolving functor for Γ, for example, the functor ΓC(F )
where C(F )aa is the canonical resolution of F (cf. 2.3), there is an explicit spectral sequence
for II Γ(HomO(L, B)): namely, the first spectral sequence of the bicomplex ΓC(HomO(L, B)),
where we take as the first degree term the one that comes from C. Now we have a natural
equivalence

(4.2.11) C(HomO(L, B)) ∼= HomO(L,C(B))

In fact, for any O-module L there is a natural transformation

(4.2.12) C(HomO(L,B)) //HomO(L,C(B))

(where in the second term, C(B) is an O-module in the obvious way), defined recur-
sively on the dimension of the components of C, starting with the natural transformation
CO(HomO(L,B)) //HomO(L,CO(B)) derived from the natural transformations

HomO(L,B)(x) //HomO(x)(L(x), B(x))

The latter is an isomorphism when L is pseudo-coherent (Proposition 4.1.1), from which
we conclude that in this case, (4.2.12) is an isomorphism, which establishes, in particular,
formula (4.2.11). From this we get ΓC(HomO(L, B)) ∼= HomO(L,C(B)), whence:

aa Translator’s note: Warning: the C here and elsewhere is not the category C; apparently it is in bold
because it is a sheaf. It would have helped to have chosen a font for categories and another one for sheaves.
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Corollary 3. With L as in Proposition 4.2.1, the spectral functor of Theorem 4.2.1 is
given by the first spectral sequence I HomO(L,C(B)) of the bicomplex HomO(L,C(B)),
where C(B) is a canonical resolution (cf. 2.3) of the abelian sheaf B, whose grading is
taken as the first degree of a bicomplex. In particular, we have

ExtnO(X;A,B) = Hn(HomO(L,C(B)))

Remark 1. We can also define the functors ExtpO,Φ(X;A,B) as the right derived functors
with respect to B, of the functor HomO,Φ(A,B) = Γ(HomO(A,B)) (where Φ is an cofilter
of closed subsets of X). The preceding considerations are still valid. We will not have to
use them.

Remark 2. In Theorem 4.2.2, it is essential that A satisfy a finiteness condition. For
example, if A = O(I) where I is infinite, then the second term of (4.2.8) vanishes for every
X and every p > 0; however we will in general not have Ext1

O(A,B) = 0, since the functor
B 7→ HomO(O(I), B) = BI is generally not an exact functor.

4.3 Case of a constant sheaf of rings

Assume that O is a constant sheaf of rings defined by a unital ring O. Let M be an O-
module, and let M be the constant O-module it defines. Then for any O-module A, there
is a natural isomorphism

(4.3.1) HomO(M, A) ∼= HomO(M,Γ(A)))

This is a natural equivalence that can also be written

(4.3.2) hM = hMΓ

in which we set, as we did in the preceding section, hM(A) = HomO(M, A) and hM (N) =
HomO(M,N) for any O-module A and any O-module N . Γ is considered to be a functor
from CO to CO of left O-modules, and hM to be a functor from CO to the category of
abelian groups. Theorem 3.4.1 applies, thanks to

4.3.1 Lemma. If A is an injective O-module, then Γ(A) is an injective O-module.

It is necessary to show that the functor M 7→ HomO(M,Γ(A)) is exact, which results
immediately form formula (4.3.1), since M 7→M is an exact functor. Using Theorem 3.4.1,
and noting that the derived functors of Γ are the same, whether we consider Γ as taking its
values in CO or in the category C of abelian groups, we get
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4.3.2 Theorem. Let X be a space, O be a unital ring, M be an O-module, and O and
M be the constant sheaves on X defined by O and M , respectively. Then there exists a
cohomological spectral functor on CO, abutting on the graded functor (ExtpO(X; M, A)),
whose initial term is

(4.3.3) IIp,q2 (A) = ExtqO(M,Hp(X,A))

We derive in the usual way edge homomorphisms and a five term exact sequence, which
we leave to the reader. To calculate the spectral functor, we use Proposition 2.5.3, Corollary
1, using the resolving functor ΓC(A) of Γ (which is considered here to be a covariant functor
from CO to CO), C(A) being the canonical resolution of A (cf. 2.3), and the resolving
functor hL of hM , where L is a left resolution of M by free O-modules. We find the first
part of

4.3.3 Proposition. Using the conditions of Theorem 4.3.1, we choose a left resolution
L of M by free O-modules. Then the spectral functor of Theorem 4.3.1 is calculated by
taking the second spectral sequence of the bicomplex HomO(L,ΓC(A)), where C(A) is the
canonical resolution of A (cf. 2.3). If we assume that for each i, Li is isomorphic to Oni

(ni being a positive integer), the first spectral sequence of this bicomplex gives the spectral
functor of Theorem 4.2.1.

For the latter statement, it suffices to consider the resolution L(M) derived from L
and to apply to it Proposition 4.2.4, Corollary 3. The preceding proposition reduces the
calculation of ExtO(M, A) and its spectral sequences to a classical problem of the Künneth
type. Thus:

Corollary 1. Assume that A is annihilated by a 2-sided ideal I ⊆ O such that O/I is the
semisimple ring K. Then both spectral sequences of the bicomplex HomO(L,ΓC(A)) are triv-
ial, and their initial terms can be canonically identified with the homology ExtO(X; M, A)
of this bicomplex. More precisely, we have canonical isomorphisms:

(4.3.4) ExtnO(X,M, A) ∼=
⊕
p+q=n

HomK(TorOp (K,M), Hq(X,A))

C(A) and therefore ΓC(A) will thus be annihilated by I, from which we conclude

(4.3.5) HomO(L,ΓC(A)) = HomK(K ⊗O L,ΓC(A))

and since K is semisimple, we can apply the simplest version of the Künneth theorem (owing
to the fact that HomK is an exact bifunctor). We find the triviality of the spectral sequences,
and in addition, the formula H(HomK(K⊗OL,ΓC(A))) = HomK(H(K⊗OL), H(ΓC(A))),
which is exactly formula (4.3.4).
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We continue to assume that A is annihilated by a 2-sided ideal I but we make no
supposition about K = O/I. We have (4.3.5), which leads us to consider the hyperhomology
spectral sequences of the bifunctor HomK applied to the complexes K ⊗O L and ΓC(A).
In the first, the initial term Hp(ExtqK(K ⊗O L,ΓC(A))) = 0 for q > 0, since K ⊗O L
is K-free. Thus the abutment is canonically identified with H(HomK(K ⊗O L,ΓC(A))),
which is what we must calculate. In the second spectral sequence, the initial term is⊕

q′+q′′=q ExtpK(Hq′(K ⊗O L), Hq′′ΓC(A)). Therefore:

Corollary 2. Assume that the O-module A is annihilated by a 2-sided ideal I of O and
set K = O/I. Then ExtnO(X; M, A) is also the abutment of a third spectral functor, whose
initial term is

(4.3.6) IIIp,q2 (A) =
⊕

q′+q′′=q

ExtpK(TorOq′(K,M), Hq′′(X,A))

In particular, if K is a “left hereditary ring” [6, 1.5] (for example, a PIR), we have a
canonical exact sequence:

0 //
⊕

p+q=n−1

Ext1
K(TorOp (K,M), Hq(X,A)) // ExtnO(X; M, A)

//
⊕
p+q=n

HomK(TorOp (K,M), Hq(X,A)) // 0

Remark 1. Assume that Li = Oni , for all i. Then (Proposition 4.3.2) the first hyperhomol-
ogy spectral sequence of the functor HomO(M,−) for the complex ΓC(A) is the sequence
in Theorem 4.3.1, whose initial term thus has the significant interpretation (4.2.5). But we
must pay close attention that this fact was inferred from Corollary 3 of Proposition 4.2.4;
it is basically dependent on Formula (4.2.11), and therefore on the fact that the “canonical
resolution” functor C commutes with the functor HomO(L,−) if L is an O-module isomor-
phic to On (thanks to which one is moreover in the context of the corollary to Proposition
2.5.2). However, this is still true (for other reasons) if we replace C(A) by the “Cartan
resolution” A⊗ ZF (where F is a “fundamental sheaf” on a paracompact space X).

Remark 2. Let x ∈ X. We have seen in 4.2 that we have

ExtpO(M, A)(x) = lim // ExtpO(U ; M, A)

the inductive limit taken over the filter of open neighborhoods U of x. For any U , we can
write the spectral sequences II and III, from which we conclude, by an easy passage to the
limit, that (ExtpO(M, A)(x))p is the abutment of two spectral sequences, whose initial terms
are, respectively,

IIp,q2 = lim // ExtpO(M,Hq(U,A))
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IIIp,q2 =
⊕

q′+q′′=q

lim // ExtpK(Torkq′(K,M), Hq′′(U,A))

(In the second spectral sequence, we assume that A is annihilated by a 2-sided ideal I and
K = O/I.) The result is that whenever, in one of these spectral sequences, it is possible to
transfer the symbol lim // on H(U,A) into each of the components of the initial term, then

the formula ExtpO(M, A)(x) = ExtpO(M,A)(x) holds (its validity is assured, a priori, only
if M admits a projective resolution by modules Oni of finite type). Here are two typical
cases where this happens: (a) A is the constant sheaf defined by an O-module N and X is
locally compact Hausdorff (we look at the first spectral sequence); (b) A is annihilated by
an ideal I such that K = O/I is Noetherian, and the TorOq (K,M) are of finite type over K.
Now assume that A is the constant sheaf defined by an O-module N annihilated by I and,
to simplify, assume that K = O/I is a field. Then ExtnO(M,N) is the sheaf associated to
the presheaf defined by the

⊕
p+q=n HomK(TorOp (K,M), Hq(U,M)). It is easy to construct

examples (with M = N = K, p = 1, O the group algebra K(G) of a group G, and I
the augmentation ideal) where this sheaf is distinct from the constant sheaf associated to
ExtpO(M,N) (which is Hp(G,K)); in this case, the conclusion of Theorem 4.2.2 fails.

4.4 Case of sheaves with an operator group

Let G be a group and k be a commutative ring with unit. We set O = k(G) (the group
algebra of G with coefficients in k); O is an augmented algebra whose augmentation ideal
will be denoted by I. Therefore k can be identified with O/I. An O-module A is then a
sheaf of k-modules admitting G as an operator group. Saying that I annihilates A means
that G operates trivially (as identity operators) on A. Because of their significance for
the following chapter, we will quickly review the essential notation and results from the
preceding sections in the present case. Omitting mention of k in what follows (in practice
k will be the ring Z of integers or a field)bb , we will say G-module or G-sheaf instead of O-
module or O-sheaf. If A and B are two G-sheaves, we will write HomG(B,A), HomG(B,A),
ExtpG(X;B,A), and ExtpG(B,A) (using G as subscript instead of O). In the case that B = k
(the only significant one in what follows), the preceding objects will also be denoted ΓG(A),
AG, Hp(X;G,A) and Hp(G,A). Thus ΓG is the functor hk; using the preceding notation,
we have ΓG(A) = Γ(A)G (the group of G-invariant elements of Γ(A)) = Γ(AG), where
AG denotes the subsheaf of A consisting of the germs of G-invariant sections (if G admits
a finite system of generators, then AG is also the set of G-invariant elements of A). The
Hp(G,A), (−∞ < p < +∞) are functorial sheaves in A, which form the cohomological
functor derived from ΓG(A) = AG. We have canonical homomorphisms

Hp(G,A)(x) //Hp(G,A(x))

bb Translator’s note: In light of this remark, we have changed a number of Z in this section to Z.
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which are bijective in all cases we will consider, and always when G is finite (by virtue of
either Theorem 4.2.2 or Corollary 1 of Proposition 4.2.4). These functors are of local nature,
that is they commute with the operations of restriction to open sets. The Hp(X;G,A) form
the cohomological functor derived from ΓG(A). We have:

4.4.1 Theorem. There are two cohomological spectral functors on the category of G-
sheaves abutting on the graded functor (Hn(X;G,A)), whose initial terms are, respectively,
(4.4.1)

Ip,q2 (A) = Hp(X,Hq(G,A))
IIp,q2 = Hp(G,Hq(X,A))

These are also the two spectral sequences of the “operator complex” C(A), the canonical
resolution of A, where the two hypercohohomology spectral sequences of X with respect to
the complex C(G,A) are “cochains on G with coefficients in the sheaf A”. These two spectral
sequences are trivial if G operates trivially on A and if, in addition, A is a vector space
over the field k. We then have a canonical isomorphism:

(4.4.2) Hn(X;G,A) ∼=
⊕
p+q=n

Homk(Hp(G, k), Hq(X,A))

More generally, assume only that G acts trivially on A. Then Corollary 2 to Proposition
4.3.2 gives a canonical exact sequence

(4.4.3)

0 //
⊕

p+q=n−1
Ext1

Z(Hp(G,Z), Hq(X,A)) //Hn(X;G,A)

//
⊕

p+q=n
HomZ(Hp(G,Z), Hq(X,A)) // 0

Remark 1. In this last formula, we presupposed that k = Z. However this is unimportant,
since if k is arbitrary and A is a sheaf of k-modules on which G operates, then the Hp(G,A)
and Hp(X;G,A) are the same, whether A is thought of as a sheaf of k(G)-modules or a sheaf
of Z(G)-modules. This reduces to proving that if A is an injective sheaf of k(G)-modules,
then ExtnZ(G)(X;Z, A) and ExtnZ(G)(Z, A) (where we write Z and Z(G) for the constant

sheaves they represent) vanish for n > 0. For the first claim, this results from the spectral
sequence II, which shows that it is isomorphic to Hn(G,Γ(A)) which vanishes since Γ(A) is
an injective k-module (for which the result referred to is well known). Since ExtnZ(G)(Z, A)

is the sheaf associated to the presheaf of the ExtnZ(G)(U ;Z, A), which vanishes according to

the preceding (since A|U is also injective), our assertion follows.

Remark 2. Assume that A is the constant sheaf defined by a G-module M . Then we can
obviously write Hp(X;G,M) and Hp(G,M) instead of Hp(X;G,A) and Hp(G,A). If G
acts trivially on M , then Hp(X;G,M) can be calculated completely using formula (4.4.3),
or formula (4.4.2) if M is a vector space over a field k. In the latter case, if X is a locally
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compact Hausdorff space, we even get: H∗(X;G,M) is the space of bilinear functions from
H∗(G, k)×H∗(X, k) to M . We should note that in general, Hp(G,M) is not the constant
sheaf defined by Hp(G,M); cf. Remark 2 of 4.3.



Chapter 5

Cohomological study of operator
spaces

5.1 Generalities on G-sheaves

In this entire chapter, we will be considering a space X on which a group G acts (on the left,
say). The operation defined by g ∈ G will be denoted x 7→ g ·x. We do not require G to act
faithfully; in particular, we will also be considering the case in which G acts trivially. We
will X(G) for X equipped with the additional structure of a G-action. The orbit space X/G
will be denoted Y ; it will be equipped with the quotient topology. The canonical projection
of X onto Y will be denoted f ; it is an open continuous function. Y will be considered to
be equipped with trivial action from G; we will therefore write Y (G) as a reminder of this
additional structure on Y .

We will call a G-sheaf on X = X(G) a sheaf (of sets) A over X, on which G acts
in a way that is compatible with its action on X. To explain this definition, we could,
for example, consider A to be the etale space over X (cf. 3.1); we will not pursue this
point of view further. Similarly we define the notion of G-sheaf of groups, and of rings,
as well as abelian G-sheaves (= G-sheaf of abelian groups), etc. In practical terms we can
say that if X is equipped with certain structures and if a sheaf A over X is defined in
structural terms, then A naturally inherits the structure of a G-sheaf if G acts as a group
of automorphisms of X. Thus a constant sheaf can always be considered a G-sheaf (“trivial
G-sheaf”); similarly for the sheaf of germs of arbitrary (respectively continuous) functions
from X to a given set; and similarly for the sheaf of germs of holomorphic functions when
X is a holomorphic variety and the actions of G are holomorphic automorphisms of X;
etc. We call G-homomorphism from one sheaf to another a sheaf homomorphism that
commutes with the G-action. If the sheaves in question are sheaves of groups, for example,
we presuppose that the homomorphism respects that structure as usual. With this notion of

81



82 CHAPTER 5. COHOMOLOGICAL STUDY OF OPERATOR SPACES

homomorphism, the G-sheaves of sets (respectively groups, etc.) form a category (cf. 1.1),
which has the same properties as the corresponding category without a group of operators
(which moreover is a special case of it, corresponding to the case in which G = 1).

In particular, the abelian G-sheaves from an additive category, whose properties we will
describe. More generally, let O be a G-sheaf of unital rings. We consider the sheaves A
over X, which are both abelian G-sheaves and O-modules. The operations of O on A are
compatible with the operations of O (i.e., the natural homomorphisms of set-valued sheaves
O×A //A are G-homomorphisms). Such a sheaf will be called a G-O-module. Calling a
homomorphism of sheaves that is both a G-homomorphism and an O-homomorphism a G-
O-homomorphism, we see that the sum or composite of two G-O-homomorphisms is again a
G-O-homomorphism, and thus the G-O-modules form an additive category, denoted CO(G).
If O is the constant sheaf of integers (with the trivial G-actions), we obtain once more the
category of abelian G-sheaves, denoted CX(G). If G operates trivially on X, the category
CO(G) can be interpreted as the category of O′-modules, where O′ is an appropriate sheaf
of rings. If, for example, G operates trivially on O, we have O′ = O⊗Z Z(G) (where Z(G)
denotes the integral group algebra of G, or rather the constant sheaf that it defines). The
results of 3.1 remain valid with minor modifications:

5.1.1 Proposition. Let O be a G-sheaf of rings on X. Then the additive category CO(G)

of G-O-modules is an abelian category satisfying axioms AB 5) and AB 3∗) of 1.5, and
admits a generator.9

The proof is trivial, except for the existence of a generator, for which we now give a
construction that generalizes the one in 3.1. For every open set U ⊆ X, let L(U) be the
O-module that is the direct sum of the O-modules Og·U for g ∈ G. L(U) can clearly be
considered a G-sheaf, such that L(U) even becomes a G-O-module. If A is an arbitrary
G-O-module, a G-O-homomorphism from L(U) to A is known when we know its restriction
to OU , which is an O-homomorphism from OU to A, which can be arbitrarily specified in
advance. Providing such a homomorphism is also equivalent to providing a section from A
to U . If B is a G-O-submodule of A, distinct from A, then on an appropriate open set U
we can find a section of A that is not a section of B. Consequently, the family of L(U) is
a family of generators of CO(G), and their direct sum (for U ranging over the open sets of
X) is therefore a generator.

It follows in particular from Proposition 4.1 that every G-O-sheaf is isomorphic to a
subsheaf of an injective G-O-module. It is important for what follows to obtain a convenient

9This proposition, as well as various subsequent results can also be stated in the following more general
context. We take a category C, a group G, and a “representation of G by functors in C”: a functor
Fg : C // C is associated to each element g ∈ G such that we have Fe is the identity functor and
FgFg′ = Fgg′ (up to given natural transformations, satisfying certain coherence conditions that we leave to
the reader). Then we can construct the category CG of “objects of C with operator group G”, just as CX(G)

(for a space with operator group X(G)) can be constructed using CX (compare also with the special case,
Example 1.7.f). Many properties that are true for C are inherited by CG.
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explicit form for “sufficiently many” injective objects, by generalizing the construction in
3.1. Let (Ax)x∈X be a family of O(x)-modules. Consider the O-module that it defines (cf.
3.1). We define an operation of G on the product so that we get a G-O-sheaf. To do so,
if suffices for every x ∈ X and g ∈ G to provide a homomorphism, denoted A // g · A,
from the abelian group Ax to the abelian group Ag·x such that g · (ua) = (g · u)(g · a) for
u ∈ O(X) and a ∈ Ax, and such that e ·a = a and g ·(g′ ·a) = (gg′) ·a. We now introduce the
auxiliary ring Ux generated by the group algebra Z(Gx) of Gx and the ring O(x), subject
to the commutative relations gug−1 = ug for u ∈ O(x), g ∈ Gx (where, to avoid confusion,
we denote by ug the conjugate of u by g ∈ Gx). We see that the Ax are in fact Ux-modules
and any g ∈ G defines an isomorphism a 7→ g · a from the group Ax to Ag·x that satisfies
g · (ua) = (g ·u)(g ·a) for u ∈ Ux, a ∈ Ax. It easily follows that, if we choose an element ξ(y)
in any orbit y ∈ Y and if we set Uy = Uξ(y), the preceding data are equivalent to providing
a family (Ay)y∈Y of Uy-modules Ay (which is equal to Aξ(y)).

The Ax (x ∈ y) can be deduced from Ay as follows. Let Ay be the G-module induced
by the Gy-module Ay, i.e. the G-module HomGy(Z(G), Ay) obtained from the Gy-module
Ay by “contravariant scalar extension”: Ay is then identified with a quotient group of
Ay by a stable abelian subgroup of Gy, and Ay is identified with the product of all the
conjugate quotients g ·Ay for g ∈ G/Gy. We similarly introduce the G-module Oy induced
by Oy = O(ξ(y)), and we immediately observe that Ay is an Oy-module identified with the
product of the g ·Oy-modules g ·Ay for g ∈ G/Gy. We then have the canonical isomorphisms
g ·Oy

∼= O(g · ξ(y)) and g · Ay ∼= Ag·ξ(y). We denote by P (A) the G-O-sheaf on X defined
by the family A = (Ay) of Uy-modules Ay. Let B be any G-O-sheaf. A O-homomorphism
from a G-O-module B to P (A) is identified with a family (vx)x∈X of O(x)-homomorphisms
B(x) //Ax (as we indicated in 3.1), and this O-homomorphism is compatible with G if and
only if the vx “commute” with G. We immediately see that it comes to the same thing as
taking a G-O-homomorphism from B to P (A), or a family (vy)y∈Y of Uy-homomorphisms
B(ξ(y)) //Ay. This leads to:

5.1.2 Proposition. Let (Ay)y∈Y be a family of injective Uy-modules. Then the G-Omodule
P ((Ay)) that it defines is injective. Moreover, any G-O-module is isomorphic to a subsheaf
of a sheaf of the preceding type.

This last fact (which is the most important for us) is immediate when we embed, for
any y, the module in question B(ξ(y)) from the given sheaf B, into an injective Uy-module.

Direct images of G-sheaves. Let A be a sheaf of sets over X. Recall that we defined
its direct image f∗(A) as the sheaf over Y whose sections on the open set U ⊆ Y are the
sections of A over f−1(U). If A is a G-sheaf, then Γ(f−1(U), A) admits G as a group of
operators from which we easily conclude that the direct image f∗(A) of a G-sheaf over X
is a G-sheaf over Y (recall that G operates trivially on Y ). Of course, if A is a G-sheaf of
groups, or of rings, etc., the same is true of f∗(A). If A is a G-sheaf, we denote by AG or
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fG∗ (A) the sheaf ΓG of f∗(A) of the invariants of the G-sheaf f∗(A) over Y , in other words,
the sheaf whose sections over an open set U ⊆ Y are the sections of A over f−1(U) that are
invariant under G. Clearly, if A is a G-sheaf of groups or of rings, etc., this is also true for
AG = fG∗ (A). Moreover, fG∗ can be considered a covariant functor defined over the category
of G-sheaves on X, with values in the category of sheaves on Y (considered as G-sheaves
on which G operates trivially). If O is a G-sheaf of rings and if we denote by O′ the sheaf
fG∗ (O), then for any G-O-module A over X, f∗(A) is a G-O′-module over Y . Thus f∗ is a
covariant functor from CO(G) to CO′(G) which is additive and left exact, as usual. fG∗ is
essentially the composite functor ΓGf∗ from CO(G) to the category CO′ of O′-modules on
Y , with ΓG denoting the functor CO′(G) // CO′ that associates to a G-O′-sheaf B on Y
the sheaf BG of germs of invariant sections under G. To simplify, assume now that O, and
thus also O′, is the constant sheaf Z of integers (which amounts to not considering sheaves
of rings at all). Then we have:

5.1.3 Proposition. f∗ transforms injectives of CX(G) into injectives of CY (G).

In fact, it is sufficient to see this for an abelian G-sheaf A, defined by a family (Ay)
of injective Gy-modules (Proposition 5.1.2). Reverting to the notation in the construction
that preceded Proposition 5.1.2, we see that f∗(A) is the product sheaf defined by the
groups Ay =

∏
x∈f inf(y)Ax, and the G-sheaf structure on f∗(A) is the one defined by the

G-module structure on Ay. Since the latter was obtained from the injective Gy-module Ay
by contravariant extension of scalars, it too is clearly injective [6, II, Proposition 6.1.a].
Thus f∗A is injective by virtue of Proposition 3.1.2.

Corollary. If A is an injective abelian G-sheaf, then Γ(A) is an injective G-module, and
AG is a flabby sheaf on Y .

In fact, we have Γ(A) = Γ(f∗(A)). fG∗ (A) = ΓG(f∗(A)) and it then suffices to apply the
lemma in 4.3, respectively Proposition 4.1.3 (with O = Z(G) and O the constant sheaf of
rings defined by O).

Inverse images and direct images. Let B be a sheaf of sets on Y (without operators).
Then its inverse image f−1(A) (mentioned in 3.2) can be thought of as a G-sheaf in a
natural fashion, for obvious reasons of “structure transport”. A section of B over an open
set U defines, by inverse image, a section of f−1(B) over f−1(U) invariant under G, i.e.
a section of fG∗ (f−1(B)), whence a natural homomorphism B 7→ fG∗ (f−1(B)) and we can
immediately show that there is an isomorphism:

(5.1.1) fG∗ (f−1(B)) ∼= B

Conversely, we begin with a G-sheaf A over X and consider f−1(fG∗ ( )): a section of the
sheaf on an open set V is determined by a function g(x) over V whose value at each x ∈ V
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is an element of fG∗ (A)(f(x)) = lim

f(x)∈U
// Γ(f−1(U), A)G, and such that for all x ∈ V , there

is an open neighborhood V ′ ⊆ V of x and a section h of fG∗ (A) over a neighborhood U ′

of f(x) (i.e. an invariant section h of A over f−1(U ′)) such that we have g(x) = h(x) for
x ∈ V ′ ∩ f−1(U ′). We conclude from this that there is a canonical monomorphism10:

(5.1.2) f−1(fG∗ (A)) //A

identifying f−1(fG∗ (A)) as a subsheaf of A′ ⊆ A. It follows from (5.1.1) that we have
A′ = A if and only if A is isomorphic to a G-sheaf of the form f−1(B). If this holds for
every x ∈ X, the operations of Gx on A(x) are trivial. Moreover the converse is true if G
satisfies condition (D) below (cf. 5.3), as we easily see. If in addition, the Gx are reduced to
e (i.e. if no non-identity element of G has a fixed point), the functors fG∗ and f−1 establish
inverse isomorphisms between the category of G-sheaves on X and the category of sheaves
on Y .

5.1.4 Examples of direct images of G-sheaves If A is the constant sheaf over X
defined by a set M on which G operates trivially, then AG is the constant sheaf over Y
defined by the same set M ; but if G operates non-trivially on M , and if we are not in the
“fixed-point free” case, then fG(M) is obviously no longer constant in general. Assume
that condition (D) of 5.3 is satisfied. Let A be the sheaf of germs of functions from X
into a set M . Then AG is the sheaf of germs of functions from Y into M . Under this
correspondence, if X is a differentiable variety (or a real or complex analytic space), and
if A is a sheaf of germs of functions (with values in a space of the same kind), which are
differentiable (respectively, real analytic, respectively, complex analytic), then AG is a sheaf
of the same kind. This last example is especially important, and the analogous statement
is true (by definition, moreover, in the same way as the preceding ones are), in abstract
algebraic geometry, and even for arithmetic varieties.

5.2 The functors Hn(X;G,A) and Hn(G,A) and the fundamental
spectral sequences.

To avoid confusion, we denote as ΓX and ΓY the “section” functors defined for sheaves on
X, respectively, Y , and we denote by ΓG the functor M 7→MG, so that a set M on which
G operates gives rise to a set of G-invariants of M . Finally, if A is a G-sheaf on X, we have

(5.2.1) ΓGX(A) = ΓX(A)G

10More generally, if f is a continuous function from a space X to a space Y , we have, for the sheaves
A over X, natural transformations f−1(f∗(A)) // A, that can be readily seen to be monomorphic (5.1.2)
thanks to the injection AG // f∗(A).
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thus by definition we have the formulas

(5.2.2) ΓGX = ΓGΓX = ΓY f
G
∗

limiting ourselves to taking A in the category CX(G) of abelian G-sheaves on X, ΓGX is a
left exact additive functor from CX(G) to the category C of abelian groups, and fG∗ is a left
exact functor from CX(G) to the category CY of abelian sheaves (without operators) on Y .
Then we have

(5.2.3) Hn(X;G,A) = RnΓGX(A)

(5.2.4) Hn(G,A) = RnfG∗ (A)

Thus, for an abelian G-sheaf, the Hn(X;G,A) are abelian groups, and the Hn(G,A) are
sheaves on Y . Each of them form universal cohomological functors of A, reducing for n = 0
to ΓGX(A), respectively AG. If G operates trivially on X, we recover the notion introduced
in 4.4. Again, we can easily see, as in Proposition 3.1.3, that if U is an open subset of Y
and A is an injective abelian G-sheaf on X, then its restriction to f−1(U) is an injective
abelian G-sheaf on that space. From this we conclude, as in 4.2:

5.2.1 Proposition. Let A be an abelian G-sheaf on X. Then for every open set U ⊆ Y ,
we have Hp(G,A)|U = Hp(G,A|f−1(U)).

This is why we permit ourselves to omit X in the notation Hp(G.A). We get a more
explicit reduction of the calculation of Hp(G,A) using:

Corollary. Assume that f−1(U) is a union of pairwise disjoint open sets g · V (where
g ∈ G/G0), where V is open set in X and G0 is a subgroup of G such that g0 · V = V
for g0 ∈ G0. Then Hp(G,A)|U = Hp(G0, A|V ) (making use of the natural identification
U = V/G0).

By virtue of Proposition 2.5.1, we can assume that U = Y , whence f−1(U) = X. We
can immediately see that the category of G-sheaves on X is isomorphic to the category of
G0-sheaves on V , this isomorphism being compatible with the functors fG∗ and fG0

∗ . This
immediately gives rise the desired formula. A more explicit computation will be given below
(cf. formula (5.2.11) and Theorem 5.3.1).

Formulas (5.2.2) represent ΓGX as a functor composed in two different ways, and in both
cases, Theorem 2.4.1 is applicable, thanks to the corollary to Proposition 5.1.3. We thereby
get:
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5.2.2 Theorem. There exists on the category CX(G) of abelian G-sheaves on X two co-
homological spectral functors abutting on the graded functor (Hn(X;G,A)), whose initial
terms are, respectively:

(5.2.5)

{
Ip,q2 (A) = Hp(Y,Hq(X,A))
IIp,q2 (A) = Hp(G,Hq(X,A))

To establish the explicit form of IIp,q2 (A), it suffices to show once more that the derived
functors of ΓX , considered as a functor from CX(G) to the category C(G) of G-modules,
are really the Hq(X.A). This follows immediately from the fact that every abelian G-sheaf
can be embedded into a flabby abelian G-sheaf (as we have seen in the preceding section),
which thus makes the Hq(X,A) vanish for q > 0.

These spectral sequences give rise initially to important edge homomorphisms:

(5.2.6) Hn(Y,AG) //Hn(X;G,A) //H0(Y,Hn(G,A))

(5.2.7) Hn(G,H0(X,A)) //Hn(X;G,A) //Hn(X,A)G

The second arrow in (5.2.6) is immediate if we remark that by virtue of Lemma 3.7.2,
Hn(G,A) is the sheaf over Y associated to the presheaf formed by the Hn(f−1(U);G,A).
The composite of the first homomorphism on the first line with the second homomorphism
of the second line is the homomorphism f∗ associated to the natural injection (5.1.2) from
f−1(AG) to A (cf. 3.2).

The spectral sequences of Theorem 5.2.1 also define two five-term exact sequences:

(5.2.8)
0 //H1(Y,AG) //H1(X;G,A) //H0(Y,H1(G,A))

//H2(Y,AG) //H2(X;G,A)

(5.2.9)
0 //H1(G,ΓA) //H1(X;G,A) //H1(X,A)G

//H2(G,ΓA) //H2(X;G,A)

There is a third way to represent ΓGX as a composite functor, namely ΓGX = ΓGY f∗, and
Theorem 2.4.1 is still applicable by virtue of Proposition 5.1.3. Thus the graded functor
(Hn(X;G,A)) is also the abutment of a third spectral sequence whose initial term is

Ep,q2 = Hp(Y ;G,Rqf∗(A))

This spectral sequence defines the natural transformations

(5.2.10) Hn(Y ;G, f∗(A)) //Hn(X;G,A)

This spectral sequence is of limited interest since it appears that it is pathological in cases
where it is not trivial, that is unless the conditions of the following proposition are satisfied:
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5.2.3 Proposition. Assume that there is an abelian G-sheaf A such that Rqf∗(A) = 0
for q > 0. Then the homomorphisms (5.2.10) are isomorphisms; moreover the two spectral
sequences of Theorem 5.2.1 are identified with the two corresponding spectral sequences for
the G-sheaf f∗(A) over Y , and we have

(5.2.11) Hq(G,A) ∼= Hq(G, f∗(A))

The first assertion follows immediately from the form of the initial term of the spectral
sequence E defining (5.2.10). The other assertions follow from the explicit definition of the
terms to be compared, if we note that for every injective resolution C(A) from A to CX(G),
the complex f∗(C(A)) is a resolution of f∗(A) (that is the significance of the assumption
Rqf∗(A) = 0 for q > 0 !) which is injective by virtue of Proposition 5.1.3. Note that we have
implicitly defined the Rqf∗(A) as right derived functors of f∗ considered as functors from
CX(G) to CY ; but by virtue of the calculation of these derived functors by 3.7.2, recalling
that an injective object of CX(G) is a flabby sheaf, we see that we find the same result as if
we consider f∗ to be a functor from CX to CY , i.e. Rqf∗(A) is the sheaf over Y associated
to the presheaf formed from the Hq(f−1(U), A).

The hypothesis of Proposition 2.5.2 should be regarded as a cohomological equivalent of
the hypothesis that G is a “discontinuous group of operators” over X. Another important
case is the one in which Hq(G,A) = 0 for q > 0, a hypothesis that should be regarded as
the cohomological equivalent of the usual condition that “G operates without fixed points”:

5.2.4 Proposition. Suppose that Hq(G,A) = 0 for q > 0, then Hn(X;G,A) ∼= Hn(Y,AG),
therefore H∗(Y,AG) is the abutment of a cohomological spectral sequence whose initial term
is IIp,q2 (A) = Hp(G,Hq(X,A)).

This is an immediate consequence of the first spectral sequence of Theorem 2.5.1. We
thus obtain the classical form of the theory of spaces with operators [4]. In the next section,
we will give conditions under which this proposition holds, G being a “discontinuous group
of operators on X without fixed point”. Other conditions for validity are related to the
characteristic of the base field k for the sheaf A and the orders of the stabilizers Gy; the
following is a particularly simple case (which, moreover, can easily be directly proved, and
is doubtless well known):

Corollary. Assume (in addition to Hq(G,A) = 0 for q > 0) that G is a finite group of
order m, that the space X is separated, and that multiplication by m is an automorphism
on A (for example, A is a sheaf of vector spaces over a field whose characteristic does not
divide m). Then we have Hn(Y,AG) ∼= Hn(X,A)G, the two terms being isomorphic to
Hn(X;G,A).

A final interesting special case is the following:
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5.2.5 Proposition. Assume that Hq(X,A) = 0 for q > 0. Then

Hn(X;G,A) ∼= Hn(G,Γ(A))

and consequently H∗(G,Γ(A)) is the abutment of a spectral sequence whose initial term is
Ip,q2 (A) = Hp(Y,Hq(G,A)).

This proposition can be used to calculate the cohomology of certain groups, for example
the cohomology with constant coefficients of various modular groups in one variable [10].

Remark 1. Assume that we have a G-sheaf O, and we restrict ourselves to G-O-modules,
ΓGX thus being considered a functor from CO(G) to the category of Γ(O)G-modules. Then its
derived functors coincide with the preceding functors Hp(X;G,A) as immediately follows
from the fact that for n > 0, Hn(X;G,A) vanishes on injectives of CO(G). This latter fact
will be proved in Lemma 5.6.1, below (replacing B by A).

Remark 2. We can, in the two exact sequences (5.2.8) and (5.2.9), eliminate H∗(X;G,A)
so that we obtain relations between the cohomology of Y , of X, and of G. More generally,
assume that we have two five-term exact sequences as in the present case (cf. Diagram
below).

0 A// A H1α′ // H1 B
β′ // B C

γ′ // C D
δ′ //

0

A′
��
A′

H1

α

��
H1

B′

β

��
B′

C ′

γ

��
C ′

D′

δ

��

A

B′
u′

""E
EE

EE
EE

EE
E

A′

B

u

""E
EE

EE
EE

EE
EE

We have set u = β′α and u′ = βα′. We have A ∩ A′ = Keru = Keru′. We have natural
homomorphisms

ββ′−1 : Ker γ′ // Cokeru′

β′β−1 : Ker γ // Cokeru
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These homomorphisms give rise to the following two exact sequences (in which H1 has
disappeared):

(5.2.12)

 0 Keru′//

0

0

0 Keru// Keru

Keru′

Keru A′// A′ Ker γ′// Ker γ′ Cokeru′// Cokeru′ C ′// C ′ D′//

Keru′ A// A Ker γ// Ker γ Cokeru// Cokeru C// C D//

We find, for example: let u be the natural homomorphism from H1(Y,AG) to H1(X,A)G,
and let u′ be the natural homomorphism from H1(G,Γ(A)) to H0(Y,H1(G,A)); the kernel
of u is isomorphic to the kernel of u′, while the image of u is isomorphic to the kernel of
the natural homomorphism of Ker(H1(X,A)G //H2(G,Γ(A))) // Cokeru′.

Remark 3. The conditions of Proposition 5.2.2 are satisfied in most cases that arise nat-
urally. Its interest lies mainly in formula (5.2.11), which, when G is finite, can also be
written

(5.2.11′) Hq(G,A)(y) = Hq(G, f∗(A)(y)) y ∈ Y

and gives an explicit calculation for the sheaves Hq(G,A). Proposition 5.2.2 applies when-
ever G is finite and X is separated. Another important case is the one in which G is a
finite group of automorphisms of an abstract algebraic variety X such that Y = X/G is an
algebraic variety (for example, G is the Galois group of a covering space X, ramified or not
of a normal variety Y ): the conditions of Proposition 5.2.2 are then satisfied if A is a coher-
ent algebraic G-sheaf, or if A is the multiplicative sheaf O∗X of germs of invertible regular
functions on X. Moreover, if X is unramified over Y , then we show that Hn(G,A) = 0 for
n > 0 when A is a coherent algebraic G-sheaf, which allows us to apply Proposition 5.2.3.
In the same case, we can also show that H1(G,O∗X) = 0. We can also consider arithmetic
varieties; the same results hold.

5.3 Case of a discontinuous group of homeomorphisms

For the sake of brevity, and by abuse of language, we will say that G is a discontinuous
group of homeomorphisms of X if it satisfies the following condition:

(D) For every x ∈ X, the stabilizer Gx of x is finite, and there exists a neighborhood Vx
of x such that for every g ∈ G−Gx, we have g · Vx ∩ Vx = ∅.

We can then obviously assume that Vx is open and also that g · Vx = Vx for g ∈ Gx
(replacing Vx, as required, by the intersection of the g · Vx, g ∈ Gx). Condition (D) is
satisfied, for example, if G is finite and X is separated, as we will soon see. If X is an
irreducible algebraic variety, equipped with its Zariski topology, and G is a finite group of
automorphisms of X, condition (D) is not satisfied (unless G operates trivially).
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5.3.1 Theorem. We assume that condition (D) is satisfied. Let A be an abelian G-sheaf
over X, y ∈ Y , and x ∈ f−1(y). We then have canonical isomorphisms

(5.3.1) Hn(G,A)(y) ∼= Hn(Gx, A(x))

Taking Vx as in the statement of condition (D), with Vx open and stable under Gx, we
can apply the corollary to Proposition 5.2.1 which reduces to the case in which G = Gx
and X = Vx, i.e. in which G is finite. We show that then Rqf∗(A) = 0 for q > 0. For every
y ∈ Y , we have:

Rqf∗(A)(y) ∼= lim // H
q(f−1(U), A)

with the limit taken over the open neighborhoods U of y. Then taking x and Vx as above,
and restricting ourselves to U ⊆ f(Vx), we see that f−1(U) is the finite union of pairwise
disjoint open sets g · Ux (g ∈ G/Gx) where Ux = Vx ∩ f−1(U), therefore Hq(f−1(U), A) is
the direct sum of a finite number of groups isomorphic to Hq(Ux, A). When U runs over
a basic system of neighborhoods of y and Ux runs over a basic system of neighborhoods
of x, then we get, for Rqf∗(A), the direct sum of a finite number of groups isomorphic to
lim // H

q(Ux, A), which is zero for q > 0 under Lemma 3.8.2.

We then have Rqf∗(A) = 0 for q > 0, therefore it follows from Proposition 5.2.2 that
the left hand side of (5.3.1) can be identified as Hn(G, f∗(A))(y), which, since G is finite, is
isomorphic to Hn(G, f∗(A)(y)) (as we noted in 4.4). Recalling that we can assume X = Vx,
and therefore that f−1(y) is reduced to x, we then have f∗(A)(y) = A(x), which completes
the argument.

Corollary 1. Assume that for every x ∈ X, the order nx of the stabilizer Gx is such that
multiplication by nx is an automorphism of the group A(x). Then H∗(X;G,A) ∼= H∗(Y,AG)
and consequently H∗(Y,AG) is the abutment of a spectral sequence whose initial term is
IIp,q2 = Hp(G,Hq(X,A)).

In fact, Theorem 3.5.1 gives Hq(G,A) = 0 for q > 0, so we can apply Proposition 5.2.3.
The preceding corollary is particularly interesting in the case in which A is a sheaf of vector
spaces over a field of characteristic p that does not divide any of the nx (which is always
true in characteristic 0). When there is no base field, we can use the following variant:

Corollary 2. Assume that n is the least common multiple of the orders nx of the Gx;
let P be the set of prime divisors of n and C(P ) be the category of abelian groups in
which each element has finite order all of whose prime divisors lie in P . Then using the
terminology introduced in 1.11, H∗(X;G,A) is isomorphic mod C(P ) to H∗(Y,AG), so that
the latter is the abutment mod C(P ) of a cohomological spectral sequence whose initial term
is Hp(G,Hq(X,A)).

To see this, reduce the spectral sequences of Theorem 5.2.1 mod C(P ). We have,
Ip,q2 = 0 mod C(P ) for q > 0, since under Theorem 5.3.1, Hq(G,A) is a sheaf annihilated
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by n, therefore Hp(X,Hq(G,A)) is annihilated by n for every p and therefore is zero mod
C(P ). Corollary 2 follows immediately.

If the nx are all reduced to 1, i.e. if every g 6= e inG is fixed-point free (we then say simply
that G operates without fixed points), we find Hn(G,A) = 0 for n > 0. Thus H∗(X;G,A) ∼=
H∗(Y,AG), which is also evident a priori because of the isomorphism indicated at the end
of 5.1 between the category of sheaves over Y and the category of G-sheaves over X, when
G is a discrete group of fixed-point-free homeomorphisms. Then in this case, we find the
classical statement:

Corollary 3. If G operates without fixed points, then H∗(Y,AG) is the abutment of a
cohomological spectral sequence whose initial term is Hp(G,Hq(X,A)).

Remark. By definition, the second spectral sequence of Theorem 5.2.1 is obtained by taking
a resolution C(A) of A by ΓX -acyclic sheaves, and by taking the second spectral sequence
of the functor ΓG with respect to the complex ΓX(C(A)). In general, the first spectral
sequence of ΓG with respect to this complex clearly cannot be identified with the first
spectral sequence of Theorem 5.2.1 (take an injective resolution of A!). However it works if
we take for C(A) the canonical resolution of A (cf. 3.3), as we see by an argument analogous
to the one in Proposition 4.3.2. It also works if X and Y are paracompact and if we take
for C(A) a Cartan resolution of A, i.e. C(A) = A⊗Z C, where C is a fundamental sheaf in
the sense of Cartan-Leray, as we can show by rather different arguments (we will not have
to make use of this fact). Consequently, the spectral sequence I is the spectral sequence in
[10] whose initial term was not made explicit.

5.4 Transformation of the first spectral sequence

We will suppose that Condition (D) of the preceding section still holds (although this is
not absolutely necessary). Let Y0 be a closed subset of Y containing the supports of the
Hn(G,A) for n > 0 (it suffices, for example, under Theorem 5.3.1, that Y0 contain the set
{y ∈ Y | Gy 6= e}). Let X0 = f−1(Y0), and let V = {Y0 and U = {X0. We consider the
exact sequences

0 //AU //A //AX0
// 0

0 // (AG)V //AG // (AG)Y0
// 0

as it is clear that (AU )G = (AG)V we get a commutative diagram of cohomology sequences

· · · Hn(X;G,AU )//

· · ·

· · ·

· · · Hn(Y, (AG)V )// Hn(Y, (AG)V )

Hn(X;G,AU )

∼=

��
Hn(X;G,AU ) Hn(X;G,A)//

Hn(Y, (AG)V )

Hn(X;G,AU )

Hn(Y, (AG)V ) Hn(Y,AG)// Hn(Y,AG)

Hn(X;G,A)
��

Hn(X;G,A) Hn(X;G,AX0)//

Hn(Y,AG)

Hn(X;G,A)

Hn(Y,AG) Hn(Y, (AG)Y0)// Hn(Y, (AG)Y0)

Hn(X;G,AX0)
��

Hn(X;G,AX0) Hn+1(X;G,AU )//

Hn(Y, (AG)Y0)

Hn(X;G,AX0)

Hn(Y, (AG)Y0) Hn+1(Y, (AG)V )// Hn+1(Y, (AG)V )

Hn+1(X;G,AU )

∼=

��
Hn+1(X;G,AU ) · · ·//

Hn+1(Y, (AG)V )

Hn+1(X;G,AU )

Hn+1(Y, (AG)V ) · · ·// · · ·

· · ·

(5.4.1)
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It follows from the assumption on Y0 that Hn(G,AU ) = 0 for n > 0, since that is clearly
the case for the open set V , but it is also true for Y0, since according to Theorem 5.3.1, we
have Hn(G,AU )(y) = Hn(G,AU (y)) for y ∈ Y0. It follows from Proposition 5.2.3 that the
homomorphism Hn(Y, (AG)V ) //Hn(X;G,AU ) is thus an isomorphism for all n. We also
see just as easily that Hn(X;G,AX0) can be identified with Hn(X0;G,A); we also know
that Hn(Y, (AG)Y0) ∼= Hn(Y0, A

G). We find, by chasing the preceding diagram, a sequence
of homomorphisms

(5.4.2)

· · · //Hn−1(X;G,A)
βn−1

// H
n−1(X0;G,A)

ImHn−1(Y0, A
G)

∂ //Hn(Y,AG)

αn //Hn(X;G,A)
βn // H

n(X0;G,A)

ImHn(Y0, A
G)

// · · ·

which is a complex (the composite of two successive homomorphisms is zero) and exact
everywhere except possibly at the term Hn(Y,AG), the failure of exactness being that
Kerαn/ Im ∂ is canonically isomorphic to the kernel of the homomorphism

Hn(Y0, A
G) //Hn(X0;G,A)

. We thus obtain:

5.4.1 Proposition. The sequence of homomorphisms (5.4.2) defines over Hn(Y,AG) a
sequence of length 3 whose successive quotients are isomorphic, respectively, to

Cokerβn−1 = Hn−1(X0;G,A)/(ImHn−1(X;G,A) + ImHn−1(Y0, A
G))

Ker(Hn(Y0, A
G) //Hn(X0;G,A))

and
Kerβn ⊆ Hn(X;G,A)

We can thus say that the use of the first spectral sequence gives us a way to reduce
the determination of H∗(Y,AG) to a good understanding of H∗(X;G,A), H∗(X0;G,A),
H∗(Y0, A

G), and natural homomorphisms H∗(X;G,A) // H∗(X0;G,A) oo H∗(Y0, A
G).

We can try to determine the first two groups by using the second spectral sequence while
computing H∗(Y0, A

G) will often be possible if we can choose Y0 sufficiently small. A
particularly simple and important case is given by:

Corollary. Assume that G operates trivially on X0 (thus G is finite), that A is a sheaf of
vector spaces over a field k, and that G acts trivially on A|X0. Then the sequence (5.2.4) is
exact, and Hn(X0;G,A) can be canonically identified with

⊕
p+q=nH

p(G, k)⊗Hq(X0, A).

In fact, the latter assertion is a particular case of the final statement of Theorem
4.4.1. Consequently, the canonical homomorphism from Hn(Y0, A

G) ∼= Hn(X0, A) to
Hn(X0;G,A) is injective, and therefore the sequence (5.2.4) is exact.
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Remark. Assume that G is a finite group of prime order p. Then if we take for X0 the
set of fixed points of X under G, and Y0 = f(X0), then Y0 satisfies the condition stated at
the beginning of this section. Then if a A is a sheaf of vector spaces coming from a sheaf
over Y (i.e. such that G operates trivially on A|X0), we have the conditions required for
Corollary 1. For example, we can very easily recover the theorem of P. A. Smith relative to
the case in which X is a homological sphere mod p of finite dimension (p being the order of
G): then X0 is also a homological sphere mod p. Moreover, this “natural” argument using
general spectral sequences is, in fact, very similar to Borel’s [2]; of course, the compactness
hypothesis in [2] is unnecessary. It is even easier to find, as an application of the preceding
corollary, that if a finite group G of prime order p operates on a space X of finite dimension
which is acyclic mod p, then the set X0 of fixed points and the quotient space X/G are
also acyclic mod p. It follows that if X is acyclic with respect to a field k of coefficients (of
arbitrary characteristic since the case of characteristic different from p is trivial), the same
holds for X/G; since k is arbitrary, this claim remains valid if we replace k by Z. Simple
induction shows that these results for X/G remain valid if we assume merely that G is a
finite solvable group. The computations in this section are also useful in studying Steenrod
powers in sheaves and the cohomology of the symmetric powers of a space. We would like
to mention that similar computations in an unpublished manuscript of R. Godement on
Steenrod powers were the motivation for this section.

5.5 Computation of the Hn(X;G,A) using covers

We will require the following:

5.5.1 Lemma. Let C1,C2,C3 be three abelian categories, and assume that in the first two,
every object is isomorphic to a subobject of an injective. Let F1 : C1

//C2 and F2 : C2
//C3

be covariant functorscc . We assume that F1 takes injectives to F2-acyclic objects. Let K be
a covariant functor from C1 to the category K(C2) of complexes of positive degree in C2,
satisfying the following two conditions: (i) H0K(A) ∼= F1(A) (natural equivalence) and (ii)
K(A) is acyclic in dimensions n > 0 when A is injective. Under these hypotheses, there
exists in C1 a cohomological spectral functor abutting on the graded functor (Rn(F2F1)(A)),
whose initial term is

(5.5.1) Ep,q2 (A) = RpF2(RqK(A))

We denote by H0 the covariant functor L 7→ H0(L) from K(C2) //C2. Then we have
F2F1 = F2(H0K) = F2(H0)K. Then if A is injective, K(A) is (F2H

0)-acyclic, i.e. we have
RnF2(K(A)) = 0 for n > 0. In fact, K(A) is a resolution of F1(A) as a consequence of

cc Translator’s note: Grothendieck called the functors F and G and then went on to also use G to name
the group used in the section title
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(i) and (ii), therefore RnF2(K(A)) = RnF2(F1(A)) and the final term is zero because of
the assumption made on F1. We can thus apply Theorem 2.4.1 to the composite functor
(F2H

0K), which gives the spectral functor of the lemma.

5.5.2 Lemma. Let C1,C2,C3, F1, F2 be as in the preceding lemma. There exists a coho-
mological spectral functor from K(C1) of complexes C of positive degree in C1, abutting on
the graded functor (Rn(F2F1)(C)), whose initial term is

(5.5.2) Ep,q2 (C) = RpF2(RqF1(C))

We indicate by a bar above a functor the functor obtained by extending it to categories of
complexes of positive degree. We thereby get Rn(F2F1) ∼= Rn(H0F2F1) ∼= Rn((H0F2)F1).
The functor F1 : K(C1) //K(C2) takes injectives to (H0F2)-acyclic objects; in other words,
if C is an injective object of K(C1), then RnF2(F1(C)) = 0 for n > 0. In fact, in accordance
with the characterization of injectives in K(C1) seen in 2.4, C is acyclic in dimensions > 0
and “decomposes”; moreover, the Ci and Zi(C) are injective, whence it follows first that
F1(C) is a resolution of F1(Z0(C)), from which we get RnF2(F1(C)) ∼= RnF2(F1(Z0(C))),
and since Z0(C) is injective, the second term is 0, from the assumption on F1. Thus, we can
apply Theorem 2.4 to the composite functor (H0F2)F1, which gives the spectral sequence
in the statement, given that, by definition, RqF1 = RqF1.

Corollary. Under the preceding conditions, let C be a resolution of an object A ∈ C1.
There is a cohomological spectral sequence, abutting on the graded object (Rn(F2F1)(A))
whose initial term is given in (5.5.2).

In fact, what we have here is Rn(F2F1)(C) = Rn(F2F1)(A).

We return to the consideration of the space X with a group G of operators. Let U =
(Ui)i∈I be a cover of X, with G operating on the set I of indices in such a way that we have
g ·Ui = Ug·i for every i ∈ I: we will say that U is a G-cover. If P is an abelian presheaf over
X on which G operates, then the complex C of U, P of the cochains of U with coefficients
in P can clearly be considered to be a complex of G-groups. We set

(5.5.3) Hn(U;G,P ) = RnΓG(C(U, P ))

in which the second term can described more explicitly as the group Hn(C(G,C(U, P )))
with C(G,C(U, P )) being the bicomplex formed from the cochains of G with values in the
complex C(U, P ); this bicomplex can be denoted as C(U;G,P ):

(5.5.3′) Hn(U;G,P ) = Hn(C(U;G,P ))

We first assume that the G-cover U is open. We will apply Lemma 5.5.1, taking the
categories CX(G), CG (the category of G-modules), and C (the category of abelian groups)
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and the functors ΓX and ΓG, and setting K(A) = C(U, A). ΓX takes injectives to ΓG-
acyclic objects (corollary to Proposition 5.1.3), and conditions (i) and (ii) of the lemma
are satisfied, (i) because U is open and (ii) from the second paragraph of 3.8. It remains
to make RqK(A) explicit. The computation is immediate (and, moreover, was already
carried out in 3.8): we find RqK(A) ∼= C(U, Hq(A)) where Hq(A) denotes the presheaf
Hq(A)(V ) = Hq(V,A). We have thus proved:

5.5.3 Theorem. Let X be a space equipped with a group G of operators. Let U = (Ui)
be an open G-cover of X. Then on the category CX(G) of abelian G-sheaves on X there
exists a cohomological spectral functor abutting on the graded functor (Hn(X;G,A)), whose
initial term is

(5.5.4) Ep,q2 (A) = Hp(U;G,Hq(A))

(where Hq(A) is the presheaf Hq(A)(V ) = Hq(V,A) on X).

As usual we infer edge homomorphisms from this

(5.5.5) Hn(U;G,A) //Hn(X;G,A)

and a five term exact sequence, showing among other things that the preceding homomor-
phism is injective when n = 1. Moreover,

Corollary 1. If the Ui0,i1,...,ip are all A-acyclic, then the homomorphisms (5.5.5) are
isomorphisms.

Corollary 2. The preceding theorem is still valid if U is a closed G-cover provided we
have one of the following cases: (a) U is locally finite and X is paracompact; or (b) U is
finite.

In case (a), following remark 3.8.2, conditions (i) and (ii) of Lemma 5.5.1 still hold
(for (i), it is moreover trivial without the assumption of paracompactness, since U is lo-
cally finite), RqK(A) ∼= C(U, Hq(A)) is still valid. In case (b), it is necessary to follow
Godement’s methods (which he developed for the one-element group), which we will sketch
because of its potential application to abstract algebraic geometry. First, following an idea
of P. Cartier, we introduce the sheaf complex C(U, A), for which the complex of sections
over an arbitrary open set V is, by definition, C(U|V,A|V ) (where | indicates, as usual, that
we interpret the restriction as applying to the set following the |). We prove that this is a
resolution of A (see Godement, [9] for details). We will apply to it the corollary to Lemma
5.5.2 (the letters in the statement of this lemma having the same meaning as above). We
need prove only that RqF1(C) = Hq(X,C(U, A)) is isomorphic (naturally equivalent) to
C(U, Hq(A)). This presents no difficulty, since U is finite and we are using Theorem 3.5.1.
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We will say that a G-cover U = (Ui)i∈I is “without fixed point” if G operates on I
without fixed points, i.e. if g 6= e implies g · i 6= i for any i ∈ I. Then if P is an arbitrary
G-presheaf, for any n we have

(5.5.6) Cn(U, P ) =
∏

(i0,...,in)

∏
g∈G

P (g · Ui0,i1,...,in)

with the first product taken over a complete set of representatives (i0, i1, . . . , in) of In+1/G.
In the second product, all the terms are canonically isomorphic to P (Ui0,i1,...,in) such that
this product can be identified with the group of functions from G to the fixed group
P (Ui0,...,in), with G acting by left translation. It is well known that such a G-module
is ΓG-acyclic, thus the same is true for Cn(U, P ). We will keep in mind, however, that for-
mula (5.5.6) is valid only if we assume C(U, P ) denotes the complex of arbitrary cochains
(not necessary alternating) of U with coefficients in P (while earlier considerations were
valid for either arbitrary or alternating cochains). Using the first hyperhomology spectral
sequence of the functor ΓG with respect to the complex C(U, P ), we get:

5.5.4 Proposition. If U is a G-cover without fixed points, then for every G-presheaf P
we have:

(5.5.7) Hn(U;G,P ) ∼= Hn(C(U, P )G)

in which C(U, P ) denotes the complex (with operators) of arbitrary cochains (not necessarily
alternating) of U with coefficients in P .

Combining this with Corollary 1 of Theorem 5.5.3, we get:

Corollary. Let U be an G-cover without fixed points. Assume that U is an open cover or
that U is a closed cover and, in addition, that X is paracompact or that U is finite. If A
is a G-sheaf such that Hn(Ui0,i1,...,ip , A) = 0 for all (i0, i1 . . . , ip) ∈ Ip+1 and every n > 0,
then we have canonical isomorphisms:

Hn(X;G,A) ∼= Hn(C(U, A)G)

We are going to make explicit the complex C(U, P )G when U is a G-cover without
fixed points. Then the set of indices of U is isomorphic (as a set on which G operates) to a
product G× I in which G operates by left translation on the first factor: g′ · (g, i) = (g′g, i);
we will identify i with (e, i). Let (fg0i0,g1i1,...,gnin) be an invariant n-cochain with coefficients
in P . We set

(5.5.9) Fi0,g1i1,...,gnin = fe·i0,g1i1,...,gnin

F is a function which depends the on n+1 arguments i0, i1, . . . , in ∈ I and the n arguments
g1, . . . , gn ∈ G, with values in the P (Ui0 ∩ g1Ui1 ∩ · · · ∩ gnUin) and the invariant cochain
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given is entirely determined by the knowledge of this “inhomogeneous cochain” F according
to

(5.5.10) fg0i0,g1i1,...,gnin = g0Ḟi0,g0
−1g1i1,...g0

−1gnin

This formula defines, when we begin with an inhomogeneous cochain F , an invariant cochain
f and the inhomogeneous cochain associated with f is nothing other than F . What remains
is to express the differential operator on C(U, P )G directly in terms of inhomogeneous
cochains. We find immediately:

(5.5.11)

(∂F )i0,g1i1,...,gn+1in+1 = g1.Fi1,g1
−1g2i2,...,g1

−1gn+1in+1

+
∑

1≤α≤n+1

(−1)αF
i0,g1i1,...,ĝαiα,...,gn+1in+1

where the sign ˆ signifies the omission of the term it is placed over. An especially interesting
case is the one in which I is reduced to a single element, i.e. where we begin with a subset D
of X such that

⋃
g∈G g ·D = X and consider the cover (g ·D)g∈G. Then the inhomogeneous

n-cochains consist of systems (Fg1,...,gn) with

Fg1,...,gn ∈ P (D ∩ g1 ·D ∩ · · · ∩ gn ·D)

and formula (5.5.11) becomes

(5.5.11′)

(∂F )g1,...,gn+1 = g1 · Fg1
−1g2,...,g1

−1gn+1

+
∑

1≤α≤n+1

(−1)αFg1,...,ĝα,...,gn+1

Then let L = {g ∈ G | g ·D ∩D 6= ∅} (this will be a finite set in “reasonable” cases). The
preceding formula shows that the complex C(U, P )G giving the groups Hn(U;G,P ) can be
constructed once we know: the composition law (g, g′) 7→ g−1g′ in L (insofar as it is defined);
the intersections D ∩ g ·D, for g ∈ L; and of course the groups P (D ∩ g1 ·D ∩ · · · ∩ gn ·D),
for gi ∈ L; the restriction functions; and the way the gi ∈ L operate on them.

Remark 1a. Under the preceding conditions, assume for example that P is the constant
sheaf defined by a commutative ring k and that the D ∩ g1 ·D ∩ · · · ∩ gn ·D are acyclic for
k, and connected. Then the values Fg1,...,gn are simply elements of k (defined for D ∩ g1 ·
D ∩ · · · ∩ gn ·D 6= ∅), and the complex of these cochains gives the cohomology H∗(X;G, k).
This gives an explicit method of computation if we assume that the set L above is finite
(which implies that the complex C(U, k)G is free of finite rank in all dimensions). It seems
that this should allow, for example, computation of the cohomology of modular groups in
several variables (in this case H∗(X;G,Z) ∼= H∗(G,Z), since X is a contractible open set
in a Euclidean space), when we know a sufficiently simple fundamental domain D (without
having to look at what happens at multiple points as in method [10], which does not seems
feasible for a fixed-point set that is too complicated).
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Remark 1b. Take D = X; thus U = (g · X)g∈G. We note that the spectral sequence of
Theorem 5.5.3 is just the second spectral sequence of Theorem 5.2.1, whose initial term
is Hp(G,Hq(X,A)). We also note that in every case there is a canonical natural trans-
formation from the spectral sequence of Theorem 5.5.3 to the second spectral sequence of
Theorem 5.5.1, as we can see by applying Lemma 5.5.1, respectively 5.5.2 to this end.

To complete this section, we will give some hints for the Čech computation ofHn(X;G,A),
generalizing the analysis of 3.8. Let U and V two G-covers, with V finer than U. We will
define canonical homomorphisms

(5.5.12) Hn(U;G,P ) //Hn(V;G,P )

defined for every abelian G-sheaf P and natural in P . First, setting U = (Ui)i∈I and
V = (Vj)j∈J , we assume that there exists a function φ : J // I such that Vj ⊆ Uφ(j)

for all j ∈ J which commutes with the action of G. From this we classically induce a
homomorphism φ : C(U, P ) // C(V, P ), which commutes with the action of G and thus,
in accordance with (5.5.3), gives the desired homomorphism (5.5.12), which is independent
of the choice of φ. If φ′ is another function with the same properties, we classically construct
a well-defined homotopy s from φ //φ′ such that φ−φ′ = ∂s+ s∂, and for obvious reasons
of “transport of structure”, s commutes with the action of G, whence it follows that φ and
φ′ define the same homomorphism (5.5.12). If we no longer assume that we can find a φ as
above, we consider the set I ′ = G× I on which we make G operate as g′(g, i) = (g′g, i), and
the G-cover U′ without fixed points (U ′(g,i))(g,i)∈G×I defined by U ′(g,i) = Ug·i = gUi. The

function ψ(g, i) = g · i has the properties required above, and thus defines a homomorphism:

Hn(U;G,P ) //Hn(U′;G,P )

Thus it suffices to define a canonical homomorphism Hn(U′;G,P ) // Hn(V;G,P ), so
we are now in the situation as above, since U′ is a G-cover without fixed points that is
refined by V. The definition of homomorphisms (5.5.12) is thus complete; moreover, these
homomorphisms have obvious transitivity properties. From this it follows first that if U
and V are two equivalent G-covers, then the homomorphism (5.5.12) is an isomorphism so
that Hn(U;G,P ) depends only on the class of the G-cover U (for the equivalence relation
defined by the preorder relation: V is finer than U). We then set

(5.5.13) Ȟn(X;G,P ) = lim // H
n(U;G,P )

with the inductive limit taken over the ordered set of classes of open G-covers of X. The
homomorphisms (5.5.3) define natural transformations

(5.5.14) Ȟn(X;G,A) //Hn(X;G,A)

for A ∈ CX(G). We propose to indicate the conditions under which these are isomorphisms.
By passing to the inductive limit of the spectral sequences associated with the various U
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(Theorem 5.5.3), we can show that H∗(X;G,A) is the abutment of a cohomological spectral
functor, whose initial term is

(5.5.15) Ep,q2 (A) = Hp(X;G,Hq(A))

The homomorphisms of (5.5.14) are exactly the edge homomorphisms of this spectral se-
quence. Now we can prove:

5.5.5 Lemma. Assume that Y is paracompact and X is separated. Let G be a discontin-
uous group of homeomorphisms on X (cf. 5.5.3). If P is a presheaf of abelian G-groups
whose associated sheaf is 0, then Hn(X;G,P ) = 0 for every n > 0.

In computing Ȟn(X;G,P ) in accordance with (5.5.13), we can restrict ourselves to
G-covers U without fixed points; for these, Proposition 5.5.4 applies so that it suffices to
prove the following: if fn ∈ Cn(U, P )G, where U is an open G-cover without fixed points,
then there exists a finer open G-cover V without fixed points and a function φ : J // I
between the sets of indices satisfying the above conditions and such that φ(fn) = 0. We
start by showing that there exists arbitrarily fine G-covers of the type (g, Ui)(g,i)∈G×I in
which (Ui) is a family of open sets of X such that if Gi is the stabilizer of Ui, then Gi is
finite, and g /∈ Gi implies gUi ∩ Ui = ∅. We will thus assume that U is of the above type.
We consider the inhomogeneous cochain (Fi0,g1i1,...,gnin) which corresponds to fn. Consider
I as the nerve of the cover (f(Ui)) = (U ′i) of Y and for every simplex s = (i0, i1, · · · , in) of
I let U ′s = U ′i0,i1,...,in

dd . For every n-simplex s of I, and every y ∈ U ′s, let W s
y be an open

neighborhood of y contained in U ′s, such that for every system g = (g1, . . . , gn) for which
Us,g = Ui0 ∩ g1Ui1 ∩ · · · ∩ gnUin has a projection on Y which contains y; and the restriction
of (Fi0,g1i1,...,gnin) to Us,g∩f−1(W s

y ) is 0. Such a W s
y exists because of the assumption on P ,

because there are only a finite number of systems g to consider, and because, when W runs
over a basic system of neighborhoods of y, the Us,g ∩ f−1(W ), run over a basic system of
neighborhoods of the finite set of those x ∈ Us,g that project on y. Since Y is paracompact,
it follows from the well-known lemma in Čech theory that we can find a cover V′ = (V ′j )j∈J
of Y , and a function φ′ : J // I such that V ′j ⊆ U ′φ′(j) for every j ∈ J , and such that

for every n-simplex t of J , V ′t is contained in at least one of the sets W
φ′(t)
y . Then let

Vj = Uφ′(j ∩f−1(V ′j ), let V = (g ·Vj)(g,j)∈G×J , and consider the function φ : G×J //G× I
defined by φ′. We can immediately see that (V, φ) satisfies the desired conditions, notably
φ(F ) = 0, whence φ(fn) = 0.

The sheaf associated to the presheaf Hq(A) for q > 0 is 0 (Lemma 3.8.2). Lemma 5.5.5
and the spectral sequence whose initial term is (5.5.15) then show:

dd Translator’s note: This sentence is so incoherent in the original that we have had to guess what was
intended.
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5.5.6 Theorem. If G is a discrete group of homeomorphisms of X and if Y = X/G is
paracompact, then the homomorphisms of (5.5.14):

Ȟn(X;G,A) //Hn(X;G,A)

are isomorphisms for every abelian G-sheaf A.

Remark 2. From the spectral sequence whose initial term is (5.5.15), we derive, without
any assumptions on X, G, or A that

Ȟ1(X;G,A) ∼= H1(X;G,A)

(and that Ȟ2(X;G,A) //H2(X;G,A) is injective since we can show that E0,n
2 = 0 for all

n > 0). Ȟ1(X;G,A) can be interpreted geometrically, as we can easily see, as the set of
classes of G-A-fiber spaces over X (i.e. fiber spaces over X “with structure sheaf A”, [11],
on which G-operates compatibly). Moreover, Ȟ1(X;G,A) is also defined, and allows the
same geometric interpretation, if A is a G-sheaf of not necessarily commutative groups. The
development in [11], in particular in Chapter 5, can be carried over nearly word for word
to the more general context of G-fiber spaces. A good suggestion would be to develop non-
commutative homological algebra, in the context of functors and categories, in a direction
that includes both this theory of fiber spaces and the algebraic mechanism for extensions
of Lie groups and other groups, as developed in papers by G. Hochschild, [12, 13] and A.
Shapiro [19].

5.6 The groups ExtnO,G(X;A,B)

In this section, O denotes a fixed sheaf of G-rings, and we consider the abelian category
CO(G) of G-O-modules (cf. 5.1). The group of G-O-homomorphisms from one G-O-module
A to another G-O-module B will be denoted HomO,G(A,B), or HomO,G(X;A,B) if we
want make the space X over which we are considering A and B explicit (which also gives
a meaning to the symbol HomO,G(U ;A,B) if U is a G-invariant subset of X). Noting that
the sheaf HomO(A,B) is a G-sheaf and thus the group HomO(A,B) = ΓXHomO(A,B) is
a G-module, we have the formulas

(5.6.1) HomO,G(A,B) ∼= ΓGXHomO(A,B) ∼= ΓGHomO(A,B)

We set

(5.6.2) HomO,G(A,B) = (HomO(A,B))G

therefore HomO,G(A,B) is the sheaf over Y = X/G whose sections over the open set
U ⊆ Y form the group HomO,G(f−1(U);A,B) of the G-O-homomorphisms from A|f−1(U)
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to B|f−1(U). We set

(5.6.3)
hO,A(B) = HomO(A,B), hO,A(B) = HomO(A,B)

hO,G,A(B) = HomO,G(A,B), hO,G,A(B) = HomO,G(A,B)

thereby defining, for fixed A, four left exact functors, the last two being related to the first
two (already encountered in Chapter 4) by the natural equivalences

(5.6.4) hO,G,A
∼= fG∗ hO,A

(5.6.5) hO,G,A ∼= ΓY hO,G,A
∼= ΓGhO,A

∼= ΓGXhO,A

Let us set

(5.6.6) ExtnO,G(X;A,B) = RnhO,G,A(B)

(5.6.7) ExtnO,G(X;A,B) = RnhO,G,A(B)

Thus for two G-O-modules A, B, the ExtnO,G(X;A,B) are abelian groups, forming a uni-
versal cohomological functor in B and reducing to HomO,G(X;A,B) is dimension 0, while
the ExtnO,G(A,B) are abelian sheaves over Y , forming a universal cohomological functor
in B and reducing to HomO,G(A,B) in dimension 0. Moreover, the ExtnO,G(X;A,B) are

just the general Ext groups in the category CO(G). (Of course, our definitions are justified
by Proposition 5.1.1.) Since HomO,G(A,B) and therefore HomO,G(A,B) are exact con-
travariant functors in A whenever B is injective in C(O(G)), it follows (cf. 2.3) that the
ExtnO,G(X;A,B), respectively ExtnO,G(A,B), also form contravariant cohomological func-
tors in A (for fixed B). Finally, we note that we can easily show, as in 4.2 and 5.2 (which
are special cases), that we have

(5.6.8) ExtnO,G(A,B)|U = ExtnO,G(A|f inf(U), B|f−1(U))

(local nature of the Ext with respect to the space Y ). From this we derive a statement
analogous to the statement in the corollary to Proposition 5.2.1, which in the case that G is
a discontinuous group of homomorphisms (cf. 5.3), reduces to the case in which G is finite.
Then we show, again using the reasoning in 4.1, that the natural transformations

(5.6.9) HomO,G(A,B)(y) //HomUx(A(x), B(x)) (f(x) = y)

(in which Ux is the ring generated by O(x) and Z(G) as in 5.1) are bijective when O is a
coherent sheaf of left Noetherian rings, and A is coherent as an O-module; and given these
conditions on X, G, and O, the Ux-module B(x) is injective whenever B is an injective
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object of CO(G). (In the proof, we will replace the free O-modules from 4.1 by G-O-modules
of the type L(U) introduced in the proof of Proposition 5.1.1.) We conclude immediately
that the natural transformations

(5.6.10) ExtnO,G(A,B)(y) // ExtnUx(A(x), B(x))

deduced from the homomorphisms (5.6.9) are isomorphisms if we assume that the group G of
homeomorphisms is discontinuous in sense of 5.3, that O is a coherent sheaf of left Noethe-
rian rings, and that A is a G-O-module, coherent as an O-module. This statement contains
both Theorem 4.2.2 and Theorem 5.3.1 (the sheaf Z of constant rings being Noetherian and
coherent!), and in the most important cases clarifies the structure of ExtnO,G(A,B).

By applying Theorem 2.4.1 we can obtain spectral sequences from the Formulas (5.6.4)
and (5.6.5). We are interested only in the spectral sequences from (5.6.5), which abut on
Ext∗O,G(X;A,B). We still have to verify that in each of these three formulas giving hO,G,A
as a composite functor, the usual acyclicity is satisfied; this results from

5.6.1 Lemma. Assume that B is an injective object of CO(G). Then HomO,G(A,B) is
a flabby sheaf over Y , HomO(A,B) is a ΓG-acyclic G-module, and HomO(A,B) is a ΓGX-
acyclic G-sheaf.

From Proposition 5.1.2, this reduces to the case in which B is the product sheaf de-
fined by a family (Bx)x∈X of injective Ux-modules Bx. It follows that the abelian G-
sheaf H = HomO(A,B) is the product sheaf defined by the family of G-modules Hx =
HomO(x)(A(x), B(x)). Then HomO,G(A,B) is the product sheaf over Y defined by the

family of groups Hy =
∏

(Hx)Gx, the product taken over all the x ∈ f−1(y), and thus is
flabby. We assume for the moment that the Hx are ΓGx-acyclic Gx-modules (this will be
shown in the corollary below). Then the G-module Hx induced by the Gx-module Hx by
contravariant extension of scalars is ΓG-acyclic, as is well-known. Thus HomO(A,B) =
ΓXH =

∏
x∈X/GHx is ΓG-acyclic. Finally, since H is flabby and thus ΓX -acyclic, it follows

from the second spectral sequence of Theorem 5.2.1 that Hn(X;G,H) = Hn(G,ΓXH),
which according to what we have seen vanishes for n > 0. This completes the proof of
Lemma 5.6.1, provided we show the following special case:

Corollary. Let O be a ring with unit on which a group G operates, and let U be the ring
generated by O and Z(G) subject to the commutation relations gλg−1 = λg for g ∈ G and
λ ∈ O. Let A and B be two U -modules, with B injective. Then the G-module HomO(A,B)
is ΓG-acyclic. (But do not assume it is injective!)

Let B′ = HomZ(Z(G), B) be the group of functions f : G // B. We will make G and
O operate on it by

(g′f)(g) = f(gg′), (λf)(g) = λgf(g)
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We immediately see that B′ thus becomes a U -module and we define an injective U -
homomorphism φ : B //B′ by setting

φ(b)(g) = g · b

Thus B is embedded in the U -module B′ and, since B is injective, it is a direct factor of
B′, thus HomO(A,B) is (as a G-module) a direct factor of HomO(A,B′), and it is sufficient
to show that the latter is ΓG-acyclic. We set H = HomO(A,B) and we consider H to a
G-module, making G operate on it by ug(a) = gu(g−1a); we can immediately show that
there is a canonical isomorphism

HomO(A,B′) ∼= HomO(A,HomZ(Z(G), B)) ∼= HomZ(Z(G),HomO(A,B))

by imposing on the final term H ′′ = HomG(Z(G), H) the G-module structure defined
by fg

′
(g) = g′f(gg′). For this, we write that, for every u ∈ HomO(A,HomZ(Z(G), B)),

u(a)(g) = g · ug(a); then the ug are O-homomorphisms from A to B and u is identified
with the family of ug identified as an element of HomZ(Z(G), H). We also consider the
G-module H ′ obtained by imposing on HomZ(Z(G), H) the G-module structure defined by
(g′f)(g) = f(gg′). We obtain a G-isomorphism ψ from H ′ to H ′′ by setting ψ(f)(g) = gf (g).
It is well known that H ′ is ΓG-acyclic for any G-module H; the same is therefore true for
H ′′. Q.E.D.

Lemma 5.6.1 allows us to derive from the Formulas (5.6.5) three spectral sequences
abutting on ExtO,G(X;A,B). To make the initial terms of the first two explicit, it remains
to specify the derived functors of hO,A and hO,A considered as functors over on CO(G).
When we consider them as functors on the category CO of O-modules (without operators),
their derived functors are, by definition (4.2), the functors ExtnO(X;A,B) and the func-
tors ExtnO(A,B). This remains true when we consider them to be functors on CO(G) as
immediately follows from the definitions and from

5.6.2 Lemma. If B is an injective G-O-module, it is an injective O-module.

As in Lemma 5.6.1, this can be reduced to the case in which B is the product sheaf
defined by a family (Bx)x∈X of injective Ux-modules Bx. It then suffices to prove that the
Bx are also injective O(x)-modules, which reduces to the case in which X is a single point
x. In fact, the proof does not seem simpler in this case, and the proof we are going to
give could in fact apply whenever we have an abelian category C (such as CO) in which a
group G “operates” as in footnote 9. This allows us to pass from C to the corresponding
category C(G) (here CO(G) of “objects with operators”. We assume that C satisfies AB 5)
and has a generator: then every injective object A of C(G) is also injective in C. To prove
this, it is clearly sufficient to prove that every object A of C(G) is embedded in an object
M of C(G) which is injective in C. To do so, it is sufficient to examine the construction
given in 1.10 for the embedding of A (considered as an object of C) into an injective object
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M of C: we embed A in the module M(A), which is a functor (not additive!) of A, since
the homomorphism A //M1(A) is natural; we iterate the process transfinitely and pass
to the inductive limit, which gives us an injective object M(A), which is still functorial in
A, and an injection A //M(A) which is a natural homomorphism. This construction is
well defined, once we have chosen a generator U of C and an appropriate cardinal number.
Moreover, if we replace U , if necessary, by the direct sum of its images under G (cf. the
proof of Proposition 5.1.1), we can assume that U is an object of C(G). We then see,
for obvious reasons of “transport of structure”, that if A is an object of C(G), G also
operates on M(A), which is then found to be in reality an object of C(G), and the injection
A //M(A) is compatible with the operations of G. This is the injection we seek from A
to an object of C(G) which is injective in C. This completes the proof; readers who are
still doubtful can provide the details of the proof in the case CO of the lemma and, if they
prefer, limit themselves to the “purely algebraic” case in which X is reduced to a single
point.

We can now state the main result of this section, whose proof is contained in the pre-
ceding discussion.

5.6.3 Theorem. Let X be a space equipped with a group G of homeomorphisms and let
O be a G-sheaf of rings on X. Let A be a G-O-module. On the category CO(G) of G-O-
modules, we can find three cohomological spectral functors abutting on the graded functor
(ExtnO,G(X;A,B)), whose initial terms are, respectively:

(5.6.11)

Ip,q2 (B) = Hp(Y,ExtqO,G(A,B))

IIp,q2 (B) = Hp(G,ExtqO(X;A,B))

IIIp,q2 (B) = Hp(X;G,ExtqO(A,B))

If O = A, the first two spectral sequences can be reduced to the spectral sequences of
Theorem 5.2.1; the third spectral sequence is new. If G is the one element group, then
spectral sequences I and III are identical, and also identical to the spectral sequence of
Theorem 4.2.1, while spectral sequence II is trivial. If X is a one point space, spectral
sequences II and III are identical, and moreover are non-trivial in general (and, it seems,
useful), while spectral sequence I is trivial.11

From the preceding spectral sequences, we derive edge homomorphisms and five-term
exact sequences, which we leave to the reader. We will explicitly state only a single degen-
erate special case:

11The non-trivial spectral sequence obtained abuts on ExtU (A,B) and its initial term is
Hp(G,ExtqO(A,B)) (U being the ring generated by Z(G) and the G-ring O, with commutation relations
gλg−1 = λg, for λ ∈ O and g ∈ G). We should point out that we can more easily obtain this spectral
sequence directly, by using projective resolutions of A instead of injective resolutions of B. In fact, we can
very easily see that if A is a free U -module, then A is a free O-module and HomO(A,B) is a ΓG-acyclic
G-module.
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Corollary 1. If the G-O-module A is locally isomorphic, as an O-module, to On, then
we have canonical isomorphisms:

(5.6.12) ExtnO,G(X;A,B) ∼= Hn(X;G,HomO(A,B))

This follows from spectral sequence III since then ExtqO(A,B) = 0 for q > 0 (Proposition
4.2.3). In particular, taking A = O, we get:

Corollary 2. For every G-O-module B, we have natural equivalences:

(5.6.14) ExtnO,G(X; O, B) ∼= Hn(X;G,B)

Remark. We point out, in two special cases, two other spectral sequences abutting on
ExtnO,G(X;A,B). Assume that O is the constant G-sheaf of rings defined by a ring O on
which G operates, and that A is the constant G-O-sheaf M defined by an O-module M
on which G operates compatibly with its operations on O, namely g · (λm) = g(λ)g(m).
we introduce the ring U generated by O and Z(G) subject to the commutation relations
gλg−1 = g(λ); M is thus a U -module. Consider the functor hU,M on the category of U -
modules, defined by hU,M (N) = HomU (M,N); we then have, for every G-O-module B,
HomO,G(M, B) = HomU (M,ΓX(B)), i.e. we have the natural identity

(5.6.5′) hO,G,M = hU,MΓX

In addition, we can easily verify that ΓX transforms injective objects in CO(G) into injective
U -modules, so that Theorem 2.4.1 gives a cohomological spectral functor IV on CO(G),
abutting on the graded functor (ExtnO,G(X; M, B)), whose initial terms is

(5.6.11′) IVp,q
2 (B) = ExtpU (M,Hq(X,B))

If, in addition, we assume thatG operates trivially onM , then we also have HomO,G(M, B) ∼=
HomU (M,ΓX(B)) ∼= HomO(M,ΓGX(B)), which gives the natural equivalence

(5.6.5 ter) hO,G,M ∼= hO,MΓGX

We can also show that ΓGX transforms injective objects of CO(G) into injective O-modules
(by showing that if N is an injective U -module, then NG is an injective O-module), and
Theorem 2.4.1 gives a fifth cohomological spectral functor, with the same abutment as the
preceding ones, whose initial term is

(5.6.11 ter) Vp,q
2 (B) = ExtpO(M,Hq(X;G,A))

If G is the one-element group, spectral sequences IV and V coincide with the spectral
sequence of Theorem 4.3.1. If X is the one-point space, spectral sequence IV is trivial, but
spectral sequence V is not trivial in general and does not reduce to the preceding ones,12

12the initial term of this spectral sequence denoted as in the preceding footnote is ExtpO(A,Hq(G,B)).
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5.6.4 Example. Assume that G is a group of automorphisms of a holomorphic variety, or
more generally of a “holomorphic space” X, and that O is the sheaf of germs of holomorphic
functions on X. If A and B are two coherent analytic sheaves on which G operates, since
every analytic sheaf that is an extension of A by B is coherent, it follows that the classes
of coherent G-O-sheaves that are extensions of A by B correspond to the elements of the
complex vector space Ext1

O,G(X;A,B). Moreover, if n is a positive integer, there is a nat-
ural correspondence between the holomorphic fibered vector spaces E whose fibers are Cn

and the coherent algebraic sheaves M over X which are locally isomorphic to On; to E cor-
responds the sheaf O(E) of germs of holomorphic sections of E, and to M corresponds the
holomorphic fibre space whose fiber over x ∈ X is M(x)⊗O(x)C (C being considered a mod-
ule over the augmented algebra O(x)). We can immediately see that in this correspondence,
the holomorphic fibered vector spaces with fibers Cn which admit G as a group of operators
correspond to those G-O-modules which are, as O-modules, locally isomorphic to On. It fol-
lows that the classes of extensions of a holomorphic fiber space E with operators by another
one F , naturally correspond to the elements of Ext1

O,G(X; O(E),O(F )), which by virtue

of Corollary 1 of Theorem 5.6.3, is isomorphic to the vector space H1(X;G,O(E′ ⊗ F ))
(E′ denoting the fiber space dual to E). We can go even further if G is a discontinuous
group: since we are in characteristic 0, it follows from Corollary 1 of Theorem 5.3.1 that
H1(X;G,L) ∼= H1(Y, LG) for every G-sheaf L of vector spaces. Moreover, if L is a coherent
analytic sheaf, the same is true of LG (see [5, Chapter 12)]), specifically O(E′⊗F )G is a co-
herent analytic sheaf over Y . We conclude, for example, from [7] that if Y is compact, then
the vector space of the classes of holomorphic fibered vector G-spaces that are extensions
of E by F has finite dimension. (In fact, spectral sequence I shows that if Y is compact
and A and B are coherent analytic sheaves with operators, then the ExtqO,G(X;A,B) have
finite dimension.) There are analogous results in abstract algebraical geometry, except that
in that case, we can write H∗(X;G,L) ∼= H∗(Y.LG) only if, for example, the order of G is
prime to the characteristic, or if G operates “without fixed points”.

5.7 Introduction of Φ families

Let Φ be a cofilter of closed subsets of the space X. Consider the functor

(5.7.1) ΓGΦ(A) = ΓΦ(A)G

on the category CX(G) of abelian G-sheaves on X. We set

(5.7.2) Hp
Φ(X;G,A) = RpΓGΦ(A)

If Φ is the cofilter consisting of all the closed subsets of X, we get the functors Hn(X;G,A)
from 5.2. Let Φ′ be the set of closed subsets of X contained in a G-invariant closed subset
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F ∈ Φ. Then it is clear that Φ′ is a cofilter of closed subsets of X, and that ΓGΦ = ΓGΦ′ . We
will therefore henceforth assume that Φ = Φ′, or, what comes to the same thing, that Φ is
the set of closed subsets F ⊆ X such that f(F ) ∈ Ψ, where Ψ is a cofilter of closed subsets
of Y . Then we have the natural equivalences

(5.7.3) ΓGΦ
∼= ΓΨf

G
∗
∼= ΓGΓΦ

Since fG∗ sends injectives of CX(G) into flabby sheaves, and thus ΓΨ-acyclic sheaves, the
first equivalence also gives a cohomological spectral functor on CX(G) abutting on the graded
functor (Hn(X;G,A)) whose initial term is:

(5.7.4) Ip,q2 (A) = Hp
Ψ(Y,Hq(G,A))

The second spectral sequence of Theorem 5.2.1 can no longer be generalized as it stands
because we cannot say in general that if B is injective in CX(G), then ΓΦ(B) is a ΓG-acyclic
G-module. Now assume that every set in Ψ has a neighborhood that belongs to Ψ. For every
open set U ⊆ Y , let AU = Af−1(U) be the abelian G-sheaf on X which vanishes on {f−1(U)
and coincides with A on f−1(U). We have ΓΦ(A) = lim // ΓX(AU ), where the inductive limit

is taken over the filtered set of open subsets U ⊆ Y , such that (U) ∈ Ψ. Since the functions
ΓX(AU ) // ΓX(AV ), for U ⊆ V , are injective, the functor ΓG passes to the inductive limit
and we get a natural equivalence:

(5.7.5) ΓGΦ(A) ∼= lim // Γ
G
X(AU )

whence, as in Corollary 1 of Proposition 3.10.1:

(5.7.6) Hn
Φ(X;G,A) ∼= lim // H

n(X;G,AU )

Thus for every U , H∗(X;G,AU ) is the abutment of a cohomological spectral sequence
II(A,U) whose initial term is

II(A,U)p,q2 = Hp(G,Hq(X,AU ))

and as U varies, the spectral sequence forms on inductive system. We then conclude from
(5.7.6) that H∗Φ(X;G,A) is the abutment of a cohomological spectral sequence whose initial
term is

(5.7.7) IIp,q2 (A) = lim
U
// H

p(G,Hq(X,AU ))

Of course, this spectral sequence is also a spectral functor in A. In the most important
cases (which we will specify below), we will be able to exchange the symbols Hp(G,−) and
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lim // , and thus, since lim // H
q(X,AU ) = Hq(X,A) (Corollary 1 of Proposition 3.10.1), we

obtain the usual form of the initial term:

(5.7.7′) IIp,q2 = Hp(G,Hq
Φ(X,A))

subject to the conditions:

(a) G is a finite group;

(b) G operates trivially on the Hq(X,AU ) and the Hp(G,Z) are of finite type;

(c) the inductive system (Hq(X,AU )) is “essentially constant” for every q, i.e. we can
find a cofinal system (Ui) such that the homomorphisms Hq(X,AUi)

//Hq(X,AUj )
are isomorphisms.
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15. J.-P. Serre, Faiseaux algébriques cohérents. Ann. Math. bf 61 (1955), 197–278.
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