
2nd Workshop on Algorithm EngineeringWAE'98 { ProceedingsKurt Mehlhorn, Ed.MPI{I{98{1-019 August 1998

Kurt Mehlhorn, Ed.
WAE'982nd Workshop on Algorithm Engineering
Max-Planck-Institut f�ur InformatikSaarbr�ucken, Germany, August 20{22, 1998Proceedings

������ kI N F O R M A T I K

FOREWORDThe papers in this volume were presented at the 2nd Workshop on Algorithm Engineering(WAE'98) held in Saarbr�ucken, Germany, on August 20{22, 1998. The Workshop was devotedto researchers and developers interested in the practical aspects of algorithms and their implemen-tation issues. In particular, it brought together researchers, practitioners and developers in the �eldof algorithm engineering in order to foster cooperation and exchange of ideas. Relevant themes ofthe Workshop were the design, experimental testing and tuning of algorithms in order to bridge thegap between their theoretical design and practical applicability.There were 32 submissions, all in electronic format. The Program Committee selected 18 papersin a deliberation conducted via an \electronic meeting" that ran from June 1 to June 14, 1998.The selection was based on perceived originality, quality, and relevance to the subject area of theworkshop. Submissions were not refereed, and many of them represent preliminary reports of con-tinuing research. A special issue of the ACM Journal on Experimental Algorithmics will be devotedto selected papers from WAE'98.We would like to thank all those who submitted papers for consideration, the ProgramCommitteemembers and their referees for their invaluable contribution, and the members of the OrganizingCommittee for all their time and e�ort. We are grateful to Pino Italiano, Salvatore Orlando, andFabio Pittarelo for their generous help with the software of the submissions and program committeeWeb servers.We gratefully acknowledge support from ALCOM-IT (a European Union ESPRIT LTR Project),and the Max-Planck-Institut f�ur Informatik.Saarbr�ucken, August 1998 Kurt Mehlhorn

i

Invited LecturersThomas Lengauer GMD, Bonn, GermanyBernard Moret University of New Mexico, Albuquerque, USAPetra Mutzel Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany
Program CommitteeJean Daniel Boissonat INRIA, Sophia Antipolis, FranceAndrew V. Goldberg NEC Research Institute, Princeton, USADavid S. Johnson AT & T Labs Research, Florham Park, USAKurt Mehlhorn, Chair Max-Planck-Institut f�ur Informatik, Saarbr�ucken, GermanyFriedhelm Meyer auf der Heide University of Paderborn, GermanyBernard Moret University of New Mexico, Albuquerque, USA
Organizing CommitteeGerth Brodal Max-Planck-Institut f�ur Informatik, Saarbr�ucken, GermanyIngrid Finkler-Paul Max-Planck-Institut f�ur Informatik, Saarbr�ucken, GermanyChristoph Storb Max-Planck-Institut f�ur Informatik, Saarbr�ucken, GermanyRoxane Wetzel Max-Planck-Institut f�ur Informatik, Saarbr�ucken, GermanyChristos D. Zaroliagis, Chair Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany

ii

CONTENTSWhy CAD Data Repair Requires Discrete Algorithmic TechniquesKarsten Weihe and Thomas Willhalm 1E�cient Implementation of an Optimal Greedy Algorithm for WavelengthAssignment in Directed Tree NetworksThomas Erlebach and Klaus Jansen 13Implementing a dynamic compressed trieStefan Nilsson and Matti Tikkanen 25Graph and Hashing Algorithms for Modern Architectures:Design and PerformanceJohn R. Black, Charles U. Martel, and Hongbin Qi 37Implementation and Experimental Evaluation of Flexible Parsing for DynamicDictionary Based Data CompressionYossi Matias, Nasir Rajpoot, and S�uleyman C. Sahinalp 49Computing the width of a three-dimensional point set: an experimental studyJoerg Schwerdt, Michiel Smid, Jayanth Majhi, and Ravi Janardan 62Implementation and testing eavesdropper protocols using the DSP toolKostas Hatzis, George Pentaris, Paul Spirakis, and Vasilis Tampakas 74Implementing Weighted b-Matching Algorithms: Towards a Flexible SoftwareDesignMatthias Mueller-Hannemann and Alexander Schwartz 86Matrix Multiplication: A Case Study of Algorithm EngineeringNadav Eiron, Michael Rodeh, and Iris Steinwarts 98Guarding Scenes against Invasive HypercubesMark de Berg, Haggai David, Matthew J. Katz, Mark Overmars,A. Frank van der Stappen, and Jules Vleugels 110Computing maximum-cardinality matchings in sparse general graphsJohn Kececioglu and Justin Pecqueur 121A Network Based Approach for Realtime Walkthrough of Massive ModelsMatthias Fischer, Tamas Lukovszki, and Martin Ziegler 133An Implementation of the Binary Blocking Flow AlgorithmTorben Hagerup, Peter Sanders, and Jesper Larsson Trae� 143An Iterated Heuristic Algorithm for the Set Covering ProblemElena Marchiori and Adri Steenbeek 155A Computational Study of Routing Algorithms for Realistic TransportationNetworksRiko Jacob, Madhav Marathe, and Kai Nagel 167iii

Hybrid Tree Reconstruction MethodsDaniel Huson, Scott Nettles, Kenneth Rice, Tandy Warnow, and Shibu Yooseph 179An experimental study of word-level parallelism in some sorting algorithmsNaila Rahman and Rajeev Raman 193Who is interested in algorithms and why? Lessons from the Stony BrookAlgorithms repositorySteven Skiena 204AUTHOR INDEX 213

iv

1Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 1{12Why CAD Data Repair Requires Discrete AlgorithmicTechniquesKarsten WeiheFakult�at f�ur Mathematik und Informatik, Universit�at Konstanz, Fach D18878457 Konstanz, Germanye-mail: karsten.weihe@uni-konstanz.deandThomas WillhalmFakult�at f�ur Mathematik und Informatik, Universit�at Konstanz, Fach D18878457 Konstanz, Germanye-mail: thomas.willhalm@uni-konstanz.deABSTRACTWe consider a problem of reconstructing a discrete structure from unstructured numerical data.The problem arises in the computer-aided design of machines, motor vehicles, and other technicaldevices. A CAD model consists of a set of surface pieces in the three-dimensional space (the so-called mesh elements). The neighbourhoods of these mesh elements, the topology of the model,must be reconstructed. The reconstruction is non-trivial because of erroneous gaps betweenneighboured mesh elements.However, a look at the real-world data from various applications strongly suggests thatthe pairs of neighboured mesh elements may be (nearly) correctly identi�ed by some distancemeasure and some threshold. In fact, to our knowledge, this is the main strategy pursued inpractice. In this paper, we make a �rst attempt to design systematic studies to support a claimof failure: we demonstrate empirically that human intuition is misleading here, and that thisapproach fails even for \innocent-looking" real-world data. In other words, it does not su�ceto look at individual pairs of surface pieces separately; incorporating discrete relations betweenmesh elements is necessary.1. IntroductionComputer-aided design plays an important role in today's engineering. In this paper, we dealwith CAD data models such as the one shown in Figure 1. Such a model consists of mesh elementsand approximates the surface of the workpiece. In general, the mesh elements are not parts of aplane, and their edges are not straight lines. To give a concrete example: in the data available tous, trimmed parametric surface patches were used (see [8]).One of the tasks which is to be done automatically is the reconstruction of the so-called topologyof the CAD data model, i.e. the information whether and where two mesh elements are to be regardedas immediately neighboured (Figure 7). Many wide-spread data formats for CAD models do notprovide the neighbourhoods. The topology of a CAD model is important, since almost every furtherstep of the CAD process relies on this information. Section 2 gives examples of such steps.Pictures such as Figures 1 and 4 suggest that the edges of neighboured mesh elements fall togethergeometrically. This is generally not the case. There are normally gaps between the mesh elements{ gaps that can be as large as in Figures 2 and 3. These gaps are sometimes even larger than mesh

Why CAD Data Repair Requires Discrete Algorithmic Techniques 2

Figure 1: This mudguard (workpiece 8) is a typical example of ourreal world instances. It consists of surfaces patches (the so-called meshelements). The black curves indicate the edges of the mesh elements.elements in the same workpiece. They are the reason why the problem is non-trivial, since we haveno knowledge whether an edge is neighboured to one, several or no other edges (Figure 8). Considertwo edges that are situated next to each other. The gap between them may have been intended bythe engineer who designed of the workpiece to separate them, but the two surface patches might alsobe regarded as parts of one closed surface. The automatic tools have to guess the intention of theengineer. The problem is thus inherently subjective and not mathematical in nature. In particular,the quality of the output is the point of interest. In fact, time and space consumption is negligiblecompared to certain other steps of the CAD process.In this paper, we focus on a common approach, which is highly suggested by Figures 1 and 4:to de�ne a distance measure of two edges and choose a threshold value1. An example of a distancemeasure is the maximal distance between two points on the respective edges, or the sum of thedistances between the end points. Only pairs of edges whose distance is smaller than the thresholdvalue are considered as neighboured. This may be viewed as estimating the absolute error of theplacement of the edges.To re�ne this approach, one can replace the absolute error with the relative error. Properties suchas the lengths of the edges, or the area or perimeter of the mesh elements seem reasonable scalingsfor such a scaled distance measure. To our knowledge, these approaches with scaled or unscaleddistance measures are the main strategy in today's industrial practice [7, 8]. Even Figures 2 and 3suggest that this approach yields a very good approximation of the right neighbourhoods. Thus theproblem does not seem to deserve further research.The main contribution of this paper is to demonstrate empirically that in general this approachfails against all expectations { even if we assume that the algorithm automatically �nds the bestthreshold value for each edge (of course, this assumption is far too optimistic). We have examined avariety of unscaled distance measures and possible extensions to scaled distance measures. Naturallyour investigations only cover a subset of all possible distance measures. However, we believe thatthe most logical ones were treated and that they are good representatives for all useful distancemeasures, because our results are not too sensitive to the choice of the distance measure. This willbe discussed further in Section 4.Our results imply that an algorithm that is based solely on some measure for the (relativeor absolute) error cannot determine a satisfying approximation of the topology. In other words,1We produced many more pictures than are shown in this paper. All of them give the same impression.

Why CAD Data Repair Requires Discrete Algorithmic Techniques 3

Figure 2: An example of a sloppy de-sign (workpiece 15). Figure 3: An extreme gap from the interior of Figure 4. The black,semicircular hole does not make any sense from an engineeringpoint of view and might be a serious case of sloppy design.unstructured information such as the position, size, and shape of mesh elements does not su�ceto decide whether or not two mesh elements are neighboured. One seems forced to look at theproblem from a more abstract point of view and use discrete techniques. By that we mean thatrules are applied in which geometrical and numerical details are abstracted away: some kind oflogical inference rules, which incorporate more than two mesh elements in their reasoning. A simpleexample is the rule that the relation of neighbourhoods has to be transitive: if patches A and B aswell as patches B and C are neighboured, then A and C must also be neighboured. Such a rule mightadd missing neighbourhoods along branchings like in Figure 8. Furthermore, an algorithm may usemeta-information about the structure, the topology, of the workpiece. The special case where theCAD model is the surface of a (connected) solid object or a plane deformed by a press is an exampleof strong meta-information: the graph induced by the mesh elements and neighbourhoods is planar.In [10] we presented an algorithm for the reconstruction of the topology, which relies on structuraltechniques and which produced acceptable results for our benchmarks. As a by-product, the resultspresented here in retrospect justify the choice of a discrete approach in [10].In summary, we were faced with a practical problem that does not seem to be mathematical innature: the dirtiness of the problem cannot be abstracted away, since it is at the heart of the problem.This paper is a �rst attempt to design systematic studies on real-world data to support negativeclaims. It demonstrates that the dirtiness is not limited to arti�cial and pathological examples.Errors that caused the common approach to fail were found all over the test set. Cleaning theproblem up to a (mathematically) nice one would make a completely di�erent problem of it {actually, the real problem would vanish.2. BackgroundNeed for topology. The topology of a CAD model is essential for most automated tasks. Forexample, applying �nite element methods only makes sense when forces or heat ow are transmittedcorrectly from element to element. The topology is also necessary to re�ne or coarsen the meshof a workpiece. Figure 4 shows an example of a CAD data model that was constructed manually,and a re�ned mesh of the same workpiece that was automatically produced by the algorithm in [5].Furthermore, the topology is needed for smoothing surfaces or replacing several mesh elements byothers of a simpler type. See [7] for a list of further tasks.Reasons for gaps. As already stated in Section 3, the unintented gaps are the main reasonwhy the reconstruction of the topology is di�cult. The gaps in Figures 2 and 3 are obviously notdue to mere numerical rounding errors. We have found several explanations why these and othergaps exist.

Why CAD Data Repair Requires Discrete Algorithmic Techniques 4

Figure 4: A CAD model of a pump (work-piece 13). Figure 5: The same workpiece re�ned by the al-gorithm in [5].� While creating a workpiece, the designer can position the edges freely in the three dimensionalspace. In particular, two edges can be neighboured on parts of their full length. The low orderof the polygons that model the edge makes gaps unavoidable then.� Conversions between non-isomorphic data formats sometimes make the approximation of afree form surface by another type necessary.� Automatic tools that create CAD models from input devices like computer tomographs or3D scanners do not have any knowledge about the topology of the workpiece. Errors and aninaccurate precision of measurement may then lead to gaps.See [3] for a detailed discussion of these issues.Existing approaches. Some restrictions on the input format as well as much cleaner CADmodels sometimes allow the use of a distance measure in combination with a threshold value. Shengand Meier examined in [8] the case when the surface is the boundary of a solid object. They alsofaced the problem of gaps that are as large as mesh elements. Their solution was to interact withthe user in cases of doubt.Knowledge about the discrete structure is used in very few existing approaches. In [2] B�hn andWozny restricted the problem to workpieces where the topology is known except for a few holes(which may be viewed as another kind of discrete pre-knowledge). This is of course less di�cultthan a total reconstruction of the topology. Apart from this, their approach is heavily based on theassumption that the mesh elements form the surface of a solid object. It incorporates the fact thatthe closed surface is orientable and uses the knowledge on which side of the surface the solid objectis situated. However, their algorithm can only �nd a special kind of gap. The same problem wasalso treated by Barequet and Sharir in [1], but heir approach is not limited to a special kind of gap.We presented an algorithm in [10] for the problem in the generality we describe in Section 3. Incontrast, in our problem variant, the topology { or any other kind of meta-information { is not evenpartially available.3. Problem Description and DiscussionInput. To give a concrete, illustrative example, we will describe the format of the data that isavailable to us. A CAD model consists of a set of parametric surface patches. In our case, a patch

Why CAD Data Repair Requires Discrete Algorithmic Techniques 5
)(

Figure 6: A triangular mesh element with six sup-porting points and a quadrilateral mesh elementwith eight supporting points on the boundary andone (optional) point in the interior.
1 s2

s segment

edge
(parabolic curve)

segment

Figure 7: Two neighboured mesh elements and thesegments s1 and s2 that constitute this neighbour-hood.can be three or four sided (Figure 6). The edges are parabolic curves, and the whole element isa special case of a bicubic patch as it is de�ned in chapter 5 of [9]. Basically this means that therestrictions imply that the three sided patch is uniquely determined by six points. The four sidedmesh elements exist in two versions, which are de�ned with eight or nine points.Figure 7 demonstrates that edges need not be neighboured on a whole edge. On the other hand,not only two, but even three or more mesh elements may have an edge in common (Figure 8).Figure 8 also shows a rim and a hole as two exemplary con�gurations where a mesh element is notneighboured to any other mesh element on an edge.

Figure 8: (workpiece 10) A mesh element can have edges that are not neigh-boured to any other edge. They may be around a hole or along a rim. Edgescan also have more than one neighbour along so-called branchings.Gaps. The main problem when �nding neighbourhoods is that usually the CAD models containsigni�cant gaps. These gaps have to be distinguished from holes that are intended by the designerof the CAD model. Consider two edges that are situated next to each other. The algorithm hasto decide whether they are intended to be neighboured or just two separate edges with a hole inbetween. Since the gaps can be as large as in Figure 2 or 3, this decision becomes a serious problem.(A few possible reasons why gaps of this size may occur were discussed in Section 2.) The problem ismade even more di�cult by the occurrence of branchings: if for one of a pair of edges a neighbour hasalready been found, this does not exclude the possibility that the edges are nevertheless neighboured.Discrete information. We have found gaps that are larger than mesh elements of the sameworkpiece. This has some unpleasant consequences, which are depicted in Figure 9. On the left sidethe upper and lower mesh elements are neighboured, whereas this is not the case on the right side,owing to the triangle between them.

Why CAD Data Repair Requires Discrete Algorithmic Techniques 6

Figure 9: On the left side, the mesh elements areneighboured, but their mirror-symmetric counter-parts on the right side are not, due to the trianglebetween them. Figure 10: Two gaps of the same width andlength. The surrounding mesh elements are a hintthat the upper one is probably intended whereasthe lower one is an error.Remark: The detection of this kind of con�guration has been applied in [10]. It remarkablyreduced the number of errors in the results of our algorithm.Not only a mesh element between an examined pair of edges, but also the surrounding meshelements must be incorporated into the interpretation of a local con�guration. For example, inFigure 10 two gaps of the same length and width are shown. But in the upper case the gap continueson both sides and in the lower case the gap closes. This is a good indication that the �rst gap isintended as opposed to the second one. Roughly speaking, all of these considerations are examplesof what we mean by incorporating discrete information.Claim. We have seen that in certain situations discrete information must be used. Based ona systematic computational study, we will show that such situations occur too often to be ignored.They are typical, not pathological.4. MethodologyTest cases. The workpieces that we have examined stem from industrial applications. Unfortu-nately it is quite di�cult to get such instances because industrial companies keep them con�dential.We do not even know which CAD applications they have used, and we are not allowed to distributethe CAD data sets to other researchers. However, the number of test cases is still high enough todemonstrate the trend to a negative result. We also know that the test cases were created withdiverse applications in various companies.We believe that it is impossible to systematically generate arti�cial instances that model realisticworkpieces: a random set of parametric surface patches might never resemble a workpiece like apump or a console. If we had introduced arti�cial gaps into closed surfaces to imitate the dirtinessof the data, we would not have examined the nature of common errors, but our interpretation ofthem.Examined class of algorithms. In this paper, we consider the class of algorithms that workaccording to the following pattern: an algorithm decides whether or not a pair of edges is neighbouredby comparing the distance of the edges with a threshold value. The algorithms di�er only in the useddistance measure. Furthermore, we assume that the algorithms always �nd the best threshold valuefor each workpiece. In the case of scaled distance functions, we even assume that the algorithmschoose the best threshold value for each single edge. Both assumptions are by far more than onecan expect from an algorithm without human interaction.

Why CAD Data Repair Requires Discrete Algorithmic Techniques 7Reference neighbours. We use a set of reference neighbours for making statistics and assessingthe output of di�erent algorithms. Since the problem is so ill-posed, it is impossible to automaticallycheck the output of an algorithm otherwise. The reference neighbourhoods were produced by acommercial CAD tool [4] and our algorithm in [10]. The result was checked manually using themethod described in [10]. Where necessary the neighbourhoods were corrected in this project andthe project of [5].Potential neighbours. It does not su�ce to count the number of reference neighbourhoodsmissed by an algorithm; we also have to test for pairs of edges that an algorithm erroneouslyconsiders as neighboured. For a fair test, we do not examine all pairs of edges, but only thosethat are not obviously wrong. For a more precise explanation, recall that each parametric surfacepatch is bordered by its trimming curves. Each edge is a segment of such a parameterized curve.The segment is de�ned by a parameter interval of the parameter of the curve. If the projection ofanother edge onto the curve does not intersect with this interval, we exclude this pair of edges fromour investigations.
���� ��

��
��
��

����

����

������
����

1 w 1

Figure 11: The distances between the end points are added to the distancebetween the middle points of the segments weighted by w to calculate theweighted distance.Distance measures. We have examined two kinds of distance measures. The �rst kind ofdistance measures is computed by �nding the mean value of the distances at ten pairs of mutuallyopposite points. These points are equidistant according to the parametrisation of the edge. We callthis distance measure uniform.The distance measures of the second kind are weighted. They result from the insight that anengineer sets the end points of an edge manually, whereas the interior of the edge is interpolatedautomatically. Therefore, the end points might be more precisely positioned than the interior of theedge. We measure the distance between two edges at three pairs of points. As in Figure 11, thedistances at the end points are incorporated with weight 1 for the sake of symmetry. We refer tothe individual distance measures by the weight w of the third distance, which is the only di�erencebetween them. We will discuss at the end of this section why we think these distance measures aregood representatives.Examined minima. For each distance measure and workpiece we produced a diagram likeFigure 12. The threshold value varies on the abscissa. The decreasing curve shows the number ofreference neighbours that are missed by using the speci�ed threshold value, whereas the increasingline documents the number of pairs of edges that are incorrectly found to be neighboured.There are two points of special interest in these diagrams. The �rst one is the total minimumnumber of faults { reference neighbours that are missed plus false neighbourhoods. The secondinteresting point is the minimum number is of wrong neighbours, subject to the condition that allreference neighbourhoods are found. In [10] we discussed why this minimum can be more importantthan the �rst one. For each distance measure and workpiece, we determined both values. Thisis what we meant above by claiming to assume that an algorithm always implicitly �nds the bestthreshold value for every workpiece.

Why CAD Data Repair Requires Discrete Algorithmic Techniques 8

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

ne
ig

hb
ou

rs

threshold valueFigure 12: The number of reference neighbours that fail (decreasing line) and thenumber of pairs of edges that would be considered erroneously as neighboured (in-creasing line) for workpiece 8 and the uniform distance measure.Relative error. Our experiments have shown that estimating the relative error with respect togeometric attributes does not produce better results than using the absolute error. For a meaningfulvisualization of the results, the estimationdistancescaling � thresholdwas replaced by distance � threshold � scalingin the pictures and tables. We then determined all feasible threshold values for the (unscaled)uniform distance measure for every edge:� The minimal feasible threshold value is the maximum of the distances to all reference neigh-bours.� The maximal feasible threshold value is the minimum of the distances to all other edges.A scaled threshold value for an edge between these bounds separates the correct neighbours of thisedge from its false neighbours. We have examined the following four scalings:1. the length of the edge,2. the perimeter of the mesh element,3. the area of the mesh element, and4. the extent of the edge above a straight line through the end points of the edge, as shown inFigure 13. We call this distance the curvature of the edge.
Figure 13: The curvature of an edge is measured by the distance from the supportingpoint in the middle of the edge to a line through the points at the ends of the edge.

Why CAD Data Repair Requires Discrete Algorithmic Techniques 9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

th
re

sh
ol

d
va

lu
e

lengthFigure 14: The possible threshold values for workpiece 12. Each intervalshows the upper and the lower bound for one edge. Their position onthe abscissa is the length of the edge.We have generated a diagram for every scaling and workpiece. For every edge a vertical intervaloccurs in such a diagram. The intervals are positioned on the abscissa according to the value ofthe scaling for the particular edge. The lower and upper bound of the threshold determine the endpoints of the interval. An example is shown in Figure 14.Our goal is to decide whether there is a reasonably simple relationship between geometric char-acteristics and feasible threshold values. In our opinion, a suitable visualization produces the mostconvincing arguments about the complexity of a possible interrelation. By that we mean a functionthat passes through all intervals. In particular, we determined the curve with minimal length in theset of continuous functions that pass between the permitted bounds.This function with minimal length can be constructed automatically: the upper and lower boundsfor each appearing value generate a polygon in the two dimensional plane. We seek the shortestpath from the leftmost segment to the rightmost one. According to [6] Section 8.2.1, a shortest pathin a polygon is a subpath of the visibility graph of the vertices of the polygon. If we replace thestart and end points by segments, this solves our problem.Representative distance measures. For performing our tests we had to choose di�erentdistance measures. We think that our distance measures are good representatives and include themost logical ones. It is obvious that the distance measure should rely on a metric of the threedimensional space. The metric has to be invariant under translation and rotation of the workpiece.Since the algorithm should produce the same result for a workpiece after scaling, the distance mustbe scalable, and thereby only those metrices that are derived from a norm are reasonable. Since allof those metrics are equivalent in a sense, we selected the Euclidean distance as a representative.A natural extension of the Euclidean distance between two points to a distance measure of edges isthe (discrete approximation of the) area between the edges.In this paper, we consider some related distance measures. Scalings other than the length aretreated, and di�erent weights are used. Nevertheless, our results provide a strong argument thatthis does not improve the situation.Of course, one might argue that a signi�cantly more complicated and less natural distancemeasure could solve the problem. However, the conclusions from the empirical results turned outnot to be very sensitive to variations of the distance measure. Switching to another distance measurecan improve or impair the quality of the output for a single workpiece, but on average the resultdoes not change dramatically.

Why CAD Data Repair Requires Discrete Algorithmic Techniques 105. Computational ResultsAbsolute errors. We �rst discuss the quality of the output for distance measures that representthe absolute error estimation. All of these distance measures failed for some workpieces. The errorsare out of magnitude for the subsequent tasks in the CAD process that use the neighbourhoods.Furthermore, none of the distance measures turned out to be generally preferable over the others.In Table 1, the minima according to Section 4 are listed for individual distance measures andworkpieces. The occasional great di�erences between good and bad results can only be explainedby the size of the gaps in the workpieces: if gaps that are larger than mesh elements occur in aworkpiece, the results are considerably worse. There are no other structural di�erences between theworkpieces that could explain this e�ect. For model no. 6, the number of reference neighbours thatwere considered as wrong for a given threshold value did not drop to zero in the observed interval[0; 10] for the uniform distance measure.No. # elements neighbours uniform weighted weighted weighted weightedref. pot. 0.0 0.5 1.0 1.51 34 55 1025 4 7 4 4 4 4 4 4 4 42 103 210 7860 0 0 0 0 0 0 0 0 0 03 295 676 35134 13 56 12 33 13 34 13 40 12 414 68 128 2304 0 0 0 0 0 0 0 0 0 05 251 573 23338 0 0 0 0 0 0 0 0 0 06 156 321 11525 26 18 72 18 72 20 72 22 727 342 823 48689 7 447 7 27 5 35 5 33 5 378 131 222 8669 2 55 0 0 0 0 1 5 2 119 530 1205 129596 0 0 0 0 0 0 0 0 0 010 608 1280 198055 0 0 0 0 0 0 0 0 0 011 24 40 567 0 0 0 0 0 0 0 0 0 012 179 409 20537 12 968 9 749 8 831 9 853 11 88913 154 321 28860 3 3 3 3 2 2 2 2 2 314 237 446 29072 4 10 2 13 2 13 2 13 4 1315 158 341 19085 0 0 3 3 0 0 0 0 0 016 156 261 17695 4 101 35 293 27 193 7 76 4 268Table 1: Minimal number of wrong neighbourhoods for di�erent distance measures. The weighted distancemeasure is determined according to Figure 11. For each distance measure, the �rst column lists the minimalnumber of false neighbourhoods { missing reference neighbours plus additional false neighbours. The secondcolumn contains the minimal number of errors, when all reference neighbours are found.Number of supporting points. We �rst compare the uniform distance measure to a distancemeasure with only three measured distances, two at the end points and one in the middle of theedge. The results for the latter are listed in the column labelled \weighted 1.0". By comparing thetwo mentioned columns, the reader sees that the more �ne-grained uniform distance measures doesnot lead to a better result. This realization explains furthermore why we did not consider more thanthree supporting points for weighted distance measures.Weighted distances. We chose four di�erent values for the weight in the middle of the edge.The search for a favorable weight appears fruitless: for every distance measure there is at leastone data �le where this weight does not seem appropriate. In most cases however, the choice ofthe weight only marginally inuences the quality of the output: the results are similar for all fourweights.

Why CAD Data Repair Requires Discrete Algorithmic Techniques 11Relative errors. We now present the upper and lower bounds for the threshold value anddiscuss a possible relationship with scaling values of the mesh elements. In the data that is availableto us, we even found some cases where the upper bound was smaller than the lower bound. To beable to proceed with our investigations, we increased the upper bound to match the lower one inthose cases in which no feasible threshold value exists at all.The appendix contains diagrams for all four scalings. They are typical in the sense that all ofthese functions \zigzag" irregularly, if there is no feasible unscaled threshold value for the workpiece.There are not even two functions that reveal any resemblance. These and all other diagrams showthat there is probably not any interrelation between a suitable threshold value and the examinedscalings.6. Conclusion and OutlookSummary. The common approach of using a distance measure and a global threshold valueseems to fail for a variety of unscaled distance measures. Beyond this, we have seen that a relativeerror estimation does not improve the situation, even if the threshold value is individually chosen foreach edge. The empirical results suggest that, without additional discrete information, the problemcannot be solved completely.Source of discrete structure. Unfortunately, the topology is not available to an algorithm,since it is the output of the algorithm itself. As presented in [10], this conict can be resolved. We�rst generated a rough approximation of the topology with a conventional approach. This sourceof a discrete structure was still good enough to be used by a discrete algorithm that applied logicalinference rules as described above to correct errors in the topology. This dramatically improved ourresult.Global properties. In some special cases, there exist global characteristics that can helpreconstruct the topology. For example, in some applications we know that each edge is neighbouredto at most or maybe even exactly one other edge. For instance, the surface of a solid object cannotcontain any intended holes. A program processing such input can therefore safely close each gapsince it knows that all gaps are errors.Final remark. In analysing this problem, a di�culty becomes apparent that seems to beinherent to some practical problems. The standard stategy of analysing a problem, that is raisingit to an abstract, mathematical model and solving the abstract problem e�ciently, does not workhere. One has to \stay in the mud."References[1] G. Barequet and M. Sharir. Filling gaps in the boundary of a polyhedron, in Computer AidedGeometric Design 12 (1995), 207-229.[2] J. H. B�hn and M. J. Wozny. A Topology-Based Approach for Shell-Closure, in GeometricModeling for Product Realization, IFIP Transactions B-8 (1993), 297-319.[3] G. M. Fadel and C. Kirschman. Accuracy issues in CAD to RP translations, in Internet Con-ference on Rapid Product Development. MCB University Press, 1995.http://www.mcb.co.uk/services/conferen/dec95/rapidpd/fadel/fadel.htm.[4] G. Krause. Interactive �nite element preprocessing with ISAGEN, in Finite Element News 15,1991.[5] R. H. M�ohring, M. M�uller-Hannemann, and K. Weihe. Mesh re�nement via bidirected ows;modelling, complexity, and computational results. Journal of the ACM 44(3), 1997, 395-426.

Why CAD Data Repair Requires Discrete Algorithmic Techniques 12[6] J. O'Rourke. Computational Geometry in C. Cambridge University Press, 1994.[7] S. J. Rock and M. J. Wozny. Generating topological information from a `bucket of facets', inH.L. Marcus et al., editors, Solid Freeform Fabrication Symposium Proceedings, 1992, 251-259.[8] X. Sheng and I. R. Meier.Generating Topological Structures for Surface Models. IEEE ComputerGraphics and Applications Vol. 15, No. 6. 1995.[9] B. Su and D. Liu. Computational Geometry { Curve and Surface Modeling. Academic Press,Inc., 1989.[10] K. Weihe and T. Willhalm. Reconstructing the Topology of a CAD model - a discrete approach,in Proceedings of the 5th European Symposium on Algorithms, ESA 1997, Springer LectureNotes in Computer Science 1284, 500-513.Appendix: Diagrams about the Examined Scalings
0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50Figure 15: Approximating function for a possiblethreshold value depending on the length of edgesfor workpiece 12, 0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10Figure 16: depending on the curvature of edgesfor workpiece 3,

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1000 2000 3000 4000 5000 6000 7000 8000Figure 17: depending on the area of mesh ele-ments for workpiece 14, and 0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350Figure 18: depending on the perimeter of meshelements for workpiece 1.

13Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 13{24E�cient Implementation of an Optimal Greedy Algorithmfor Wavelength Assignment in Directed Tree NetworksThomas Erlebach1Institut f�ur Informatik, TU M�unchen, 80290 M�unchen, Germanye-mail: erlebach@in.tum.deandKlaus Jansen2IDSIA Lugano, Corso Elvezia 36, 6900 Lugano, Switzerlande-mail: klaus@idsia.chABSTRACTIn all-optical networks with wavelength division multiplexing several connections can share aphysical link if the signals are transmitted on di�erent wavelengths. As the number of availablewavelengths is limited in practice, it is important to �nd wavelength assignments minimizingthe number of di�erent wavelengths used. This path coloring problem is NP-hard, and thebest known polynomial-time approximation algorithm for directed tree networks achieves ap-proximation ratio 5=3, which is optimal in the class of greedy algorithms for this problem. Inthis paper the algorithm is modi�ed in order to improve its running-time to O(Tec(N;L)) forsets of paths with maximum load L in trees with N nodes, where Tec(n; k) is the time for edge-coloring a k-regular bipartite graph with n nodes. The implementation of this e�cient versionof the algorithm in C++ using the LEDA class library is described, and performance results arereported.1. IntroductionData can be transmitted through optical �ber networks at speeds that are considerably higherthan in conventional networks. One wavelength can transmit signals at a rate of several gigabitsper second. Furthermore, an optical �ber link can carry signals on di�erent wavelengths simultane-ously (wavelength division multiplexing). In order to fully exploit the bandwidth o�ered by opticalnetworks, e�cient wavelength assignment algorithms are required. For an optical network and aset of connection requests, each connection request must be assigned a transmitter-receiver pathand a wavelength, such that connections using the same directed �ber link are assigned di�erentwavelengths. Such a wavelength assignment should be computed e�ciently, and it should use as fewdistinct wavelengths as possible.For directed tree networks, the best known polynomial-time wavelength assignment algorithmuses at most (5=3)L wavelengths [4, 8], where L is the maximum load of a directed �ber link and,thus, a lower bound on the optimal number of wavelengths. The exact optimization problem isknown to be NP-hard even for binary trees [2].In this paper, we present modi�cations of the algorithm from [4] that allow a more e�cient imple-mentation. Furthermore, we describe an implementation of the modi�ed algorithm in C++ using theLEDA class library [10]. Finally, we present performance results obtained with the implementation.1supported by DFG contract SFB 342 TP A72partially supported by the EU ESPRIT LTR Project NO. 20244 (ALCOM-IT)

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 142. PreliminariesThe optical network with directed tree topology is represented by a directed tree T = (V;E)with jV j = N . Here, a directed tree is the graph obtained from an undirected tree by replacingeach undirected edge by two directed edges with opposite directions. Each connection request inT is given by a transmitter-receiver pair (u; v) with u; v 2 V and u 6= v, and it corresponds to thedirected path from u to v in T . We view the process of assigning wavelengths to connection requestsas coloring the corresponding paths. Two paths intersect if they share a directed edge. A feasiblecoloring of a set R of directed paths is an assignment of colors to paths in R such that intersectingpaths receive di�erent colors. A path p touches a node v 2 V if it starts at v, ends at v, or containsv as an internal node.Given a directed tree T = (V;E) and a set R of directed paths in T , the path coloring problemis to �nd a feasible coloring of R minimizing the number of distinct colors used.For a set R of directed paths in T , the load L(e) of edge e 2 E is the number of paths in R usingedge e. The maximum load maxe2E L(e) is denoted by L. Obviously, L is a lower bound on theoptimal number of colors in a feasible coloring for R.We express the running-time of path coloring algorithms in terms of parameters N (numberof nodes of the given tree network) and L (maximum load of a directed edge). Given these twoparameters, the size of the input (which consists of the tree network and the set of connectionrequests) can still vary between �(N + L) and �(NL). Our implementation does not try to makeuse of optimization opportunities for inputs whose size is substantially less than �(NL). In fact,our algorithm assumes that the load on all edges is exactly L. If this is not the case, it adds dummypaths between neighboring nodes until this requirement is satis�ed.The undirected version of the path coloring problem, where colors must be assigned to undirectedpaths in an undirected tree, has been studied as well [13, 3]. In the directed version, coloring thepaths touching one node is equivalent to edge-coloring a bipartite graph, which is easy, and thedi�culty lies in combining the colorings obtained for di�erent nodes. In the undirected version,coloring the paths touching one node is equivalent to edge-coloring a general graph, which is NP-hard, and it is easy to combine the colorings obtained for paths touching di�erent nodes to obtaina coloring of all paths without using additional colors. Therefore, any approximation algorithmfor edge-coloring with approximation ratio � directly translates into a �-approximation algorithmfor path coloring in undirected graphs. The best known edge-coloring algorithm has asymptoticapproximation ratio 1:1 [12]. In the present paper, we deal only with the directed path coloringproblem.2.1. Greedy algorithmsIt is known that the path coloring problem is NP-hard even for binary trees [2]. Therefore, oneis interested in polynomial-time approximation algorithms. All such algorithms studied so far arein the class of greedy algorithms [11, 7, 9, 8, 4]. Here, the term \greedy algorithm" refers to a pathcoloring algorithm with the following properties:� Initially, the algorithm picks a start node s 2 V and assigns colors to all paths touching s.(Initial Coloring)� Then the algorithm visits the remaining nodes of the tree T in dfs-order; when it visits node v,it assigns colors to all paths touching v that have not been assigned a color at a previous node.(Coloring Extension)� Once a path has been assigned a color, its color is not changed at a later node.Individual greedy algorithms known so far di�er only in the implementation of the coloringextension substep. It is known that every greedy algorithm has approximation ratio at least 5=3

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 15n0v
n1 n2 n3 vx3x3vx2x2vx1x1vx0x0

Vx3X3Vx2X2Vx1X1Vx0X0

Figure 1: Construction of the bipartite graph Gvin the worst case [6]. The algorithm from [4] achieves approximation ratio 5=3; therefore, we referto the algorithm as an optimal greedy algorithm. Greedy algorithms can be implemented e�cientlyin a distributed setting: once the start node in the network has assigned wavelengths to all pathstouching that node, it can transfer control to its neighbors, who can proceed independently and inparallel.2.2. Constrained bipartite edge-coloringThe problem of coloring paths touching a node v can be reduced to the problem of coloring edgesin a bipartite graph Gv. Denote by n0 the parent of v and by n1; n2; : : : ; nk the children of v. Thebipartite graph Gv has left and right vertex set Ski=0fxi; vxig and Ski=0fXi; Vxig, respectively. Eachpath touching v contributes one edge to Gv as follows:� A path coming from a node ni and heading for a node nj contributes an edge (xi; Xj).� A path coming from a node ni and terminating at node v contributes an edge (xi; Vxi).� A path starting at node v and heading for a node ni contributes an edge (vxi ; Xi).Note that all vertices xi and Xi have degree L (recall that we have assumed load L on every edgeof T), whereas the vertices vxi and Vxi may have smaller degree. In order to make Gv L-regular,dummy edges are added between vxi vertices on the left side and Vxj vertices on the right side,if necessary. (More precisely, for every edge (xi; Xj) a dummy edge (vxj ; Vxi) is added.) Figure 1illustrates this construction, with dashed lines indicating dummy edges.It is easy to see that two paths touching v must be assigned di�erent colors if and only if thecorresponding edges in Gv share a vertex. Hence, any valid edge-coloring of Gv constitutes a validcoloring for the paths touching v.If v is the start node, all paths touching v are uncolored, and any valid edge-coloring of Gv canbe used to �nd the initial coloring of paths touching v. Otherwise, the paths touching v and n0 havebeen colored at a previous node, and the edges incident to x0 and X0 in Gv have already receiveda color. We refer to these edges as pre-colored edges. In this case, the algorithm must �nd anedge-coloring of Gv that is consistent with the pre-colored edges. Hence, it must solve a constrainedbipartite edge-coloring problem in order to carry out the coloring extension substep.Each pair (xi; Xi) or (vxi ; Vxi) constitutes a row of Gv . The row (x0; X0) is called the top rowof Gv . The vertices in a row are said to be opposite each other. Note that vertices in the same row

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 16of Gv (i.e., vertices that are opposite each other) can not be adjacent. A row sees a color c if anedge incident to a vertex of that row is colored with c. Two opposite vertices share a color c if eachvertex in the row has an incident edge colored with c.The colors that appear on pre-colored edges of Gv are called single colors if they appear onlyonce, and double colors if they appear twice (i.e., they are shared by x0 and X0). Denote by Sthe number of single colors, and by D the number of double colors. Recall that only the 2L edgesincident to x0 and X0 are pre-colored. If there are f di�erent colors on these 2L edges, we haveS +D = f and S + 2D = 2L.2.3. Edge coloringA bipartite graph with maximum degree � can be edge-colored using � colors. Such an edge-coloring can be computed in time O(m logm) [1] or in time O(�m) [14], where m is the numberof edges in the graph. The edges of a �-regular bipartite graph can be partitioned into � perfectmatchings. One perfect matching or the whole partitioning can be computed in time O(�m) usingthe algorithm from [14]. In particular, a 3-regular bipartite graph with n vertices can be partitionedinto three perfect matchings in time O(n). This is necessary for coloring triplets (see Section 3) inlinear time.In the remainder of this paper, let Tec(n; k) denote the time for edge-coloring a k-regular bipartitegraph with n nodes. We have Tec(n; k) � nk=2 (as the graph contains nk=2 edges) and Tec(n; k) =O(minfk2n; kn log(kn)g).3. Algorithm DescriptionThe greedy algorithm for path coloring in directed trees from [4] maintains the following twoinvariants:Invariant 1: For any pair (u; v) of neighboring nodes in T , the number of di�erent colors assignedto paths using the edge (u; v) or the edge (v; u) is at most (4=3)L.Invariant 2: The number of di�erent colors assigned to paths is at most (5=3)L.The initial coloring at start node s is obtained by computing an edge-coloring with L colors for theL-regular bipartite graph Gs. Obviously, Invariants 1 and 2 are satis�ed at this point. Now, eachcoloring extension substep must maintain the invariants. Before the coloring extension substep atnode v, the paths touching v and its parent are colored using at most (4=3)L colors. Hence, thepre-colored edges of Gv are colored using at most (4=3)L colors.Recall that S is the number of single colors and D is the number of double colors on pre-colorededges of Gv . Invariant 1 ensures that S +D � (4=3)L. Since we assume that every edge has loadL, we have S + 2D = 2L and, consequently, D � (2=3)L. Furthermore, one can assume that D isexactly (2=3)L. The reason is that, if D is greater than (2=3)L, one can simply \split" an appropriatenumber of double colors by assigning one of the two pre-colored edges colored with the same doublecolor a new color for the duration of this coloring extension substep. A series of color exchangescan then re-establish the original colors on the pre-colored edges without violating the invariants.With D = (2=3)L, S+2D = 2L implies S = (2=3)L. Hence, among the 2L pre-colored edges of Gv ,S = (2=3)L are colored with single colors and 2D = (4=3)L are colored with double colors (eachdouble color appears on exactly two pre-colored edges).The goal of the coloring extension substep at node v is to �nd an edge-coloring of Gv that isconsistent with the colors on pre-colored edges, that uses at most (1=3)L colors not appearing onpre-colored edges (so-called new colors), and that uses at most (4=3)L colors in each row of Gv(implying that Invariant 1 is maintained). This is achieved as follows:(1) partition Gv into L perfect matchings

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 17(2) group the matchings into chains and cycles(3) select L=3 triplets, i.e., subgraphs consisting of three matchings each(4) color the uncolored edges of each triplet using at most one new color and such that every rowexcept the top row sees at most four colorsEvery perfect matching obtained in step (1) contains two pre-colored edges: one pre-colored edgeincident to x0, and one incident to X0. (Recall again that only the edges incident to x0 and X0are pre-colored.) The matchings are classi�ed according to the colors on their pre-colored edges: amatching is an SS-matching, if these colors are two single colors; an ST-matching, if one color is asingle color and the other is a double color; a TT-matching, if the colors are two distinct doublecolors; and a PP-matching, if both pre-colored edges have been assigned the same double color.The original version of the algorithms in [4] required that the matchings obtained in step (1)contain a maximal number of PP-matchings, in the sense that the union of all SS-, ST-, and TT-matchings does not contain an additional PP-matching. However, whereas an arbitrary partitioninginto L perfect matchings can be computed very e�ciently using one of the algorithms from [1]or [14], it is not clear how this additional property can be achieved without substantial increasein running-time. In particular, a straightforward implementation (checking for each double colorwhether the union of all SS-, ST-, and TT-matchings contains a PP-matching with that doublecolor) would require O(L) calls to a maximum matching algorithm, and the maximum matchingalgorithm from [5] has running-time O(pnm) for bipartite graphs with n vertices and m edges. Themain improvement of the algorithm presented in this paper is a modi�cation that allows step (1) tocompute an arbitrary partitioning into L matchings.At a node v with degree �(v), the bipartite graph Gv has n = 4�(v) vertices and nL=2 edges.Using an arbitrary edge-coloring algorithm for bipartite graphs, step (1) can be performed in timeTec(n;L). Step (2) can be performed in time O(n+L), and the triplets can be selected and coloredin time O(nL) in steps (3) and (4). Hence, the running-time for the coloring extension substep isdominated by step (1) and amounts to O(Tec(n;L)). Note that, by the reasoning above, the timerequired for step (1) in the original version [4] of the algorithm is O(n1:5L2). Hence, the modi�edalgorithm with running-time Tec(n;L) = O(minfnL2; nL log(nL)g) yields a signi�cant improvement.3.1. Grouping into chains and cyclesWe say that two matchings are adjacent if the same double color appears on a pre-colored edgein each of the two matchings. Every matching is adjacent to at most two other matchings, becauseit contains only two pre-colored edges and each color appears on at most two pre-colored edgesof Gv . Therefore, this adjacency relation can be used to group the matchings into chains (a chainis a sequence of at least two adjacent matchings, starting and ending with an ST-matching andconsisting of TT-matchings in between) and cycles (a cycle is a sequence of at least two adjacentTT-matchings such that the �rst and the last matching are also adjacent; in a cycle consisting oftwo matchings, both matchings have the same two double colors on pre-colored edges). A cycle orchain consisting of ` matchings is called `-cycle or `-chain, respectively. Hence, the L matchings aregrouped into chains, cycles, SS-matchings, and PP-matchings. This grouping can be implementedto run in time O(L).Next, the chains and cycles are preprocessed so that the resulting chains and cycles do notcontain parallel pre-colored edges. If the i-th and j-th matching in a cycle or chain contain parallelpre-colored edges incident to, say, x0, then the parallel pre-colored edges can be exchanged, and thisresults in a shorter cycle or chain (or SS-matching) and an additional cycle. This preprocessing canbe implemented to run in time O(n+ L).3.2. Coloring the tripletsBefore we describe how the triplets are selected, we present the coloring method used for eachtriplet, because this coloring method determines the requirements for the selection of the triplets.

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 18As introduced by Kumar and Schwabe in [9], we consider 3-regular subgraphs H of Gv with thefollowing property: among the six pre-colored edges of H , two are colored with the same doublecolor d, two are colored with single colors s and s0, and two are colored with double colors a and b,possibly a = b; more precisely, colors s, a and d appear on edges incident to x0, and colors s0, b andd appear on edges incident to X0. We refer to such subgraphs as KS-subgraphs. Generalizing thecoloring methods from [9] and [4], we obtain the following new result:Lemma 3.1. Let H be a KS-subgraph with n vertices. If no row except the top row sees more thanfour colors on pre-colored edges, then the uncolored edges of H can be colored in time O(n) using atmost one new color and colors d, s and s0 such that no row except the top row sees more than fourcolors.Sketch of Proof. Using the algorithm from [14], we can in time O(n) either partition H into agadget (a subgraph in which x0 and X0 have degree 3 and all other vertices have degree 2) and amatching on all vertices except x0 and X0, or into a PP-matching and a cycle cover. In the formercase, the coloring method from [9] is applicable; in the latter case, the uncolored edges of the PP-matching can be colored with its double color, and the cycle cover can be colored using s, s0 and anew color such that opposite vertices share at least one color.Hence, the algorithm tries to select triplets satisfying the condition of Lemma 3.1 wheneverpossible. As cycles and chains have been preprocessed to contain no parallel pre-colored edges,any KS-subgraph containing two matchings from the same cycle or chain satis�es the condition ofLemma 3.1. In other cases, the coloring methods from the following lemmas in [4] are used.Lemma 3.2. Let H1 be a subgraph of Gv that is a gadget with single color s and double colors aand a0 incident to x0, and with single color s0 and double colors b and b0 incident to X0. Assumethat H1 does not contain parallel pre-colored edges. Furthermore, assume that the set of pre-colorededges of Gv with colors in fa; a0; b; b0g does not contain parallel edges. Then H1 can be colored intime O(n) without using any new color such that opposite vertices (except x0 and X0) share at leastone color.Lemma 3.3. Let C be a cycle cover obtained as the union of an SS-matching and a TT-matchingwithout parallel pre-colored edges. Denote its single colors by s and s0, and its double colors by aand b. C can be colored in time O(n) using only s and a new color such that every pair of oppositevertices (except x0 and X0) shares at least one color.3.3. Selecting the tripletsRecall that Gv contains (2=3)L pre-colored edges with single colors and (4=3)L pre-colored edgeswith double colors. Every triplet selected contains 2 pre-colored edges with single colors and 4pre-colored edges with double colors, ensuring that the ratio between pre-colored edges with doublecolors and with single colors remains 2 : 1. This implies that there are always su�ciently manySS-matchings and 2-chains to form such triplets.The rules for choosing triplets are as follows. From a cycle of even length, combine two consecutiveTT-matchings with an SS-matching, as long as SS-matchings are available, and group each remainingTT-matching with a 2-chain. If at least one 2-chain is available, a cycle of odd length can also behandled like this. From a chain of odd length, combine the �rst two matchings and the last one, andtreat the remainder like a cycle of even length. If there are two chains of even length, the �rst ofwhich has length > 2, combine the �rst two matchings of the �rst chain and the last matching of thesecond chain, combine the last two matchings of the �rst chain and the �rst matching of the secondchain, and treat the remaining sequences of even length like cycles of even length. A 2-chain and aPP-matching, or an SS-matching and two PP-matchings, can be combined and colored as requiredwithout using any new color.

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 19Having dealt with these easy cases, we are left with SS-matchings, at most one PP-matching, atmost one chain of even length > 2, and a number of cycles of odd length. Pairs (C1; C2) of cycles ofodd length are handled as follows. First, pick an arbitrary SS-matching M . Then �nd a matchingM1 from C1 and a matching M2 from C2 such that neither C1 nor C2 contains a pre-colored edgethat is parallel to a pre-colored edge of M . (Such matchings exist because C1 and C2 do not containparallel pre-colored edges after preprocessing and because both have length at least three.) Let thecolors on pre-colored edges of M1 be a1 and b1, and those on pre-colored edges of M2 be a2 andb2. The algorithm checks whether the set of pre-colored edges in Gv with colors in fa1; b1; a2; b2gcontains parallel edges. If this is the case, exchanging two edges turns C1 and C2 into one cycleC of even length, and C can be handled by combining pairs of consecutive TT-matchings with anSS-matching, taking care that all resulting triplets satisfy the condition of Lemma 3.1. Otherwise,the triplet (M;M1;M2) can either be partitioned into a gadget (for which Lemma 3.2 is applicable)and a matching (that can be colored with a new color), and the remaining parts of C1 and C2 canbe handled like cycles of even length, or M1 and M2 can be rearranged into two new matchings M 01and M 02 with double colors a1 and b2 in M 01, and a2 and b1 in M 02, so that C1 and C2 are againturned into a single cycle of even length that can be handled as above.Handling an odd cycle C and an even chain A is done as follows. Pick an arbitrary SS-matchingM . If C and A contain TT-matchingsMC and MA, respectively, that do not have pre-colored edgesparallel to pre-colored edges in M , the algorithm proceeds similar as in the case of pairs of oddcycles described above. If A does not contain a TT-matching without pre-colored edges parallel toa pre-colored edge in M , A must have length four and each of its two TT-matchings must haveexactly one pre-colored edge parallel to a pre-colored edge in M . In that case, exchanging parallelpre-colored edges turns A [M into a 3-chain (for which Lemma 3.1 is applicable) and either a2-chain (which can be combined with the odd cycle C as described above) or an SS-matching and aPP-matching.After combining pairs of odd cycles and (possibly) one odd cycle and one even chain, whatremains (except SS-matchings) is one of the following: a PP-matching and an odd cycle, or a PP-matching and an even chain. If there is a PP-matching MP and an odd cycle C, pick an arbitrarySS-matching M and a matching MC from C such that M and MC do not have parallel pre-colorededges. Color the triplet (MP ;MC ;M) by coloring MP with its double color and coloring (M;MC)using Lemma 3.3. Handle the remainder of C like a cycle of even length.If there is a PP-matching MP and an even chain A, again pick an arbitrary SS-matching M .If A contains a TT-matching MA such that M and MA do not contain parallel pre-colored edges,proceed as above. Otherwise, the chain A must have length four, and each of its two TT-matchingsM1 and M2 has exactly one of its two pre-colored edges parallel to a pre-colored edge of M . Inthis case, (MP ;M1;M) and the three remaining matchings of A each constitute a KS-subgraph forwhich Lemma 3.1 is applicable.Implementing the algorithm as outlined above, it is not di�cult to achieve running-time O(nL)for selecting and coloring all triplets.3.4. Total running-timeThe initial coloring at start node s takes time O(Tec(�(s); L)). Each coloring extension step at anode v takes time O(Tec(�(v); L)). Hence, the total running-time T isT = O(Xv2V Tec(�(v); L)) = O(Tec(N;L)):Using the edge-coloring algorithm from [1], a running-time of O(NL(logN + logL)) is achieved.Using the algorithm from [14], a running-time of O(NL2) is obtained.

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 204. ImplementationWe have implemented the approximation algorithm for path coloring in directed trees as outlinedin the previous section. The implementation was carried out in C++ using the LEDA class library[10]. The performance results in Section 5 were obtained using LEDA 3.5.2, but the implementationhas also been tested with LEDA 3.6.1. In addition to the algorithm itself, a graphical user inter-face allowing demonstration of the algorithm has been implemented (see Section 4.2). Schrijver'salgorithm [14] has been used as the edge-coloring subroutine, implying that the implemented pathcoloring algorithm has a worst-case running-time of O(NL2) for inputs consisting of a tree with Nnodes and paths with maximum load L. No e�orts have been made to tune the implementation andgain a constant factor in running-time by standard techniques. In particular, all validity tests (seeSection 4.1) and debug routines have been left in the code.The various parts of the implementation of the algorithm are as follows:� Coloring triplets according to Lemma 3.1: 3,500 lines of code (83,000 bytes)� Coloring gadgets according to Lemma 3.2: 1,000 lines of code (25,000 bytes)� Schrijver's edge-coloring algorithm [14]: 600 lines of code (11,500 bytes)� Constrained bipartite edge-coloring algorithm (using the three subroutines above; includingpreprocessing of chains and cycles, and selection of triplets): 3,600 lines of code (97,000 bytes)� Main control structure of algorithm (visiting the nodes of the tree in DFS order and construct-ing the bipartite graphs): 500 lines of code (11,500 bytes)This adds up to 9,200 lines of code (228,000 bytes). The comparatively big code size is mainlycaused by the huge number of similar cases that must be distinguished and treated in a slightlydi�erent way in the coloring routines. The user interface of the algorithm is provided by a functionassign wavelengths, which takes as arguments a tree T and a list L of connection requests (pairsof nodes) in T . It returns the list of wavelengths (colors) assigned to the requests by the algorithm.4.1. Testing and debuggingThe components of the algorithm (in particular, subroutines for coloring di�erent cases of tripletsor gadgets) were implemented and tested independently before they were put together. Right fromthe start, assertions (using the C++ assert-macro) and validity tests were inserted into the codeat numerous points. Almost every subroutine checks the consistency of its input and of its output,and the validity of certain assumptions about the data at various points during its execution. Allthese tests and assertions could be implemented without increasing the asymptotic running-time ofthe algorithm. We found this technique (adding assert statements and validity tests) extremelyhelpful, because it allowed us to recognize, pin down, and �x bugs very e�ciently.When the path coloring algorithm appeared correct and gave reasonable output on sample in-stances, we employed an automated test routine that repeatedly generates random requests in a treeand checks whether the output of the path coloring algorithm is consistent (number of colors usedis below (5=3)L, intersecting paths are assigned di�erent colors) on these inputs. This automatedtest revealed several more bugs, but again these bugs could be pinned down and �xed very quicklymainly because of the assertions and tests inserted in the code. The automated test routine did notreveal any further bugs in the present version of the implementation.4.2. Graphical User InterfaceThe graphical front-end used for demonstration of the path coloring algorithm contains thefollowing features:1. edit the tree network using the graph editor supplied by the LEDA class GraphWin

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 21

Figure 2: Screenshots displaying an instance with maximum load 3 for which the algorithm found an optimalassignment with 3 wavelengths (right side shows requests assigned wavelength 0)2. enter connection requests manually by clicking transmitter and receiver node, or generate anumber of requests randomly (transmitter and receiver are picked randomly according to auniform distribution)3. let the algorithm assign wavelengths to the requests4. display the requests and their wavelengths as colored paths in the tree, either all requestssimultaneously (for request sets with small maximum load) or only all requests that wereassigned a certain wavelengthIn addition, a \continuous" mode has been implemented that repeatedly generates random requests,assigns wavelengths, and displays the resulting assignments without any user interaction. Figure 2shows screenshots of a request set that could be colored optimally with three wavelengths. Thescreenshot on the right side shows those requests that were assigned wavelength 0.5. Performance ResultsThe performance of the implementation has been evaluated empirically with respect to twocriteria: running-time, and number of wavelengths used. The left plot in Figure 3 shows how therunning-time (CPU time) depends on the number N of nodes in the tree for �xed maximum load L;the right plot shows how the running-time depends on L if the number of nodes is kept �xed (here,N = 100 was used). The experiments were conducted on a Pentium PC (MMX, 166 MHz) runningthe Linux operating system. The variation of running-time between several runs with the sameparameters was negligible. As expected, the plots con�rm the linear dependency of the running-time on N and the super-linear (although not obviously quadratic) dependency on L. The possiblysurprising ups and downs in the right plot are caused by the e�ect of the number of ones in thebinary representation of L on the performance of edge-coloring algorithms for L-regular bipartitegraphs (including the implemented algorithm from [14]) that use Euler partition in the case of evendegree.The trees used for the experiments were nearly balanced 5-ary trees, so that the number ofinternal nodes is approximately 1=5 of the total number of nodes. Each internal node has 5 children(except at most one internal node, which may have fewer children, so that the total number ofnodes is N), and in the case of L = 100, for example, the resulting bipartite graphs Gv have

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 22

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500

ru
nn

in
g-

tim
e/

se
c

number of nodes

L=3
L=6

L=30

0

2

4

6

8

10

12

0 20 40 60 80 100 120
ru

nn
in

g-
tim

e/
se

c

maximum load

N=100

Figure 3: CPU times measured on a Pentium PC (MMX, 166 MHz) running Linux4 � 6 = 24 vertices and 1200 edges. (Changing the degree of the trees did not a�ect the running-timesigni�cantly; this observation is in agreement with the theoretical time bound O(NL2), which doesnot depend on the degree of the nodes in the tree. Our algorithm is even faster for 100-ary trees thanfor 5-ary trees with the same number of nodes, because only 1=100 of the nodes are internal nodesand the bipartite graphs Gv must be constructed only for internal nodes.) The sets of connectionrequests were generated randomly according to two di�erent methods: the random load methodcreates a set R of requests by generating a given number of random requests (a random request is arequest where sender and receiver are chosen randomly among all nodes of the tree according to auniform distribution) and inserting all of them into the set R; the full load method generates a givennumber of random requests and inserts each request into R only if it doesn't make the maximumload greater than a given bound L, and then adds requests between neighboring nodes until the loadon every directed edge is exactly L. The plots in Figure 3 were obtained using inputs generated bythe full load method.The number of wavelengths used by the algorithm was close to (5=3)L in all experiments with in-puts generated by the full load method, and close to (4=3)L in all experiments with inputs generatedby the random load method. The former observation can be explained by the \worst case a�nity"of the algorithm: if the number D of double colors is more than (2=3)L for a coloring extensionsubstep, the algorithm gives away this possible advantage by temporarily splitting the double colorsinto single colors. The latter observation is caused by the special characteristics of load generated bythe random load method: it is likely that the maximum load appears only on a few edges incidentto the root of the tree, whereas the remainder of the tree is loaded only very lightly. For the samereason, the running-times for inputs generated by the random load method were also slightly smallerthan for the full load method for the same values of N and L. Furthermore, we observed that theratio between the number of colors used by the algorithm and the maximum load L became slightly

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 23

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

ap
pr

ox
im

at
io

n
ra

tio

maximum load

(5/3)-approximation
simple greedy

Figure 4: Approximation ratio achieved by the simple greedy algorithm and by the (5=3)-approximationalgorithm for random requests in a balanced binary tree with 100 nodessmaller when L was increased.For comparison, we have also implemented the most simple greedy method for path coloring indirected trees: the nodes of the tree are visited in dfs-order, and at each node the uncolored pathstouching that node are considered one by one and assigned the smallest available color. It is knownthat this simple greedy algorithm requires 2L�1 colors in the worst case. However, our experimentsshow that it performs substantially better on randomly generated inputs. Figure 4 shows the ratiobetween the number of colors used by each of the two algorithms (the simple greedy algorithm andour (5=3)-approximation algorithm) and the maximum load L in experiments that were done witha (nearly) balanced binary tree with 100 nodes. The requests were generated according to the fullload method. While the (5=3)-approximation algorithm used close to (5=3)L colors (at least forsmall values of L), the simple greedy algorithm required only approximately (4=3)L colors. Hence,for achieving good results in practice one should run both algorithms and use the better of thetwo colorings obtained; this way, the (5=3)L worst-case guarantee can be combined with betteraverage-case behavior.6. ConclusionIn this paper, we have shown how the approximation algorithm for path coloring in directed treesfrom [4] can be modi�ed so as to allow an e�cient implementation whose running-time is dominatedby the time for edge-coloring bipartite graphs that are constructed at each node of the network.Furthermore, we have presented an implementation of the algorithm in C++ using the LEDA classlibrary. The observed CPU times match the theoretical bounds on the running-time. The numberof colors required by the algorithm on fully loaded networks with randomly generated load is veryclose to the worst-case number of (5=3)L. Suspecting that the optimal number of colors for suchinstances is much closer to L (supported by the observation that the simple greedy method uses

E�cient Implementation of an Optimal Greedy Algorithm for Wavelength Assignment 24only approximately (4=3)L colors on these inputs), we think that additional heuristics are requiredto improve the number of colors used by the algorithm in the average case. (It is known that everygreedy algorithm requires (5=3)L colors in the worst case [6].) In particular, a promising approachmight be to make better use of double colors if the number of colors appearing on pre-colored edgesbefore a coloring extension step is smaller than (4=3)L.References[1] R. Cole and J. Hopcroft. On edge coloring bipartite graphs. SIAM J. Comput., 11(3):540{546,August 1982.[2] T. Erlebach and K. Jansen. Call scheduling in trees, rings and meshes. In Proceedings of the30th Hawaii International Conference on System Sciences HICSS-30, volume 1, pages 221{222.IEEE Computer Society Press, 1997.[3] T. Erlebach and K. Jansen. Scheduling of virtual connections in fast networks. In Proceedingsof the 4th Parallel Systems and Algorithms Workshop PASA '96, pages 13{32. World Scienti�cPublishing, 1997.[4] T. Erlebach, K. Jansen, C. Kaklamanis, and P. Persiano. An optimal greedy algorithm forwavelength allocation in directed tree networks. In Proceedings of the DIMACS Workshop onNetwork Design: Connectivity and Facilities Location, DIMACS Series in Discrete Mathematicsand Theoretical Computer Science, Vol. 40, pages 117{129. AMS, 1998.[5] J. Hopcroft and R. Karp. An n5=2 algorithm for maximum matchings in bipartite graphs. SIAMJ. Comput., 2(4):225{231, December 1973.[6] K. Jansen. Approximation Results for Wavelength Routing in Directed Trees. In Proceedingsof IPPS '97, Second Workshop on Optics and Computer Science (WOCS), 1997.[7] C. Kaklamanis and P. Persiano. E�cient wavelength routing on directed �ber trees. In Pro-ceedings of the 4th Annual European Symposium on Algorithms ESA '96, pages 460{470, 1996.[8] C. Kaklamanis, P. Persiano, T. Erlebach, and K. Jansen. Constrained bipartite edge coloringwith applications to wavelength routing. In Proceedings of the 24th International Colloquiumon Automata, Languages and Programming ICALP '97, LNCS 1256, pages 493{504. Springer-Verlag, 1997.[9] V. Kumar and E. J. Schwabe. Improved access to optical bandwidth in trees. In Proceedingsof the 8th Annual ACM{SIAM Symposium on Discrete Algorithms SODA '97, pages 437{444,1997.[10] K. Mehlhorn and S. N�aher. LEDA: A platform for combinatorial and geometric computing.Communications of the ACM, 38, 1995.[11] M. Mihail, C. Kaklamanis, and S. Rao. E�cient access to optical bandwidth. In Proceedingsof the 36th Annual Symposium on Foundations of Computer Science, pages 548{557, 1995.[12] T. Nishizeki and K. Kashiwagi. On the 1.1 edge-coloring of multigraphs. SIAM J. Disc. Math.,3(3):391{410, August 1990.[13] P. Raghavan and E. Upfal. E�cient routing in all-optical networks. In Proceedings of the 26thAnnual ACM Symposium on Theory of Computing STOC '94, pages 134{143, New York, 1994.ACM SIGACT, ACM Press.[14] A. Schrijver. Bipartite edge-coloring in O(�m) time. SIAM J. Comput., 1997. To appear.

25Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 25{36Implementing a dynamic compressed trieStefan NilssonHelsinki University of Technologye-mail: Stefan.Nilsson@hut.fiandMatti TikkanenNokia Telecommunicationse-mail: Matti.Tikkanen@ntc.nokia.comABSTRACTWe present an order-preserving general purpose data structure for binary data, the LPC-trie.The structure is a highly compressed trie, using both level and path compression. The memoryusage is similar to that of a balanced binary search tree, but the expected average depth issmaller. The LPC-trie is well suited to modern language environments with e�cient memoryallocation and garbage collection. We present an implementation in the Java programminglanguage and show that the structure compares favorably to a balanced binary search tree.1. IntroductionWe describe a dynamic main memory data structure for binary data, the level and path com-pressed trie or LPC-trie. The structure is a dynamic variant of a static level compressed trie orLC-trie [2]. The trie is a simple order preserving data structure supporting fast retrieval of elementsand e�cient nearest neighbor and range searches. There are several implementations of dynamictrie structures in the literature [5, 6, 8, 17, 23]. One of the drawbacks of these methods is thatthey need considerably more memory than a balanced binary search tree. We avoid this problem bycompressing the trie. In fact, the LPC-trie can be implemented using the same amount of memoryas a balanced binary search tree.In spatial applications trie-based data structures such as the quadtree and the octree are exten-sively used [30]. To reduce the number of disk accesses in a secondary storage environment, dynamicorder-preserving data structures based on extendible hashing or linear hashing have been introduced.Lomet [22], Tamminen [33], Nievergelt et al. [24], Otoo [26, 27], Whang and Khrishnamurthy [35],Freeston [13], and Seeger and Kriegel [31] describe data structures based on extendible hashing.Kriegel and Seeger [19] and Hutesz et al. [15] describe data structures based on linear hashing. Allof the data structures mentioned above have been designed for a secondary storage environment, butsimilar structures have also been introduced for main memory. Analyti and Pramanik [1] describean extendible hashing based main memory structure, and Larson [20] a linear hashing based one.In its original form the trie [12, 14] is a data structure where a set of strings from an alphabetcontaining m characters is stored in a m-ary tree and each string corresponds to a unique path. Inthis article, we only consider binary trie structures, thereby avoiding the problem of representinglarge internal nodes of varying size. Using a binary alphabet tends to increase the depth of the triewhen compared to character-based tries. To counter this potential problem we use two di�erentcompression techniques, path compression and level compression.The average case behavior of trie structures has been the subject of thorough theoretic analy-sis [11, 18, 28, 29]; an extensive list of references can be found in Handbook of Theoretical Computer

Implementing a dynamic compressed trie 26Science [21]. The expected average depth of a trie containing n independent random strings froma distribution with density function f 2 L2 is �(logn) [7]. This result holds also for data from aBernoulli-type process [9, 10].The best known compression technique for tries is path compression. The idea is simple: pathsconsisting of a sequence of single-child nodes are compressed, as shown in Figure 1b. A pathcompressed binary trie is often referred to as a Patricia trie. Path compression may reduce the sizeof the trie dramatically. In fact, the number of nodes in a path compressed binary trie storing n keysis 2n� 1. The asymptotic expected average depth, however, is typically not reduced [16, 18].Level compression [2] is a more recent technique. Once again, the idea is simple: subtries thatare complete (all children are present) are compressed, and this compression is performed top down,see Figure 1c. Previously this technique has only been used in static data structures, where e�cientinsertion and deletion operations are not provided [4]. The level compressed trie, LC-trie, has provedto be of interest both in theory and practice. It is known that the average expected depth of anLC-trie is O(log logn) for data from a large class of distributions [3]. This should be compared tothe logarithmic depth of uncompressed and path compressed tries. These results also translate togood performance in practice, as shown by a recent software implementation of IP routing tablesusing a static LC-trie [25].One of the di�culties when implementing a dynamic compressed trie structure is that a singleupdate operation might cause a large and costly restructuring of the trie. Our solution to thisproblem is to relax the criterion for level compression and allow compression to take place evenwhen a subtrie is only partly �lled. This has several advantages. There is less restructuring, becauseit is possible to do a number of updates in a partly �lled node without violating the constraintstriggering its resizing. In addition, this relaxed level compression reduces the depth of the trieeven further. In some cases this reduction can be quite dramatic. The price we have to pay is thepotentially increasing storage requirements. However, it is possible to get the bene�cial e�ects usingonly a very small amount of additional memory.2. Compressing binary trie structuresIn this section we give a brief overview of binary tries and compression techniques. We startwith the de�nition of a binary trie. We say that a string w is the i-su�x of the string u, if there isa string v of length i such that u = vw.De�nition 2.1. A binary trie containing n elements is a tree with the following properties:� If n = 0, the trie is empty.� If n = 1, the trie consists of a node that contains the element.� If n > 1, the trie consists of a node with two children. The left child is a binary trie containingthe 1-su�xes of all elements starting with 0 and the right child is a binary trie containing the1-su�xes of all elements starting with 1.Figure 1a depicts a binary trie storing 15 elements. In the �gure, the nodes storing the actual binarystrings are numbered starting from 0. For example, node 14 stores a binary string whose pre�x is11101001.We assume that all strings in a trie are pre�x-free: no string can be a pre�x of another. Inparticular, this implies that duplicate strings are not allowed. If all strings stored in the trie areunique, it is easy to insure that the strings are pre�x-free by appending a special marker at the endof each string. For example, we can append the string 1000::: to the end of each string. A �nitestring that has been extended in this way is often referred to as a semi-in�nite string or sistring.A path compressed binary trie is a trie where all subtries with an empty child have been removed.

Implementing a dynamic compressed trie 27

s = 0100

13

13

13

a.

b.

c.

0 1

3

4

9 11

14

5

6

87

10

0 1

2 3

4

9 11

14

10

7 8

6

5

12

12

0 1

2 3

4 9 1410 11

87

5

6 12

2

s = 0100

Figure 1: (a) A binary trie; (b) a path compressed trie; (c) a perfect LPC-trie.De�nition 2.2. A path compressed binary trie, or Patricia trie, containing n elements is a treewith the following properties:� If n = 0, the trie is empty.� If n = 1, the trie consists of a node that contains the element.� If n > 1, the trie consists of a node containing two children and a binary string s of length jsj.This string equals the longest pre�x common to all elements stored in the trie. The left child isa path compressed binary trie containing the (jsj+ 1)-su�xes of all elements starting with s0and the right child is a path compressed binary trie containing the (jsj + 1)-su�xes of allelements starting with s1.Figure 1b depicts the path compressed binary trie corresponding to the binary trie of Figure 1a. Anatural extension of the path compressed trie is to use more than one bit for branching. We referto this structure as a level and path compressed trie.De�nition 2.3. A level and path compressed trie, or an LPC-trie, containing n elements is a treewith the following properties:

Implementing a dynamic compressed trie 28� If n = 0, the trie is empty.� If n = 1, the trie consists of a node that contains the element.� If n > 1, the trie consists of a node containing 2i children for some i � 1, and a binary string sof length jsj. This string equals the longest pre�x common to all elements stored in the trie.For each binary string x of length jxj = i, there is a child containing the (jsj+ jxj)-su�xes ofall elements starting with sx.A perfect LPC-trie is an LPC-trie where no empty nodes are allowed.De�nition 2.4. A perfect LPC-trie is an LPC-trie with the following properties:� The root of the trie holds 2i subtries, where i � 1 is the maximum number for which all ofthe subtries are non-empty.� Each subtrie is an LPC-trie.Figure 1c provides an example of a perfect LPC-trie corresponding to the path compressed trie inFigure 1b. Its root is of degree 8 and it has four subtries storing more than one element: a child ofdegree 4 and three children of degree 2.3. ImplementationWe have implemented an LPC-trie in the Java programming language. Java is widely available,has well de�ned types and semantics, o�ers automatic memory management and supports objectoriented program design. Currently, the speed of a Java program is typically slower than that ofa carefully implemented C program. This is mostly due to the immaturity of currently availablecompilers and runtime environments. We see no reason why the performance of Java programsshould not be competitive in the near future.We have separated the details of the binary string manipulation from the trie implementation byintroducing an interface SiString that represents a semi-in�nite binary string. To adapt the datastructure to a new data type, we only need to write a class that implements the SiString interface.In our code we give two implementations, one for ASCII character strings and one for short binarystrings as found in Internet routers.One of the most important design issues is how to represent the nodes of the trie. We use di�erentclasses for internal nodes and leaves. The memory layout of a leaf is straightforward. A leaf containsa reference to a key, which is a sistring, and a reference to the value connected with this key.An internal node is represented by two integers, a reference to a SiString and an array ofreferences to the children of the node. Instead of explicitly storing the longest common pre�x stringrepresenting a compressed path, we use a reference to a leaf in one of the subtries. We need twoadditional integers, pos that indicates the position of the �rst bit used for branching and bits thatgives the number of bits used. The size of the array equals 2bits. The number bits is not strictlynecessary, since it can be computed as the binary logarithm of the size of the array.The replacement of longest common pre�x strings with leaf references saves us some memorywhile providing us access to the pre�x strings from internal nodes. This is useful during insertionsand when the size of a node is increased. An alternative would be to remove the references altogether.In this way we could save some additional memory. The drawback is that insertions might becomeslower, since we always need to traverse the trie all the way down to a leaf. On the other hand, anumber of substring comparisons taking place in the path-compressed nodes of the trie would bereplaced with a single operation �nding the �rst conicting bit in the leaf, which might well balancethe extra cost of traversing longer paths. The doubling operation, however, would clearly be moreexpensive if the references were removed.

Implementing a dynamic compressed trie 29
doubling

Figure 2: Node doubling.
halving

Figure 3: Node halving.The search operation is very simple and e�cient. At each internal node, we extract from thesearch key the number of bits indicated by bits starting at position pos. The extracted bits areinterpreted as a number and this number is used as an index in the child array. Note that we do notinspect the longest common pre�x strings during the search. It is typically more e�cient to performonly one test for equality when reaching the leaf.Insertions and deletions are also straightforward. They are performed in the same way as in astandard Patricia trie. When inserting a new element into the trie, we either �nd an empty leaf wherethe element can be inserted or there will be a mismatch when traversing the trie. This mismatchmight happen when we compare the path compressed string in an internal node with the string tobe inserted or it might occur in a leaf. In both cases we insert a new binary node with two children,one contains the new element and the other contains the previous subtrie. The only problem is thatwe may need to resize some of the nodes on the traversed path to retain proper level compressionin the trie. We use two di�erent node resizing operations to achieve this: halving and doubling.Figure 2 illustrates how the doubling operation is performed and Figure 3 shows the halving.We �rst discuss how to maintain a perfect LPC-trie during insertions and deletions. If a subtrieof an internal node is deleted, we need to compress the node to remove the empty subtrie. If thenode is binary, it can be deleted altogether, otherwise we halve the node. Note that it may also benecessary to resize some of the children of the halved node to retain proper compression.On the other hand, it may be possible to double the size of a node without introducing any newempty subtries. This will happen if each child of the node is full. We say that a node is full if it

Implementing a dynamic compressed trie 30has at least two children and an empty path compression string. Note that it may be possible toperform the doubling operation more than once without introducing empty subtries.When a node is doubled, we must split all of its full children of degree greater than two. A splitof a child node of degree 2i leads to the creation of two new child nodes of degree 2i�1, one holdingthe 1-su�xes of all elements starting with 0 and one the 1-su�xes of all elements starting with 1.Once again, notice that it may also be necessary to resize the new child nodes to retain the perfectlevel compression.In order to e�ciently check if resizing is needed, we use two additional numbers in each internalnode. One of the numbers indicates the number of null references in the array and the other thenumber of full children.If we require that the trie is perfectly level compressed, we might get very expensive updateoperations. Consider a trie with a root of degree 2i. Further assume that all subtries except onecontain two elements and the remaining subtrie only one. Inserting an element into the one-elementsubtrie would result in a complete restructuring of the trie. Now, when removing the same key, weonce again have to completely rebuild the trie. A sequence of alternating insertions and deletions ofthis particular key is therefore very expensive.To reduce the risk of a scenario like this we do not require our LPC-trie to be perfect. A node isdoubled only if the resulting node has few empty children. Similarly, a node is halved only if it hasa substantial number of empty children. We use two thresholds: low and high. A node is doubled ifthe ratio of non-empty children to all children in the doubled node is at least high. A node is halvedif the ratio of non-empty children to all children in the current node is less than low. These valuesare determined experimentally. In our experiments, we found that the thresholds 25% for low and50% for high give a good performance.A relatively simple way to reduce the space requirements of the data structure is to use a di�erentrepresentation for internal nodes with only two children. For small nodes we need no additional data,since it is cheap to decide when to resize the node. This will give a noticeable space reduction, ifthere are many binary nodes in the trie. In order to keep the code clean, we have not currentlyimplemented this optimization.4. Experimental resultsWe have compared di�erent compression strategies for binary tries: mere path compression,path and perfect level compression, and path and relaxed level compression. To give an indicationof the performance relative to comparison-based data structures, we also implemented a randomizedbinary search tree, or treap [32]. A study of di�erent balanced binary search trees is beyond thescope of this article. We just note that the update operations of a treap are very simple and thatthe expected average path for a successful search is relatively short, approximately 1:4 log2 n� 1:8.A binary trie may of course hold any kind of binary data. In this study, we have chosen toinspect ASCII character strings and short binary strings from Internet routing tables. In addition,we evaluated the performance for uniformly distributed binary strings.We refrained from low-level optimizations. Instead, we made an e�ort to make the code simpleand easy to maintain and modify. Examples of possible optimizations that are likely to improve theperformance on many current Java implementations include: avoiding synchronized method calls,avoiding the instanceof operator, performing function inlining and removing recursion, performingexplicit memory management, for example by reusing objects, and hard coding string operations.All of these optimizations could be performed by a more sophisticated Java environment.4.1. MethodThe speed of the program is highly dependent on the runtime environment. In particular, theperformance of the insert and delete operations depends heavily on the quality of the memory

Implementing a dynamic compressed trie 31management system. It is easier to predict the performance of a search, since this operation requiresno memory allocation. The search time is proportional to the average depth of the structure. Thetimings reported in the experiments are actual clock times on a multi-user system.When automatic memory management is used, it becomes harder to estimate the running timeof an algorithm, since a large part of the running time is spent within a machine dependent memorymanager. There is clearly a need for a standard measure. A simple measure would be to countthe allocations of di�erent size memory blocks. This measure could be estimated both analyticallyand experimentally. Accounting for memory blocks that are deallocated or, in the case of a garbagecollected environment no longer referenced, is more di�cult but clearly possible. To interpret thesemeasures we need, of course, realistic models of automatic memory managers. We take the simpleapproach of counting the number of objects of di�erent sizes allocated by the algorithm. That is,the number of leaves, internal nodes, and arrays of children pointers. Even this crude informationturned out to be useful in evaluating the performance and tuning the code.It is also a bit tricky to measure the size of the data structure, since the internal memoryrequirements of references and arrays in Java are not speci�ed in the language de�nition. The givennumbers pertain to an implementation, where a reference is represented by a 32-bit integer, and anarray by a reference to memory and an integer specifying the size of the array.We used the JDK (Java Development Kit) version 1.1.5 compiler from SUN to compile theprogram into byte code. The experiments were run on a SUN Ultra Sparc II with two 296-MHzprocessors and 512 MB of RAM. We used the JDK 1.1.5 runtime environment with default settings.The test data consisted of binary strings from Internet routing tables and ASCII strings from theCalgary Text Compression Corpus, a standardized text corpus frequently used in data compressionresearch. The code and test data are available at URL http://www.cs.hut.fi/~sni4.2. DiscussionTable 1 shows the average and maximum depths and the size of the data structures tested. Wealso give timings for inserting all of the elements (Put), retrieving them (Get), and deleting them oneby one (Remove). The timings should be carefully interpreted, however, because the insertion anddeletion times in particular depend very much on the implementation of the memory managementsystem.We use two variants of the relaxed LPC-trie. In the �rst variant, the low value 50% indicatesthe upper bound of the ratio of null pointers to all pointers in the current node and the high value75% the lower bound of the ratio of non-null pointers to all pointers in the doubled node. In thesecond variant, the low and high values are 25% and 50%, respectively. Note that in all test casesthe second variant outperforms the �rst one for our test data, even though the second variant hasa poorer �ll ratio. There is an interesting tradeo� between the number of null pointers and thenumber of internal nodes.The trie behaves best for uniformly distributed data, but even for English text the performanceis satisfactory. Interestingly, our experimental results agree with theoretical results on the expectednumber of levels for multi-level extendible hashing with uniformly distributed keys [34]. Levelcompression leads to a signi�cant reduction of the average path length. The path compressed(Patricia) trie does not o�er any improvement over the treap for our test data.Figure 4 shows memory pro�les for a sequence of insert and delete operations for English text.The amount of memory allocation needed to maintain the level compression is very small: Thenumber of internal nodes allocated only slightly exceeds the number of leaves. However, we see thatthe algorithm frequently allocates arrays containing only two elements. This comes from the factthat to create a binary node, two memory allocations are needed: one to create the object itself andone to create the array of children. If we used a di�erent memory layout for binary nodes we wouldreduce the number of allocated arrays considerably. For deletions very little memory managementis needed. Comparing with Table 1 we may conclude that the level compression reduces the averagedepth of the trie structure from 20 to 9 using very little restructuring.

Implementing a dynamic compressed trie 32
book1 (16622 lines, 16542 unique entries, 768770 characters)Depth Put Get Remove SizeAver Max (sec) (sec) (sec) (kB)Treap 16.2 30 1.5 1.3 1.3 323Patricia 20.2 41 3.9 1.3 2.6 388Perfect LPC 14.3 28 3.3 1.1 2.1 658 (382)Relaxed LPC (50/75) 10.4 23 2.6 0.9 1.7 596 (403)Relaxed LPC (25/50) 9.0 18 2.4 0.7 1.5 571 (391)uniform random (50000 unique entries)Depth Put Get Remove SizeAver Max (sec) (sec) (sec) (kB)Treap 18.5 34 3.4 2.5 2.7 977Patricia 16.0 20 9.6 2.0 5.5 1171Perfect LPC 3.7 8 4.3 0.7 3.6 1635 (1076)Relaxed LPC (50/75) 2.0 5 2.9 0.5 1.5 1246 (943)Relaxed LPC (25/50) 1.6 4 2.1 0.5 1.2 1128 (908)mae-east routing table (38470 entries, 38367 unique entries)Depth Put Get Remove SizeAver Max (sec) (sec) (sec) (kB)Treap 17.5 32 2.1 1.3 1.6 749Patricia 18.6 24 4.9 1.6 4.1 899Perfect LPC 5.8 13 4.0 0.7 3.3 1235 (825)Relaxed LPC (50/75) 3.7 7 5.3 0.5 2.5 1006 (814)Relaxed LPC (25/50) 2.9 5 4.5 0.4 2.1 955 (823)Table 1: Some experimental results. The size �gures in parentheses refer to a more compact trie represen-tation.

Implementing a dynamic compressed trie 33

Arrays of size 2, 4, 8, 16, ...

500

1000

15000

10000

5000

15000

10000

5000

1500 1500

1000

500

Relaxed LPC-trie (25/50) Perfect LPC-trie

Remove

Put

Leaves Internal nodesFigure 4: Memory pro�les for book1 (16622 entries).

Arrays of size 2, 4, 8, 16, ...

Relaxed LPC-trie (25/50) Perfect LPC-trie

Remove

Put

Leaves Internal nodes

75000

50000

75000

50000

25000

30000

20000

10000

30000

20000

10000

25000

Figure 5: Memory pro�les for mae-east (38470 entries).

Implementing a dynamic compressed trie 34For the routing table data the situation is di�erent. In Figure 5 we see that the number of internalnodes and arrays allocated clearly exceeds the number of leaves. However, the extra work spent inrestructuring the trie pays o�. As can bee seen in Table 1, the average depth for of the Patricia treeis 18, the perfect LPC-trie has depth 6, and the relaxed LPC-trie depth 3. In this particular Javaenvironment this reduction in depth is enough to compensate for the extra restructuring cost. Theinsertions times are, in fact, slightly faster for the level compressed tries as compared to a tree usingonly path compression. We also note that the naive implementation of the doubling and halvingalgorithms results in more memory allocation than would be strictly necessary and there seems tobe room for improvement in running time by coding these operations more carefully.In our implementation, the size of the trie structure is larger than the size of a correspondingbinary search tree. However, using a more compact memory representation for binary nodes asdiscussed in Section 2 would give memory usage very similar to the treap. There are many otherpossible further optimizations. For data with a very skewed distribution such as the English text,one might introduce a preprocessing step, where the strings are compressed, resulting in a more evendistribution [4]. For example, order preserving Hu�man coding could be used.5. Conclusions and Further ResearchFor both integers and text strings, the average depth of the LPC-trie is much less than that ofthe balanced binary search tree, resulting in better search times. In our experiments, the time toperform the update operations was similar to the binary search tree. Our LPC-trie implementationrelies heavily on automatic memory management. Therefore, we expect the performance to improvewhen more mature Java runtime environments become available. The space requirements of theLPC-trie are also similar to the binary search tree. We believe that the LPC-trie is a good choicefor an order preserving data structure when very fast search operations are required.Further research is still needed to �nd an e�cient node resizing strategy. Doubling and halvingmay introduce new child nodes that also need to be resized. In the current implementation, werecursively resize all of the new child nodes that ful�ll the resizing condition. This may become tooexpensive for some distributions of data, because several subtries may have to be recursively resized.One way to avoid too expensive resizing operations is to delimit resizing to the nodes that lie alongthe search path of the update operation. This will make searches more expensive, but in an updateintensive environment this might be the right thing to do. It is also possible to permit resizing tooccur during searches in order to distribute the cost of resizing more evenly among operations.Automatic memory management supported by modern programming language environmentsfrees the application programmer from low level details in the design of algorithms that rely heavilyupon dynamic memory. When the run time environment is responsible for memory management,it is possible to tailor and optimize the memory manager to take full advantage of the underlyingmachine architecture. This makes it possible to implement algorithms e�ciently without explicitknowledge of the particular memory architecture. On the other hand, it is more di�cult to takeadvantage of the fact that many algorithms need only a limited form of memory management thatcould be implemented more e�ciently than by using a general purpose automatic memory manager.It also becomes more di�cult to benchmark algorithms, when a large part of the run time is spentwithin the memory manager. There is clearly a need for a standardized measure to account forthe cost of automatic memory management. A very interesting project would be to collect memoryallocation and deallocation pro�les for important algorithms and create performance models fordi�erent automatic memory management schemes. This should be of interest both to designers ofgeneral purpose data structures and automatic memory management schemes.

Implementing a dynamic compressed trie 35AcknowledgementsWe thank Petri M�aenp�a�a, Ken Rimey, Eljas Soisalon-Soininen, Peter Widmayer, and the anony-mous referees for comments on the earlier draft of this paper.Tikkanen's work has been carried out in the HiBase project that is a joint research project ofNokia Telecommunications and Helsinki University of Technology. The HiBase project has been�nancially supported by the Technology Development Centre of Finland (Tekes).References[1] A. Analyti, S. Pramanik. Fast search in main memory databases. SIGMOD Record, 21(2),215{224, June 1992.[2] A. Andersson, S. Nilsson. Improved behaviour of tries by adaptive branching. InformationProcessing Letters, 46(6):295{300, 1993.[3] A. Andersson, S. Nilsson. Faster searching in tries and quadtrees { an analysis of level compres-sion. In Proceedings of the Second Annual European Symposium on Algorithms, pages 82{93,1994. LNCS 855.[4] A. Andersson, S. Nilsson. E�cient implementation of su�x trees. Software { Practice andExperience, 25(2):129{141, 1995.[5] J.-I. Aoe, K. Morimoto. An e�cient implementation of trie structures. Software { Practice andExperience, 22(9):695{721, 1992.[6] J.J. Darragh, J.G. Cleary, I.H. Witten. Bonsai: A compact representation of trees. Software {Practice and Experience, 23(3):277{291, 1993.[7] L. Devroye. A note on the average depth of tries. Computing, 28(4):367{371, 1982.[8] J.A. Dundas III. Implementing dynamic minimal-pre�x tries. Software { Practice and Experi-ence, 21(10):1027{1040, 1991.[9] P. Flajolet. On the performance evaluation of extendible hashing and trie searching. ActaInformatica, 20:345{369, 1983.[10] P. Flajolet, M. R�egnier, D. Sotteau. Algebraic methods for trie statistics. Ann. Discrete Math.,25:145{188, 1985.[11] P. Flajolet. Digital search trees revisited. SIAM Journal on Computing, 15(3):748{767, 1986.[12] E. Fredkin. Trie memory. Communications of the ACM, 3:490{500, 1960.[13] M. Freeston. The BANG �le: a new kind of grid �le. ACM SIGMOD Int. Conf. on Managementof Data, 260{269, 1987.[14] G.H. Gonnet, R.A. Baeza-Yates. Handbook of Algorithms and Data Structures. Addison-Wesley,second edition, 1991.[15] A. Hutesz, H.-W. Six, P. Widmayer. Globally order preserving multidimensional linear hash-ing. Proc of the 4th Int. Conf. on Data Engineering, 572{587, 1988.[16] P. Kirschenhofer, H. Prodinger. Some further results on digital search trees. In Proc. 13thICALP, pages 177{185. Springer-Verlag, 1986. Lecture Notes in Computer Science vol. 26.[17] D.E. Knuth. TEX: The Program. Addison-Wesley, 1986.

Implementing a dynamic compressed trie 36[18] D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley, 1973.[19] H.-P. Kriegel, B. Seeger. Multidimensional Order Preserving Linear Hashing with Partial Ex-pansions, Proceedings of International Conference on Database Theory (Lecture Notes in Com-puter Science), Springer Verlag, Berlin, 203{220, 1986.[20] P.-A. Larson. Dynamic hash tables. Communications of the ACM, 31(4), 446 { 457, April 1988.[21] J. van Leeuwen. Algorithms and Complexity, volume A of Handbook of Computer Science.Elsevier, 1990.[22] D.B. Lomet. Digital B-trees. Proc of the 7th Int. Conf. on Very Large Databases, IEEE,333{344, 1981.[23] K. Morimoto, H. Iriguchi, J.-I. Aoe. A method of compressing trie structures. Software {Practice and Experience, 24(3):265{288, 1994.[24] J. Nievergelt, H. Hinterberger, K.C. Sevcik. The grid �le: an adaptable, symmetric multikey�le structure. ACM TODS, 9(1), 38{71, 1984.[25] S. Nilsson, G. Karlsson. Fast address lookup for internet routers. In Paul K editor, Proceedingsof the 4th IFIP International Conference on Broadband Communications (BC'98). Chapman &Hall, 1998.[26] E.J. Otoo. A mapping function for the directory of a multidimensional extendible hashing. Procof the 10th Int. Conf. on Very Large Databases, 491{506, 1984.[27] E.J. Otoo. Balanced multidimensional extendible hash tree. Proc 5th ACM SIGACT-SIGMODSymposium on the Principles of Databases, 491{506, 1985.[28] B. Pittel. Asymptotical growth of a class of random trees. The Annals of Probability, 13(2):414{427, 1985.[29] B. Pittel. Paths in a random digital tree: Limiting distributions. Advances in Applied Proba-bility, 18:139{155, 1986.[30] H. Samet. Applications of Spatial Data Structures. Addison-Wesley, 1989.[31] B. Seeger, H.P. Kriegel. The buddy-tree: an e�cient and robust access method for spatialdatabase systems. Proc of the 16th Int. Conf. on Very Large Databases, 590{601, 1990.[32] R. Seidel and C.R. Aragon. Randomized binary search trees. Algorithmica, 16(4/5):464{497,1996.[33] M. Tamminen. The EXCELL method for e�cient geometric access to data. Acta PolytechnicaScandinavica. Mathematics and Computer Science Series No. 34, Helsinki, Finland, 1981.[34] M. Tamminen. Two levels as good as any. Journal of Algorithms. 6(1):138{144, 1985.[35] K.-Y. Whang, R. Krishnamurthy. Multilevel grid �les. Research Report RC 11516 (#51719),IBM Thomas J. Watson Research Center, 43, 1985.

37Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 37{48Graph and Hashing Algorithms for Modern Architectures:Design and PerformanceJohn R. Black, Jr. Charles U. Martel Hongbin Qiblackj@cs.ucdavis.edu martel@cs.ucdavis.edu qi@cs.ucdavis.eduDepartment of Computer Science, University of California, Davis 1Davis, CA 95616, USAABSTRACTWe study the e�ects of caches on basic graph and hashing algorithms and show how cachee�ects inuence the best solutions to these problems. We study the performance of basic datastructures for storing lists of values and use these results to design and evaluate algorithms forhashing, Breadth-First-Search (BFS) and Depth-First-Search (DFS).For the basic data structures we show that array-based lists are much faster than linked listimplementations for sequential access (often by a factor of 10). We also suggest a linked listvariant which improves performance. For lists of boolean values, we show that a bit-vector typeapproach is faster for scans than either an integer or character array. We give a fairly precisecharacterization of the performance as a function of list and cache size. Our experiments alsoprovide a fairly simple set of tests to explore these basic characteristics on a new computersystem.The basic data structure performance results translate fairly well to DFS and BFS imple-mentation. For dense graphs an adjacency matrix using a bit-vector is the universal winner(often resulting in speedups of a factor of 20 or more over an integer adjacency matrix), whilefor sparse graphs an array-based adjacency list is best.We study three classical hashing algorithms: chaining, double hashing and linear probing.Our experimental results show that, despite the theoretical superiority of double hashing andchaining, linear probing often outperforms both for random lookups. We explore variations onthese traditional algorithms to improve their spatial locality and hence cache performance. Ourresults also suggest the optimal table size for a given setting.More details on these experiments can be found at: http://theory.cs.ucdavis.edu/1. IntroductionHelping programmers create e�cient code is an important goal of the study of algorithms. Manymajor contributions have been made in algorithm design, but some of these results need to berevisited to account for characteristics of modern processors. Design and analysis which focusessolely on instruction count may lead to faulty designs and misleading analysis. Caching as well asother features of the machine architecture may change the best strategies for designing algorithms.The importance of these e�ects is increasing as processor speeds outstrip memory access time withthe cache-miss penalty now over 100 machine cycles on high-performance processors.By measuring and analyzing the performance of fundamental data structures and algorithms wehope to provide a basic foundation for the design and evaluation of more complex algorithms. Inthis paper we study two fundamental topics using this approach: graph algorithms and hashing.1This work was supported by NSF grant CCR 94-03651.

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 38We show that signi�cant performance improvements can be gained by using data structures andalgorithms which take architectural features into account. We �rst study the performance of basicdata structures in isolation and then use the indicated structures for Breadth-First-Search (BFS)Depth-First-Search (DFS) [7] and hashing. We also consider ways to predict performance and giveindications of the e�ectiveness of these predictions by measurements of both actual run time andother statistics such as cache misses and number of instructions executed.Our results show that the data structures for graphs found in almost all the standard textsoften have much worse performance than simple alternatives. Since the extra overhead for using thestandard data structure can be a factor of ten or more, it is well worth considering the performancee�ects we study when e�ciency is important.The Dictionary problem, where keys may be inserted, deleted and looked up, is one of the mostfundamental uses of computers, and hashing is often the method of choice for solving it. Thus itis important to �nd the best practical hashing schemes and to understand the empirical behaviorof hashing. While hashing algorithms have been studied extensively under traditional cost models,there has been little prior work focusing on their cache e�ects.The desire to understand how di�erent algorithms perform in practice has led to a recent increasein the experimental study of algorithms. There have been a number of experimental studies of graphalgorithms which focus on important problems such as shortest paths [9, 5], minimum spanningtrees (MST) [17], network ow and matching [1, 4, 10, 19], and min-cut algorithms [6]. Theseexperiments provide valuable insight into the performance of di�erent algorithms and can suggestnew algorithmic choices. The authors of these studies reasonably spend most of their e�ort on thehigher level algorithm details, so these papers have typically had a very limited discussion of thebasic representation issues we discuss in this paper. In addition, we hope our results will help futureexperimental studies by suggesting good supporting data structures.When doing experiments it is important to understand which variables can a�ect results. In manyexperimental papers (including all of those listed in the prior paragraph), the cache characteristics ofthe machines used are not even listed. In addition, in some of these studies di�erent data structureswere used for di�erent algorithms which were being compared (for example linked lists for one andarrays for another). This shows the general lack of focus on these issues by experimenters.1.1. Related WorkBecause of its importance, compiler writers have spent considerable e�ort on generating code withgood locality [3], however substantial additional improvements can be gained by proper algorithmdesign. Moret and Shapiro discuss cache e�ects on graph algorithms in their MST paper [17]. Theycomment that data caching and performance is a�ected by the method used to store a graph. Theyattempt to normalize for machine e�ects by using running times relative to the time needed to scanthe adjacency structure. More recently, several researchers have focused on designing algorithmsto improve cache performance by improving the locality of the algorithms [16, 13, 14]. Lebeck andWood focused on recoding the SPEC benchmarks, and also developed a cache-pro�ler to help in thedesign of faster algorithms. LaMarca and Ladner came up with improved heap and later sortingalgorithms by improving locality. They also developed a new methodology for analyzing cache e�ects[15]. While we didn't directly use their analysis tools since they were for direct-mapped caches andsomewhat di�erent access patterns, our analysis does use some of their ideas.These papers show that substantial improvements in performance can be gained by improvingdata locality. Our results are similar in spirit to these but tackle di�erent data structures and targetdi�erent algorithms. Also, our approach focuses more on trying to understand the basic e�ectsarchitectural features can have by studying them in simple settings.A recent hashing paper [20] develops a collision resolution scheme which can reduce the probescompared to double hashing for some very specialized settings. However, since they only look atprobes rather than execution time they don't address the e�ects we study here.

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 391.2. Result SummaryWe start with the most basic data structures and compare arrays and linked lists (LL) for storinga sequence of integers when the basic operation is to scan consecutive elements in the list (with scansof an adjacency list structure or linear probing/chaining in mind). In this case reading all elementsof an array can be 10 times faster than the equivalent LL scan. In addition, the performance gapis larger for more recent machines compared with older ones, so this disparity may grow in thefuture. By studying the architecture and compiler e�ects which slow down the LL implementationwe develop LL variants which are much faster (though still slower than an array).For lists of boolean values (with an adjacency matrix for an unweighted graph as our target)we compare integer, character and bitpacked arrays (where all the bits in a 32 bit word are usedto store individual data elements). We show that even though the bitpacked array scans havehigher instruction counts (due to overhead for extracting the bits), they outperform the integer and(usually) character arrays when the non-boolean list is too large to �t in cache. The bit matrix isoften twice as fast as alternatives for large lists.We study algorithms for Depth-First-Search (DFS), Breadth-First-Search (BFS), and hashing.For the graph algorithms we show that using a bitpacked array always outperforms an integer array(often by a factor of 20+ for BFS). In addition, the bitpacked array outperforms an adjacency listexcept for sparse graphs. Our experiments also con�rm the substantial gain from using an arrayrather than a linked list to represent an adjacency list. Our results suggest that the best datastructure depends largely on graph size and average node degree but not on graph topology.In our hashing experiments we show that among traditional schemes Linear Probing is a clearwinner over double hashing and chaining for both successful and unsuccessful search when the accesspattern is uniform and multiple table entries �t in a single cache line. We suggest alternatives todouble hashing and chaining which reduce cache misses and improve performance. We are able tomodel some of these settings to predict performance and the optimal size of a hash table.2. Experimental SettingWe ran our experiments on �ve platforms: two DECstations, a 5000/25 and a 5000/240 (hence-forth referred to as DEC0 and DEC1), two types of DEC Alphas: an older one with a 21064 processorand a newer one with a 21164 processor (Alpha0 and Alpha1) and a Pentium II (Pentium). We listthe cache characteristics of the machines below since those are used directly in our analysis. DEC0and DEC1 have a 64K byte cache and use 16-byte cache blocks. Both Alphas have an 8K byteon-chip direct mapped L1 data-cache and a 96K 3-way set-associative L2 cache (21064 is o�-chip,21164 is on-chip) and both use 32-byte cache blocks [8]. The Pentium runs at 266 Mhz, has an L1cache of 16K for instruction and 16K for data, both 4-way associative with 32-byte line size. TheL2 cache is 512K bytes and has a direct 133 MHz bus. There is also a prefetch bu�er which fetchescache block k + 1 whenever the current access is to block k.Our programs were all written in C and compiled under highest optimization using cc. We didtry alternative compilers but found there wasn't too much variation in results. In reporting theresults we focus primarily on the Alpha1 and Pentium II results since they are the most relevant forcurrent (and likely future) machines. However, we also report results on the older Alpha0 and theDECstations to show the changes which occur with the move to newer architectures. Fortunatelythe best design choice varies little between the �ve machines, though the degree of bene�t variesconsiderably.3. Basic Data Structure ResultsThe following experiments study basic algorithms and data structures. This allow us to studythe performance e�ects closely, and also to suggest simple and robust structures for others to use.

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 40Finally, it also gives a set of benchmark routines which test the relative performance on di�erentmachines.3.1. Arrays versus Linked ListsWe start by comparing two data structures for holding the integers 1 through n when our goal isto scan these numbers. The main data structures we consider are a length n array of 32-bit integers(ARRAY) and a linked list of n nodes each of which contains a 32-bit integer and a pointer tothe next node (LL) (32-bit pointers on the DECstations and Pentium, 64-bit pointers on the twoAlphas). Each LL node is allocated by a call to malloc().Once the data structures are allocated and initialized, we repeatedly process the elements inorder and add up all the numbers in the list. This is used as a simple surrogate experiment torepresent a sequence of consecutive memory reads (but no memory writes). The goal with respectto graph algorithms, is to represent the operation of scanning all neighbors in a node's adjacencylist where the list might be represented by an array or linked list.Table 1 summarizes our basic data structure timing results. We list the per-element time innanoseconds and the range of values of n (the number of items in the data structure) for whichthis time holds (when times were similar over a range we report only the median value). LL-12 is alinked list with 12 integers and one pointer per node.Times in Nanoseconds per ElementDEC0 DEC1 Alpha0 Alpha1 PentiumInteger List Results (Time followed by n = list size)Time n Time n Time n Time n Time nArray 114 to 16K 71 to 16K 19 to 2K 10 to 2K 12 to 64K410 > 16K 114 > 16K 35 3-128K 13 3-16K 26 128K60 > 128K 17 32-128K 36 � 256K30 > 1MLL 144 to 4K 90 to 4K 34 to 256 10 to 256 24 to 10241339 > 7K 400 > 7K 141 512-16K 34-70 to 4K 49 2K-8K387 > 16K 121-167 to 65K 119 32K229 > 128K 160 � 64KLL-12 131 to 8K 81 to 8K 27 to 1K 14 to 1K 27 to 16K358 at 16K 115 at 16K 39 at 2K 17 2-16K 30 to 64K529 > 16K 141 > 16K 50 to 64K 26 to 128K 49 128K86 > 128K 34 > 128K 58 > 128KBoolean list resultsChar 114 to 64K 71 to 64K 41 to 8K 27 to 8K 9 to 256K184 > 64K 81 > 64K 45 to 512K 28 to 128K 15 � 512K51 > 512K 30 to 1MBit 149 to 32K 93 all 35 all 12 all 15 all157 > 64KTable 1. Timings of Basic Data Structures for 5 ProcessorsFor example, the top left entry shows that for an array of integers, the per-element time onDEC0 is 114 nanoseconds per-element for lists of up to 16K integers (which occupy 64K bytes), butjumps to 410 nanoseconds per element when the list is much above 16K elements and exceeds the64K byte cache.

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 41The integer list results show ARRAY is strictly better than LL and can be more than 10 timesfaster on the Alpha1 (13ns versus 128ns at n = 8K, 17ns versus 229ns at n = 128K) or Pentium (12nsversus 160ns for n = 64K). This performance gap is almost entirely explained by cache e�ects. Whenboth data structures are small enough to �t entirely in the fastest (L1) cache they have comparablerunning times (except on the Pentium where LL is twice as slow even on small lists). However, assoon as the size exceeds that of the L1 cache for LL, its performance jumps. This is particularlyserious since the L1 cache is exceeded for quite small lists.A close look explains this e�ect quite clearly. Recall that the Alpha and Pentium L1 cache use32-byte blocks. Each cache miss brings eight 4-byte integers into the cache, and on the Pentiuma prefetch starts for the next eight. The LL uses more space per data element, particularly sincemalloc() allocates 32 bytes on the Alphas and 16 bytes on the DECstations and Pentium, eventhough only 12 and 8 are needed. Thus, each node access is in a separate cache line (except 2 perline on the Pentium) and only one data element is brought into the cache on a miss. On all machinesthe better spatial locality of the array structure greatly reduces its total cache misses when the arrayis too large to be contained in the L1 cache.For an array, on the Alpha the total number of L1 cache misses is roughly n=8 when the arrayexceeds the L1 cache size, while LL has almost exactly n cache misses. The 32-bytes/node for LLalso explains why its performance degrades signi�cantly when n goes to 512 on the Alpha and itsmemory use exceeds the size of the L1 cache, while the Array performance does not drop until ngoes above 2048 (since 512� 32 bytes = 2048� 4 bytes = 8K = size of L1 cache). There is also asecond (expected) drop in performance when the data structure exceeds the size of the L2 cache (at96K bytes) on the Alphas.On the Pentium we also see the LL performance drop when the size exceeds the L1 cache size(1024� 16 bytes), and again when its size exceeds the L2 cache size of 512K = 32K � 16. However,the ARRAY performance does not drop when its size exceeds the L1 cache size, but only when itreaches the L2 cache size (at 128K � 4 bytes). This is a strong statement on the e�ectiveness of theprefetching for sequential access. Each time we enter a new cache line, those data are already in theprefetch bu�er.Despite the large di�erence in running times, pro�ling shows that the array and linked list scansuse the same number of instructions. Thus the time di�erence is due to memory e�ects.We also stored multiple data values in a single linked list node. This packing of data values cangreatly improve the performance of the LL structure. When two data items are stored in each node,the number of cache misses is roughly cut in half since the LL nodes have the same size as in thesingle data-item case.On Alpha1 two-item-packing cuts the scan time in half (when the data exceed the L1 cache size).In fact up to four 4-byte integers can be put in a node without increasing the 32-byte size allocatedby malloc(). Using nodes with four data-items per node results in an almost 4-fold speedup. Wealso tried using 12 data items per node (12 is the maximum number for a 64 byte allocation bymalloc()). This resulted in a 7-fold speedup compared to the single node LL, but this still makesit almost 50% slower than ARRAY.Our experiments using Atom [21] to study the cache misses on Alpha1 shows very much whatwe predicted. When n exceeds the cache size there are almost exactly n=8 cache misses for ARRAYreecting the 8-word cache block brought in by each miss. For LL there are almost exactly n cachemisses since each node uses an entire 32-byte cache line. Similarly, when we pack four data itemsper node, we now get four data items per cache line and n=4 cache misses.3.2. Boolean Arrays of Integers, Characters and BitsWe study the best way to store a boolean array. Our motivation is for an adjacency matrix ofan unweighted graph (as in BFS, topological sorting, and matching). We tested: an array of 4-byteintegers (INT), an array of 1-byte characters (CHAR), and an array of bits (BIT) with 32 booleanvalues packed into a 4-byte integer.

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 42As in the prior section, our test is to step through the array sequentially and add up all the values(in this case the bits). Pro�ling this code shows that the bit scan takes 50% more instructions thanfor the integer array. However, the improved locality more than makes up for this extra work. Wecould have also sped up the bit extraction by exploiting word-level parallelism (e.g. by table lookupfor 8 or 16 bit blocks), but we avoided this since it may not generalize to other uses of the booleanarray.3.3. ResultsThe boolean list results of Table 1 show the timing e�ects for our settings. INT had the sameresults as Array (top table line). The only di�erence is adding ones instead of integers 1 throughn. For the bit array the time per element is almost constant on each of the machines for all arraysizes. This is not surprising since a cache line brings in 128 (DEC) or 256 (Alphas/Pentium) bits soany cache miss penalty is amortized over so much work it has a negligible e�ect. For CHAR thereis only a small variation in per-element cost on the Alphas and DEC1, and a 50% change in cost onthe DECstation and the Pentium. The higher CHAR cost on the Alphas reects their extra cost forbyte-level operations. We expect only a small change in cost as n varies since 32 data elements arebeing brought in with a cache line on the Alphas and Pentium.Thus BIT is an attractive solution for large boolean arrays, and has its biggest gains over aninteger array on the newer machines. Two other plus factors for BIT: (1) accesses to BIT will beless likely to evict other data items in the cache, and (2) accesses may be able to exploit word-level parallelism to reduce running time (as we do in our BFS and DFS programs). However, if anapplication only uses a few bits of the word in a window of time, then the performance may be worsethan in our tests.4. Graph Algorithm ResultsOur graph experiments focused on the main graph traversal algorithms: DFS and BFS. We showthat the performance predicted by the analysis above is exhibited by these algorithms.We ran experiments on graphs from Knuth's Stanford GraphBase [12] and internally generatedrandom graphs. GraphBase generates a variety of graphs which are both standard and available.We considered a range of graphs, but there was little di�erence in performance between randomand structured graphs of the same size and density. This suggests that our results are largelyindependent of topology and rest primarily on the graph's density as discussed below. Thus wepresent here a representative subset taken from random undirected unweighted graphs with edgesuniformly distributed over the vertices.We focused on �ve data structures to represent our graphs: three adjacency lists, and two wereadjacency matrices. The three adjacency list implementations were (1) a linked list, called \LL"above, (2) an array-based adjacency list [9], and (3) a \blocked" linked list where each node of the listcontains multiple data items. The two adjacency matrix implementations were (1) a two-dimensionalarray of integers, and (2) a two-dimensional array of bits.Results were collected on all platforms, but we focus on the Alpha1 results, noting signi�cantdi�erences where they occur.In BFS when we visit a vertex we check all of its neighbors to determine which are unvisited(and add these to a queue). This operation is close to the scans discussed in section 3, so we expectthe performance to generally reect the results we saw for those basic data structures. In DFS wecheck neighbors until we hit an unvisited vertex, then change vertices, so we see less spatial localitythan with BFS. DFS is further from the basic experiments, but still close enough for those resultsto provide good indications of performance.

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 434.1. Overall ResultsFor an n node graph with average vertex degree d our experiments showed that d and n=dwere the overriding factors a�ecting the relative performances of the algorithms on the various datastructures. Because DFS and BFS each look at an edge only once, the issue of whether the graph�ts in cache is less important than if the algorithm examined edges multiple times. The degree da�ects the spatial locality (when a block of data is brought into cache, how many are neighbors ofthe current node), and when d is small the fraction of time spent on edge scanning is also smaller,so the total speedup of the algorithm due to improving the edge scans is reduced. The ratio n=d iscritical for the classic tradeo� between adjacency matrix structures and adjacency list structures.We did experiments on a range of graphs, but present here a representative set of data for afamily of random graphs, all having 1,000 nodes and between 6,000 and 20,000 edges and generatedby the SGB. We present �gures for these relatively small graphs for several reasons: (1) the SGBallows a standard widely-available source for graphs, and we were not able to produce much largerrandom graphs with it on our platforms, (2) we were able to run experiments on all data structuresat this size (we could not test an integer-based adjacency matrix for a 20,000 node graph since wedon't have 160M of memory to store it), and (3) experiments on larger graphs exhibited consistentperformance with these smaller graphs: using our internal graph generators (which are fast andmemory-e�cient) we tested random graphs with 5,000, 10,000, and 20,000 nodes; these graphs hadn=d values in the neighborhood of their tradeo� points (see below). For example, on the Alpha1platform, we tested graphs of 20,000 nodes and from 5.6 million to 6.4 million edges.On all platforms the relative speedups between competing structures remained constant and then=d tradeo� point discussed below also remained constant, for a given platform. On the Alpha1 thetradeo� constant was about 33, while on the Pentium it was about 29.By holding the number of nodes constant and varying the number of edges in the experimentspresented, we were able to �nd which of the various data structures performed best for each of thegraph densities. A plot of the running times on Alpha1 is presented in Figure 1.The Y axis is the time, in seconds, for a BFS traversal. The integer adjacency matrix results areomitted since they would plot a horizontal line at 0.055 level, well o� the top of our �gure.

0.0010.0020.0030.0040.0050.0060.007

6000 8000 10000 12000 14000 16000 18000 20000Number of Edges

Times for BFS on Alpha1 for Random 1000 Node Undirected GraphsSimple LL 3
3 3 3 3 3 3 3 3Array-Based LL +
+ + + + + + + +

Blocked LL 2
2 2 2 2 2 2 2 2Bitpacked �
� � � � � � � �

Figure 1

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 444.2. Bitpacked versus Integer Adjacency MatricesOur bitpacked representation does vastly better than an integer array for all graphs tested,typically running in 1/20 the time or less. There are several reasons for this large disparity.A principal cause is cache e�ects as discussed in section 3.2. The bitpacked representation alsoallows us to use several optimizations which exploit the inherent parallelism of word-level operations.For example, when visit the neighbors of a vertex, we can mark these as visited by a bitwise-ORof the adjacency bits into the bit array which tracks the visited vertices. We potentially mark 32neighbors as visited in parallel.The time required for packing and unpacking bits can be reduced substantially by a few tricks,which we also employed. It is not always necessary to shift and mask bits: we used techniques whichextract a piece of the bit array (typically 4 or 8 bits) and then use a table lookup to quickly �nishthe operation.4.3. Simple LL versus Array-Based and Blocked LLsIn Figure 1, we see that an array-based adjacency list always beats the LL structures, and ablocked LL beats a simple LL. The gains in adopting the array-based or blocked LLs are not aslarge as they were in section 3, since a smaller portion of the overall running time of this test isinvolved with scanning the adjacency lists. In section 3 the only task was to scan the list and addup numbers.4.4. LLs versus Bitpacked Adjacency MatrixThe last two sub-sections gave clear indications regarding the correct choice of data structurewhen deciding between the pair being compared. In this setting, however, the better performerdepends on the graph. This is completely expected: for sparse graphs with large n=d, the LL imple-mentations need to scan only d items on average to process a given vertex whereas any adjacencymatrix representation will require a scan of n objects. However, as we see from Figure 1, as n=d falls,the times for the LL structures increase linearly while the adjacency matrix times remain roughlyconstant. For our experiments the break-even point for the simple LL and the blocked LL is whenn=d is about 70 (this is 7000 on the horizontal axis of Figure 1) and for the array-based LL thebreak-even point occurs at around n=d = 33. These numbers held constant over all graphs testedon Alpha1. On the other platforms there were similar constant trade-o� points.We should note that the algorithms tested here, BFS and DFS, were quite simple and perhapsatypical of many graph algorithms in that each data object was read only once. Although we didnot experiment with other algorithms, we suspect that algorithms which access objects more thanonce, particularly with good spatial locality, would bene�t even more from the nice behavior of thebitpacked adjacency matrix. This requires further exploration.5. HashingChaining, double hashing and linear probing [7, 11] are the three most classic hashing algorithms.Traditionally, chaining and double hashing are considered superior to linear probing because theydisperse the keys better and thus require fewer probes. Our experiments show, however, that atleast for uniform accesses, linear probing is fastest for insertions, successful searches and unsuccessfulsearches. This is true unless the table is almost 100% full or can be stored entirely in the L1 cache.Since it is rarely a good idea to have the hash table that full, linear probing seems to be the clearwinner in the settings we considered.5.1. Experimental SettingWe did experiments on both Alphas and the DECstations, but we focus here on the resultsfor Alpha1 (the results for the other machines were generally similar). We used 8-byte keys on the

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 45

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
400

500

600

700

800

900

1000

1100

1200

Figure 2. Time expense of insertions on the ALPHA. The X-axis is the load factor.
 The Y-axis is the average time in nanoseconds to insert a key. Insertions start with
 an empty table and end at the load factor on the X-axis. The table has 4M key slots.

chaining 2
double hashing
chaining 1
packed chaining
packed double hashing
liner probing

Alpha1 and our tables contained only keys (plus 8-byte pointers for chaining). We chose hash(key) =key mod T as the hash function, where T is the table size. Table size is the maximum numberof keys a table can hold. We distinguish table size from table space, which is the memory space atable occupies. To get a table with n keys we generate n random 32 bit integers and insert theminto an empty table using the appropriate hashing scheme. Since we used random keys, the modulofunction su�ced as our hash function.5.1.1. Comparing Di�erent SchemesThe performance of a hashing scheme will largely be determined by the number of probes andthe number of cache misses. Double hashing (DH) and Chaining (C) do a good job of randomlydistributing keys through the table. This reduces their number of probes, but also gives them verypoor spatial locality. Successive probes looking for a key are almost certain to be in di�erent cacheblocks. Linear probing (LP) has excellent spatial locality but uses more probes. Figure 2 showsclearly that LP beats both DH and C for random insertions as long as the table is less than 80%full. The same results hold for successful search since the same probe sequences are used, and LP isalso the best scheme for unsuccessful search, though its margin is somewhat smaller. Linear probingcontinued to be the best scheme over a wide range of table sizes where the number of keys did not�t into L1 cache but the table �t in main memory. When the key set size was small enough to �tentirely in L1 cache LP lost its advantage. LP's performance is well explained by its fewer cachemisses which is detailed in the next section and by the analysis in section 5.3.2.5.2. Analysis of the Number of Cache missesWe used Atom [21] to simulate our algorithms' cache behavior. We simulated a direct-mappedsingle-level cache which is the same as the DECstation cache. We chose to simulate the DECstationcache because a single-level cache would make our experimental results easier to analyze.The number of cache misses roughly tracked the timing performance in Figure 2 and the analysiswe do in section 5.3.2. Linear probing is a bit better than the cache-miss curves suggest and chainingsomewhat worse. This may be due to the simpler address calculations in linear probing or due toeasier optimizations of non-pointer based code by the compiler.5.3. New Hashing SchemesWe designed variants on DH and C to improve their spatial locality. In packed double hashingPDH, we hash a key to a table entry which contains multiple key slots. The number of key slots ina table entry is set so that a table entry has exactly the same size as a cache block. When a key x is

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 46hashed to entry i, the slots in that entry are examined sequentially. If x is not found and the entryhas no empty slots, we compute a second hash function h2(x) as in double hashing, and examineentries (i + increment) mod T , (i + 2increment) mod T , ..., until x or an empty slot is found(note that now T represents the number of table entries, each of which contains multiple key slots).In Packed Chaining (PC), instead of storing one key and one pointer in a table entry or list node,we store multiple keys and one pointer, so that a table entry or list node has the same size as acache block. When a key is hashed to a table entry, the key slots in that table entry are examinedsequentially. If the the key or an empty slot is not found, we next check successive nodes in theassociated linked list.Figure 2 also reports the performance of PDH and PC. We see that they both improve on theirnormal versions, but they still perform less well than LP for moderate load factors. Measurementsshow that PDH and PC have the fewest cache misses of any of the schemes, however, they use moreprobes than linear probing for load factors below 0.8. However, these schemes do have the advantagethat their performance is more stable as the load factor increases compared to LP.Our successful and unsuccessful search results assume uniform access patterns. If the accesspattern is skewed (as is true in many real applications) the number of cache misses will decrease andtherefore chaining and double hashing may perform better. Minimizing probes will also be moreimportant if key comparison is more expensive, and locality for linear probing will be reduced ifother data is in the hash table or the keys are larger.5.3.1. Optimal Table SizeIn addition to the collision resolution scheme, the other main design choice in hashing is thetable size. In a cache setting there is a tradeo� since a larger table will reduce the number of probesbut may also increase the percentage of probes which are cache misses. We see in Figure 2 that theperformance of all the hashing schemes monotonically decrease as the load factor increases. Thissame trend was seen for successful and unsuccessful search and for a wide range of key set sizeswhich did not �t in L1 cache. However, as in Figure 2, the performance was usually fairly at forload factors in the 0.1 to 0.4 range.It is also worth noting that since each scheme is best at relatively low load factors, and linearprobing is a clear winner at these low load factors, linear probing looks to be a clear winner whenone can predict the number of keys, and the desired hash table size is bigger than the L1 cache but�ts in main memory.5.3.2. Theoretical AnalysisThe expected number of probes for uniform hashing is well analyzed [11], but adding a cachecomplicates things. However an approximate analysis helps explain the performance in Figure 2.Assume we have n keys in a table of size T , and cache capacity C in units of table entries. Let� = n=T be the load factor and P the cache miss penalty. We assume a memory system with asingle cache, where B is the number of table entries which �t into a cache block (so B = 4 on theAlpha1 if we store 8-byte keys in the table).If T is much larger than C we assume that each access to a new cache block is a miss. Thus everyprobe for DH and C is a miss, and for LP if we do k probes in a single lookup, the �rst probe is amiss and subsequent probes have a 1=B chance of hitting a new block. Thus the expected numberof misses is 1 + (k � 1)=B.We now consider DH and LP using the classic results for their expected number of probes forsuccessful search. When n=T = :5 the expected number of probes (and cache misses) for DH isabout 1.386 and 1.5 probes for LP. Thus if B = 4 as in our experiments, the expected number ofcache misses for LP is 1 + :5=4 = 1:125. When n=T = :8, DH takes 2 probes and LP 3, so LP has1.5 expected misses compared to DH's 2. Thus it is not surprising LP is faster at both these loadfactors. A similar analysis can be done for chaining as well.

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 47We can analyze unsuccessful searches for Double Hashing more exactly since each probe can beviewed as hitting a random location in the hash table, and each location in the hash table is equallylikely to be in cache (these properties are not true for any other setting). For T > C, the probabilitythat each location probed is not in the cache is approximated by (T�C)T (*). The expected number ofprobes for a random unsuccessful search is 11�� [11]. So the expected cost of a random unsuccessfullookup is 11�� �1 + T�CT P �To study the behavior of this function with respect to T we take its derivative which isPC � (P + 1)n(T � n)2The most interesting feature of the derivative is that it is always negative when n > C. Thereforeif the keys do not �t in the cache, the expected cost keeps decreasing as we make the table bigger.This is true regardless of P , the cache miss penalty. We can extend this analysis to a two level cacheas well, which shows that if n is larger than the size of the L2 cache it is optimal to keep increasingthe table size (presumably up to the point where paging e�ects start and the models break down).If the key set is bigger than the L1 cache but smaller than the L2 cache, the models suggest settingT to the size of the L2 cache.To test the predictions of the models, we used a key set which was larger than the L2 cache andvaried the table size. The expected time for a random unsuccessful search did decrease as the tablesize increased, and at approximately the rate suggested by the models.Unfortunately, other settings are more complex to model exactly. Consider random successfulsearches in double hashing. The expected number of probes for a random successful search is wellknown, but the probability that a probe will be a cache hit is more complicated than in the priorcase. First, only those cache blocks which contain at least one key will ever be accessed during asuccessful search. Thus equation (*) is immediately invalid if we perform only successful searches.In addition, cache blocks which contain di�erent number of keys have di�erent probabilities of beingin the cache. Consider the case where there is room for 4 keys in a cache block. A block B4 withfour keys is approximately four times as likely as a block B1 with only one key to be in the cache,since it is almost four times as likely a key in B4 was hit recently than the key in B1.6. ConclusionsWe show that experimental studies of basic data structures provide useful insight into perfor-mance. This can be used to choose (and design) the proper data structures for larger applications.There is considerable interesting followup work suggested by our results. For graphs the mostimmediate is to apply our design suggestions to other graph algorithms. Matching and unit Net-work ow are the most direct uses of our work since they use multiple scans of the arcs in anunweighted graph, possibly with multiple calls to BFS/DFS. Yet another extension is to apply asimilar investigation to other basic data structures.For hashing there are several important additional areas to study. First, it is important toconsider various data sizes associated with the keys and larger keys such as strings. Second, it wouldbe good to consider skewed access patterns, which occur quite often in real applications. Third, itwould be good to study hashing when other memory intensive operations are being used.References[1] R. Ahuja, M. Kodialam, A. Mishra and J. Orlin. Computational testing of maximum owalgorithms. Sloan working Paper, MIT, 1992.[2] Eli Biham. A fast new DES implementation in software. Technion, Computer Science Dept.Technical Report CS0891-1997.

Graph and Hashing Algorithms for Modern Architectures: Design and Performance 48[3] S. Carr, K. Mckinley, and C. Tseng. Compiler optimizations for improving data locality. InSixth ASPLOS, 252-262, 1994.[4] B. Cherkassky, A. Goldberg, P. Martin, J. Setubal, and J. Stol�. Augment or push? A computa-tional study of bipartite matching and unit capacity ow algorithms. Technical Report 97-127,NEC Research Institute, Inc., August 1997.[5] B. Cherkassky, A. Goldberg, and T. Radzik. Shortest paths algorithms: theory and experimentalevaluation. Mathematical Programming, Vol. 73, 129-174, June 1996.[6] C. Chekuri, A. Goldberg, D. Karger, M. Levine, and C. Stein, Experimental study of minimumcut algorithms. Technical Report 96-132, NEC Research Institute, Inc., October 1996.[7] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms. McGraw-Hill, 1990.[8] Digital Semiconductor 21164 Alpha Microprocessor Hardware Reference Manual. Digital Equip-ment Corporation, Maynard, MA, 1997.[9] G. Gallo and S. Pallottino. Shortest paths algorithms. Annals of Operations Research, vol. 13,pp. 3-79, 1988.[10] D. Johnson and C. McGeoch Ed. Network Flows and Matching. DIMACS Series in DiscreteMathematics and Theoretical Computer Science, 1993.[11] Donald Knuth. Sorting and searching, the art of computer programming, Volume 3. Addison-Wesley Publishing Company, 1973.[12] D. Knuth. The Stanford GraphBase. ACM Press, 1994.[13] A. LaMarca and R. Ladner. The inuence of caches on the performance of heaps. Journal ofExperimental Algorithms, Vol.1, 1996.[14] A. LaMarca and R. Ladner. The inuence of caches on the performance of sorting. In the EighthAnnual ACM-SIAM Symposium on Discrete Algorithms, 370-9, 1997.[15] A. LaMarca and R. Ladner. Cache Performance Analysis of Algorithms. Preprint, 1997.[16] A. Lebeck and D. Wood. Cache pro�ling and the spec benchmarks: a case study. Computer,27(10):15-26, 1994.[17] B. Moret and H. Shapiro. An Empirical Assessment of Algorithms for Constructing a Minimumspanning tree. DIMACS Series in Discrete Math and Theoretical CS, vol. 15, 99-117, 1994.[18] R. Orni and U. Vishkin. Two computer systems paradoxes: serialize-to-parallelize and queuingconcurrent-writes. Preprint 1995.[19] J. Setubal. Sequential and parallel experimental results with bipartite matching algorithms.Technical Report EC-96-09, Institute of Computing, University of Campinas, Brasil, 1996.[20] B. Smith, G. Heileman, and C. Abdallah. The Exponential Hash Function. Journal of Experi-mental Algorithms, Vol.2, 1997.[21] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis tools.In ACM Symposium on Programming Language Design and Implementation, 196-205, 1994.

49Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 49{61Implementation and Experimental Evaluation of FlexibleParsing for Dynamic Dictionary Based Data Compression(extended abstract)Yossi Matias 1Department of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel,and Bell Labs, Murray Hill, NJ, USAe-mail: matias@math.tau.ac.ilNasir Rajpoot 2Department of Computer Science, University of Warwick, Coventry, CV4-7AL, UKe-mail: nasir@dcs.warwick.ac.ukS�uleyman Cenk S. ahinalp 3Department of Computer Science, University of Warwick, Coventry, CV4-7AL, UK,and Center for BioInformatics, University of Pennsylvania, Philadelphia, PA, USAe-mail: cenk@dcs.warwick.ac.ukABSTRACTWe report on the implementation and performance evaluation of greedy parsing with lookaheadsfor dynamic dictionary compression. Speci�cally, we consider the greedy parsing with a singlestep lookahead which we call Flexible Parsing (FP) as an alternative to the commonly usedgreedy parsing (with no-lookaheads) scheme. Greedy parsing is the basis of most popular com-pression programs including unix compress and gzip, however it does not necessarily achieveoptimality with regard to the dictionary construction scheme in use. Flexible parsing, however,is optimal, i.e., partitions any given input to the smallest number of phrases possible, for dictio-nary construction schemes which satisfy the pre�x property throughout their execution. Thereis an on-line linear time and space implementation of the FP scheme via the trie-reverse-triepair data structure [MS98]. In this paper, we introduce a more practical, randomized data struc-ture to implement FP scheme whose expected theoretical performance matches the worst caseperformance of the trie-reverse-trie-pair. We then report on the compression ratios achieved bytwo FP based compression programs we implemented. We test our programs against compressand gzip on various types of data on some of which we obtain up to 35% improvement.1. IntroductionThe size of data related to a wide range of applications is growing rapidly. Grand challengessuch as the human genome project involve very-large distributed databases of text documents,whose e�ective storage and communication requires a major research and development e�ort. FromDNA and protein sequences to medical images (in which any loss of information content can not1partly supported by Alon Fellowship2supported by Quaid-e-Azam scholarship from the Government of Pakistan3partly supported by NATO research grant CRG-972175 and ESPRIT LTR Project no. 20244 - ALCOM IT

Flexible Parsing for Dynamic Dictionary Based Data Compression 50be tolerated) vital data sources that will shape the information infrastructure of the next centuryrequire simple and e�cient tools for lossless data compression.A (lossless) compression algorithm C reads input string T and computes an output string, T 0,whose representation is smaller than that of T , such that a corresponding decompression algo-rithm C can take T 0 as input and reconstruct T . The most common compression algorithms usedin practice are the dictionary schemes (a.k.a. parsing schemes [BCW90], or textual substitutionschemes [Sto88]). Such algorithms are based on maintaining a dictionary of strings that are calledphrases, and replacing substrings of an input text with pointers to identical phrases in the dictionary.The task of partitioning the text into phrases is called parsing and the pointers replacing the phrasesare called codewords.A dictionary can be constructed in static or dynamic fashion. In static schemes, the wholedictionary is constructed before the input is compressed. Most practical compression algorithms,however, use dynamic schemes, introduced by Ziv and Lempel [ZL77, ZL78], in which the dictionaryis initially empty and is constructed incrementally: as the input is read, some of its substringsare chosen as dictionary phrases themselves. The dictionary constructed by most dynamic schemes(e.g., [ZL77, ZL78, Wel84, Yok92]) satisfy the pre�x property for any input string: in any executionstep of the algorithm, for any given phrase in the dictionary, all its pre�xes are also phrases in thedictionary.In this paper we focus only on the the two most popular dictionary based compression methods:LZ78 [ZL78], its LZW variant [Wel84], and LZ77 [ZL77]. A few interesting facts about LZ78 andLZ77:� The LZW scheme is the basis for unix compress program, gif image compression format, andis used in the most popular fax and modem standards (V42bis). LZ77 algorithm is the basisfor all zip variants.Both algorithms: (1) are asymptotically optimal in the information theoretic sense, (2) aree�cient, with O(1) processing time per input character, (3) require a single pass over theinput, and (4) can be applied on-line.� LZ78 (and the LZW) can be implemented by the use of simple trie data structure with spacecomplexity proportional to the number of codewords in the output. In contrast, a linear timeimplementation of the LZ77 builds a more complex su�x tree in an on-line fashion, whosespace complexity is proportional to the size of the input text [RPE81].� It is recently shown that LZ78 (as well as LZW) approaches the asymptotic optimality fasterthan LZ77: the average number of bits output by LZ78 or LZW, for the �rst n characters of aninput string created by an i.i.d. source is only O(1= logn) more than its entropy [JS95, LS95]. Asimilar result for more general, uni�lar, sources has been obtained by Savari [Sav97] - for the av-erage case. For the LZ77 algorithm, this redundancy is as much as O(log logn= logn) [Wyn95].Also, for low entropy strings, the worst case compression ratio obtained by the LZ78 algorithmis better (by a factor of 8/3) than that of the LZ77 algorithm [KM97].� The practical performances of these algorithms vary however depending on the application.For example the LZ77 algorithm may perform better for English text, and the LZ78 algorithmmay perform better for binary data, or DNA sequences. 44A simple counting argument shows that there cannot exist a single dictionary construction scheme that is superiorto other schemes for all inputs. If a compression algorithm performs well for one set of input strings, it is likely thatit will not perform well for others. The advantage of one dictionary construction scheme over another can onlyapply with regard to restricted classes of input texts. Indeed, numerous schemes have been proposed in the scienti�cliterature and implemented in software products, and it is expected that many more will be considered in the future.

Flexible Parsing for Dynamic Dictionary Based Data Compression 51Almost all dynamic dictionary based algorithms in the literature including the Lempel-Ziv meth-ods ([ZL77, ZL78, Wel84, MW85, Yok92]) use greedy parsing, which takes the uncompressed su�xof the input and parses its longest pre�x, which is a phrase in the dictionary. The next substring tobe parsed starts where the currently parsed substring ends. Greedy parsing is fast and can usuallybe applied on-line, and is hence very suitable for communications applications. However, greedyparsing can be far from optimal for dynamic dictionary construction schemes [MS98]: for the LZWdictionary method, there are strings T which can be (optimally) parsed to somem phrases, for whichthe greedy parsing obtains
(m3=2) phrases.For static dictionaries -as well as for the o�-line version of the dynamic dictionary compressionproblem-, there are a number of linear time algorithms that achieve optimal parsing of an inputstring, provided that the dictionary satis�es the pre�x property throughout the execution of thealgorithm (see, for example, [FM95]). More recently, in [MS98], it was shown that it is possible toimplement the one-step lookahead greedy parsing (or shortly exible parsing -FP) for the on-line,dynamic problem, in amortized O(1) per character. This implementation uses space proportional tothe number of output codewords. It is demonstrated that FP is optimal for dictionaries satisfying thepre�x property in every execution step of the algorithm: it partitions any input string to minimumnumber of phrases possible while constructing the same dictionary. (For instance, the algorithmusing the LZW dictionary together with exible parsing inserts to the dictionary the exact samephrases as would the original LZW algorithm with greedy parsing.) The implementation is basedon a rather simple data structure, the trie-reverse-trie-pair, which has similar properties with thesimple trie data structure used for greedy parsing. It is hence expected that FP would improve overgreedy parsing without being penalized for speed or space.In this study, we report an experimental evaluation of FP in the context of LZW dictionaryconstruction scheme. We implement compression programs based on FP (the implementationsare available on the WWW [Sou]), and study to what extent the theoretical expectations hold on\random" or \real-life" data. In particular, we consider the following questions:1. Is it possible to obtain a new dictionary construction scheme based on FP? If yes, how wouldit perform in comparison to FP with LZW dictionary construction or the LZW algorithmitself - both asymptotically and in practice? (Note that the general optimality property of FPdoes not apply once the dictionary construction is changed.)2. The trie-reverse-trie-pair is a pointer based data structure whose performance is likely to su�erfrom pointer jumps in a multi-layer memory hierarchy. Are there alternative data structures toobtain more e�cient implementations of FP - in particular can we employ hashing to supportdictionary lookups without all the pointer jumps?3. What are the sizes of random data on which the better average case asymptotic properties ofthe LZ78 over LZ77 start to show up?4. Does the worst case optimality of FP translate into improvement over greedy parsing on theaverage case?5. Do better asymptotic properties of LZW in comparison to LZ-77 and FP in comparison toLZW show up in any practical domain of importance? Speci�cally how well does FP performon DNA/protein sequences and medical images?We address each one of these issues as follows:1. We consider a data compression algorithm based on FP , which constructs the dictionary byinserting it the concatenation of each of the substrings parsed with the character following them

Flexible Parsing for Dynamic Dictionary Based Data Compression 52- as in the case of LZW algorithm. We will refer this algorithm as the FP-based-alternative-dictionary-LZW algorithm, or FPA. The dictionary built by FPA on any input still satis�esthe pre�x property in every execution step of the algorithm. In our experiments we considerthe implementation of FPA as well as the implementation of the compression algorithm whichbuilds the same dictionary as LZW, but uses FP for output generation which we refer asLZW-FP. We compare the compression ratios obtained by LZW-FP and FPA with that ofunix compress and gzip.2. We present an on-line data structure based on Karp-Rabin �ngerprints [KR87], which imple-ments both LZW-FP and FPA in expected O(1) time per character, by using space propor-tional to the size of the codewords in the output. We are still in the process of improving thee�ciency of our implementations; we leave to report our timing results to the full version ofthis paper. We note, however, that our algorithms run about 3�5 times slower than compresswhich is the fastest among all algorithms, both during compression and decompression. Wealso note that all the software, documentation, and detailed experimental results available onthe WWW [Sou]. The readers are encouraged to check updates to the web site and try oursoftware package.3. We �rst demonstrate our tests on pseudorandom (non-uniform) i.i.d. bit strings with a numberof bit probabilities. We observe that the redundancy in the output of each of the four programswe consider approach to the expected asymptotic behavior very fast - requiring less than 1KBfor each of the di�erent distributions, and better asymptotic properties of LZW in comparisonto LZ77 can be very visible. For �les of size > 1MB, compress can improve over gzip upto 20% in compression achieved. A next step in our experiments will involve pseudo-randomsources of limited markovian order.4. We report on our experimens with several \real-life" data �les as well; those include DNA/proteinsequences, medical images, and �les from the Calgary corpus and Canterbury corpus bench-mark suites. These results suggest that both LZW-FP and FPA are superior to LZW (unixcompress) in compression attained, up to 20%. We also observe that both LZW-FP and FPAare superior to gzip for most non-textual data and all types of data of size more than 1MB.For pseudo-random strings and DNA sequences the improvement is up to 35%. On shortertext �les, gzip is still the champion, which is followed by FPA and LZW-FP.2. The Compression AlgorithmsIn this section we describe how each of the algorithms of our consideration, i.e., (1) the LZ77algorithm (the basis for gzip), (2) the LZW variant (the basis for UNIX compress) of the LZ78algorithm, (3) LZW-FP algorithm and (4) FPA algorithm, work. Each of the algorithms �t in ageneral framework that we describe below.We denote a compression algorithm by C, and its corresponding decompression algorithm byC . The input to C is a string T , of n characters, chosen from a constant size alphabet �; in ourexperiments � is either ascii or is f0; 1g. We denote by T [i], the ith character of T (1 � i � n), andby T [i : j] the substring which begins at T [i] and ends at T [j]; notice that T = T [1 : n].The compression algorithm C compresses the input by reading the input characters from leftto right (i.e. from T [1] to T [n]) and by partitioning it into substrings which are called blocks.Each block is replaced by a corresponding label that we call a codeword. We denote the jth blockby T [bj : bj+1 � 1], or shortly Tj , where b1 = 1. The output of C, hence, consists of codewordsC[1]; C[2]; : : : ; C[k] for some k, which are the codewords of blocks T1; T2; : : : ; Tk respectively.

Flexible Parsing for Dynamic Dictionary Based Data Compression 53The algorithm C maintains a dynamic set of substrings called the dictionary, D. Initially, D con-sists of all one-character substrings possible. The codewords of such substrings are their charactersthemselves. As the input T is read, C adds some of its substrings to D and assigns them uniquecodewords. We call such substrings of T phrases of D. Each block Tj is identical to a phrase in D:hence C achieves compression by replacing substrings of T with pointers to their earlier occurrencesin T .The decompression algorithm C that corresponds to C, takes C[1 : k] as input and computesT [1 : n] by replacing each C[j] by its corresponding block Tj . Because the codeword C[j] is afunction of T [1 : bj � 1] only, the decompression can be correctly performed in an inductive fashion.Below, we provide detailed descriptions of each of the compression algorithms.Description of the LZW Algorithm. The LZW algorithm reads the input characters from leftto right while inserting in D all substrings of the form T [bm : bm+1]. Hence the phrases of LZW arethe substrings obtained by concatenating the blocks of T with the next character following them,together with all possible substrings of size one. The codeword of the phrase T [bm : bm+1] is theinteger j�j+m, where j�j is the size of the alphabet �. Thus, the codewords of substrings do notchange in LZW algorithm. LZW uses greedy parsing as well: the mth block Tm is recursively de�nedas the longest substring which is in D just before C reads T [bm+1 � 1]. Hence, no two phrases canbe identical in the LZW algorithm.Description of the LZW-FP Algorithm. The LZW-FP algorithm reads the input charactersfrom left to right while inserting in D all substrings of the form T [b0m : b0m+1], where b0m denotes thebeginning location of block m if the compression algorithm used were LZW. Hence for dictionaryconstruction purposes LZW-FP emulates LZW: for any input string LZW and LZW-FP buildidentical dictionaries. The output generated by these two algorithms however are quite di�erent.The codeword of the phrase T [b0m : b0m+1] is the integer j�j+m, where j�j is the size of the alphabet �.LZW-FP uses exible parsing: intuitively, the mth block Tm is recursively de�ned as the substringwhich results in the longest advancement in iteration m + 1. More precisely, let the function f bede�ned on the characters of T such that f(i) = ` where T [i : `] is the longest substring starting atT [i], which is in D just before C reads T [`]. Then, given bm, the integer bm+1 is recursively de�nedas the integer � for which f(�) is the maximum among all � such that T [bm : � � 1] is in D justbefore C reads T [�� 1].We demonstrate how the execution of the LZW and LZW-FP algorithms di�er in the �gurebelow.
0354210

baaabaabaabababa

a b a b a b a a b a a b a a a b

0 1 2 4 4

LZWFP parsing

LZWFP Output:

Input:

LZW Output:

Input:

LZW parsing

5 2Figure 1: Comparsion of FP and greedy parsing when used together with the LZW dictionary constructionmethod, on the input string T = a; b; a; b; a; b; a; a; b; a; a; b; a; a; a; b.

Flexible Parsing for Dynamic Dictionary Based Data Compression 54Description of the FPA Algorithm. The FPA algorithm reads the input characters from leftto right while inserting in D all substrings of the form T [bm : f(bm) + 1], where the function f isas described in LZW-FP algorithm. Hence for almost all input strings, FPA constructs an entirelydi�erent dictionary with that of LZW-FP. The codeword of the phrase T [bm : f(bm) + 1] is theinteger j�j+m, where j�j is the size of the alphabet �. FPA again uses exible parsing: given bm,the integer bm+1 is recursively de�ned as the integer � for which f(�) is the maximum among all �such that T [bm : �� 1] is in D.Description of the LZ77 Algorithm. The LZ-77 algorithm reads the input characters fromleft to right while inserting all its substrings in D. In other words, at the instance it reads T [i], allpossible substrings of the form T [j : `], j � ` < i are in D, together with all substrings of size one.The codeword of the substring T [j : `], is the 2-tuple, (i� j; `� j +1), where the �rst entry denotesthe relative location of T [j : `], and the second entry denotes its size. LZ77 uses greedy parsing: themth block Tm = T [bm : bm+1 � 1] is recursively de�ned as the longest substring which is in D justbefore C reads T [bm+1 � 1].3. Data Structures and Implementations of AlgorithmsIn this section we describe both the trie-reverse-trie data structure, and the new �ngerprintsbased data structure for e�cient on-line implementations of the LZW-FP, and FPA methods. Thetrie-reverse-trie pair guarantees a worst case linear running time for both algorithms as describedin [MS98]). The new data structure based on �ngerprints [KR87], is randomized, and guaranteesexpected linear running time for any input.The two main operations to be supported by these data structures are (1) insert a phrase to D(2) search for a phrase, i.e., given a substring S, check whether it is in D and return a pointer. Thestandard data structure used in many compression algorithms including LZW, the compressed trieT supports both operations in time proportional to jSj. A compressed trie is a rooted tree with thefollowing properties: (1) each node with the exception of the root represents a dictionary phrase; (2)each edge is labeled with a substring of characters; (3) the �rst characters of two sibling edges cannot be identical; (4) the concatenation of the substrings on a path of edges from the root to a givennode is the dictionary phrase represented by that node; (5) each node is labeled by the codewordcorresponding to its phrase. Dictionaries with pre�x properties, such as the ones used in LZW andLZ78 algorithms, build a regular trie rather than a compressed one. The only di�erence is that in aregular trie the substrings of all edges are one character long.In our data structures, inserting a phrase S to D takes O(jSj) time as in the case of a trie.Similarly, searching S takes O(jSj) time if no information about substring S is provided. However,once it is known that S is in D, searching strings obtained by concatenating or deleting a characterto/from both ends of S takes only O(1) time. More precisely, our data structures support twooperations extend and contract in O(1) time. Given a phrase S in D, the operation extend(S; a) fora given character a, �nds out whether the concatenation of S and a is a phrase in D. Similarly, theoperation contract(S), �nds out whether the su�x S[2 : jSj] is in D. Notice that such operationscan be performed in a su�x tree, if the phrases in D are all the su�xes of a given string as in thecase of the LZ77 algorithm [RPE81]. For arbitrary dictionaries (such as the ones built by LZW) ourdata structures are unique in supporting contract and extend operations in O(1) time, and insertionoperation in time linear with the size of the phrase, while using O(jDj) space, where jDj is thenumber of phrases in D.

Flexible Parsing for Dynamic Dictionary Based Data Compression 55Trie-reverse-trie-pair data structure. Our �rst data structure builds the trie, T , of phrasesas described above. In addition to T , it also constructs T r, the compressed trie of the reversesof all phrases inserted in the T . Given a string S = s1; s2; : : : ; sn, its reverse Sr is the stringsn; sn�1; : : : ; s2; s1. Therefore for each node v in T , there is a corresponding node vr in T r whichrepresents the reverse of the phrase represented by v. As in the case of the T alone, the insertion ofa phrase S to this data structure takes O(jSj) time. Given a dictionary phrase S, and the node uwhich represents S in T , one can �nd out whether the substring obtained by concatenating S withany character a in is D, by checking out if there is an edge from u with corresponding character a;hence extend operation takes O(1) time. Similarly the contract operation takes O(1) time by goingfrom u to u0, the node representing reverse of S in T r, and checking if the parent of u0 representsS[2 : jSj]r.Fingerprints based data structure. Our second data structure is based on building a hashtable H of size p, a suitably large prime number. Given a phrase S = S[1 : jSj], its location in His computed by the function h, where h(S) = (s[1]j�jjSj + s[2]j�jjSj�1 + : : :+ s[jSj]) mod p, wheres[i] denotes the lexicographic order of S[i] in � [KR87]. Clearly, once the values of j�jk mod p arecalculated for all k up to the maximum phrase size, computation of h(S), takes O(jSj) time. Bytaking p su�ciently large, one can decrease the probability of a collision on a hash value to somearbitrarily small � value; thus the average running time of an insertion would be O(jSj) as well. Giventhe hash value h(S) of a string, the hash value of its extension by any character a can be calculatedby h(Sa) = (h(S)j�j + lex(a)) mod p, where lex(a) is the lexicographic order of a in �. Similarly,the hash value of its su�x S[2 : jSj] can be calculated by h(S[2 : jSj]) = (h(S) � s[1]j�jjSj) mod p.Both operations take O(1) time.In order to verify if the hash table entry h(S) includes S in O(1) time we (1) give unique labelsto each of the phrases in D, and (2) in each phrase S in H , store the label of the su�x S[2 : jSj]and the label of the pre�x S[1 : jSj � 1]. The label of newly inserted phrase can be jDj, the size ofthe dictionary. This enables both extend and contract operations to be performed in O(1) expectedtime: suppose the hash value of a given string S is hS , and the label of S is `. To extend S withcharacter a, we �rst compute from hS, the hash value hSa of the string Sa. Among the phraseswhose hash value is hSa, the one whose pre�x label matches the label of S gives the result of theextend operation. To contract S, we �rst compute the hash value hS0 of the string S0 = S[2 : jSj].Among the phrases whose hash value is hS0 , the one whose label matches the su�x label of S givesthe result of the extend operation. Therefore, both extend and contract operations take expectedO(1) time.Inserting a phrase in this data structure can be performed as follows. An insert operation is doneonly after an extend operation on some phrase S (which is in D) with some character a. Hence,when inserting the phrase Sa in D its pre�x label is already known: the label of S. Once it isdecided that Sa is going to be inserted, we can spend O(jSj+1) time to compute the su�x label ofSa. In case the su�x S[2 : jSj]a is not a phrase in D, we temporarily insert an entry for S[2 : jSj]ain the hash table. This entry is then �lled up when S[2 : jSj] is actually inserted in D. Clearly, theinsertion operation for a phrase R and all its pre�xes takes O(jRj) expected time.A linear time implementation of LZW-FP. For any input T LZW-FP inserts to D thesame phrases with LZW. The running time for insertion in both LZW and LZW-FP (via the datastructures described above) are the same; hence the total time needed to insert all phrases in LZW-FP should be identical to that of LZW, which is linear with the input size. Parsing with FP consistsof a series of extend and contract operations. We remind that: (1) the function f on characters ofT is described as f(i) = ` where T [i : `] is the longest substring starting at T [i], which is in D. (2)given bm, the integer bm+1 is inductively de�ned as the integer � for which f(�) is the maximum

Flexible Parsing for Dynamic Dictionary Based Data Compression 56among all � such that T [bm : � � 1] is in D. In order to compute bm+1, we inductively assumethat f(bm) is already computed. Clearly S = T [bm : f(bm)] is in D and S0 = T [bm : f(bm) + 1]is not in D. We then contract S by i characters, until S0 = T [bm + i : f(bm) + 1] is in D. Thenwe proceed with extensions to compute f(bm + i). After subsequent contract and extends we stoponce bm + i > f(bm). The last value of i at which we started our �nal round of contracts is thevalue bm+1. Notice that each character in T participates to exactly one extend and one contractoperation, each of which takes O(1) time via the data structures described above. Hence the totalrunning time for the algorithm is O(n).A linear time implementation of FPA. Parsing in FPA is done identical to LZW-FP andhence takes O(n) time in total. The phrases inserted in D are of the form T [bm : f(bm) + 1].Because in parsing step m, the phrase T [bm : f(bm)] is already searched for, it takes only O(1) timeper phrase to extend it via our data structures. Hence the total running time for insertions is O(n)as well.Linear time implementations of decompression algorithms for LZW-FP and FPA. Thedecompression algorithms for both methods simply emulate their corresponding compression algo-rithms hence run in O(n) time.4. The ExperimentsIn this section we describe in detail the data sets we used, and discuss our test results testinghow well our theoretical expectations were supported.4.1. The test programsWe used gzip, compress, LZW-FP and FPA programs for our experiments. The gzip andcompress programs are standard features of unix operating system. In our LZW-FP implemen-tation we limited the dictionary size to 216 phrases, and reset it when it was full as in the case ofcompress. We experimented with two versions of FPA, one whose dictionary was limited to 216phrases, and the other with 224 phrases.4.2. The data setsOur data sets come from three sources: (1) Data obtained via unix drand48() pseudorandomnumber generator. (2) DNA and protein sequences provided by Center for BioInformatics, Universityof Pennsylvania and CT and MR scans provided by the St. Thomas Hospital, UK [Sou]. (3) Text�les from two data compression benchmark suites: the new Canterbury corpus and the commonlyused Calgary corpus [Sou].The �rst data set was designed to test the theoretical convergence properties of the redundancy inthe output of the algorithms and measure the constants involved. The second data set was designedto measure the performance of our algorithms for emerging bio-medical applications where no loss ofinformation in data can be tolerated. Finally the third data set was chosen to demonstrate whetherour algorithms are competitive with others in compressing text.Speci�cally, the �rst data set includes three binary �les generated by the unix drand48() func-tion. The data distribution is i.i.d. with bit probabilities (1) 0:7 � 0:3, (2) 0:9 � 0:1, and (3)0:97� 0:03. The second data set includes two sets of human DNA sequences from chromosome 23(dna1, dna2), one MR (magnetic resonance) image of human (female) breast in uncompressed pgmformat in ASCII (mr.pgm), and one CT (computerized tomography) scan of a fractured human hip

Flexible Parsing for Dynamic Dictionary Based Data Compression 57ct.pgm in uncompressed pgm format in ASCII [Sou]. The third set includes the complete Calgarycorpus, which is the most popular benchmark suite for lossless compression. It includes a bibliog-raphy �le (bib), two complete books (book1, book2), two binary �les (geo, pic), source codes in c,lisp, pascal (progc, progl, progp), and the transcript of a login session (trans). The third set alsoalso includes all �les of size > 1MB from the new Canterbury corpus: a DNA sequence from E-colibacteria (E.coli), the complete bible (bib.txt) , and (world192.txt).4.3. Test resultsIn summary, we observed that FPA implementation with maximum dictionary size 224 performsthe best on all types of �les with size > 1MB and shorter �les with non-textual content. For shorter�les consisting text, gzip performs the best. Also the theoretical expectations for the convergencerate in the redundancy of the output for i.i.d. data were consistent with the test results. We observedthat the constants involved in the convergence rate for FPA and LZW-FP were smaller than thatof LZW, and gzip was worse than all.Our tests on the human DNA sequences with LZW-FP and FPA show similar improvementsover compress and gzip - with a dictionary of maximum size 216, the improvement is about 1:5% and5:7% respectively. Some more impressive results were obtained by increasing the dictionary size to224, which further improved the compression ratio to 9%. The performance of LZW-FP and FPAon mr and ct scans di�er quite a bit: LZW-FP was about 4%� 6% better than compress and wascomparable to gzip; FPA's improvement was about 15% and 7% respectively. As the image �leswere rather short, we didn't observe any improvement by using a larger dictionary. One interestingobservation is that the percentage improvement achieved by both FPA and LZW-FP increasedconsistently with increasing data size. This suggests that we can expect them to perform better incompressing massive archives as needed in many biomedical applications such as the human genomeproject.Our tests on pseudorandom sequences were consistent our theoretical expectations: the asymp-totic properties were observed even in strings of a few KB size. In general, all LZW based schemesperformed better than gzip, which is based on LZ77. Our plots show that the redundancy in theoutput is indeed proportional to 1= logn with the smallest constant achieved by FPA - in bothcases, the constant is very close to 1:0; the constant for LZW-FP and LZW are about 1:5 and 2:0respectively. This suggests that for on-line entropy measurement, FPA may provide a more reliablealternative to LZ78/LZW or LZ77 (see [FNS+95] for applications of LZW and LZ77 for entropymeasurement in the context of DNA sequence analysis).Our results on text strings varied depending on the type and size of the �le compressed. Forshort �les with long repetitions, gzip is still the champion. However, for all text �les of size > 1MB,the large dictionary implementation of FPA scheme outperforms gzip by 4:7% � 8:5%, similar tothe tests for DNA sequences.References[BCW90] T. Bell, T. Cleary, and I. Witten. Text Compression. Academic Press, 1990.[FM95] M. Farach and S. Muthukrishnan. Optimal parallel dictionary matching and compression.In ACM Symposium on Parallel Algorithms and Architectures, 1995.[FNS+95] M. Farach, M. Noordeweir, S. Savari, L. Shepp, A. J. Wyner, and J. Ziv. The entropyof DNA: Algorithms and measurements based on memory and rapid convergence. InACM-SIAM Symposium on Discrete Algorithms, 1995.

Flexible Parsing for Dynamic Dictionary Based Data Compression 58File Size gzip compress LZW-FP FPA FPA-24(KB) (KB) (KB) "g (%) "c (%) "g (%) "c (%) "g (%) "c (%)bib 109 34 45 -26.01 5.04 -19.69 9.80 -19.69 9.80book1 751 306 324 -3.81 2.03 -2.48 3.29 3.94 9.34book2 597 202 245 -16.61 3.89 -12.32 7.42 -7.47 11.42geo 100 67 76 -11.90 1.46 -11.66 1.67 -11.66 1.67pic 501 55 61 -6.64 3.25 -5.31 4.47 -5.31 4.47progc 39 13 19 -37.25 4.85 -33.40 7.52 -33.40 7.52progl 70 16 26 -56.83 5.99 -49.29 10.51 -49.29 10.51progp 48 11 19 -59.70 6.54 -53.75 10.02 -53.75 10.02trans 91 18 37 -87.12 7.12 -73.96 13.65 -73.96 13.65Table 1: Compression evaluation using �les in the Calgary corpus.The original �le size (with some pre�xes), compressed �le size by gzip and compress, and the im-provement (%) made by LZW-FP, FPA, and FPA-24 over gzip and compressFile Size gzip compress LZW-FP FPA FPA-24(KB) (KB) (KB) "g (%) "c (%) "g (%) "c (%) "g (%) "c (%)E.coli 4530 1310 1226 6.91 0.56 6.43 0.05 8.48 2.24bible.txt 3953 1163 1369 -12.87 4.11 -7.79 8.42 4.68 19.01world192.txt 2415 708 964 -31.70 3.32 -20.36 11.64 6.54 31.39Table 2: Compression evaluation using �les in the Canterbury corpus (Large Set)The original �le size (with some pre�xes), compressed �le size by gzip and compress, and the im-provement (%) made by LZW-FP, FPA, and FPA-24 over gzip and compress[JS95] P. Jacquet and W. Szpankowski. Asymptotic behavior of the Lempel-Ziv parsing schemeand digital search trees. Theoretical Computer Science, (144):161{197, 1995.[KM97] S. R. Kosaraju and G. Manzini. Some entropic bounds for Lempel-Ziv algorithms. InSequences, 1997.[KR87] R. Karp and M. O. Rabin. E�cient randomized pattern matching algorithms. IBMJournal of Research and Development, 31(2):249{260, 1987.[LS95] G. Louchard and W. Szpankowski. Average pro�le and limiting distribution for a phrasesize in the Lempel-Ziv parsing algorithm. IEEE Transactions on Information Theory,41(2):478{488, March 1995.[MS98] Y. Matias and S. C. Sahinalp. On optimality of parsing in dynamic dictionary based datacompression. Unpublished Manuscript, 1998.[MW85] V.S. Miller and M.N. Wegman. Variations on a theme by Lempel and Ziv. CombinatorialAlgorithms on Words, pages 131{140, 1985.[RPE81] M. Rodeh, V. Pratt, and S. Even. Linear algorithm for data compression via stringmatching. Journal of the ACM, 28(1):16{24, January 1981.[Sav97] S. Savari. Redundancy of the Lempel-Ziv incremental parsing rule. In IEEE Data Com-pression Conference, 1997.[Sou] http://www.dcs.warwick.ac.uk/people/research/Nasir.Rajpoot/work/fp/index.html.

Flexible Parsing for Dynamic Dictionary Based Data Compression 59File Size gzip compress LZW-FP FPA FPA-24(KB) (KB) (KB) "g (%) "c (%) "g (%) "c (%) "g (%) "c (%)dna1 3096 978 938 5.59 1.54 5.75 1.70 8.91 5.00dna2 2877 846 813 4.64 0.75 4.33 0.43 5.89 2.05mr.pgm 260 26 29 -7.23 3.60 6.38 15.84 6.38 15.84ct.pgm 1039 110 110 4.10 3.61 14.56 14.12 14.56 14.12Table 3: Compression evaluation using experimental biological and medical dataThe original �le size (with some pre�xes), compressed �le size by gzip and compress, and the im-provement (%) made by LZW-FP, FPA, and FPA-24 over gzip and compressFile Size gzip compress LZW-FP FPA FPA-24(KB) (B) (B) "g (%) "c (%) "g (%) "c (%) "g (%) "c (%)P(0)=0.7 1 212 217 2.83 5.07 2.83 5.07 2.83 5.07P(1)=0.3 10 1644 1554 7.48 2.12 9.85 4.63 9.85 4.63100 15748 13558 15.23 1.54 17.58 4.27 17.58 4.271024 160011 132278 18.35 1.23 20.40 3.71 20.60 3.95P(0)=0.9 1 142 143 5.63 6.29 6.34 6.99 6.34 6.99P(1)=0.1 10 1024 924 12.79 3.35 16.80 7.79 16.80 7.79100 9839 7781 23.11 2.78 26.06 6.50 26.06 6.501024 99853 74075 27.48 2.25 30.21 5.92 30.21 5.92P(0)=0.97 1 99 107 3.03 10.28 4.04 11.21 4.04 11.21P(1)=0.03 10 508 503 5.91 4.97 10.24 9.34 10.24 9.34100 4625 3754 22.42 4.42 28.06 11.37 28.06 11.371024 45957 33420 29.76 3.41 34.64 10.12 34.64 10.12Table 4: Compression evaluation using independent identically distributed random �les containing only zerosand ones with di�erent probability distributionsThe original �le size (with some pre�xes), compressed �le size by gzip and compress, and the improve-ment (%) made by LZW-FP, FPA, and FPA-24 over gzip and compress; random data generated bydrand48().[Sto88] J. A. Storer. Data Compression: Methods and Theory. Computer Science Press, 1988.[Wel84] T.A. Welch. A technique for high-performance data compression. IEEE Computer, pages8{19, January 1984.[Wyn95] A. J. Wyner. String Matching Theorems and Applications to Data Compression andStatistics. Ph.D. dissertation, Stanford University, Stanford, CA, 1995.[Yok92] H. Yokoo. Improved variations relating the Ziv-Lempel and welch-type algorithms forsequential data compression. IEEE Transactions on Information Theory, 38(1):73{81,January 1992.[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEETransactions on Information Theory, IT-23(3):337{343, May 1977.[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEETransactions on Information Theory, IT-24(5):530{536, September 1978.

Flexible Parsing for Dynamic Dictionary Based Data Compression 60

4

5

6

7

8

9

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

; b
its

 p
er

 b
yt

e)

lg(input size in KB)

Random binary file with P(0)=0.5, P(1)=0.5

gzip
compress

LZW-FP
FPA

FPA-24

Figure 2: The compression ratios attained by all �ve programs on random i.i.d. data with bit probabilitiesP (0) = P (1) = :5.

6

8

10

12

14

16

18

20

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

; b
its

 p
er

 b
yt

e)

lg(input size in KB)

Random binary file with P(0)=0.9, P(1)=0.1

gzip
compress

LZW-FP
FPA

FPA-24

Figure 3: The compression ratios attained by all �ve programs on random i.i.d. data with bit probabilitiesP (0) = :9 and P (1) = :1.

Flexible Parsing for Dynamic Dictionary Based Data Compression 61

2

4

6

8

10

12

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

 -
 e

nt
ro

py
)

lg(input size in KB)

Random binary file with P(0)=0.5, P(1)=0.5 (H=1)

gzip
compress

LZW-FP
FPA

FPA-24

Figure 4: The 1=redundancy of all �ve programs on random i.i.d. data where redundancy is described as(actual compression ratio)-(bit-entropy). The bit probabilities are P (0) = P (1) = :5.

5

10

15

20

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

 -
 e

nt
ro

py
)

lg(input size in KB)

Random binary file with P(0)=0.9, P(1)=0.1 (H=0.469)

gzip
compress

LZW-FP
FPA

FPA-24

Figure 5: The 1=redundancy of all �ve programs on random i.i.d. data where redundancy is described as(actual compression ratio)-(bit-entropy). The bit probabilities are P (0) = :9 and P (1) = :1.

62Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 62{73Computing the width of a three-dimensional point set:an experimental studyJ�org Schwerdt, Michiel SmidDepartment of Computer Science, University of MagdeburgMagdeburg, D-39106 Magdeburg, Germanye-mail: fschwerdt,michielg@isg.cs.uni-magdeburg.deJayanth Majhi, Ravi JanardanDepartment of Computer Science and Engineering, University of MinnesotaMinneapolis, MN 55455, U.S.A.e-mail: fmajhi,janardang@cs.umn.eduABSTRACTWe describe a robust, exact, and e�cient implementation of an algorithm that computes thewidth of a three-dimensional point set. The algorithm is based on e�cient solutions to problemsthat are at the heart of computational geometry: three-dimensional convex hulls, point locationin planar graphs, and computing intersections between line segments. The latter two problemshave to be solved for planar graphs and segments on the unit sphere, rather than in the two-dimensional plane. The implementation is based on LEDA, and the geometric objects arerepresented using exact rational arithmetic.1. IntroductionStereoLithography is a relatively new technology which is gaining importance in the manufac-turing industry. (See e.g. the book by Jacobs [7].) The input to the StereoLithography process isa surface triangulation of a CAD model. The triangulated model is sliced by horizontal planes intolayers, and then built layer by layer in the positive z-direction, as follows. The StereoLithographyapparatus consists of a vat of photocurable liquid resin, a platform, and a laser. Initially, the plat-form is below the surface of the resin at a depth equal to the layer thickness. The laser traces outthe contour of the �rst slice on the surface and then hatches the interior, which hardens to a depthequal to the layer thickness. In this way, the �rst layer is created, which rests on the platform. Next,the platform is lowered by the layer thickness and the just-vacated region is re-coated with resin.The next layers are then built in the same way.An important step in this process is choosing an orientation for the model, i.e., the build direction.Among other things, the build direction a�ects the number of layers needed to build the model, afactor which impacts the time of the manufacturing process.In our recent papers [8, 9], we have studied the problem of computing an optimal build directionfor (combinations of) several design criteria from a theoretical point of view.In this paper, we discuss an implementation and experimental results of an algorithm thatcomputes all build directions that minimize the number of layers. This problem turns out to beequivalent to computing the width of a polyhedron [1, 6], and it leads to several problems that areat the heart of computational geometry: three-dimensional convex hulls, point location in planargraphs, and computing intersections between line segments. The latter two problems, however, haveto be solved for graphs and segments (more precisely, great arcs) on the unit sphere rather than inthe two-dimensional plane.

Computing the width of a three-dimensional point set: an experimental study 631.1. The width problemThroughout this paper, P denotes a polyhedron, possibly with holes, and n denotes the numberof its facets. We denote the unit sphere by SS2. The upper hemisphere is de�ned asSS2+ := SS2 \ f(x; y; z) 2 IR3 : z � 0g:Similarly, we de�ne the lower hemisphere asSS2� := SS2 \ f(x; y; z) 2 IR3 : z � 0g:Finally, the equator is the intersection of SS2 with the plane z = 0. We will represent directions inIR3 as points d on the unit sphere.Often, layer thickness in the StereoLithography process is measured in thousandths of an inch.As a result, the number of layers needed to build a model can run into the thousands if the part isoriented along its longest dimension. If the layer thickness is �xed, then the number of layers for agiven build direction d is proportional to the smallest distance between two parallel planes that arenormal to d, and which enclose P . We call this smallest distance the width of P in direction d, anddenote it by w(d). Note that w(d) = w(�d).The width W (P) of the polyhedron P is de�ned as the minimum distance between any twoparallel planes that enclose P , i.e.,W (P) = minfw(d) : d 2 SS2g:In this paper, we will consider the following problem: Given the polyhedron P , compute all builddirections d for which w(d) = W (P). Houle and Toussaint [6] gave an algorithm which solves thisproblem. We have implemented a variant of their algorithm. Our implementation uses LEDA [10],exact arithmetic, and e�cient data structures. This implementation solves the problem exactly, andis robust, in the sense that it is correct even for a degenerate polyhedron (e.g., several neighboringfacets can be co-planar). As far as we know, this is the �rst exact and robust implementation of analgorithm for computing the width of a three-dimensional point set.Why do we use exact arithmetic? Our implementation uses data structures such as binary searchtrees, that are based on non-trivial ordering relations. The order of two objects is determined bymaking one or more orientation tests. Implementing these tests using exact arithmetic guaranteesthat our compare functions de�ne \real" ordering relations, i.e., they are reexive, anti-symmetric,and transitive. As a result, data structures whose correctness heavily depends on properties of anordering relation can use these compare functions without having to worry about rounding errors.The rest of this paper is organized as follows. In Section 2, we describe the algorithm. Section 3discusses the implementation, especially the primitive operations where two objects on the unitsphere are compared. In Section 4, we present the results of our experiments on randomly generatedpoint sets of size up to 100,000. We conclude in Section 5 with directions for future work.2. The algorithmThe asymptotically fastest known algorithm for computing the width of a three-dimensionalpoint set is due to Agarwal and Sharir [1]; its expected running time is roughly O(n1:5). Ourimplementation is based on the algorithm of Houle and Toussaint [6], which has O(n2) running timein the worst case. The reason we implemented the latter algorithm is that (i) it is much simpler,(ii) in practice, the running time is much less than quadratic, as our experiments show (Tables 1and 2), and (iii) it �nds all directions that minimize the width. (Finding all optimal directions hasapplications when computing a build direction that minimizes a multi-criteria function, see [9].)To compute the width of the polyhedron P , we do the following. First, we compute the convexhull CH (P) of (the vertices of) P . It is clear that the set of directions that minimize the width ofP is equal to the set of directions that minimize the width of CH (P).

Computing the width of a three-dimensional point set: an experimental study 64Let V be a vertex and F a facet of CH (P). We call (V; F) an antipodal vertex-facet pair (orVF -pair), if the two parallel planes containing V and F , respectively, enclose CH (P). We say thatthese parallel planes support CH (P).Similarly, two non-parallel edges e0 and e1 of CH (P) are called an antipodal edge-edge pair (orEE -pair), if the two parallel planes containing e0 and e1, respectively, enclose CH (P). Again, wesay that these parallel planes support CH (P).In [6], it is shown that any direction minimizing the width of P is perpendicular to the parallelplanes associated with some VF - or EE -pair. Therefore, we compute all VF - and EE -pairs, andfor each of them compute the distance between the corresponding supporting parallel planes. Thesmallest distance found is the width W (P) of the polyhedron P .We now describe how the VF - and EE -pairs can be computed. The dual graph G of CH (P) isthe planar graph on the unit sphere SS2 that is de�ned as follows. The vertices of G are the facetouter unit normals of CH (P), and two vertices are connected by an edge in G, if the correspondingfacets of CH (P) share an edge. Note that edges of this dual graph are great arcs on SS2. Moreover,edges (resp. faces) of G are in one-to-one correspondence with edges (resp. vertices) of CH (P).We transform G into a planar graph G0 on SS2, by cutting all edges that cross the equator, and\adding" the equator to it. Hence, G0 contains all vertices of G, and all edges of G that do not crossthe equator. Additionally, each edge e of G that crosses the equator is represented in G0 by twoedges that are obtained by cutting e with the equator. Moreover, by following edges of G0, we cancompletely walk around the equator. Note that edges of G that are on the equator are also edgesin G0. (Adding the equator is not really necessary|in fact, in our implementation, we do not evenadd it. Adding the equator makes the description of the algorithm cleaner, because all faces of thegraphs that are de�ned below are bounded by \real" edges.)Let G0u be the subgraph of G0 containing all vertices and edges that are in the upper hemisphereSS2+. Let G0l be the subgraph of G0 containing all vertices and edges that are in the lower hemisphereSS2�. (Hence, all edges and vertices of G0 that are on the equator belong to both G0u and G0l .) Finally,let G0l be the mirror image of G0l , i.e., the graph obtained by mapping each vertex v in G0l to thevertex �v. Note that both graphs G0u and G0l are in the upper hemisphere SS2+.2.1. Computing VF-pairsConsider a vertex V and a facet F of CH (P) that form a VF -pair. Let fV be the face of G thatcorresponds to V , and let dF be the vertex of G that corresponds to F .Case 1: dF is on or above the equator. Then dF is a vertex of G0u. Let f0V be the face of G0l thatis contained in fV . (Face fV is completely or partially contained in the lower hemisphere. If fV wasnot cut when we transformed G into G0, then f0V = fV . Otherwise, f0V is that part of fV that is inthe lower hemisphere.) Let f 0V be the face of G0l that corresponds to f0V . Since the (unique) parallelplanes that contain V and F are supporting, vertex dF of G0u is contained in face f 0V of G0l.Case 2: dF is strictly below the equator. Then dF is a vertex of G0l , and �dF is a vertex of G0l.Let f 0V be the face of G0u that is contained in fV . Since the (unique) parallel planes that contain Vand F are supporting, vertex �dF of G0l is contained in face f 0V of G0u.It follows that we can �nd all VF -pairs, by performing a point location query with each vertexof G0u in the graph G0l, and performing a point location query with each vertex of G0l in the graphG0u.We consider some special cases for Case 1. First assume that dF is strictly above the equator,and is in the interior of an edge of G0l bounding f 0V . Let g be the other face of G0l that has thisedge on its boundary. Let W be the vertex of CH (P) that corresponds to g. Then the distancebetween V and the plane through F is the same as the distance between W and the plane thoughF . Therefore, when locating vertex dF in G0l, it does not matter if we get V or W as answer.Next assume that dF is on the equator, and is in the interior of an edge bounding f 0V . Since G0lis considered as a graph in the upper hemisphere, the face of G0l containing dF is uniquely de�ned.

Computing the width of a three-dimensional point set: an experimental study 65Finally, consider the case when dF coincides with a vertex dV of f 0V . Let g 6= f 0V be an arbitraryface of G0l having dV as a vertex on its boundary. Let W be the vertex of CH (P) that correspondsto g. Then the distance between V and the plane through F is the same as the distance between Wand the plane though F . Therefore, when locating vertex dF in G0l, it does not matter if we get Vor W as answer.2.2. Computing EE-pairsConsider two edges e0 and e1 of CH (P) that form an EE -pair. Recall that these edges are notparallel. Let g0 and g1 be the edges of G that correspond to e0 and e1, respectively. Then g0 andg1 are not both on the equator, and they can only have one point in common.Assume w.l.o.g. that g0 is (completely or partially) contained in the upper hemisphere. Then g1is (again, completely or partially) contained in the lower hemisphere. Let g00 be the part of g0 thatis contained in SS2+. Then g00 is an edge of G0u. Let g01 be the part of g1 that is contained in SS2�, andlet g01 be its mirror image. Then g01 is an edge of G0l. Since the (unique) parallel planes that containe0 and e1 are supporting, the edges g00 and g01 intersect.We consider some special cases. Assume that one endpoint, say d0, of g00 coincides with oneendpoint, say d1, of g01. Note that d0 = d1 is a vertex in both G0u and G0l. If it is also a vertex in G,then d0 and d1 correspond to two facets F0 and F1 of CH (P). In this case, the distance betweenthe planes containing F0 and F1 is equal to the distance between the parallel planes through e0 ande1. Let V be any vertex of F1. Then we have found the direction d0 already because of the VF -pair(V; F0). Hence, we do not have to worry about intersections of this type. So assume that d0 is nota vertex of G. Then it is on the equator. In this case, we have to �nd the intersection between g00and g01.Next consider the case when one endpoint, say d0 of g00, is in the interior of g01. Assume that d0is a vertex of G. Let F be the facet of CH (P) that corresponds to d0. Also, let V be one of theendpoints of edge e1. Then the distance between V and the plane through F is equal to the distancebetween the parallel planes through e0 and e1. Hence, we have found this distance already becauseof the VF -pair (V; F). So assume that d0 is not a vertex of G. Then d0 is on the equator, and g01 isalso on the equator. In this case the edge e1 is orthogonal to the plane z = 0, and we have to �ndthe intersection between g00 and g01.Hence, we can �nd all necessary EE -pairs, by computing all edge pairs (g00; g01) such that (i) g00 isan edge of G0u, (ii) g01 is an edge of G0l, and (iii) g00 and g01 intersect in their interiors or the commonpoint of g00 and g01 is on the equator.2.3. The running time of the algorithmHoule and Toussaint show in [6] that the entire algorithm can be implemented such that theworst-case running time is bounded by O(n2). Moreover, they show that the number of directionsminimizing the width can be as large as �(n2).In order to get a better understanding of the performance of our implementation, we express therunning time as a function of (i) the number n of facets of P , (ii) the number h of facets of CH (P),and (iii) the number k of intersections between edges of G0u and edges of G0l.We compute the convex hull of P using LEDA, in O(n logn) time. The graphs G0u and G0l havetotal size O(h). For each of these graphs, we build a point location data structure that is based onthe slab method of Dobkin and Lipton [5]. (See also Section 2.2.2.1 in [12].) These data structurescan be computed in O(h2) worst-case time, using a sweep algorithm. Note that this upper boundof O(h2) is tight only if a large number of edges cross a large number of slabs. Given the datastructures, one point location query can be answered in O(log h) time. Hence, the total time forcomputing all VF -pairs is bounded by O(h2) in the worst-case.We compute the intersections between edges of G0u with edges of G0l in O(h log h+ k logh) time,using a variant of the implementation of Bartuschka et al. [3] of the Bentley-Ottmann algorithm [4],adapted to great arcs on the unit sphere. This gives all EE -pairs.

Computing the width of a three-dimensional point set: an experimental study 66The overall worst-case running time of our algorithm is thus bounded byO(n logn+ h2 + k logh):Remark 2.1. We have reduced the problem of computing the width to problems on the upperhemisphere. The reader may wonder why we do not use central projection [12] to map points andgreat arcs on SS2 to points and line segments in the plane, respectively. The problem with thisapproach is that points on the equator are projected to points at in�nity. As a result, we needcompare functions that determine the order of di�erent points at in�nity.3. The implementationWe now give some more details about our implementation. As mentioned already, it is based onLEDA and exact arithmetic. The program takes as input a set S of three-dimensional points (whichare the vertices of the polyhedron P). The coordinates of these points are represented using exactrational arithmetic (d3_rat_point) from LEDA.First, we use the LEDA implementation of an incremental algorithm that computes the convexhull of the points of S. Given this convex hull, we compute an implicit representation of the graphG. Recall that each vertex v of G is a unit outer normal vector of a hull facet, and is a pointon the unit sphere. This point can be computed from the cross product of three of the verticesof the hull facet. Instead of normalizing this point v, we represent it as a non-zero vector havingthe same direction as the ray from the origin through v. That is, this vector does not necessarilyhave length one. In this way, we avoid using expensive and inexact arithmetic operations such assquare roots. Moreover, all our geometric primitives|which actually operate on unit vectors|canbe implemented using these vectors.The graph G is stored as a planar_map from LEDA. Given G, the graphs G0u and G0l can easily becomputed. Again, the vertices of these two graphs are represented as vectors that do not necessarilyhave length one.As explained before, we can now compute all width-minimizing directions, by (i) locating allvertices of G0u in G0l and vice versa, and (ii) computing intersections between edges of G0u with edgesof G0l.We do this by using the algorithms of Dobkin-Lipton, and Bentley-Ottmann. Both these al-gorithms are based on the plane sweep paradigm|in particular, they both use the same types ofprimitive operations. Because our objects are on the unit sphere, however, we have to adapt thesealgorithms.In a plane sweep algorithm for two-dimensional objects, we solve the problem at hand by sweepinga vertical line from left to right over the scene. Sweeping on the upper hemisphere can be thoughtof as follows. Let the z-axis be vertical. Moreover, let the x-axis be in the horizontal plane z = 0,going from left to right. Finally, let the y-axis be in the plane z = 0, going from bottom to top.When sweeping on the upper hemisphere, we move a half-circle from the left part of the equator,along the upper hemisphere to the right part of the equator, while keeping the two endpoints ofthe half-circle on the y-axis. Since we represent points on SS2 as non-zero vectors having arbitrarylengths, we can also regard this as rotating a half-plane around the y-axis. It su�ces to implementtwo types of compare functions.3.1. Comparing two pointsWe are given two non-zero vectors u and v, which represent points on the unit sphere, and wantto decide which vector is visited �rst when rotating a half-plane around the y-axis clockwise by 360degrees, starting from the negative x-axis. Assume u and v are visited simultaneously, and let H bethe corresponding half-plane. That is, H is the half-plane that contains the y-axis, and the vectorsu and v. Then the order of u and v is determined by rotating a ray in H|starting at the negative

Computing the width of a three-dimensional point set: an experimental study 67y-axis|around the origin. Note that this is equivalent to rotating a half-plane that is orthogonal toH and that contains this ray.To compute the VF - and EE -pairs, it su�ces to be able to compare two vectors that are on orabove the equator. For completeness, however, we de�ne our compare function for any two non-zerovectors u and v.Note that vectors that represent the directions (0;�1; 0) and (0; 1; 0) are always contained in therotating half-plane. It is natural to de�ne (0;�1; 0) as the minimum of all directions, and (0; 1; 0)as the maximum of all directions.The basic tool used when comparing two vectors is an orientation test, i.e., deciding whethera point is to the left, on, or to the right of a three-dimensional plane. The complete code for thecompare function can be found at the end of this paper.We now briey discuss this code. A non-zero vector u is given as an instance u of typesphere_point. This point has homogeneous coordinates u.X(), u.Y(), u.Z(), and u.W(), whichare of LEDA-type integer. The value of u.W() is always positive.Consider the two points u and v. First, it is tested if one of u and v is the minimal or max-imal direction. If this is not the case, then we compute sweep, which is a plane of LEDA-typed3_rat_plane containing u and the y-axis. The normal vector sweep.normal() of this plane is \inthe sweep direction".Assume that u.Z() is positive. Using LEDA's orientation test sweep.side_of(v), we �nd theposition of v w.r.t. the plane sweep.Case 1: sweep.side_of(v) is positive. Then u comes before v in the sweep process.Case 2: sweep.side_of(v) is zero. Then v is contained in the plane sweep.Assume that v.Z() is positive. We compute sp, which is a point of LEDA-type d3_rat_pointhaving the same coordinates as u. Then, we compute Nsweep, which is the plane through the originand sp, and that is orthogonal to the plane sweep. The result of the comparison follows from theposition of v w.r.t. Nsweep.Otherwise, v.Z() is less than or equal to zero. Since v is not the minimal or maximal direction,and sweep is not the plane z = 0, point v is below the plane z = 0, i.e., v.Z() is negative. Hence, ucomes before v in the sweep process.Case 3: sweep.side_of(v) is negative. In this case, the result of the comparison follows fromthe position of v w.r.t. the plane z = 0.The cases when u.Z() is negative or zero are treated in a similar way.3.2. Comparing two edgesHere, we are given two edges s1 and s2, which represent great arcs on the upper hemisphere.Each edge is speci�ed by its two endpoints, which are given as instances of type sphere_point.Both these edges have at least one point in common with the sweep half-circle, and at least one oftheir endpoints is on the sweep half-circle. We want to determine the order of s1 and s2 along thesweep half-circle.The implementation of this compare function is based on the corresponding function in [3]. Ituses orientation tests, and the compare function of Section 3.1.Having implemented these two compare functions, we can immediately use LEDA for buildingand querying the point location data structures. Since the implementation of Bartuschka et al. [3]works for line segments in the plane, we had to recode this implementation. Our implementation,however, closely follows that of [3], and it uses the above compare functions.

Computing the width of a three-dimensional point set: an experimental study 68n h k min max average1,000 132 67 6.2 8.7 7.95,000 211 98 10.7 15.1 13.210,000 231 109 11.4 17.0 14.720,000 260 114 13.0 19.0 17.530,000 277 128 15.0 23.4 19.640,000 283 126 18.8 24.0 21.050,000 276 123 19.5 23.8 21.560,000 276 128 19.7 25.6 22.970,000 275 125 21.6 24.3 23.480,000 277 123 23.1 26.2 24.990,000 282 123 23.8 28.0 26.3100,000 283 122 23.6 29.8 27.2Table 1: Performance of our implementation for points randomly chosen in a cube. For each value of n, werandomly generated ten point sets of size n. h and k denote the average number of convex hull facets, andthe average number of EE -pairs, respectively. Although k could be �(h2), this table shows that in practice,it is slightly less than h=2. min, max, and average denote the minimum, maximum, and average time inseconds, respectively.4. Experimental resultsSince we only have a limited number of polyhedral models, we tested our implementation onpoint sets of size n 2 f103; : : : ; 105g on a SUN Ultra 1 (143 MHz, 128 MByte RAM).In our �rst experiment, we used LEDA's point generator random_points_in_cube to generatethe points from a uniform distribution in the cube [�1000; 1000]3. For each value of n, we generatedten point sets. We measured the time after these points were generated. Table 1 shows the runningtime in seconds. Also, the average values of h (the number of facets of the convex hull), and k (thenumber of EE -pairs) are given. Note that for this distribution, the expected value of h is boundedby O(log2 n), see Section 4.1 in [12].Although the worst-case running time of the algorithm can be quadratic in the number n ofpoints, our experimental results show that on random inputs, the algorithm is much faster. As wesaw before, the actual worst-case performance is bounded by O(n logn + h2 + k logh). As we cansee in Table 1, the value of h is much smaller than n. Also, the value of k|which could be as largeas �(h2)|is in fact slightly less than h=2. The running times in Table 1, however, show that therunning time is not proportional to n logn: otherwise, doubling n should at least double the runningtime. This implies that the constant factors corresponding to the terms h2 and k log h are large, andthese two terms basically determine the running time in practice. This is not surprising, becauseour compare functions are fairly complex.In our second experiment, we generated the points from a uniform distribution in the ball cen-tered at the origin and having radius 1000, using LEDA's point generator random_points_in_ball.Again, for each value of n, we generated ten point sets, and measured the time after these pointswere generated. The results are given in Table 2. For this distribution, the expected value of h isbounded by O(pn), see Section 4.1 in [12]. In this case, the value of k is slightly larger than h=2.Again, the running time is not proportional to n logn, but is determined by the terms h2 and k logh,which have large constants.

Computing the width of a three-dimensional point set: an experimental study 69n h k min max average1,000 156 86 8.8 10.5 9.75,000 348 189 21.1 24.8 23.210,000 491 259 32.0 35.5 33.520,000 699 379 45.7 51.4 49.930,000 844 451 58.9 64.6 62.440,000 988 528 69.6 76.9 74.950,000 1102 596 80.6 92.2 85.660,000 1209 644 92.7 98.1 95.270,000 1310 693 98.9 107.6 104.280,000 1401 752 107.4 116.7 113.190,000 1495 803 117.5 129.5 123.0100,000 1564 844 124.4 134.0 130.8Table 2: Performance of our implementation for points randomly chosen in a ball. For each value of n, werandomly generated ten point sets of size n. h and k denote the average number of convex hull facets, andthe average number of EE -pairs, respectively. In this case, the value of k is slightly larger than h=2. min,max, and average denote the minimum, maximum, and average time in seconds, respectively.5. Concluding remarksWe have given a robust, exact and e�cient implementation of an algorithm that solves an im-portant problem in computational geometry. This problem has applications to rapid prototypingand motion planning.Our current implementation solves point location queries using Dobkin and Lipton's data struc-ture. Since in the worst-case, this data structure takes �(h2) time and space to build, we plan toreplace it by persistent search trees [13]. These can be built in O(h log h) time, need only O(h)space, and can be used to solve point location queries in O(log h) time. Basically, persistent searchtrees give a space-economic implementation of the slab method. The algorithms that have to beimplemented follow the same sweep principle as in our current implementation. Hence, we can useour primitive operations of Sections 3.1 and 3.2.Determining a good build direction in rapid prototyping leads to several other problems forobjects on the unit sphere. For example, in [9], we show how spherical Voronoi diagrams can beused to compute among all directions that minimize the width, a direction for which the so-calledstair-step error is minimal. We plan to implement these Voronoi diagrams, again by implicitlyrepresenting points on SS2 as vectors.Our implementation of the algorithm for computing the intersections between the edges of G0uand those of G0l only works for edges that are great arcs. We plan to extend this such that it canhandle arbitrary arcs on SS2. For this, we need to design a more complex function that comparestwo edges. (See Andrade and Stol� [2] for a �rst step in this direction.)The ideas presented in this paper can be used to solve problems involving line segments in theplane that are possibly unbounded (e.g., point location queries in a Voronoi diagram): Using centralprojection, we map these segments to great arcs on the upper hemisphere. Then, we can apply ourtechniques for solving the problem at hand on the unit sphere.In [11], Mehlhorn et al. argue that program checking should be used when implementing geometricalgorithms. We leave open the problem of designing a fast algorithm that checks whether the outputof a width-minimizing algorithm is correct.

Computing the width of a three-dimensional point set: an experimental study 70AcknowledgementsThis work was funded in part by a joint research grant by DAAD and by NSF. The work of JMand RJ was also supported in part by NSF grant CCR-9712226.References[1] P. K. Agarwal and M. Sharir. E�cient randomized algorithms for some geometric optimizationproblems. Discrete Comput. Geom., 16:317{337, 1996.[2] M. V. A. Andrade and J. Stol�. Exact algorithms for circles on the sphere. In Proc. 14th Annu.ACM Sympos. Comput. Geom., 1998. 126{134.[3] U. Bartuschka, K. Mehlhorn, and S. N�aher. A robust and e�cient implementation of a sweep linealgorithm for the straight line segment intersection problem. In Proc. Workshop on AlgorithmEngineering, pages 124{135, Venice, Italy, 1997.[4] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections.IEEE Trans. Comput., C-28:643{647, 1979.[5] D. P. Dobkin and R. J. Lipton. Multidimensional searching problems. SIAM J. Comput.,5:181{186, 1976.[6] M. E. Houle and G. T. Toussaint. Computing the width of a set. IEEE Trans. Pattern Anal.Mach. Intell., PAMI-10:761{765, 1988.[7] P. F. Jacobs. Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography.McGraw-Hill, New York, 1992.[8] J. Majhi, R. Janardan, M. Smid, and P. Gupta. On some geometric optimization problems inlayered manufacturing. In Proc. 5th Workshop Algorithms Data Struct., volume 1272 of LectureNotes Comput. Sci., pages 136{149. Springer-Verlag, 1997.[9] J. Majhi, R. Janardan, M. Smid, and J. Schwerdt. Multi-criteria geometric optimization prob-lems in layered manufacturing. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages19{28, 1998.[10] K. Mehlhorn and S. N�aher. LEDA: a platform for combinatorial and geometric computing.Commun. ACM, 38:96{102, 1995.[11] K. Mehlhorn, S. N�aher, T. Schilz, S. Schirra, M. Seel, R. Seidel, and C. Uhrig. Checkinggeometric programs or veri�cation of geometric structures. In Proc. 12th Annu. ACM Sympos.Comput. Geom., pages 159{165, 1996.[12] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,New York, NY, 1988.[13] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Commun.ACM, 29:669{679, 1986.

Computing the width of a three-dimensional point set: an experimental study 71int compare(const sphere_point& u, const sphere_point& v){ if(u.X() == 0 && u.Z() == 0){ if(u.Y() < 0) // is u the minimal point?{ if(v.X() == 0 && v.Y() < 0 && v.Z() == 0){ return(0); // u == v}else{ return(-1); // u < v}}else{ // u.Y() > 0 u is the maximal pointif(v.X() == 0 && v.Y() > 0 && v.Z() == 0){ return(0); // u == v}else{ return(1); // u > v}}}if(v.X() == 0 && v.Z() == 0){ if(v.Y() < 0) // is v the minimal point?{ return(1); // u > v}else{ return(-1); // u < v}}d3_rat_plane sweep(d3_rat_point(0,1,0,1),d3_rat_point(0,-1,0,1),u.rat_point());if(u.Z() > 0){ if(sweep.side_of(v.rat_point()) > 0){ return(-1); // u < v}else{ if(sweep.side_of(v.rat_point()) == 0){ if(v.Z() > 0)

Computing the width of a three-dimensional point set: an experimental study 72{ d3_rat_point sp(u.X(), u.Y(), u.Z(), u.W());d3_rat_plane Nsweep(sp + sweep.normal(),d3_rat_point(0,0,0,1),sp);return(Nsweep.side_of(v.rat_point()));}else{ return(-1); // u < v}}else // sweep.side_of(v) < 0{ if(v.Z() < 0){ return(-1); // u < v}else{ return(1); // u > v}}}}else{ if(u.Z() < 0){ if(sweep.side_of(v.rat_point()) < 0){ return(1); // u > v}else{ if(sweep.side_of(v.rat_point()) == 0){ if(v.Z() < 0){ d3_rat_point sp(u.X(), u.Y(), u.Z(), u.W());d3_rat_plane Nsweep(sp + sweep.normal(),d3_rat_point(0,0,0,1),sp);return(Nsweep.side_of(v.rat_point()));}else{ return(1); // u > v}}else // sweep.side_of(v) > 0{ if(v.Z() < 0){ return(-1); // u < v

Computing the width of a three-dimensional point set: an experimental study 73}else{ return(1); // u > v}}}}else // u.Z() == 0{ if(u.X() < 0){ if(v.Z() == 0 && v.X() < 0){ d3_rat_point sp(u.X(), u.Y(), u.Z(), u.W());d3_rat_plane Nsweep(sp + sweep.normal(),d3_rat_point(0,0,0,1),sp);return(Nsweep.side_of(v.rat_point()));}else{ return(-1); // u < v}}else{ if(u.X() > 0){ if(v.Z() < 0){ return(-1); // u < v}else{ if(v.Z() == 0 && v.X() > 0){ d3_rat_point sp(u.X(), u.Y(), u.Z(), u.W());d3_rat_plane Nsweep(sp + sweep.normal(),d3_rat_point(0,0,0,1),sp);return(Nsweep.side_of(v.rat_point()));}else{ return(1); // u > v}}}}}}}

74Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 74{85Implementation and testing eavesdropper protocolsusing the DSP tool 1Kostas HatzisComputer Technology Institute, Kolokotroni 3Patras, 26221, Greecee-mail: hatzis@cti.grGeorge PentarisComputer Technology Institute, Kolokotroni 3Patras, 26221, Greecee-mail: pentaris@cti.grPaul SpirakisComputer Technology Institute, Kolokotroni 3Patras, 26221, Greecee-mail: spirakis@cti.grandVasilis TampakasTechnological Educational Institute (TEI) of Patras, M. Alexandrou 1Patras, Koukouli, 26334, Greecee-mail: tampakas@cti.grABSTRACTThe Distributed Systems Platform (DSP) is a software platform that has been designed forthe implementation, simulation and testing of distributed protocols. It o�ers a set of subtoolswhich permit the researcher and the protocol designer to work under a familiar graphical andalgorithmic environment. In this work we use the DSP and study the pursuit evasion problemin distributed environments : Members of a team of guards (e.g. antivirus software) traversethe links of the network in pursuit of the fugitive (e.g. worm) which moves along the linksof the graph without any other knowledge about the locations of the guards than whateverit can collect as it moves (i.e. the worm is oblivious to dynamic network behaviour). Thefugitive's purpose is just to read local information at each node and to stay in the network aslong as possible. When a guard meets a fugitive the fugitive is destroyed. We state the problemin detail, compinatorially characterize it and compare various solutions in [Spirakis et al. 95],[Spirakis, Tampakas 94], [Spirakis, Tampakas 98]. The use of the DSP tool gave us considerableinput and permitted us to improve and extend the design of our protocols and algorithms,experimentally test them, validate their performance, and investigate the problem consideringmore practical (and thus more applied) variations.1This work was partially supported by the EU ESPRIT LTR ALCOM-IT. (contract No. 20244).

Implementation and testing eavesdropper protocols using the DSP tool 751. IntroductionGenerally, there is a considerable gap between the theoretical results of Distributed Computingand the implemented protocols, especially in the case of networks of thousands of nodes. On theother hand, well-designed tools would possibly o�er to the researchers a more practical view of theexisting problems in this area, and this, in turn, could give better (in the content of exibility ande�ciency) protocol design. Our work shows that a platform, suitably designed, can become a exibletool for the researcher and o�er a valuable help both in the veri�cation and the extension of histheoretical results.The Distributed Systems Platform (DSP) is a software tool developed during the sequel of AL-COM projects and took its current form as a platform during the ALCOM-IT project. It providesan integrated environment for the implementation, simulation and testing of distributed systems andprotocols. The DSP o�ers an integrated graphical environment for the design and implementationof simulation experiments of various ranges. It can provide visualization (animation) for networksof restricted number of nodes, or support experiments with networks of hundreds or thousands ofnodes. It provides a set of simple, algorithmic languages which can describe the topology and thebehaviour of distributed systems and it can support the testing process (on-line simulation man-agement, selective tracing and presentation of results) during the execution of speci�c and complexsimulation scenarios. The DSP tool can support the hierarchical simulation of more than one typeof protocols at the same execution. The latter is suggested in the case of pipelined protocols (theprotocols of the upper level use the �nal output of the protocols of the lower case, e.g. leader elec-tion and counting protocols) or layered protocols (the protocols of the upper level call and use inevery step the protocols of the lower case, e.g. synchronizers). Moreover, in its last version DSPsupports the simulation of mobile protocols. The reader can �nd more about DSP in section 2 andin [DSP design 96], [DSP specs 96].In this work we use DSP tool for the design, testing and veri�cation of distributed protocolsrelated with network security. Security of networks has triggered a number of fundamental studiesin recent years. [Franklin et al. 93] considered the problem of maintaining privacy in a network thatis threatened by mobile eavesdroppers, i.e., by an adversary that can move its bugging equipmentwithin the system. Mobile adversaries in the context of secure computation were introduced in[Ostrovsky, Yung 91].We also adopt the notion of a mobile \eavesdropper" which moves in the network without havingavailable to it an instantaneous description of the whole network state. Our goal is to implement andsimulate network protocols which result in the elimination of the mobile adversary. Our assumptionis that the network links can also traversed by mobile guards (e.g., antivirus software), any of whichwill eliminate the bug if they are both at the same node at the same time. We consider the case ofa single mobile bug. Note that, due to the mobility of the bug, the actual number of nodes beingtargeted can change over time (e.g., in each network round). Once at a node, the (non-disrupting)bug gets to learn all incoming and outgoing messages and the memory contents. The bug can owwith message tra�c to neighbours only, during one computation step. It can not forge messagesoriginating by guards (some form of electronic signature service is guaranteed by the network at alower level).The guards (mobile antivirus software) are assumed each to have their own on-line source ofrandomness (i.e. they can independently of each other draw random numbers) and are also assumedto be able to erase information. Thus, when a guard departs from a node, it makes sure that nothingremains in the node which would tell anybody later on (in particular the eavesdropper) that theparticular guard was there. The code of each guard contains internal data structures and variables(in an object - like form) able to be used only by the guard itself. According to our model, if a guardis at a neighbour node to the current position of the fugitive and if, in addition, the guard decides tomove to the position of the fugitive next, then the fugitive is able to sense this (by reading incomingmessages at the node it currently occupies) and will escape in a direction di�erent than that of the

Implementation and testing eavesdropper protocols using the DSP tool 76incoming messages (alerting guard). Note that the eavesdropper does not know the current valuesof the local variables of any guard and it cannot, in particular, guess the random choices madeby the guards or even read them. The network nodes are assumed to have distinct id's and thetiming is synchronous. The interested reader can �nd more information about the problem and ourtheoretical results in [Spirakis, Tampakas 94], [Spirakis et al. 95], [Spirakis, Tampakas 98].2. The Basic Protocol of the GuardsThe main idea of the protocol is to partition the guards into two groups: the waiting guardsand the searchers. The waiting guards are spread over the network by a distributed randomizedprotocol, occupy some (randomly selected) �nal positions and stay there. They act as traps. If thefugitive passes through any of these positions, it is eliminated. The searchers are also spread over thenetwork by the same randomized protocol. Both searchers and waiting guards do not communicateamong themselves, in order to prevent the bug from learning their "plans". This part of the protocolis called the spreading protocol.Due to the randomized nature of the spreading protocol the fugitive cannot guess the �nalpositions of the waiting guards even if it knows the protocol. Notice that the �nal positions ofthe waiting guards partition the network into statistically similar pieces. Since the fugitive maystay inside such a piece (or even oscillate between two nodes) forever, the searchers are used tocounteract this.Each searcher is doing a random walk on the graph. The collection of random walks will interceptany position, that the fugitive could keep, in short time (polynomial in the size of the network). Thefugitive cannot guess the current positions of the searchers, due to the random, independent, choicesthat they make during their walks. (It can, however, sense if one or more neighbouring searchershave decided to move to its position next).By trying to escape, the fugitive may either coincide at a node with another searcher, or fall intoa node trapped by a waiting guard. In both cases, the fugitive will be eliminated. (Actually thefugitive may also be eliminated by having the searchers accidentally occupy all neighbours of thenode that the fugitive is currently in and then move one searcher into that node. This is similarto the traditional graph searching paradigm but our analysis indicates that the formerly describedcases have higher probability to happen earlier).We give below the basic protocol. Basic ProtocolA. Waiting guardvisited nodes : array [1..n] of Boolean; /*init. all entries false */i, x : 1..n;procedure : move guards();begin choose randomly an adjacent vertex x;move to x;visited nodes[x]:= true;if (9 i : visited nodes[i]=false) then move guards(); end;move guards();repeat for everbeginsearch memory for fugitive and eliminate itend.B. Searchervisited nodes : array [1..n] of Boolean; /*init. all entries false */

Implementation and testing eavesdropper protocols using the DSP tool 77i, x : 1..n;procedure : move searchers();begin choose randomly an adjacent vertex x;move to x;visited nodes[x]:= true;if (9 i : visited nodes[i]=false) then move searchers(); end;begin move searchers();repeat for ever (in each clock tick)begin search memory for fugitive and eliminate it;choose randomly an adjacent vertex x;move to x;end.end.3. A brief description of the DSP toolDSP is a software tool that provides an integrated environment for the simulation and testing ofdistributed protocols. The DSP aims in providing a simple, general model, which is well accepted byalgorithm designers and seems to be a viable candidate for the role of a bridging model of distributedcomputation. The adoption of such a model can be expected to insulate software and hardwaredevelopments from one another and make possible both general purpose distributed systems andtransportable software. The DSP model follows the principles proposed by the books of G. Tel([Tel 94])and N. Lynch ([Lynch 96]) and aims in describing precisely and concisely the relevantaspects of a whole class of distributed computing systems. A distributed computation is consideredto be a collection of discrete events, each event being an atomic change in the state of the wholesystem. This notion is captured by the de�nition of transmission systems. What makes such asystem distributed is that each transmission is only inuenced by, and only inuences, part of thestate, basically the local state of a single process. In DSP, each process is represented by a �nitestate machine with a local transmission table. Events a�ecting transmissions include the arrivalof a message at a node, time-outs, node (and link) failures and mobile process movement. Thepower of the processes is not limited in any other way since they are allowed to have local memoryand (unbounded) local registers. The general model adopted by DSP supports many interestingvariations (all are tuneable by the user):� Non determinism (by allowing the designer of a protocol to specify a time distribution for theprocessing steps of a node and/or the message transmission delays of links).� General topologies of networks (node interconnections).� Asynchronous, perfectly synchronous or limited asynchronous computations with clean seman-tics in each case.� A clean and abstract failure model for nodes and links (permanent, temporary or maliciousfailures).� Clear semantics for fairness in computations, safety and liveness.� A simple message passing subsystem with clean robustness properties and user-de�ned messagetypes.The platform allows in addition the modelling of mobile processes, the calling of a DSP libraryprotocol from another user protocol and user control of local (virtual) clocks. The DSP platform thus

Implementation and testing eavesdropper protocols using the DSP tool 78di�ers from all existing "simulators" or "languages" of distributed systems because of its generality,algorithmic simplicity and clarity of semantics of its supported features. It aims in providing tothe distributed algorithms designer a suitable environment of what a general distributed system "isexpected to be".The basic components of the platform include:I. A set of algorithmic languages that allow the description of a distributed protocol and the speci-�cation of a distributed system:1. Protocol description language. Using the protocol description language, the distributed proto-col is speci�ed as a set of processes residing on nodes (static processes) or moving throughoutthe network (mobile processes). These processes communicate by messages de�ned by the useror shared memory.2. Topology description language. The distributed system is speci�ed as a set of nodes connectedwith links. The user is able to de�ne several types of nodes with di�erent characteristics (e.g.computation step, size of message queues) and links (e.g. transmission delay, FIFO or non-FIFO link, link with conicts or not) and complex structures constructed by these items suchas rings, trees and complete graphs. The size of the speci�ed networks is unlimited.3. Initialization language. The user is able to de�ne the initial settings of a simulation experi-ment(assign a static process on a node, place mobile processes on nodes, de�ne the initializationtime of each node) and call a protocol from the DSP library that will be executed �rst andwill return the results (e.g. an elected leader) to the user protocol.4. Actions language. The user is able to de�ne external events (actions) applied to the systemduring the simulation (such as interrupts on nodes, node and link failures).II. A discrete event simulator that simulates the execution of a speci�ed distributed protocol on aspeci�ed distributed system. The simulator models each process as a communicating �nite stateautomaton which changes its state triggered by simulator events. It supports synchronous, asyn-chronous and limited asynchronous timing, several types of faults for nodes and links.III. A data base for distributed protocols that can also be used as a distributed protocol library. Foreach protocol, the data base keeps the protocol speci�cation as described by the protocol speci�cationlanguage, information about the environment required for the protocol execution (e.g. timing,communication model, topology) and other related information (e.g. authors, abstract, publicationdate etc.).IV. Graphical user interface. The user interface provides text editors for the languages described(protocol and topology speci�cation, initialization and action de�nition). The topology speci�cationis also supported by a graphical editor. The user interface also supports communication with thedata base. The visualization of a simulation experiment is supported by an interactive graphicalenvironment.4. The implementation of the protocol under the DSP environmentProtocol speci�cationThe implementation is based on the protocol description language of DSP. This language providesthe ability to describe a protocol in an algorithmic form, similar to the one met in the literature fordistributed systems. It includes usual statements met in programming languages like C and Pascal,and special structures for the description of distributed protocols (e.g. states, timers) and communi-cation primitives (e.g. shared variables, messages). The statements of the language support the useof these structures during the speci�cation of a distributed protocol in the areas of data modelling,

Implementation and testing eavesdropper protocols using the DSP tool 79communication, queuing, process and resource management (e.g. send a message through a link, ex-ecute a function as an e�ect of a process state transition). Some of the language statements supportthe interface of the speci�ed protocol with the DSP graphical environment (e.g. show a node or a linkwith di�erent color). The BNF notation of this language is presented in [DSP: BNF semantics, 96]and a more detailed description is given in the user manual ([DSP manual 98]).The basic object of the DSP protocol description language is the process. The processes can bestatic (residing permanently on a node) or mobile (moving throughout the network). The eaves-droppers protocol involves three types of mobile processes, namely Waiting Guards, Searchers andFugitives. Each one of them is described separately in the protocol �le as a distinct object. Theimplementation is presented in the Appendix (see Figure 10) and refers to the simpler form of theprotocol (with a single spreading process) including the notion of the alerting guards.The protocol starts with the TITLE de�nition. It is followed by the de�nition of the messageSearcher Coming which are used in order to simulate the behaviour of the alerting searcher. Thewaiting guard is de�ned to be a mobile process. The basic structure of this process is the arrayvisited nodes keeping track of visited nodes (in order to know when the random walk is completed).The INIT procedure is executed during the initialization of the process and includes the initializationof the process variables by assigning them constant values, or values created by speci�c languagestatements. In this case all entries of the visited nodes array are initialized to false and the processstores its identity in local memory.The procedure move guards() is used to select a random neighbour of the current node (thenode that the waiting guard currently resides) and then move to that neighbour. The procedurePROTOCOL includes the core algorithm executed by the process. It is an event-driven procedure,which means that for every speci�c event that the process is expected to handle, a corresponding setof statements is executed. The waiting guard process handles only the events WAKE UP (which isautomatically scheduled by the simulator at the beginning in order to initialize the process, causingthe waiting guard to begin its random walk) and the MOBILE PROCESS ARRIVAL which occurswhenever the process arrives on a node or another process (a searcher or a fugitive) has arrivedon its current node. The logical structure of the statements executed by the waiting guard in thiscase is the following: If the arriving process is the waiting guard itself, it examines whether it hascompleted the random walk. If not, it continues the walk. If the arriving process is a fugitive, thespeci�c fugitive is removed and the simulation ends.The implementation of the searcher process is similar. The major di�erence is that the searchercontinues its random walk in�nitely. The searcher sends also a Searcher Coming message to a nodebefore it moves to that node, in order to simulate the noti�cation of a fugitive for the arrival of analerting searcher. The strategy followed by the fugitive is an in�nite random walk. Note that inthis case the notion of the alerting searchers has no e�ect, since the fugitive moves on each roundregardless the arrival of a searcher on its host node.Protocol initializationThe initialization language of DSP provides statements that assigns process types (as speci�ed inthe protocol) to nodes of the topology and create and place mobile processes on nodes. An instanceof an initialization �le used during a simulation can be found in the Appendix (see Figure 8). It isused to create two processes of type searcher, two processes of type waiting guard and one processof type fugitive. All processes are initiated at arbitrary time instances (the fugitive is initiated at atime instance that the waiting guards are expected to have completed their random walks).Topology generationThe topologies used for the experiments were generated using the topology description language ofthe DSP. This facility supports the generation of large topologies using both a randomized and/ora hierarchical approach. In the �rst case the user speci�es the number of nodes and the existenceprobability of every edge of the graph, according to the Gn;p model. Since such random graphs haveproven to be very regular, the hierarchical approach was used for the generation of more irregulargraphs. According to this approach, a graph is described as a collection of interconnected subgraphs.

Implementation and testing eavesdropper protocols using the DSP tool 80An instance of a DSP topology �le is presented in the Appendix (see Figure 9).5. The steps towards a more e�cient Protocol. Re�nements and veri�cationThe implementation of the algorithm allowed the collection of testing results using the DSPdebugging facilities. A series of interesting observations veri�ed the applied enhancements, improvingthe algorithm's e�ciency.5.1. Case 1: Fugitives moving in small cyclesIf the mobile bug has �xed local memory, able to hold only (part of) the contents of any singlenode but not able to locally store global network information, then there is a possible optimalstrategy for the fugitive: instead of selecting the next node randomly among the neighbours of thecurrent node, the Fugitive could try to detect cycles of small length (say three or four) that donot contain nodes occupied by waiting guards and keep cycling on the detected cycle forever. Thisstrategy requires a small amount of memory and prevents the Fugitive from running into a waitingguard.In order to conduct the experiment, the fugitive protocol was modi�ed as follows: The Fugitivehas limited memory (the array cycle) of size 3. By using this memory the fugitive tries to discoversafe (without waiting guards) "cycles" of length 3. Whenever a fugitive discovers such a cycle itstops the random walk and starts moving into the cycle in�nitely (see Figure 1).INT ...,cycle pos,next node; BOOLEAN do cycle; cycle ARRAY [0,2] OF INT;PROCEDURE shift cycle();BEGIN cycle[2]=cycle[1]; cycle[1]=cycle[0]; END;INIT();BEGINFOR i=1 TO 3cycle[i]=-1;do cycle=FALSE; cycle pos=0; PUT MY ID TO my id;END;PROCEDURE move();BEGINIF do cycle==TRUE THENBEGIN next node=cycle[cycle pos]; cycle pos=(cycle pos+1) MOD 3; END;ELSEBEGINPUT RANDOM NEIGHBOUR TO x;IF x==cycle[0] THEN BEGIN /* A cycle has been detected */do cycle=TRUE; next node=x; cycle pos=(cycle pos+1) MOD 3; END;ELSE /* The next node does not form a cycle with the two previously visited nodes */BEGIN CALL shift cycle(); cycle[0]=x; next node=x; END;END;END;MOVE TO next node;END; Figure 1: The modi�ed fugitive protocolBoth versions of the protocol were run 100 times each on 5 di�erent topologies of 100 nodes. Inall cases the protocol was initialized with 5 Waiting Guard and 2 Searcher processes. All topologieswere dense (� 1000 links). The experimental results obtained are presented in Figure 2. Theextermination time represents simulation rounds after the initialization of the fugitive process anddoes not include Waiting Guard spreading time. The results show that the cycling Fugitive hasa fair advantage over the simple one. In all cases, the Fugitive managed to survive much longer,especially in more irregular topologies. The very large mean values in the topologies 3 and 5 werecaused by runs where the Fugitive managed to survive very long.In order to observe the e�ect of the number of Waiting Guards on the cycling Fugitive extermi-nation time, the following experiment was conducted: Both versions of the protocol were run on the�rst of the 5 topologies for di�erent number of Waiting Guards. The average extermination time of100 runs for each case is presented in Figure 3.

Implementation and testing eavesdropper protocols using the DSP tool 81Topology Memoryless Cycling1 145.224 4.581.7762 113.044 5.609.8073 122.197 8.802.9054 167.581 3.098.7125 232.912 9.871.445Figure 2: Average extermination time of 100 experiments for memoryless and cycling fugitive#WGs Memoryless Cycling2 283.391 7.559.8278 97.463 6.895.32212 86.833 5.328.83016 45.938 6.146.28720 37.782 4.681.611Figure 3: Average extermination time of 100 experiments for di�erent number of Waiting GuardsThe results show that the Cycling Fugitive, unlike the memoryless one, is not a�ected seriouslyby the number of Waiting Guards. In fact, the only cases where a Fugitive was exterminated by aWaiting Guard, were the ones where the Fugitive run into a Waiting Guard before �nding a triangle.The only way for the guards to get over the fugitive strategy is to eliminate its advantage. Thiscan be achieved by allowing the waiting guards to move repeatedly. In order to adopt this strategywithout loosing the advantages obtained by being static, the notion of the "epoch" is introduced.After the spreading phase, the Waiting Guards remain idle for an epoch, namely a �xed or randomlychosen amount of steps. After this period, the Waiting Guard performs again a random walk andgets a new position. This procedure is repeated forever. By allowing the Waiting Guards to getnew positions after the end of an epoch, the Fugitive can not rely on the knowledge of a WaitingGuard-free cycle anymore, since Waiting Guards may be placed on its way. On the other hand, theduration of each epoch would not allow the Waiting Guard to reside long enough on a node, thusremaining harmless for long periods of time, while a long epoch would omit the advantage of theWaiting Guards movement.The implementation of the new strategy lead to the following changes to the protocol of theWaiting Guard process: The waiting guard process starts a timer (epoch timer) whenever it com-pletes a random walk. After epoch duration rounds, the timer causes a TIME OUT event and thewaiting guard starts a new random walk (see Figure 4).The results obtained for di�erent epoch selections are presented in Figure 5. It is clear thatregardless the epoch duration selection, the fugitive gets caught earlier. As expected, the averageextermination time varies, depending on the epoch duration. It is interesting to observe that theobtained results suggest the existence of an optimal epoch duration, depending on the underlyinggraph. For this optimal epoch duration, the cycling fugitive extermination time is slightly longer,as compared to the one of the memoryless fugitive.5.2. Case 2: Irregular graphsA crucial issue of the protocol behaviour is the positioning of Waiting Guards. During thespreading phase, Waiting Guards perform a random walk in order to get a random position on G.The random walk is interrupted as soon as the Waiting Guard has visited all nodes at least once.

Implementation and testing eavesdropper protocols using the DSP tool 82...CONST epoch duration=200000; TIMER epoch timer;PROCEDURE init random walk();BEGINFOR i=1 TO NODESvisited nodes[i]=FALSE;END;INIT();BEGIN CALL init random walk(); PUT MY ID TO my id; END;PROTOCOL();BEGINON EVENT INITIALIZE DO CALL move guards();ON EVENT TIME OUT DO /* An epoch has finished, start the new random walk */BEGIN CALL init random walk(); CALL move guards(); END;ON EVENT MOBILE PROCESS ARRIVAL DOBEGINid=GET ID OF ARRIVING PROCESS;IF id==my id THENBEGINPUT MY NODE ID TO host; visited nodes[host]=TRUE;FOR i=1 TO NODESIF visited nodes[i]==FALSE THENCALL move guards();ELSE START epoch timer TIMEOUT epoch duration; /* The random walk is completed, start the epoch timerto remain in the current position for an epoch */END;ELSEBEGINtype=GET TYPE OF ARRIVING PROCESS;IF type==fugitive THENBEGIN DESTROY MOBILE PROCESS id; SIMULATION END; END;END;END;END;END; Figure 4: Modi�ed waiting guard protocol spreading in epochsTopology Epoch = 200.000 Epoch=2.000.000 Epoch = 6.000.0001 1.304.327 284.796 833.4842 1.784.585 346.658 943.2213 2.164.738 183.563 1.531.3744 1.947.302 528.993 1.374.6645 3.317.633 834.479 4.265.494Figure 5: Average extermination time of 100 experimentsHowever, our theoretical and experimental results show that the distribution of the Waiting Guardson the nodes is not uniform. In fact, depending on the regularity of the graph, Waiting Guardstend to reside on nodes that have low degree and are not "central" to G. The intuition behindthis observation is that the Waiting Guards tend to remain for long periods on clusters with manyconnections, while nodes with low connectivity are visited rarely. Consider, for example, an extremecase, the line graph. In this case, a random walk that starts from a random node will reside withprobability 1=2 on one of the end nodes. This weakness of the Waiting Guard spreading processcould be used by the fugitive by adopting a strategy that prefers nodes with high degree and avoidspossible dead ends. In order to observe the distribution of Waiting Guards, 10 di�erent topologiesof 1000 nodes with descending regularity were used. The topologies varied from a 50-regular graph (Topology 1) to a graph with many small clusters and 10 dead ends (Topology 10). For each topology,the spreading of 100 Waiting Guards was repeated for 100 times. The mean values over 100 runsof the variances of the distribution of Waiting Guards for the di�erent topologies are presented inFigure 6.As can be observed, the experiments veri�ed that regular graphs show a more uniform distributionof the Waiting Guards. In most experiments on Topology 1, about 90% of the Waiting Guardsoccupied di�erent nodes. There were only two cases where four Waiting Guards ended their randomwalk on the same node. For the most irregular topology, in all simulation at least 95% of the Waiting

Implementation and testing eavesdropper protocols using the DSP tool 83Topology Variance1 0,124122 0,152293 0,157404 0,200205 0,270426 0,485117 0,843138 1,005019 1,6610610 1,82583Figure 6: Variance of number of Waiting Guards residing on each one of the 1000 nodes (mean value over100 runs)Guards ended their random walks on a dead end.The previous observations lead to the following alteration of the Waiting guard strategy: Insteadof interrupting the random walk as soon as all nodes are visited, the Waiting Guard chooses anumber randomly from 1 to N and starts a random walk. The random walk is interrupted as soonas the Waiting Guard reaches the randomly chosen node. It is easy to observe that according to thisstrategy, the distribution of the �nal position of the Waiting Guards is uniform. Furthermore, thealtered Waiting Guard requires less memory (since there is no need to keep track of visited nodesanymore) and leads to a simpler implementation.The modi�cations to the waiting guard protocol are presented in Figure 7. The process choosesrandomly a node whenever it starts a new random walk in a new epoch (procedure init random walk).Whenever it reaches this node the random walk is interrupted.The previous experiment was repeated for the new spreading algorithm. As expected, the spread-ing of the Waiting Guards was uniform and the variances were small, ranging from 0; 11 to 0; 13 forall topologies....CONST epoch duration=1000000; VAR ... selected node; TIMER epoch timer;PROCEDURE init random walk();BEGIN PUT MY ID TO my id; PUT RANDOM BETWEEN 0 AND NODES-1 TO selected node; END;INIT();BEGIN CALL init random walk(); END;PROTOCOL();BEGINON EVENT INITIALIZE DO CALL move guards();ON EVENT TIME OUT DOBEGIN CALL init random walk(); CALL move guards(); END;ON EVENT MOBILE PROCESS ARRIVAL DOBEGINid=GET ID OF ARRIVING PROCESS;IF id==my id THENBEGINPUT MY NODE ID TO host;IF host<>selected node THENCALL move guards();ELSE START epoch timer TIMEOUT epoch duration; /* The target node has been reached, the random walk is finished */END;ELSEBEGINtype=GET TYPE OF ARRIVING PROCESS;IF type==fugitive THENBEGIN DESTROY MOBILE PROCESS id; SIMULATION END; END;END;END;END;END; Figure 7: Waiting guard protocol spreading in epochs with randomly selected destination

Implementation and testing eavesdropper protocols using the DSP tool 84References[DSP: BNF semantics, 96] \The description of a distributed algorithm under the DSP tool: TheBNF notation", ALCOM-IT Technical Report, 1996.[DSP design 96] \The design of the DSP tool", ALCOM-IT Technical Report, 1996.[DSP manual 98] \DSP: Programming manual", 1998.[DSP specs 96] \The speci�cations of the DSP tool, ALCOM-IT Technical Report, 1996.[Franklin et al. 93] M. Franklin, Z. Galil and M. Yung, ,\Eavesdropping Games: A Graph-TheoreticApproach to Privacy in Distributed Systems", ACM FOCS 1993, 670{679.[Lynch 96] Nancy Lynch, \Distributed algorithms", Morgan Kaufmann Publishers, 1996.[Ostrovsky, Yung 91] R. Ostrovsky and M. Yung, \Robust Computation in the presence of mobileviruses", ACM PODC 1991, 51{59.[Spirakis, Tampakas 94] P.Spirakis and B. Tampakas, \Distributed Pursuit-Evasion: Some aspectsof Privacy and Security in Distributed Computing", short paper, ACM PODC 94.[Spirakis et al. 95] P.Spirakis, B. Tampakas and H. Antonopoulou, \Distributed Protocols AgainstMobile Eavesdroppers", 9th International Workshop on Distributed Algorithms (WDAG '95),France, September 1995, pp. 160-167.[Spirakis, Tampakas 98] P.Spirakis, B. Tampakas , \E�cient Distributed Protocols Against MobileEavesdroppers",CTI Technical Report, submitted, 1998.[Tel 94] Gerard Tel, \Introduction to distributed algorithms", Cambridge University Press, 1994.AppendixINITIALIZATION FILE "init file1" FOR PROTOCOL "distributed protocols against mobile eavesdroppers"PUT MOBILE PROCESS waiting guard ON NODE 0,14PUT MOBILE PROCESS searcher ON NODE 7,8PUT MOBILE PROCESS fugitive ON NODE 2INIT MOBILE PROCESSES OF TYPE waiting guard RANDOMLY FROM 5 TO 12INIT MOBILE PROCESSES OF TYPE searcher RANDOMLY FROM 2 TO 40INIT MOBILE PROCESSES OF TYPE fugitive RANDOMLY FROM 10000 TO 12000Figure 8: An initialization �le for a topology with 15 nodesTOPOLOGY \Topology 1"NODE node1PROCESSING STEP 5ENDNODELINK link1TRANSMITION DELAY 5BIDIRECTIONALENDLINKRANDOM GRAPH OF 60 NODES node1 AND LINKS link1 WITH EDGE PROB 0.2 WITH IDS 0-59RANDOM GRAPH OF 40 NODES node1 AND LINKS link1 WITH EDGE PROB 0.1 WITH IDS 60-89NODE 90-92 node1LINK 60< � >90 link1LINK 40< � >80 link1LINK 90< � >91 link1LINK 91< � >92 link1Figure 9: A topology generated by the DSP topology description language

Implementation and testing eavesdropper protocols using the DSP tool 85TITLE "Distributed protocols against mobile eavesdroppers";MESSAGE Searcher Coming END;MOBILE PROCESS waiting guardBEGINVARINT i,x,id,my id,type,host; visited nodes ARRAY [1,NODES] OF BOOLEAN;INIT();BEGINFOR i=1 TO NODESvisited nodes[i]=FALSE;PUT MY ID TO my id;END;PROCEDURE move guards();BEGIN PUT RANDOM NEIGHBOUR TO x; MOVE TO x; END;PROTOCOL();BEGINON EVENT INITIALIZE DO CALL move guards();ON EVENT MOBILE PROCESS ARRIVAL DOBEGINid=GET ID OF ARRIVING PROCESS;IF id==my id THENBEGINPUT MY NODE ID TO host; visited nodes[host]=TRUE;FOR i=1 TO NODESIF visited nodes[i]==FALSE THENCALL move guards();END; /* If all nodes have been visited do nothing (the walk is completed), else move to next node */ELSEBEGINtype=GET TYPE OF ARRIVING PROCESS;IF type==fugitive THENBEGIN DESTROY MOBILE PROCESS id; SIMULATION END; END;END;END;END;END;MOBILE PROCESS searcherBEGINVARINT i,x,id,my id,type,host;INIT();BEGIN PUT MY ID TO my id; END;PROCEDURE move searchers();BEGIN PUT RANDOM NEIGHBOUR TO x; SEND NEW MESSAGE Searcher Coming TO x; MOVE TO x; END;PROTOCOL();BEGINON EVENT INITIALIZE DO CALL move searchers();ON EVENT MOBILE PROCESS ARRIVAL DOBEGINid=GET ID OF ARRIVING PROCESS;IF id==my id THEN CALL move searchers();ELSEBEGINPUT MY NODE ID TO host; type=GET TYPE OF ARRIVING PROCESS;IF type==fugitive THENBEGIN DESTROY MOBILE PROCESS id; SIMULATION END; END;END;END;END;END;MOBILE PROCESS fugitiveBEGINVARINT i,x,id,my id,type,host;INIT();BEGIN PUT MY ID TO my id; END;PROCEDURE move();BEGIN PUT RANDOM NEIGHBOUR TO x; MOVE TO x; END;PROTOCOL();BEGINON EVENT INITIALIZE DO CALL move();ON EVENT MOBILE PROCESS ARRIVAL DOBEGINid=GET ID OF ARRIVING PROCESS;IF id==my id THEN CALL move();ELSEBEGINPUT MY NODE ID TO host; type=GET TYPE OF ARRIVING PROCESS;IF type==searcher THENBEGIN DESTROY MOBILE PROCESS id; SIMULATION END; END;END;END;END;END; Figure 10: The implementation of the protocol in the DSP protocol description language

86Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 86{97Implementing Weighted b-Matching Algorithms:Towards a Flexible Software Design1Matthias M�uller{Hannemann2Department of Mathematics, Technische Universit�at Berlin, Stra�e des 17. Juni 136D 10623 Berlin, Germanye-mail: mhannema@math.tu-berlin.deandAlexander Schwartz2Department of Mathematics, Technische Universit�at Berlin, Stra�e des 17. Juni 136D 10623 Berlin, Germanye-mail: schwartz@math.tu-berlin.deABSTRACTWe present a case study on the design of an implementation of a fundamental combinatorialoptimization problem: weighted b-matching. Although this problem is well-understood in theoryand e�cient algorithms are known, only little experience with implementations is available. Thisstudy was motivated by the practical need for an e�cient b-matching solver as a subroutine inour approach to a mesh re�nement problem in computer-aided design (CAD). The intent of thispaper is to demonstrate the importance of exibility and adaptability in the design of complexalgorithms, but also to discuss how such goals can be achieved for matching algorithms by theuse of design patterns. Starting from the basis of Pulleyblank's blossom algorithm we explainhow to exploit in di�erent ways the exibility of our software design which allows an incrementalimprovement of e�ciency by exchanging subalgorithms and data structures.1. IntroductionGiven an undirected graph G = (V;E) with edge weights ce for each edge e 2 E and nodecapacities bv for each node v 2 V , the b-matching problem is to �nd a maximum weight integralvector x 2 Z
E satisfying Pe=(v;w) xe � bv for all v 2 V . If, in addition, equality is required to holdin these inequalities for all nodes, the b-matching problem is called perfect.Weighted b-matching is a cornerstone problem in combinatorial optimization. Its theoreticalimportance is due to the fact that it generalizes both ordinary weighted matching (i. e. matchingwith all node capacities equal to one, 1-matching) and minimum cost ow problems. There areexcellent surveys on matching theory, see for example Gerards [11] or Pulleyblank [25].Applications. Important applications of weighted b-matching include the T -join problem, the Chi-nese postman problem, shortest paths in undirected graphs with negative costs (but no negativecycles), the 2-factor relaxation for the symmetric traveling salesman problem (STSP), and capaci-tated vehicle routing [16]. For numerous other examples of applications of the special cases minimumcost ow and 1-matching we refer to the book of Ahuja, Magnanti, and Orlin [1].1The full version of the paper can be obtained from ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-591-1998.ps.Z2Both authors were partially supported by the special program \E�cient Algorithms for Discrete Problems andTheir Applications" of the Deutsche Forschungsgemeinschaft (DFG) under grants Mo 446/2-2 and Mo 446/2-3.

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 87

Figure 1: The model of a ange with a shaft and its re�nement by our algorithm.A somewhat surprising new application of weighted b-matching stems from quadrilateral meshre�nement in computer-aided design [19]. Given a surface description of some workpiece in three-dimensional space as a collection of polygons (for example, a model of a ange with a shaft, seeFig. 1), the task to re�ne the coarse input mesh into an all-quadrilateral mesh can be modeledas a weighted perfect b-matching problem (or, equivalently, as a bidirected ow problem). Thisclass of problem instances is of particular interest because unlike the previous examples, the usuallyoccurring node capacities bv are quite large (in principle, not even bounded in O(jV j)) and changewidely between nodes.Both authors have been engaged in a research project together with partners in industry wherethis approach to mesh re�nement has been developed. To the best of our knowledge, there is nopublicly available code for weighted b-matching problems. Therefore, we �rst took the obviousformulation of weighted perfect b-matching problem as an integer linear program (ILP) and usedCPLEX and its general purpose branch & and bound facilities to solve our instances. The corre-sponding experiences allowed us to conclude that the modeling of the mesh re�nement problem asa weighted perfect b-matching problem captures the requirements of a high-quality mesh re�nementvery successfully [20]. The drawback, however, of such an ad-hoc solution was manifold: �rst, weencountered instances which could not be solved with CPLEX to optimality within reasonable timeand space limits; second, we found the average running time too large for a convenient use in aninteractive CAD-system, and third, our partners in industry prefer a software solution independentfrom commercial third-party products like CPLEX. Hence, the practical need to solve the meshre�nement problems in an e�cient and robust way led us to work on our own implementation ofweighted b-matching.Design goals and main features of our implementation. As mentioned above, matching prob-lems are well-understood in theory. Nevertheless the implementation of an algorithm for weightedb-matching is a real `challenge'. An e�cient and adaptable implementation requires a sophisticatedsoftware design. A recent systematic discussion of this design problem in the general context ofgraph algorithms can be found in [26]. In his paper, Weihe uses Dijkstra's algorithm as a runningexample to demonstrate what exible adaptability of an algorithm component really means. Com-plications which arise in our context are due to the fact that we have to perform quite complexgraph operations, namely shrinking and expanding of subgraphs, the famous \blossoms."Design patterns capture elegant solutions to speci�c design problems in object-oriented softwaredesign which support reuse and exibility. See the book of Gamma et al. [10] for an excellentintroduction to design patterns. Our approach uses the design patterns strategy, observer anditerator which are well-known from [10] as well as data accessor and adjacency iterator introducedby K�uhl & Weihe [13, 14]. The present paper serves as an empirical case study in the application ofdesign principles.As there are many promising variants of b-matching algorithms, but not too much practical

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 88experience with them, we decided to develop a general framework which captures all of these vari-ants. This framework enabled us to do a lot of experiments to improve the performance of ourcode incrementally by exchanging subalgorithms and data structures. We thereby got an e�cientcode which solves all instances from our mesh re�nement application very well, but seems to be alsofast on other classes of instances. Details can be found in an accompanying computational study [21].Previous work. Most work on matching problems is based on the pioneering work of Edmonds [8].\Blossom I" by Edmonds, Johnson, and Lockhart [9] was the �rst implementation for the bidirectedow problem (which is, as mentioned above, equivalent to the b-matching problem). Pulleyblank [24]worked out the details of a blossom-based algorithm for a mixed version of the perfect and imperfectb-matching in his Ph. D. thesis and gave a PL1 implementation, \Blossom II". His algorithm has acomplexity of O(jV jjEjB) with B = Pv2V bv, and is therefore only pseudo-polynomial. The �rstpolynomial bounded algorithm for b-matching has been obtained by Cunningham & Marsh [15] byscaling techniques.Anstee [3] suggested a staged algorithm. In a �rst stage, the fractional relaxation of the weightedperfect b-matching is solved via a transformation to a minimum cost ow problem on a bipartitegraph, a so-called Hitchcock transportation problem. In stage two, the solution of the transportationproblem is converted into an integral, but non-perfect b-matching by rounding techniques. In the�nal stage, Pulleyblank's algorithm is invoked with the intermediate solution from stage two. Thisstaged approach yields a strongly-polynomial algorithm for the weighted perfect b-matching problem.The best strongly polynomial time bound for the (uncapacitated) Hitchcock transportation problemis O((jV j log jV j)(jEj + jV j log jV j) by Orlin's excess scaling algorithm [22], and the second andthird stage of Anstee's algorithm require at most O(jV j2jEj). Derigs & Metz [7] and Applegate &Cook [4] reported on the enormous savings using a fractional \jump start" of the blossom algorithmfor weighted 1-matching. Miller & Pekny [17] modi�ed Anstee's approach. Roughly speaking,instead of rounding on odd disjoint half integral cycles, their code iteratively looks for alternatingpaths connecting pairs of such cycles.Padberg & Rao [23] developed a branch & cut approach for weighted b-matching. They showedthat violated odd cut constraints can be detected in polynomial time by solving a minimum oddcut problem. However, with present LP-solvers the solution time required to solve only the initialLP-relaxation, i. e. the fractional matching problem, is often observed to be in the range of the totalrun time required for the integral optimal solution by a pure combinatorial approach. Therefore, wedid not follow this line of algorithms in our experiments.With the exception of the paper by Miller & Pekny [17] we are not aware of a computationalstudy on weighted b-matching. However, many ideas used for 1-matching can be reused and there-fore strongly inuenced our own approach. For example, Ball & Derigs [5] provide a framework fordi�erent implementation alternatives, but focus on how to achieve various asymptotical worst caseguarantees. For a recent survey on computer implementations for 1-matching codes, we refer to [6].In particular, the recent \Blossom IV" code of Cook & Rohe [6] seems to be the fastest availablecode for weighted 1-matching on very large scale instances. We believe that almost all previousapproaches for 1-matching are not extendible to b-matching. One reason is that one usually exploitsfor e�ciency reasons the fact that each node can have at most one incident matched edge. Someimplementations also assume that edge costs are all non-negative. The mesh re�nement application,however, uses arbitrary cost values. It seems that, in general, implementation studies focus on per-formance issues and do not address reuseability.Overview. The rest of the paper is organized as follows. In Section 2 we give a brief review ofPulleyblank's blossom algorithm. It will only be a simpli�ed high-level presentation, but su�cientto discuss our design goals in Section 3 and to outline our solution in Section 4 afterwards. Finally,in Section 5 we summarize the advantages and disadvantages of our approach.

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 89b-matcherinitialisation primal dual loop expand all
expandsearch hungarian forest dual updatecandidate search grow forestaugmentshrinkFigure 2: The structure of the blossom algorithm.2. An Outline of Pulleyblank's Blossom AlgorithmIn this section, we give a rough outline of the primal-dual algorithm of Pulleyblank [24]. Thepurpose of this sketch is only to give a basis for the design issues to be discussed later, and to pointout some di�erences to the 1-matching case. A self-contained treatment is given in the full version ofthis paper. For an edge set F � E and a vector x 2 IN jEj, we will often use the implicit summationabbreviation x(F) :=Pe2F xe. Similarly, we will use b(W) :=Pv2W bv for a node set W � V .Linear programming formulation. The blossom algorithm is based on a linear programmingformulation of the maximum weighted perfect b-matching problem. To describe such a formulation,the blossom description, let
 := f S � V j jSj � 3 and jb(S)j is odd g and qS := 12 (b(S)� 1) for allS 2
. Furthermore, for each W � V let �(W) denote the set of edges that meet exactly one nodein W , and (W) the set of edges with both endpoints in W . Then, a maximum weight b-matchingsolves the linear programming problem maximize cTx subject to (P1) x(�(v)) = bv for all v 2 V ,(P2) xe � 0 for all e 2 E, and (P3) x((S)) � qS for all S 2
.The dual of this linear programming problem is minimize yT b+ Y T q subject to (D1) yu + yv +Y (
(e)) � ce for all e = (u; v) 2 E, and (D2) YS � 0 for all S 2
, with
(e) := f S 2
 j e 2(S) g. We de�ne the reduced costs as �ce := yu + yv + Y (
(e)) � ce for all e 2 E. A b-matchingx and a feasible solution (y; Y) of the linear program above are optimal if and only if the followingcomplementary slackness conditions are satis�ed: (CS1) for alle 2 E, xe > 0 implies �ce = 0, and(CS2) for all S 2
, YS > 0 implies x((S)) = qS .A primal-dual algorithm. The primal-dual approach starts with some not necessarily perfectb-matching x and a feasible dual solution (y; Y) which satisfy together the complementary slacknessconditions (CS1) and (CS2). Even more, the b-matching x satis�es (P2) and (P3). Such a startingsolution is easy to �nd, in fact, x � 0, yv := 12 maxfceje 2 �(v)g for all v 2 V and Y � 0 is a feasiblechoice.The basic idea is now to keep all satis�ed conditions as invariants throughout the algorithmand to work iteratively towards primal feasibility. The latter means that one looks for possibilitiesto augment the current matching. To maintain the complementary slackness condition (CS1) thesearch is restricted to the graph induced by edges of zero reduced costs with respect to the currentdual solution, the so-called equality subgraph G=. In a primal step of the algorithm, one looks for amaximum cardinality b-matching within G=. We grow a forest F which consists of trees rooted atnodes with a de�cit, i. e. with x(�(v)) < bv. Within each tree T 2 F the nodes are labeled even andodd according to the parity of the number of edges in the unique simple path to the root r (the rootr itself is even). In addition, every even edge of a path from the root r to some node v 2 T must be

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 90
Figure 3: A sample blossom with an odd circuitof length seven. Each shaded region correspondsto a petal. Figure 4: Example of an augmenting forest con-sisting of three trees. Even (odd) nodes are �lled(non-�lled), root nodes equipped with an extracircle, non-forest edges are dashed, matched (un-matched) edges are drawn with thick (thin) lines.matched, i. e. xe > 0. Candidate edges to grow the forest are edges where one endpoint is labeledeven and the other is either unlabeled or labeled even. Augmentations are possible if there is a pathof odd length between two de�cit nodes on which we can alternatively add and subtract some � fromthe current matching x without violating primal feasibility. Observe that we can augment if thereis an edge between two even nodes of di�erent trees of F . In some cases, an augmentation is alsopossible if we have such an edge between even nodes of the same tree, but not always. It is the lattercase which is responsible for complications. If no augmentation is possible and there is no furtheredge available to grow the forest, the forest is called Hungarian forest.Edmonds' key insight was the observation that by shrinking of certain subgraphs (the blossoms)one can ensure that the tree growing procedure detects a way to augment the current b-matching, ifthe matching is not maximum. The reverse operation to shrinking is expanding. Hence, we are alwaysworking with a so-called surface graph which we obtain after a series of shrinking and expandingsteps. The main di�erence to 1-matching lies in the more complicated structure of the blossomswhich we have to shrink into pseudonodes. Roughly speaking, when blossoms in the 1-matchingcase are merely formed by odd circuits C for which x((C)) = qC , a blossom B in the b-matchingcase contains such an odd circuit C but also the connected components of matched edges incidentto nodes of C, the so-called petals. The additional complication is that C must be the only circuitof the blossom. (See Figure 3 for a sample blossom.)Hence, in order to detect such blossoms e�ciently it is suitable to maintain additional invariantson the structure of the current non-perfect b-matching which are trivially ful�lled in the 1-matchingcase. Namely, each connected componentM of matched edges in the surface graph contains no evencircuit, at most one odd circuit and at most one de�cit node. Even more, if such a component Mcontains an odd circuit, then M contains no de�cit node.If the primal step �nishes with a maximum cardinality matching which is perfect, we are doneand the algorithm terminates the primal-dual loop. Otherwise, we start a dual update step. Roughlyspeaking, its purpose is to alter the current dual solution such that new candidate edges are createdto enter the current forest F . Depending on the label of a node and whether it is an original node ora pseudo-node we add or subtract some " (but leave unlabeled nodes unchanged to maintain (CS1))which is chosen as the maximum value such that the reduced cost of all edges in the forest F remainunchanged (i. e. they remain in G=), all other edges of the original G have non-negative reducedcosts (D1), and the dual variables associated to pseudo-nodes remain non-negative (D2). If the dualvariable associated to an odd pseudo-node becomes zero after a dual update, the pseudo-node will beexpanded. This guarantees that no augmenting paths will be missed. After �nishing the primal-dualloop, all remaining pseudo-nodes are expanded, and the algorithm terminates. See Figure 2 for anoverview on the structure of the primal-dual algorithm.

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 913. Design GoalsSpecialized to our application, the most important general requirements on the exibility of adesign imply that the implementation of the blossom algorithm framework should have the followingfeatures.� Exchangeable subalgorithms. There are two good reasons:1. Problem variants. Suppose we apply our framework to a special case of b-matching,for example to ordinary 1-matching, to cardinality b-matching, or use additional edgecapacities, in particular for factor problems where all edge capacities are set to one. Forall such variants, the standard implementation of some subalgorithms (but only few!)should be exchangeable with an adapted version which is �ne-tuned towards e�ciency.2. Algorithmic variants. As software is often (in particular in our case) implemented �rstas a prototype, but later re�ned step-by-step to improve e�ciency, the necessary modi�-cation should only a�ect small pieces of the code. In our example, we would like to testdi�erent dual update strategies, or exchange a forest with a single tree implementation,or apply heuristics to avoid the shrinking of blossoms.� Exchangeable data structures. A basic design decision concerns the representation ofgraphs. The di�culty lies in the fact that the view on the graph objects changes throughoutthe algorithm: simultaneously, we have the original input graph, (moreover, in case of densegraphs it is useful to work on a sparse subgraph), then we have the equality subgraph (inducedby edges of zero reduced costs), and �nally the current surface graph, which is derived fromthe equality subgraph by blossom shrinking operations.� Evaluation strategies. Certain mathematical functions and terms have to be evaluated sooften during the execution of an algorithm, that di�erent evaluation strategies may reducethe overall computational costs signi�cantly. Well-known techniques such as \lazy evaluation"(calculate a value only when it is needed), \over-eager evaluation" (calculate a value before itis needed), and \caching" (store each calculated value as long as possible) can, for example,be applied to the evaluation of reduced costs, maintaining dual potentials or node de�cits.� Separate initialization and preprocessing. A blossom algorithm either starts with anempty matching, some greedy matching, or it uses a jump-start solution. In many applications,the size of an instance can be reduced in a preprocessing step, for example by a special handlingof isolated or degree-1 nodes, parallel edges or more complicated special structures.� Exchangeable graph classes. The framework has to be adaptable to special graph classes.The standard implementation does not assume anything about special properties of the graphclasses. However, if it is known in advance, that one wants to solve matching problems onspecial graph classes, such as planar graphs, Eucledian graphs or complete graphs, it shouldbe possible to exploit the additional structure of such a class.� Adding statistics. We want to be able to get statistical information from the execution of ourcode. Operation counting [2] is a useful concept for testing algorithms, as it can help to identifyasymptotic bottleneck operations in an algorithm, to estimate the algorithm's running timefor di�erent problem sizes, and to compare algorithmic variants. Furthermore, such statisticsgives additional insight into the relationship of a class of instances and its level of di�cultyfor a blossom algorithm, for example by counting the number of detected blossoms or themaximum nesting level of blossoms.� Robust, self-checking. A robust algorithm should (be able to) check all invariants and pre-and postconditions. It has to terminate with a deterministic behavior in case of a violation.In particular, each violation of one of these conditions that indicates an implementation bugis found immediately. This reduces the total time spend with debugging dramatically.

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 924. An Object-Oriented ImplementationIn this section we will outline our solution with respect to the desired goals. This discussion doesnot exhaust all of our design goals, but will highlight those aspects which might be most interesting.Decoupling algorithms from data structures: Iterators. The primal-dual algorithm usesdi�erent categories of graphs, namely the original graph, the equality subgraph and the surfacegraph. A closer look into the algorithm shows that we do not need to represent the equality graphexplicitly. However, the internal representation of a graph where the node set remains static through-out the graph's lifetime is certainly di�erent from a graph which must provide shrink and expandoperations on its own subgraphs. Hence, we use two basic graph classes for the di�erent cases(unshrinkable graph and surface graph). Below, we will give an example where the same algo-rithm is once used with with an instance of unshrinkable graph and once with surface graph.As shrinking of nodes can be nested, it is useful to have a map between an original node u and thecorresponding pseudo-node or node in the surface graph, denoted by outer(u).An iterator provides a way to access the elements of an aggregate object sequentially. Theunderlying representation of the aggregate object remains hidden. K�uhl & Weihe [13] applied thisidea to graph algorithms. They introduced adjacency iterators. An adjacency iterator iterates overall edges and nodes which are adjacent to a �xed node. It provides operations for requesting if thereis a current adjacent node, for requesting the current adjacent edge and the current adjacent nodeas well for constructing a new adjacency iterator which iterates over the adjacency of the currentadjacent node.In our context, we want to hide the concrete representation of our surface graph. For example,the client of an instance of a surface graph should not know whether the adjacency list of apseudo-node is built explicitly as a list or if it is only implicitly available by an iteration throughthe contained nodes.In general, our adjacency iterators are implemented as skip iterators which run through the wholeadjacency of a node, decide for each edge whether it is \present" in the current graph or not, andshow an edge only in the a�rmative case but skip it otherwise. The decision whether an edge ispresent or not is based on an evaluation of the predicate (reduced costs == 0) or (outer(u) 6=outer(v)) for an edge e = (u; v). This means that we have di�erent adjacency iterators for eachspeci�c view of a node onto its adjacency.Recall that the surface graph contains two di�erent types of nodes, namely original nodes andpseudo-nodes. This implies that one needs two di�erent types of adjacency iterators. To be moreprecise, we use a pair of adjacency iterators, one for pseudo-nodes and one for original nodes. Foreach node of the surface graph, only one of them is valid. This pair of iterators is encapsulated insuch a way that the client sees only a single iterator.Data accessors. The data accessor pattern, introduced by K�uhl & Weihe [14], provides a solutionfor the design problem to encapsulate an attribute of an object or a mathematical function and tohide the real representation or computation from the client.There are several applications of this pattern in our context where it appears to be useful tohide the underlying representation of the data. A �rst example is the treatment of the de�cit of anode. Possible choices are to store and to update the node de�cit explicitly, or to calculate it whenit is needed from the current matching x and the node capacity bv. A second example concerns themaintenance of the cost of an edge if the edge costs are induced by some metric distance functionbetween coordinates of its endpoints. Here, it might be useful to calculate edge costs only on demand.Finally, it is a good idea to encapsulate the calculation of reduced costs. One reason is thatthere are several linear programming descriptions of the b-matching problem which can be used asalternatives in our algorithm. For simplicity, we only presented the blossom description, but theso-called odd-cut description [5, 6] can be used with minor changes. One concrete di�erence lies in

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 93
0204060
80100CPU timein ses. 9 10 11 12 13log2 n..

... 2{431 0204060
80100

10 30 50 70 90density d = m=n...
............................ ..

0246
810

0 2 4 6 8 10log2 bmax...
Figure 5: Experimental results for di�erent strategies within the candidate search (strategy 1, strategy 3, andstrategy 2 combined with strategy 3 and 4) for a test-suite on graphs with an Euclidean distance function.The charts show the run-time dependency of these strategies in seconds of CPU time for an increasingnumber of nodes (left), increasing density (middle), and increasing node capacities (right). Each data pointis the average over runs on twenty independent instances.the calculation of the reduced costs. Hence, in order to evaluate which description is superior tothe other, one would like to exchange silently the internal calculation of the reduced costs. (For areplacement of the linear description a second small change is necessary in the dual update.)Exchange of subalgorithms. The strategy pattern encapsulates each subalgorithm and de�nesa consistent interface for a set of subalgorithms such that an algorithm can vary its subalgorithmsindependently from the user of the algorithm. To apply the strategy pattern rigorously for subalgo-rithms of the framework it is helpful to implement each algorithm (and subalgorithm) as a separatealgorithmic class. Thus, Fig. 2 which gives an overview on the structure of the primal-dual algorithmalso represents our algorithmic classes. (A number of lower level classes are omitted for brevity).We elaborate on the use of di�erent strategies taking the example of the candidate search foredges in the tree growing part of the algorithm. (It should be noted that such candidates cane�ectively be determined within the dual update.)1. The direct approach to �nd candidate edges for the growing of the current forest F is totraverse all trees of F and to examine iteratively all edges adjacent to even nodes.2. Ball & Derigs [5] proposed to keep a partition of the edge set into subsets according to thelabels of endpoints. This gives some overhead to update these lists, but avoids to examine allthose edges for which one endpoint is labeled even and the other is labeled odd.3. A re�nement of both previous strategies is to mark nodes as safe after the examination of theiradjacency. As long as the label of a node does not change, the node remains safe and canbe ignored for the further candidate search. An application of the observer pattern (which wedescribe below) ensures that any change in the state of a node label triggers an appropriateupdate, i. e. nodes become unsafe and will be considered in the candidate search.4. As shrinking and expanding of blossoms is computational very expensive it is useful to avoidshrinking operations heuristically. Each time a blossom forming edge has been detected, wedo not shrink the blossom but store the edge instead. Only if no other candidate edges areleft, we request the �rst blossom forming edge and shrink the corresponding blossom.5. It is a fundamental strategic question whether one should perform the growing of trees simul-taneously in a forest (as we did in our description) or to grow only a single tree. Whereas aforest version leads to shorter augmenting paths, a single tree version has the advantage of areduced overhead.

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 94Note that some of these strategies can also be used in combination. Figure 5 shows the impactof the di�erent strategies on the run-time for a test-suite of b-matching problems on Euclidean graphs.Exchange of data structures. We have already discussed the strategic question whether oneshould keep a partition of the edges according to the labels of their endpoints in the current forestor not. Computational results strongly indicated that explicitly maintaining such a edge partitionis worth doing. But it is not at all clear which data structure to keep these edge sets is most e�-cient. Should we use simply a doubly-linked list structure which allows cheap insertion and deletionoperations in O(1) per edge but requires linear time to �nd the edges with minimum reduced costsin the update step? Or is a priority queue like a d-heap or some Fibonacci heap the better choicebecause of the O(1) time to perform the minimum operation at the expense of more expensive insertand delete operations? Note that we usually have to perform much more insert/delete operationsthan minimum operations. Hence, an answer to these questions can only be given by computationaltesting. The important point from the software engineering perspective is that exchanging the datastructures is an easy task.Reusability of algorithms. We give one concrete example for a reuse of the blossom framework,namely fractional b-matching. Recall that fractional b-matching is the relaxation of b-matchingwhich drops the integrality constraints on the matching x.The adaption of our implementation to fractional b-matching becomes extremely easy. The onlynecessary modi�cation is to exchange the data type of the matching x from integer to double,for example. (It is easy to see that one can keep the fractional matching half-integral throughoutthe algorithm). This change su�ces because the calculation of the maximal value by which we canaugment after some forest growing step now returns a value of 12 in those cases where the integralversion would round down to an integer and therefore return a zero which invokes a shrinking stepafterwards. As shrinking is not necessary in a fractional algorithm, it is suitable for reasons ofe�ciency to start the algorithm with an instance of the graph class unshrinkable graph instead ofusing the graph class surface graph as the latter requires extra overhead for handling the outerinformation. Moreover, as the shrinker is never called in a normal execution of the algorithm itcan be replaced by a dummy shrinker which does nothing but returns an exception if it is calledbecause this indicates an implementation bug.Recall that fractional b-matching can be transformed into a Hitchcock transportation problemand therefore, in principle, be solved by any implementation for minimum cost ow problems, inparticular by the network simplex. However, if we want to use the solution of the fractional matchingproblem as an improved basis for the integral matching algorithm, there is one pitfall. The problemis that if we use an algorithm for fractional matching as a black box, this algorithm certainly doesnot know that the input of the integral matching algorithm requires additional structural proper-ties of the b-matching as preconditions. As a consequence, it is necessary to implement additionalconversion algorithms which transform an integral matching obtained from rounding an optimalfractional b-matching into a starting matching ful�lling the requirements of Pulleyblank's algorithm.(This subtle detail is ignored in Anstee's paper [3].) We put emphasis on this point as the fractionalalgorithm obtained as an adaption of the integral one gives us the desired structural properties ofthe b-matching almost for free.Initialization. Pulleyblank's algorithm can be decomposed into an initialization phase, the primal-dual loop, and a �nal expanding phase. As there are many di�erent possibilities for a concreteinitialization it is useful to separate these parts strictly form each other.The bene�t from an exchange in the initialization phase can be dramatic. The \jump start" witha fractional matching solver is one example which we discussed earlier. Strengthening of the initialdual solution such that for each node at least one adjacent edge lies in the initial equality subgraphalso proved to be useful. Similar experiences have been reported by Miller & Pekny [17].

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 95For cardinality matching problems, the �rst author's experiments with several greedy startingheuristics showed that it is often possible to do almost all work in the initialization phase. In fact,our heuristics have been so powerful that the loop kernel of the algorithm often only works as achecker for optimality in non-perfect maximum cardinality problems [18].Observer pattern. The observer pattern de�nes a dependency between an observer class and anobserving class such that whenever the state of the observed object changes, the observing class isnoti�ed about the change. We have already discussed one nice application of the observer patternas a prerequisite of an advanced strategy for the candidate search.In addition, observers allow us to get additional insights into the course of the algorithm bycollecting data on function calls. Pro�lers such as gprof or quantify of Rational Software Corporation,could be used to count the number of function calls as well as to measure the time spent inside thefunctions. However, this gives only the overall sum of calls to a certain function and requires that thedata we are interested in can be expressed in the number of function calls. Beyond mere operationcounting observers can deliver much more detailed information. For example, we can determine themaximum nesting level of blossoms. This parameter is no operation and therefore not available topro�lers, but is a valuable indicator for the hardness to solve some problem instance. For example,the nesting level is observed to be much lower in randomly generated instances than in structuredinstances.Moreover, we may want to know how certain quantities change over time, in particular, we wantto sample data from every iteration of the primal-dual loop (here we use also another pattern, theloop kernel pattern [12]). For example, we collect a series of data from each dual update to �ndout which updates are most expensive. This can even be used to control the selected strategy on-line. It has been observed [6] that the �nal ten augmentations usually require most of the overallcomputation time. Hence, if we can recognize with the help of an observer that the algorithm slowsdown it might be advisable to change the strategy. Cook & Rohe propose to switch from a singletree growing strategy to a forest growing strategy.5. Summary and OutlookWe presented a case study oriented to weighted b-matching with emphasis on design problems.Our approach followed proposals of Weihe and co-workers to apply design patterns like graph iter-ators and data accessors in order to achieve a exible design. The examples given in the previoussection proved that we successfully realized exibility with respect to several modi�cations.Flexibility has its price. Applying all the desired design patterns requires excellent expertisein advanced programming techniques, at least to a much higher degree than traditional concepts.Hence, ease of use may be a critical issue.We decided to take C++ as the programming language for our implementation, in particular,we heavily used templates (static polymorphism). Today, the main disadvantage of templates isthat this feature is not fully supported by most compilers. In principle, compilers should be ableto handle templated code as well as code without templates, and to optimize away the additionaloverhead imposed by encapsulation. However, the current compiler technology of gcc/g++ of theFree Software Foundation Inc., version 2.8.1, as well as its o�shoot egcs, version 1.0.2, does notseem to achieve this satisfactorily. Therefore, it is quite remarkable, that the current version of ourcode is already signi�cantly faster than the code of Miller & Pekny [17], see Figure 6. This wasde�nitely not true for the �rst prototype of our framework. However, through experiments we havebeen able to identify the bottlenecks of our implementation, and by exchanging subalgorithms anddata structures the speed-up was made possible by the exibility of our framework. And we believethat there is still potential for further improvements of e�ciency. For an in-depth discussion of ourcomputational results we refer to [21].The fact that our code is already superior to the only b-matching executable available for a

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 96
02004006008001000

CPU timein ses.
2000 4000 6000 8000n..

.. b-matherMiller & Pekny
0500100015002000

2000 4000 6000 8000n..
..

Figure 6: A comparison of the code from Miller & Pekny with our b-matcher on a test-suite of graphs withan Eucledian distance function, a density d = m=n of 20 (left) and 30 (right), and bv varying between 1 and10.comparison (of Miller & Pekny) encourages hopes that the design concepts is suitable for highperformance computations. At least, we got an implementation which is mature enough to solveeven the hardest instances of the mesh re�nement application in less than 13 seconds for a sparsegraph with more than 17000 nodes on a SUN UltraSPARC2 with 200 MHz running under Solaris2.6. The solution for associated b-matching problem to the example shown in Figure 1 took only3 seconds. Future work will show whether the exibility also pays o� for further specializations orextensions of the b-matching problem.AcknowledgmentsThe authors wish to thank Donald Miller, Joseph Pekny, and his student Paul Bunch for providingus with an executable of their b-matching code.References[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network ows, Prentice Hall, 1993.[2] R. K. Ahuja and J. B. Orlin, Use of representative operation counts in computational testing ofalgorithms, INFORMS Journal on Computing (1996), 318{330.[3] R. P. Anstee, A polynomial algorithm for b-matching: An alternative approach, InformationProcessing Letters 24 (1987), 153{157.[4] D. Applegate and W. Cook, Solving large-scale matching problems, Network Flows and Match-ing, DIMACS Series in Discrete Mathematics and Theoretical Computer Science (D. S. Johnsonand C. C. McGeoch, eds.), vol. 12, 1993, pp. 557{576.[5] M. O. Ball and U. Derigs, An analysis of alternative strategies for implementing matchingalgorithms, Networks 13 (1983), 517{549.[6] W. Cook and A. Rohe, Computing minimum-weight perfect matchings, Tech. Report 97863,Forschungsinstitut f�ur Diskrete Mathematik, Universit�at Bonn, 1997.[7] U. Derigs and A. Metz, On the use of optimal fractional matchings for solving the (integer)matching problem, Computing 36 (1986), 263{270.[8] J. Edmonds, Paths, trees, and owers, Can. J. Math. 17 (1965), 449{467.

Implementing Weighted b-Matching Algorithms: Towards a Flexible Software Design 97[9] J. Edmonds, E. L. Johnson, and S. C. Lockhart, Blossom I: a computer code for the matchingproblem, unpublished report, IBM T. J. Watson Research Center, Yorktown Heights, New York,1969.[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Elements of reusableobject-oriented software, Addison-Wesley, 1995.[11] A. M. H. Gerards, Matching, (M. O. Ball et al., ed.), Handbooks in Operations Research andManagement Science, vol. 7, North-Holland, 1995, pp. 135{224.[12] D. K�uhl, M. Nissen, and K. Weihe, E�cient, adaptable implementations of graph algorithms,Workshop on Algorithm Engineering, 1997, http://www.dsi.unive.it/~wae97/proceedings.[13] D. K�uhl and K.Weihe, Iterators and handles for nodes and edges in graphs, Konstanzer Schriftenin Mathematik und Informatik Nr. 15, Universit�at Konstanz, 1996, http://www.informatik.uni-konstanz.de/~weihe/manuscripts.html#paper24.[14] D. K�uhl and K. Weihe, Data access templates, C++{Report 9 (1997), no. 7, pp. 15 and 18{21.[15] A. B. Marsh III, Matching algorithms, Ph.D. thesis, The John Hopkins University, Baltimore,1979.[16] D. L. Miller, A matching based exact algorithm for capacitated vehicle routing problems, ORSAJ. of Computing (1995), 1{9.[17] D. L. Miller and J. F. Pekny, A staged primal-dual algorithm for perfect b-matching with edgecapacities, ORSA J. of Computing 7 (1995), 298{320.[18] R. H. M�ohring and M. M�uller-Hannemann, Cardinality matching: Heuristic search for aug-menting paths, Technical report No. 439/1995, Fachbereich Mathematik, Technische Universit�atBerlin, 1995, ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-439-1995.ps.Z.[19] R. H. M�ohring, M. M�uller-Hannemann, and K. Weihe, Mesh re�nement via bidirected ows:Modeling, complexity, and computational results, Journal of the ACM 44 (1997), 395{426.[20] M. M�uller-Hannemann, High quality quadrilateral surface meshing without template restrictions:A new approach based on network ow techniques, Proceedings of the 6th International MeshingRoundtable, Park City, Utah, Sandia National Laboratories, Albuquerque, USA, 1997, pp. 293{307.[21] M. M�uller-Hannemann and A. Schwartz, Implementing weighted b-matching algorithms: In-sights from a computational study, in preparation, Fachbereich Mathematik, Technische Uni-versit�at Berlin, 1998.[22] J. B. Orlin, A faster strongly polynomial minimum cost ow algorithm, Proceedings of the 20thAnnual ACM Symposium on Theory of Computing (1988), 377{387.[23] M. Padberg and M. R. Rao, Odd minimum cut-sets and b-matchings, Math. Oper. Res. 7 (1982),67{80.[24] W. R. Pulleyblank, Faces of matching polyhedra, Ph.D. thesis, Faculty of Mathematics, Uni-versity of Waterloo, 1973.[25] W. R. Pulleyblank, Matchings and extensions, (R. L. Graham, M. Gr�otschel, and L. Lov�asz,eds.), Handbook of Combinatorics, vol. 1, North-Holland, 1995, pp. 179{232.[26] K. Weihe, A software engineering perspective on algorithms, Konstanzer Schriften inMathematik und Informatik Nr. 50, Universit�at Konstanz, 1998, ftp://ftp.informatik.uni-konstanz.de/pub/preprints/1998/preprint-050.ps.Z.

98Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 98{109Matrix Multiplication: A Case Study ofAlgorithm EngineeringNadav EironComputer Science Department, Technion | Israel Institute of TechnologyHaifa, 32000, Israele-mail: nadav@cs.technion.ac.ilMichael RodehComputer Science Department, Technion | Israel Institute of TechnologyHaifa, 32000, Israele-mail: rodeh@cs.technion.ac.ilandIris SteinwartsComputer Science Department, Technion | Israel Institute of TechnologyHaifa, 32000, Israele-mail: iriss@cs.technion.ac.ilABSTRACTModern machines present two challenges to algorithm engineers and compiler writers: They havesuperscalar, super-pipelined structure, and they have elaborate memory subsystems speci�callydesigned to reduce latency and increase bandwidth. Matrix multiplication is a classical bench-mark for experimenting with techniques used to exploit machine architecture and to overcomethe limitations of contemporary memory subsystems.This research aims at advancing the state of the art of algorithm engineering by balancinginstruction level parallelism, two levels of data tiling, copying to provably avoid any cacheconicts, and prefetching in parallel to algorithmic operations, in order to fully exploit thememory bandwidth. Measurements show that the resultant matrix multiplication algorithmoutperforms IBM's ESSL by 6.8-31.8%, is less sensitive to the size of the input data, and scalesbetter.The techniques presented in this paper have been developed speci�cally for matrix multipli-cation. However, they are quite general and may be applied to other numeric algorithms. Webelieve that some of our concepts may be generalized to be used as compile-time techniques.1. IntroductionAs the gap between CPU and memory performance continues to grow, so does the importanceof e�ective utilization of the memory hierarchy. This is especially evident in compute intensivealgorithms that use large data sets, such as most numeric problems. The problem of dense matrixmultiplication is a classical benchmark for demonstrating the e�ectiveness of techniques that aim atimproving memory utilization. Matrix multiplication involves O(N3) scalar operations on O(N2)data items. Moreover, this ratio can be preserved when performing the multiplication operation asa sequence of operations on sub-matrices. This feature of the problem, which is shared by othernumeric problems, allows e�cient utilization of the memory subsystem.The e�cient implementation of compute-intensive algorithms that use large data sets presenta unique engineering challenge. To allow the implementation to exploit the full potential of the

Matrix Multiplication: A Case Study of Algorithm Engineering 99program's inherent instruction level parallelism, the adverse e�ects of the processor-memory perfor-mance gap should be minimized. A well engineered compute-intensive algorithm should:� Manage with small caches;� Avoid cache conicts;� Hide memory latencies associated with \cold-start" cache misses.A broad set of techniques has been suggested to adapt numeric algorithms to the peculiaritiesof contemporary memory subsystems. These techniques include software pipelining [8], blocking(tiling) [9] and data copying [9, 17]. Each of these techniques was designed as a solution to one ofthe �rst two engineering challenges presented above. The relatively new method of selective softwareprefetching [2, 11, 12] aims at the third challenge. Software prefetching attempts to hide memorylatencies by initiating a prefetch instruction su�ciently early, before the data item is used. However,the implementation should be carefully designed to avoid cache pollution by the prefetched data (see[10]). If the prefetch instruction is non-blocking, the memory access will be executed in parallel withthe computations carried out by the CPU. Previous attempts to improve the performance of BLAS-2routines are reported in [1]. Similar work on BLAS-3 routines is presented in [13]. Both these e�ortsemploy a variety of techniques in order to overcome the memory hierarchy limitations. However, sofar, they do not meet all three challenges simultaneously.We propose a new cache-aware O(N3) matrix multiplication algorithm which builds upon knowntechniques to meet all of the three engineering goals. Our algorithm is based on two observations:(i) The fact that in matrix multiplication the ratio between the number of scalar operations andthe data size remains high, even when the problem is divided into a sequence of multiplications ofsub-matrices. (ii) The system bus is a valuable hardware resource that should be taken into accountin the algorithm design.Our algorithm uses a new blocking scheme that divides the matrices into relatively small non-square tiles, and treats the matrix multiplication operation as a series of tile multiplication phases.The data required for each phase is designed to completely �t in the cache. In addition, our schememaintains a high ratio of scalar operations to the number of data items for each phase.To maintain conict-free mapping of the data regardless of the associativity level of the cache,the algorithm restructures the matrices into an array of interleaved tiles. The copying operation canbe carried out during the multiplication process, using only a small copying bu�er.To cope with memory latency, all data required during phase i must be prefetched into thedata cache during phase i� 1. This is done simultaneously with the actual computation. The twoactivities must be well balanced. In particular, the smaller the latency and the higher the memorybandwidth | the smaller the portion of the cache needed. The order and timing of the prefetchinstructions is designed to make sure that relevant data is not ushed from the cache. When doingso, the associativity level of the cache must be taken into account.Our cache-aware O(N3) matrix multiplication algorithm does not su�er memory latency whenrunning on an architecture that �ts the assumptions of our machine model. The performance ofour algorithm is not inuenced by the size or layout of the input matrices. Assuming that the dataset �ts in the main memory of the machine, our algorithm maintains its behavior regardless of thedata set size. In addition, unlike traditional blocking based algorithms, our algorithm shows littlesensitivity to small changes in the input size.We implemented our algorithm on an IBM RS/6000 PowerPC 604 based workstation. Ourimplementation allows instruction level parallelism by using tiling at the register level, combinedwith loop unrolling and software pipelining. The scheduling of machine instructions builds on thefact that in our algorithm, memory access operations in the inner-most loop are always servicedby the cache. Our implementation outperforms IBM's BLAS-3 matrix multiplication function byroughly 21:5%, on the average, for double precision data. For some values of N , our implementationruns 31:8% faster.

Matrix Multiplication: A Case Study of Algorithm Engineering 100In this work we demonstrat memory hierarchy oriented optimizations for the O(N3) matrixmultiplication algorithm. However, the same ideas can be used to achieve similar improvements inmany other linear algebra algorithms that exhibit similar features (see [16]).In the following section we describe the assumptions that we make on the machine architecture.In Section 3 we outline our techniques and their application for matrix multiplication, while inSection 4 we present our implementation for the IBM RS/6000 platform.2. The Machine ModelWhen optimizing an algorithm, it is important to properly choose a simple, but su�cientlyaccurate machine model. The objective is then to de�ne an abstract model such that an algorithmoptimized for it will perform well in practice.In our case, we deliberately decide to ignore the e�ects of the virtual memory subsystem (see,for example, [7]). Speci�cally, we ignore the paging mechanism, the use of virtual versus physicaladdresses for cache indexing, and the use of a Translation Look-aside Bu�er (TLB) to shorten theaddress translation process. As a consequence, the negative e�ects of page faults and TLB misses arenot taken into account. Furthermore, we assume a virtually-indexed data cache. This assumption isrequired to allow the algorithm to use virtual addresses when it restructures data in a manner thatwill assure conict-free mapping into the cache. However, the algorithm may be adapted, undercertain circumstances, to use physically-indexed data caches. Indeed, out implementation uses sucha cache.Other assumptions that we make regarding the target machine are:� The memory subsystem includes at least one level of data cache. Our optimization techniquestarget only the �rst level (L1) data cache. We assume that slower caches do not degrade theperformance of the L1 cache. Speci�caly, we require that they do not a�ect the L1 replacementpolicy.� The L1 data cache write policy is copy-back.� The L1 data cache replacement policy is Least Recently Used (LRU).� The processor supports a non-blocking cache fetch instruction. This may be a specializedprefetch instruction, or a simple non-blocking load instruction [4].� The CPU follows a load/store (register-register) architecture.We use the following parameters in the description of our algorithm: The L1 data cache holds Cbytes arranged in lines of size L. The cache is K-way set associative. We denote by M the numberof machine cycles required to fetch a complete cache line from memory (contemporary machineshave 20 �M � 100).3. The AlgorithmOur algorithm is designed to carry out matrix multiplication of the formC = A � Bwhere A, B, and C are real matrices of sizes N1 � N2, N2 � N3 and N1 � N3, respectively. Wedenote by I the matrices' element size, in bytes. We make no assumption regarding the layout,or relative location, of the input matrices in memory. In the following subsections we outline thealgorithm, describing the use of each of the optimization techniques and the way in which thealgorithm combines them. We end up with a matrix multiplication algorithm, that by construction,does not su�er memory latency when running on an architecture that �ts the assumptions of ourmachine model.

Matrix Multiplication: A Case Study of Algorithm Engineering 101
i

k

Matrix CMatrix BMatrix A

Ci;kP1 P2 P3 P3P2 P1
Figure 1: Tile multiplication3.1. Tolerating Capacity and Cold Start MissesIn this subsection we assume that the cache is fully associative. We postpone the discussion oneliminating cache conicts and pollution to the following subsections.The algorithm partitions the input matrices into tiles (see Figure 1). The matrix C is dividedinto tiles of size P1 � P3. Each one of these tiles is generated by a sum of products of a horizontalstripe of A-tiles and a vertical stripe of B-tiles. The matrix A is thus divided into tiles of size P1�P2while B is divided1 into tiles of size P2�P3. Denoting byMi;j the (i; j)th tile of the matrixM, wehave: Ci;k = N2=P2�1Xj=0 Ai;j � Bj;kSince we have N1N3=(P1P3) C-tiles to compute and since the computation for each tile requiresN2=P2 tile multiplications, we have a total of (N1N2N3)=(P1P2P3) tile multiplication phases. Ineach phase we multiply an A-tile of size P1 � P2, by a B-tile of size P2 � P3, updating a C-tile ofsize P1 �P3, using P1P2P3 scalar multiplications and P1P2P3 scalar additions. The number of dataitems accessed in each phase is P1P2 + P2P3 + P1P3.In order to achieve optimal performance, all data used in a speci�c phase must be present in thedata cache at the beginning of the phase. If this condition is indeed met, the system bus remainsunused by the tile multiplication code and can instead be used to bring the data required for thenext phase into the cache. Let W denote the number of machine cycles it takes to multiply an A-tileby a B-tile and store the result in C. Then:W = �(P1P2P3)The total amount of data (in bytes) required for each phase is:I � (P1P2 + P2P3 + P1P3)Assuming that each prefetch instruction �lls a single line of the cache, the number of prefetchinstructions we must issue is IL � (P1P2 + P2P3 + P1P3):If M IL � (P1P2 + P2P3 + 2P1P3) �W (1)1Naturally, this implies that P1, P2 and P3 must all divide the respective dimension, Ni. Padding of the matricesmay be used to meet this requirement.

Matrix Multiplication: A Case Study of Algorithm Engineering 102for (i = 0 ; i < N1=P1 ; i++)for (j = 0 ; j < N3=P3 ; j++)for (k = 0 ; k < N2=P2 ; k++) fCi;j = Ci;j + Ai;k � Bk;j;gFigure 2: The algorithm's outer loops.then a single phase runs long enough to allow us to prefetch all the data required by the next phaseon time. Note that in Equation (1) the size of the C-tile is multiplied by 2. This is because C-tilesare modi�ed and therefore must be written back to memory, occupying the system bus.To allow for the latency-free operation of the algorithm, the cache must be large enough toconcurrently hold all the data required for a certain phase (i.e., one tile of each matrix: A, B andC) as well as the data that will be used in the next phase. All in all, the cache must be able to holdtwo tile triplets, so the total cache size must be at least2I � (P1P2 + P2P3 + P1P3) � C: (2)Note that Equation (2) places an upper bound on P1, P2 and P3, while the timing considerations ofEquation (1) place a lower bound on these values.For machines with a large CPU-memory performance gap, it might happen that Euqations (1)and (2) cannot hold simultaneously for any value of P1, P2 and P3. However, in Equation (1) wecalculated the number of prefetch instructions required in a single phase assuming that all threetiles should be replaced. The number of prefetch instructions required may be reduced by orderingthe phases so that one of the tiles is reused. The code in Figure 2 replaces C-tiles only once in everyN2=P2 phases. The reuse of C-tiles is bene�cial, since these tiles are the only ones that are modi�edand therefore must be written back to memory. Using the scheme presented in Figure 2, the numberof prefetch instructions needed in a single phase is reduced to:IL � (P1P2 + P2P3 + P1P2P3N2):This means, that the condition of Equation (1) may be relaxed to:M IL � (P1P2 + P2P3 + 2P1P2P3N2) �W (3)In case this does not yield feasible values of P1, P2 and P3, the implementation's performance maydegrade.Assuming a memory bus that does not allow for pipelined memory access or outstanding requests,all prefetch instructions must be spaced at intervals of at leastM units of time, to prevent stalling theCPU. With a more advanced bus that allows multiple outstanding memory requests, this requirementcan be relaxed, as long as the request queue never overows. For buses that allow pipelined memoryaccess, a more detailed calculation of the e�ective value of M should be carried out.3.2. Avoiding Cache ConictsOur algorithm is based on the assumption that any two triplets of tiles (one from each matrix)that are used in two consecutive tile multiplication phases can simultaneously reside in the cache.So far, we have assumed full associativity of the cache. Most practical caches have a limited degree

Matrix Multiplication: A Case Study of Algorithm Engineering 103of associativity. Restructuring the data by copying it to properly designed locations can be used toavoid cache conicts. [17] discusses the utilization of copying to avoid cache conicts. In the caseof matrix multiplication, copying is potentially bene�cial, as it takes only O(N2) time while thecomputation takes O(N3) time, assuming that every data element is copied only once.When using a K-way set associative cache (K > 1, K is even2), the following condition allowsany two triplets of tiles to be mapped into the cache simultaneously:Condition 3.1. Associate with each of the three matrices a multi-set of cache set indices of sizesu�cient to hold one tile of that matrix. Use copying to map each tile of a speci�c matrix to themulti-set of cache sets that is associated with that matrix. The mapping is conict-free if the multi-setunion of the multi-sets for the three matrices does not contain any index more than K=2 times.This condition is su�cient but not necessary, since it is equivalent to having any two triplets �t inthe cache, and not just the (N1N2N3)=(P1P2P3) triplets used in matrix multiplication. Note thata scheme that complies with Condition 3.1 may be easily designed to copy each data element onlyonce.When using a 2-way set associative cache, Condition 3.1 may be met by mapping the tiles sothat all tiles of a single matrix are mapped to the same sets in the cache, and each cache set ismapped only once. Such a mapping may be formed by interleaving the matrices' tiles, so that theo�set between two tiles of the same matrix is a multiple of the way size of the cache. Since the cacheis assumed to have two ways, we can have two tiles from each of the matrices resident in the cachesimultaneously.For a direct mapped cache, Condition 3.1 cannot be satis�ed. To allow conict-free mappingfor direct mapped caches, we must use the fact that not every combination of three tiles from thematrices A, B and C is used. Each matrix will have two possible sets of cache set indices for itstiles, with half of the tiles using one set and the other half using the second set. The tile mapping ischosen so that whenever a tile is replaced by a tile from the same matrix, the two tiles use di�erentsets, and therefore, do not conict.To design such a mapping, we divide the cache lines into two equal-sized subsets: a \black"subset and a \white" subset. Each of these subsets is designed to hold one tile from each matrix.Each of the matrices will have half of its tiles mapped to black cache sets and the other half mappedto white cache sets. For the sake of this explanation, we assume that each dimension of the matricesis divided into an even number of tiles (i.e., N1=P1, N2=P2 and N3=P3 are all even). The matrixA is copied so that all even-numbered vertical stripes of tiles are mapped to the black part of thecache and all odd-numbered vertical stripes of tiles are mapped to the white part of the cache. Thematrices B and C are copied so that all even-numbered horizontal stripes of tiles are mapped to theblack part of the cache and all odd-numbered horizontal stripes of tiles are mapped to the whitepart of the cache. It can now be easily veri�ed, that when multiplying tiles in the order of Figure 2,whenever a tile is replaced by a tile from the same matrix, the tile replacing it is colored di�erently,and therefore the two tiles do not conict. Note that this method can also be implemented whilecopying each data element only once.While it is possible to copy the matrices to their new locations before engaging in the multipli-cation process itself, it is also possible to interleave the copy operation with the computation. Foran elaborate discussion of copying on the y, see [16].3.3. Cache PollutionAs observed in [10, 13] care must be taken, when performing prefetch operations, in order toassure that essential data is not ushed out of the cache. Similarly, we have to assure that freshprefetched data is not ushed out before it is used for the �rst time. Therefore, we have to examine2This assumption on K is used for simplicity. If it does not hold, use bK=2c instead of K=2 in the discussion thatfollows.

Matrix Multiplication: A Case Study of Algorithm Engineering 104what cache lines are chosen for ushing by the replacement policy when a new cache line is broughtinto the cache. Since the replacement policy is applied to each set separately, we limit our discussionto a single set.Consider a K-way set associative cache. Recall that K=2 lines of each set are being used by theactive triplet of tiles, and the other K=2 lines are used to fetch the next triplet before the currentphase is over. Let fpjigK=2�1i=0 be the sorted time instances in which prefetch instructions have beenexecuted during the jth phase, ff ji gK=2�1i=0 be the sorted time instances in which the �rst accessto each line holding data for the jth phase has been executed, and fljigK=2�1i=0 be the sorted timeinstances in which the last access to each such line during the jth phase took place.Let us now describe the conditions on the access pattern that will allow pollution-free prefetching.The �rst condition governs the prefetching code:Condition 3.2. Every block of the tiles used in the jth phase is accessed (prefetched) only onceduring phase j � 1.Assuming that the above condition holds, the following condition is su�cient and necessary forpollution-free prefetching:Condition 3.3. For every 0 � i � K=2�1 and every phase j, denote by r the least index for whichf jr > pji and by s the least index for which it holds that pj�1s > lj�1i . If no such r exists, the prefetchinstruction pji is pollution-free. Otherwise, denote by F the cache lines accessed by ff jkgr�1k=0 and byP the cache lines accessed by fpj�1k gs�1k=0. The prefetch is pollution-free i� P � F .4. ImplementationTo experiment with our approach, we implemented our matrix multiplication algorithm for bothsingle and double precision square matrices. The target platform was a 133MHz PowerPC 604 basedIBM RS/6000 43P Model 7248 workstation. The algorithm was implemented in C and was compiledusing the IBM XL-C compiler [15]. Where necessary, hand-tuning of the resulting machine codewas carried out. To gauge the performance improvements over known techniques, we compared ourresults to IBM's Engineering Scienti�c Subroutine Library (ESSL) [3], which is the state of the artimplementation of BLAS provided by IBM for this platform.4.1. Platform DescriptionThe PowerPC 604 [14] is a superscalar, super-pipelined RISC processor. The CPU containsone oating point unit (FPU) and one load-store unit (LSU). It has 32 architectural oating pointregisters and 32 architectural integer registers. The processor has a 16KB on-chip instruction cacheand a separate 16KB on-chip data cache (C = 16384). Both caches are physically indexed, four-wayset associative (K = 4), and have a line size of 32 bytes (L = 32). The write policy for the on-chip data cache is write-back and the replacement policy is LRU. Access to the cache is done vianon-blocking load/store instructions. Note that the PowerPC 604 processor adheres to all of theassumptions of our machine model, except for the use of a physically indexed L1 data cache.In addition to the L1 cache the machine has an o�-chip L2 directly mapped and physically indexed,uni�ed cache of size 512KB. The line size of the L2 cache is 32 bytes. The L2 cache controllerimplements full inclusion of both on-chip L1 caches. Note that this L2 cache design contradicts ourassumption that slower caches do not interfere with the replacement policy of the L1 cache.The AIX operating system uses the PowerPC 604's MMU to implement demand paged virtualmemory. The page size is 4KB, the same as the size of a way of the L1 data cache. This allows usto ignore the page-number part of the virtual address when mapping data to the L1 cache, makingthe distinction between physically and virtually indexed caches irrelevant.

Matrix Multiplication: A Case Study of Algorithm Engineering 105To complete the picture, let us now examine the features of the PowerPC 604 instructions,which are relevant to our work. The PowerPC architecture supports a oating point multi-add(fma) instruction which performs two oating point operations: a multiplication and an addition.This instruction has four register operands and performs the following calculation: fp1 fp2 �fp3 + fp4. The pipelined structure of the PowerPC CPU supports issuing one independent oatingpoint instruction in every cycle. The usage of the fma instruction is most appropriate for matrixmultiplication, since it allows the PowerPC 604 to complete two oating point operations in everycycle. By implementing the tile multiplication code using fma instructions, that use the FPU whileloads and stores execute in parallel in the LSU, we assume that the value of W (the amount of workfor a single tile multiplication phase) is roughly equal to P1P2P3 machine cycles.Floating point load instructions that hit in the on-chip L1 data cache usually complete in 3cycles. Since the L1 data cache access is pipelined, one load/store instruction may complete in everycycle.A load instruction that misses the L1 data cache but hits in the L2 data cache completes inapproximately 20 cycles. A load instruction that misses both caches takes roughly 80 cycles (wetherefore assume thatM = 80). While the PowerPC 604 may have up to four outstanding load/storeinstructions, memory access is not pipelined.As far as prefetching is concerned, the PowerPC 604 supports a special Data Cache Block Touch(dcbt) instruction that fetches the cache line which corresponds to its virtual e�ective address (VEA)into the cache. While our algorithm seems to be designed to use such an instruction, we decided touse a standard non-blocking register load instruction instead (see [16] for a discussion of this issue).4.2. Implementation DetailsWe implemented the algorithm for both single and double precision oating point numbers. Asdescribed in Section 3.1, when breaking up matrix multiplication into phases, the algorithm designercan sequence the phases to maximize tile reuse. Since our target platform su�ers from high memorylatency, we indeed took advantage of this observation. In particular, we choose to reuse every C-tilein every N=P2 consecutive phases before replacing it. For the single precision implementation, wechoose the following values for the tile-size parameters: P1 = P3 = 32 and P2 = 16.Proposition 4.1. For single precision implementation on the IBM RS/6000 43P Model 7248, thechoice P1 = P3 = 32 and P2 = 16 complies with both Equations (2) and (3), assuming the inputmatrices are at least of size 6� 6.Proof. Each A-tile and each B-tile have 512 elements (or 2KB in size), while each C-tile has 1024elements (or 4KB in size). We see that a triplet has 2KB+ 2KB+ 4KB = 8KB. Since the cache is16KB in size, Equation (2) is satis�ed.The total amount of work per phase is W = P1P2P3 = 32 �16 �32 = 16384. Plugging in Equation(3) the values for M , P1, P2, P3, I , and L, we have:M IL � (P1P2 + P2P3 + 2P1P2P3N2) = 80 432(512 + 512 + 216384N) � 16384 =WThis inequality holds for all N � 16=3. Since we assume N � 6, Equation (3) is satis�ed.When choosing to reuse C-tiles the frequency of prefetches is dependent on N . Since N is aninput parameter of our algorithm, prefetching data from C at the correct frequency would haverequired the use of code that checks, at relatively high granularity, whether a prefetch should beexecuted. For the e�ciency of implementation, we design C prefetch code to execute outside of theinner loops, prefetching only A- and B-tiles inside the inner-most loop. Since we have 4KB of data,which �lls 128 cache lines, to prefetch during 16384 cycles, a line should be prefetched once every 128cycles. To e�ciently interleave the prefetch instructions in the tile multiplication code, we unroll theinner-most loop so that its computations take 256 cycles, long enough for one prefetch of A and one

Matrix Multiplication: A Case Study of Algorithm Engineering 106struct Triplet ffloat A tile[P1][P2];float C half1[P1][P3=2];float B tile[P2][P3];float C half2[P1][P3=2];g; Figure 3: Conict free mappingprefetch of B. As the processor supports outstanding memory requests, the timing of the relativelyfew prefetch instructions for the next C-tile, executed outside of the inner loop, is not crucial.To allow conict-free mapping of two tile triplets into the cache, the matrices are �rst copiedinto a page-aligned array of the Triplet structure, as shown in Figure 3.Proposition 4.2. For single precision implementation on the IBM RS/6000 43P Model 7248, copy-ing the tiles of the three matrices to a page-aligned array of the Triplet structure satis�es Condition3.1.Proof. The array is page-aligned, each structure is exactly the size of two pages, and the page sizeis the same as the L1 way size. This implies that every A-tile is mapped into sets 0 to 63 of thecache, exactly once, and so is every B-tile. For sets 64 to 127 of the cache, there are two lines ofeach C-tile mapped into each set. As the cache is 4-way set associative, Condition 3.1 is satis�ed,allowing the simultaneous mapping of any two triplets of tiles into the cache.To implement the tile multiplication code, we used tiling at the register level. We divided B-tilesinto sub-tiles of size 4� 4 elements each. A- and C-tiles are divided accordingly into vertical stripes.In our inner-most loops we load a single sub-tile of B into 16 registers and then traverse a 4-elementwide vertical stripe of both A and C. In each iteration, we multiply four elements of A by a sub-tileof B, while updating four elements of C, totaling 16 scalar multiplications (this loop is unrolled 16times, so that it runs in 256 cycles).Mapping of elements within the tile storage area is designed such that �rst access made by thetile multplication code occur in increasing address order. A and C-tiles are copied in vertical stripes,four element wide. Each such 4-element sub-row occupies consecutive memory addresses, and thesesub-rows are ordered in column-major order. B-tiles are copied such that every sub-tile of size 4� 4occupies a contiguous area of memory. These sub-tiles are again arranged in column-major orderwithin the tile.Prefetches are carried out according to the tiles' layout in memory, i.e., in order of increasingaddresses. The prefetches of A and B are interleaved within the inner-most loop; one from A andthen one from B. Prefetches for the two halves of C are interleaved, with each half accessed inincreasing adderss order. Every block is prefetched only once, satisfying Condition 3.2.Proposition 4.3. For single precision implementation on the IBM RS/6000 43P Model 7248, ourimplementation complies with Condition 3.3.For a complete proof of Proposition 4.3, see [16].For double precision data, the bandwidth requirements are higher by a factor of 2 as comparedto single precision. In addition, the space taken up in the cache is also doubled. This aggrevates theproblem of hiding the memory latency. No values for P1, P2 and P3 allows us to hold two tripletsof tiles in the cache simultaneously and to hide memory latency completely. Therefore, we forgo the

Matrix Multiplication: A Case Study of Algorithm Engineering 107
110

120

130

140

150

768 1024 1280 1536

N

EDCU
ESSL

114%

116%

118%

120%

122%

124%

126%

128%

130%

132%

768 1024 1280 1536

N(a) (b)Figure 4: Performance of double precision matrix multiplication on the RS/6000 43P Model 7248: (a) InMFLOPS, (b) Relative to ESSLprefetching of data from C, relaxing Equation (2) to require that the cache be large enough to holdtwo pairs of A- and B-tiles and a single C-tile simultaneously, and relaxing Equation (1) to requirethat a single phase runs long enough to prefetch one A-tile and one B-tile.For the double precision implementation we choose the following values for the tile size parame-ters: P1 = P3 = 32 and P2 = 8. Given these tile parameters, each A-tile and each B-tile is 2KB insize, while each C-tile is 8KB in size. The total space required by two pairs of A- and B-tiles andone C-tile is therefore 16KB, the same as the cache size.The total amount of work per phase is W = P1P2P3 = 8192. During this time we prefetch onlyone A-tile and one B-tile, totalling in 128 cache lines. This means that prefetch instructions shouldbe executed once every 64 cycles. Since memory latency is M = 80 machine cycles, the prefetchinstruction hide only 80% of the memory latency for accesses to A and B.To provide partial remedy to the performance penalty observed in the double precision case, wedeveloped a variant that departs from our generic cache-aware matrix multiplication algorithm. Wetook advantage of the fact that C is used for output only, and therefore the initial values of C areall zeros. We therefore used a single memory bu�er to hold C-tiles, which is always resident in thecache. Whenever a new C-tile is required, the old one is saved into the original C matrix and thebu�er is cleared. By using a single, cache-resident, bu�er to hold C-tiles, we compensate for ourinability to prefetch the data from C. However, since the L1 cache uses allocate on write policy,copying back of the C-tiles allocates cache lines to hold the modi�ed data of the C matrix. Thisallocation may cause ushing of prefetched data from A- and B-tiles that is intended for use in thenext tile multiplication phase. Since the combined size of an A-tile and of a B-tile is only 4KB,compared to 8KB for a single C-tile, the saving of delays for access to C-tiles is advantageous.4.3. ResultsFigure 4 (a) shows the performance in MFLOPS of our EDCU (Enhanced Data Cache Utilization)single C-bu�er double precision matrix multiplication vs. IBM's BLAS-3 (shown as ESSL). Figure 4(b) shows the relative performance of these two implementations.For double precision data we get the following average performance �gures for the sizes of inputswe checked: IBM's ESSL implementation achieves 115 MFLOPS, our standard implementationachieves 130 MFLOPS, and our single C-bu�er implementation achieves 140.8 MFLOPS, a 21.5%average advantage over ESSL. Another feature of our algorithm that can be clearly seen from Figure4 is that, performance-wise, our design is less sensitive to changes in the size of the data in comparisonto ESSL. The performance instability evident in ESSL allows the single C-bu�er implementation tooutperform the ESSL implementation by up to 31.8% on some double precision matrices.

Matrix Multiplication: A Case Study of Algorithm Engineering 108For single precision data, the tile sizes we use are su�cient to allow prefetching of all the requireddata. However, the memory bandwidth is not taxed as heavily in the single precision implementation,as it is in the double precision implementation, and so the potential for performance improvementvia memory latency hiding is smaller. This is clearly demonstrated by the performance achieved bythe naive 3-loop O(N3) matrix multiplication algorithm. While for double precision the naive 3-loopimplementation achieves only 13.6 MFLOPS on average, allowing us to achieve 935% performanceincrease over it, its performance is almost doubled to 23.7 MFLOPS on average for single precisionnumbers. For the single precision implementation, we got the following average performance �guresfor the sizes of input we checked: IBM's ESSL implementation achieves 154.9 MFLOPS while ourEDCU implementation achieves 165.5 MFLOPS, a 7% average increase over ESSL, and up to 13%for some single precision matrices.The main reasons for not reaching the full potential of the CPU are related to the speci�c machinewhich does not �t the assumptions taken by the algorithm. First, the machine has a relativelysmall L1 cache, when considering its memory latencies. Our double precision implementation couldnot prefetch the C-tile, forcing us to use instead, a single C bu�er that is copied back on everyN=P2 tile multiplication phases. The copy back operation pollutes the cache, causing delays insubsequent accesses to A- and B-tiles. In addition, since the tile sizes we use allow only 64 cyclesbetween prefetch instructions, we cannot fully hide memory latency, which is as high as 80 cycles.Therefore, the inner-most loop of the double precision implementation is prolonged by roughly 25%(the di�erence between 80 and 64). Second, the direct mapped L2 cache forces a full inclusion policyon the instruction and data L1 caches. Therefore, some data may be ushed out of the L1 cachebecause of conicts in the L2 cache, which may even result from instruction access. Third, as notedin Section 3.2, before engaging in the actual multiplication process, we copy our input matrices intoan array of interleaved tiles. For the sake of simplicity, we choose to carry these copying operationso�-line. These copying operations take time and our measurements indicate that the overhead forthe input sizes we used is at least 14% of the peak for double precision data. Clearly, since thisoverhead is O(N2) its relative inuence on performance diminishes as the size of the data increases.5. ConclusionTo achieve good performance, numeric algorithms should balance computation with data move-ment. We have presented a new cache-awareO(N3) matrix multiplication algorithm. This algorithmcan be proven to su�er no memory latency when running on an architecture that �ts the assump-tions of the machine model introduced. Furthermore, this algorithm uses only the smallest part ofthe cache that can still balance the memory bandwidth. Using a larger cache than the minimumrequired will have no further impact on performance.Our experiments show that, even for platforms that are not idealy suited for the suggestedtechniques, the implementation of the matrix multiplication algorithm we present is competitive: Itachieves performance that is higher by 6.8{31.8% than that attained by the vendor's state of the artimplementation, which also uses advnaced memory hierarchy oriented optimizations [5].While the technique presented in this work was demonstrated for O(N3) matrix multiplication,generic guidelines and conditions for cache-aware design of compute intensive algorithms were for-mulated and are presented in full in [16]. Furthermore, insight regarding e�ective exploitation ofmodern hardware has been gained. We believe that some of our concepts may be generalized for useas compile-time techniques.6. AcknowledgementsMany members of the IBM Haifa Research Lab helped us signi�cantly during this research. Weare speci�cally indebted to David Bernstein for his helpful advice, that contributed greatly to this

Matrix Multiplication: A Case Study of Algorithm Engineering 109work.References[1] R. C. Agarwal, F. G. Gustavson and M. Zubair, Improving Performance of Linear AlgebraAlgorithms for Dense Matrices, Using Algorithmic Prefetch, IBM J. Research & Development,38(3) (1994) 265{275.[2] D. Callahan, K. Kennedy and A. Porter�eld, Software Prefetching, proceedings of ASPLOS'91,1991, 40{52.[3] IBM Engineering and Scienti�c Subroutine Library for AIX, Version 3 { Guide and Reference,IBM Corp. 1997.[4] K. Farkas and N. Jouppi, Complexity/Performance Tradeo�s with Non-Blocking Loads, Pro-ceedings of ISCA, 1994, 211-222.[5] F. G. Gustavson, Personal Communications, 1998.[6] S. Hoxey, F. Karim, B. Hay and H. Warren (eds.), The PowerPC Compiler Writer's Guide,IBM Microelectronics Division, 1996.[7] J. L. Hennessy and D. A. Patterson, Computer Architecture: a Quantitive Approach, 2 ed.,1996.[8] M. S. Lam, Software Pipelining: An E�ective Technique for VLIW Machines, SIGPLAN'88,1988, 318{328.[9] M. S. Lam, E. E. Rothenberg and M. E. Wolf, The Cache Performance and Optimizations ofBlocked Algorithms, proceedings of ASPLOS'91, 1991, 63{74.[10] J. H. Lee, M. Y. Lee, S. U. Choi and M. S. Park, Reducing Cache Conicts in Data CachePrefetching, Computer Architecture News, 22(4), (1994) 71{77.[11] T. Mowry, Tolerating Latency Through Software-Controlled Data Prefetching, Ph.D. Thesis,Stanford university, 1994.[12] T. C. Mowry, M. S. Lam and A. Gupta, Design and Evaluation of a Compiler Algorithm forData Prefetching, proceedings of ASPLOS'92, 1992, 62{73.[13] J. J. Navarro, E. Garc�ia-Diego, J. R. Herrero, Data Prefetching and Multilevel Blocking forLinear Algebra Operations, proceedings of ICS'96, pp. 109{116, 1996.[14] PowerPC 604 RISC Microprocessor User's Manual, IBM Microelectronics and MotorolaInc. 1994.[15] K. E. Stewart, Using the XL Compiler Options to Improve Application Performance, PowerPCand POWER2, Technical Aspects of the new IBM RISC System/6000, IBM Corp. 1994.[16] I. Steinwarts, Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization,M.Sc. thesis, Department of Computer Science, The Technion | Israel Institute of Technology,1998.[17] O. Temam, E. D. Granston and W. Jalby, To Copy or Not to Copy: A Compile-Time Techniquefor assessing When Data Copying Should be Used to Eliminate Cache Conicts, SUPERCOM-PUTING'93 1993, 410{419.

110Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 110{120Guarding Scenes against Invasive HypercubesMark de Berg1Department of Computer Science, Utrecht UniversityP.O.Box 80.089, 3508 TB Utrecht, the Netherlandse-mail: markdb@cs.uu.nlHaggai David2Department of Mathematics and Computer Science, Ben-Gurion University of the NegevBeer-Sheva 84105, Israele-mail: davidcha@cs.bgu.ac.ilMatthew J. Katz2Department of Mathematics and Computer Science, Ben-Gurion University of the NegevBeer-Sheva 84105, Israele-mail: matya@cs.bgu.ac.ilMark Overmars1Department of Computer Science, Utrecht UniversityP.O.Box 80.089, 3508 TB Utrecht, the Netherlandse-mail: markov@cs.uu.nlA. Frank van der Stappen1Department of Computer Science, Utrecht UniversityP.O.Box 80.089, 3508 TB Utrecht, the Netherlandse-mail: frankst@cs.uu.nlandJules Vleugels3Department of Computer Science, Utrecht UniversityP.O.Box 80.089, 3508 TB Utrecht, the Netherlandse-mail: jules@cs.uu.nlABSTRACTA set of points G is a �-guarding set for a set of objects O, if any hypercube not containing apoint from G in its interior intersects at most � objects of O. This de�nition underlies a newinput model, that is both more general than de Berg's unclutteredness, and retains its mainproperty: a d-dimensional scene satisfying the new model's requirements is known to have alinear-size binary space partition.We propose several algorithms for computing �-guarding sets, and evaluate them experi-mentally. One of them appears to be quite practical.1Supported by the ESPRIT IV LTR Project No. 21957 (CGAL).2Supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities.3Supported by the Netherlands' Organization for Scienti�c Research (NWO).

Guarding Scenes against Invasive Hypercubes 1111. IntroductionRecently de Berg et al. [4] brought together several of the realistic input models that havebeen proposed in the literature, namely fatness, low density, unclutteredness, and small simple-covercomplexity (see de�nitions below). They showed that these models form a strict hierarchy in thesense that fatness implies low density, which in turn implies unclutteredness, which implies smallsimple-cover complexity, and that the reverse implications are false.For each of the models above, data structures and algorithms were proposed [1, 7, 8, 9, 10, 11],that perform better than their more general counterparts. Assume an e�cient algorithm exists forsome problem under one of the models, say, M1. A natural question that arises is: Does there alsoexist an algorithm for the same problem under the more general model M2, that is more or lesscomparable to the former algorithm in terms of e�ciency. Clearly, it would be useful to have suchan algorithm.In [1] de Berg presents an algorithm for computing a linear-size binary space partition (BSP) foruncluttered d-dimensional scenes, which enables him (see [2]) to construct a linear-size data structuresupporting logarithmic-time point location for such scenes. We have de�ned a new input modelwhich is both more general than unclutteredness, and retains the property that a d-dimensionalscene satisfying the new model's requirements is known to have a linear-size BSP, and consequentlya linear-size data structure supporting logarithmic-time point location. However, in order to computea linear-size BSP for such a scene, using de Berg's algorithm, we must �rst compute a linear-sizeguarding set for the scene (see de�nition below). This paper deals primarily with the problem ofcomputing a small guarding set for such scenes. We describe three algorithms for this task andevaluate them both theoretically, but mainly experimentally. (We suspect that the problem ofcomputing a smallest guarding set for such scenes is NP-complete.)The notion of guarding sets was introduced very recently by de Berg et al. [3]. They showed thathaving a linear-size guarding set is essentially equivalent to having small simple-cover complexity,and used this result to prove that the complexity of the free space of a bounded-reach robot with fdegrees of freedom moving in a planar uncluttered scene or in a planar scene with small simple-covercomplexity is �(nf=2).2. PreliminariesWe �rst de�ne the two more general input models in the hierarchy of [4]. Unclutteredness wasintroduced by de Berg [1] under the name bounding-box-�tness condition. The model is de�ned asfollows. (Throughout the paper, whenever we mention a square, cube, rectangle, etc., we assume itis axis-parallel.)De�nition 2.1. Let O be a set of objects in <d. We say that O is �-cluttered if any hypercubewhose interior does not contain a vertex of one of the bounding boxes of the objects in O is intersectedby at most � objects in O. The clutter factor of O is the smallest � for which it is �-cluttered.We sometimes call a scene uncluttered if it is �-cluttered for a small constant �.The following de�nition of simple-cover complexity is a slight adaptation of the original de�nitionby Mitchell et al. [7], as proposed by de Berg et al. [4]. Given a scene O, we call a ball �-simple ifit intersects at most � objects in O.De�nition 2.2. Let O be a set of objects in <d, and let � > 0 be a parameter. A �-simple coverfor O is a collection of �-simple balls whose union covers the bounding box of O. We say that O has(s; �)-simple-cover complexity if there is a �-simple cover for O of cardinality sn.We say that a scene has small simple-cover complexity if there are small constants s and � such thatit has (s; �)-simple-cover complexity.

Guarding Scenes against Invasive Hypercubes 112We close this preliminary section with a description of a variant of the �rst phase of de Berg'sBSP-decomposition algorithm [1]. The algorithm has as input a set P of m points in <d. Its outputis a partitioning of a bounding cube of P into O(m) hypercubes and L-shapes, with the propertythat they do not have a point from P in their interior. (An L-shape is the geometric di�erence of ahypercube � with a hypercube �0 � � of less than half its size and sharing a vertex with it.) Thepartitioning is constructed with a recursive algorithm, whose planar version is given below.Suppose we have a square � at some stage in the subdivision process; initially � can be anysquare containing all points from P . Let P� denote the subset of points from P contained in theinterior of �. The square � is handled according to the following rules.1. If P� = ; then � is a cell in the �nal partitioning.2. If P� 6= ; and not all points of P� lie in the interior of a single quadrant of �, then � issubdivided into four quadrants, which are handled recursively.3. If P� 6= ; and all points of P� lie in the interior of a single quadrant of �, then � is subdividedas follows. Let �0 be the smallest square containing the points from P� that shares a vertexwith �. Note that �0 has a point from P� on its boundary. Now � is handled recursively, andthe L-shape � n �0 is a cell in the �nal partitioning.By charging each such subdivision step to either a partitioning of the set P or to a point from Pfalling onto a cell boundary, one can show that the number of cells is at most 2djPj+ 1; see [1] fordetails. (This bound is slightly di�erent from the bound reported by de Berg because he furthersubdivides the L-shapes into d hyperrectangles to obtain a BSP decomposition.) We obtain thefollowing lemma.Lemma 2.1. (de Berg [1]) Let P be a set of points in <d, and let �P be a hypercube containing allpoints from P. Then there exists a partitioning of �P into O(jPj) hypercubes and L-shapes withoutpoints from P in their interior.3. Guarding setsA guarding set for a collection of objects is, loosely speaking, a set of points that approximatesthe distribution of the objects. More precisely, guarding sets are de�ned as follows.De�nition 3.1. Let O be a set of objects in <d, let R be a family of subsets of <d called ranges,and let � be a positive integer. A set G of points is called a �-guarding set for O against R, if anyrange from R not containing a point from G in its interior intersects at most � objects from O.We often call the points in G guards, and refer to ranges not containing guards as empty ranges.Let us give an example. Suppose the set O is a set of n pairwise disjoint discs in the plane, andthat the family of ranges is the family of all axis-parallel squares. For a disc D, de�ne GD to bethe set of the following �ve points: the center of D plus the topmost, bottommost, leftmost, andrightmost point of D. When a square � intersects D, and � does not contain a point from GD inits interior, then D contains a vertex of �. (We assume all geometric objects are open.) Hence, theset G = fGDjD 2 Og is a 4-guarding set of size 5n for O against the family of squares.From now on, we assume that the family of ranges consists of all axis-parallel squares (in <2) andall axis-parallel hypercubes (in <d). This is justi�ed by a theorem proven in [3] that implies that itdoes not matter (from an asymptotic point of view) whether we study guarding against axis-parallelhypercubes, against balls, or against convex fat objects.We are especially interested in scenes for which there exists a �-guarding set of size cn, where �and c are small constants. We say that such scenes are guardable. Let O be a guardable scene andlet G be a �-guarding set for O of size m = O(n). Then according to Lemma 2.1, it is possible to

Guarding Scenes against Invasive Hypercubes 113
m segmentsB1=mm columnsm rows ...

Figure 1: Guardable but not unclutteredcompute a set S of O(m) empty hypercubes and L-shapes covering the scene. Any hypercube in Sintersects at most � objects from O, and any L-shape in S intersects at most (2d� 1)� objects fromO (since it can be covered by 2d � 1 hypercubes that are contained in it). Thus, loosely speaking,by cutting each of the hypercubes and L-shapes in S into a constant number of simple pieces, weobtain a linear-size BSP for O; see [1]. This �nal phase however requires the objects to be eitherpolyhedra of constant complexity or convex. We conclude that guardable d-dimensional scenes havea linear-size BSP, and therefore also a linear-size data structure for logarithmic-time point location(by using a balanced version of the underlying BSP tree [2]). In the next section we focus on theproblem of computing small �-guarding sets for guardable scenes. (We do not claim however thatthe best way to compute small BSPs for guardable scenes is by computing a small guarding set andapplying de Berg's algorithm.)Next we establish the relation between guardable scenes and uncluttered scenes, and betweenguardable scenes and scenes with small simple-cover complexity. (Recall that an uncluttered scenehas small simple-cover complexity, but there exists scenes with small simple-cover complexity thatare not uncluttered.) A scene is �-cluttered if and only if the bounding-box vertices of the objectsform a �-guarding set (this is the de�nition of unclutteredness). Figure 1 shows that there existsscenes that are guardable but not uncluttered. Assume that we add to a given uncluttered scenem = pn horizontal line segments, each of length 1 + ", that do not intersect the bounding box ofthe original scene. (In Figure 1 the original scene consists of the m � m = n tiny cubes). Thenthe new scene is not uncluttered, since the unit square B is empty (of bounding-box vertices) andis intersected by m objects. However, by placing O(m) equally-spaced guards between each pairof consecutive line segments, we obtain (together with the bounding-box vertices of the m2 + mobjects) a linear-size �-guarding set for the new scene, for some small constant �. Thus the newscene is guardable.Actually, a (somewhat surprising) theorem appearing in [3] shows that in the plane a scene isguardable if and only if it has small simple-cover complexity.4. Computing guarding setsLet O be a set of n objects in the plane, and assume that O has a �nite �-guarding set againstaxis-parallel squares. We describe three algorithms for computing a �-guarding set, G, for O.Let s0 be a smallest bounding square of the input scene. All three algorithms construct a quadtree T , through which a guarding set is computed. Each node of T represents a square that iscontained in s0, where the root represents s0 itself. The collection of squares associated with theleaves of T forms a subdivision of s0 into squares.Algorithm I: In the �rst algorithm, A1, we construct the tree in the standard way, except that thestopping criterion is adapted to our purpose. Initially T consists of a single (root) node representingthe bounding square s0, and G is empty. Now, for a node v representing a square sv, we check

Guarding Scenes against Invasive Hypercubes 114
suNW NE SE SW

uFigure 2: The neighborhood of a node u associated with square su is shown in greywhether sv is intersected by more than b�=2c objects of O. If the answer is negative, then we donot expand v; it becomes a leaf of T , and we add the four corners of sv to the guarding set G. If theanswer is positive, then we continue expanding the tree by creating four new nodes correspondingto the four quadrants of sv and attaching them as the children of v.Claim 4.1. The set G, computed by A1, is a �-guarding set for O against squares.Proof. Let c be a square and assume that c \ G = ;. If x is a corner of a square s associated witha leaf of T , then x does not lie in the interior of c (since x 2 G). Therefore, c can be covered by atmost two squares associated with leaves of T . Since each of these at most two squares is intersectedby at most b�=2c objects of O, we conclude that c is intersected by at most � objects of O. (Notethat if c is not fully contained in s0, then c \ s0 is covered by a single square associated with a leafof T , so, in this case, c is intersected by at most b�=2c objects of O.)Algorithm II: The second algorithm, A2, di�ers from A1 in (i) the stopping criterion and (ii) therule by which points are added to G. We stop expanding a node v associated with a square sv, ifsv is intersected by at most b�=6c objects of O. The guarding points are the corners of the squaresassociated with the internal nodes of T (rather than the corners of the squares associated with theleaves, as in A1).Claim 4.2. The set G, computed by A2, is a �-guarding set for O against squares.Proof. Let c be a square and assume that c\G = ;. If sv is a square associated with a leaf v of T ,then it is impossible that sv is fully contained in (the interior of) c (because the corners of sp, thesquare associated with the parent of v, are in G, and sv shares a corner with sp). Moreover, it is easyto verify that the number of vertices of the subdivision of s0 (formed by the squares associated withthe leaves of T) that lie in the interior of c cannot exceed 2. Therefore, since c is a square, it can becovered by at most six squares associated with leaves of T . Each of these squares is intersected byat most b�=6c objects of O, hence c is intersected by at most � objects of O.Algorithm III: The third algorithm, A3, is completely di�erent; it is based on the notion ofneighborhood.De�nition 4.3. A node v associated with square sv is a neighbor of a node u associated with squaresu, if sv is at least as large as su, and either an edge of su is contained in an edge of sv, or sv sharesa vertex with su.De�nition 4.4. The neighborhood of a node u in T is the set of all its neighbors (see Figure 2).In the third algorithm, A3, the quad tree is not constructed in the standard way; it is constructedas follows. Initially, as in the standard way, T consists of a single node representing the bounding

Guarding Scenes against Invasive Hypercubes 115
44 444 44 4 44 44 44 44

8 88 88 88 8 8 88 88 88 8

A1 A2 A3� = 32
� = 72
� = 32

1 1 1 1111 1 1 11112 12 12 1212 12 12 1212 12 12 1212 12 12 12
Figure 3: A `winning' scene for each of the algorithmssquare s0 and G is empty. Now, for each node u in level i, associated with square su, we checkwhether the union of su and the squares associated with the nodes in the neighborhood of u isintersected by more than � objects of O. If so, we add the four corners of su to G, and expand uby creating four new nodes corresponding to the four quadrants of su and attaching them as thechildren of u. After applying this check to all nodes in level i (in arbitrary order), we move to leveli+1 and apply this check to all nodes in level i+1, and so on. We stop when a level is reached forwhich none of the nodes needs to be expanded. Note that all neighbors of a node u of level i areleaves of the current tree (i.e., the tree consisting of levels 0 to i), and their number is at most 8.Claim 4.5. The set G, computed by A3, is a �-guarding set for O against squares.Proof. Let c be a square and assume that c \ G = ;. We know (see proof of Claim 4.2) that sincethe guarding points are the corners of the squares associated with the internal nodes of T , c can becovered by at most six squares associated with leaves of T . But, the neighborhood of one w (outof two) of these six leaves covers c. Since w is a leaf, its neighborhood is intersected by at most �objects of O and therefore c is intersected by at most � objects.Let us discuss the advantages and disadvantages of the three algorithms above. Figure 3 showsthat for each of the algorithms there exists a scene for which it is better than the other two, inthe sense that it produces a smaller guarding set. The left column corresponds to A1, the middlecolumn to A2, and the right column to A3.In the �rst scene that we consider, each of the quadrants of s0 contains exactly �=2 objects. Inthe top line of Figure 3, the three subdivisions obtained for such a scene (assuming � = 32) areshown. The numbers in the middle subdivision are the numbers of objects intersecting the cells ofthe subdivision. (Their sum is greater than n = 64, since an object can intersect more than onecell of the subdivision.) In the left subdivision each of the quadrants contains exactly 16 objects.The appropriate numbers for the right subdivision are easily obtained from those for the middle

Guarding Scenes against Invasive Hypercubes 116one, assuming each of the tiny cells is intersected by a single object. The size of the guarding setcomputed by A1 is 9, while the sizes for A2 and A3 are 17 and 25, respectively.The second scene we consider consists of 16�=6 small objects that are distributed uniformally ins0. Assuming � = 72, the three subdivisions that are obtained for such a scene are shown in themiddle line. The size of the guarding set computed by A2 is 9, while the sizes for A1 and A3 are 25and 17, respectively.The third scene consists of 4� small objects that are concentrated near the corners of s0. Thebottom line corresponds to the three subdivisions that are obtained for such a scene, assuming� = 32. The size of the guarding set computed by A3 is 9, while the sizes for A1 and A2 are 45 and41, respectively.Scenes such as triangulations in which there exist points that lie on the boundaries of severalobjects might be problematic, especially for the �rst two algorithms. We call such scenes degeneratescenes. For a degenerate scene, it is possible that one or more of these special points must be presentin any �-guarding set that is computed for the scene. (Otherwise we could place a small enoughsquare around such a point that is both empty and is intersected by more than � objects.) On theother hand, since the guarding points generated by our algorithms are corners of squares associatedwith nodes of a quad tree, it is possible that these special points will never arise as potential guardingpoints.The advantage of A3, with respect to the above problem, becomes more evident when dealingwith 3-dimensional scenes. The stopping criterion of A1 and A2 deteriorates, when moving to 3-space, while the stopping criterion of A3 does not change (although it becomes more di�cult to �ndthe set of neighbors of a node).We omit from this version (theoretical) observations concerning the size of the guarding set thatis computed by algorithm A1 (alternatively, A2). In the full version of this paper, we also discussthe e�ect of incorporating into our algorithms a so-called shrinking step, similar to the last step inde Berg's algorithm (described at the end of Section 2).5. Experimental evaluationWe have implemented the three algorithms described in the preceding section, using the CGALsoftware library of geometric data structures and algorithms [5], and have performed various exper-iments in order to learn about their suitability in practice.Our primary goal was to evaluate the algorithms, according to the sizes of the guarding sets thatthey produce. Recall that the size of the guarding set is closely related to the size of the BSP anddata structures that are subsequently constructed for the input scene, assuming de Berg's algorithms[1, 2] are being used.We also applied our algorithms to uncluttered scenes with clutter factor �, and checked (i)whether the �-guarding sets that are obtained tend to be smaller than 4n (recall that, by de�nition,the set consisting of all 4n bounding-box vertices is a �-guarding set for such scenes), and (ii)assuming the answer is positive, what is the smallest value, �0 � �, for which the scene still has a�0-guarding set.We considered two types of scenes: polyhedral terrains and randomly generated collections oftriangles. Polyhedral terrains are often used to represent pieces of the earth's surface in GeographicInformation Systems. Most of the polyhedral terrain algorithms work with the terrain's projectionon the xy-plane. Thus our terrain test scenes were generated from DEM �les of certain areas inCanada and the U.S. as follows. A DEM �le speci�es the elevation of a set of sample points in theunderlying area, where the sample points form a regular grid. Using the so-called VIP method [6]the m most important points were extracted for various values of m. The terrain test scene wasthen generated by computing the Delaunay triangulation of the extracted sample points.The random scenes were generated by repeating the following step until the desired number oftriangles was reached: Generate a random triangle within a �xed square, and, if it does not intersect

Guarding Scenes against Invasive Hypercubes 117Death Valley San Bernardinon clutter � A1 A2 A3 n clutter � A1 A2 A3factor factor202 25 72 62 147 56 202 16 60 49 119 4025 307 x 232 20 278 x 17224 307 x 251 16 x x 27122 x x 291 15 x x 27120 x x 328 13 x x 36418 x x 391 11 x x 52917 x x 412 10 x x 67716 x x 433 402 18 100 40 92 4214 x x 492 66 75 198 7413 x x 564 22 462 x 28612 x x 685 18 x x 39911 x x x 16 x x 505402 29 66 100 284 105 14 x x 63629 427 x 30722 610 x 43920 x x 485Table 1: Two Death Valley scenes and two San Bernardino scenesRandom scenesn clutter � A1 A2 A3factor52 9 20 34 116 259 184 1317 938 184 1317 1097 315 1317 1396 315 1317 1835 669 x 265100 9 12 159 525 11010 217 x 1719 307 x 1958 307 x 2277 601 x 2646 601 x 3495 1347 x 518150 16 20 126 425 8916 173 1148 12412 315 1148 19510 401 x 2408 597 x 3986 1115 x 662Table 2: Three random scenes

Guarding Scenes against Invasive Hypercubes 118any of the triangles in the current collection of triangles, add it to this collection.The results of some of our tests are presented in the following two tables. The left part of Table 1corresponds to two \Death Valley" scenes, consisting of 202 and 402 triangles, respectively. Theclutter factors of these scenes are 25 and 29, respectively. The right part of Table 1 corresponds totwo \San Bernardino" scenes, and Table 2 to three random scenes. An `x' entry in the column ofalgorithm Ai means that for the appropriate value of �, Ai failed to produce a guarding set, beforesome halting condition was ful�lled (indicating that Ai would probably never terminate without thehalting condition).For each of the test scenes, we apply the three algorithms for various values of �, beginningwith rather high values and ending around the smallest value �0 for which one of the algorithmsstill succeeds in producing a guarding set. As expected (see discussion at the end of the previoussection), the �rst two algorithms begin to fail once the values are less than 2�0 and 6�0, respectively.Consider for example the �rst Death Valley scene (see Figure 4 left). Since the number ofobjects in this scene is 202 and the clutter factor is 25, we can obtain a 25-guarding set of size atmost 4n = 808, by taking all bounding-box vertices (see Figure 4 right). However, both A1 and A3produce much smaller 25-guarding sets (see Table 1). For this scene, the value �0 is about 12, andalgorithm A3 produces a 12-guarding set of size 685, which is still less than 4n. Since �0 is about 12,it is not surprising that algorithm A2 fails for values below 24, and that algorithm A3 fails for evenhigher values. Figures 5{6 show both the guarding set and the partition computed by algorithm A3for �-values 25 and 16.In general, the sizes of the guarding sets produced by A2 are much larger than the correspondingsizes of A1 and A3, and the sets produced by A3 are usually smaller than those produced by A1. Inconclusion, algorithm A3 seems to perform quite well in practice.All tests were performed on a SPARC Ultra-Enterprise machine. The running time for smallscenes never exceeds a few seconds (e.g., A1 computed a 9-guarding set for the second random scenein 0.7 seconds), and for large scenes a few tens of seconds (e.g, A3 computed a 21-guarding set fora Death Valley scene consisting of more than 2000 objects in 50.77 seconds).

Figure 4: Death Valley (�rst scene) and the 25-guarding set consisting of all bounding-box vertices

Guarding Scenes against Invasive Hypercubes 119

Figure 5: Left: A 25-guarding set computed by A3. Right: The scene together with the partition computedby A3 for � = 25References[1] M. de Berg. Linear size binary space partitions for fat objects. In Proc. 3rd Annu. EuropeanSympos. Algorithms, volume 979 of Lecture Notes Comput. Sci., pages 252{263, Springer-Verlag,1995.[2] M. de Berg. Linear size binary space partitions for uncluttered scenes. Technical report UU-CS-1998-12, Dept. Comput. Sci., Utrecht Univ., 1998.[3] M. de Berg, M. J. Katz, M. Overmars, A. F. van der Stappen, and J. Vleugels. Models andmotion planning. In Proc. 6th Scand. Workshop Algorithm Theory, Lecture Notes Comput. Sci.,Springer-Verlag, 1998. To appear.[4] M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input models forgeometric algorithms. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 294{303, 1997.[5] CGAL Computational Geometry Algorithms Library. www.cs.uu.nl/CGAL.[6] Z. Chen and J. A. Guevara. System selection of very important points (VIP) from digital terrainmodels for constructing triangular irregular networks. In Proc. 8th Internat. Sympos. Comput.-Assist. Cartog. (Auto-Carto), pages 50{56, 1988.[7] J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-sensitive ray shooting. In Proc. 10th Annu.ACM Sympos. Comput. Geom., pages 359{368, 1994.[8] M. H. Overmars and A. F. van der Stappen. Range searching and point location among fatobjects. J. Algorithms, 21:629{656, 1996.[9] O. Schwarzkopf and J. Vleugels. Range searching in low-density environments. Inform. Process.Lett., 60:121{127, 1996.

Guarding Scenes against Invasive Hypercubes 120

Figure 6: Left: A 16-guarding set computed by A3. Right: The scene together with the partition computedby A3 for � = 16[10] A. F. van der Stappen and M. H. Overmars. Motion planning amidst fat obstacles. In Proc.10th Annu. ACM Sympos. Comput. Geom., pages 31{40, 1994.[11] A. F. van der Stappen, M. Overmars, M. de Berg, and J. Vleugels. Motion planning in environ-ments with low obstacle density. Technical report UU-CS-1997-19, Dept. Comput. Sci., UtrechtUniv., 1997.

121Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 121{132Computing maximum-cardinality matchingsin sparse general graphsJohn D. Kececioglu1A. Justin PecqueurDepartment of Computer Science, The University of GeorgiaAthens, Georgia 30602-7404, USAe-mail: fkece,andreg@cs.uga.eduABSTRACTWe give an experimental study of a new O(mn�(m;n))-time implementation of Edmonds'algorithm for a maximum-cardinality matching in a sparse general graph of n vertices andm edges. The implementation incorporates several optimizations resulting from a depth-�rstorder to search for augmenting paths, and we study the iteraction between four heuristics, eachwith the potential to signi�cantly speed up the code in practice, through experiments withall sixteen possible variants. The experiments indicate that the simplest heuristic, an early-termination test for the depth-�rst search, results in the greatest performance gain, and yieldsan implementation that on graphs with large degree actually �nds an optimal solution in lesstime than a standard greedy heuristic. The resulting code appears to be the fastest amongthose publicly available on the classes of random, k-regular, union-of-k-cycle, and Euclideank-nearest-neighbor graphs for tests with up to 100,000 vertices and 500,000 edges with averagedegree from 1 to 10, achieving a maximum speedup of 50 over the two LEDA codes, and 4 and 350over two of the DIMACS implementation challenge codes, while never taking longer than theseimplementations.1. IntroductionOne of the classic problems of combinatorial optimization is maximum-cardinality matching ingeneral graphs [15]. A matching of an undirected graph G = (V;E) is a subset of the edges M � Esuch that no two edges inM touch a common vertex. Amaximum-cardinality matching is a matchingwith the maximum number of edges.Among the fundamental polynomial-time results in combinatorial optimization is Edmonds' al-gorithm for maximum-cardinalty matching in general graphs [8]. This paper gives an experimentalstudy of a new O(mn�(m;n))-time implementation of Edmonds' algorithm on large sparse graphswith n vertices and m edges. Our motivation comes from the problem in computational biologyof large-scale DNA sequence assembly [14], which can be approximated in the presence of errorusing maximum-weight matchings in sparse nonbipartite graphs [13]. For this problem, our ul-timate goal is an implementation of the O(mn logn)-time weighted-matching algorithm of Galil,Micali and Gabow [12], but to understand this intricate algorithm at the level of detail necessaryto produce a good implementation, we found ourselves forced to �rst understand the special caseof cardinality-matching, and hence the present initial work of implementing an e�cient, sparse,cardinality-matching algorithm.There have been several studies of cardinality-matching algorithms, notably from the �rst DI-MACS algorithm implementation challenge [6, 17]. Crocker [6] and Mattingly and Ritchey [17] give1Research supported in part by a National Science Foundation CAREER Award, Grant DBI-9722339.

Computing maximum-cardinality matchings in sparse general graphs 122implementations of the O(mpn)-time algorithm of Micali and Vazirani [20] and study its perfor-mance experimentally. Rothberg [25] gives an implementation of Gabow's O(n3)-time version [10]of Edmonds' algorithm. LEDA, a library of combinatorial and geometric data structures and algo-rithms designed by Mehlhorn and N�aher [18], provides an O(mn�(m;n))-time implementation [19]of Edmonds' algorithm. M�ohring and M�uller-Hannemann [22] and Magun [16] experimentally studyseveral O(m + n)-time heuristics for cardinality matching.In the next section we sketch Edmonds' algorithm. Section 3 follows with a discussion of ourimplementation, highlighting the optimizations and heuristics that we examined. Section 4 presentsresults from experiments on random and structured graphs with our implementation and those ofCrocker [6], LEDA [19], and Rothberg [25], which suggest that the new code is among the fastestavailable for large sparse graphs. Section 5 summarizes our results.2. Edmonds' algorithmWe now briey sketch Edmonds' algorithm [8]. As the algorithm is involved, we defer to readersfamiliar with its basic implementation to meet space guidelines. Good expositions may be found inTarjan [27], Ahuja, Magnanti and Orlin [1], and Moret and Shapiro [21].A vertex v is said to be unmatched with respect to matching M if no edge of M touches v. Analternating path in G with respect to a matching M is a path whose edges alternate between beingin and out of M . An augmenting path is an alternating path that begins and ends at an unmatchedvertex. A blossom is an alternating path that forms a cycle of odd length; note that on any suchcycle there must be a vertex incident to two unmatched edges on the cycle; this vertex is called thebase of the blossom.The essential step of the algorithm is to �nd an augmenting path with respect to a current match-ing M , which may initially be the empty matching. If M has an augmenting path, its cardinalitycan be increased by one, while if M has no augmenting path, it is optimal [15]. A phase of thealgorithm consists of searching for an augmenting path, and terminates on �nding such a path ordetermining that there is none.An augmenting path may be found by exploring along search trees rooted at unmatched vertices.As edges at successive levels of these trees alternate between being in and out of M , they are calledalternating trees. Vertices at even depths from the roots are called even, and vertices at odd depthsare called odd. During the search a blossom may be discovered, at which point all vertices on thecycle are shrunk into a single supervertex that is identi�ed with the base of the blossom. The keyobservation of Edmonds is that the shrunken graph has an augmenting path if and only if the originalgraph has one [8].With suitable data structures, a phase can be implemented to run in O(m�(m;n)) time, whichTarjan [27] credits to Gabow, where �(m;n), a very slowly-growing inverse of Ackermann's function,is the amortized time per operation for the disjoint-set data structure [27]. As there are at mostn=2 phases, this gives an O(mn�(m;n))-time algorithm. Due to the form of the set unions performedby the algorithm, it is possible in theory to reduce the factor of �(m;n) in the running time to O(1)using the disjoint-set result of Gabow and Tarjan [11]; the resulting O(mn) time algorithm is unlikelyto be better in practice, however, since for all conceivable inputs, already �(m;n) � 4.3. ImplementationThe data structures in our O(mn�(m;n))-time implementation of Edmonds' algorithm are asfollows. Edges in the undirected graph G are assigned an arbitrary orientation, so that each undi-rected edge is represented by one directed edge that may be traversed in either direction. We accessthe neighborhood of a vertex by maintaining with each vertex a list of in-edges and out-edges. Whendetecting a blossom, the graph is not actually shrunk, but the partition of vertices in the original

Computing maximum-cardinality matchings in sparse general graphs 123graph into blossoms is maintained via the disjoint-set data structure; we use the disjoint-set path-halving variant of Tarjan and van Leeuwen [27]. The recursive structure of blossoms is recordedusing the bridge representation described by Tarjan [27].Perhaps the most signi�cant choice for an implementation is the order in which to explore edgesof the graph when searching for an augmenting path. We chose to explore them in depth-�rst searchorder, so that we grow alternating trees one at a time until we discover an augmenting path or thatthere is none starting from the current root. This choice permits several optimizations in the code,some of which are not discussed in standard presentations of Edmonds' algorithm [27, 1], and whichwe detail next.3.1. OptimizationsThe implementation incorporates the following three ideas. As each is guaranteed to speed upthe code, we call them optimizations. Later we examine four more ideas which may or may notspeed up the code, and which we call heuristics.3.1.1. One-pass shrinkingA key advantage of examining edges in depth-�rst search order is that on encountering anedge e = (v; w) between two even-labeled vertices, it is not hard to show that e always forms ablossom, and furthermore that one of v and w must be an ancestor of the other in the alternat-ing tree. Thus the algorithm can avoid performing the standard interleaved walk to (1) determinewhether e forms a blossom or an augmenting path and (2) �nd the nearest common ancestor ofv and w in the alternating tree if e forms a blossom.To identify the ancestor we assign an age to each vertex from a global counter that is incrementedas vertices are reached by the depth-�rst search. The nearest common ancestor of v and w is theyounger of the two, so we can shrink the discovered blossom while walking directly to the ancestorin one pass.3.1.2. Avoiding expansion and relabeling of unsuccessful treesOn returning from a search of an alternating tree that does not lead to an augmenting path,we leave all blossoms in the unsuccessful tree shrunken, and the labels of all vertices in the treein their current state: Since the depth-�rst search is exhaustive, no future augmentations will everpass through the tree. Tarjan [27] credits this observation to Edmonds; in the context of bipartitematching, Chang and McCormick [4] and Cherkassky, Goldberg, Martin, Setubal and Stol� [5] studythis heuristic, and others, experimentally.3.1.3. Finding the next search root quicklyOn completing the search of an alternating tree, the next root for a search must be found. Insteadof scanning the vertices of the graph to �nd an unreached unmatched vertex for the next search root,we maintain one list across all phases of the algorithm of unreached unmatched vertices. When anunmatched vertex is �rst reached by a search, we unlink it from this list; the vertex will never beplaced back on the list, since if it is reached on an unsuccessful search it will always remain reachedand unmatched, while if it is reached on a successful search it will be relabeled as unreached butwill always remain matched. To �nd the next search root, we pop the next vertex from this list.3.2. HeuristicsWe now describe four heuristics that have the potential to signi�cantly speed up the algorithmin practice.

Computing maximum-cardinality matchings in sparse general graphs 1243.2.1. Initializing with a greedy matchingWhile Edmonds' algorithm is usually described as starting from the empty matching, it can bestarted from any matching. The conventional wisdom is that starting from a near-optimal matchingshould speed up the algorithm in practice since this reduces the number of augmentations. (Intruth, though, the situation is unclear, since after performing as many augmentations as there areedges in the initial matching, the algorithm started from the empty matching proceeds for the �nal,di�cult-to-�nd augmentations on a contracted graph, which could be preferable to proceeding fromthe initial matching on an uncontracted graph.)We consider starting from an initial matching obtained by the following standard heuristic [21].Form a maximal matching by repeatedly selecting a vertex v that has minimum degree in thesubgraph eG induced by the currently unmatched vertices, and select an edge (v; w) to an unmatchedvertex w that has minimum degree in eG over all vertices incident to v. This greedy procedure canbe implemented to run in O(m + n) time using a discrete, bucketed heap of unmatched verticesprioritized by degree in eG. Since the resulting matching is maximal, it is guaranteed to have atleast half the edges of a maximum matching, and as shown by Shapira [26], the size of the smallestmatching found by this heuristic over all graphs on n vertices and m edges is the size of the smallestmaximum matching on a graph with n vertices and m edges.3.2.2. Stopping successful searches earlyIn the depth-�rst search, unexplored edges are pushed onto a search stack and later popped asthey are explored. Edges are pushed when �rst encountering a vertex that gets labeled even, orwhen shrinking a blossom into an even supervertex. In both situations, when pushing an edge e wecan test whether its other end touches an unreached unmatched vertex. If so, edge e completes anaugmenting path, and pushing other unexplored edges onto the stack will simply bury e; if insteadwe leave e exposed on top of the stack, the next iteration of the search will pop e and immediatelydiscover the augmenting path. This simple stopping test can halt a potentially lengthy successfulsearch early. In the context of bipartite matching, Chang and McCormick [4] appear to have alsoused this heuristic, which they call \look-ahead," and attribute to Du� [7].3.2.3. Delayed shrinking of blossomsWe also consider a suggestion of Applegate and Cook [2], originally made in the context ofweighted matchings. Since the algorithm performs work when shrinking and later expanding blos-soms, it may be worth postponing the formation of blossoms for as long as possible. Before pushingunexplored edges onto the search stack, we can test whether or not an edge forms a blossom. Edgesthat do not form blossoms are given precedence and placed on the stack above edges that createblossoms. We implement this by maintaining a list of cycle-forming and a list of non-cycle-formingedges when scanning the neighborhood of a vertex; after completing the scan, these two lists areconcatenated onto the search stack in the appropriate order.3.2.4. Lazy expansion of blossomsAs observed by Tarjan [27], on �nding an augmenting path P in a successful search of an alter-nating tree T , the only blossoms we need to immediately expand and relabel are those on path P .Blossoms in T not on path P can remain shrunken; when a later search encounters a vertex in ablossom B of T that is not on P , B can at that moment be expanded lazily and its vertices treatedas having been labeled unreached.We implement this idea as follows. On an unsuccessful search, we delete all vertices in thealternating tree from the graph. At the start of a new search, we record the age that will beassigned to the next vertex that is reached, which we call the current epoch. When a vertex isencountered during a search, we �rst examine its age. If its age is from a prior epoch, we �rst lazilyexpand its blossom, consider its members as having been labeled unreached, and proceed as before.

Computing maximum-cardinality matchings in sparse general graphs 1254. Experimental resultsWe now study the performance of implementations resulting from di�erent combinations of theheuristics of Section 3.2, together with several publicly available codes from other authors, throughexperiments on random and structured graphs.4.1. ImplementationsIn our experiments we tested the following implementations.� An O(mn�(m;n))-time implementation, written in C by the �rst author, of the general ap-proach described by Tarjan [27] with the optimizations described in Section 3. To decidewhich of the heuristics of Section 3 to incorporate, sixteen variants of this basic implemen-tation were written, comprising all 24 combinations of the four heuristics. After testingthese variants as described below, the variant with the most robust combination of heuris-tics overall was selected (namely, start from the greedy initial matching and use the stoppingtest). In the experiments, this implementation is called Kececioglu, and may be accessed athttp://www.cs.uga.edu/~kece/Research/software.html.The implementation is part of an object-oriented library of fundamental string and graph al-gorithms being developed by the �rst author, called Dali for \a discrete algorithms library."Dali, which will be freely released, currently contains general implementations of severalcommonly-used data structures, including lists, multidimensional arrays, search trees, hashtables, mergeable heaps, disjoint sets, and undirected and directed graphs, as well as e�cientalgorithms for shortest paths, minimum spanning trees, maximum ow, minimum unrestrictedcut, maximum weight branchings, and nearest common ancestors; under development are im-plementations of su�x trees, splitable heaps, and maximum-weight matchings. Dali's designemphasizes code reusability, portability, and e�ciency; the implementation, written in C, isdesigned to be lightweight, with low operation overhead and small object-code size, whilepresenting a uniform, consistent interface.The maximum-cardinality matchings code, with comments, comprises about 1200 linesof C, and is built on top of a general list library of roughly 650 lines, a disjoint-set library ofroughly 350 lines, and a directed graph library of roughly 1150 lines.While the libraries are not designed with space e�ciency in mind, to give an idea of thespace consumption Dali uses 3 words per list, 3 words per list element, 3 words per disjoint-setelement, 11 words per graph vertex, and 15 words per graph edge. The cardinality-matchingscode uses at most an additional 17 words per vertex, and at most an additional 3 words peredge, for a total of 112 bytes per vertex and 72 bytes per edge.To a limited extent Dali performs memory management by maintaining for each dynam-ically allocated datatype a pool of free objects; when a new object is requested and the cor-responding pool is empty, a whole block of objects of that type is allocated with one call tomalloc, and all the objects in the block are added to the pool; this reduces the number of callsto malloc and free.� Stefan N�aher's O(mn�(m;n))-time implementation [19] of Tarjan's approach [27], writtenin C++ as part of the LEDA library of e�cient data structures and algorithms developed byMehlhorn and N�aher [18]. The implementation comes with two heuristics for constructing aninitial matching: the �rst �nds a maximal matching by examining vertices in arbitrary order,and the second, attributed to Markus Paul, examines vertices in order of decreasing degree inthe input graph and attempts to �nd all augmenting paths of length at most three. In theexperiments the two resulting codes are called LEDA 1 and LEDA 2.� Steven Crocker's O(mpn)-time implementation [6], written in Pascal, of Micali and Vazirani'salgorithm [20]. The code augments from the empty initial matching. In the experiments thisimplementation is called Crocker.

Computing maximum-cardinality matchings in sparse general graphs 126� Ed Rothberg's O(n3)-time implementation [25], written in C, of Gabow's version [10] of Ed-monds' algorithm. The code augments from a maximal initial matching found by examiningvertices in arbitrary order. In the experiments this implementation is called Rothberg.4.2. Graph generatorsThese codes were compared by the second author [23] across �ve classes of graphs.� Random graphs on n vertices with m edges. To test the codes on large-scale inputs it isimportant to generate a random graph in O(m+n) space. To do this we generated a randomsubset of size m from f1; : : : ; �n2�g using Floyd's algorithm [3], translating the chosen integersinto unordered pairs of vertices by a bijection. Since for large n, �n2� can easily exceed themachine representation, we also implemented an arbitrary integer arithmetic package. Theresulting generator allowed us to generate large sparse random graphs in O(n+m logn) timein O(m+ n) space.� Union-of-k-cycle graphs on n vertices with at least m edges. For a given n, m, and k, forma graph on n vertices by repeated choosing a random subset of k vertices, connecting themwith a random cycle, eliminating parallel edges, and taking the union of such cycles untilthe graph contains at least m edges. (The number of edges in the resulting graph is betweenm andm+k�1 inclusive.) Since blossoms are odd-length cycles and create work for augmentingpath algorithms, we considered k = 3; 5; 7; 9; 11, and 21 in our experiments; the results wereport are for k = 3, as this produced the hardest instances for the codes.� Near-regular graphs of degree at most k on n vertices. For a given n and k, form a graphon n vertices as follows. Maintain an array of length n representing a list of vertices andtheir unused degree-capacity. Initialize all vertices in the array to degree-capacity k. Thenrepeatedly pick the leftmost vertex v from the array, delete it, and generate a random subsetof size minfk0; n0g over the remaining vertices, where k0 is the unused capacity of v and n0 isthe number of remaining vertices. Add an edge from v to each vertex in the subset, decrementthe capacities of these vertices, and delete from the list any vertex with capacity zero.In contrast to the standard regular-graph generator, the graphs generated by this proceduredo not contain self-loops or parallel edges. On the other hand, they are not guaranteed to bek-regular, though there are at most k vertices in the generated graph with degree less than k.The generator can be implemented to run in O(nk log k) time using O(n) working space.� Euclidean nearest-neighbor graphs of degree k on n points in the plane. For a given k, weformed a graph by choosing a point set from Reinelt's tsplib library [24] of Euclidean travelingsalesman problems, and connecting each point to its k nearest neighbors.� Gabow's graph [10] on 6n vertices. This dense graph is a worst-case input constructed byGabow for his O(n3)-time version Edmonds' algorithm augmenting from an empty matchingand examining vertices in numerical order. The graph is the union of the complete graph K4nwith a matching connecting the odd-numbered vertices of K4n to the empty graph N2n.4.3. ExperimentsWe now present results from experiments on these �ve classes of graphs. All experiments wererun on a dedicated Sun Ultra 1 workstation with 256 Mb of RAM and a 200 MHz processor. In theexperiments on random graphs, each data point represents an average over ten graphs, where carewas taken to perform comparisons across codes on the same ten inputs. Times reported are usertimes in seconds obtained by the Unix time command under the Bourne shell. The time measuredis the amount of time taken to read in the graph, compute a matching, and output its cardinality.C codes were compiled under gcc version 2.7.2.1 with the -O3 option, and C++ codes were compiledunder g++ version 2.7.2.1 with the -O option.

Computing maximum-cardinality matchings in sparse general graphs 127To meet space guidelines, we only display results from experiments on the largest graphs; plotsof all experiments are available at http://www.cs.uga.edu/~kece/Research/papers/KP98.ps.Z.4.3.1. Combining heuristicsIn the �rst set of experiments, shown in Figure 1, we tested the sixteen variants of our imple-mentation on random graphs with 5,000 to 50,000 vertices, and average degree 1 to 20. Figure 1shows results with n = 50; 000. The top four plots divide the sixteen variants into four large groupsof four variants each, according to whether they start from a greedy initial matching (G) or use thestopping test for a successful search (S). From each of the four groups we selected a variant with thebest running time and these four winners are displayed in the bottommost plot, except that we donot include the winner from the initial group not containing the G and S heuristics, as this group'stimes are much slower than all other groups; instead we include two representatives, G and GD, fromthe second group.The most striking feature of Figure 1 is that incorporating just the G or S heuristic alone gives aspeedup of a factor of 30 to 35 on the largest graphs. The improvement with the G variant supportsthe conventional wisdom that to speed up an exact matching procedure one should start from aninitial approximate matching. The next most striking feature of Figure 1 is that on graphs withlarge degree, it is faster to start from an empty matching and use the stopping test than to startfrom a greedy matching (which can be seen by comparing the S and G curves in the bottom plot).It came as a surprise that the greedy heuristic actually slows down the S variant (which can beseen by comparing the S and GS curves in the bottom plot), especially since this heuristic runs inO(m+n) time. To understand this better we compared the S variant, which �nds an exact matching,to the greedy heuristic alone, which �nds an approximate matching, and found that the exact S codewas in fact faster: the greedy heuristic must examine every edge in the graph to compute the degreeof each vertex, while with the stopping test the S code could avoid looking at every edge on graphswith higher degree. Nevertheless, of the sixteen variants, we chose the GS variant as the overallwinner for further comparison (even though it sometimes loses to the S variant) as the GS code wasthe most robust across a wide range of vertex degrees. In the experiments that follow, this GS codeis called Kececioglu.4.3.2. Comparing codesFigures 2 and 3 compare this GS code to LEDA, Rothberg, and Crocker across four classes ofrandom and nonrandom graphs with number of vertices n �xed and number of edges m varying.We performed experiments on the random classes with n varying from 1,000 to 100,000, but onlydisplay results for the largest graphs; performance on the smaller graphs is similar.The plots on the left display all codes together, while the plots on the right display only the twofastest codes for easier visual comparison. On the random graphs, the fastest code is Kececioglu,followed by Crocker. Its speedup compared to other codes generally increases with graph size (exceptcompared to LEDA 2, which improves on larger graphs), with a maximum speedup of 50 versusLEDA 2, 350 versus Rothberg, and 4 versus Crocker. The near-regular graphs appear to be somewhateasier than the corresponding random graphs for the same n and m. On the union-of-3-cycle graphs,it is interesting that the times for Rothberg and Crocker increase with graph size, while the timesfor LEDA and Kececioglu (which both implement the approach of Tarjan [27]) after a critical sizetend to remain constant or decrease.Table 1 gives variances in running times on random graphs. As suggested by the prior plots,the variance of Rothberg is quite high, while the variance of Crocker appears to be generally thelowest, with Kececioglu roughly comparable.Figure 3 compares the codes on Euclidean nearest-neighbor graphs derived from tsplib prob-lems [24] on roughly 12,000 and 34,000 points. These graphs appear somewhat harder than the cor-responding random graphs with the samem and n, but the ranking of codes is essentially unchanged.(On the nearest-neighbor graphs, Crocker crashed on problem pla33810.tsp with 9 neighbors; for

Computing maximum-cardinality matchings in sparse general graphs 128

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Random graphs on 50,000 vertices

E
L
D

LD

0

2

4

6

8

10

12

14

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Random graphs on 50,000 vertices

G
GL
GD

GLD

0

2

4

6

8

10

12

14

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Random graphs on 50,000 vertices

S
SL
SD

SLD

1

2

3

4

5

6

7

8

9

10

11

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Random graphs on 50,000 vertices

GS
GSL
GSD

GSLD

0

2

4

6

8

10

12

14

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Random graphs on 50,000 vertices

S
G

GD
GS

Figure 1: Running times for all combinations of heuristics on random graphs on 50,000 vertices. E is for noheuristics, L is for lazy expansion, D is for delayed shrinking, G is for greedy initial matching, and S is for thestopping test. The string labeling a curve denotes the combination of heuristics used by the variant.this input, Figure 3 reports the time to failure.) We also performed experiments on the Gabowworst-case graphs, which are shown in the fuller version of this paper referenced earlier; the rankingof codes is similar.

Computing maximum-cardinality matchings in sparse general graphs 129

0

500

1000

1500

2000

2500

3000

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of edges

Random graphs on 100,000 vertices

LEDA 1
LEDA 2

Rothberg
Crocker

Kececioglu

0

10

20

30

40

50

60

70

80

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of edges

Random graphs on 100,000 vertices

Crocker
Kececioglu

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Degree d

Random d-regular graphs on 100,000 vertices

LEDA 1
LEDA 2

Rothberg
Crocker

Kececioglu

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Degree d

Random d-regular graphs on 100,000 vertices

Crocker
Kececioglu

0

500

1000

1500

2000

2500

3000

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Random 3-cycle graphs on 100,000 vertices

LEDA 1
LEDA 2

Rothberg
Crocker

Kececioglu

0

10

20

30

40

50

60

70

80

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Random 3-cycle graphs on 100,000 vertices

Crocker
Kececioglu

Figure 2: Running times for all codes on random, near-regular, and union-of-3-cycle graphs on 100,000 ver-tices with number of edges varying.Figure 4 plots results for experiments on random and union-of-k-cycle graphs with number ofedges m �xed and number of vertices m varying. Again the general ranking of codes observed abovetends to continue, with Kececioglu and Crocker remaining the fastest.

Computing maximum-cardinality matchings in sparse general graphs 130

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of neighbors

Nearest neighbor graphs on rl11849.tsp

LEDA 1
LEDA 2

Rothberg
Crocker

Kececioglu

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of neighbors

Nearest neighbor graphs on pla33810.tsp

LEDA 1
LEDA 2

Rothberg
Crocker

Kececioglu

Figure 3: Running times for all codes on nearest-neighbor graphs generated from tsplib Euclidean travelingsalesman problems.Table 1: Mean and standard deviation of running time on random graphs of 100,000 vertices. Times are inseconds, and are computed for 10 trials.LEDA 1 LEDA 2 Rothberg Crocker Kececiogluedges mean dev mean dev mean dev mean dev mean dev50,000 436.21 10.92 149.90 7.88 909.07 1.50 22.27 2.35 3.27 0.10100,000 1334.85 16.11 489.09 12.27 1142.09 313.78 30.29 1.16 19.06 2.39250,000 1518.15 16.70 183.02 5.87 1583.15 1783.58 42.98 2.08 13.05 2.88500,000 924.66 10.88 119.83 3.32 1513.85 2142.98 73.59 4.15 18.30 6.145. ConclusionWe have presented computational experience with a new O(mn�(m;n))-time implementationof Edmonds' algorithm for maximum-cardinality matching in sparse general graphs, studying sev-eral heuristics for speeding up the code in practice. The new code with the greedy matching andstopping test heuristics appears to be among the fastest currently available on large sparse graphsfor several classes of random and nonrandom inputs, achieving a maximum speedup of 4 to 350compared to other published codes. Interestingly, the greatest performance gains were obtained notby the more sophisticated heuristics but by incorporating a simple early-termination test for suc-cessful augmenting-path searches. On graphs with large degree, the resulting exact-matching codestarted from an empty matching was even faster than a linear-time approximate-matching heuristic,and hence was actually slowed down when started from the corresponding near-optimal matching;on graphs with small degree, however, the stopping test by itself gave uneven behavior, and themost robust variant across all degrees was a combination of the greedy matching and stopping testheuristics.References[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications,Prentice Hall, Englewood Cli�s, NJ, 1993.

Computing maximum-cardinality matchings in sparse general graphs 131

0

500

1000

1500

2000

2500

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of vertices

Random graphs on 100,000 edges

LEDA 1
LEDA 2

Rothberg
Crocker

Kececioglu

0

5

10

15

20

25

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of vertices

Random graphs on 100,000 edges

Crocker
Kececioglu

0

500

1000

1500

2000

2500

3000

3500

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of vertices

Random 3-cycle graphs with 100,000 edges

LEDA 1
LEDA 2

Rothberg
Crocker

Kececioglu

0

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of vertices

Random 3-cycle graphs with 100,000 edges

Crocker
Kececioglu

Figure 4: Running times for all codes on random and union-of-3-cycle graphs with 100,000 edges and numberof vertices varying.[2] D. Applegate and W. Cook, Solving large-scale matching problems, in Network Flows and Matching:First DIMACS Implementation Challenge, D.S. Johnson and C.C. McGeoch, editors, DIMACS Seriesin Discrete Mathematics and Theoretical Computer Science 12, 557{576, 1993.[3] J. Bentley and R. Floyd, Programming pearls: A sample of brilliance, Communications of the ACM,754{757, September 1987.[4] S.F. Chang and S.T. McCormick, A faster implementation of a bipartite cardinality matching algorithm,Technical Report 90-MSC-005, Faculty of Commerce and Business Administration, University of BritishColumbia, January 1990.[5] B.V. Cherkassky, A.V. Goldberg, P. Martin, S.C. Setubal and J. Stol�, Augment or push? A computa-tional study of bipartite matching and unit capacity ow algorithms, Proceedings of the 1st Workshopon Algorithm Engineering, 1{10, 1997. http://www.dsi.unive.it/~wae97/proceedings[6] S.T. Crocker, An experimental comparison of two maximum cardinality matching programs, in NetworkFlows and Matching: First DIMACS Implementation Challenge, D.S. Johnson and C.C. McGeoch,editors, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 12, 519{537, 1993.ftp://dimacs.rutgers.edu/pub/netflow/matching/cardinality/solver-2[7] I.S. Du�, On algorithms for obtaining a maximum transversal, A.E.R.E. Harwell Report CSS.49, Ox-fordshire, England, 1977.

Computing maximum-cardinality matchings in sparse general graphs 132[8] J. Edmonds, Paths, trees, and owers, Canadian Journal of Mathematics 17, 449{467, 1965.[9] J. Edmonds,Maximum matching and a polyhedron with 0; 1-vertices, Journal of Research of the NationalBureau of Standards 69B, 125{130, 1965.[10] H. Gabow, An e�cient implementation of Edmonds' algorithm for maximum matchings on graphs,Journal of the ACM 23, 221{234, 1976.[11] H.N. Gabow and R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, Journalof Computer and System Sciences 30:2, 209{221, 1985.[12] Z. Galil, S. Micali and H.N. Gabow, An O(EV log V) algorithm for �nding a maximal weighted matchingin general graphs, SIAM Journal on Computing 15, 120{130, 1986.[13] J. Kececioglu, Exact and Approximation Algorithms for DNA Sequence Reconstruction, PhD disserta-tion, Technical Report 91-26, Department of Computer Science, The University of Arizona, Decem-ber 1991.[14] J.D. Kececioglu and E.W. Myers, Combinatorial algorithms for DNA sequence assembly, Algorith-mica 13:1/2, 7{51, 1995.[15] L. Lov�asz and M.D. Plummer, Matching Theory, Annals of Discrete Mathematics 29, North-Holland,1986.[16] J. Magun, Greedy matching algorithms: An experimental study, Proceedings of the 1st Workshop onAlgorithm Engineering, 22{31, 1997. http://www.dsi.unive.it/~wae97/proceedings[17] R.B. Mattingly and N.P. Ritchey, Implementing an O(pNM) cardinality matching algorithm, in Net-work Flows and Matching: First DIMACS Implementation Challenge, D.S. Johnson and C.C. McGeoch,editors, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 12, 539{556, 1993.ftp://dimacs.rutgers.edu/pub/netflow/matching/cardinality/solver-3[18] K. Mehlhorn and S. N�aher, LEDA: A platform for combinatorial and geometric computing, Communi-cations of the ACM 38:1, 96{102, 1995.[19] K. Mehlhorn, S. N�aher and S. Uhrig, LEDA Release 3.4 module mc matching.cc, Computer software,1996. http://www.mpi-sb.mpg.de/LEDA/leda.html[20] S. Micali and V.V. Vazirani, An O(pjV j � jEj) algorithm for �nding a maximum matching in generalgraphs, Procedings of the 21st IEEE Symposium on the Foundations of Computer Science, 17{27, 1980.[21] B.M.E. Moret and H.D. Shapiro, Algorithms from P to NP, Benjamin-Cummings, 1991.[22] R.H. M�ohring and M. M�uller-Hannemann, Cardinality matching: Heuristic search for augmenting paths,Technical Report 439/1995, Fachbereich Mathematik, Technische Universit�at Berlin, 1995.ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-439-1995.ps.Z[23] A.J. Pecqueur, An Experimental Study of Edmonds' Algorithm for Maximum-Cardinality Matching inSparse General Graphs, M.S. thesis, Department of Computer Science, The University of Georgia, May1998.[24] G. Reinelt, TSPLIB: A traveling salesman problem library, ORSA Journal on Computing 3, 376{384,1991.[25] E. Rothberg, Implementation of Gabow's O(n3) version of Edmonds' algorithm for unweighted nonbi-partite matching, Computer software, 1985.ftp://dimacs.rutgers.edu/pub/netflow/matching/cardinality/solver-1[26] A. Shapira, An exact performance bound for an O(m+ n) time greedy matching procedure, ElectronicJournal of Combinatorics 4:1, R25, 1997. http://www.combinatorics.org[27] R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics,Philadelphia, PA, 1983.

133Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 133{142A Network Based ApproachforRealtime Walkthrough of Massive Models�Matthias Fischer, Tam�as Lukovszki, and Martin ZieglerHeinz Nixdorf Institute and Department of Computer Science, University of PaderbornF�urstenallee 11, 33102 Paderborn, Germanye-mail: fmafi, talu, zieglerg@uni-paderborn.deABSTRACTNew dynamic search data structures developed recently guarantee constant execution time persearch and update, i.e., they ful�l the real-time requirements necessary for interactive walk-through in large geometric scenes. Yet, superiority or even applicability of these new methodsin practice was still an open question.Their prototypical implementation presented in this work uses common libraries on standardworkstations and thus represents a �rst strut to bridge this gap. Indeed our experimental resultsgive an indication on the actual performance of these theoretical ideas on real machines andpossible bottlenecks in future developments. By special algorithmic enhancements, we can evenavoid the otherwise essential preprocessing step.1. IntroductionScienti�c visualization as well as computer tomography in medical diagnosis, computer aideddesign (CAD), and architectural construction are examples of applications which display large ge-ometric data (virtual scenes) by interactive user control. If this control supports arbitrary changesof the virtual camera's position and orientation, this process is called walkthrough. In dynamicwalkthrough, the user can insert and delete objects in the scene (modi�cation).Today three-dimensional (massive) objects are most commonly represented by their boundary,approximated and decomposed into surface polygons enclosing the object. These polygons (usuallycut further into triangles) are stored as their vertices' and edges' coordinates together with a normalvector, color information, and texture data.From this model representation, the computer generates a picture by performing the steps ofprojection, hidden-surface removal, and shading [6]. This time consuming process is called renderingand supported by hardware (e.g., z-bu�er algorithm). The cost for rendering can be estimated byO(n + a) [9] and depends on two parameters: the number n of polygons and the sum a over allpixels and all polygons needed for drawing these polygons (without considering their visibility). Forsimpli�cation, we will regard n as dominant.In order to get a movie-like smooth sequence of images, as well as responsive navigation, a �xedframe rate of at least 20fps (frames per second) has to be computed. This strict real-time conditionraises severe problems, since even high end graphic systems cannot guarantee such rates for verylarge scenes (n � 1; 000; 000).�Partially supported by EU ESPRIT Long Term Research Project 20244 (ALCOM-IT), and DFG Grant Me872/7-1.

A Network Based Approach for Realtime Walkthrough of Massive Models 134The walkthrough problem: Let C(M) denote the complexity of scene M in the above costmeasure (number of polygons), and let C0 be the maximum complexity for which some speci�crendering machine can still guarantee 20fps. Then the problem is to compute a model Mr with acomplexity C(Mr) � C0 for every interval of time t. For 20fps, time intervals are as short as 50ms.This problem is di�cult to solve because from the visitor's position, model Mr should resemblescene M as much as possible. Additional severity arises for very large scenes which do not �t intoto main memory (swapping) where access to secondary storage media can easily spoil the real-timerequirements, if not performed carefully.General approach: Most graphic systems pursue a similar approach to this problem (they di�erin the kind of approximation and their rendering strategies):
approximation

culling
rendering
pipeline

model
database

rendering
model

aM M Mr

Figure 1: General approachThey compute a modelMa (See Fig. 1) including data structures for culling and polygonal modelapproximations of the scene M . Hence the complexity of Ma is larger than that of M . But duringinteractive walkthrough, the system needs only a part Mr of the scene Ma for an approximately cor-rect view; e.g., large and very distant objects will be rendered using their approximations containedin Ma. Both approximations and culling information can be computed in a preprocessing phase(e.g., level of details models [7], visibility graph [12, 8]) or dynamically during walkthrough (e.g.,repeated use of previously rendered objects via texture mapping [11] or visibility computations [3]).The search problem: In this general approach, computation of the rendering poses the problemof deciding which objects are to be approximated (or to be rendered with full quality). For eachframe, the system will have to search Ma for the sub-scene Mr presented to the visitor, choose { oreven compute { approximations for all objects inMr, and then render these approximations togetherwith the rest of Mr.This search problem is crucial for both visual impression and immediate responses to user in-teraction. In particular it should be really fast. Otherwise the costs for searching lets say somecluster of objects might consume most of the rendering time we intended to save by displayingapproximations instead of the cluster itself.In order to achieve high quality pictures, the processor should spend most of its time withrendering, not with searching.[4] presents a very fast data structure for this goal. Other common approaches use a hierarchicalstructure based on ideas from Clark [2]. As an example consider the sequence of sub-scenes \world- country - town - house" organized in a tree. In existing systems, this concept is implemented withdi�erent data structure like BSP Trees (Binary Space Partitions) or Octrees.Goals of this paper: This work is a major step towards a prototypic implementation of the ideasdescribed in [5]. In particular, the authors' theoretical investigation on abstractly modeled dynamicwalkthrough animation with several distributed visitors appears to yield a practically applicablesystem. In conjunction with methods from [4], this results in a network-based non-hierarchical datastructure for solving the search problem in a scene.Section 2 presents a brief description of this abstract animation system and its data structures.The current state of implementation is described in Section 3, and in Section 4 we describe an

A Network Based Approach for Realtime Walkthrough of Massive Models 135evaluation of its performance. These experimental results are of importance to identify possiblebottlenecks in future developments. In Section 5, we suggest an extension of the system consideredin [5] to get rid of preprocessing by exploiting the advantage of locality.2. A short survey of our systemOur model: Presume scene S consists of an arbitrary number of simple objects (e.g., balls) iden-ti�ed by their centers. The balls can be arbitrarily distributed over the scene, but they must notoverlap.Several visitors are sitting at their graphics workstations (rendering machines). They { or moreprecisely: their counterparts in this virtual world { can walk to arbitrary positions of the scene. Foran approximately correct view, every visitor only needs the part Vt(x) � S of the scene. The setVt(x) = fb 2 S : d(b; x) � tg consists of all objects with Euclidean distance at most t from x. Wecall the set Vt(x) the t-environment of x. The distance t is chosen so that the rendering complexityof the objects in Vt(x) is at most C0, i.e., the rendering machine can render the objects with a�xed frame rate (e.g., 20fps). The scenes we have in mind are very large and have a great spatialextension so that most of the scene is stored on disks.The scene can be modi�ed by a modeler. Like the visitor he can walk to arbitrary positions ofthe scene. At any time he may insert or delete objects from the scene. These updates should occurin real-time and immediately a�ect the visitors' views.Architecture: The very large scene description cannot be kept entirely in memory but mustbe fetched from secondary storage media. Since disk access is slow we introduce a two level accessscheme for the rendering machine. Like a bu�er the rendering machine will store a larger environmentVT (y) for a position y and T � t in the rendering machine's main memory so that the t-environmentVt(x) can be extracted very fast.To disburden the rendering processor, we assign this work to a third machine, the manager.This concept is introduced in [10], we adopt the approach here. The manager has access to thescene stored at disk. He computes the T -environment VT (y) for the rendering machine at �xed timeintervals (steps). In every time interval i+ 1 the rendering machine will send the position xi of itsvisitor to the manager who in turn computes VT (xi) and sends this to the visitor.The data sent should be a di�erential update of the form VT (xi)nVT (xi�1) and VT (xi�1)nVT (xi)that allows easy computation of VT (xi) out of VT (xi�1).Let v be the maximal speed of the moving visitor and tint the length of a time interval. IfT � 2vtint + t, then the visitor cannot in one step leave the t-environment VT (x), i.e., for anarbitrary successor position x0 to x: Vt(x0) � VT (x).Data structures: For computing VT (x) or Vt(x), we have to answer the following queries:Given an arbitrary number m of balls. For position x in the scene (this position is known in datastructure, too), Search(x; T) reports all balls as a data structure D(x) so that for each position ywith d(x; y) � T � t the t-environment Vt(y) of y can be computed from VT (x) very fast. The lastproperty is important since the rendering machine has to do this at least 20 times per second. Moreexplicitly, we require Search(x; T) to be of output sensitive running time in the sense that it hascomputational complexity O(1 + k) where k = jSearch(x; T)j.Update(x; T; y) reports all balls in VT (x)nVT (y) and VT (y)nVT (x) such that { given D(x) { theupdate D(y) can be computed very fast.Insert(x) and Delete(x) insert and delete a ball at the actual position x. Again, outputsensitive running time is of high importance in order to respect the real-time requirements.In [5], a data structure called -angle graph is presented that ful�ls our requirements with thefollowing additional properties: Let c be constant, m the number of balls, l := jVT 0(x)j, l1 :=

A Network Based Approach for Realtime Walkthrough of Massive Models 136jVT 0(x)nVT (y)j, and l2 := jVT 0 (y)nVT (x)j. Then� the data structure needs space O(m)� Search(x; T) can be done in time O(l + (Tc)2) = O(T 2)� Update(x; T; y) can be done in time O(l1 + l2 + T (r+c)c) = O(T � (r + c)), if VT (x) is given.� Delete(x) can be done in time O(c2 log(c)) with high propability (w.h.p.)� Insert(x) can be done in time O(c2) w.h.p.For an exact description of the data structures, see [5]. A derandomized improvement with lowerconstants for both space and time requirements can be found in [4].3. ImplementationModeler/Visitor: Through the user interface the modeler/visitor can control three parts of theprogram: `navigation', `scene manipulation', `measurements tools' (See Fig. 2).
user interface

class
tgRender

class
communication

measurementsscene
manipulation navigation

class
Rendering

Figure 2: Implementation visitor
user interface

tgManager
class

class
Communication

class
Monitor

tgManager
class

tgManager
class

Modeler

Monitor

Visitor

Figure 3: Implementation managerThe modeler/visitor controls navigation through the scene with the keyboard and mouse devices.She looks to the scene like a camera and can change the cameras' position and orientation arbitrarily.The modeler may insert and delete objects at every position.In order to get reproducible experiments, we need some means to make the visitor move along thesame path in the same scene several times. Therefore, we implemented a tool for recording, saving,and loading �xed camera positions and orientation. After loading these positions the computer willautomatically move along them like the visitor did before.Basis of the modeler/visitor program are the classes Rendering, tgRender, and communication.The data structure Vt(x) for the -angle graph is controlled by the tgRender class, whereas classcommunication handles the communication with the manager and the Rendering class' task is tomanage the polygonal scene description and to �nally render the scene.Manager: Like the modeler and visitor, the manager can be controlled via a graphical user inter-face. The basis for the manager is the class tgManager. The -angle graph is stored in this class asa static member. For every instance of a visitor/modeler that wants to walk through the scene, anobject of the class tgManager is de�ned. In the example, we have a modeler and a visitor. Therefore,two objects are de�ned (cf. �g. 3).For tests and evaluation of our implementation, a monitor is implemented which shows the-angle graph graph and the position and t-environment of every visitor/modeler (See Fig. 4).

A Network Based Approach for Realtime Walkthrough of Massive Models 137

Figure 4: Screenshot Manager Figure 5: Screenshot Visitor/ModelerFor clipping the -angle graph in this window, we have a third instance of class tgManager. Thet-environment of this object consist of the graph in the monitor window. The communication to thevisitor and the manager is handled by an instance of the communication class.Libraries and Communication Protocol: The implementation of the manager should run ona workstation without special graphics system (SUN Ultra Sparc, 200 MHz), therefore we usedonly standard libraries for Unix based systems. Our idea is to perform expensive computations oninexpensive computer systems. The special graphics system should be disburdened.For the graphical user interface of the modeler, visitor, and manager, we use X11, XToolkit, andMotif. The implementation of the visitor and modeler runs on a special graphics workstation (SGIO2, 180Mhz). The rendering process of the scene is implemented with the standard libraries OpenGland OpenInventor and for the graphical user interface Viewkit (See Fig. 6).
application: visitor, modeler

sockets X11

XToolkit

Motif

Viewkit

OpenGl

OpenInventor

LEDAFigure 6: Libraries usedThe communication between the modeler, visitor, and manager is based on the TCP/IP protocol(socket library). Therefore we can test our system on arbitrary systems, that are connected viaInternet. Our aim is to test the system on di�erent communication networks (e.g., ATM, Ethernet,etc.). A further advantage is the smaller communication overhead compared with other high levelcommunication libraries (MPI, PVM, etc.). Some special data structures are implemented with LEDA[1].4. Experimental ResultsThe objects of our scene are represented by unit size balls. A search data structure is responsiblefor reporting all balls within distance t. The scene will in general be very large, so it has to be storedon disk. The task of a further machine, the manager, is to access this disk. At �xed time intervals,the rendering machine receives updates from the manager to its locally stored part of the scene.The goal of this work is to determine how fast the visitor can walk through the scene and howmany balls can be rendered (number of balls). These parameters are crucial since they determine

A Network Based Approach for Realtime Walkthrough of Massive Models 138practical applicability of our system. As it turns out, its performance is primarily limited by twofactors: One bottleneck is the communication channel between manager and rendering machine.The second one arises from applying updates to the visitor's part of the scene. Therefore we explorethe e�ect of these two constraints onto the speed of the visitor and the number of balls.One surprising result of our research is that insertion of new objects to the scene graph revealsto be rather time consuming; much more expensive than deletion or moving. The problem occurswhen, resulting from a visitor's movement, new balls of the t-environment VT (y) become part ofthe subscene handled by the rendering machine. Due to caching-like optimizations in the graphicslibrary's internal data structures, the process of introducing new objects each time induces somekind of preprocessing or reinitialization. Emphasis lies on insertion of new objects: Deletion fromthe library data base is fast, and so is re-insertion of the same ball.To the -angle graph , inserting and removing are symmetric and inexpensive operations. Butthe library's internal behavior is beyond our control. This has the following consequences for us:Updates of VT (y) of the rendering machine will be time consuming, but the update of Vt(x) doesnot cause a great time demand. So we have to concentrate on the update of VT (y).
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

m
s

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

p
o
l
y
g
o
n
s

Figure 7: Running time for initializationin dependence of the ball complexity
0
.
2
6

0
.
2
8

0
.
3

0
.
3
2

0
.
3
4

m
s

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

p
o
l
y
g
o
n
s

Figure 8: Running time for initializationper polygon in dependence of the ball com-plexityThe cost for the initialization of a ball depends of the number of triangles used for the representingits surface. Typically, in order to get a impression of a good approximation of a sphere, we needroughly 200 triangles. With the complexity of the ball we denote the number of triangles used forits representation. In Fig. 7 (�gures are rotated), we have shown the initialization cost for balls ofcomplexity from 4 to 1000 triangles. As we can see, the initialization time is nearly linear in thenumber of triangles. Since the curve did not cross the origin, the time cost per polygon of a ball isa little greater for very small balls. In Fig. 8, we can see this. We have drawn the initialization costper triangle in dependence of balls with complexities from 4 to 1,000 triangles.With this measured data we can compute how many balls we can initialize per second for balls ofdi�erent complexities. In Table 1 we have shown the ratio balls/sec for balls of di�erent complexity.

A Network Based Approach for Realtime Walkthrough of Massive Models 139In order to get this values we need the rendering processor's full computational power (100%), i.e.,it does not have any time for rendering.triangles 4 100 208 304 400 508 604 700 808 904 1000balls/sec 714.28 38.09 19.04 12.69 9.34 7.04 6.21 5.29 4.65 4.1 3.77Table 1: Initialization ratio for balls of di�erent complexity (triangles)So at this point, we are confronted with the question how much time of the rendering processorscomputation power we will use for rendering computations and for initialization of the balls. This isa problem since the goal is not to disburden the rendering machine so that it can render the scene. Atypically rendering capacity of our graphics workstation (SGI O2) can render up to 16,000 triangles(e.g., 80 balls each of 200 triangles), if the processor is not loaded with other work. In the following,we will describe that the practical measured values lead to satisfactory results. Furthermore we willshow that there are two tradeo�s which are convenient for our model.In Table 2, we have shown the maximum speed of the visitor for a scene consisting of balls havinga complexity of 100 triangles.percentage forinitialization size of t maximum speed10% 100m 1.32 ms10% 500m 6.61 ms20% 100m 2.97 ms20% 500m 14.86 msTable 2: An example for scenes consisting of balls with a complexity of 100 trianglesIf we allow 10% of the rendering machine's computation power for initialization, we get a max-imum speed of 1.32 ms for a scene of 100m radius, and a maximum speed of 6.61 ms for a scene of500m radius. In the other case, if we allow more time for initialization computation, e.g., 20% weget a maximum speed of 2.97 ms for a scene of 100m radius, and a maximum speed of 14.86 ms fora scene of 500m radius.Here we have two tradeo�s: One between speed and size of the scene and the other betweenspeed and the percentage for initialization computations. If we enlarge our scene, we can get ahigher speed of the visitor. Future versions of our system will take advantage of this tradeo�, sincein a small scene with a high density of balls the visitor walks slowly to see every part of the scene.Otherwise, in larger scenes with a lower density of balls, the visitor walks faster in order to reachthe next ball.We can get a higher speed if we enlarge the percentage for initialization computations. In thiscase, the remaining scene will have a less density, and so the visitor tries to reach the next objectwith high speed. We will exploit this in our implementation so that the rendering machine tries toinitialize more balls if the visitor walks slowly. The absolute values of the maximum speed seemusable for a practical application.For the communication bottleneck, we get similar satisfying results. We will describe them inour �nal report.

A Network Based Approach for Realtime Walkthrough of Massive Models 1405. An extension of our architectureAt this point, our architecture will be extended in comparison to [5]. Our second probleminduced by the management of large scenes is the expensive space requirement for the search of datastructures of the objects. Because of locality, the visitor sees similar t-environments Vt(x) of objectsin consecutive steps of a few time intervals, i.e., she needs not a search data structure that managesall objects of the scene. We want to exploit this locality for saving memory of the manager and forsaving time of the Query-operations of the rendering machine. Therefore, we use a two level searchdata structure of the manager. We distinguish a coarse grained level and a �ne grained level (SeeFig. 9).
coarse grained level

environment

environment

V (y)T

empty square

square with balls

active square

fine grained level V(x)tFigure 9: Two level access for the managerAt the coarse grained level, we divide the scene into squares. We denote squares with at leastone ball as full and those without balls as empty. All balls of the same full square at the coarse levelare stored on disk in a list. This list is represented by the center position of the full square and theunsorted list of elements. At each time, there is exactly one square that is active (See Fig. 9). Thissquare contains the visitor's position. For this square, all balls from the disk are loaded into themain memory of the manager. These balls are contained in the so called �ne grained level.For each of the two levels, we have an (arbitrary) search data structure Dcoarse and Dfine .Such a search data structure should have the operations Query and Build. Build builds thedata structure for a given input from scratch and Query is query-operation (e.g next neighboror range query) on the data structure. The input for Dcoarse consists of the positions of the fullsquares (we do not store the mesh explicitly) and the input for Dfine of all balls of the activesquare. In our system, Query is one of the operations Search, Update, Delete, and Insert.The manager computes for balls of the active square the t-environment VT (y) as described abovewith the Dfine data structure.A walk of the visitor through the scene results in the following operations for this two levelhierarchy: At every time we have a data structure Dfine for the balls of the active square. Themanager computes from this data structure the set VT (y) for the rendering machine. When thevisitor leaves the active square, the manager has to search the next neighboring full square in theDcoarse data structure (with Query operation of Dcoarse). If the directly neighboring square isan empty square there is nothing to do. Otherwise, the manager loads all balls of the new activesquare into the main memory and computes with the Build operation of Dfine the data structurefor the �ne grained level from scratch. The data structure Dfine and all balls of the previously active

A Network Based Approach for Realtime Walkthrough of Massive Models 141square are removed from memory. Now the manager can compute the t-environments VT (y) withthe Query operations of Dfine and so on. The dimension of the mesh should be chosen in a waythat it takes a lot of time for the visitor to cross a square. So the time for computing Dfine fromscratch and loading the balls will be expensive. Therefore it is recommended to hold permanentlythe data structures Dfine for the at most 8 neighboring full squares of the active square. More thanthe 8 neighbors are not necessary since we assume the squares very large so it will go by a lot oftime for moving across the active square.We have a tradeo� between the dimension of the mesh and the number of balls of a square. Thequestion is how is the optimum size of the mesh? Let m be the number of balls, s the distance oftwo consecutive moves of the visitor, d the dimension of the mesh (d� d mesh), and c � s be the sizeof the scene. Let TFineQuery be the time for a query of Dfine and let TCoarseQuery be the time for a query ofDcoarse (for Buildanalogue). For a walk of the visitor of length k � s, we get a total runtime Tmoveof Tmove(k;m; d; c) = kTFineQuery�md2 �+ kc=d�TCoarseBuild �md2�+ TCoarseQuery �d2��:For the following example, we assume the runtime for Dcoarse and Dfine to be equal to TQuery =q �m log(m) and TBuild = p � log(m), and the balls are randomly distributed over the scene. Thenwe get for TmoveTmove(k; m; d; c; p; q) = k �q log2(md2) + dc �p md2 log2(md2) + q log2(d2)�� :The minimum of Tmove depending on d is the solution the following equation for d0 = �k (2 q c d+mp ln(md2)� q ln(d2) d2 + 2mp� 2 q d2)d2 c ln(2) :If we solve this equation for, e.g., m = 106 balls, k = 1; 000 steps of the visitor, c = 1; 000 (area ofthe scene), and p = q = 1 (constants for runtime), then we will get a minimum of Tmove for d = 543.Important is the question where Tmove attains its minimum. If it does at the extreme points neednot this two level structure. As we can see in some examples, the minimum depends strongly onconstants p and q.If a visitor walks more than twice through the entire scene, then our permanent process ofcomputing and removing the �ne grained level data structure will be more time consuming thancomputing the data structure for all objects of the scene once. But we have in mind that ourscene has a large spatial extension, so we can save memory for the manager since he has a coarsedata structure for the entire scene. A further advantage is that the data structure of the renderingmachine for computing the t-environment Vt(x) will have an O(m=d2) input size instead of O(m).For our strict real time requirements, this constant factor is important for data structures withO(log(n)) Query-time (e.g., trees) since computing of the rendering machine is more critical as forthe manager machine as we discussed above.6. Ongoing WorkAt the next step we will test search data structures in practice and compare them with otherstandard data structures. In a further step, we will implement the two level access for the managerand give an evaluation.

A Network Based Approach for Realtime Walkthrough of Massive Models 142AcknowledgementsWe would like to thank Friedhelm Meyer auf der Heide, Willy-Bernhard Strothmann, and RolfWanka for helpfull comments and suggestions.References[1] Christoph Burnikel, Jochen Knemann, Kurt Mehlhorn, Stefan Nher, and Stefan Schirra. Geo-metric computation in LEDA. In Proceedings of the 11th Annual Symposium on ComputationalGeometry (SCG 95), pages C18{C19, 1995.[2] James H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms. Communica-tions of the ACM, 19(10):547 { 554, October 1976.[3] S. Coorg and S. Teller. Real-Time Occlusion Culling for Models with Large Occluders. InProceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics 1997, pages 83 {90, April 1997.[4] Matthias Fischer, Tam�as Lukovszki, and Martin Ziegler. Geometric Searching in WalkthroughAnimations with Weak Spanners in Real Time. In Proceedings of the Sixth Annual EuropeanSymposium on Algorithms, 1998.[5] Matthias Fischer, Friedhelm Meyer auf der Heide, and Willy-Bernhard Strothmann. DynamicData Structures for Realtime Management of Large Geometric Scenes. In Proceedings of theFifth Annual European Symposium on Algorithms, pages 157{170, 1997.[6] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics:Principles and Practice. Addison Wesley, 1995.[7] Thomas A. Funkhouser and Carlo H. Sequin. Adaptive Display Algorithm for Interactive FrameRates During Visualisation of Complex Virtual Environments. In James T. Kajiya, editor,Proceedings of the SIGGRAPH '93, volume 27, pages 247 { 254, 1993.[8] Thomas A. Funkhouser, Carlo H. Sequin, and Seth J. Teller. Management of Large Amountsof Data in Interactive Building Walkthroughs. In Proceedings of the SIGGRAPH '91, pages 11{ 20, 1992.[9] P. S. Heckbert and M. Garland. Multiresolution Rendering Modeling for Fast Rendering. Pro-ceedings of the Graphics Interface '94, pages 43{50, May 1994.[10] Jonathan Mark Sewell. Managing Complex Models for Computer Graphics. PhD thesis, Uni-versity of Cambridge, Queens' College, March 1996.[11] Jonathan Shade, Dani Lischinski, David H. Salesin, Tony DeRose, and John Snyder. Hierar-chical Image Caching for Accelerated Walkthroughs of Complex Environments. In Proceedingsof the SIGGRAPH '96, pages 75 { 82, August 1996.[12] Seth J. Teller and Carlo H. Sequin. Visibility Preprocessing For Interactive Walkthroughs. InProceedings of the SIGGRAPH '90, pages 61 { 69, 1991.

Proceedings WAE'98, Saarbr�ucken, Germany, August 20-22, 1998Ed. Kurt Mehlhorn, pp. 143{154 143An Implementation of the Binary Blocking Flow AlgorithmTorben HagerupFachbereich Informatik, Johann Wolfgang Goethe-Universit�at FrankfurtRobert-Mayer-Stra�e 11-15D{60054 Frankfurt am Main, Germanye-mail: hagerup@informatik.uni-frankfurt.dePeter SandersMax-Planck-Institut f�ur Informatik, Im StadtwaldD{66123 Saarbr�ucken, Germanye-mail: sanders@mpi-sb.mpg.deandJesper Larsson Tr�a�Technische Universit�at M�unchen, Lehrstuhl f�ur E�ziente AlgorithmenD{80290 M�unchen, Germanye-mail: traeff@informatik.tu-muenchen.deABSTRACTGoldberg and Rao recently devised a new binary blocking ow algorithm for computing maxi-mum ows in networks with integer capacities. We describe an implementation of variants ofthe binary blocking ow algorithm geared towards practical e�ciency and report on preliminaryexperimental results obtained with our implementation.1. IntroductionDespite intensive research for more than three decades, problems related to ows in networksstill motivate cutting-edge algorithmic research. In a recent development, Goldberg and Rao [4]combined elements of the algorithms of Dinitz [2] and Even and Tarjan [3] with new arguments toobtain a simple algorithm, the binary blocking ow (BBF) algorithm, for computing maximum owsin networks with integer capacities. On networks with n vertices, m edges, and integer capacitiesbounded by U , the algorithm runs in O(m� log(n2=m) logU) time, where, here and in the following,� = minfm1=2; n2=3g.The running time mentioned above places the BBF algorithm among the theoretically fastestmaximum-ow algorithms, and our work was motivated by curiosity as to whether the new algorithmis fast in practice as well as in theory. In order to investigate this question, we implemented thealgorithm in C++ using the LEDA library [8, 9], introducing a number of modi�cations intendedto make the algorithm run faster in practice, while preserving the theoretical bound on the runningtime. This paper describes our implementation and reports on preliminary experimental �ndings.Our results are as yet inconclusive, but seem to indicate that variants of the BBF algorithm canindeed solve problem instances drawn from some frequently considered families with a much smallernumber of blocking-ow computations than its ancestor, Dinitz' algorithm. Together with an e�-cient blocking-ow routine it sometimes even outperforms highly developed preow-push algorithms.However, much remains to be done to make the algorithm more robust.

An Implementation of the Binary Blocking Flow Algorithm 1442. The binary blocking ow algorithmIn this section we describe and analyze the BBF algorithm. We start with a generic formulationthat encompasses the original formulation of Goldberg and Rao as a special case. The genericalgorithm is analyzed in Section 2.2, and Section 2.3 describes a number of possible instantiations ofthe generic algorithm. We assume familiarity with some of the basic de�nitions pertaining to owsin networks.2.1. A generic formulationThe task is to compute a maximum s-t-ow in a network N = (G = (V;E); c; s; t), wherec : E ! IN maps each edge to its capacity. We take n = jV j, m = jEj, and U = maxe2E c(e) andassume without loss of generality that E is symmetric: Whenever E contains an edge (u; v), it alsocontains the reverse edge (v; u). The residual capacity of each edge e 2 E with respect to a ow f inN is de�ned, as usual, as rf (e) = c(e)� f(e) (f is assumed antisymmetric; i.e., f(u; v) = �f(v; u)for all (u; v) 2 E), and the residual network of N with respect to f is Rf = ((V;Ef); rf ; s; t), whereEf = fe 2 E j rf (e) > 0g. The value of a ow f will be denoted by jf j, and the value of a maximumow in Rf will be called the residual value of f . The capacity of a path in a network is the minimumcapacity of an edge on the path.Figure 1 shows the top-level structure of the generic BBF algorithm. Similar to Dinitz' algorithm,it operates in rounds, each of which computes a blocking ow (g0) in an auxiliary acyclic network(C0), called the acyclic core, and updates a ow (f) in N accordingly. The di�erences lie in theconstruction of C0, carried out by the routine `acyclicCore', and in the meaning of \accordingly",which is embodied in the routine `transferFlow'. The auxiliary network used in Dinitz' algorithmconsists of all s-t-paths with a minimal number of edges in the current residual network, and theblocking ow is simply added to the current ow edge by edge. The construction of the acycliccore, on the other hand, depends on a real parameter �, which is essentially chosen proportionalto an upper bound bF on the current residual value, computed by the routine `estimateFlow'. Theconstant of proportionality is �=�, where � is a positive constant, and the value of � is kept �xeduntil the estimate of the residual value has dropped to � times its original value, where � is anotherpositive constant. The rounds executed with a common value of � constitute a phase.Function maxFlow(N = (G = (V;E); c; s; t)): Flowf := 0 (� current ow �)while estimateFlow(R) � 1 do (� a phase �)bF := estimateFlow(R) (� ow bound �)� := d� bF=�ewhile estimateFlow(R) � � bF do (� a round �)C0 := acyclicCore(R;�)g0 := blockingFlow(C0)f := f + transferFlow(g0; C0;N)return f Figure 1: Top-level structure of the BBF algorithm.The acyclic core C0 is derived from a (full) core of Rf , a concept that we de�ne next. Forconciseness, we suppress a dependence on the current value of �. First, let L : IN ! f0; 1g be thefunction with L(x) = 1 for x < 3� and L(x) = 0 for x � 3�. We de�ne the length of each residualedge e 2 Ef as `f (e) = L(rf (e)) and the height of each v 2 V , df (v), as the length of a shortestpath from v to t in the residual graph Rf with this length function (1 if there is no such path). Wesay that an edge (u; v) 2 E is downward if df (v) < df (u), upward if df (v) > df (u), and horizontalif df (v) = df (u). A (full) core of Rf (with respect to �) is a subnetwork of Rf that contains all

An Implementation of the Binary Blocking Flow Algorithm 145vertices in V , all downward edges, no upward edges, and a subset of the horizontal edges in Rf thatincludes at least every edge of length 0 and every edge e with rf (e) > 2� whose reverse edge ebelongs to the core; moreover, no edge on a cycle in the core is of capacity less than 2�. Goldbergand Rao do not introduce the notion of a core, but their algorithm can be viewed in our setting asusing a minimal core, one whose set of horizontal edges includes only the residual edges of length 0and the reverses with residual capacity at least 2� of such edges.The generic BBF algorithm leaves some exibility in exactly which core to use. Even moreexibility is present in the derivation of the acyclic core from the full core. Goldberg and Raoconstruct the acyclic core C0 by contracting each strongly connected component (SCC) of the fullcore to a single vertex. The algorithmically most interesting generalization in our approach is thatwe replace each strongly connected component K of the full core by an acyclic network C0(K),called the acyclic component (AC) corresponding to K. For each vertex v in K we designate (notnecessarily distinct) nodes innode(v) and outnode(v) in C0(K), and the acyclic core C0 consists ofthe union of all acyclic components together with all inter-component edges, all edges of the form(outnode(u); innode(v)), where (u; v) is an edge of the full core and u and v belong to di�erent SCCs.Every inter-component edge (outnode(u); innode(v)) inherits its capacity from the edge (u; v), andwe generally identify it with (u; v).The generic algorithm requires the routines `acyclicCore' and `transferFlow' to satisfy the fol-lowing properties:Capacity property: For each SCC K of the core and all vertices u and v in K, there is a path inC0(K) from innode(u) to outnode(v) of capacity at least �.Transfer property: For every blocking ow g0 in C0, the call `transferFlow(g0; C0;N)' returns a owg in the corresponding full core C with jgj � minfjg0j;�g and g(e) � minfg0(e);�g for every inter-component edge e.Anticycle property: For every blocking ow g0 in C0, if the call `transferFlow(g0; C0;N)' returns aow g with jgj < �, then g(e) < 2� for every edge e in C, and g(e) < � for every inter-componentedge e in C.2.2. AnalysisIn the following series of lemmas, we always consider a round that starts with the ow f andends with the ow f + g; i.e., g is the ow returned by the call of `transferFlow' in the round underconsideration. C and C0 denote the (full) core and the acyclic core used by the round. Changes of� are considered to take place between rounds, not within rounds.In an execution of Dinitz' algorithm, no node height ever decreases. As shown in the �rst partof the following lemma, this is also true of the BBF algorithm, as long as � is not changed.Lemma 2.1. For all u 2 V , df+g(u) � df (u). Furthermore, suppose that df+g(u) = df (u) < 1and let � be a shortest path from u to t in Rf+g. Then for all nodes v on �, df+g(v) = df (v).Proof. Since a core contains no upward edges, adding g to f cannot create a new edge that isdownward with respect to f or shorten such an edge. If follows that df+g(u) � df (u) for all u 2 V .Suppose now that df+g(u) = df (u) < 1 and that � is a shortest path from u to t in Rf+g .Assuming that � contains at least one node w with df+g(w) < df (w), let w be the �rst such nodeon �. By assumption, w 6= u. Let v be the node on � immediately before w. Then `f+g(v; w) <`f (v; w), which implies that (v; w) is not downward with respect to f and that (v; w) is upward withrespect to f + g, contradicting the fact that no shortest path to t can contain an upward edge.Lemma 2.2. If jgj < � then g is a blocking ow in C.Proof. Assume that some s-t path � in C is not blocked by g. Replacing each edge on � within anSCC of C by a path of capacity at least � according to the capacity property, we obtain a walk �0

An Implementation of the Binary Blocking Flow Algorithm 146in C0. At least one edge e on �0 is saturated by the blocking ow g0 in C0 from which g is derived.If e is an inter-component edge, we must have jg0j � g0(e) > g(e), but the transfer and anticycleproperties show that this cannot be the case if jgj < �. Therefore the capacity of e is at least �,and it follows that jg0j � � and that jgj � �.The following theorem plays the same central role in our analysis as does Theorem 4.3 of [4]in the analysis of Goldberg and Rao. Our proof is more detailed and works for the generic BBFalgorithm.Theorem 2.3. If df+g(s) = df (s) <1, then jgj � �.Proof. Assume that df+g(s) = df (s) < 1 and let � be a shortest path from s to t in Rf+g . ByLemma 2.1, df (u) = df+g(u) for all nodes u on �. De�ne a noncore edge as an edge in Rf , but notin C. Suppose that e is a noncore edge on �. Since e lies on a shortest path in Rf+g, it cannot beupward. As a noncore edge, it is also not downward. Therefore, e is horizontal. Since e lies on ashortest path in Rf+g and is horizontal, we must have `f+g(e) = 0. On the other hand, since e isnoncore, `f (e) > 0. This is possible only if the reverse e of e belongs to the core C and an increasein the ow over e in the round under consideration increases the residual capacity of e to at least3�. Since e is noncore, rf (e) < 2�. Hence the ow over e increases by at least �.If the reverse of some noncore edge on � is an inter-component edge, we can conclude from theanticycle property that jgj � �. Assume the opposite. Then the endpoints of every noncore edgee = (u; v) on � belong to the same SCC of C, i.e., the core contains a path from u to v, called thedetour of e, of capacity at least 2�. Consider the walk �0, identical to �, except that every noncoreedge is replaced by its detour. �0 goes from s to t and belongs entirely to C. Assume that jgj < �.Then, by Lemma 2.2, some edge on �0 is saturated by g. This edge cannot belong to � (� is a pathin Rf+g), and hence must be an edge e0 on a detour. We have g(e0) = rf (e0) � 2�, and the anticycleproperty implies that jgj � �.As observed by Goldberg and Rao, the fact that every edge in the residual graph joining twoadjacent layers is of residual capacity less than 3� means that one can use the arguments of Evenand Tarjan [3] to show that after cd�e rounds, the residual value of f has dropped below � bF .Here c is a positive constant that depends on � and �. In a very simple implementation of theBBF algorithm, one could therefore end a phase after cd�e rounds and choose � := b��c for thenext round. Since the residual value is certainly bounded by nU initially, a maximum ow can becomputed in O(� log(nU)) rounds, a bound that was reduced to O(� logU) rounds by Goldberg andRao. Assuming that the acyclic core C0 has O(n) vertices and O(m) edges and that the time boundof O(m log(n2=m)) of [5] for computing a blocking ow in C0 dominates the remaining computationof a round|two very mild assumptions|the simple BBF algorithm achieves the same running timeof O(m� log(n2=m) logU) as the algorithm described by Goldberg and Rao.Practically more e�cient instantiations of the generic BBF algorithm need to use more intricateroutines `estimateFlow' that return the minimum of several upper bounds on the residual ow value.The capacity of every s-t cut in the current residual network is such an upper bound. It can be seenthat the time bound established above holds for any variant that takes into account at least the cut(fsg; V nfsg) and the canonical cuts (Sk; V nSk), for k = 1; : : : ; df (s), where Sk = fv 2 V j df (v) �kg. Note that the canonical cut values can be found (almost) as a byproduct of the computation ofthe distance function df . Our implementation additionally uses the cut (V nftg; ftg) and the upperbound bF � jgj on the residual ow value, where bF is the upper bound of the previous round and gis the ow added to f in that round.We mention briey that the worst-case analysis of Goldberg and Rao can be improved in termsof constant factors. Let us say that a variant of the binary blocking ow algorithm achieves aleading factor of C if the number of rounds necessary to compute a maximum ow is boundedby C� logU + O(� + logU). Inspection of [4] shows that the authors prove their algorithm toachieve a leading factor of 7 for m � n4=3 (the sparse case) and of 6 for m > n4=3 (the dense

An Implementation of the Binary Blocking Flow Algorithm 147case). This is done by ending a phase when half of the remaining ow is known to have beenrouted and by choosing � = maxfd bF=m1=2e; d bF=n2=3eg, i.e., � = 1 and � = 1=2. ([4] speci�es� = minfd bF=m1=2e; d bF=n2=3eg, which we assume to be a simple error). By choosing smaller valuesfor � and � we achieve leading factors of approximately 2.98 in the sparse case and 2.51 in the densecase. It appears that both leading factors of Goldberg and Rao can be lowered to 5 by using thewheels-within-wheels construction of Knuth [7], but this will bene�t our analysis as well.2.3. Some instantiationsThe original algorithm of Goldberg and Rao can be viewed as an instantiation of our genericBBF algorithm as follows: Each SCC of C is replaced by a single vertex. If the value of the blockingow g0 exceeds �, the function `transferFlow' �rst returns jg0j �� units of ow to s. Transferringthe remaining ow to C is a matter of routing \within" the SCCs. Since, by construction, each edgewithin an SCC is of capacity at least 2� and a total of at most � units of ow is to be routed,this can be done in the following two-step manner: The ow entering the SCC is routed to anarbitrarily chosen root via a spanning intree, i.e., a spanning tree of edges leading to the root. Thenthe ow is distributed as appropriate via a spanning outtree (which is not necessarily disjoint fromthe intree|hence the factor of 2).The simplest variant of our approach incorporates the tree-routing idea described above into theconstruction of the acyclic core. For trivial components K consisting of a single node, C0(K) simplyis a copy of K. Otherwise, each node v 2 K of an SCC is replaced by two copies vin and vout suchthat innode(v) = vin and outnode(v) = vout. An arbitrary node w 2 K is chosen as a root and thenodes of the form innode(u) are connected to win via an intree such that an edge (uin; vin) in thistree corresponds to an edge (u; v) in K. Analogously, the nodes of the form outnode(u) are reachedfrom wout via an outtree. The intree and the outtree can be constructed in various ways. We usebreadth-�rst traversal of K. The root nodes win and wout are connected by an in�nite-capacity edge.Edges in K corresponding to both an intree edge and an outtree edge have their residual capacitysplit evenly among these two edges. The remaining intree edges and outtree edges get the entireresidual capacity from the corresponding edge in K. The function `transferFlow' simply maps theow on edges in C0 to the corresponding edges in C.It is easy to see that the capacity, transfer, and anticycle properties hold for this way of construct-ing acyclic components: C0 has linear size and `makeAcyclic' and `transferFlow' can be implementedto run in linear time. For any two nodes u and v in an SCC K there is a path of capacity at least� from innode(u) over the intree and the outtree to outnode(v). The transferred ow is legal sinceit cannot exceed the residual capacity of any edge in K and because any ow on a path in C0(K) ismapped to a corresponding path in K. The capacity of an edge from C is split between at most twoedges in C0, and even that only for edges in an SCC, i.e., on a cycle in C.The main advantage of our approach is that a round may increase the s-t-ow by considerablymore than �. This does not yield a better worst-case bound, but our experiments show that itis crucial to achieving a good performance in a practical setting. We note a number of additionalmeasures that may increase the ow found in blocking-ow computations.a) We can introduce in�nite-capacity edges between any pair (vin; vout).b) An edge (u; v) 2 K that has no correspondence in the intree or the outtree can be used tointroduce a corresponding edge (uin; vout) in C0(K), since no cycles are introduced.c) Some edges (u; v) 2 K as in b) can also be translated into (uin; vin) or (uout; vout) edges withoutincurring cycles. For example, we have implemented a variant which assigns BFS-numbers k(v)to nodes of C0(K) and allows edges with k(uin) < k(vin) in the intree as well as edges withk(uout) < k(vout) in the outtree.d) The de�nition of a core is quite exible and, for example, allows those horizontal length-1edges that do not introduce cycles into C. We have implemented a variant which allows edgesthat do not violate a topological order of the SCCs.

An Implementation of the Binary Blocking Flow Algorithm 1483. Experimental resultsIn this section we present a preliminary experimental evaluation of the binary blocking ow(BBF) algorithm. We will mainly compare it to an implementation of Dinitz' algorithm that usesthe same algorithm for computing blocking ows. In most cases we have used a simple O(mn)-time DFS-based routine as in Dinitz' original presentation [2]1. We have also experimented withan O(n2)-time implementation of Tarjan's wave algorithm [10], which sometimes (though rarely)yields better results. In all cases, all nodes in the acyclic core from which t is not reachable are �rsteliminated. This is crucial to the performance of certain blocking-ow algorithms.In addition, we make comparisons with two implementations of preow-push algorithms, namelythe LEDA MAX_FLOW() function and the highest-label preow-push code h prf by Cherkassky andGoldberg, which performed best in the study [1]. When not otherwise stated, we have used a\standard" variant of the BBF algorithm with � = 2, � = 1=2, and the re�nements a) and b)from Section 2.3. This choice may be somewhat arbitrary, yet we believe it to reects a reasonablecompromise between simplicity, sophistication, and overhead for re�nements not needed by theworst-case analysis.We have experimented with the same problem families as in [1]. For the families whose instancesare generated randomly, the �gures reported are averages over �ve problem instances. A moredetailed description of the problem families can be found in [6, Appendix A]. To keep the computationtimes within limits, we most often used smaller instances than in [1], ensuring a certain overlap tofacilitate direct comparison. Experiments were carried out on a 200 MHz Sun Ultra-2 using GNUC++ 2.8.1 with compiler setting -O6 and LEDA 3.7.Table 1 lists the running times for the four codes. These times give a rough idea of the strengthsand weaknesses of the individual algorithms. We stress that a direct comparison between the per-formance of the four implementations is not very meaningful; one should take into account thath prf is carefully coded in C and uses many well-tuned heuristics, whereas the other codes put moreemphasis on ease of implementation and accept some library overhead by using LEDA. Since ourprime motivation with this study is to gain �rst insights into the behavior of the BBF algorithm,compared to Dinitz' algorithm and preow-push algorithms, we feel that the LEDA implementationssu�ce at this point; for the same reason we do not include running times for available C code forDinitz' algorithm, which can be found, for example, in [1].Table 2 is intended to give a more implementation-independent picture by providing counts ofimportant operations that can be compared more directly. For the Dinitz and BBF algorithms akey parameter is the number of edges scanned while searching for augmenting paths in the blocking-ow computation, an operation commonly known as \Advance". This number roughly accountsfor the time spent in computation of blocking ows and plays a similar role as the number of pushoperations in preow-push algorithms. We also count the number of rounds performed, which isindicative of where the time is spent, since the Dinitz and BBF algorithms in each round constructacyclic networks of size O(m). For the BBF algorithm, we also count the number of phases, as wellas the total number of SCCs encountered. The e�ect of allowing more than � units of ow perround is estimated by assuming that a blocking ow of value B > � saves bB=�c rounds. Sinceblocking ows are not unique and, in particular, since the blocking ow for the next round dependson how the B � � units of excess ow are routed back to s in the original BBF algorithm of [4],this estimate is not always accurate. Nevertheless, we believe it to give a good idea of how manyrounds are saved over the original algorithm and present these numbers in the column \Saved". Inall experiments conducted, a signi�cant number of rounds were saved in this sense. We take this asa vindication of our alternative to contraction of SCCs as originally proposed in [4].We observe that for the rmf instances, the BBF algorithm needs only a single round. Although itperforms about as many advance operations as all blocking-ow computations of Dinitz' algorithmput together, the BBF algorithm is much faster (10{40 times). This is because Dinitz' algorithm1We would like to thank Thomas Erlebach for providing us with a LEDA implementation.

An Implementation of the Binary Blocking Flow Algorithm 149n m LEDA h prf Dinitz BBFGenrmf-Long (rmf-Long)675 2810 0.01 0.01 1.16 0.481152 4956 0.03 0.01 2.47 0.432205 9716 0.06 0.03 8.24 0.774096 18368 0.14 0.05 22.79 1.909000 41300 0.38 0.14 92.34 6.0215488 71687 0.66 0.26 200.31 15.0030589 143364 1.62 0.58 695.96 40.30Genrmf-Wide (rmf-Wide)507 2210 0.03 0.01 0.96 0.111024 4608 0.07 0.03 2.85 0.242205 10164 0.21 0.09 9.45 0.623920 18256 0.56 0.20 25.78 1.288664 40964 2.11 0.57 91.69 3.4816807 80262 5.11 1.70 285.35 8.1832768 157696 14.09 4.25 783.04 19.32Acyclic-Dense64 2016 0.01 0.00 0.06 0.15128 8128 0.06 0.01 0.23 0.47256 32640 0.33 0.04 1.08 2.92512 130816 2.00 0.45 5.02 16.43AK518 775 0.01 0.01 2.36 0.211030 1543 0.03 0.04 9.37 0.462054 3079 0.13 0.13 37.14 1.124102 6151 0.50 0.47 151.02 3.138198 12295 2.04 1.77 709.29 9.9116390 24583 8.39 6.74 3090.65 38.7732774 49159 34.08 27.49 12942.90 151.59Washington-RLG-Long (RLG-Long)4098 12224 0.18 0.04 6.16 63.138194 24512 0.39 0.10 22.53 229.9516386 49088 0.81 0.21 81.76 719.52Washington-RLG-Wide (RLG-Wide)8194 24448 0.49 0.14 19.15 171.2916386 48896 1.08 0.29 44.48 482.81Washington-Line-Moderate (wlm)514 3007.4 0.01 0.00 0.35 4.511026 8069.6 0.05 0.01 1.16 34.082050 22293.6 0.14 0.01 3.11 165.104098 65020 0.46 0.05 9.94 829.28Table 1: Running times (in seconds) for the four implementations: LEDA preow-push, Cherkassky-Goldberg highest-label preow-push (h prf), Dinitz, and the binary blocking ow algorithm (BBF) with� = 2 bF=� and � = 1=2.spends time repeatedly scanning the entire graph when building layered networks. Although the BBFalgorithm almost matches the LEDA preow-push algorithm for the rmf-Wide instances, the overallrunning times are disappointing compared to h prf. For the rmf-Long instances the blocking-owcomputation takes so long that an implementation of an O(m logn)-time blocking-ow algorithmusing dynamic trees might be worth considering. The wave algorithm performs even worse here.For the acyclic dense graphs, Dinitz' algorithm performs quite well; it needs only 3{4 rounds,

An Implementation of the Binary Blocking Flow Algorithm 150h prf Dinitz Binary blocking own m Push Advance Rnd Comp Advance Ph Rnd SavedGenrmf-Long (rmf-Long)675 2810 2685 15418 37 99 21663 2 4 291152 4956 5088 35007 50 51 45098 2 2 382205 9716 12286 109671 89 45 132939 2 1 544096 18368 21039 271421 122 64 357868 2 1 749000 41300 51619 922269 207 90 1271902 2 1 11215488 71687 92775 2026817 249 177 2962492 2 1 14630589 143364 196330 6125112 428 181 9560940 2 1 208Genrmf-Wide (rmf-Wide)507 2210 6684 12735 46 3 5917 2 1 251024 4608 14399 34591 67 4 17436 2 1 362205 10164 40295 101495 99 5 54783 2 1 543920 18256 88670 252345 139 5 124296 2 1 738664 40964 220348 732811 199 6 389819 2 1 10916807 80262 595050 1970327 294 7 1050095 2 1 15232768 157696 1165655 4795368 387 8 2705728 2 1 214Acyclic-Dense64 2016 356 365 3 4 342 3 4 16128 8128 770 720 3 0 718 3 3 23256 32640 1856 1801 3 1 1772 3 4 42512 130816 5757 7626 4 2 7190 3 5 74AK518 775 13823 42184 193 2539 17773 6 6 371030 1543 48369 166280 385 5083 68312 6 6 472054 3079 177819 660232 769 10179 267712 6 6 664102 6151 658507 2631176 1537 20387 1059749 6 6 1088198 12295 2492647 10505224 3073 40821 4216690 6 6 13116390 24583 9478275 41981960 6145 81716 16822070 6 6 22032774 49159 36597865 167849992 12289 163545 67198678 6 6 263Washington-RLG-Long (RLG-Long)4098 12224 33783 199145 26 62245 184646 12 116 2058194 24512 74506 758686 47 254355 649599 12 197 28916386 49088 138184 2857194 82 480664 2119305 14 278 430Washington-RLG-Wide (RLG-Wide)8194 24448 102874 470967 40 166109 429112 13 152 23916386 48896 191133 963366 45 400498 909273 14 203 344Washington-Line-Moderate (wlm)514 3007.4 1310 9303 8 1570 5547 11 51 1661026 8069.6 2432 29952 9 7145 20392 16 134 3612050 22293.6 4499 70984 8 7490 36209 19 221 6324098 65020 8745 196558 8 7572 92485 19 336 971Table 2: Operation counts for the h prf, Dinitz, and BBF algorithms. \Push" is the number of pushesperformed by h prf, and is roughly comparable to the number of \Advance" operations performed by theblocking-ow algorithm. Columns \Rnd" give the number of blocking-ow computations. \Comp" is thetotal number of SCCs identi�ed by the BBF algorithm. \Ph" is the number of phases required. The column\Saved" estimates the number of rounds saved over the original Goldberg-Rao algorithm.each of which is quite fast. The BBF algorithm behaves similarly, but su�ers somewhat from themore complex construction of the acyclic core in each round. The h prf implementation is an orderof magnitude faster than the Dinitz implementation. Much smaller di�erences are reported in [1]

An Implementation of the Binary Blocking Flow Algorithm 151(less than a factor of 1:5 for small instances). Implementation details therefore seem to play asigni�cant role, at least for this family of graphs.The AK instances of [1] were specially designed to be di�cult for the Dinitz and preow-pushalgorithms. For the instances tried here, the BBF algorithm needs only six rounds. With ourdefault blocking-ow algorithm, at least one of these computations needs quadratic time. The wavealgorithm works very well and solves the instances in a single wave, i.e., in linear time.The instances generated by the washington generator (RLG-Long, RLG-Wide and wlm) are verydi�cult for our BBF algorithm. In most rounds, the blocking ow is only slightly larger than �,so that the number of rounds comes close to the worst case predicted by the analysis. This is infact much slower than even Dinitz' algorithm, which in turn is considerably slower than both of thepreow-push algorithms.Table 3 summarizes our experiments with the re�nements from Section 2.3. We give results (run-Austere Large AC (abc) Large core (abd) All re�nementsTime Advance Rnd Time Advance Rnd Time Advance Rnd Time Advance RndGenrmf-Long (rmf-Long) n 2 f675; : : : ; 30589g0.37 54307 4 0.37 22431 4 0.16 17254 1 0.15 17057 10.47 138082 1 0.32 43780 1 0.31 42948 1 0.29 42116 11.26 446549 1 0.67 125951 1 0.77 132939 1 0.72 125951 13.75 1351338 1 1.66 330119 1 1.88 357868 1 1.69 330119 115.53 5249763 1 5.22 1171796 1 6.05 1271902 1 5.36 1171796 149.20 14015360 2 12.84 2761991 1 13.69 2948817 1 12.00 2743935 1165.15 47303533 1 35.01 8651479 1 41.53 9560940 1 36.52 8651479 1Genrmf-Wide (rmf-Wide) n 2 f507; : : : ; 32768g0.09 7943 1 0.09 6204 1 0.11 5917 1 0.11 6204 10.21 30307 1 0.22 17754 1 0.23 17436 1 0.24 17754 10.60 119225 1 0.53 54260 1 0.59 54783 1 0.58 54260 11.32 279440 1 1.12 122971 1 1.23 124296 1 1.18 122971 14.31 993331 1 3.00 379599 1 3.37 389819 1 3.28 379599 113.41 3240827 1 7.21 1030765 1 8.00 1050095 1 7.67 1030765 138.27 9107654 1 16.77 2573170 1 18.74 2705728 1 17.58 2573170 1Acyclic-Dense, n 2 f64; 128; 256; 512g0.14 342 4 0.15 430 4 0.19 342 4 0.19 2292 40.46 718 3 1.29 738 6 0.61 718 3 1.64 4562 62.61 1772 4 2.62 1809 4 3.70 1772 4 3.13 15479 413.99 7190 5 24.03 7999 6 20.75 7189 5 33.09 350873 6AK, n 2 f518; : : : ; 32774g0.19 17773 6 0.20 17773 6 0.23 17771 6 0.23 17771 60.42 68312 6 0.42 68312 6 0.52 68310 6 0.50 68310 61.09 267712 6 1.07 267712 6 1.26 267710 6 1.31 267710 63.13 1059749 6 3.07 1059749 6 3.38 1059747 6 3.32 1059747 610.31 4216690 6 10.15 4216690 6 10.48 4216688 6 10.13 4216688 638.79 16822070 6 38.21 16822070 6 38.42 16822068 6 36.50 16822068 6157.63 67198678 6 158.75 67198678 6 162.25 67198676 6 152.86 67198676 6Washington-RLG-Long (RLG-Long), n 2 f4098; 8194; 16386g57.14 188044 138 47.80 223810 93 77.42 252822 111 43.72 505970 61175.85 671742 201 150.16 749208 138 248.47 867272 170 130.33 1779247 89524.61 2139227 271 416.75 2553156 167 770.71 2287125 250 355.17 5728522 108Washington-RLG-Wide (RLG-Wide), n 2 f8194; 16386g135.78 441360 159 115.46 485229 112 181.22 601157 132 94.27 1100676 71344.52 911538 189 258.49 971222 123 429.23 1171136 158 300.68 2849692 108Washington-Line-Moderate (wlm), n 2 f514; 1026; 2050; 4098g3.42 5573 50 1.19 16880 14 4.46 10200 40 0.70 16157 624.33 19841 135 5.73 25694 25 30.82 31507 100 4.99 49010 14116.65 35935 217 13.33 54853 18 111.65 88762 126 12.05 110839 11482.42 91895 328 22.25 169688 9 403.67 321261 157 11.61 377980 3Table 3: Alternative AC and large-core constructions.

An Implementation of the Binary Blocking Flow Algorithm 152ning time, number of advance operations, and number of rounds) for four variations on this theme.An austere algorithm without any of the re�nements; an algorithm with large acyclic componentswhich encompasses re�nements a), b) and c); a variant with enlarged core using re�nements a), b)and d), and �nally a variant using all the re�nements described in Section 2.3 plus the followingheuristic that is not covered by the analysis given here: We translate horizontal length-1 edges withinSCCs into edges of the acyclic components in the same way as described in the re�nements b) andc). The austere variant potentially allows less ow through SCCs than the standard (and large)construction, and thus a larger number of rounds is to be expected. This e�ect is most manifestfor the rmf instances and especially striking for the Washington-Line-Moderate (wlm)-class, wherethe \large" construction gives an improvement of a factor of more than 20 for the largest instanceover the austere variant. For these instances, the standard construction is slightly better thanthe austere one. The gain from using large ACs comes (solely; the number of advance operationsincreases somewhat) from a dramatic reduction in the number of rounds, which, for the instancestried here, even decreases as the instance size increases.The two variants with larger cores shown in the two rightmost columns seem to yield the mostfor the Washington-Line-Moderate (wlm)-family, although for the larger core construction alone,the e�ects are by no means as signi�cant as for the large AC construction. Combining the twoconstructions brings the performance of the BBF algorithm very close to that of Dinitz' algorithmfor the Washington-Line-Moderate (wlm)-instances. The RLG-families remain di�cult for our variantsof the BBF algorithm.Dinitz' algorithm can be viewed as a degenerate version of the BBF algorithm with � = 1,so that all edges have length 1. It might therefore be conjectured that a larger � (that is, alarger factor �) is better for the washington instances. We conducted a few experiments concerningpossibly better choices of �. Table 4 shows the e�ect of making � a factor of two smaller (� = bF=�)and a factor of two larger (� = 4 bF=�) than the choice made for the other experiments. In addition,it shows measurements for the other extreme, � = 0. A larger � improves the bleak situation forthe RLG and wlm instances somewhat. This is not so surprising since it makes the BBF algorithmmore Dinitz-like. A larger � has no adverse e�ect on the other instances. � = bF=� correspondinglyworsens the situation, and, more signi�cantly, the rmf-Long instances now take a long time to solve.In fact, from the de�nition of these instances it seems likely that su�ciently \long" families of rmfinstances are not solvable in a single round with � = � bF=� for any �xed �. The choice � = 0,which has the e�ect of assigning all edges length 0 and is not allowed by the generic algorithm,has quite striking e�ects. Although it does not perform well for the acyclic-dense family or the RLGfamilies, now not only the rmf instances but also AK instances and larger wlm instances are solvedin a single round. The AK instance with 215 nodes is solved in 3:87s if we use the wave blocking-owalgorithm. This is more than seven times faster than the h prf code.4. DiscussionCompared to the original algorithm of Goldberg and Rao [4], our variant o�ers a number ofadvantages. First, our algorithm potentially allows the ow from s to t to increase by substantiallymore than � in a single round, which appears from experiments to be crucial to a good performance.In contrast, Goldberg and Rao route ow in excess of � back to the source. Second, we do not needsubroutines for routing ow within strongly connected components or for routing excess ow backto the source. Third, we can establish better worst-case bounds, by constant factors, on the numberof rounds needed to compute a maximum ow. And fourth, our de�nition of an acyclic core is quiteexible. As a consequence, it is possible to experiment with a number of di�erent heuristics forconstructing the acyclic core without jeopardizing the worst-case bound on the running time.Many further experiments as well as re�nements of the algorithm and its analysis suggest them-

An Implementation of the Binary Blocking Flow Algorithm 153� = 0 � = 1 bF=� � = 2 bF=� � = 4 bF=�Time Advance Rnd Time Advance Rnd Time Advance Rnd Time Advance RndGenrmf-Long (rmf-Long) n 2 f675; : : : ; 30589g0.16 17254 1 9.03 13762 108 0.48 21663 4 0.16 17254 10.31 42948 1 29.03 30979 186 0.43 45098 2 0.33 42948 10.79 132939 1 93.41 81177 286 0.77 132939 1 0.81 132939 11.88 357868 1 269.32 208976 413 1.90 357868 1 1.95 357868 16.03 1271902 1 6.02 1271902 1 6.12 1271902 113.30 2948817 1 15.00 2962492 1 13.38 2948817 140.98 9560940 1 40.30 9560940 1 40.89 9560940 1Genrmf-Wide (rmf-Wide) n 2 f507; : : : ; 32768g0.10 5917 1 0.11 5917 1 0.11 5917 1 0.12 5917 10.25 17436 1 0.25 17436 1 0.24 17436 1 0.25 17436 10.61 54783 1 0.63 54783 1 0.62 54783 1 0.63 54783 11.25 124296 1 1.30 124296 1 1.28 124296 1 1.29 124296 13.40 389819 1 3.47 389819 1 3.48 389819 1 3.47 389819 17.94 1050095 1 8.16 1050095 1 8.18 1050095 1 8.21 1050095 119.06 2705728 1 19.35 2705728 1 19.32 2705728 1 19.24 2705728 1Acyclic-Dense, n 2 f64; 128; 256; 512g11.12 6179 217 0.18 344 5 0.15 342 4 0.11 333 3133.55 28766 664 0.49 718 3 0.47 718 3 0.48 720 32.99 1772 4 2.92 1772 4 2.59 1767 416.74 7190 5 16.43 7190 5 14.25 7178 5AK, n 2 f518; : : : ; 32774g0.07 17162 1 0.19 17665 5 0.21 17773 6 0.24 17839 70.20 67082 1 0.43 68088 5 0.46 68312 6 0.54 68497 70.59 265226 1 1.06 267244 5 1.12 267712 6 1.33 268126 71.97 1054730 1 2.93 1058781 5 3.13 1059749 6 3.21 1059620 67.43 4206602 1 9.62 4214725 5 9.91 4216690 6 10.07 4216516 634.88 16801802 1 40.27 16818087 5 38.77 16822070 6 39.87 16821830 6145.49 67158026 1 151.52 67190647 5 151.59 67198678 6 150.70 67198351 6Washington-RLG-Long (RLG-Long), n 2 f4098; 8194; 16386g1028.85 267962 1732 143.67 172621 235 63.13 184646 116 44.95 187974 884423.69 1045270 3499 452.72 569092 340 229.95 649599 197 138.35 688417 131719.52 2119305 278Washington-RLG-Wide (RLG-Wide), n 2 f8194; 16386g384.79 418544 307 171.29 429112 152 90.52 445529 92482.81 909273 203Washington-Line-Moderate (wlm), n 2 f514; 1026; 2050; 4098; 8194; 16386g0.60 16325 6 7.33 7178 74 4.51 5547 51 2.21 7378 261.24 57043 4 38.33 27314 140 34.08 20392 134 15.35 22362 611.43 151221 1 114.05 78619 148 165.10 36209 221 78.07 53690 1034.54 457669 1 646.62 215525 302 829.28 92485 336 434.65 130904 20112.76 1151407 140.37 3564981 1Table 4: Di�erent choices for the constant � in the formula for � for the binary blocking ow algorithm.Entries are left blank for instances that take too long to complete.selves. In our experiments, we have not looked at how the parameter � should be chosen or howthe maximum edge weight U inuences the practical execution times. More experiments on how �should be chosen are needed since we have seen that this can have a signi�cant e�ect. Can we evencome up with a more adaptive way to choose �, e.g., as a function of df (s) or of the value of thecanonical cuts? Are there better alternatives for constructing a larger core? The experiments indi-cate that the possibility to route more ow through the strong components is always advantageous.Thus, it might be interesting to try out more possibilities for constructing the acyclic components.One could also come closer to the original algorithm of Goldberg and Rao: After a blocking owthrough the contracted graph is found, one would try to route as much ow as possible throughthe components. Only the remaining excess ow needs to be returned to s. We did not implement

An Implementation of the Binary Blocking Flow Algorithm 154this variant since it appears to be slightly more complicated than our algorithm and because the\capacity" of the vertex representing a component is invisible to the blocking-ow routine, a factthat can decrease the amount of ow that we actually get through. On the other hand, for instanceswith most nodes in large components, the contracted graph of the original algorithm is much smallerthan the acyclic core constructed in our implementation. In such cases, signi�cant savings in theblocking-ow computation can be expected. For example, for appropriate � the rmf instancescollapse to a single path and routing the required ow within the components is easy, so that theoverall running time of the algorithm would be linear.References[1] B. V. Cherkassky and A. V. Goldberg, On implementing the push-relabel method for themaximum ow problem, Algorithmica 19 (1997), pp. 390{410.[2] E. A. Dinic, Algorithm for solution of a problem of maximum ow in networks with powerestimation, Soviet Math. Dokl. 11 (1970), pp. 1277{1280.[3] S. Even and R. E. Tarjan, Network ow and testing graph connectivity, SIAM J. Comput. 4(1975), pp. 507{518.[4] A. V. Goldberg and S. Rao, Beyond the ow decomposition barrier, Proc. 38th Annual IEEESymposium on Foundations of Computer Science (FOCS 1997), pp. 2{11.[5] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by successive approxima-tion, Math. Oper. Res. 15 (1990), pp. 430{466.[6] D. S. Johnson and C. C. McGeoch (eds.), Network Flows and Matching, First DIMACS Im-plementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical ComputerScience, Vol. 12, Amer. Math. Soc., 1993.[7] D. E. Knuth, Wheels within wheels, J. Combin. Theory (B) 16 (1974), pp. 42{46.[8] K. Mehlhorn and S. N�aher, LEDA: A platform for combinatorial and geometric computing,Communications of the ACM 38(1) (1995), pp. 96{102.[9] K. Mehlhorn, S. N�aher, and C. Uhrig, The LEDA User Manual. Version 3.5, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1997.[10] R. E. Tarjan, A simple version of Karzanov's blocking ow algorithm, Oper. Res. Lett. 2 (1984),pp. 265{268.

155Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 155{166An Iterated Heuristic Algorithm forthe Set Covering ProblemElena MarchioriDepartment of Computer Science, University of Leiden, P.O. Box 95122300 RA Leiden, The Netherlandse-mail: elena@cs.leidenuniv.nlandAdri SteenbeekCWI, P.O. Box 940791090 GB Amsterdam, The Netherlandse-mail: adri@cwi.nlABSTRACTThe set covering problem is a well-known NP-hard combinatorial optimization problem withwide practical applications. This paper introduces a novel heuristic for the uni-cost set coveringproblem. An iterated approximation algorithm (ITEG) based on this heuristic is developed: inthe �rst iteration a cover is constructed, and in the next iterations a new cover is built bystarting with part of the best solution so far obtained. The �nal output of the algorithm is thebest solution obtained in all the iterations. ITEG is empirically evaluated on a set of randomlygenerated problem instances, on instances originated from the Steiner triple systems, and oninstances derived from two challenging combinatorial questions by Erd�os. The performance ofITEG on these benchmark problems is very satisfactory, both in terms of solution quality (i.e.,small covers) as well as in terms of running time.
1. IntroductionThe set covering problem (SCP) is one of the oldest and most studied NP-hard problems (cf.[13]). The SCP consists of covering the rows of a m-row, n-column, zero-one matrix (aij) by aminimal subset of the columns, where a row i is covered by a column j if the entry aij is equal to1. This problem can be formulated as a constrained optimization problem as follows:minimize Pnj=1 xj subject to the constraints 8<: xj 2 f0; 1g j = 1; : : : ; n;Pnj=1 aijxj � 1 i = 1; : : : ;m:The variable xj indicates whether column j belongs to the solution (xj = 1) or not (xj = 0).The m constraint inequalities are used to express the requirement that each row be covered by atleast one column. In the weighted version of this problem, the objective function is Pnj=1 cjxj forsome weights cj > 0 specifying the cost of column j. Therefore the SCP is sometimes referred to asthe unicost SCP.The SCP has a wide number of applications, such as construction of optimal logical circuits,scheduling (e.g., aircrew scheduling), assembly line balancing, and information retrieval. Recent

An Iterated Heuristic Algorithm for the Set Covering Problem 156results in computational complexity provide a theoretical quanti�cation of the di�culty of thisproblem. In particular, Feige in [11] has proven that for any � > 0 no polynomial time algorithmcan approximate SCP within (1� �) lnm unless NP has slightly superpolynomial time algorithms.Due to these negative results, many approximation algorithms for the SCP have been developed(e.g., [7, 6, 14]). In particular, in [14] Grossman and Wool perform a comparative experimentalstudy of nine e�ective approximation algorithms proposed by researchers in the �eld of combinatorialoptimization, like the simple and randomized greedy algorithms, a randomized rounding algorithm,and an algorithm based on neural networks. The performance of these algorithms is tested on a largeset of benchmark problems, and the results show that the multi-start randomized greedy algorithmoutperforms the other algorithms in almost all of the problem instances. The heuristic used inthe randomized greedy algorithm is rather simple: a cover is constructed starting from the emptyset of columns (that is, all xj 's are equal to zero). At each step of the algorithm the actual setof columns is extended by adding one column which is randomly chosen amongst those that coverthe largest number of (not yet covered) rows (in other words, at each step of the algorithm thevariable xj that appears in the largest number of unsatis�ed inequality constraints is set to one).This process is repeated until all rows are covered. Observe that the obtained cover may containredundant columns, which can be removed from the set without destroying the property of being acover. Therefore, the cover is re�ned by removing the redundant columns in a random order, one ata time because removing one redundant column may a�ect the redundancy of other columns. Theresulting procedure can be summarized as follows:Random_GreedyBEGINS <- { };WHILE (S is not a cover) DOAdd best column to S breaking ties randomly;ENDWHILEremove redundant columns from S in a random order;RETURN SENDIn this paper, we enhance Rand Greedy (RG) as follows: a suitable rule is used for breaking tiesin the `add' step; moreover, a `removal' step is introduced in the while loop, which makes it possibleto discard columns from the partial cover so far constructed, and which also takes care of removingredundant columns; �nally, an optimization step is introduced after the while loop, which tries toimprove the obtained cover by means of a suitable optimization procedure. The resulting heuristicis called Enhanced Greedy (EG).Often, the basic algorithm Rand Greedy is run a number of times and the best solution foundin all the runs is returned (multistart approach). An alternative to the multistart approach is theso-called iterated approach (cf., e.g., [1]), in which the starting point of the next run is obtained bymodifying the local optimum of a previous run. For a greedy heuristic for the SCP, this approachamounts to starting each run with a partial cover instead of the empty set. It turns out that a`good' partial cover can be obtained by restoring a part of the best cover found in all the previousiterations. By applying this latter approach to EG, we obtain a very powerful algorithm, calledIterated Enhanced Greedy Algorithm (ITEG), which produces covers of very good quality in acompetitive amount of time.The rest of the paper is organized as follows. In the next section we introduce the EG heuristic.In section 3 the ITEG algorithm is introduced. The computational experiments are treated in Section4, while Section 5 contains a discussion on the iterated approach applied to RG and EG. We concludewith some �nal remarks on the present investigation and on future work.

An Iterated Heuristic Algorithm for the Set Covering Problem 1572. EG: Enhanced Greedy HeuristicIn order to enhance Random Greedy, we use a more advanced selection criterion for choosing abest column to be added. Moreover, we allow also for the removal of columns which have beenpreviously added to the partial cover so far constructed, even if they are not redundant. Themotivation for this latter step is that as more columns are added, a previously added column maybecome `almost' redundant, hence it is discarded in the expectation that better alternative columnsexist. The idea of incorporating a step for removing columns is also used in other variants of thegreedy algorithm (see e.g. alternating greedy in [14]). However, we use a novel criterion, which issimilar to the one we employ for adding columns.When the construction of a cover is completed by means of this add-remove strategy, we apply asuitable optimization procedure in order to improve the cover.Our set covering algorithm is described in pseudo-code below. Lines starting with "==" arecomments. EG constructs a solution (a cover), starting from a (possibly empty) set S of columns.Then columns are added to S until S covers all the rows.// extend S until it is a cover:FUNCTION EG(var S)BEGINWHILE (S is not a cover) DO// select and add one column to SS <- S + select_add();// remove 0 or more columns from SWHILE (remove_is_okay()) DOS <- S - select_rmv();ENDWHILEENDWHILE// S is a cover, without redundant columns// apply local optimizationS <- optimize(S);return S;ENDBelow we explain the key functions of this algorithm.cover value: For every column c we de�ne the cover value cv(c) to be the number of rows that arecovered by c, but that are not covered by any column in S n fcg. Note that cv(c) is de�ned both ifc 2 S and if c 62 S, and that cv(c) does not change if c is removed from, or added to S. A columnc in S is redundant if cv(c) = 0. The �rst criterion for selecting a column in both select add andselect rmv is its cover value.select add: This function returns the next column that is to be added to S.Let Candidates = fc 2 S j cv(c) = kg, where k = maxfcv(c) j c 2 Sg, and S denotes the set ofcolumns which are not in S. Every column c in Candidates is evaluated by means of a merit criterionspeci�ed by the function w add(c) which computes the so-called add value of c. Possible choices ofw add are discussed in the next subsection. Then, one column is randomly selected amongst thosehaving highest add value. However, with low probability param:add rand (with typical value 0:05)the columns are not evaluated, and select add randomly selects a column in Candidates; this turnsout to be useful for escaping from local optima.The size of the set Candidates is bounded by a constant param:max candidates (typical value400). In case the number of candidates exceeds this threshold, a subset of Candidates containingparam:max candidates elements is randomly chosen. This situation typically occurs if select addis called when S is (almost) empty.

An Iterated Heuristic Algorithm for the Set Covering Problem 158remove is okay: This function returns a boolean value. It determines whether columns should beremoved from S. If S is empty it returns false; if S contains at least one redundant column thenit returns true; otherwise, with low probability param:p rmv (typical value 0:1) it returns true,otherwise false.select rmv: This function returns a column that is to be removed from S. The de�nition is verysimilar to that of select add. Let Candidates = fc 2 S j cv(c) = kg, where k = minfcv(c) j c 2 Sg.Every column c in Candidates is evaluated by means of a merit criterion speci�ed by the functionw rmv(c) which computes the so-called remove value of c. Possible choices of w rmv are discussed inthe next subsection. Then, one column is randomly selected amongst those having highest rmv value.However, with low probability param:rmv rand (with typical value 0:05) the columns are not eval-uated, and select rmv randomly selects a column in Candidates.optimize: This function tries to improve a cover, by identifying and replacing `inferior' columns,de�ned as follows. Given a cover S, we call a column c 62 S superior if the addition of c to S rendersat least two (other) columns of S redundant. Then a column c in S is called inferior if there exists asuperior column which, if added to S, would make c redundant. First, the set Inf of inferior columnsis identi�ed; next, all elements of Inf are removed from S; �nally, add select is called repeatedlyto select and add a column, until a cover is obtained. Note that the function optimize operates ona cover containing no redundant columns.2.1. The Merit Functions w add() and w rmv().The merit functions w add() and w rmv() specify the rule to be used for breaking ties in theselection of the best column amongst those having equal maximum (resp. minimum) cover value. Ifw add(c) returns a high value, then it means that it is convenient to add c to S; similarly, a highvalue of w rmv(c) means that c is a good column to be removed from S. Two alternative de�nitionsof w add() and of w rmv() are intoduced:� The �rst w add() function is based on the idea that it is good to add a column c to S if c coversrows that are not yet covered by `too many' other columns in S. If a row is already covered byseveral other columns in S, the extra covering due to c has no relevant e�ect; however, if a row iscovered by only one column of S, say x, then adding c to S helps to make column x redundant.For a row r let xcover(r) denote the number of columns in S that cover r. Note that every c inCandidates covers the same number of rows for which xcover(r) = 0, namely cv(c). For a columnc let R(c) denote the set of rows that are covered by c. Then the w add() and the correspondingw rmv() functions are de�ned below in pseudo-code:FUNCTION w_add1(c) // column c is not in SBEGINw <- 0;FOR all rows r in R(c) DOw <- w + 1/(xcover(r)+1)^2;ENDFORreturn w;END
FUNCTION w_rmv1(c) // column c is in SBEGINw <- 0;FOR all rows r in R(c) DOw <- w + 1/(xcover(r))^2;ENDFORreturn -w;END� The second merit function is based on the idea of directly trying to make columns in S redundantor almost redundant. To this aim, it considers the e�ect of adding column c to the partial coverS with respect to the cover values of the columns in S. The corresponding w add() and w rmv()functions are de�ned as follows:

An Iterated Heuristic Algorithm for the Set Covering Problem 159
FUNCTION w_add2(c) // column c is not in SBEGINS <- S + {c};w <- 0;FOR all columns u in S DOw <- w + 1/(cv(u) + 0.01);ENDFORS <- S - {c};return w;END

FUNCTION w_rmv2(c) // column c is in SBEGINS <- S - {c};w <- 0;FOR all columns u in S DOw <- w + 1/(cv(u) + 0.01);ENDFORS <- S + {c};return -w;END3. ITEG: Iterated Enhanced GreedyThe performance of EG is reasonably satisfactory. Nevertheless, it can be improved by applyinga suitable iterated technique. Roughly, in the �rst iteration EG constructs a cover starting fromthe empty set; in the following iterations, EG builds a cover starting from a subset of the bestcover found in all the previous iterations. The �nal result is the best cover found in all iterations.The corresponding algorithm is illustrated below in pseudo-code, where |S| denotes the number ofelements of the list (or set) S.FUNCTION ITEG()BEGINSbest <- { 1..ncol }; // best solution so farS <- { }; // current partial solutionFOR 1 .. param.number_of_iterations DOchoose_add_strategy();choose_remove_strategy();S <- EG(S);// if S better than Sbest, replace Sbest by SIF (|S| <= |Sbest|) THEN Sbest <- S; ENDIF;// make S a "random" subset of Sbest,S <- random_selection(Sbest);// ready for the next iterationENDFORRETURN SbestENDEvery iteration starts with a partial solution S. First, an add/remove strategy is selected: onemerit function for the column addition is randomly selected between w add1() or w add2(), andanalogously for the column removal. Next, EG is applied starting with partial cover S, and with thepreviously chosen merit functions. The cover S produced by EG is used to update the best solutionSbest so far obtained: if S has smaller or equal size than Sbest than it becomes the new Sbest. Notethat we replace Sbest with S even if S and Sbest have the same size, in order to exploit di�erentcovers. Finally, S is initialized for the next iteration, where we will start with a subset of Sbest;every column of Sbest is selected to be in S with probability p, the restore-fraction. Every iterationthe value of p is randomly chosen from the interval [param.rcv low , param.rcv high], with typicalvalue [0:6; 0:8]: The idea is that Sbest, being the best solution so far, possibly contains a subset of`relevant' columns which can be crucial to build a minimum cover. Section 5 we investigate thee�ect of using di�erent (�xed) values for the restore fraction.

An Iterated Heuristic Algorithm for the Set Covering Problem 160Problem Iter 1 Iter 10 Iter 100 Iter 1000 Best BestAvg (StDv) Avg (StDv) Avg (StDv) Avg (StDv) ITEG KnownSTS.135 106.9 (0.3) 105.5 (0.5) 104.9 (0.3) 104.0 (0.0) 104 103STS.243 209.7 (1.2) 203.2 (0.4) 203.0 (0.0) 202.2 (1.5) 198 198STS.27 19.0 (0.0) 18.2 (0.4) 18.0 (0.0) 18.0 (0.0) 18 18�STS.45 32.0 (1.0) 31.0 (0.0) 31.0 (0.0) 30.7 (0.5) 30 30�STS.81 65.0 (0.0) 62.2 (1.0) 61.2 (0.6) 61.0 (0.0) 61 61�Seymour 434.0 (1.2) 429.6 (1.3) 425.5 (1.3) 423.7 (0.6) 423 423Table 1: Results on Combinatorial Problems (STS and Seymour)4. Computational ExperimentsIn this section, we evaluate empirically the performance of the EG heuristic algorithm on the setof test problems for the unicost SCP taken from the OR-library1 maintained by J.E. Beasley. Theseproblems provide a valuable source for testing the performance of algorithms for SCP, because theyarise from various di�erent applications. Almost all the problem instances we consider have alsobeen used in [14] for comparing nine heuristic algorithms for SCP. More speci�cally, the followingproblem instances are considered:�Random Problems These are 70 randomly generated problems from the OR-library (see Tables4 and 5). The instances of families 4-6 are from [3], those of families A-E are from [4], and those offamilies NRE-NRH are from [5]. As in [14], the original instances have been modi�ed by discardingthe costs of the columns, since we are dealing with the unicost SCP. Thus the results obtained arenot comparable with those reported in the above-mentioned papers (except for the E family, whichis also originally produced for the unicost SCP).� Combinatorial Problems We have considered 16 problem instances arising from four di�erentcombinatorial questions (see Tables 3, 1). The CYC and CLR sets are from [14], and are described inmore detail there. They are available in the OR-library. The STS-set consists of 5 problems froma class of set systems known as Steiner triple systems , introduced in [12]: these instances are knownto be rather di�cult for any branch and bound algorithm (cf., [2, 15]), and they have been oftenused as benchmark problems to test the performance of heuristic algorithms (cf., e.g., [17, 16]).Finally, the Seymour problem instance 2 is provided by P. Seymour. It speci�es an SCP arising fromwork related to the proof of the 4-Color Theorem.Characteristic parameters of the above problem instances, like number of rows and columns, aredescribed in Table 2.The ITEG algorithm has been implemented in C++. Parameters, like those specifying the prob-abilities of addition and removal, or the size of the portion of a cover to be restored at each iterationof ITEG have been set to a suitable value for each class of problem instances. For instance, forthe CYC instances, param.add rand is set to 0:15, param.rmv rand to 0:10, param.p rmv to 0:25,param.max candidates is set to 500, and the restore-fraction is every iteration randomly selectedin the interval [0:4; 0:7].The algorithm was run on a multi-user Silicon Graphics IRIX Release 6.2 IP25 (194 MHZ MIPSR10000 processor, Main memory size: 512 Mbytes). The results of the experiments are based on 10runs of ITEG on each problem instance, using a di�erent initial seed for the random-generator in everyrun. The results are summarized in Tables 1-5. In each table, the �rst column contains the name ofthe problem instance; columns with label of the form Iter k Avg (StDv) indicate the average ofthe results of the 10 runs of ITEG obtained after k iterations (i.e., param.iterations=k), and the1available via WWW at http://mscmga.ms.ic.ac.uk/jeb/orlib/scpinfo.html2available electronically at ftp://ftp.caam.rice.edu/pub/people/bixby/miplib/miplib3/seymour

An Iterated Heuristic Algorithm for the Set Covering Problem 161Problem Rows Columns Density Avg CPU(m) (n) (%) (sec/iter)4 200 1000 2 0.015 200 2000 2 0.016 200 1000 5 0.06A 300 3000 2 0.03B 300 3000 5 0.06C 400 4000 2 0.04D 400 4000 5 0.11E 50 500 20 0.01NRE 500 5000 10 0.34NRF 500 5000 20 0.66NRG 1000 10000 2 0.26NRH 1000 10000 5 0.61CYC.6 240 192 2.1 0.00CYC.7 672 448 0.9 0.01CYC.8 1792 1024 0.4 0.05CYC.9 4608 2304 0.2 0.19CYC.10 11520 5120 0.08 1.10CYC.11 28160 11264 0.04 5.00CLR.10-4 511 210 12.3 0.01CLR.11-4 1023 330 12.4 0.02CLR.12-4 2047 495 12.5 0.05CLR.13-4 4095 715 12.5 0.11STS.27 117 27 0.1 0.001STS.45 330 45 0.06 0.002STS.81 1080 81 0.04 0.011STS.135 3015 135 0.02 0.015STS.243 9801 243 0.01 0.100Seymour 4944 1372 0.5 0.018Table 2: Details of Problem Instances and Average CPU Times
Problem Iter 1 Iter 10 Iter 100 Iter 1000 Best Best BestAvg (StDv) Avg (StDv) Avg (StDv) Avg (StDv) ITEG RG GWCYC.6 63.2 (0.9) 61.8 (0.7) 61.4 (0.8) - 60 64 60�CYC.7 155.8 (1.8) 151.2 (0.9) 148.0 (2.1) - 144 160 144CYC.8 371.0 (1.3) 360.6 (4.2) 351.8 (2.6) - 348 385 352CYC.9 862.5 (3.1) 839.0 (3.1) 827.6 (1.6) - 825 907 816CYC.10 1973.3 (6.1) 1893.6 (17.1) 1860.7 (2.9) - 1858 2081 1916CYC.11 4450.0 (11.7) 4262.8 (15.7) 4218.3 (9.1) - 4202 4710 4268CLR.10-4 28.6 (1.6) 25.8 (1.1) 25.1 (0.3) 25.0 (0.0) 25 28 28CLR.11-4 28.8 (0.6) 26.9 (1.8) 24.0 (1.6) 23.0 (0.0) 23 27 27CLR.12-4 27.2 (1.0) 24.7 (1.3) 23.0 (0.0) 23.0 (0.0) 23 27 27CLR.13-4 30.9 (0.5) 29.9 (0.3) 28.2 (1.0) 25.3 (2.4) 23 31 29Table 3: Results on Combinatorial Problems (CYC and CLR)

An Iterated Heuristic Algorithm for the Set Covering Problem 162Problem Iter 1 Iter 10 Iter 100 Iter 1000 Best Best BestAvg (StDv) Avg (StDv) Avg (StDv) Avg (StDv) ITEG RG GW4.1 40.8 (0.8) 39.6 (0.8) 38.9(0.3) 38.0(0.0) 38 41 414.2 39.1 (0.9) 38.3 (1.0) 37.1(0.3) 37.0(0.0) 37 38 384.3 40.7 (0.6) 39.3 (0.6) 38.2(0.4) 38.0(0.0) 38 41 404.4 42 (0.9) 40.6 (0.6) 39.9(0.5) 39.1(0.3) 39 41 414.5 40.4 (0.5) 39.6 (0.5) 38.8(0.4) 38.0(0.0) 38 40 404.6 39.9 (0.7) 38.9 (0.7) 37.9(0.3) 37.8(0.4) 37 40 404.7 41.4 (0.6) 40.0 (0.4) 38.7(0.7) 38.4(0.5) 38 41 414.8 40.4 (0.6) 39.6 (0.6) 38.1(0.5) 37.7 (0.4) 37 40 404.9 40.7 (0.4) 39.7 (0.4) 39.0(0.4) 38.1 (0.3) 38 40 404.10 41.2 (0.7) 40.1 (0.5) 39.2 (0.4) 38.6 (0.5) 38 41 415.1 37.0 (0.7) 36.1 (0.7) 35.3 (0.4) 34.9 (0.3) 34 35 355.2 36.6 (0.5) 35.9 (0.5) 35.0 (0.0) 34.7 (0.4) 34 35 355.3 36.1 (0.7) 35.5 (0.8) 34.5 (0.5) 34.0 (0.0) 34 36 365.4 36.0 (0.6) 35.4 (0.5) 34.2 (0.4) 34.0 (0.0) 34 36 365.5 36.0 (1.0) 35.2 (0.6) 34.3 (0.4) 34.1 (0.3) 34 36 365.6 36.5 (0.5) 35.7 (0.4) 34.8 (0.4) 34.5 (0.5) 34 36 365.7 36.0 (0.9) 35.3 (0.4) 34.6 (0.5) 34.0 (0.0) 34 36 355.8 37.5 (0.8) 36.7 (0.6) 35.1 (0.3) 34.9 (0.3) 34 37 375.9 37.7 (0.4) 36.4 (0.6) 35.6 (0.5) 35.0 (0.0) 35 36 365.10 37.0 (0.6) 36.2 (0.6) 35.4 (0.6) 34.6 (0.5) 34 36 366.1 22.0 (0.0) 21.8 (0.4) 21.2 (0.4) 21.0 (0.0) 21 21 216.2 21.4 (0.5) 21.0 (0.0) 21.0 (0.0) 20.3 (0.4) 20 22 216.3 22.1 (0.3) 21.7 (0.4) 21.0 (0.0) 21.0 (0.0) 21 22 226.4 22.2 (0.4) 22.0 (0.4) 21.5 (0.5) 21.0 (0.0) 21 22 226.5 22.5 (0.5) 21.9 (0.5) 21.3 (0.4) 21.0 (0.0) 21 22 22A1 41.6 (0.6) 40.5 (0.7) 39.5 (0.5) 39.1 (0.3) 39 40 40A2 41.9 (0.3) 41.4 (0.5) 39.8 (0.6) 39.1 (0.3) 39 40 41A3 41.2 (0.7) 40.3 (0.6) 39.6 (0.5) 39.0 (0.0) 39 40 40A4 39.6 (0.8) 39.0 (0.6) 38.3 (0.4) 38.0 (0.0) 38 40 40A5 40.7 (0.7) 40.1 (0.5) 39.0 (0.0) 38.7 (0.4) 38 40 40B1 23.7 (0.6) 23.4 (0.5) 22.2 (0.4) 22.0 (0.0) 22 23 23B2 23.1 (0.3) 22.9 (0.3) 22.2 (0.4) 22.0 (0.0) 22 22 22B3 23.3 (0.4) 23.0 (0.0) 22.3 (0.4) 22.0 (0.0) 22 22 22B4 23.7 (0.4) 23.3 (0.4) 22.7 (0.4) 22.0 (0.0) 22 23 23B5 23.4 (0.5) 23.0 (0.0) 22.5 (0.5) 22.2 (0.4) 22 23 23C1 45.7 (0.4) 44.9 (0.5) 44.0 (0.4) 43.5 (0.5) 43 45 45C2 46.0 (0.7) 45.4 (0.6) 44.1 (0.3) 43.5 (0.5) 43 45 45C3 45.7 (0.6) 45.2 (0.6) 44.1 (0.3) 43.6 (0.5) 43 45 45C4 45.6 (0.6) 44.9 (0.9) 44.1 (0.7) 43.1 (0.3) 43 46 46C5 45.8 (0.9) 45.0 (0.7) 44.0 (0.0) 43.5 (0.5) 43 45 45D1 26.5 (0.5) 26.2 (0.4) 25.3 (0.4) 25.0 (0.0) 25 26 26D2 26.2 (0.4) 26.0 (0.4) 25.5 (0.5) 25.0 (0.0) 25 26 25D3 26.2 (0.4) 25.8 (0.4) 25.4 (0.5) 25.0 (0.0) 25 25 25D4 26.3 (0.7) 26.1 (0.7) 25.5 (0.5) 25.0 (0.0) 25 26 26D5 26.6 (0.5) 26.1 (0.3) 25.5 (0.5) 25.0 (0.0) 25 26 26E1 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5 5 5E2 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5 5 5E3 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5 5 5E4 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5 5 5E5 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 5 5 5Table 4: Results on Random Problems

An Iterated Heuristic Algorithm for the Set Covering Problem 163Problem Iter 1 Iter 10 Iter 100 Best Best BestAvg Avg Avg ITEG RG GWNRE1 17.9 (0.3) 17.7 (0.5) 17.0 (0.0) 17 17 17NRE2 17.2 (0.4) 17.1 (0.3) 17.0 (0.0) 17 17 17NRE3 17.2 (0.4) 17.1 (0.3) 17.0 (0.0) 17 17 17NRE4 17.2 (0.4) 17.1 (0.3) 17.0 (0.0) 17 17 17NRE5 17.8 (0.4) 17.6 (0.5) 17.2 (0.4) 17 17 17NRF1 11.0 (0.0) 10.8 (0.4) 10.3 (0.5) 10 10 10NRF2 11.0 (0.0) 11.0 (0.0) 10.4 (0.5) 10 11 11NRF3 11.0 (0.0) 11.0 (0.0) 10.6 (0.5) 10 11 11NRF4 11.0 (0.0) 11.0 (0.0) 10.5 (0.5) 10 11 11NRF5 11.0 (0.0) 10.9 (0.3) 10.7 (0.5) 10 11 11NRG1 64.2 (0.6) 63.4 (0.7) 62.4 (0.5) 62 - -NRG2 64.0 (0.8) 63.4 (0.7) 62.5 (0.5) 62 - -NRG3 64.1 (0.7) 63.4 (0.7) 62.8 (0.6) 62 - -NRG4 64.4 (0.5) 63.7 (0.8) 63.2 (0.6) 62 - -NRG5 64.4 (0.5) 64.0 (0.4) 62.7 (0.5) 62 - -NRH1 35.5 (0.5) 35.2 (0.6) 34.8 (0.4) 34 - -NRH2 35.5 (0.5) 35.0 (0.4) 34.7 (0.5) 34 - -NRH3 35.5 (0.5) 35.2 (0.6) 34.8 (0.4) 34 - -NRH4 35.5 (0.5) 35.2 (0.6) 35.0 (0.4) 34 - -NRH5 35.5 (0.5) 35.3 (0.6) 34.6 (0.5) 34 - -Table 5: Results on Random Problemscorresponding standard deviation (written between brackets). We consider the value obtained after1 iteration, after 10 iterations, and so on, until the maximal number of iterations considered, whichis set to 1000, or to 100 for bigger instances like the CYC ones. This is useful for illustrating the valuesof the best solutions found during the iterations made by ITEG. A column labeled Best RG containsthe best result found by Random Greedy when run 100 times, and Best GW contains the best resultfound by all the nine algorithms considered in [14]. Finally, Best Known is the best known solution.Values are labeled with a `*' if they have been proven (by means of exact algorithms) to be globaloptima. Entries containing only the symbol `-' indicate that the relative problem instance is notconsidered in [14].The quality of the results found by ITEG on these problem instances is very satisfactory.On the random problems the best cover found by ITEG is always better or equal to the best coverfound by all the nine algorithms considered in [14]. In 45 cases out of 60 instances it is strictlybetter.On the CYC instances (Table 3) ITEG �nds better solutions on 3 out of 6 instances, and equivalentbest solutions on other two instances; however, on CYC.9 it does not perform very well if comparedwith the best result reported in [14]. The random Greedy algorithm RG �nds solutions of ratherpoor quality on all the CYC instances. However, the simple Greedy algorithm, where ties are brokenlexicographically instead of randomly, is one of the algorithms in [14] which is performing very wellon the CYC instances. This suggests that for the CYC problems the lexicographical order as used insimple Greedy is favourable.On all the CLR instances (Table 3) ITEG �nds better solutions than all the algorithms in [14].Finally, on the other six instances of combinatorial problems (Table 1) ITEG �nds the best knownsolution for all but one instance, namely STS.135, where the best known solution is 103, whileITEG can only �nd 104. The best known solution for STS.135 has been found in [17]: the authorsdevelop a heuristic algorithm for solving the Steiner triple covering problem based on GSAT [18] (apopular method for solving satis�ability problems). Unfortunately, a rather poor discussion of their

An Iterated Heuristic Algorithm for the Set Covering Problem 164experiments is reported, which makes it di�cult to judge the performance of their algorithm.The e�ectiveness of the heuristic EG employed in ITEG can be evaluated by considering the columncorresponding to the results for 1 iteration. It can be seen that the quality of the solutions found byEG is satisfactorily. However, as illustrated by the results of the experiments, the iterated applicationof EG starting with a portion of the best solution found so far, yields a substantial improvement ofthe quality of the solutions, especially when applied to `hard' instances like those relative to thecombinatorial optimization problems. In the next section, we shall study in more detail the e�ectof the iterated approach also on the Random Greedy algorithm.It is di�cult to perform a fair comparison between ITEG and Random Greedy based on the re-sults given in [14] and here reported in the columns labeled RG, because those results are based on100 independent runs of Random Greedy (multistart approach). A rough indication of the relativeperformance of these algorithms can be obtained by comparing the column for 100 iterations andthe column labeled RG for getting an impression about the quality of the solutions. Table 2 containsthe average running time per iteration of ITEG on the considered problem instances. RG is about �vetimes slower, since it always starts from the empty set.5. DiscussionThe choice of the restore-fraction in the iterated EG is relevant for the quality of the results. Ingeneral, the optimal value for this parameter depends on the speci�c problem instance considered.However, the experiments we have conducted on the considered problem instances seem to indicatethat good values of the restore-fraction are between 0:40 and 0:75, where for smaller problems it isbetter to choose a rather low value for the restore-fraction.In order to illustrate the e�ect of di�erent values for the restore-fraction, we have plotted inFigure 4 the courses of ITEG and of the iterated Rand Greedy (ITRG) on three speci�c probleminstances, when the restore-fraction is �xed at 0:0 (that is multistart approach), 0:5 and 0:75. Thisis also useful for comparing the iterated Rand Greedy with ITEG . On each case we had 50 runs withdi�erent random seeds. The x-axis represents the number of iterations (up to 1000), and the y-axisrepresents the average number (over 50 runs) of columns contained in the best solution computedat a given iteration of the algorithm. On all the problem instances we have that, for a �xed valueof the restore-fraction, iterated EG outperforms ITRG Rand Greedy. This is not surprising, becauseEG employs a more sophisticated heuristic. As a consequence, we have that ITRG is roughly three orfour times faster than iterated EG.On the problem instance 4.1 of the random generated problems, we see that the multistartversion of both EG and Rand Greedy performs rather poorly, while the best results are obtained byconsidering a restore-fraction equal to 0:5.A rather di�erent behaviour is illustrated in the second pair of plots concerning the CLR probleminstance CLR.12-4. Here Rand Greedy gives better results when run using the multistart approach,while the EG gives better results when a high restore-fraction of 0:75 is used. This shows that thechoice of a good restore-fraction depends also on the heuristic used.Finally, on the Seymour instance we see that Rand Greedy and EG follow a similar course, with aperformance that dramatically improves when a restore-fraction of 0:0 is replaced with one of 0:5.6. ConclusionIn this paper we have introduced a novel iterated heuristic ITEG for the set covering problem,and have studied its performance on a large set of benchmark problems. The results indicate that

An Iterated Heuristic Algorithm for the Set Covering Problem 165

iterations

0 200 400 600 800 1000

38

39

40

41

42

43

0.0

0.5

0.75

iterations

0 200 400 600 800 1000

38

39

40

41

42

43

0.0

0.5

0.75ITRG on instance 4.1 ITEG on instance 4.1

iterations

0 20 40 60 80 100

24

26

28

30

0.0

0.75

0.50

iterations

0 20 40 60 80 100

24

26

28

30

0.0

0.5

0.5

0.75ITRG on instance CLR.12-4 ITEG algorithm on instance CLR.12-4

iterations

0 200 400 600 800 1000

425

430

435

440

445

0.0

0.5

0.75

iterations

0 200 400 600 800 1000

425

430

435

440

445

0.0

0.5

0.75ITRG on instance Seymour ITEG algorithm on instance SeymourFigure 1: Behaviour of ITEG and ITRG with varying restore fractions

An Iterated Heuristic Algorithm for the Set Covering Problem 166ITEG can produce covers of very good quality in competitive running time.Future work concerns the study of a similar iterated heuristic for the weighted set coveringproblem. Various papers are dedicated to this problem (e.g., [6, 8]. In particular, the methodintroduced in [8] also uses the iterated approach. However, it di�ers from the one used in ITEG intwo main aspects: it uses a speci�c rule for selecting the subset of the best solution, and it replacethe best cover with a new one only if the latter is strictly smaller than the former. Instead, in ITEGthe subset of the best solution is selected randomly, and a best cover is replaced by a new one alsoif they have the same size, which helps escaping from local optima. This is substantiated by theexperiments we have conducted.Acknowledgements We would like to thank Mark Goldberg, Carlo Mannino, and Avishai Woolfor useful observations related to the subject of this paper.References[1] E. Aarts and J.K. Lenstra (eds.). Local Search in Combinatorial Optimization. Wiley, England, 1997.[2] D. Avis. A note on some computationally di�cult set covering problems. Mathematical Programming,8:138{145, 1980.[3] E. Balas and A. Ho. Set covering algorithms using cutting planes, heuristics, and subgradient optimiza-tion: a computational study. Mathematical Programming, 12:37{60, 1980.[4] J.E. Beasley. An algorithm for set covering problem. European Journal of Operational Research, 31:85{93, 1987.[5] J.E. Beasley. A lagrangian heuristic for set covering problems. Naval Research Logistics, 37:151{164,1990.[6] J.E. Beasley and P.C. Chu. A genetic algorithm for the set covering problem. European Journal ofOperational Research, 94:392{404, 1996.[7] J.E. Beasley and K. Jornsten. Enhancing an algorithm for the set covering problem. European Journalof Operational Research, 58:293{300, 1992.[8] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering problem. In W.H. Cun-ningham, T.S. McCormick, and M. Queyranne, editors, Proc. of the Fifth IPCO Integer Programmingand Combinatorial Optimization Conference. Springer-Verlag, 1996.[9] P. Erd�os. On a combinatorial problem i. Nordisk Mat. Tidskrift, 11:5{10, 1963.[10] P. Erd�os. On some of my favourite problems in graph theory and block design. Le Mathematische,45:61{74, 1990.[11] U. Feige. A threshold of ln n for approximating set covering. In Proc. of the 28-th Annual ACMSymposium on the Theory of Computing, pages 314{318. ACM, 1996.[12] D.R. Fulkerson, G.L. Nemhauser, and L.E. Trotter. Two computationally di�cult set covering problemsthat arise in computing the 1-width of incidence matrices of Steiner triple systems. MathematicalProgramming Study, 2:72{81, 1974.[13] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco, 1979.[14] T. Grossman and A. Wool. Computational experience with approximation algorithms for the setcovering problem. European Journal of Operational Research, 101:81{92, 1997.[15] Carlo Mannino and Antonio Sassano. Solving hard set covering problems. Operations Research Letters,18:1{5, 1995.[16] K. Nonobe and T. Ibaraki. A Tabu search approach to the CSP (Constraint Satisfaction Problem) asa general problem solver. European Journal of Operational Research, 1998. To appear.[17] M.A. Odijk and H. van Maaren. Improved solutions for the steiner triple covering problem. Technicalreport, TU Delft University, 113 1996.[18] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis�ability problems. InProc. of the Tenth National Conference on Arti�cial Intelligence (AAAI-92), pages 440{446, 1992.

167Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 167{178A Computational Study of Routing Algorithms for RealisticTransportation NetworksRiko Jacob, Madhav V. Marathe and Kai NagelLos Alamos National Laboratory,P.O. Box 1663, MS M997, Los Alamos, NM 87545.e-mail: fjacob, marathe, kaig@lanl.govABSTRACTWe carry out an experimental analysis of a number of shortest path (routing) algorithmsinvestigated in the context of the TRANSIMS (TRansportation ANalysis and SIMulation Sys-tem) project. The main focus of the paper is to study how various heuristic as well as exactsolutions and associated data structures a�ected the computational performance of the soft-ware developed especially for realistic transportation networks. For this purpose we have usedDallas Ft-Worth road network with high degree of resolution. The following general results areobtained.1. We discuss and experimentally analyze various one-to-one shortest path algorithms. Theseinclude classical exact algorithms studied in the literature as well as heuristic solutions thatare designed to take into account the geometric structure of the input instances.2. We describe a number of extensions to the basic shortest path algorithm. These extensionswere primarily motivated by practical problems arising in TRANSIMS and ITS (IntelligentTransportation Systems) related technologies. Extensions discussed include { (i) Timedependent networks, (ii) multi-modal networks, (iii) networks with public transportationand associated schedules.Computational results are provided to empirically compare the e�ciency of various algo-rithms. Our studies indicate that a modi�ed Dijkstra's algorithm is computationally fast andan excellent candidate for use in various transportation planning applications as well as ITSrelated technologies.1. IntroductionTRANSIMS is a multi-year project at the Los Alamos National Laboratory and is fundedby the Department of Transportation and by the Environmental Protection Agency. The mainpurpose of TRANSIMS is to develop new methods for studying transportation planning ques-tions. A typical example of a question that can be studied in this context would be to studythe economic and social impact of building a new freeway in a large metropolitan area. Concep-tually speaking, TRANSIMS decomposes the transport system into three time scales |- a longtime scale associated with land use and demographic distribution as they pertain to characteri-zation of travelers, an intermediate time scale associated with intermodal trip chain route plan-ning (called the intermodal route planner) and a very short time scale associated with drivingand other modal execution of trip plans in the transport system. At each time scale, a traveleractivity is simulated. Due to lack of space, we refer the reader to [CS97, TR+95a] and the web-site http://www-transims.tsasa.lanl.gov/research team/papers/ for more details about theTRANSIMS project.

A Computational Study of Routing Algorithms for Realistic Transportation Networks 168The basic purpose of the intermodal route planner is to use the demographic and other relevantcharacteristics of a traveler to determine speci�c mode choices and travel routes for an individualtraveler. The module uses the results of disaggregated household and commercial transportation ac-tivity module. As pointed out in [CS97, TR+95a], this module is intended to enhance and integratethe Modal Split and Trip Assignment phases of standard Urban Transportation Modeling System.The main goal of this paper is to describe the computational experiences in engineering various path�nding algorithms speci�cally in the context of TRANSIMS. Most of the algorithms discussed hereare not new; they have been discussed in the Operations Research and Computer Science community.Although extensive research has been done on theoretical and experimental evaluation of shortestpath algorithms, most of the empirical research has focused on randomly generated networks, specialclasses of networks such as grids. In contrast, not much work has been done to study the compu-tational behavior of shortest path and related routing algorithms on realistic tra�c networks. Therealistic networks di�er with random networks as well as homogeneous (structured networks) in thefollowing signi�cant ways:(i) Realistic networks typically have a very low average degree. In fact in our case the average degreeof the network was around 2.6. Similar numbers have been reported in [ZN98]. In contrast randomnetworks used in [Pa84] have in some cases average degree of up to 10.(ii) Realistic networks are not very uniform. In fact, one typically sees one or two large clusters(downtown and neighboring areas) and then small clusters spread out throughout the entire area ofinterest.(iii) For most empirical studies with random networks, the edge weights are chosen independentlyand uniformly at random from a given interval. In contrast, realistic networks typically have shortlinks.With the above reasons and speci�c application in mind, the main focus of this paper is to carryout experimental analysis of a number of shortest path algorithms on real transportation networkand subject to practical constraints imposed by the overall system.The rest of the report is organized as follows. Section 2 contains probelm statement and relateddiscussion. In Section 3, we discuss the various algorithms evaluated in this paper. Section ref-sec:summary summarizes the results obtained. Section 5 describes our experimental setup. Section 6describes the experimental results obtained. Section 7 contains a detailed discussion of our results.Finally, in Section 8 we give concluding remarks and directions for future research.2. Problem speci�cation and justi�cationThe problems discussed above can be formally described as follows: let G(V;E) be a (un)directedgraph. Each edge e 2 E has one attribute | w(e). w(e) denotes the weight of the edge (or cost)e. Here, we assume that the weights are non-negative oating point numbers. Most of our positiveresults can in fact be extended to handle negative edge weights also (if there are no negative cycles).De�nition 2.1. One-to-One Shortest Path:Given a directed weighted, graph G, a source destination pair (s; d) �nd a shortest (with respect tow) path p in G from s to d.Note that our experiments are carried out for shortest path between a pair of nodes, as against to�nding shortest path trees. Much of the literature on experimental analysis uses the latter measure togauge the e�ciency. Our choice for using one-to-one shortest path time as the measure is motivatedby the following observations:1. We wanted the route planer to work for roughly a million travelers. In highly detailed net-works, most of these travelers have di�erent starting points (for example, for Portland we

A Computational Study of Routing Algorithms for Realistic Transportation Networks 169have 1.5 million travelers and 200000 possible starting locations). Thus, for any given startinglocation, we could re-use the tree computation only for about ten other travelers.2. We wanted our algorithms to be extensible to take additional elements into account. Forexample, each such traveler typically has a di�erent starting time for his/her trip. Since weuse our algorithms for time dependent networks (networks in which edge weights vary withtime), the shortest path tree will be di�erent for each traveler. Another example in thiscontext is to �nd paths for travelers in network with multiple mode choices. In this context,we are given a directed labeled, weighted, graph G representing a transportation network withthe labels on edges representing the various modal attributes (e.g. a label t might representa rail line). The goal is typically to �nd shortest (simple) paths subject to certain labelingconstraints on the set of feasible paths. In general, the criteria for path selection vary so muchfrom traveler to traveler that it becomes doubtful that the additional overhead for the \re-use"of information will pay o�.3. The TRANSIMS framework allows us to use paths that are not necessarily optimal. Thismotivates investigation into the possible use of heuristic solutions for obtaining near optimalpaths (e.g. the modi�ed A� algorithm). For most of these heuristics, the idea is to bias amore focused search towards the destination { thus naturally motivating the study of one-oneshortest path algorithms.4. Finally, the networks we anticipate to deal with contain more than 80 000 nodes and around120 000 edges. For such networks storing shortest path trees amounts to huge memory over-heads.3. Choice of algorithmsImportant objectives used to evaluate the performance of the algorithms include (i) time takenfor computation on real networks, (ii) quality of solution obtained, (iii) ease of implementation and(iv) extensibility of the algorithm for solving other variants of the shortest path problem. A numberinteresting engineering questions were encountered in the process. We experimentally evaluateda number of variants of basic Dijkstra's algorithm. The basic algorithm was chosen due to therecommendations made in Cherkassky, Goldberg and Radzik [CGR96] and Zhan and Noon [ZN98].The algorithms studied were:� Dijkstra's algorithm with Binary Heaps [CGR96],� A� algorithm proposed in AI literature and analyzed by Sedgewick and Vitter [SV86],� a modi�cation of the A� algorithm that we will describe below, and alluded to in [SV86].We also considered a bidirectional version of Dijkstra's algorithm described in [Ma, LR89]. Webriey recall the A� algorithm and the modi�cation proposed. When the underlying network isEuclidean, it is possible to improve the average case performance of Dijkstra's algorithm. Typically,while solving problems on such graphs, the inherent geometric information is ignored by the classicalpath �nding algorithms. The basic idea behind improving the performance of Dijkstra's algorithmis from [SV86, HNR68] and can be described as follows. In order to build a shortest path from s tot, we use the original distance estimate for the fringe vertex such as x, i.e. from s to x (as before)plus the Euclidean distance from x to t. Thus we use global information about the graph to guideour search for shortest path from s to t. The resulting algorithm typically runs much faster thanDijkstra's algorithm on typical graphs for the following intuitive reasons: (i) The shortest path treegrows in the direction of t and (ii) The search of the shortest path can be terminated as soon as tis added to the shortest path tree.

A Computational Study of Routing Algorithms for Realistic Transportation Networks 170We can now modify this algorithm by giving an appropriate weight to the distance from x tot. By choosing an appropriate multiplicative factor, we can increase the contribution of the secondcomponent in calculating the label of a vertex. From a intuitive standpoint this corresponds togiving the destination a high potential, in e�ect biasing the search towards the destination. Thismodi�cation will in general not yield shortest paths, nevertheless our experimental results suggestthat the errors produced are typically quite small.4. Summary of ResultsWe are now ready to summarize the main results and conclusions of this paper. As already statedthe main focus of the paper is towards engineering well known shortest path algorithms in a practicalsetting. Another goal of this paper is also to provide reasons for and against certain implementationsfrom a practical standpoint. We believe that our conclusions along with the earlier results in [ZN98,CGR96] provide practitioners a useful basis to select appropriate algorithms/implementations in thecontext of transportation networks. The general results/conclusions of this paper are summarizedbelow.1. We conclude that the simple Binary heap implementation of Dijkstra's algorithm is a goodchoice for �nding optimal routes in real road transportation networks. Speci�cally, we foundthat certain types of data structure �ne tuning did not signi�cantly improve the performanceof our implementation.2. Our results suggest that heuristic solutions using the geometric structure of the graphs areattractive candidates for future research. Our experimental results motivated the formulationand implementation of an extremely fast heuristic extension of the basic A� algorithm thatseems to yield near optimal solutions.3. We have extended this algorithm in two orthogonal and important directions; (i) time depen-dent networks and (ii) multi-modal networks. These extensions are signi�cant from a practicalstandpoint since they are the most realistic representations of the underlying physical net-work. We perform suitable tests to calculate the slow down experienced as a result of theseextensions.4. Our study suggests that bidirectional variation of Dijkstra's algorithm is not suitable for trans-portation planning. Our conclusions are based on two factors: (i) the algorithm is not exten-sible to more general path problems and (ii) the running time of the algorithm is more thanA� algorithm.5. Experimental Setup and MethodologyIn this section we describe the computational results of our implementations. In order to anchorresearch in realistic problems, TRANSIMS uses example cases called Case studies (See [CS97] forcomplete details). This allows us to test the e�ectiveness of our algorithms on real life data. Thecase study just concluded focused on Dallas Fort-Worth (DFW) Metropolitan area and was done inconjunction with Municipal Planning Organization (MPO) (known as North Central Texas Councilof Governments (NCTCOG)). We generated trips for the whole DFW area for a 24 hour period. Theinput for each traveler has the following format: (starting time, starting location, ending location).1There are 10.3 million trips over 24 hours. The number of nodes and links in the Dallas network isroughly 9863, 14750 respectively. The average degree of a node in the network was 2.6. We routeall these trips through the so-called focused network. It has all freeway links, most major arterials,1This is roughly correct, the reality is more complicated, [NB97, CS97].

A Computational Study of Routing Algorithms for Realistic Transportation Networks 171etc. Inside this network, there is an area where all streets, including local streets, are contained inthe data base. This is the study area. We initially routed all trips between 5am and 10am, butonly the trips which did go through the study area were retained, resulting in approx. 300 000 trips.These 300000 trips were re-planned over and over again in iteration with the micro-simulation(s).For more details, see, e.g., [NB97, CS97]. A 3% random sample of these trips were used for ourcomputational experiments.Preparing the network. The data received from DFW metro had a number of inadequacies fromthe point of view of performing the experimental analysis. These had to be corrected before carryingout the analysis. We mention a few important ones here. First, the network was found to have anumber of disconnected components (small islands). We did not consider (o; d) pairs in di�erentcomponents. Second, a more serious problem from an algorithmic standpoint was the fact that fora number of links, the length was less than the actual Euclidean distance between the the two endpoints. In most cases, this was due to an arti�cial convention used by the DFW transportationplanners (so-called centroid connectors always have length 10 m, whatever the Euclidean distance),but in some cases it pointed to data errors. In any case, this discrepancy disallows e�ective im-plementation of A� type algorithms. For this reason we introduce the notion of the \normalized"network: For all \too short" links we set the reported length to be equal to the Euclidean distance.We also carried out preliminary experimental analysis for the following network modi�cationsthat could be helpful in improving the e�ciency of our algorithms. These include: (i) Removingnodes with degrees less than 3: (Includes collapsing paths and also leaf nodes) (ii) Modifying nodesof degree 3: (Replace it by a triangle)Hardware and Software Support. The experiments were performed on a Sun UltraSparc CPUwith 250 Mhz, running under Solaris 2.5. 2 gigabyte main memory were shared with 13 other CPUs;our own memory usage was always 150 MB or less. In general, we used the SUN Workshop CCcompiler with optimization ag -fast. (We also performed an experiment on the inuence of di�erentoptimization options without seeing signi�cant di�erences.) The advantage of the multiprocessormachine was reproducibility of the results, as the operating system has no need to interrupt sincerequests by other processes were delegated to other CPUs.Experimental MethodWe used the network described earlier. 10,000 arbitrary plans were pickedfrom the case study. We used the timing mechanism provided by the operating system with gran-ularity .01 seconds (1 tick). Experiments were performed only if the system load did not exceedthe number of available processors, i.e. processors do not get shared. As long as this condition wasnot violated during the experiment, the running times were fairly consistent, usually within relativeerrors of 3%.We used (a subset) of the following values measurable for a single or a speci�c number of com-putations to conclude the reported results� (average) running time excluding i/o� number of fringe/expanded nodes� pictures of fringe/expanded nodes� maximum heap size� number and length of the pathSoftware Design We used the object oriented features as well as the templating mechanism ofC++ to easily combine di�erent implementations. We also used preprocessor directives and macros.Virtual methods were not used (even so it is tempting to create a purely virtual \network" baseclass) to avoid unnecessary function calls (by this enable inlining of functions). There are classesencapsulating the following elements of the computation:� network (extensibility and di�erent levels of detail lead to small, linear hierarchy)

A Computational Study of Routing Algorithms for Realistic Transportation Networks 172� plans: (o; d) pairs and real paths, starting time� heap� labeling of the graph and using the heap� storing the shortest path tree� Dijkstra's algorithmAs expected, this approach leads to an overhead of function calls. Nevertheless, the compileroptimization can take care of this fairly well. (There is a factor of 2-3 di�erence in running timebetween debugging ag and full optimization.)6. Experimental ResultsDesign Issues about Data Structures We begin with the design decisions regarding the datastructures used.A number of alternative data structures were considered to investigate if they results in sub-stantial improvement in the running time of the algorithm. The alternatives tested included thefollowing. (i) Arrays versus Heaps , (ii) Deferred Update, (iii) Hash Tables for Storing Graphs, (iv)Smart Label Reset (v) Heap variations, and (vi) struct of arrays vs. array of structs. We found,that indeed good programming practice, using common sense to avoid unnecessary computation andtextbook knowledge on reasonable data structures are useful to get good running times. For thealternatives mentioned above, we did not �nd substantial improvement in the running time. Moreprecisely, the di�erences we found were bigger than the unavoidable noise on a multi-user computingenvironment. Nevertheless, they were all below 10% relative di�erence.Analysis of results. The plain Dijkstra, using static delays calculated from reported free owspeeds, produced roughly 100 plans per second. Figure 1 illustrates the improvement by the obatinedby A�. The numbers shown in the corner of the network snapshots tell an average (100 repetitions)running time for this particular O-D-pair, (destroying cache e�ects between subsequent runs) insystem ticks. It also gives the number of nodes expanded and fringe nodes. Note the changed scaleof the depictions due to the di�erent nodes expanded. Overall we found that A� is faster than basicDijkstra's algorithm by roughly a factor of 2. Also, recall that for the original network Sedgewickand Vitter's heuristic was not applicable: it turned out that there exist some links that have re-ported length much smaller (factor 100) than the Euclidean distance of the endpoints. To be ableto conduct any reasonable experiment, we modi�ed (\normalized") the network as reported above:If necessary the reported length was changed to Euclidean distance, to ensure the correct inequality.Modi�ed A� (Overdo Heuristic) Next consider the modi�ed A� algorithm { the heuristic isparameterized by the multiplicative factor used to weigh the Euclidean distance estimate to thedesitnation. We call it the overdo parameter due to obvious reasons. As a result it is natural todiscuss the time/quality trade-o� of the heuristic as a function of the overdo parameter. Figure 2summarizes the performance. In the �gure the X-axis represents the overdo factor, being variedfrom 0 to 100 in steps of 1. The Y-axis is used for multiple attributes which we explain below.First, it is used to represent the average running time per plan. For this attribute, the scale is .02seconds per unit. As depicted by the solid line, the average time taken without any overdo at all is12.9 microseconds per plan. This represents the base measurement (without taking the geometricinformation into account). Next, for overdo value of 10 and 99 the running times are respectively2.53 and .308 microseconds. On the other hand, the quality of the solution produced by the heuristicdetiorates as the overdo factor is increased. We used two quantities to measure the error | (i) themaximum relative error incurred over 10000 plans and (ii) the number of plans with errors morethan a given threshold error. The maximum relative error (plot marked with *) ranges from 0 for

A Computational Study of Routing Algorithms for Realistic Transportation Networks 173

ticks 2.40, #exp 6179, #fr 233

ticks 0.64, #exp 1446, #fr 316Figure 1: Figure illustrating the number of expanded nodes while running (i) Dijkstra (ii) A� algorithms.As the �gures clearly show the A� heuristic clearly is much more e�cient in terms of the nodes it visits. Inboth the graphs, the path is outlined as a dark line. The fringe nodes and the expanded nodes are markedas dark spots. The underlying network is shown in light grey.

A Computational Study of Routing Algorithms for Realistic Transportation Networks 174

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

0
10

20
30

40
50

60
70

80
90

10
0

.5
*t

im
e

m
ax

_e
rr

0.
0

0.
01

0.
02

0.
05 0.
1

Figure 2: Figure illutrating the trade-o� between the running time and quality of paths as a function of theoverdo-parameter.

A Computational Study of Routing Algorithms for Realistic Transportation Networks 175overdo factor 0 to 16% for overdo value 99. For the other error measure, we plot one curve for eachthreshold error of 0%, 1%, 2%, 5%, 10%. The following conclusions can be drawn from our results.1. The running times improve signi�cantly as the overdo factor is increased. Speci�cally theimprovements are a factor 5 for overdo parameter 10 and almost a factor 40 for overdo param-eter 99.2. In contrast, the quality of solution worsens much more slowly. Speci�cally, the maximum erroris no worse than 16% for the maximum overdo factor. Moreover, although the number oferroneous plans is quite high (almost all plans are erroneous for overdo factor of 99), most ofthem have small relative errors. To illustrate this, note that only around 15% of them haverelative error of 5% or more.3. The experiments and the graphs suggest an \optimal" value of overdo factor for which therunning time is signi�cantly improved while the solution quality is not too bad. Thus ourexperiments are a step in trying to �nd an empirical time/performance trade-o� as a functionof the overdo parameter.4. We also found that the near-optimal paths produced were visually acceptable and representeda feasible alternative route guiding mechanism. This method �nds alternative paths that arequite di�erent than ones found by the k-shortest path algorithms and seem more natural.Intuitively, the k-shortest path algorithms, �nd paths very similar to the overall shortest path,except for a few local changes.7. Discussion of ResultsFirst, we note that the running times for the plain Dijkstra are reasonable as well as su�cientin the context of the TRANSIMS project. Quantitatively, this means the following: TRANSIMSis run in iterations between the micro-simulation, and the planner modules, of which the shortestpath �nding routine is one part. We have recently begun research for the next case study project forTRANSIMS. This case study is going to be done in Portland, Oregon and was chosen to demonstratethe validate our ideas for multi-modal time dependent networks with public transportation followinga scheduled movement. Our initial study suggests that we now take .5 sec/trip as opposed to .01sec/trip in the Dallas Ft-Worth case. All these extensions are important from the standpointof �nding algorithms for realistic transportation routing problems. We comment on this in somedetail below. Multi-modal networks are an integral part of most MPO's. Finding optimal (or near-optimal) routes in this environment therefore constitutes a real problem. In the past, solutions forrouting in such networks was handled in an adhoc fashion. In [BJM98], we have proposed modelsand corresponding algorithms to solve such problems. Next consider another important extension| namely to time dependent networks. In this case the edge length is assumed to be a function oftime. We make an important modeling assumption, namely it does not pay a person to wait. Thisneed not be true in general but is adequate for most purposes. This implies that the edge lengthfunction is monotonically non-increasing. Time dependent networks can also be used to modelspublic transportation systems with �xed schedules. By using an appropriate extension of the basicDijkstra's algorithm, one can calculate optimal paths in such networks. Our preliminary results onthese topics in the context of TRANSIMS can be found in [JM98]. The Portland network we areintending to use has about 120000 links and about 80 000 nodes. Simulating 24 hours of tra�c onthis network will take about 24 hours computing time on our 14 CPU machine. There will be about1.5 million trips on this network. Routing all these trips should take 1:5 � 106 trips � 0:5 sec/trip �9 days on a single CPU and thus less than 1 day on our 14 CPU machine. Since re-routing typicallyconcerns only 10% of the population, we would need less than 3 hours of computing time for there-routing part of one iteration, still signi�cantly less than the micro-simulation needs.

A Computational Study of Routing Algorithms for Realistic Transportation Networks 176

ticks 0.10, #exp 140, #fr 190Figure 3: Figure illutrating two instances of Dijkstra's algorithms with a very high overdo parameter startat origin and destination respectively. One of them really creates the shown path, the beginning of the otherpath is visible as a \cloud" of expanded nodesOur results and the constraints placed by the functionality requirement of the overall systemimply that bidirectional version of Dijkstra's algorithm is not a viable alternative. Two reasons forthis are: (i) The algorithm can not be extended in a direct way to path problems in a multi-modaland time dependent networks, and (ii) the running times of A� is better than the bidirectionalvariant; the modi�ed A� is much more faster.8. ConclusionsThe computational results presented in the previous sections demonstrate that Dijkstra's algo-rithm for �nding shortest paths is a viable candidate for compute route plans in a route planningstage of a TRANSIMS like system. In fact, even more interestingly, the results demonstrate that thealgorithm that has optimized well compares well (or even sometimes better) than several heuristicsproposed in the literature. Thus such an algorithm should be considered even for ITS type projectsin which we need to �nd routes by an on-board vehicle navigation systems.In the context of the TRANSIMS project, we are faced with the problem of routing many millionsof trips in iteration with a micro-simulation. Most trips have entirely di�erent characteristics, such asdi�erent starting locations, di�erent starting times, and di�erent preferences towards mode choice.This leads to the consideration of one-to-one shortest path algorithms, as opposed to algorithmsthat construct the complete shortest-path tree from a given starting (or destination) point. Asis well known, the worst-case complexity of one-to-one shortest path algorithms is the same as ofone-to-all shortest path algorithms. Yet, in terms of our practical problem, this is not applicable.First, a one-to-one algorithm can stop as soon as the destination is reached, saving computer timeespecially when trips are short (which often is the case in our setting). Second, since our networksare roughly Euclidean, one can use this fact for heuristics that reduce computation time even more.

A Computational Study of Routing Algorithms for Realistic Transportation Networks 177One heuristic, the Sedgewick-Vitter or A� algorithm (denoted SV/A�), generates results that areprovably optimal, but is a heuristic in the sense that the worst-case complexity does not get anybetter although practical computing times decrease. One can extend the approach of SV/A� towardsa \true" heuristic where routes are no longer optimal but computation time goes down even more.The above approaches were evaluated in the context of the TRANSIMS Dallas-Fort Worth casestudy. The underlying road network was a \focussed network", with all streets including the localones in a 25 square mile study area, with increasing number of streets left out when going awayfrom the study area. For that case, SV/A� turns out to be about a factor of two faster than regularDijkstra; the second heuristic could save, for example, another factor of 5 while generating resultswithin 1% of the optimal solution.Making the algorithms time-dependent in all cases slowed down the computation by a factorof at most two. Since we are using a one-to-one approach, adding extensions that for exampleinclude personal preferences (e.g. mode choice) are straightforward; preliminary tests let us expectslow-downs of not more than a factor 30. This signi�cant slowdown was caused by a number offactors including: (i) increase in the network size by a factor of 4 caused by node/edge splittingand adding public tranportation, (ii) complicated time dependency functions representing scheduledbuses and (iii) di�erent type of delays inducing a qualtitatively di�erent exploration of the networkby the algorithm. Extrapolations of the results for the Portland case study show that, even withthis slowdown the route planning part of TRANSIMS still uses signi�cantly less computing timethan the micro-simulation.Finally, we note that under certain circumstances the one-to-one approach chosen in this papermay also be useful for ITS applications. This would be the case when customers whould requirecustomized route suggestions, so that re-using a shortest path tree from another calculation may nolonger be possible.Acknowledgments: Research supported by the Department of Energy under Contract W-7405-ENG-36. We would like to thank the members of the TRANSIMS team in particular, Doug Anson,Chris Barrett, Richard Beckman, Roger Frye, Terence Kelly, Marcus Rickert, Myron Stein andPatrice Simon for providing the software infrastructure, pointers to related literature and numerousdiscussions on topics related to the subject. The second author wishes to thank Myron Stein forlong discussions on related topics and for his earlier work that motivated this paper. We also thankJoseph Cheriyan, S.S. Ravi, Prabhakar Ragde, R. Ravi and Aravind Srinivasan for constructivecomments and pointers to related literature.References[AMO93] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms andApplications, Prentice-Hall, Englewood Cli�s, NJ, 1993.[AHU] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of ComputerAlgorithms, Addison Wesley, Reading MA., 1974.[BJM98] C. Barrett, R. Jacob, M. Marathe, Formal Language Constrained Path Problems to bepresented at the Scandanavian Workshop on Algorithmic Theory, (SWAT '98), Stockholm,Sweden, July 1998. Technical Report, Los Alamos National Laboratory, LA-UR 98-1739.[TR+95a] C. Barrett, K. Birkbigler, L. Smith, V. Loose, R. Beckman, J. Davis, D. Roberts and M.Williams, An Operational Description of TRANSIMS, Technical Report, LA-UR-95-2393,Los Alamos National Laboratory, 1995.[CS97] R. Beckman et. al. TRANSIMS-Release 1.0 { The Dallas Fort Worth Case Study, LA-UR-97-4502

A Computational Study of Routing Algorithms for Realistic Transportation Networks 178[CGR96] B. Cherkassky, A. Goldberg and T. Radzik, Shortest Path algorithms: Theory and Exper-imental Evaluation, Mathematical Programming, Vol. 73, 1996, pp. 129{174.[GGK84] F. Glover, R. Glover and D. Klingman, Computational Study of am Improved ShortestPath Algorithm, Networks, Vol. 14, 1985, pp. 65{73.[EL82] R. Elliott and M. Lesk, \Route Finding in Street Maps by Computers and People," Proceed-ings of the AAAI-82 National Conference on Arti�cial Intelligence, Pittsburg, PA, August1982, pp. 258-261.[HNR68] P. Hart, N. Nilsson, and B. Raphel, \A Formal Basis for the Heuristic Determination ofMinimum Cost Paths," IEEE Trans. on System Science and Cybernetics, (4), 2, July 1968,pp. 100-107.[HM95] Highway Research Board, Highway Capacity Manual, Special Report 209, National Re-search Council, Washington, D.C. 1994.[JM98] R. Jacob et. al. Models and Algorithms for Routing Multi-Modal Trips in Time DependentNetworks, in preparation, June 1998.[LR89] M. Luby and P Ragde, \A Bidirectional Shortest Path Algoroithm with Good AverageCase Behaviour," Algorithmica, 1989, Vol. 4, pp. 551-567.[Ha92] R. Hassin, \Approximation schemes for the restricted shortest path problem,"Mathematicsof Operations Research, vol. 17, no. 1, pp. 36-42 (1992).[Ma] Y. Ma, \A Shortest Path Algorithm with Expected Running time O(pV logV)," Master'sThesis, University of California, Berkeley.[MCN91] J.F. Mondou, T.G. Crainic and S. Nguyen, Shortest Path Algorithms: A ComputationalStudy with C Programming Language, Computers and Operations Research, Vol. 18, 1991,pp. 767{786.[NB97] K. Nagel and C. Barrett, Using Microsimulation Feedback for trip Adaptation for RealisticTra�c in Dallas, International Journal of Modern Physics C, Vol. 8, No. 3, 1997, pp.505-525.[NB98] K. Nagel, Experiences with Iterated Tra�c Microsimulations in Dallas, in D.E. Wolf andM. Schreckenberg, eds. Tra�c and Granular ow II Springer Verlag 1998. Technical Report,Los Alamos National Laboratory, LA-UR 97-4776.[Pa74] U. Pape, Implementation and E�ciency of Moore Algorithm for the Shortest Root Problem,Mathematical Programming, Vol. 7, 1974, pp. 212{222.[Pa84] S. Pallottino, Shortest Path Algorithms: Complexity, Interrelations and New Propositions,Networks, Vol. 14, 1984, pp. 257{267.[Po71] I. Pohl, \Bidirectional Searching," Machine Intelligence, No. 6, 1971, pp. 127-140.[SV86] R. Sedgewick and J. Vitter \Shortest Paths in Euclidean Graphs," Algorithmica, 1986, Vol.1, No. 1, pp. 31-48.[SI+97] T. Shibuya, T. Ikeda, H. Imai, S. Nishimura, H. Shimoura and K. Tenmoku, \Finding Re-alistic Detour by AI Search Techniques," Transportation Research Board Meeting, Wash-ington D.C. 1997.[ZN98] F. B. Zhan and C. Noon, Shrotest Path Algorithms: An Evaluation using Real Road Net-works Transportation Science, Vol. 32, No. 1, (1998), pp. 65{73.

179Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 179{192Hybrid Tree Reconstruction MethodsDaniel HusonProgram in Applied and Computational MathematicsPrinceton University, Princeton NJ 08544-1000e-mail: huson@math.princeton.eduScott NettlesDepartment of Computer and Information ScienceUniversity of Pennsylvania, Philadelphia PA 19104e-mail: nettles@central.cis.upenn.eduKenneth RiceBioinformatics DepartmentSmithKline Beecham, King of Prussia PA, 19406e-mail: ken rice@sbphrd.comTandy WarnowDepartment of Computer and Information ScienceUniversity of Pennsylvania, Philadelphia PA 19104e-mail: tandy@central.cis.upenn.eduandShibu YoosephDIMACS, Rutgers University, Piscataway, NJ 08854e-mail: yooseph@saul.cis.upenn.eduABSTRACTA major computational problem in Biology is the reconstruction of evolutionary trees for speciessets, and accuracy is measured by comparing the topologies of the reconstructed tree and themodel tree. One of the major debates in the �eld is whether large evolutionary trees canbe even approximately accurately reconstructed from biomolecular sequences of realisticallybounded lengths (up to about 2000 nucleotides) using standard techniques (polynomial timedistance methods, and heuristics for NP-hard optimization problems). Using both analyticaland experimental techniques, we show that on large trees, the two most popular methods in sys-tematic biology, neighbor-joining and maximum parsimony heuristics, as well as two promisingmethods introduced by theoretical computer scientists, are all likely to have signi�cant errors inthe topology reconstruction of the model tree. We also present a new general technique for com-bining outputs of di�erent methods (thus producing hybrid methods), and show experimentallyhow one such hybrid method has better performance than its constituent parts.1. IntroductionEvolution of biomolecular sequences is modeled as a Markov process operating on a rooted binarytree. A biomolecular sequence at the root of the tree \evolves down" the tree, each edge of the treeintroducing point mutations, thereby generating sequences at the leaves of the tree, each of the samelength as the root sequence. The phylogenetic tree reconstruction problem is to take the sequencesthat occur at the leaves of the tree, and infer, as accurately as possible, the tree that generated the

Hybrid Tree Reconstruction Methods 180sequences. In this paper, we focus on the topology estimation problem, which is the major objectiveof systematic biologists (that is, biologists whose research is the evolutionary history of di�erentspecies sets).The importance of accurate (or at least boundedly inaccurate) reconstruction of evolutionary treesto systematic biologists is reected in the heated debates in the �eld about the relative accuraciesof di�erent phylogenetic reconstruction methods. This has been explored in the systematic biologyliterature through experimental performance studies which simulate biomolecular (DNA, RNA, oraminoacid) sequence evolution on model trees (see, for example, [12, 24, 18, 27, 25, 15, 16, 13,28]). One of the most important limitations on performance turns out to be that real biomolecularsequences are not particularly long; those used for phylogenetic tree reconstruction purposes aretypically bounded by 2000 nucleotides, often by much smaller numbers, and sequence lengths of 5000nucleotides are generally considered to be unusually long [19]. The majority of these experimentalstudies have focused on small trees containing at most 20 leaves (many studies have addressed onlyfour-leaf trees [14, 16, 15]), and very few have examined performance on large trees (having morethan 50 taxa).This paper has two major contributions. First, we provide an experimental performance studyof four phylogenetic tree reconstruction methods: the two major phylogenetic tree reconstructionmethods (a heuristic used to \solve" the NP-hard maximum parsimony problem, and the polynomialtime \neighbor-joining" method), and two polynomial time methods introduced by the theoreticalcomputer science community (the \Single Pivot" algorithm of Agarwala et al. [1] and the BunemanTree [4, 3] method). We show, using both experimental and analytical techniques, that the polyno-mial time distance methods have poor accuracy when the model tree has high divergence (that is,when the model tree contains a path on which a random site changes many times). This suggeststhat datasets that have high divergence may need to be analyzed using computationally expensivetechniques (such as maximum parsimony heuristics) rather than polynomial time techniques, inorder for even approximately accurate reconstructions to be obtained. This observation, althoughpreliminary, is new to the systematic biology literature; no other experimental study has explicitlystudied the e�ect of varying divergence on degrees of accuracy of reconstructions of large trees.The other contribution of the paper is the introduction of Hybrid Tree Reconstruction Methods.Our experimental results indicated that methods di�ered according to the types of topological errorsthey made. This discovery led us to propose a new approach to phylogeny reconstruction, in whichoutputs of di�erent methods are combined (in a hybrid approach), so as to obtain the best of each ofthe methods. We experimentally explore the performance of a particular hybrid method, and showit obtains better results than its constituent parts (parsimony, neighbor-joining, and the BunemanTree) over a signi�cant portion of the \hard" part of the parameter space we explore.2. BasicsPoisson Processes on Trees: Our performance study is based upon simulations of sets ofDNA sequences under the Jukes-Cantor model of evolution [17] on di�erent model trees.De�nition 1. Let T be a �xed rooted tree with leaves labelled 1 : : : n. The Jukes-Cantor model ofevolution describes how a site (position in a sequence of nucleotides) evolves down the tree T , andassumes that the sites evolve identically and independently (iid). The state at the root is drawn froma distribution (typically uniform), and each edge e 2 E(T) is associated with a mutation probabilityp(e), which is the probability that a given site will have di�erent states at the endpoints of the edge.Given that a change occurs on an edge, then the probability of obtaining state j at the child of theedge, given that the state of the parent of the edge is i, is given by the ijth entry of a matrix M .In our study, we will assume that the substitution matrix for each edge is homogeneous, and theunderlying tree is binary. Let �ij denote the expected number of mutations on the path Pij between

Hybrid Tree Reconstruction Methods 181leaves i and j in T , for a random site. We will call �ij the expected evolutionary distance, ortrue distance between i and j.De�nition 2. We de�ne the divergence of the tree T to be �max = maxijf�ijg.The divergence can be unboundedly large, even if the number of leaves is held constant, since sitescan change many times on an edge, even though only one change can possibly be observed for anysite, between any pair of leaves.Because the matrix � is additive (it �ts an edge-weighted tree exactly), given � the tree T canbe constructed in polynomial time using a number of di�erent distance-based methods [32, 4]. Thebasic technique used in distance methods is as follows: First, an approximation d to the matrix� is computed; then, d is mapped, using some distance method M , to a (nearby) additive matrixM(d) = D. If D and � de�ne the same unrooted leaf-labelled tree, then, the method is said to beaccurate, even if they assign di�erent weights to the edges of the tree.While complete topological accuracy is the objective, partial accuracy is the rule. Systematicbiologists quantify degrees of accuracy according to the shared bipartitions induced on the leaves ofthe model tree and the reconstructed tree.Character encodings of trees: Given a tree T leaf-labelled by S and given an internal edgee 2 E(T), the bipartition induced by e is the bipartition on the leaves of T obtained by deleting efrom T . We denote this bipartition by �e. It is clear that every S-labelled tree T is de�ned uniquelyby the set C(T) = f�e : e 2 Eint(T)g, where Eint(T) denotes the internal edges of T (i.e. thoseedges not incident to leaves). This is called the character encoding of T . The character encodingof trees is useful in many ways. For example, we say that a tree T re�nes tree T 0 if T 0 can beobtained from T by contracting certain edges in T (and similarly, T 0 is a contraction of T). Itfollows that T re�nes T 0 if and only if C(T 0) � C(T). We also say that a set C0 of bipartitions of aset S is compatible if and only if there is a tree T such that C(T) = C0.Comparing trees: If T is the model tree and T 0 is an approximation to T (obtained using somemethod, perhaps), then the errors in the reconstructed tree T 0 can be classi�ed into two types:false positives: edges e 2 E(T 0) such that �e 62 C(T). false negatives: edges e 2 E(T) suchthat �e 62 C(T 0). The false positive rate is then the number of false positives, divided by n� 3,the number of internal edges in a binary tree on n leaves (evolutionary trees are typically presumedto be binary, even if attempts to reconstruct them have a hard time obtaining all edges). Similarly,the false negative rate is the number of false negatives divided by n� 3:Tree reconstruction methods: The two perhaps most frequently used methods in systematicbiology are heuristic parsimony and neighbor-joining. Given a set S of sequences, and givena tree T leaf-labelled by S � Z
k and internally labelled by vectors in Z

k , the parsimony cost ofT is the sum of the Hamming distance between the endpoints of the edge (where the Hammingdistance between x and y H(x; y) = jfi : xi 6= yigj). Finding the most parsimonious tree (i.e.the tree of minimum cost) is the \maximum parsimony" problem, and is NP-hard [11]. Heuristicsused for maximum parsimony are based upon hill-climbing through tree space, and return the strictconsensus of all the best trees that are found during the search. (The strict consensus is the (unique)tree Tstrict de�ned by C(Tstrict) = \iC(Ti), where the best trees found are T1; T2; : : : ; Tp.) Heuristicparsimony is a computationally intensive method which has, on at least one real 500 taxon data set[21], taken several years of CPU time without �nding an optimal tree.Distance methods are very popular as well, and have the advantage over maximum parsimonyof being very fast (almost all are O(n3) or O(n4), where n is the number of taxa). Furthermore,provided that properly corrected distances are given as input, most distance methods are prov-ably statistically consistent throughout the parameter space of i.i.d. site evolution, meaning thatthey are guaranteed to recover the model tree topology (with arbitrarily high probability) given longenough sequences (see [31, 6] for the conditions that su�ce to guarantee statistical consistency). Bycontrast, maximum parsimony has no such guarantee (it is not consistent on all trees under thegeneral Markov model, and will, in fact, converge to the wrong tree given in�nite length sequences

Hybrid Tree Reconstruction Methods 182under some model conditions [8]). The most favored distance method is probably neighbor-joining[23], a simple polynomial time agglomerative clustering heuristic which performs surprisingly well,especially considering that it does not claim to solve or approximate any known optimization prob-lem. The Buneman Tree method [4] and Single Pivot algorithm [1] are two other polynomialtime distance methods which have been introduced by the theoretical computer science community,and which do solve or approximate optimization problems related to tree reconstruction. Thesethree distance-based methods are each statistically consistent for the Jukes-Cantor model of siteevolution.An analysis of the sequence length needed for a completely accurate reconstruction (with highprobability) of the topology of a tree under the general Markov model was given in [5]. In thissection, we extend the analysis in [5] to derive upper bounds on the error rates of these methods.We will say that an edge e 2 E(T) is reconstructed by a method M given input d if the treeT 0 =M(d) contains an edge inducing the same bipartition as induced by e. Let Eint(T) denote theinternal edges of the tree T . We give an analysis of the sequence length that su�ces for recoverall long enough edges, under the Jukes-Cantor model. (The proof of the following theorem usestechniques similar to those for the corresponding theorem in [5], and is omitted.)Theorem 1. Let T be a Jukes-Cantor model tree, let �ij be the expected number of mutations inthe path Pij of a random site, and let �� = maxf�ijg. Let � > 0 be given. If we use either AddTree(a variant of neighbor-joining), the Single Pivot algorithm, or the Buneman Tree method, then withprobability at least 1� � we will reconstruct all edges e 2 Eint(T) such that p(e) � f if the sequencelength exceeds c logneO(��)where c is a constant that depends upon f , the method, and upon �.This theorem places an upper bound on the sequence length that su�ces for these methodsto reconstruct (with high probability) all edges above a given threshold of length, but does notimply correspondingly bad performance if shorter sequences are used. However, the theorem is anupper bound, and although discouragingly high, may be pessimistic-ally large (in other words, actualperformance may be better than this upper bound would suggest). In the following section, weexplore the performance of these methods by simulating sequence evolution on trees with varyingdegrees of divergence. Note also that the theorem does not imply any bound for neighbor-joining;the convergence rate of neighbor-joining is unfortunately still an open problem (see [2] for the resulton AddTree, and a discussion about neighbor-joining.).3. Performance Study3.1. Methods and procedures:Model trees and simulations: Our two basic model trees are both subtrees of the 500 rbcLtree from [21]; one has 35 taxa and the other has 93 taxa. The two trees were reconstructed usingparsimony analysis [21], and the substitution rates on the edges in each tree were set to be theproportion of change on that edge, on the basis of a most parsimonious assignment of sequencesto the internal nodes. We then scaled the rates both up and down to explore the e�ect of howdi�erent rates at di�erent sites would a�ect the performance of these di�erent methods. We used 11di�erent settings for the maximum mutation probability on any edge in each model tree (denotedin our study by p(e)), ranging from :005 to :64, and maintained the ratios between di�erent edges.This technique also allowed us to generate sets of sequences with varying degrees of divergence (i.e.the maximum distance between pairs of leaves), while still having small enough data sets to do asigni�cant number of experiments. In the high end of the range (i.e. when p(e) = :64, the maximumwe tested), there is signi�cant divergence and \homoplasy" (i.e. many sites change many times).The average number of times a site changes on the 35-taxon tree at that setting is 12, and the

Hybrid Tree Reconstruction Methods 183average number of times a site changes on the 93-taxon tree at that setting is 30. Since there arealmost three times as many edges in the 93-taxon tree as in the 35-taxon tree, these trees haveapproximately the same amount of homoplasy for their sizes. However, the 35-taxon tree has notquite as wide a range of mutation probabilities: the ratio between the \longest" and the \shortest"branches is about 17, while on the 93-taxon tree the ratio is about 30 (these ratios are calculatedon the basis of the mutation probabilities, not upon corrected distances). Thus, for every maximump(e) setting, the 93 taxon tree contains shorter edges than the 35 taxon tree.We varied the length of the sequences we generated, using 12 di�erent lengths in the 200 through3200 range, and including longer sequences (up to 12; 800) on the hardest model trees. For eachcombination of tree, sequence length, and maximum mutation probability p(e), we generated 100sets of sequences, using di�erent seeds for the random number generator. Each of these datasetswas then given as input to each of the tree reconstruction methods we studied.Tree reconstruction methods The tree reconstruction methods we compared in this study were:neighbor-joining [23], the Buneman Tree [4], heuristic search parsimony combined with the strictconsensus (which we call the HS-strict tree), and the Single Pivot algorithm. The implementationsof neighbor-joining was obtained from Phylip [9], and the HS-strict method was obtained from PAUP[29]; both of these are standard phylogenetic software packages. We implemented the BunemanTree method and the Single Pivot algorithm ourselves, selecting a random pivot for the Single Pivotalgorithm. While the parsimony search is generally improved signi�cantly by allowing many randomstarting points for the heuristic searches, for the sake of the experimental study, we only permittedone random starting point for each experiment. In practice, real data sets are often analyzed withthousands of di�erent random sequence addition orders, so as to explore more of the tree space; thisrestriction may result in poorer performance predictions for parsimony than might be achievable.Experimental procedure: We used ecat [20] to simulate sequence evolution on each of the modeltrees we used. We then computed Jukes-Cantor distances [17] dij = �3=4log(1�4=3Hij), where Hijis the Hamming distance. For those pairs i; j in which Hij � 3=4, we set dij to a very large value,signi�cantly exceeding the other values in the matrix, so as to permit each of the distance methodsto reconstruct trees instead of simply failing to return any tree at all (this is a standard adjustmentto Jukes-Cantor distances used in these cases). We gave the same distance matrices to each of thethree distance methods, and the original set of sequences to the heuristic for maximum parsimonyanalysis. We then compared the outputs of each method to the model tree, and computed falsepositive and false negative rates. Because the lengths of sequences in realistic datasets are typicallybounded by 2000 or perhaps 3000 nucleotides (and are often only a few hundred), we will focus onperformance results on short sequences, although we will report results for longer sequences as well.3.2. Experimental resultsHere we report on the results of our experiments on the four basic methods we studied. At thelow end of this setting, except under exceedingly high sequence lengths (not explored here), manyedges will have no changes on them { and hence be impossible to reconstruct for any method (exceptby guesswork). Thus, we will expect to see (and will see, in fact) high false negative rates for allmethods when the mutation rates are very low. The important distinctions in performance will beobtained for mutation rates in the moderate to high range.Each point in each �gure represents the mean of 100 samples. This number of samples givesus a 90% con�dence of having an absolute error of no more than 3%, across all of our parameterspace. We provide error bars in the �rst �gure, indicating the 25th and 75th percentiles. Theserepresentations of the distribution are omitted from later �gures as they make it di�cult at timesto see the pattern and are not particularly informative.In the �gures below, HS-strict (or simply HS) refers to Heuristic Search Parsimony combinedwith the Strict Consensus, and NJ refers to the neighbor-joining method.

Hybrid Tree Reconstruction Methods 184

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
%

)

200
400
800
1600
3200

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
%

)

 200
 400
 800
 1600
 3200

(a) (b)Figure 1: (a) Max p(e) vs. FN, by sequence length, for Buneman on the 35-taxon tree, (b) Max p(e) vs.FN/FP, by sequence length, for NJ on the 35-taxon tree35-taxon tree In Figures 1-4, we examine the false negative rates for the four methods on the35-taxon tree, as we vary the maximum divergence (by modifying the setting for p(e), the largestmutation rate on any edge in the tree) and the sequence length.The false negative curves for the four methods have a characteristic shape { initial decrease in thefalse negative rate as edges start to have enough \hits" to be reconstructible, followed by a periodin which the method performs well, and then an increase in the false negative rate. It is worthnoting that shapes of the three curves for the distance methods are consistent with Theorem 1,and that while the curve for parsimony has a comparable shape, we have no analytical result whichwould predict this. A comparison between the four methods in terms of the false negative rate forthe high divergence settings is also worth noting. The Buneman Tree has the worst false negativerate of the four methods at all sequence lengths, and the Single Pivot algorithm �ts between theBuneman and neighbor-joining method at all sequence lengths. The comparison between parsimonyand neighbor-joining is more interesting. For short sequences (that is, for sequences of length 200,400, and 800) and high divergence, parsimony has a lower false negative rate than neighbor-joining,but the relative performance shifts for longer sequences.We now compare the false positive rates for these four methods. See Figures 2 and 3 for theneighbor joining and Single Pivot algorithms, whose false positive rates and false negative rates areessentially identical (since both almost always produce binary trees), and Figures 3(a) and 3(b) forheuristic parsimony and the Buneman Tree method. The Buneman Tree method has the best falsepositive rate of all four methods on this tree, obtaining actually no false positives at all sequencelengths; thus, the Buneman Tree method produces a contraction of the model tree. Following closebehind the Buneman Tree is Heuristic Parsimony, which obtains close to 0 false positives for a widerange of the di�erent p(e) settings at most sequence lengths. The other two methods, neighbor-joining and Single Pivot, have generally higher false positive rates, and of these two, Single Pivot'sis worse (just as the Single Pivot false negative rate is higher than that of neighbor-joining).Comparing more carefully between the neighbor-joining method and heuristic parsimony's falsepositive rates is interesting; for short sequences (below 1600), parsimony has a lower false positiverate than neighbor-joining, but the relative performance changes at longer sequences.93-taxon tree Figures 4-5 give the same types of results as Figures 1-3, but on the 93-taxon tree.We have omitted the �gures for the Buneman Tree performance, because they are comparable to theperformance on the 35 taxon tree: as before, the false positive rate is almost always zero, although

Hybrid Tree Reconstruction Methods 185

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
%

)

200
400
800
1600
3200

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
%

)

 200
 400
 800
 1600
 3200

(a) (b)Figure 2: (a) Max p(e) vs. FN/FP, by sequence length, for Single Pivot on the 35-taxon tree, (b) Max p(e)vs. FN, by sequence length, for HS-strict on the 35-taxon treethe false negative rate climbs even faster to 100%. We show �gures for the other three methods.The false positive rates are as before: low for heuristic parsimony and exceptionally low forthe Buneman Tree method, and not as uniformly low for the neighbor-joining and Single Pivotalgorithms. With respect to the false negative rates, we see the same \bowl-like" pattern we sawbefore: an initial decline, followed by an increase in false negative rates as the divergence of the treeis turned up. The Buneman Tree method (not shown) does very badly with respect to false negativerates, and Single Pivot does almost as poorly; neighbor-joining and parsimony do much better thanthe other two methods.Perhaps the most striking aspect of this study is that the relative performance between neighbor-joining and parsimony is quite di�erent here than on the 35-taxon tree. Whereas on the 35-taxon treethere were portions of the parameter space where each method outperformed the other, on this treeparsimony is signi�cantly better throughout the parameter space. In fact, examining performanceon \short" sequences (consisting of at most 800 nucleotides), parsimony's average false negative rateis less than 30% that of neighbor-joining! The major reason for this distinction in performance isprobably that the 93-taxon tree contains many very short edges (moreover, the \longest" branch is30 times as long as the shortest { calculations based upon p(e) values, not corrected distances). Onsuch trees, neighbor-joining would have a di�cult time, according to Theorem 1, and indeed this isreected in the shape of the false negative curve for neighbor-joining. The false negative rate forneighbor-joining starts its climb upwards earlier on this tree than it did on the 35-taxon tree, andit climbs higher here than it did in the 35-taxon tree, for every sequence length.Although not shown in these �gures, we explored the performance of these four methods forextremely long sequences (12; 800 nucleotides), and even at such lengths the two distance methodsstill had very high false negative rates: neighbor-joining still missed more than 40% of the edges,and the Buneman Tree missed close to 100%. However, parsimony's performance on this treewas relatively good. Although the false negative rate climbed (and indeed, parsimony may not beconsistent on this tree { shorter trees than the model tree were found with regularity at high mutationsettings), the false negative rate for parsimony fell below 10% for sequences of length 800 and more,even at the highest p(e) setting we examined (.64). Parsimony's false positive rate showed a similarimprovement over neighbor-joining at the high end of the p(e) settings, at all sequence lengths weexamined (i.e. up to 12,800 nucleotides).

Hybrid Tree Reconstruction Methods 186

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 P

os
it

iv
es

 (
%

)
 200
 400
 800
 1600
 3200

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 P

os
it

iv
es

 (
%

)

 200
 400
 800
 1600
 3200

(a) (b)Figure 3: (a) Max p(e) vs. FP, by sequence length, for Buneman on the 35-taxon tree, (b) Max p(e) vs. FP,by sequence length, for HS-strict on the 35-taxon tree3.3. ConclusionsThe comparative analysis of the four methods reveals certain clear trends. First, the BunemanTree has exceptionally low false positive rates in all the cases we examined, and this is as predictedin [3]; unfortunately, it has the worst false negative rates, and is therefore not really acceptable. TheSingle Pivot algorithm's performance falls between that of the Buneman Method and the neighbor-joining method on all the trees we examined, and is therefore not competitive with neighbor-joining.Therefore, the major competition is between neighbor joining and heuristic maximum parsimony.The conditions under which parsimony and neighbor joining will outperform each other is ofgreat interest to systematic biologists, and has been the focus of many experimental studies (as wehave already discussed). Our study contributes the following two observations to this discussion:First, when the model tree has at most moderate divergence (i.e. when �� is not particularlylarge), then both maximum parsimony and neighbor-joining do well. There is a slight advantage inusing maximum parsimony over neighbor-joining when the sequences are short and the divergenceis low, but this reverses when the sequences are longer.Second, when the model tree has high divergence, both methods can do poorly. Even underhigh divergence, neighbor-joining will converge to the model tree given long enough sequences, buton sequence lengths that are typical in real data (up to about 2000 or 3000 nucleotides) it is likelyto have very poor accuracy. Maximum parsimony may not converge to the true tree at all, underhigh divergence, but tends to do better (on these trees) than neighbor-joining, when given realisticsequence lengths.In summary, then, we �nd that divergence (i.e. the maximum distance in the evolutionary tree)has impact on all the methods we examined, but has more impact on neighbor-joining than it hason maximum parsimony.4. Hybrid Tree MethodsOur experimental study of the four phylogenetic methods we examined indicates that the Bune-man and HS-strict trees are almost always very close to being contractions of the model tree, andthat the Buneman Tree is a true contraction more than 99% of the time, even on realistic lengthsequences (i.e. bounded by length 1000). Our experimental study also indicates that neighbor-joining trees typically have a lower incidence of false negatives than parsimony, except from very

Hybrid Tree Reconstruction Methods 187

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
=F

al
se

 P
os

it
iv

es
)

(%
)

 200
 400
 800
 1600
 3200

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
=F

al
se

 P
os

it
iv

es
)

(%
)

200
400
800
1600
3200

(a) (b)Figure 4: (a) Max p(e) vs. FN/FP by sequence length, for NJ on the 93-taxon tree, (b) Max p(e) vs. FN/FPby sequence length, for Single Pivot on the 93-taxon treeshort sequences, or when the tree has high divergence. These experimental results suggest a hybridapproach for tree reconstruction, in which outputs of di�erent methods are appropriately combinedso as to get better estimates than either of the methods. Here we describe how we accomplish thiscombination step.Let T1 be a tree which is presumed to have a low false positive rate (and which may be acontraction of the model tree). Let T2 be a tree which is presumed to have a low false negativerate, so that it may include many of the bipartitions of the model tree. Our objective is to re�neT1 to include as many of the bipartitions of T2 as possible, thus creating a hybrid T3, of T1 and T2.Creating T3 from T1 and T2 is very easy to do, and can be done in linear time:Lemma 1. The tree T3 de�ned by C(T3) = C(T1) [fc 2 C(T2) : c is compatible with C(T1)g isunique, always exists, and can be reconstructed from T1 and T2 in O(n) time.For the de�nition of \compatible", see Section 2. The proof follows easily from characterizations ofwhen binary characters are compatible, material that can be obtained from [30]. Two observationsshould be clear. If T1 is a contraction of the model tree, then this technique cannot yield a worseestimation than T2, but if in addition T1 is not a contraction of T2, this technique provably producesa tree strictly closer to the model tree than T2!We have tested this technique on various combinations, and have found a particular combinationof methods which works very well. We �rst re�ne the Buneman Tree to incorporate as much ofthe HS-strict tree as possible, and then further re�ne this tree to incorporate as much as possiblefrom the neighbor-joining tree. We call this the Hybrid Tree. (We do not include the Single Pivotalgorithm, because it does not have either the low false positive rate of the Buneman Tree method,nor the low false negative rate of the neighbor-joining method.)Note that this hybrid method is a statistically consistent method for inferring trees, since itsstarting point, the Buneman Tree method, is statistically consistent. Furthermore, by constrainingthe amount of time permitted to the Heuristic search for the most parsimonious trees, the HybridTree is constructible in polynomial time (although we would expect greater accuracy to arise bypermitting more time to the heuristic search).4.1. Comparison of Hybrid Tree to other methodsWe now present the results of our experiments in which we compare the Hybrid method to itsthree component methods (neighbor joining, the Buneman Tree method, and heuristic parsimony).

Hybrid Tree Reconstruction Methods 188

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
%

)
 200
 400
 800
 1600
 3200

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 P

os
it

iv
es

 (
%

)

200
400
800
1600
3200

(a) (b)Figure 5: (a) Max p(e) vs. FN, by sequence length, for HS-strict on the 93-taxon tree, (b) Max p(e) vs. FP,by sequence length, for HS-strict on the 93-taxon treeAlthough not shown in these results, we also compared Single Pivot on the same data sets. Wefound the same performance as before: its performance lay very clearly between that of neighborjoining and the Buneman Tree method, and hence was not competitive with either neighbor joiningnor with heuristic parsimony.In the �gures below, we will let HY refer to the Hybrid method, BT refer to the Buneman Treemethod, NJ refer to neighbor joining, and HS refer to heuristic parsimony.Performance of Hybrid on the 35-taxon tree In Figures 6(a) and 6(b) we show the falsenegative and false positive rates for these four methods under di�erent levels of divergence, whengiven short sequences (200 nucleotides).The Hybrid's false negative rate is often much better than its constituent methods. On theshortest sequences, for example, the Hybrid has consistently lower false negative rate than any of itsconstituents. On longer sequences, the Hybrid is sometimes worse (with respect to the false negativerate) than neighbor-joining, but always better than the HS-strict tree. The false positives rate ofthe Hybrid Method falls between the rates for the HS-strict and neighbor-joining methods, and soit is moderate with respect to false positives.In Figure 7(a) we present the false negative rates for all these methods on the 35-taxon tree forthe maximum mutation setting p(e) = :64, as we let the sequence length increase. At this setting,there is a fair amount of homoplasy (each site changes about 12 times on the tree). We see that whenthe sequence length is below 1600, the fewest false negatives are obtained from the Hybrid method,but that for longer sequences, neighbor-joining does better than these two methods (although theHybrid continues to outperform - albeit slightly - the HS-strict method). The performance withrespect to false positives is similar, and is omitted, though the Hybrid obtains as many or more falsepositives than the HS-strict tree throughout the range of sequence lengths.Performance of the Hybrid on the 93-taxon tree We present in Figures 7(b) and 8 the sameanalysis for the 93-taxon trees we gave in Figures 11 and 12.On the 93 taxon tree, the Hybrid Method has either the same or better false negatives ratesthan any of the constituent parts throughout the range. This relative performance advantage withrespect to the false negative rate over its constituent parts is most visibly noticeable on the shortsequences, bounded by at most 800 nucleotides, where the Hybrid's average false negative rate is 90%that of HS-strict's and only 27% that of neighbor-joining, but this pattern is consistent throughout

Hybrid Tree Reconstruction Methods 189

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
%

)
HS
BT
HY
NJ

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 P

os
it

iv
es

 (
%

)

HS
BT
HY
NJ

(a) (b)Figure 6: (a) Max p(e) vs. FN, sequence length = 200, on the 35-taxon tree, (b) Max p(e) vs. FP, sequencelength = 200, on the 35-taxon treethe sequence lengths we examined (i.e. up to 3200 nucleotides). The false positive rate is acceptablylow, as well, throughout the range of mutation settings; except at low mutation rates, it is close tothat of maximum parsimony, and is much lower than that of neighbor joining under high divergence.5. Comparison to previous experimental studiesThere have been many previous experimental studies published in the systematic biology litera-ture, which have addressed the same basic question: how accurately does a given method reconstructthe topology of the model tree, under various conditions. Almost all of these studies have used thesame basic methodology: a model tree is constructed on the basis of an analysis of a real biologicaldataset, sequences are generated at the leaves of that model tree, and performance is evaluatedwith respect to how well the reconstructed topology compares to the model tree topology. Onemajor di�erence between our study and most previous studies is that our study has examined largetrees (most previous studies have examined trees on at most 20 or so taxa). Another major di�er-ence between our study and most others (however, see [22]) is that we have explicitly varied themutation settings on the trees, so as to explore how evolutionary rates a�ect the performance ofdi�erent phylogenetic methods. Consequently, our discovery that the accuracy of neighbor-joiningand other polynomial time distance methods degrades quickly with increasing divergence, has notbeen reported in the systematic biology literature.We now speci�cally address the two other papers that have experimentally addressed performanceon large trees: one is by Hillis [12], and examined a 228 taxon tree, and the other is by Rice andWarnow [22], and examined the conditions under which exact accuracy in topology estimationcould be recovered by various methods. Our study here extends the results of Rice and Warnow,by considering degrees of accuracy (i.e. not considering failure to recover the topology preciselyas complete failure). We �nd that although the major phylogenetic methods may fail to recoverexactly correct topologies under similar conditions (notably under high divergence), they fail indi�erent ways: maximum parsimony and the Buneman Tree method will tend to have low falsepositives, even when they fail to recover the true tree, and neighbor-joining will tend to have lowerfalse negative rates than maximum parsimony. This relative performance holds, except when thetree has high divergence and the sequences are not particularly long, in which case neighbor joiningmay have worse false negative rates than maximum parsimony.A comparison to the Hillis study is also very interesting. Hillis compared neighbor-joining and

Hybrid Tree Reconstruction Methods 190

1000 2000 3000

Sequence Length

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
%

)
HS
BT
HY
NJ

0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 N

eg
at

iv
es

 (
%

)

HS
BT
HY
NJ

(a) (b)Figure 7: (a) Sequence length vs. FN, max p(e) = 0.64, 35-taxon tree, (b) Max. p(e) vs. FN, sequencelength = 200, 93-taxon tree
0.2 0.4 0.6

Maximum P(e)

0

20

40

60

80

100

F
al

se
 P

os
it

iv
es

 (
%

)

HS
BT
HY
NJ

Figure 8: Max. p(e) vs. FP, sequence length = 200, 93-taxon treemaximum parsimony on a 228 taxon biologically based tree, and observed that both methods recov-ered the model tree topology from 5000 nucleotides. He concluded that many large trees should bereconstructible using either neighbor-joining or parsimony, provided that all edges are short enough(that is, there is not too much evolution happening on any single edge of the tree). However, ourexperiments, although preliminary, suggest otherwise. Large divergence in a tree can be obtainedwith enough short edges, and our experiments suggest that the performance of neighbor-joining iscompromised under high divergence. It is also worth noting that the model tree used in Hillis's studyhad very low divergence (the average number of changes of a random site on that tree was 2.3, whichis exceptionally low, as was commented upon by Purvis and Quicke [19]); hence, Hillis' �nding thatneighbor joining and maximum parsimony performed well on his tree is completely consistent withour study. Our study also tends to con�rm his observation about intensive taxonomic sampling (toreduce edge lengths) will improve parsimony's performance, to the degree that parsimony's perfor-mance on the 93 taxon tree was exceptionally good, and it had on average shorter edges than the35 taxon tree, for each mutation setting. However, we do not agree with Hillis' summary conclusionthat neighbor joining would do well under any model condition, provided that the edge lengths weresmall enough. Our experiments simply do not support that. Instead, our experiments suggest thatlarge divergence in itself causes problems for neighbor joining to a much greater extent than it causesto maximum parsimony.

Hybrid Tree Reconstruction Methods 1916. SummaryOur experimental study examined four promising phylogenetic tree reconstruction methods, in-cluding the two major estimation methods in systematic biology (the polynomial time distancemethod neighbor joining, and the heuristic used to \solve" the NP-hard optimization problem, max-imum parsimony), and two polynomial time methods introduced by the theoretical computer sciencecommunity. Our experimental performance study involved simulating sequence evolution on di�er-ent model trees, and demonstrated that high divergence in a model tree signi�cantly impairs theaccuracy of the three polynomial time distance methods we studied, but does not have as extremean e�ect upon the accuracy of heuristic maximum parsimony. A more detailed examination of thetypes of topological errors these methods had revealed that the neighbor joining method had thelowest false negative rates, while the maximum parsimony heuristic and the Buneman Tree methodhad the lowest false positive rates, under conditions of high divergence.We used this observation to develop a method based upon combining outputs of these threemethods, thus creating a hybrid method, and demonstrated the performance of this new methodexperimentally. Our experimental study showed that this hybrid has either the same number orfewer false negatives than the best of its component methods more than 98% of the time, overthe parameter space we explored. It has a distinctly better false negative rate than any of itsconstituent parts on over 60% of the datasets generated on the 93-taxon tree, and over 30% ofthe datasets generated on the 35-taxon tree. Moreover, the Hybrid Tree is statistically consistentthroughout the parameter space of trees under the general Markov model, because the underlyingBuneman Tree method is consistent.References[1] R. Agarwala, V. Bafna, M. Farach, B. Narayanan, M. Paterson, and M. Thorup. On the approximabilityof numerical taxonomy: �tting distances by tree metrics. Proceedings of the 7th Annual ACM-SIAMSymposium on Discrete Algorithms, 1996.[2] K. Atteson,The performance of neighbor-joining algorithms of phylogeny reconstruction, Computingand Combinatorics, Third Annual International Conference, COCOON '97, Shanghai, China, August1997, Proceedings. Lecture Notes in Computer Science, 1276, Tao Jiang and D.T. Lee, (Eds.). Springer-Verlag, Berlin, (1997) 101{110.[3] V. Berry and O. Gascuel, Inferring evolutionary trees with strong combinatorial evidence. Proceedingsof COCOON 1997.[4] P. Buneman, The recovery of trees from measures of dissimilarity, in Mathematics in the Archaeologicaland Historical Sciences, F. R. Hodson, D. G. Kendall, P. Tautu, eds.; Edinburgh University Press,Edinburgh, (1971) 387{395.[5] P. L. Erd}os, M. A. Steel, L. A. Sz�ekely, and T. J. Warnow, Constructing big trees from short sequences.Proceedings, ICALP, 1997.[6] P. L. Erd}os, M. A. Steel, L. A. Sz�ekely, and T. Warnow, A few logs su�ce to build (almost) all trees I,submitted to Random Structures and Algorithms. ALso appears as DIMACS Technical Report, 97-71.[7] M. Farach and S. Kannan, E�cient algorithms for inverting evolution, Proc. of the 28th Ann. ACMSymposium on the Theory of Computing, 1996.[8] J. Felsenstein, Cases in which parsimony or compatibility methods will be positively misleading, Syst.Zool. 27 (1978), 401{410.[9] J. Felsenstein, PHYLIP { Phylogeny Inference Package (Version 3.2), Cladistics, 5:164-166, 1989.

Hybrid Tree Reconstruction Methods 192[10] J. Felsenstein, Phylogenies from molecular sequences: inference and reliability, Annu. Rev. Genet., 22(1988) 521-565.[11] L. R. Foulds, R. L. Graham, The Steiner problem in phylogeny is NP-complete, Adv. Appl. Math.3(1982), 43{49.[12] D. Hillis, Inferring complex phylogenies, Nature Vol 383 12 September, 1996, 130{131.[13] D. Hillis, Huelsenbeck, J., and C. Cunningham. 1994. Application and accuracy of molecular phyloge-nies. Science, 264:671-677.[14] J. Huelsenbeck. The robustness of two phylogenetic methods: four-taxon simulations reveal a slightsuperiority of maximum likelihood over neighbor-joining. Mol. Biol. Evol. 12(5):843-849, 1995.[15] Huelsenbeck, J.P. and D. Hillis. 1993. Success of phylogenetic methods in the four-taxon case. Syst.Biol. 42:247-264.[16] Huelsenbeck, J. 1995. Performance of phylogenetic methods in simulation. Syst. Biol. 44:17-48.[17] T.H. Jukes and C.R. Cantor, Evolution of Protein Molecules, in: H.N. Munro, ed., Mammalian ProteinMetabolism, Academic Press, New York, (1969) 21-132.[18] Kuhner, M. and J. Felsenstein, 1994. A simulation comparison of phylogeny algorithms under equaland unequal evolutionary rates. Mol. Biol. Evol. 11:459-468.[19] A. Purvis and D. Quicke, TREE (Trends in Ecology and Evolution), 12(2): 49-50, 1997.[20] K. Rice. Ecat- an evolution simulator. Available from http://www.cis.upenn.edu/�krice/progs.[21] K. Rice, M. Donoghue, and R. Olmstead, Analyzing large datasets: �rbcL 500 revisited, SystematicBiology, (1997).[22] K. Rice and T. Warnow, Parsimony is hard to beat!, Proceedings, COCOON 1997.[23] N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees,Mol. Biol. Evol. 4 (1987), 406{425.[24] N. Saitou and M. Imanishi. Relative e�ciencies of the Fitch-Margoliash, maximum parsimony,maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic reconstruc-tions in obtaining the correct tree. Mol. Biol. Evol. 6:514-525, 1989.[25] M. Schoniger and A. von Haeseler, Performance of maximum likelihood, neighbor-joining, and maximumparsimony methods when sequence sites are not independent. Syst. Biol. (1995) 44:4 533-547.[26] M. L. Sogin, G. Hinkle, and D. D. Leipe, Universal tree of life, Nature, 362 (1993) page 795.[27] John Sourdis and Masatoshi Nei Relative e�ciencies of the maximum parsimony and distance-matrixmethods in obtaining the correct phylogenetic tree. Mol. Biol. Evol. (1996) 5:3 293-311.[28] Strimmer, K. and A. von Haeseler. 1996. Accuracy of Neighbor-Joining for n-Taxon Trees. Syst. Biol.,45(4):516-523.[29] D. L. Swo�ord, PAUP: Phylogenetic analysis using parsimony, version 3.0s. Illinois Natural HistorySurvey, Champaign. 1992.[30] T. Warnow, Tree compatibility and inferring evolutionary history, J. of Algorithms (16), 1994, pp. 388-407.[31] T. Warnow, Some combinatorial problems in Phylogenetics, Invited to appear in the proceedings ofthe International Colloquium on Combinatorics and Graph Theory, Balatonlelle, Hungary, July 15-20,1996, eds. A. Gy�arf�as, L. Lov�asz, L.A. Sz�ekely, in a forthcoming volume of Bolyai Society MathematicalStudies.[32] M.S. Waterman, T.F. Smith, and W.A. Beyer, Additive evolutionary trees, Journal Theoretical Biol.,64 (1977) 199-213.

193Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 193{203An experimental study of word-level parallelism in somesorting algorithmsNaila Rahman Rajeev RamanDepartment of Computer ScienceKing's College LondonStrand, London WC2R 2LS, U. K.e-mail: fnaila, ramang@dcs.kcl.ac.ukABSTRACTA number of algorithms for fundamental problems such as sorting, searching, priority queuesand shortest paths have been proposed recently for the unit-cost RAM with word size w. Thesealgorithms o�er dramatic (asymptotic) speedups over classical approaches to these problems. Wedescribe some preliminary steps we have taken towards a systematic evaluation of the practicalperformance of these algorithms. The results that we obtain are fairly promising.1. IntroductionIn classical data structures and algorithms for manipulating sets of ordered keys, it is common toassume that the relative order of two keys can only be determined by comparing them in unit time.While this assumption makes for generality, real computers have many other unit-time operationsbesides comparisons. Indeed, the hash table, another common data structure, applies unit-timeoperations other than comparisons to a key (e.g. arithmetic operations to evaluate a hash func-tion). In order to support unit-time (arithmetic and logical) operations on word-sized operands,a \sequential" processor needs parallelism at the level of hardware circuits, which we refer to asword-level parallelism (WLP). Some processors available nowadays support operations on64-bit operands, and it is expected that this will become the norm in the near future. If so, thiswould be a substantial amount of WLP, which can be exploited in far more imaginative ways thansimply performing comparisons, especially if the keys are integers or oating-point numbers.A formal framework for exploiting WLP is provided by the random-access machine (RAM)model, by including the word size w of the machine as a parameter of the model, and charging aunit cost for standard operations on w-bit operands. There has been a great deal of recent interestin developing algorithms for fundamental problems such as sorting, searching and priority queueson this model: a recent survey [13] cites over 20 papers which have been published since 1995 onthese topics. This research has resulted in fundamental new insights regarding the power of thismodel. By exploiting WLP in ingenious ways, several novel algorithms for core problems have beenobtained, which are signi�cantly faster than their classical counterparts: e.g., searching, insertionsand deletions in a set of n integer or oating-point keys can be accomplished in O(plogn) timeper operation [2, 3, 11, 16, 13] and priority queue operations in O(log logn) time [18]. By contrast,classical solutions to these problems require �(logn) time per operation. Striking improvements overcomparison-based approaches have also been obtained for sorting [3, 5, 16] and computing shortestpaths [9, 18, 19, 16].These results are related to an older tradition of RAM algorithms (see e.g. [21, 15]) and followa direction �rst taken by [11, 12]. One way to view the di�erence between the `old' and `new'algorithms is that the old algorithms have a complexity which increases with w, but are quite fast

An experimental study of word-level parallelism 194if w is relatively small1. The new algorithms by and large complement the older ones by o�eringspeedups for larger values of w, that is, when the amount of WLP becomes large.However, with a few exceptions, there have not been very many experimental evaluations ofthe new algorithms. What we would hope to achieve in a systematic programme of experimentalevaluation of these algorithms is to (i) determine the word size at which (simpli�ed and streamlined)versions of the new algorithms outperform existing ones (ii) experimentally study the techniques usedin the new algorithms with a view to obtaining hybrid algorithms which will provide speedups in reallife (if not for the current generation of mass-market CPUs, then at least for the next generation).It should be said that we do not expect that the new algorithms|even in suitably simpli�edform|will lead to improvements when run on the current generation of CPUs. This is because mostcurrent mass-market CPUs only fully support operations on 32-bit data, with limited support (ofvarying e�ectiveness) for 64-bit data, and the new algorithms need fairly large amounts of WLP to bee�ective (e.g. the main algorithm of [11] required w to be of the order of a few thousand bits beforeit improved on comparison-based algorithms). On the other hand, we believe that recent hardwaredevelopments should make it much easier to translate these advances into practical speedups. Thenew algorithms mentioned above �rst reduce the original data structuring problem, which is de�nedfor word-sized data, to one on much shorter data. Then, multiple data are packed into a single wordand processed in a SIMD manner, by using standard instructions in rather elaborate ways. However,this may be greatly sped up by making use of built-in SIMD instructions with which many currentprocessors (e.g. HP PA-RISC, Intel Pentium MMX and Sun Ultra-Sparc) are equipped.In this abstract we describe some preliminary steps towards the goals outlined above. First wedescribe a simulator which allows an algorithm to be simulated on a (virtual) RAM with word sizew, for any w � 32 speci�ed by the user. The objectives of the simulator and the approach to itsimplementation are described in Section 2.In Section 3, we describe a simpli�ed implementation of the Kirkpatrick-Reisch (KR) sortingalgorithm [15]. This algorithm has a running time of O(n(1 + logd wlog ne)) as compared to therunning time of radix sort [7], which is O(nd wlogne). Our results indicate, e.g., that for a few millionkeys and w � 256, KR is superior to radix sort on a RAM with word size w. Our results also suggestthat a hybrid KR sort, which switches to radix sort when appropriate, would outperform both KRand radix sort for a few million keys when w � 128 both on a RAM and on real-life CPUs. SinceKR is generally considered an impractical algorithm, we feel these conclusions are surprising.In Section 4, we discuss a `packed' merging algorithm introduced in [1]. We are given twosorted lists of n keys, where each key is at most w=k bits long. Assuming a sorted list of n keys isrepresented in n=k words, with k keys packed to a word, the algorithm of [1] merges the two listsin O((n log k)=k) time. An experimental study with packing 8 items to a word on a 64 bit machinerevealed that although the packed merging algorithm was clearly inferior to the standard mergingalgorithm on a RAM with wordsize 64 bits, in real life (using long long ints, a 64-bit integer typesupported by Gnu C++) the di�erence was much smaller. We believe this result highlights someadvantages of algorithms which use WLP which might not be apparent from operation counts.All timing results given here were obtained on an UltraSparc 2� 300 MHz with 512 Mb memoryrunning SunOS 5.5.1 and using the Gnu C++ compiler (gcc 2.7.2.3). This machine is normallylightly loaded.2. SimulatorIn this section we describe a (software) simulator which allows us to experimentally evaluatethe performance of algorithms which use WLP on machines with larger word sizes than currentlyavailable. The main objectives of the simulator are:a. To be as transparent as possible,1We consider w to be `relatively small' if w < c log n for a small constant c.

An experimental study of word-level parallelism 195b. To provide an indication of the performance of an algorithm on a hypothetical w-bit machine,c. To be e�cient, de�ned as:For su�ciently large n, n successive executions of an operation on w-bit integers onthe simulator, running on a w0-bit machine, should take not much more than w=w0times the time taken by n executions of the corresponding operation on the nativeinteger type of the w0-bit machine.We are aiming for a maximum simulation overhead of 1 (this number is somewhat arbitrary)for most operations, wheresimuation overhead = � average time for w-bit operationaverage time for w0-bit operation � (w=w0)�� 1:Objective (c) is not meant to be a formal goal as it clearly cannot be achieved in general (e.g.operations such as multiplication require time which is super-linear in the size of the input). Insteadit is an indication of the criterion we will use for evaluating the e�ciency of the simulator. Notethat (c) implies one solution to (b) as well|divide the running time of the simulated algorithm byw=w0 to get a rough measure.Apart from the obvious reason for wanting the simulator to be e�cient | i.e. to run simulationsquickly | property (c) may enable the use of an algorithm running on a virtual machine withlarge wordsize to e�ciently solve a problem in the real world. As an example, we mention a string-matching problem which arose in musical pattern-matching [8]. A naive algorithm for this problemruns in O(mn) time where m is the length of the pattern and n the length of the text, and nothingbetter is known for parameter values of real-life interest, and a variant of this algorithm, whichuses WLP, runs in O(ndm=we) time on a machine with wordsize w. The current implementationof the WLP variant is an order of magnitude faster than demanded by the application, but has therestriction that m � 32 since integers are 32 bits long. Although this restriction does not matter atthe moment, an e�cient simulator would o�er a simple way to weaken it as and when needed, whilemaintaining acceptable performance.2.1. The class LongintOur current simulator is simply a class Longint in C++ which behaves like w-bit integers, wherew is �xed at the time of compiling the class2. All standard operations which C++ allows on integerswill be provided in the class including arithmetic, bitwise logical, comparison, shifts, automaticconversion of ints, chars etc. to Longint, other mixed-mode expressions, overloading of the inputand output stream operators etc. The current status of the implementation is described in AppendixA.1. Due to the operator overloading mechanism in C++, it is only necessary to make minor changesto a standard program written in C++ which operates on (say 32-bit) int data, and get a programwhich operates on Longints. See Appendix A.2 for some of the minor changes which may have tobe made.At the time of compiling the class can be made to maintain counts of all operations performed oninstances of class Longint. The operation counts thereby provided can be used as rough indicators ofthe performance of a simulated algorithm. Note that C++ compilers are not permitted to optimiseexpressions involving objects, so the source code has to be hand-optimised to e.g. eliminate commonsubexpressions3. Hence the operation counts are only an approximate indicator of the number ofinstructions performed on the virtual w-bit CPU, and of course they are probably an even cruderindicator of the actual running time on a real w-bit CPU (if and when that becomes a reality) as2A cleaner approach might be to make a class template Longint<w>, but this seemed to incur an overhead, at leastusing Microsoft Visual C++.3Our experiments also include counts of operations on ints, this warning applies to those counts as well.

An experimental study of word-level parallelism 196several architectural optimisations e.g. instruction pipelining, instruction-level parallelism, localityof reference etc. are ignored. Nevertheless, we believe that since algorithm designers primarily usethe RAM model, operation counts are a useful indicator of algorithm performance.Alternative methods of simulation were considered, and rejected for various reasons includingportability, \future-proo�ng" and ease of construction including building an emulator for say 686or Ultrasparc assembly code produced by a compiler, and constructing a language, compiler andvirtual machine.2.2. Related WorkLEDA provides the class integer, which allows arbitrary-precision integer arithmetic. We cannotuse this class directly as rules of arithmetic are usually di�erent for the int and unsigned inttypes supported by C++ (e.g. all arithmetic on unsigned int is done mod 2w). Also, by �xing thewordsize at compile time we are able to get much faster object creation, destruction and copying,signi�cantly reducing the overhead. Even the current version of the simulator, where the code forthe individual operations is not optimised, seems comparable in speed with the LEDA integer classfor most operations (not including multiplication) when dealing with comparable-sized numbers. Wehave done some pilot experiments with tailoring the code speci�cally for each `reasonable' wordsize,for the crucial shift operation. These suggest that the optimised version would perform shifts on128-bit integers about 3 to 3.5 times faster than in LEDA, and with an overall simulation overheadof just over 100%. Further improvements might result from coding in assembly language.Gnu C++ compilers also support the type long long int (64-bit integers) which the compilertranslates into 32-bit assembly code if necessary. Microsoft Visual C++ also has a similar data type.The simulation overhead (as de�ned in (c)) seems to be small: about 25% on an UltraSparc andperhaps about 50% on a Pentium II. Unfortunately, larger integers are not supported, and nor isaddressing using long long ints.3. KR sortIn this section, we describe a simpli�ed implementation of the Kirkpatrick-Reisch (KR) sortingalgorithm [15]. This algorithm has a running time of O(n(1 + logd wlogne)), and works roughly asfollows. In O(n) time, the problem of sorting n keys of 2t bits each is reduced to the problem ofsorting n keys of t bits each (initially t = w=2). When the keys to be sorted are O(logn) bits long(i.e. after log(d wlogne) levels of recursion) they are sorted using radix sort. While we use the samegeneral idea, our implementation di�ers in several respects.3.1. Implementation overviewIn the following discussion, assume n is the number of items, w is the initial wordsize of our keys,and 2t is the size of the keys input to the current recursive level. As in KR we consider each key of 2tbits as consisting of a range (its top t bits) and a value (its bottom t bits). In each level of recursion,we group together some keys with the same range, and choose one of them as a representative of thegroup. Thus, in each level of recursion, each key either becomes a representative at that level (i.e. ispromoted) or is not a representative at that level. An important aspect of our implementation is toexplicitly maintain the promotion histories of each key in the input, i.e, we maintain with each keya sequence of bits which records, for each level of recursion, whether the key was a representative atthat level or not (KR does this implicitly).At each level of recursion, keys which share the same promotion history PH entering this levelof recursion, belong to a common sorting sub-problem. This set of keys is denoted by k(PH). Eachkey in the original input contributes a consecutive sequence of 2t bits (which sequence is determinedby its promotion history) to be sorted at this level. A key x is a representative from the group ofkeys k(PH) if, among all the keys in k(PH) with the same range as x, it has the maximum value.

An experimental study of word-level parallelism 197Avg op count per item, w = 64n KR Radix sort11 16 2210K 124 76 254 10K100K 78 67 65 1K1M 70 66 46 1362M 70 66 45 864M 70 66 45 618M 70 66 45 49
Avg op count per item, w = 128n KR Radix sort11 16 2210K 158 152 507 20K100K 110 134 130 2K1M 102 132 92 2672M 102 132 90 1664M 101 132 89 1168M F 132 88 91

Avg op count per item, w = 256n KR Radix sort11 16 2210K 191 303 1K 40K100K 143 267 260 4K1M 133 264 184 5342M 133 264 180 3334M F 264 178 2328M F 264 177 182Figure 1: Experimental evaluation of KR sort vs radix sort on RAM simulator. F denotes the test failedbecause we ran out of memory; experiments limited to 400Mb of virtual memory.All representatives at this level are promoted, and contribute their ranges to the recursive sortingproblem, while all other keys are not promoted, and contribute their values to the recursive sortingproblem. All promotion histories are updated appropriately.In the recursive sorting problem, we sort each key by the promotion history, as well as by thet bits it contributed, with the promotion history being the primary key. If t is su�ciently small(t = 16 currently), we solve the recursive problem by two passes of counting sort|one for the t bitsand one for the promotion histories.When the recursive call �nishes, the keys with the same promotion history at the start of thislevel of recursion are in a contiguous segment, sorted by the t bits they contributed to the recursivecall, with the representatives at the end of the segment. We now count the number of keys whichhave the same range as their representative, and using this information, we permute the keys in thiscontiguous segment so that they are sorted according to their full 2t bits.We highlight some features of our algorithm:i. Keys are not moved while going down recursive levels, but are moved on the way up. Fur-thermore, on the way up the keys are moved within (hopefully small) localised segments. Webelieve this would contribute to a greater e�ciency in the real world.ii. In contrast to KR, no data is saved on the stack|the `state' of the algorithm is encoded inthe promotion histories, which are passed to the recursive call.iii. The actual implementation discards the promotion histories on the way up and instead main-tains an implicit representation to avoid moving promotion histories and thus saving on oper-ations. (This implicit representation is of size 2r where r is the number of levels of recursion;since r � logw this is of size at most w).3.2. Experimental ResultsWe have performed many experimental evaluations of the above KR sort variant, as well as ofother variants, both on the simulator and on 32- and 64-bit integers on a Pentium II (using MicrosoftVisual C++) and Ultra Sparc (using GNU C++). We have a fairly complete set of data on thesimulator and the Ultra Sparc at present.Figure 1 summarises the experiments we have performed with the KR sort version described inthe previous section on the simulator. Both algorithms were tested on n random w-bit data, forn = 10K, 100K, 1M, 2M, 4M and 8M and w = 64; 128 and 256 (K = 1000, M = 1000K). The tableshows per-item total operation counts, i.e., the total of all the operations on Longints and ints,divided by n. Radix sort was tested with radix 11; 16 and 22. These radix values minimised (locally)operation counts for w = 64 and were retained for larger values of w. For a RAM with wordsize wour conclusions are basically as follows:

An experimental study of word-level parallelism 198Time(s) per passn KR KR Radix sort(hash) (no hash) 11 16 2210K 0.01 0.01 0.002 0.01 0.76100K 0.19 0.11 0.03 0.05 0.871M 2.45 1.56 0.48 0.64 2.092M 5.05 3.28 0.95 1.40 3.494M 10.04 6.68 1.91 2.64 6.268M 21.52 13.91 4.09 5.84 11.75Figure 2: Experimental evaluation of 64-bit KR sort vs radix sort.� If, for a given wordsize and input size, we choose the radix which minimises the number ofoperations, then with this radix, each pass of radix sort requires between 11 to 12 instructionsper item being sorted. For example, for w = 128, we need 88 operations per item for 8 passeswhen n = 8M and 92 operations per item for 8 passes when n = 1M.� Except for small values of n, each range reduction pass of KR sort requires 31 to 32 instructionsper item being sorted. These numbers were obtained by comparing the per-item operationcounts for word sizes k and 2k for a given value of n. Sorting 2k-bit keys requires one passmore than sorting k-bit keys. For example, 133 operations per item for w = 256 and n =2M vs. 102 operations per item for w = 128 and n = 2M gives the cost of one KR pass as133� 102 = 31.We therefore conclude that on a RAM with wordsize w, one pass of KR sort halves the numberof bits to be considered, but costs between 2.8 and 2.9 times the number of operations, comparedto one pass of radix sort. Hence, running KR sort all the way to 16 bits may not be the optimumchoice. For example, going from 64 to 32 bits only eliminates about 2 passes of radix sort, but costsupto 2.9 times as much. The following hybrid KR-radix sort will match or outperform either KRor radix sort alone: apply KR sort until the wordsize is such that radix sort beats KR sort, thenswitch to radix sort. We intend to perform further experiments with hybrid KR-radix sort.Figure 2 summarises experiments performed on the Ultra Sparc with 64-bit integers (using GNUC++ long long int). Since KR sort requires a large array of size 2w=2 words to group keys, forw � 64 we are forced to implement this array using some form of hashing - we use double hashing [7]with a universal hash function [10] and a hash table density of at most 0.5. The results indicate thatthe overhead of hashing causes KR sort to perform poorly for w = 64. In order to determine theperformance of the algorithm without the overhead of hashing - i.e. without the cost of computinga hash function and of collision resolution - Figure 2 also details timings for KR sort where everyaccess to a hash table is replaced by an access to an arbitrary (random) address in an array of sizeO(n). Of course, in this case the data is not actually sorted. We again detail results for radix sortwith radix 11, 16 and 22. The experiments were on n random 64-bit data, for n = 10K, 100K, 1M,2M, 4M and 8M (K=1000, M=1000K).We conclude that except for small values of n, with hashing each pass of KR sort takes about 3.6to 3.8 times as long as each pass of radix sort. Without hashing each pass of KR sort takes about2.4 to 2.8 times as long as each pass of radix sort.For real machine integers, the results suggest that for 128-bit integers KR sort will be competitivewith radix sort if we can group keys without using a hash table. Using hashing KR sort willoutperform radix sort for 256-bit integers. We believe the hybrid KR-radix sort will outperformradix sort on 128-bit integers even if we use a hash table - since 1 KR range reduction pass can beused to replace 4 radix sort passes at a lower cost.

An experimental study of word-level parallelism 1994. Packed OperationsWe now consider the packed merging algorithm of [1]. The input to this algorithm is two sortedpacked lists, each containing n (w=k)-bit unsigned keys. Each list is in packed format, i.e., consistsof n=k words, each containing k keys stored in equal-sized �elds. (When referring to the order ofbits in a word, `left' is in the direction of the most signi�cant bit and `right' is in the direction of theleast signi�cant bit.) The lists are assumed to be in nonincreasing order, i.e., the keys in a word arenonincreasing from left to right, and all keys in a word are no smaller than all keys in the next wordin the list. The packed merging algorithm of [1] produces a packed merged list in O((n log k)=k)time from this input. Packed merging plays an important role in the new WLP algorithms:(a) It is used extensively as a subroutine, e.g., a priority queue of [18] is based on packed merging.(b) Repeated packed merging leads to an O(n log n log kk) time packed merge-sorting algorithm forw=k-bit keys. This is a key ingredient in the AHNR sorting algorithm [5]. Essentially theAHNR algorithm applies dlog logne passes of the KR range reduction, at which point the keysto be sorted are O(w= logn) bits long. Switching to packed merge sort at this point terminatesthe recursion at O(n log logn) cost. Since each of the passes of the KR range reduction takesO(n) time we get an O(n log logn) sorting algorithm.However, we should not expect AHNR to simultaneously beat a hybrid KR algorithm anda fast comparison-based algorithm like quicksort, even for moderately large wordsizes. SupposeAHNR switches to packed sorting when the keys are b � 16 bits long, b a power of 2, and supposethis costs c0n logn log kk steps, where k = w=b � 2 is the packing factor. If we were to use radix sort(with radix 16) to �nish o� the sorting we would incur a cost of c � (b=16) �n steps. Therefore, ifpacked sorting is better than radix sort at this point, we conclude that w � 16 � (c0=c) � logn log k.Conservatively estimating c0=c � 2 | radix sort has very low constants, while packed sort isbased on merge sort, not the fastest of comparison-based sorts | and k � 4 | otherwise itseems likely that the cost of sorting the original input using quicksort will be less than the costof just the packed sorting phase | we conclude that we should not expect AHNR to beat hybridKR sort and quicksort simultaneously unless w � 64 logn.4.1. Implementation of packed mergeThe calculation above led us to study the packed merge in isolation (without the additionaloverhead of merge sort). The two main primitives used by the packed merge are:bitonic sort: Given a bitonic sequence of k keys (each of w=k bits) packed into a single word, thisimplements Batcher's bitonic merge to output a word which contains the keys in sorted order,in O(log k) steps. The sorting can be either non-increasing or non-decreasing order. The ideasused are slightly optimised versions of those described in [1]. Perhaps the main di�erence isthat [1] assumes that the keys are really w=k� 1 bits long, so that they can be stored in �eldsof w=k bits each leaving the leftmost bit in each �eld free (the test bit); we allow keys to beas large as the �eld size allows. This reduces the operation count.word merge: Given two words, each containing a sorted sequence of k keys of w=k bits, with oneword sorted in non-decreasing order and the other in non-increasing order, this outputs twonew words, the �rst containing the k largest keys in the input and the second containing thek smallest keys in the input. Again, the user may choose if the keys in an output word are tobe in non-increasing or non-decreasing order.The two main high-level optimisations we made to the algorithm as described by [1] were touse the word-merge primitive within a sequental merging algorithm rather than within a parallelalgorithm, and secondly, to avoid the use of the Reverse operation by judiciously choosing the sensein which each sorted word is output by word merge. The pseudocode is given in Appendix B. Oneoptimisation that we could make regards the `componentwise comparison' operation shown in Fig 3,which is essential for bitonic sorting. We compute it as:

An experimental study of word-level parallelism 200
X

Y

Z

0 F F 3 A 0 2 A 2 B 3 C D F 2 7

3 4 6 9 8 1 9 4 D F E E 7 3

0 0 0 0 0 0 0 0F F F F F F F F

D 7

Figure 3: Pairwise comparison operation. The contents of �elds in words X and Y are shown in hexadecimal,and are to be regarded as unsigned integers. The word Z contains all 1s in a �eld if the corresponding �eldin X is greater than or equal to the one in Y , and all 0s otherwise.Op Counts (�106) Timings (s)2n normal packed normal packed packing normalmerge merge (random) merge time (skewed)512K 3.66 35.98 0.09 0.10 0.03 0.071M 7.33 71.96 0.18 0.20 0.07 0.132M 14.68 143.91 0.36 0.41 0.14 0.264M 29.36 287.82 0.73 0.83 0.28 0.51Figure 4: Experimental evaluation of packed vs normal mergeZ = ((X | mask1) - (Y & mask2)) & ~(X ^ Y) | (X & ~Y) & mask1;Z |= (Z - (Z >> (f-1)));where f is the width of a �eld and mask1 is a mask which has 1s in the leftmost bit of each �eld andzeros elsewhere. However, one instruction (\Packed Compare for Greater Than" [14]) in the IntelMMX instruction set su�ces to achieve this.4.2. Experimental resultsWe performed experiments comparing normal merge with packed merge. Normal merge wastested on two kinds of inputs:random: two sorted lists each consisting of n random 64-bit integers, andskewed: two sorted lists of size n, one containing the values: 3; 3; : : : ; 3; 0 and the other the values2; 2; : : : ; 2; 1.Packed merge was tested on two sorted packed lists containing n random 8-bit integers4. Hence apacking factor of 8 was allowed, and the input consisted of n=8 words for each list. These tests wereperfomed on four input sizes: n = 262K, 512K, 1M and 2M (where K = 1024 and M = 1024K) andwith two di�erent data types:Longint: experiments were run on the simulator. The results shown are the sum of Longint andint operations. Under the simulator, the normal merge produced virtually identical resultsfor skewed and random data, so only one result is shown.4In fact the integers were 7 bits long since we do not yet support unsigned Longints so the test in line (9) of thepacked merge in Appendix B would not work.

An experimental study of word-level parallelism 201Gnu C++ long long int: experiments were run on the UltraSparc. Results shown are the averagerunning times over three runs.The results of the experiments are given in Fig 4. It is interesting to note that despite a factorof 10 di�erence in the operation counts for packed merge and normal merge on random data, thedi�erence in `real' running time is only 10-15%. One factor may be that the packed algorithm onlyreads and writes 2n bytes from memory while the normal algorithm reads and writes 16n bytes. Inorder to compensate for this we separately measured the time to pack the input assuming it wasgiven as 8-bit values in in unpacked format (i.e. as 2n long long ints). Even adding this in twice(for packing and unpacking) still leaves packed merge no worse than a factor of 2 o� from normalmerge. Note that the cost of packing and unpacking is not included in the operation counts forpacked merge.Possibly one of the gains made by the packed algorithm is the lower frequency of branch instruc-tions, which are usually expensive. One way to quantify this may be to assume that a predictablebranch has a similar cost to no branch. With the skewed data as input, the branches become verypredictable and the running time of merge on skewed data is about 30% faster, and we could usethis �gure as a rough indicator of the cost of a branch. Another factor might be the granularity ofthe computation: once a long long int is loaded into registers, many operations are performed onit before it is stored back into main memory.AcknowledgementsWe thank Tomasz Radzik for useful discussions. The simulator developed from a suggestion byJesper Tr�a�.References[1] S. Albers and T. Hagerup. Improved parallel integer sorting without concurrent writing. Informationand Computation 136 (1997), pp. 25{51.[2] A. Andersson. Sublogarithmic searching without multiplications. In Proc. 36th IEEE Symp. Found.Comp. Sci., 1995, pp. 655{663.[3] A. Andersson. Faster deterministic sorting and searching in linear space. In Proc. 37th IEEE Symp.Found. Comp. Sci., 1996, pp. 135{141.[4] A. Andersson and M. Thorup. A pragmatic implementation of monotone priority queues. From theDIMACS'96 implementation challenge.[5] A. Andersson, T. Hagerup, S. Nilsson and R. Raman. Sorting in linear time? To appear in J.Computer and Systems Sciences, selected papers STOC '95. Prel. vers. in Proc. 27th ACM Symp.Theory of Computation, 1995, pp. 427{436.[6] A. Andersson. What are the basic principles for sorting and searching? In B. Randell, ed. Algorithms:Proc. Joint ICL/ U. Newcastle Seminar. U. Newcastle-upon-Tyne, 1996.[7] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to Algorithms, MIT Press, 1990.[8] T. Crawford, C. S. Iliopoulos and R. Raman. String-matching techniques for musical similarity andmelodic recognition. Computing and Musicology 11 (1998), to appear.[9] B. V. Cherkassky, A. V. Goldberg and C. Silverstein. Buckets, heaps, lists and monotone priorityqueues. In Proc. 8th ACM-SIAM Symp. Discr. Algs., 1997, pp. 83{92.[10] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized algorithm forthe closest-pair problem. J. Algorithms, 25 (1997), pp. 19{51.

An experimental study of word-level parallelism 202[11] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with fusion trees. J.Comp. Sys. Sci., 47 (1993), pp. 424{436.[12] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees andshortest paths. J. Comp. Sys. Sci., 48:533-551, 1994.[13] T. Hagerup. Sorting and searching on the Word RAM. In Proceedings, 15th Symposium on TheoreticalAspects of Computer Science (STACS 1998), Lecture Notes in Computer Science, Springer-Verlag,Berlin, Vol. 1373, pp. 366{398.[14] Intel Architecture Software Developers Manual, Vol 1: Basic Architecture. Intel Corp., Santa Clara,CA, 1997.[15] D. Kirkpatrick and S. Reisch. Upper bounds for sorting integers on random access machines. Theor.Comput. Sci 28 (1984), pp. 263{276.[16] R. Raman. Priority queues: Small, monotone and trans-dichotomous. In Proc. 4th European Symp.Algos., LNCS 1136, pp. 121{137, 1996.[17] R. Raman. Recent results on the single-source shortest paths problem. SIGACT News, 28(2):81{87, 1997. An earlier version is available as TR 96-13, King's College London, 1996, fromhttp://www.dcs.kcl.ac.uk.[18] M. Thorup. On RAM Priority Queues. In Proc. 7th ACM-SIAM Symp. Discr. Algs., 1996, pp. 59{67.[19] M. Thorup. Undirected single-source shortest paths in linear time. In Proc. 38th IEEE Symp. Found.Comp. Sci., 1997, pp. 12{21.[20] M. Thorup. Faster deterministic sorting and priority queues in linear space, pp. 550{555. In Proc. 9thACM-SIAM Symp. Discr. Algs., 1998.[21] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Infor-mation Processing Letters, 6 (1977), pp. 80{82.A. Simulator detailsA.1. Porting C++ code to the simulatorIn addition to changing declaration of variables from ints to Longints only the following changesneed to be made:� Constants may have to be explicitly cast to Longint. For example if X is a Longint of 128bits, the expressionX = 1 << 30 << 30;will not store 260 in X. Since 1 is a constant of type int the expression on the RHS willevaluated as an int. (The expression 1 << 60 will be be agged by the compiler.)� Arrays indexed by a Longint have to be declared as instances of a separate class (similar tothe h_array class in LEDA). This is implemented as a hash table using double hashing, witha universal hash function and a density that can be speci�ed at compile time.� Obviously the programmer should ensure that expressions which rely on a 32-bit word sizecontinue to work as intended. (e.g the expression (X << l) >> l applied to a 32-bit value willshift out the left l bits of X on a 32-bit machine, but may leave X unchanged if it is a 32-bitvalue on a 64-bit machine).

An experimental study of word-level parallelism 203A.2. Implementation StatusAt the time of writing the following features had not been implemented:� Overloading of << and >> for input/output streams,� Integer division and modulus,� Unsigned Longints,� A complete suite of inward and (where possible) outward conversion utilities, and mixed-modeoperators. For instance, 0.5 * i where i is a Longint, is currently illegal.Optimising the simulator is also a task we are currently addressing.B. Pseudocode for packed mergeThe code on the left is the normal code for merging. The one on the right is for packed mergingand uses the representation and functions described in Section 3.(1) int i = j = k = 1;(2)(3) while((i <= q) && (j <= r))(4) {(5) if(A[i] >= B[j])(6) C[k++] = A[i++];(7) else(8) C[k++] = B[j++];(9) }(10)(11) if(i > q)(12) while (j <= r) {(13) C[k++] = B[j++];(14) }(15) else(16) while (i <= q) {(17) C[k++] = A[i++];(18) }
(1) int i = j = k = 1;(2)(3) X = A[i++], Y = B[j++];(4) ascending_bitonic_sort(Y);(5) word_merge(X, Y, DESCENDING, ASCENDING);(6) C[k++] = X;(7)(8) while((i <= q) && (j <= r)) {(9) if(A[i] >= B[j]) // unsigned comparision(10) X = A[i++];(11) else(12) X = B[j++];(13) word_merge(X, Y, DESCENDING, ASCENDING);(14) C[k++] = X;(15) }(16)(17) if(i > q) // items in A exhausted(18) while (j <= r) {(19) X = B[j++];(20) word_merge(X, Y, DESCENDING, ASCENDING);(21) C[k++] = X;(22) }(23) else(24) // items in B exhausted, symmetric(25)(26) descending_bitonic_sort(Y, M, f);(27) B[k++] = Y;

204Proceedings WAE'98, Saarbr�ucken, Germany, August 20{22, 1998Ed. Kurt Mehlhorn, pp. 204{212Who is Interested in Algorithms and Why?Lessons from the Stony Brook Algorithms RepositorySteven S. Skiena1Department of Computer ScienceSUNY Stony Brook, NY 11794-4400skiena@cs.sunysb.eduABSTRACTWe present \market research" for the �eld of combinatorial algorithms and algorithm engi-neering, attempting to determine which algorithmic problems are most in demand in applica-tions. We analyze 249,656 WWW hits recorded on the Stony Brook Algorithms Repository(http://www.cs.sunysb.edu/�algorith), to determine the relative level of interest among 75 al-gorithmic problems and the extent to which publicly available algorithm implementations satisfythis demand.1. IntroductionA primary goal of algorithm engineering is to provide practitioners with well-engineered solutionsto important algorithmic problems. Our beliefs as to which problems are important to practition-ers have been based primarily on anecdotal evidence. To provide more objective information, itseems useful to conduct \market research" for the �eld of combinatorial algorithms, by determiningwhich algorithmic problems are most in demand in applications, and how well currently availableimplementations satisfy this demand.This paper is an attempt to answer these questions. We present an analysis of 249,656 WWWhits recorded on the Stony Brook Algorithms Repository over a ten-week period, from February 10to April 26, 1998. The Repository (http://www.cs.sunysb.edu/�algorith) provide a resource whereprogrammers, engineers, and scientists can go to �nd implementations of algorithms for fundamentalproblems. User feedback and WWW tra�c statistics suggest that it has proven valuable to peoplewith widely varying degrees of algorithmic sophistication.The structure of the Algorithms Repository makes it well suited to measure the interest indi�erent algorithmic problems. For each of 75 fundamental algorithm problems, we have collectedthe best publicly available implementations that we could �nd. These problems have been indexedin major web search engines, so anyone conducting a search for information on a combinatorialalgorithm problem is likely to stumble across our site. Further, special indexes and hyperlinksaboard our site help guide users to other relevant information.This paper is organized as follows. In Section 2, we discuss the structure of the AlgorithmsRepository in more depth, to provide better insight into the nature of the data we present below.In Section 3, we analyze WWW tra�c to determine the most popular and least popular algorithmicproblems. In Section 4, we report on what our users are �nding. Each implementation available onthe Repository has been rated as to its usefulness for the corresponding problem. By studying theseratings, we can assess the current state of the art of combinatorial computing, and see how well itmatches user demand. Finally, in Section 5, we attempt to get a handle on where the interest inalgorithms is located, both geographically and professionally.Any polling-based research is subject to a variety of bias and ambiguities. I make no grand claimsas to how accurately this data measures the relative importance of di�erent algorithmic researchto society. I found many of the results quite surprising, and hope they will be of interest to thealgorithmic community.

Who is Interested in Algorithms and Why? 205Problem Category Index Hits Subsection Hits ProblemsData Structures 1067 2651 6Numerical Problems 735 2271 11Combinatorial Problems 539 2108 10Graph Problems: Polynomial 842 3955 12Graph Problems: Hard 729 2846 11Computational Geometry 1247 5398 16Set and String Problems 519 1898 9Totals 5678 21127 75Table 1: Hits by Major Section Index2. The Stony Brook Algorithms RepositoryThe Stony Brook Algorithms Repository was developed in parallel with my book [6], The Al-gorithm Design Manual, and the structure of the repository mirrors the organization of my book.The world has been divided into a total of 75 fundamental algorithmic problems, partitioned amongdata structures, numerical algorithms, combinatorial algorithms, graph algorithms, hard problems,and computational geometry. See Table 6 or http://www.cs.sunysb.edu/�algorith for the list of 75problems.For each problem, the book poses questions to try to reveal the issues inherent in a proper formu-lation, and then tries to suggest the most pragmatic algorithm solution available. Where appropriate,relevant implementations are noted in the book, and collected on the Algorithms Repository, whichhas been mirrored on a CD-ROM included with the book. In total, we have identi�ed a collectionof 56 relevant algorithm implementations. Finding these codes required a substantial e�ort. Sincemany of these implementations proved applicable to more than one problem, the repository containsan average of three relevant implementations per problem.Each problem page has a link to each relevant implementation page, as well as to pages associatedwith closely related problems. Each implementation page contains a link to the page associatedwith each problem to which it is applicable. Further, indexes contain links to implementations byprogramming language, subject area, and pictorial representation. Together these links enable theuser to move easily through the site.3. What are People Looking For?Out of the almost quarter-million hits recorded on this site over the ten-week interval, 58289 ofthem were to primary html and shtml �les. This latter count more accurately represents the numberof mouse-clicks performed by users than the total hits, since most of the remaining hits are on image�les associated with these pages. Therefore, we will limit further analysis to hits on these �les.Because user ID information is not logged on our WWW server, it is di�cult to judge exactlyhow many di�erent people accounted for these hits. Based on the roster of machines which accessedthe site, I estimate that roughly 10,000 di�erent people paid a visit during this 10 week study. Somefraction of hits came from webcrawler robots instead of human users, however I believe they hadonly a minor e�ect on our statistics. Observe that the least frequently clicked shtml �le (containingthe copyright notice for the site) was hit only 41 times versus 2752 hits for the most frequentlyaccessed page (the front page). 22By contrast, the page advertising my book was hit 1364 times, although I have no way of knowing whether anyof them actually ordered it.

Who is Interested in Algorithms and Why? 206Programming Language Index Hits ImplementationsC language 805 37C++ 929 11Fortran 125 6Lisp 99 1Mathematica 104 3Pascal 272 5Totals 2334 63Table 2: Hits by Programming Language IndexMost Popular Problems Hits Least Popular Problems Hitsshortest-path 681 shape-similarity 156traveling-salesman 665 factoring-integers 141minimum-spanning-tree 652 independent-set 137kd-trees 611 cryptography 136nearest-neighbor 609 maintaining-arrangements 134triangulations 600 text-compression 133voronoi-diagrams 578 generating-subsets 133convex-hull 538 set-packing 126graph-data-structures 519 planar-drawing 120sorting 485 median 118string-matching 467 satis�ability 116dictionaries 459 bandwidth 107geometric-primitives 452 shortest-common-superstring 105topological-sorting 424 feedback-set 83su�x-trees 423 determinants 78Table 3: Most and least popular algorithmic problems, by repository hits.Table 1 reports the number of hits distributed among our highest level of classi�cation { theseven major sub�elds of algorithms. Two di�erent hit measures are reported for each sub�eld, �rstthe number of hits to the menu of problems within the sub�eld, and second the total number ofhits to individual problem pages within this sub�eld. Computational geometry proved to be themost popular sub�eld by both measures, although outweighed by the interest in graph problemssplit across two subtopics. Data structures recorded the highest \per-problem" interest, but I wassurprised by the relative lack of enthusiasm for set and string algorithms.Table 2 reports the number of hits distributed among the various programming language sub-menus. C++ seems to have supplanted C as the most popular programming language amongdevelopers, although there is clearly a lag in the size of the body of software written in C++. Cremains the source language for over half the implementations available on the Algorithm Reposi-tory. User interest in Mathematica rivals that of Fortran, perhaps suggesting that computer algebrasystems are becoming the language of choice for scienti�c computation. There was no submenuassociated with Java, reecting what was available when I built the repository. The total numberof implementations in Table 2 is greater than 56 because seven codes are written in more than onelanguage.Table 3 reports the 15 most popular and least popular algorithmic problems, as measured by the

Who is Interested in Algorithms and Why? 207number of hits the associated pages received. Hit counts for all of the 75 problems appears in Table6. Several observations can be drawn from this data:� Although shortest path was the most popular of the algorithmic problems over the ten weektime period, a preliminary study done two weeks earler showed traveling-salesman comfortablyin the top spot (560 hits to 513). I attribute the late surge of interest in shortest path to coincidewith the end of the academic year in the United States, and students from algorithms coursesseeking an edge. Minimum spanning tree showed a similar surge in this time interval.� Of the six data structure problems, only priority queues (number 17) and set union-�nd (num-ber 37) failed to make the top 15 cut.� People seem twice as interested in generating permutations than subsets (258 hits to 133 hits),presumably reecting the perceived di�culty of the task.� Surprisingly popular problems include topological sorting (number 14), su�x trees (number15), the knapsack problem (number 19). These might reect educational interest, althoughTable 5 shows that almost twice as many total .com hits were recorded than total .edu hits.� Surprisingly unpopular problems include set cover (number 59), planar drawing (number 69),and satis�ability (number 71). Such obviously commercial problems as cryptography (number64) and text compression (number 66) proved unpopular presumably because better WWWresources exist for these problems.It is interesting to note that only 2752 hits occured to the front-page of the site, which meansthat most users never saw the main index of the site. This implies that most users initially enteredthe site through a keyword-oriented search engine, and gives credence to the notation that these hitsmeasure problem interest more than just directionless wandering through the site.4. What are They Finding?The majority of visitors to the Algorithms Repository come seeking implementations of algo-rithms which solve the problem they are interested in. To help guide the user among the relevantimplementations for each problem, I have rated each implementation from 1 (lowest) to 10 (high-est), with my rating reecting my opinion of the chances that an applied user will �nd that thisimplementation solves their problem.My ratings are completely subjective, and in many cases were based on a perusal of the documen-tation instead of �rst-hand experience with the codes. Therefore, I cannot defend the correctnessof my ratings on any strong objective basis. Still, I believe that they have proven useful in pointingpeople to the most relevant implementation. 3Table 7 records the number of hits received for each implementation, along with the problem forwhich it received the highest rating, as well its average rating across all problems. LEDA [2] receivedalmost as many hits (2084) as the two following implementations, both associated with popularbooks [4] (1258) and [1] (994). The fourth most popular implementation was (surprisingly) Ranger[3] (846), an implementation of kd-trees. This reects the enormous popularity of nearest-neighborsearching in higher dimensions, as well as the fact that I have not updated the list of implemen-tations since the publication of the book in November. Arya and Mount's recently released ANN(http://www.cs.umd.edu/�mount/ANN/) would be a better choice. Note that these counts recordthe number of people who looked at the information page associated with each implementation. Theactual number of ftps is unknown but presumably signi�cantly lower.3Any software developer who is dissatis�ed with their ratings will perhaps be grati�ed to learn that my ownCombinatorica [5] received the fourth lowest average score among the 56 rated implementations. Anybody whocannot better appreciate the merits of Combinatorica is clearly un�t to judge other people's software.

Who is Interested in Algorithms and Why? 208Rank by Rank byMost Needed Implementations Mass Hits � Least Needed Implementations Mass Hits �su�x-trees 57 15 -42 high-precision-arithmetic 16 29 13bin-packing 74 34 -40 priority-queues 4 17 13knapsack 59 19 -40 edge-coloring 43 57 14kd-trees 42 4 -38 drawing-trees 37 53 16eulerian-cycle 66 31 -35 maintaining-arrangements 47 64 17polygon-partitioning 65 32 -33 matching 1 18 17nearest-neighbor 36 5 -31 unconstrained-optimization 40 58 18minkowski-sum 71 42 -29 satis�ability 50 70 20simplifying-polygons 68 44 -24 dfs-bfs 9 30 21motion-planning 73 55 -18 network-ow 2 23 21traveling-salesman 19 2 -17 random-numbers 18 40 22scheduling 64 48 -16 bandwidth 48 71 23set-data-structures 53 37 -16 matrix-multiplication 25 49 24edge-vertex-connectivity 60 45 -15 planar-drawing 41 68 27thinning 62 47 -15 cryptography 33 63 30graph-partition 52 39 -13 generating-graphs 12 46 34string-matching 24 11 -13 fourier-transform 13 50 37hamiltonian-cycle 32 21 -11 generating-subsets 28 66 38set-cover 70 59 -11 generating-partitions 21 60 39approximate-pattern-matching 34 24 -10 determinants 30 74 44Table 4: Most needed and least needed implementations, based on program mass and hit ranksdomain .com .edu .gov .mil .net .org [0� 9]� countries totalshits 15310 8421 266 341 5193 183 9149 19426 58289Table 5: Hits by top level domainDespite their shortcomings, I believe that these ratings provide a useful insight into the state ofthe art of combinatorial computing today. Hits per problem page measures the level of interest ina particular algorithmic problem. Program mass, the sum of the rankings of all implementationsfor a given problem, provides a measure of how much e�ort has been expended by the algorithmengineering community on the given problem. By comparing the ranks of each problem by programmass and the popularity, we can assess which problems are most (and least) in need of additionalimplementations.Table 4 presents the results of such an analysis, showing the 20 most under (and over) imple-mented algorithmic problems. Su�x trees (rank 1) and kd-trees (rank 4) are the most needed datastructure implementations, while the closely related problems of bin packing (rank 2) and knapsack(rank 3) are in the most need of algorithm implementations. There seems to be greater interest thanactivity in routing problems like Eulerian cycle/chinese postman (rank 5), traveling salesman (rank11), and Hamiltonian cycle (rank 18). On the other hand, traditional algorithm engineering topicslike matching (rank 61) and network ow (rank 65) have resulted in a relative abundance of codesfor these problems.5. Who is Looking?By analyzing the domain names associated with each hit on the Algorithm Repository, we cansee who is interested in algorithms. Table 5 records the number of hits by top-level domain. I believethat more hits were recorded by industrial users than educational ones, since the .com (15310) and.net (5193) domains together account for more than twice the number of .edu (8421) hits. Roughlyone third of all hits came from users outside the United States, presumably similarly split betweeneducational and industrial users.It is interesting and amusing to see the distribution of hits by country code. No less than 84

Who is Interested in Algorithms and Why? 209nations visited the Algorithm Repository during this ten week interval, suggesting a much broaderinterest in algorithms than I would have thought. Hit count per nation is summarized in Table 8.The most algorithmically inclined nation after the United States (presumably the source of most.com and .edu hits) was, not surprisingly, Germany (2340). The United Kingdom (1677), France(1445), and Spain (1054) each accounted for signi�cantly more hits than Israel (315), Japan (709),and the Netherlands (590) { suggesting that the interest does not completely correlate with myperception of the amount of algorithmic research activity in these nations. Two of the largestproducers of graduate students in computer science, China (39) and India (89), ranked surprisinglylow in the number of hits despite the presence of substantial software industries. Presumably thisreects limited WWW access within these countries.6. ConclusionsAnalysis of hits to the Stony Brook Algorithm Repository provides interesting insights to thedemand for algorithms technology, and the state of the art of available implementations. It wouldbe interesting to repeat this analysis at regular intervals to see how the demand changes over time.This most important conclusion of this work is that there is a demand for high quality imple-mentations of algorithms for several important and interesting problems. I urge members of thealgorithm engineering community to consider projects for problems on the left side of Table 4, forthese represent the real open problems in the �eld. Indeed, I would be happy to add any results ofthis work to the Algorithm Repository for others to bene�t from.7. AcknowledgementsI would like to thank Ricky Bradley and Dario Vlah, who helped to build the software infras-tructure which lies behind the Stony Brook Algorithm Repository.References[1] G. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures. Addison-Wesley,Wokingham, England, second edition, 1991.[2] K. Mehlhorn and S. N�aher. LEDA, a platform for combinatorial and geometric computing.Communications of the ACM, 38:96{102, 1995.[3] M. Murphy and S. Skiena. Ranger: A tool for nearest neighbor search in high dimensions. InProc. Ninth ACM Symposium on Computational Geometry, pages 403{404, 1993.[4] R. Sedgewick. Algorithms in C++. Addison-Wesley, Reading MA, 1992.[5] S. Skiena. Implementing Discrete Mathematics. Addison-Wesley, Redwood City, CA, 1990.[6] S. Skiena. The Algorithm Design Manual. Springer-Verlag, New York, 1997.

Who is Interested in Algorithms and Why? 210
All Implementations Best ImplementationProblem Hits Impl. Count Avg Score Program Name Ratingapproximate-pattern-matching 298 3 6.3 agrep 10bandwidth 107 2 7.5 toms 9bin-packing 258 1 3.0 xtango 3calendar-calculations 188 1 10.0 reingold 10clique 248 3 5.3 dimacs 9convex-hull 538 7 5.4 qhull 10cryptography 136 3 5.3 pgp 10determinants 78 4 4.5 linpack 8dfs-bfs 268 7 3.9 LEDA 8dictionaries 459 4 6.0 LEDA 10drawing-graphs 275 3 7.0 graphed 9drawing-trees 189 3 7.0 graphed 9edge-coloring 169 4 4.5 stony 6edge-vertex-connectivity 214 3 4.0 combinatorica 4eulerian-cycle 262 2 3.0 combinatorica 3feedback-set 83 1 4.0 graphbase 4finite-state-minimization 290 4 5.7 grail 9fourier-transform 197 5 5.0 fftpack 10generating-graphs 208 5 6.8 graphbase 10generating-partitions 163 5 6.6 wilf 8generating-permutations 258 4 7.0 ruskey 8generating-subsets 133 4 6.3 wilf 8geometric-primitives 452 5 5.4 LEDA 8graph-data-structures 519 6 6.7 LEDA 10graph-isomorphism 251 2 6.5 nauty 10graph-partition 232 2 6.0 link 8hamiltonian-cycle 320 5 4.2 toms 6high-precision-arithmetic 274 5 5.6 pari 9independent-set 137 2 6.0 dimacs 7intersection-detection 410 5 5.2 LEDA 7kd-trees 611 3 4.0 ranger 8knapsack 341 2 5.0 toms 6linear-equations 218 3 6.6 lapack 10linear-programming 317 5 4.4 lpsolve 9longest-common-substring 175 2 5.0 cap 8maintaining-arrangements 134 2 8.0 arrange 9matching 363 10 5.2 goldberg 9matrix-multiplication 200 5 5.0 linpack 7median 118 2 5.0 handbook 6minimum-spanning-tree 652 9 4.0 LEDA 6minkowski-sum 219 1 4.0 eppstein 4motion-planning 181 1 3.0 orourke 3nearest-neighbor 609 4 5.2 ranger 7network-flow 312 8 5.0 goldberg 10planar-drawing 120 3 5.7 graphed 8point-location 293 4 4.8 LEDA 7polygon-partitioning 259 1 8.0 geompack 8priority-queues 398 8 4.5 LEDA 9random-numbers 230 6 4.8 simpack 7range-search 289 4 4.8 LEDA 8satisfiability 116 2 8.0 posit 8scheduling 204 2 4.0 syslo 4searching 235 3 5.6 handbook 7set-cover 168 1 5.0 syslo 5set-data-structures 241 3 4.3 LEDA 5set-packing 126 1 5.0 syslo 5shape-similarity 156 2 6.5 snns 7shortest-common-superstring 105 1 8.0 cap 8shortest-path 681 7 5.0 goldberg 9simplifying-polygons 216 1 5.0 skeleton 5sorting 485 7 4.9 moret 7steiner-tree 190 2 7.5 salowe 8string-matching 467 5 4.4 watson 7suffix-trees 423 2 4.0 stony 6text-compression 133 1 5.0 toms 5thinning 206 1 9.0 skeleton 9topological-sorting 424 6 3.5 LEDA 7transitive-closure 195 2 4.0 LEDA 6traveling-salesman 665 5 5.0 tsp 8triangulations 600 8 5.9 triangle 9unconstrained-optimization 168 3 6.3 toms 8vertex-coloring 328 8 5.0 dimacs 7vertex-cover 223 3 5.0 clique 6voronoi-diagrams 578 6 5.3 fortune 9Table 6: Hits by algorithmic problem, with implementation ratings

Who is Interested in Algorithms and Why? 211
Major Problem All ProblemsSoftware Hits Problem Name Rating Count AverageASA 132 unconstrained-optimization 6 1 6.0LEDA 2084 graph-data-structures 10 30 6.2agrep 223 approximate-pattern-matching 10 1 10.0arrange 87 maintaining-arrangements 9 3 7.3bipm 127 matching 8 1 8.0cap 119 shortest-common-superstring 8 2 8.0clarkson 123 convex-hull 6 1 6.0clique 154 clique 6 6 5.5combinatorica 603 generating-graphs 8 28 4.0culberson 133 vertex-coloring 6 2 5.0dimacs 288 matching 9 10 5.6eppstein 373 minkowski-sum 4 2 4.0�tpack 107 fourier-transform 10 1 10.0fortune 368 voronoi-diagrams 9 2 8.0genocop 113 unconstrained-optimization 5 1 5.0geolab 146 geometric-primitives 5 1 5.0geompack 187 polygon-partitioning 8 2 8.0goldberg 446 network-ow 10 3 9.3grail 282 �nite-state-minimization 9 1 9.0graphbase 569 generating-graphs 10 17 4.4graphed 398 drawing-graphs 9 7 6.4handbook 994 dictionaries 8 12 4.9htdig 107 text-compression 7 1 7.0lapack 120 linear-equations 10 1 10.0link 144 graph-partition 8 4 4.5linpack 68 determinants 8 2 7.5linprog 76 linear-programming 4 1 4.0lpsolve 354 linear-programming 9 1 9.0math 105 matrix-multiplication 6 1 6.0moret 466 sorting 7 17 3.8nauty 243 graph-isomorphism 10 1 10.0north 209 drawing-graphs 7 2 7.0orourke 598 geometric-primitives 6 8 4.4pari 281 high-precision-arithmetic 9 2 9.0pgp 44 cryptography 10 1 10.0phylip 89 steiner-tree 7 1 7.0posit 55 satis�ability 8 1 8.0qhull 268 convex-hull 10 4 7.0ranger 846 kd-trees 8 3 7.0reingold 225 calendar-calculations 10 1 10.0ruskey 206 generating-permutations 8 4 7.2salowe 98 steiner-tree 8 1 8.0sedgewick 1258 sorting 5 11 3.2simpack 286 priority-queues 7 2 7.0skeleton 187 thinning 9 2 7.0snns 189 shape-similarity 7 1 7.0stony 272 su�x-trees 6 3 6.0syslo 506 set-cover 5 11 4.1toms 546 bandwidth 9 24 5.0triangle 232 triangulations 9 1 9.0trick 193 vertex-coloring 7 2 5.5tsp 331 traveling-salesman 8 1 8.0turn 55 shape-similarity 6 1 6.0watson 322 �nite-state-minimization 8 2 7.5wilf 259 generating-partitions 8 12 4.5xtango 644 sorting 6 19 3.2Table 7: Hits by implementation, with associated ratings

Who is Interested in Algorithms and Why? 212
Count Country Code Count Country Code2340 Germany de 50 Thailand th1692 Canada ca 49 Venezuela ve1677 United Kingdom uk 48 Soviet Union su1445 France fr 48 Cyprus cy1054 Spain es 47 Slovakia sk932 Australia au 46 Yugoslavia yu842 Italy it 46 Ukraine ua709 Japan jp 44 Indonesia id591 Korea kr 42 Kazakhstan kz590 Netherlands nl 41 Turkey tr528 Sweden se 39 China cn463 Finland � 32 Honduras hn423 Brazil br 26 South Africa za417 Hong Kong hk 23 Romania ro346 Norway no 23 Philippines ph345 Belgium be 21 Malta mt317 Switzerland ch 20 Great Britain gb315 Israel il 17 Lithuania lt302 Austria at 17 Costa Rica cr294 Portugal pt 12 Egypt eg282 Poland pl 12 Dominican Republic do267 Slovenia si 12 Armenia am238 Russia ru 11 Trinidad and Tobago tt218 Singapore sg 11 Jordan jo170 Denmark dk 10 Iceland is162 Greece gr 9 Uruguay uy159 Czech Republic cz 9 Bahrain bh148 Chile cl 7 Peru pe143 Mexico mx 6 United Arab Emirates ae137 Taiwan tw 5 Georgia ge125 Argentina ar 4 Belize bz115 United States us 3 Saudi Arabia sa115 Malaysia my 3 Bolivia bo113 Hungary hu 2 New Caledonia nc97 Columbia co 2 Mauritius mu89 India in 2 Moldova md85 Ireland ie 2 Ecuador ec80 Croatia hr 1 Pakistan pk77 Estonia ee 1 Namibia na60 New Zealand nz 1 Luxembourg lu58 Latvia lv 1 Kuwait kw52 Bulgaria bg 1 Barbados bbTable 8: Hits by Nation

AUTHOR INDEXde Berg, M. 110Black, J. 37David, H. 110Eiron, N. 98Erlebach, T. 13Fischer, M. 133Hagerup, T. 143Hatzis, K. 74Huson, D. 179Jacob, R. 167Janardan, R. 62Jansen, K. 13Katz, M. 110Kececioglu, J. 121Lukovszki, T. 133Majhi, J. 62Marathe, M. 167Marchiori, E. 155Martel, C. 37Matias, Y. 49Mueller-Hannemann, M. 86Nagel, K. 167Nettles, S. 179Nilsson, S. 25Overmars, M. 110Pecqueur, J. 121Pentaris, G. 74Qi, H. 37Rahman, N. 193Rajpoot, N. 49Raman, R. 193Rice, K. 179Rodeh, M. 98Sahinalp, S. 49Sanders, P. 143

Schwartz, A. 86Schwerdt, J. 62Skiena, S. 204Smid, M. 62Spirakis, P. 74van der Stappen, A. F. 110Steenbeek, A. 155Steinwarts, I. 98Tampakas, V. 74Tikkanen, M. 25Trae�, J. L. 143Vleugels, J. 110Warnow, T. 179Weihe, K. 1Willhalm, T. 1Yooseph, S. 179Ziegler, M. 133

213

