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Introduction

In this Lecture, you will learn:

Hyperbolic orbits

• Hyperbolic Anomaly

• Kepler’s Equation, Again.

• How to find r and v

A Mission Design Example

Introduction to the Orbital Plane
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Given t, find r and v

For elliptic orbits:

1. Given time, t, solve for Mean Anomaly

M(t) = nt

2. Given Mean Anomaly, solve for Eccentric Anomaly

M(t) = E(t)− e sinE(t)

3. Given eccentric anomaly, solve for true anomaly

tan
f(t)

2
=

√
1 + e

1− e
tan

E(t)

2

4. Given true anomaly, solve for r

r(t) =
a(1− e2)

1 + e cos f(t)
, v(t) =

√
µ

(
2

r(t)
− 1

a

)
Does this work for Hyperbolic Orbits? Lets recall the angles.
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What are these Angles?
True Anomaly, f (θ)

• The angle the position vector, ~r makes with the eccentricity vector, ~e,
measured COUNTERCLOCKWISE.

• The angle the position vector makes with periapse.
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What are these Angles?

• In the figure, θ is used for true anomaly. We typically use f . Occasionally, ν is
also used in the texts.

• True anomaly is always well-defined for hyperbolic orbits.



What are these Angles?
Eccentric Anomaly, E

• Measured from center of ellipse to a auxiliary reference circle.
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What are these Angles?
Eccentric Anomaly, E

• Measured from center of ellipse to a auxiliary reference circle.
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What are these Angles?

• Eccentric anomaly is not defined for hyperbolic orbits.

• For hyperbolic orbits, we use hyperbolic anomaly, which we will define shortly.



What are these Angles?
Mean Anomaly

M(t) = 2π
t

T
= 2π

APFV

AEllipse

• The fraction of area of the ellipse which has been swept out, in radians.
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What are these Angles?

• Mean anomaly is not defined for hyperbolic orbits, as these orbits do not have a
period. Indeed, Kepler’s third law is not relevant for hyperbolic orbits.



Relationships between M , E, and f
M vs. E
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Relationships between M , E, and f
M vs. E
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Relationships between M , E, and f

• These graphs are from Vallado’s book.

• Graphical methods of relating mean and eccentric anomaly are difficult due to
dependence on eccentricity.



Relationships between M , E, and f
M vs. f
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Relationships between M , E, and f
M vs. f
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Relationships between M , E, and f

• These graphs are from Vallado’s book.

• The difficulty in using graphical methods is exacerbated for true anomaly,
especially for highly elliptic orbits.



Problems with Hyperbolic Orbits

• The orbit does not repeat (no
period, T )

I We can’t use

T = 2π

√
a3

µ

I What is mean motion, n?

• No reference circle
I Eccentric Anomaly is Undefined

Note: In our treatment of hyperbolae, we do NOT use the Universal Variable
approach of Prussing/Conway and others.
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Problems with Hyperbolic Orbits

• The universal variable approach redefines the Kepler equation to be valid for both
eccentric and hyperbolic orbits.

• Does not require us to know what type of orbit we have apriori.

• Useful for computer algorithms as it avoids case logic. Occasionally, student try
and use Kepler’s equation to solve hyperbolic orbit problems.

• No useful geometric interpretation, however.



Solutions for Hyperbolic Orbits
Eccentricity

Eccentricity is still

~e =
1

µ

(
~̇r × ~h− µ ~r

‖~r‖

)
and e = ‖~e‖.
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Solutions for Hyperbolic Orbits

• Image is from Vallado. Note the use of ν for representing true anomaly.

• eccentricity vector still points toward periapse for hyperbolic orbits. Still yields
scalar value of eccentricity.



Solutions for Hyperbolic Orbits
Semimajor axis

Semimajor axis can still be defined by energy as

E = − µ

2a
=

1

2
v2excess

The periapse is still
rp = a(1− e)
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Solutions for Hyperbolic Orbits
Semimajor axis
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=
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Solutions for Hyperbolic Orbits

• Energy can still be used to calculate a.

• a and e can still be used to calculate rp

• Of course, ra is undefined



Solutions for Hyperbolic Orbits
The Polar Equation

Hyperbolic Orbits still satisfy the polar equation

r =
a(1− e2)

1 + e cos f
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Solutions for Hyperbolic Orbits
Velocity

Velocity can still be calculated from the vis - viva equation

v =

√
µ

(
2

r
− 1

a

)

M. Peet Lecture 5: Spacecraft Dynamics 13 / 32



Solutions for Hyperbolic Orbits
Reference Hyperbola

Hyperbolic Anomaly is defined by the projection onto a reference hyperbola.

• defined using the reference hyperbola, tangent at perigee. Equation for
reference hyperbola:

x2 − y2 = a2

Hyperbolic anomaly (H) is the hyperbolic angle using the area enclosed by the
center of the hyperbola, the point of perifocus and the point on the reference
hyperbola directly above the position vector.
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Solutions for Hyperbolic Orbits

• The reference hyperbola is the hyperbola with an eccentricity of
√

2 whose
periapse is the same as the periapse of the actual orbit.



Recall your Hyperbolic Trig.
Cosh and Sinh

Consider x2 − y2 = 1

cosh and sinh relate area swept out by the reference hyperbola to lengths.

• Yet another branch of mathematics developed for solving orbits (Lambert).
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• Yet another branch of mathematics developed for solving orbits (Lambert).

2
0

1
9

-0
1

-3
1

Lecture 5
Spacecraft Dynamics

Recall your Hyperbolic Trig.

• Defined using the normalized reference hyperbola.

• Lambert invented hyperbolic functions in the 18th century to compute the area
of a hyperbolic triangle. We will meet Lambert again in a later lecture.

• See en.wikipedia.org/wiki/Hyperbolic function for a thorough treatment
of hyperbolic functions



Hyperbolic Anomaly

• Hyperbolic Trig (which I won’t get into) gives a relationship to true
anomaly, which is

tanh

(
H

2

)
=

√
e− 1

e+ 1
tan

(
f

2

)
• Alternatively,

tan

(
f

2

)
=

√
e+ 1

e− 1
tanh

(
H

2

)
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Hyperbolic Anomaly

• Derivation similar to that for Eccentric anomaly.



Hyperbolic Anomaly

Using hyperbolic anomaly, we can give a simpler form of the polar equation.

r(t) = a(1− e coshH(t))
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Hyperbolic Kepler’s Equation

To solve for position, we redefine mean motion, n, and mean anomaly, M , to get

n =

√
µ

−a3

Definition 1 (Hyperbolic Kepler’s Equation).

nt =

√
µ

−a3
t = M = e sinh(H)−H

If we want to solve this for H, we get a different Newton iteration.
Newton Iteration for Hyperbolic Anomaly:

Hk+1 = Hk +
M − e sinh(Hk) +Hk

e cosh(Hk)− 1

with starting guess H1 = M .

M. Peet Lecture 5: Spacecraft Dynamics 18 / 32



Hyperbolic Kepler’s Equation

To solve for position, we redefine mean motion, n, and mean anomaly, M , to get

n =

√
µ

−a3

Definition 1 (Hyperbolic Kepler’s Equation).

nt =

√
µ

−a3
t = M = e sinh(H)−H

If we want to solve this for H, we get a different Newton iteration.
Newton Iteration for Hyperbolic Anomaly:

Hk+1 = Hk +
M − e sinh(Hk) +Hk

e cosh(Hk)− 1

with starting guess H1 = M .

2
0

1
9

-0
1

-3
1

Lecture 5
Spacecraft Dynamics

Hyperbolic Kepler’s Equation

• Very similar to Kepler’s equation. But don’t confuse them! I have given
hyperbolic orbits on exams in the past.



Relationship between M and f for Hyperbolic Orbits
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Example: Jupiter Flyby

Problem: Suppose we want to make a flyby of Jupiter. The relative velocity at
approach is v∞ = 10km/s. To achieve the proper turning angle, we need an
eccentricity of e = 1.07. Radiation limits our time within radius r = 100, 000km
to 1 hour (radius of Jupiter is 71, 000km). Will the spacecraft survive the flyby?
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Example: Jupiter Flyby
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Example Continued

Solution: First solve for a and p. µ = 1.267E8.

• The total energy of the orbit is
given by

Etot =
1

2
v2∞

• The total energy is expressed as

E = − µ

2a
=

1

2
v2∞

which yields

a = − µ

v2∞
= −1.267E6

• The parameter is
p = a(1− e2) = 1.8359E5
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Example Continued

We need to find the time between r1 = 100, 000km and r2 = 100, 000km. Find
f at each of these points.

• Start with the polar equation:

r(t) =
p

1 + e cos f(t)

• Solving for f ,

f1,2 = cos−1
(

1

e
− r

ep

)
= ±64.8 deg
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Example Continued

Given the true anomalies, f1,2, we want to find the associated times, t1,2.
• Only solve for t2, get t1 by symmetry.
• First find Hyperbolic Anomaly,

H2 = tanh−1

(√
e− 1

e+ 1
tan

(
f2
2

))
= .1173

• Now use Hyperbolic anomaly to find mean anomaly

M2 = e sinh(H2)−H2 = .0085

I This is the “easy” direction.
I No Newton iteration required.

• t2 is now easy to find

t2 = M2

√
−a3
µ

= 1076.6

Finally, we conclude ∆t = 2 ∗ t2 = 2153s = 35min.

So the spacecraft survives.
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The Method for Hyperbolic Orbits
Given t, find r and v

For elliptic orbits:

1. Given time, t, solve for Hyperbolic Mean Anomaly

M(t) =

√
µ

−a3
t

2. Given Mean Anomaly, solve for hyperbolic anomaly

M(t) = e sinhH −H

3. Given hyperbolic anomaly, solve for true anomaly

tan

(
f

2

)
=

√
e+ 1

e− 1
tanh

(
H

2

)
4. Given true anomaly, solve for r

r(t) =
a(1− e2)

1 + e cos f(t)
, v =

√
µ

(
2

r
− 1

a

)
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The Orbital Elements

So far, all orbits are parameterized by 3 parameters

• semimajor axis, a

• eccentricity, e

• true anomaly, f

• a and e define the geometry of the orbit.

• f describes the position within the orbit (a proxy for time).
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The Orbital Elements

Note: We have shown how to use a, e and f to find the scalars r and v.

Question: How do we find the vectors ~r and ~v?

Answer: We have to determine how the orbit is oriented in space.

• Orientation is determined by vectors ~e and ~h.

• We need 3 new orbital elements
I Orientation can be determined by 3 rotations.
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The Orbital Elements

• Although ~e and ~h represent components, we only actually need three. The ~h
represents orientation of the orbital plane, and so we don’t care about the roll
axis in the classic 1-2-3 rotation matrices. That is, this orientation has symmetry
about the angular momentum vector. The eccentricity vector is always
perpendicular to the angular momentum vector, which gives one constraint. The
second is that its length equals the eccentricity of the orbit. This leaves a single
degree of freedom.



Inclination, i

Angle the orbital plane makes with the reference plane.
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Inclination, i

Angle the orbital plane makes with the reference plane.
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Inclination, i

• Think of the 2D orbit in space. Z-axis is out of the ecliptic plane. X-axis is line of
nodes.

• first rotation is about the line of nodes.



Right Ascension of Ascending Node, Ω

Angle measured from reference direction in the reference plane to intersection
with orbital plane.
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Right Ascension of Ascending Node, Ω

Angle measured from reference direction in the reference plane to intersection
with orbital plane.
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Right Ascension of Ascending Node, Ω

• Second rotation is about the Z-axis.



Argument of Periapse, ω

Angle measured from reference plane to point of periapse.
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Argument of Periapse, ω

Angle measured from reference plane to point of periapse.
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Argument of Periapse, ω

• Third rotation is about angular momentum vector.



Summary

This Lecture you have learned:

Hyperbolic orbits

• Hyperbolic Anomaly

• Kepler’s Equation, Again.

• How to find r and v

A Mission Design Example

Introduction to the Orbital Plane
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Summary

M. Peet Lecture 5: Spacecraft Dynamics 32 / 32


	Spacecraft Dynamics

