POINT DEFECTS, LATTICE
STRUCTURE AND MELTING

SLAVA SORKIN

POINT DEFECTS, LATTICE STRUCTURE

AND MELTING

RESEARCH THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS
FOR THE DEGREE OF MASTER OF SCIENCE
IN PHYSICS

SLAVA SORKIN

SUBMITTED TO THE SENATE OF THE TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY
ELUL, 5765 HATFA SEPTEMBER, 2005

THIS RESEARCH THESIS WAS SUPERVISED BY MY LOVELY ADVISORS
DR. JOAN ADLER AND PROF. EMIL POLTURAK UNDER THE AUSPICES
OF THE PHYSICS DEPARTMENT

ACKNOWLEDGMENT

I wish to express my gratitude to Dr. J. Adler and Prof. E. Polturak
for the excellent guidance and support during this research.

I am grateful to Dr. A. Hashibon, Dr. G. Wagner and Dr. Z. Salman,
and to my fellow students A. Kanigel, N. Schreiber and to my wife A.
Sorkin for their help during the research period.

I would like to express my gratitude to J. Tall and M. Goldberg for the
help on the IUCC machines and parallel computing. I also thank the
[UCC for allowing me CPU time on their linux-cluster, the Cray T90
and Cray SV1 supercomputers of the Ben Gurion University, and the

Silicon Graphics supercomputer of the Technion.

THE GENEROUS FINANCIAL HELP OF THE TECHNION AND THE
GERMAN ISRAELI FOUNDATION (GIF) IS GRATEFULLY ACKNOWLEDGED

Contents

11

List of Figures

v

List of Tables

Abstract

Melting is a fundamental process in which a crystal undergoes a phase transition from
a solid to a melt. Despite its common occurrence, understanding this process still a
challenge.

A number of theories, which consider melting as a process occurring homoge-
neously throughout the crystal have been proposed during the past century. For
example, according to Lindemann, melting is triggered by a mechanical instability of
the solid, which caused by enhanced vibration of the atoms. Solids liquefy when the
amplitude of atomic thermal vibrations exceeds some fraction of interatomic spac-
ing. According to Born, melting arises from the onset of a mechanical instability of
the crystal lattice, which manifests itself in an imaginary phonon frequency and the
vanishing shear elastic moduli, accompanied by the collapse of the crystal lattice.
Other models are based on spontaneous thermal production of the intrinsic lattice
defects (vacancies, interstitials and dislocations) near the melting point and this leads
to break-down of the long-range crystalline order and melting transition. However,
the extrinsic defects (free surfaces and grain boundaries) were not considered as an
important ingredient of a melting scenario. Those models are based on the concept
of one-phase melting or continuous melting, i.e. they imply that the phase change

might be continuous or nearly so; given sufficient resolution it should be possible to

vi

ABSTRACT vii

track the breakdown of the solid throughout its transition to the liquid state. These
models are capable of calculate the melting temperature T,,, but in the most it is
overestimated.

The existing theories of melting are still far from being complete and raise new
questions. Hence, the purpose of the present research is to gain a better understanding
of the mechanism of melting transition, and especially to investigate the role of point
defects and the surface of the solid in the melting transition. Despite the fact that
we learned very much recently about the melting of fcc metals, it is not clear if those
results were specific to fcc structure of these metals, so we decided to study melting
of a bce metal, vanadium, by means of computer simulations.

An interatomic potential proposed by Finnis and Sinclair [42], was chosen for
our simulations. The potential was tested by calculation of various properties of
a perfect crystal of vanadium. The results are in good agreement with available
experimental data. Afterwards point defects were introduced into the bulk either by
the removal an atom (vacancy) or by the addition one (self-interstitial). The most
stable configuration of defects at low temperatures was found to be a dumb-bell, the
< 110 > split-interstitial. Point defects change the physical properties of the solid.
Interstitials expand the sample, while vacancies decrease its volume. The change of
the volume is less noticeable for vanadium than for copper which is attributed to the
less close-packed structure of its bee lattice. We found also that the shear moduli are
softened as a result of the volume expansion of the solid which is associated either
with an increase in temperature or interstitial concentration. This softening of the
moduli is less pronounced for vanadium in comparison with copper.

There is a strong evidence that Born instability is the trigger for bulk melting.

The instability is set in by interstitials which expand the solid up to a critical volume,

ABSTRACT viii

at which the lattice of the crystal becomes mechanically unstable and collapses. This
defect-mediated mechanical melting occurs at the temperatures below the melting
temperature of the perfect crystal. We verified that the critical volume at which the
crystal melts is independent of the path thru the phase space by which it reached, i.e.
either by heating the perfect crystal or by adding defects at a constant temperature.
We performed simulations with various concentrations of point defects and found
that bulk melting temperature T, is lowered by interstitials, but this effect is less
pronounced in comparison with the same effect for copper.

The mechanical melting can not be observed directly in the laboratory, because
a real crystal will eventually melt at T,, which is lower than 7} via thermodynamic
melting process that nucleates at its surface. The process can be suppressed ex-
perimentally if the surface is eliminated, for example, by coating one material with
another one, with larger 7,,. In this way silver coated by gold was superheated by
25K above T, [93]. In computer experiments we are able to eliminate the surface
using periodic boundary conditions in all directions and thus can investigate bulk
melting.

In order to study surface melting we use periodic boundary conditions only in two
directions and create a free surface in the third one. The thermodynamic melting
temperature was found to be T, = 2220 + 10K by means of the method proposed
by Lutchko et al. [77] (the bulk melting temperature of a perfect sample is T, =
25504+ 5). Melting of crystals begins at the surface, because the activation energy for
formation of a liquid phase is lower at the surface, than in the bulk. The liquid layer
at the surface eliminates the barrier for nucleation of the liquid phase, and thus no
metastability effects (superheating) exist.

Most of the theoretical models of surface melting phenomenological in nature,

ABSTRACT ix

and therefore neglect the atomistic details of the phenomenon. Only recently the
first microscopic theory has been proposed [36], which is capable of describing static
properties of the rare-gas crystals. The microscopic description of surface melting
phenomena emerged mainly from computer simulations.

We studied surface premelting of vanadium using molecular dynamics. The struc-
tural, transport and energetic properties of the various low-index surfaces of vana-
dium, namely Va(001), Va(011) and Va(111), at different temperatures were inves-
tigated. We found that upon increasing the temperature the vibrations of atoms at
the surface region becomes so large, that they “disturb” each other. As a result,
point defects are generated which begin to migrate between the surface layers and an
adlayer appears on the top of the first surface layer. The disorder begins to spread
from the topmost layer to a deeper ones. At higher temperatures a thin quasiliquid
film appears in the surface region. The observed premelting phenomena are most
pronounced in the surface region of the least packed Va(111) face, and is less notice-
able for the closest packed Va(011) face. Similar results were obtained in simulations
of fcc metals, where the least packed face (011) exhibits premelting, while the closest
packed face (111) remains ordered almost up to the melting point.

In order to understand the relation between the bulk and surface melting, we
applied the Born criterion of melting to the surface region and found a linear relation
between the activation energy of surface defects and the melting temperature. This
relation was confirmed by results of experiments and computer simulations of metals
with fee structure [92]. In order to test the model for metals with bee structure, we
calculated the activation energy of the surface defects for the least packed Va(111)
and compared it with theoretical prediction. The agreement between the theory and

simulations was found to be reasonable. A general conclusion was made that the

ABSTRACT X

Born criterion correctly describes both surface and bulk melting, and may provide
the “missing link” which will finally tie together these two scenarios for melting

transitions.

Qo
Cr
Cu
Ol

List of symbols

temperature

pressure

volume

number of atoms
entropy

eenrgy

melting temperature
Boltzmann constant
Einstein frequency
lattice constant
Lindemann constants
< 100 > shear modulus
< 110 > shear modulus
Hamiltonian

partition function
Helmholtz free energy
Gibbs free energy of a solid

Gibbs free energy of a liquid

LIST OF SYMBOLS

T,Y, 2 the three Cartesian coordinates

a, (3, .. Cartesian indeces

T position of atom i

U; velocity of atom i

ﬁ force on atom i

n; electronic density around atom i

Si.a scaled position of atom i in « direction
Sia scaled velocity of atom i in « direction

U, E,x potential function

K, FEy;, Kkinetic energy

Oap stress tensor

€0 strain tensor

Hup matrix that spans the sample unit

Bogys Born term

Cap elastic coefficients

Qo thermal expansion coefficient

p(2) local density profile

M, order parameter in « direction of layer [

(7)) 2D radial distribution function of layer [

D, diffusion coefficient in « direction of layer [

d; it distance between neighboring layers ¢ and 7 + 1
E surface defect formation energy

E; split-interstitial defect formation energy

E, cohesive energy

FS Finnis Sinclair potential

N, number of atoms of layer [

n occupation number of layer [

Vgl propagation velocity of a solid-to-liquid interface

[thickness of a quasiliquid layer

Chapter 1

Bulk melting

1.1 Preface

Of all the phenomena exhibited by condensed matter, changes of state are among the
most dramatic, and of these melting and freezing are specially striking.

A melting transition occurs when a particular phase becomes unstable under a
given set of thermodynamic conditions. Classical thermodynamics offers a sound
framework for understanding of phase transition in term of a free energy. Usually the
Gibbs free energy G is used. We relate it to a particular phase state of matter by a
subscript, e.g. for a solid G and for a liquid G;. When two states of matter are in
thermodynamic equilibrium the Gibbs free energies are equal G4(P,T) = Gi(P,T).
The free energy of the system is a continuous function of P and T during the phase
transitions (See Fig. 1.1), but other thermodynamic quantities such as internal energy
U entropy S volume V' and heat capacity C' undergo discontinuous changes. Almost
all substances expand on melting, i.e. AV,, > 0, ice being one of very few exceptions

[19] (among them Sb, Bi, Ga). The behavior of ice is generally attributed to its

CHAPTER 1. BULK MELTING 4

Themmodynarmics

Free Energy

* Tempermture

Figure 1.1: Variation of the Gibbs free energy of a simple atomic substance near the
melting point as a function of temperature.

‘open’ network structure (it has a very small coordination number of the nearest
neighbors), which collapses at the melting point, allowing atoms to adopt smaller
average separation between them.

In all known materials (except He) the entropy of the liquid phase is higher than

the entropy of the solid phase at the melting point:

W,
AS, = R () 11
" (7 (1)

where AS,, is the entropy difference between the two phases, R is the gas constant
and W; is the number of independent ways of realizing the molten state and the W is
the same quantity for the solid state. Therefore, the melting transition is a transition
from an ordered state to a less ordered state, which increases the 'randomness’ of the
material structure.

However, the thermodynamic equations can not explain the mechanism of melting.
The melting transition is determined by the detailed microscopic structure of the
crystalline and melting state. Therefore, the process of melting can not be explained

without knowledge of the structure of the material.

CHAPTER 1. BULK MELTING 5

All theoretical models of melting can be divided into two groups. The first group
is the group of models of ”two phases” (solid and melt). These models always involve
reference to both phases, expressing the equilibrium between a solid and its melt in
terms of the Gibbs free energy and calculating 7T;,. The second group is the group
of ”one-phase” models, and consider melting as a homogeneous process occurring
in the bulk of the solid. Some of those models will be considered in detail below.
These theories focus on a certain type of lattice instabilities (anharmonic vibrations,
anharmonic crystal elongation, vanishing of resistance to the shear stress, etc) and
structural defects (vacancies, interstitials, dislocations, disclinations) which arise at
particular range of temperatures and cause the solid to become unstable or “unrealiz-
able” above the melting temperature. The bulk melting models usually overestimate
the melting temperature. Real crystals, which are finite and always have boundaries,
start to melt from the surface at a temperature which is lower than the temperature
predicted by the theories of mechanical instability of the crystal lattice. Neverthe-
less, these theories play a very important role in our understanding of the mechanism
of melting, and especially in emphasizing of the possible scenarios of melting which

include point defects, dislocations, etc.

1.2 Lindemann criterion

The first theory explaining mechanism of melting in the bulk was proposed by Linde-
mann [1], who used vibration of atoms in the crystal to explain the melting transition.
The average amplitude of thermal vibrations increases when the temperature of the
solid increases. At some point the amplitude of vibration becomes so large that the

atoms start to invade the space of their nearest neighbors and disturb them and the

CHAPTER 1. BULK MELTING 6

melting process initiates. Quantitative calculations based on the model are not easy,
hence Lindemann offered a simple criterion: melting might be expected when the
root mean vibration amplitude v/< u2 > exceeds a certain threshold value (namely
when the amplitude reaches at least 10% of the nearest neighbor distance).
Assuming that all atoms vibrate about their equilibrium positions with the same
frequency vg (the Einstein approximation) the average thermal vibration energy can

be estimated relying on the equipartition theorem as:
E = mir*vg < u® >= kT (1.2)

where m is the atomic mass, vg is the Einstein frequency, < u? > is the mean square
thermal average amplitude of vibration, and 7' is absolute temperature. Using the
Lindemann criterion for the threshold < u? >= ¢;a?, where ¢; is Lindemann’s constant

one can estimate the melting point
T,, = 4m*mcra® kg (1.3)

Lindemann’s constant ¢; was assumed to be the same for crystals with similar struc-
ture, hence it could be calculated from the melting temperature of one particular
crystal. A detailed experimental examination showed that ¢; is not strictly a con-
stant and the correlation is only fair (See Fig. 1.2). Recently, the validity of the
Lindemann instability criterion have been tested in computer simulations of bulk
melting of Lennard-Jones fcc crystals [6]. It has been found that melting occurs when
a sufficiently large number spatially correlated destabilized atoms of the crystal (e.g.
cluster of quasiliquid) are generated (See Fig. 1.3). These clusters are distributed
homogeneously thruout the solid. The Lindemann criterion of the lattice instability is
found to be valid for these clusters. The accumulation, growth and coalescence of the

clusters of the liquid phase constitute, according to Jin et al. [6], the mechanism of

CHAPTER 1. BULK MELTING 7

g T T T T T
= I 1 clg), MCs
o ta TW 4y lC
ca0f 50 "o 42C
MTgoy it e
Th Zr \fsl:r'nh
2000 |~ Pb5 Tis% \.pt 4l
GoAs P'-wre ZnS
A i e
Bea "a, | Mi 5
Nd, My U
La .a‘}u infs
Ag® AU r
e ® Gasp 35 G
1000 }— o L Sbice 4
r Al Br "5b
i n Inﬂ_:-’.“: ~
Te 5
B i o8 .
500 - L .
- " A 1
- Nu. In x|
K o5
300 |- = "Rb @
Cs Ha
l_l_ JraEtiy < S 8 e T | L 1
1 2 5 10 Me*a " (10 kg K’y

Fig. 3. The melting temperature Ty, versus MiPa?,

Figure 1.2: The measured melting temperature versus the melting temperature
estimated using the Lindemann rule, from ref. [95]

homogeneous bulk melting. It should be stressed that the original Lindemann model
for vibrational melting, like many of its more sophisticated successors, refers only to
a crystal with the simplest possible structure, i.e. assemblies of closed packed atoms.
Crystals containing more complex molecules as unit of structure exhibit a vibrational
complexity which rules out any simple rule of lattice stability, determined merely
by vibrational amplitudes of the molecular centers of mass. Futhermore, the Linde-
mann model is based on harmonic forces, which never give way, whereas melting must
involve bond breaking. This is another serious defect of the model. Furthermore nu-
merous experiments carried out at high pressures indicate that the Lindemann model
does not estimate adequately the pressure dependence of the melting temperature [7].
The most serious defect of the model is that melting is described in term individual
atomic property, i.e. mean square amplitude of vibration, while a phase transition is
a cooperative process. In addition, the Lindemann model describes melting in terms

of the solid alone, although the melting transition must involve both solid and liquid

CHAPTER 1. BULK MELTING 8

Figure 1.3: 3D visualization of the collective appearance of the Lindemann particles
at T/T,, = 0.79. (a) a few clusters with 20-200 particles (larger black circles)
against other Lindemann particles (smaller gray circles) which do not form such
clusters (b) four large clusters with 219, 214, 187, and 117 particles colored with
red, blue, black and gray, respectively. From ref. [6]

phases. Nevertheless the predictive success of the Lindemann melting criterion lent
support to the belief that melting could be a gradual process, beginning within the
solid at temperatures below the melting point. Subsequent theories and numerous

experiments helped to bolster the idea.

1.3 The Born criterion

Another version of a “one-phase” theory of bulk melting suggested by Born [9] in
1937. His theory is based on the fact that a liquid differs from a crystal in having
zero resistance to the shear stress. The distances between the atoms are increased due
to thermal expansion, hence the restoring forces between the atoms are reduced, and
therefore the shear elastic moduli decrease with rising temperature. The softening of
the shear moduli leads to a mechanical instability of the solid structure and finally

to a collapse of the crystal lattice at some temperature. The general conditions for

CHAPTER 1. BULK MELTING 9

stability of a crystal lattice were derived by Born. He analyzed the free energy of
a solid with a cubic crystalline lattice. For a lattice to be stable, the free energy
must be represented by a positive defined quadratic form, and this is fulfilled if the

following inequalities for the shear elastic coefficients Ciq, Cis, Cyy are satisfied:

20" = Ci1—Ci2>0 (14)
044 >0 (15)
Cll + 2012 >0 (16)

According to Born, Cyy goes to zero first and the melting temperature can be found
from the condition: Cy4(T},) = 0. Hunter and Siegal [10] measured the elastic coeffi-
cients of single crystal rods of NaCl over the temperature range from 20°C' to 804°C),
up to the melting point. It was found that the shear elastic moduli C'y4 and C” decrease
nearly linearly with temperature, but reach non-zero values at the melting point.(See

Fig.1.4) The shear elastic moduli for a series of fcc metals were measured by Varishni

Figure 1.4: The variation of Cyy near the melting point, from ref. [10].

[11], and was found that Cy4 decreases to 55% of its value at zero-temperature. The

discrepancy between the Born theory and experimental results was partly explained

CHAPTER 1. BULK MELTING 10

by enhanced thermal generation of defects in the crystal bulk as the melting tem-
perature is approached [12,13]. Recently new calculations [14,15] have shown that
Born did not take the contribution of the external stress, P, into account. The new

generalized stability criteria are:

011 + 2012 —P>0 (17)
011 — 012 —P>0 (18)
Cyu—P>0 (1.9)

In addition, on the basis of numerous experiments it has been concluded that the
shear modulus C’ can become unstable first, C’(T,,) = 0 at the melting point in some
cases.

The applicability of the Born criterion at zero and non-zero external stress could
be directly tested in computer simulations. Bulk melting (the surface of the solid
is eliminated by means of periodic boundary conditions) of copper under condition
of zero external stress was studied in molecular dynamics (MD) simulations [15]. It
was found that the shear modulus C’ vanishes at some temperature T, but this
temperature is large than thermodynamic melting temperature 7,,, i.e Ty > T,
measured experimentally. Thus the elastic coefficients remain finite at 7,,. The
conclusion was drawn that mechanical bulk melting, proposed by Born, is valid only
for a perfect infinite crystal, but a real crystal with boundaries and defects undergoes
thermodynamic melting at T},, before it reaches the mechanical melting point.

The Born criterion was modified by Tallon to reach better agreement with experi-
ment [16]. Tallon measured the shear moduli of various substances (metallic, organic,
molecular and ionic crystals) as a function of molar volume. He confirmed that the

shear moduli do not vanish at the melting point, though the volume of the melt at the

CHAPTER 1. BULK MELTING 11

melting point can be predicted by a continuous extrapolation one of shear modulus to

the zero value at zero external stress. (See Fig. 1.5) Tallon suggested that the shear

3 T [5 I [|

|
SHEAR MOOULUS, I3 Pa

Figure 1.5: The variation of C' with molar volume for various metals [16].

modulus decreases with an increase of the volume of the solid and one of the shear
moduli vanishes as a critical volume is reached. At that point each atom can access
the entire substance volume due to the enhanced diffusion. The entropy of the system
increases and the Gibbs free energy is lowered. At T = T,, the system transforms
discontinuously from the solid to the liquid state. In another words, the Born scenario
would work if the crystal could be superheated until it will reach the molar volume
of the liquid! Unfortunately another mechanism of melting is triggered at the surface
of the real solid at temperature which lower than the melting temperature predicted

by the Born model, preventing from us to observe mechanical collapse of the crystal

lattice.

CHAPTER 1. BULK MELTING 12

1.4 Theory of positional disordering

Numerous X-ray studies have made evident that regular repetition of lattice posi-
tions of atoms over long sequences in 3D disappears on changing to a melt. The
first microscopic theory of melting based on positional disordering was proposed by
Lennard-Jones and Devonshire [19]. A simple model of a rare-gas crystal was con-
sidered. In order to describe order-disorder transition the system was modeled to be
consisted of two inter-penetrating cubic lattices with fce structure(namely A and B
lattices. If all atoms of the solid are located at the sites of the first A-lattice, than
the system is perfectly ordered. However, if an atom can jump from the first lattice
to the second, then a vacancy-interstitial pair is formed, i.e. atoms belonging to the
B-lattice considered as self-interstitials. To place a single atom from the A-lattice
on a site of the B-lattice when all the rest atoms on the A-lattice sites requires a
considerable increase of energy, owing to the repulsive field of the neighboring atoms.
But this energy does decrease if several atoms of the A-lattice jump to the B-lattice
or some sites of the B-lattice are already occupied. This energy would decrease to
zero in a state of complete disorder. This is an example of cooperative effect, which
decreases considerably the defect formation energy.

The partition function for an assembly of N atoms in a state of perfect order is
calculated, than it is modified to account for positional disordering. The partition
function for a perfect crystal F is given by F = fV , where f is contribution of each

atom:

2mkpT o
f (th) vp X ea:p(—ngT) (1.10)

here vr is the volume per atom, @, the potential energy of the system with all the

atoms in their position of equilibrium. At higher temperatures positional disorder sets

CHAPTER 1. BULK MELTING 13

in, defects are formed, and all atoms distributed randomly between the two lattices.
The order parameter () is introduced as Q = N4/N, where N4 is number of sites
of the A-lattice occupied by the atoms, and N = N4 + Np is the total number of
the atoms. The @) = 1 corresponds to an ordered state, while @@ = 1/2 to a fully
disordered state. Knowledge of the fraction of atoms in each lattice No/N = @
and Ng/N = 1 — @ allows us to estimate the total energy of interactions between
the defects. Thus in order to modify the partition function of the perfect crystal to
account for the positional disordering, one has to multiply the total partition function

by the disorder factor:

(1.11)

P P = Y @ (R

kgT
where W is defect interaction energy, Y (@) is a combinatorial factor. The partition

function has a maximum at some values of (), which are the roots of the equation:

2W(2Q — 1)
2kgT

=1In(Q) —In(l — Q) (1.12)
This equation has a solution with @ = 1/2 (a disordered state) which is always
satisfied, yet when T < T, = zW/4kp there is another root with Q > 1/2 (an ordered
state), at which the free energy has a deeper minimum. The critical point T, is
interpreted as the melting point T}, = T.. The phase transition is found to be first-
order. This simple theory of “order-disorder” transition was later generalized to the
case of more realistic interaction potential between atoms, and numerical methods
were applied to investigate the more complicated models [19].

The Lennard-Jones and Devonshire theory based on positional disordering is ca-
pable of predicting some properties of the solid and its melt at the melting transition

in rather good agreement with experiment. Nevertheless, there are some flaws in

this theory, for example, the theory predicts a continuous transition between the

CHAPTER 1. BULK MELTING 14

solid phase and the liquid phase at very high pressure, yet experimentally no critical

melting point was found even at a very high pressure.

1.5 Melting theories based on point defects

Point defects may play a substational role in bulk melting transition. The theory
proposed by Weber and Stillinger [20] is an example of a statistical model of bulk
melting transition of crystals in which the influence of point defects on the shear
moduli is taken into account. According to the model, at temperatures close to
the melting point a cooperative formation of point defects takes place. The first
excitation in a crystal is a displacement of an atom from its lattice site and hence a
vacancy-interstitial pair is formed. The presence of the defect softens the solid, and
this effect is amplified while the concentration of defects increases, thereby easing
the insertion of more defects and introducing new local modes of vibration. At some
critical concentration of defects the lattice of the solid becomes unstable and collapses,
i.e. a mechanical melting transition occurs. Minimizing the free energy F' with respect
to the concentration of point defects, Weber and Stillinger obtained the temperature
dependence of the defect concentration cqer = {/N (See Fig.1.6). As is seen from the
Figure 1.6 at some temperature the defect concentration jumps from ¢4 = 0.000117
(as T"— T, — 0) to cgey = 0.99882 (as T — T, + 0). This temperature is identified
as the melting temperature.

As a further development of the theory of bulk melting based on point defects,
Granato [21] derived an interstitial-concentration-dependent Gibbs free energy, ap-
propriate for calculation of all the thermodynamic properties of crystalline, liquid

(melt) and amorphous (or glassy) states of metals. The Helmholtz free energy of the

CHAPTER 1. BULK MELTING 15

LIQUID

CRYSTALI

B=U/T

Figure 1.6: Defect concentration, solid line corresponds to stable equilibrium values,
dashed line to meta-stable and unstable branches. From ref. [20].

perfect crystal F), is given by:

h
F, = FY(V) + F?, = Fy(V) + 3NkgTlIn (%) (1.13)
B

where Fy(V) is the free energy of the static lattice, i.e. without thermal or zero-
point vibrations, and the vibrational free energy F,;, which at high-temperatures is
calculated in the framework of a single frequency Einstein approximation. According
to Granato, in order to take interstitials into account one has to add to the free energy
the following terms:

Fdef :Fw+Fvib+Fconf (114)

where F), is an energy necessary to create a concentration c of interstitials, where
¢ =n/N (n is the number of interstitials and N is the number of atoms). F;, is the
change of the vibrational free energy resulting from the change in frequency spectrum,

and F,,s is the configurational free energy. A salient feature of the model is that the

CHAPTER 1. BULK MELTING 16

interstitialcy configuration is extended, strongly coupled to the shear stress, with low-
frequency resonance modes providing an unusually large entropy per defect. The shear
modulus G carries the burden of providing the volume, shear strain, and concentration
dependence needed for thermodynamic treatment. The theory predicts that the shear
elastic modulus decreases when the concentration of the self-interstitials increases (for
example as a result of increase in temperature), which leads to instability of the solid
and eventually to a melting transition at 7;,.

When the Gibbs free energy is obtained from the Helmholtz free energy we add
a term pV to F. Figure 1.7 shows variation of the Gibbs free energy with intersti-
tial concentration. Three different regimes are found by minimizing the Gibbs free

t=08 085 090950 105

Qz4

Adadud 32y SqqIn)
=
3

Q.08}

-0.08¢

-0.6]

Figure 1.7: The Gibbs free energy of copper as a function of the interstitial
concentration for different temperatures t = T'/T,,, from ref. [21]

energy. For low temperatures (the first regime), when ¢ = T'/T,, < 0.85 the only sta-
ble configuration is the solid with the equilibrium concentration of interstitials about

¢ ~ 107" defects/atoms. In the second regime, when 0.8 < ¢ < 1.15, the two minima

CHAPTER 1. BULK MELTING 17

coexist, the first one corresponds to the solid state with a very low defect concentra-
tion, and the second one to the liquid state (regarded as crystals containing a few
percent of interstitials, for example for copper it is about 9% at T,,). In the third
regime t > 1.15 the only stable state is the liquid state. The model predicts the pos-
sibility of supercooling of a liquid which is possible experimentally, but also predicts
the possibility of superheating of a solid which has never been observed. However,
this asymmetric nature of melting is to be understood from the fact that interstitials

are produced thermally at surfaces, dislocations, or other shear strain centers.

1.6 Cooperative positional disordering
leading to melting

Contemporary models of bulk melting consider positional disordering as a cooperative
defect, involving a number of atoms. A characteristic feature of cooperative defects
is that the energy of their formation can be greatly reduced relative to isolated point
defects. However, this kind of crystal disorder is subject to the condition that the ap-
propriate sequence of neighboring sites must be displaced cooperatively from the ideal
lattice positions. Within recent years much work as been done on a particular kind
of cooperative defects known as lattice dislocations. As is well-known, a point defect
consists either of a missing atom in the lattice or an extra atom between two normal
lattice points. If more than one adjacent point defect occurs in a crystal here may be
a slip along a surface causing a line defect which is called a dislocation (See Fig. 1.8).
Dislocations also contribute to melting of metals. Theories of dislocation-mediated
melting have several appealing features; the free energy of a crystal containing a dense

array of dislocations is comparable to the free energy of its melt. The fluidity of the

CHAPTER 1. BULK MELTING 18

L

$*

Figure 1.8: Dislocation is a line defect.

melt can be attributed to the mobility of dense array of dislocations. The part of
the total energy of a solid, saturated with dislocations, attributed to these defects
is comparable to the latent heat of fusion. The presence of dislocations lowers the
energy of creation of additional dislocations; if this reduction is sufficiently strong
it can lead to an avalanche of dislocations in a first-order transition. A number of
experiments and computer simulations have given some support for these theories of
dislocation induced melting, but the evidence is not clear enough to conclude that

dislocation-mediated melting has been demonstrated.

Chapter 2

Surface melting

2.1 Preface

All the models considered at the previous chapter explain the mechanism of melting
within the bulk material. These theories consider melting process as a breakdown of
the crystal lattice which occurs uniformly throughout the solid at the melting point,
i.e. melting is required to be homogeneous. However, there is ample evidences that
melting is actually heterogeneous, and that it involves nucleation of the liquid phase at
some preferred sites of the solid (the free surface, grain boundaries, large dislocations
and disclinations, etc), followed by subsequent growth of the liquid phase. The most
likely site from where the solids start to melt is the free surface of the solid. A
premelting of the surface offers an elegant solution to an intriguing puzzle of melting,
namely why a liquid could be cooled below the freezing point (“supercooling”), but
a solid can not be heated above the melting point (“superheating”). On the basis
of classical nucleation theory one expects, upon melting and freezing, that these

hysteresis effects should occur. The absence of “superheating” of solids, is indicative

19

CHAPTER 2. SURFACE MELTING 20

of the general absence of an energy barrier for the nucleation of a melt, yet such
a barrier does exist for solidification. Apparently the formation of a liquid surface
layer at temperatures below the melting temperature eliminates the need for liquid
nucleation at melting transition, thus no metastability effects exist.

Tammann [22] was the first to point out that surface may play an important role in
initiating melting. The concept that melting may start at the surface can be inferred
from an empirical criterion formulated by Lindemann [1]. Relying on the criterion
one may argue that the outermost atomic layer of the crystal should disorder far
below the bulk melting point. The loosely bounded surface atoms have a reduced
number of neighbors, and therefore have a higher vibrational amplitude than in the
bulk. Consequently, at the surface the Lindemann criterion is satisfied at a lower
temperature. Surface melting involves a formation of a thin disordered layer at some
relatively high temperature. Surface melting considered here has nothing to with the
trivial melting caused by temperature gradient, for example, melting of an ice cube
floating in a glass of water. In this case the surface melts simply because the outside
is hotter than the inside.

While numerous attempts to detect surface-initiated melting phenomena have
been made, it is only recently that surface melting has been observed directly on a
microscopic level by employing atomically clean, well characterized surfaces. The first
direct observations were made using Rutherford backscattering [23], in conjunction
with shadowing and blocking. Since then, other techniques have been employed such
as calorimetry, electron, neutron and X-ray diffraction, microscopy, ellipsometry, and
helium scattering, and even visual inspection with the naked eye. Most experiments
have been carried out near equilibrium. But even when a solid is heated suddenly,

melting still tends to be initiated at the surface [24]. Under some conditions it is

CHAPTER 2. SURFACE MELTING 21

possible to force the solid to break down internally, but then the melting will tend to
begin at internal interfaces such as grain boundaries.

Theoretical aspects of surface melting have been studied by phenomenological
Landau theories [27-30], lattice models [36], and density functional theory [40]. A
more detailed review of those methods is given below. Computer simulations play
a leading part in the studying of the phenomena in a microscopic level. The story
of surface melting is not yet complete. Still to be explored is the evolution of layer

structure at the surface region in detail.

2.2 Phenomenological thermodynamics model

Surface melting can be regarded as a case of wetting [27], namely a wetting of the
solid by its own melt. As in the case of adsorption of a gas onto a hard wall one
may observe complete or incomplete wetting, depending on whether the quasiliquid
thickness diverges or remains finite as T — T,,. By the same analogy, the case of
non-wetting corresponds to an absence of surface melting, e.g. the surface remains
dry up to T,,,. What makes the surface premelt or remain dry? If a single crystal is
cleaved along it {hkp} plane, where h, k,p € Z are the crystallographic indices, then
the surface free energy per unit of area y{"*7} is defined as the work needed to create a
unit area of dry surface (the subscript ’sv’ refers to the solid-vapor interface). On the
other hand, the free energy of a surface that at 7,,, is covered with a thick melt layer,
is given by vs{lh o} 4 v, Where the indices ’sI” and ’sv’ refer to the solid-liquid and
liquid-vapor interfaces, respectively (See Fig. 2.1). Surface melting will only occur if

there is a gain in the free energy, that is, if

Sv

hkl
PN (%{l by %v) >0 (2.1)

CHAPTER 2. SURFACE MELTING 22

vapour

liquid

Figure 2.1: The solid-liquid and liquid-vapor interfaces

On the other hand, if Ay} < 0, then the surface will remain dry up to T,,. The sign
and magnitude of Ay!"#7} depend not only on the material, but also on the surface
orientation. In general the most open crystal faces, e.g. the (011) face for fcc crystals
and (111) for bee crystals, are most likely to exhibit surface melting. For a system
exhibiting complete wetting there is a unique relation between the temperature T’
and the equilibrium thickness of the quasiliquid layer {(T). The fact that there is a
finite equilibrium thickness of the film at a given temperature T is a result of balance
between two opposite thermodynamic forces. On one hand, the quasiliquid becomes
more liquid-like for increasing layer thickness, which results in some gain in the free
energy. This corresponds to an effective repulsive force between the solid liquid and
liquid-vapor interface. The effective interaction energy between the interfaces at
either side of the quasiliquid layer is given by Ay{hkp}exp{—g—é} + W12, where [is
the thickness of the film, (, is a characteristic length scale over which the crystalline
order decays [23,26] as it is measured from the crystal-quasiliquid interface, and W is

a positive constant which is called the Hadamar constant. On the other hand there

is the free energy cost associated with supercooling of the quasiliquid layer. For a

CHAPTER 2. SURFACE MELTING 23

layer of thickness [the energy cost per unit of area is L,,l[(1 — T/T,,), where L,, is
the latent heat of melting per unit volume. This yields an attractive force between
the two interfaces.
The total free energy F'(I) of the surface covered with a melt layer of thickness I
is:
T

21 W
PO =™ 4w+ Ayt empl=gh 4 5+ Lnl(l =) (22)
b m

The equilibrium thickness [(T) is the value of [for which F(I) is minimal, i.e.
dF(l)/dl = 0. Let us define define a crossover thickness [, as a thickness for which the

long-range contribution W1=2 to F(l) is equal to the short-contribution A’y{hkp}exp{—g—i}.
Consequently two different regime are considered. The first regime is for [(T) << I,
where the system is governed by the short-range exponentially decaying interactions

and the equilibrium thickness is given by:

7 _ Cb 2A7{hkp}Tm ~
I(T) = §ln [Lm(T — Tm)Cb] ~ —In(t) (2.3)

where the reduced temperature is given by ¢ = (1 — T'/T},,). This kind of logarithmic

divergence of I(T) is characteristic for metals and semiconductors. But for rare-gas
crystals (or if 7}, is approached very-very closely [23]) the long-range force must
eventually dominate the melting behavior in the second regime I(T) >> [.. The

short-ranged force will dampen out and one is left with van der Waals type dispersion

forces. Thus minimizing F'(l) with respect to [yields:

Here it is implied that W > 0 and the liquid is less dense than the solid. This

(2.4)

power law was tested in numerous experiments carried out with rare-gas crystals.
The agreement between the theoretical prediction and the experimental results is

very good.

CHAPTER 2. SURFACE MELTING 24

2.3 Landau model of surface premelting

Historically, the first model of surface melting in the framework of Landau-Ginsburg
theory was proposed by Lipowsky [28,29,30]. The phenomenological model considered
above, is a particular case of this type of models, which are more abstract and general.
As it is well-known Landau theory is based on a power series expansion in the order
parameter for the phase transition of interest. In the framework of the theory it is
assumed that the order parameter is “small”, so that only the lowest order terms
required by symmetry are kept. It is most useful in the vicinity of second-order phase
transitions, where the order parameter is guaranteed to be small. It, however, can be
used with care to first - order transitions. Lipowsky considered a semi-infinite system
which undergo a first-order phase transition at 17" = T™* in the bulk, e.g. the bulk
order parameter M, jumps to zero at the melting point. However, the surface order
parameter may nevertheless behaves continuously like M, ~ |T — T*|%.

A d-dimensional semi-infinite system with a (d — 1) dimensional surface is con-
sidered. The coordinate perpendicular to the surface is denoted by z. As a result
of the broken translation symmetry (translation invariance) at the surface, the order
parameter M depends on z: M = M(z). The Landau expansion for the free energy

(per unit area) has the generic form:

1 (dM

oy = [Ta [5 (d—) + (M) +8(:) (M) (25)

where (%)2 corresponds to an increase of the free energy due to inhomogeneity of

the order parameter, and the bulk term f(M) is given by the well-known expression

for a system with a bulk tricritical point:

1 1 1
f(M) = 5OL(T)M2 + ZuM4 + EUMG (2.6)

CHAPTER 2. SURFACE MELTING 25

with v > 0 and v < 0, which leads to first-order bulk transition at a(7*) = a* =
3u?/16v, and to a jump of the order parameter from Mp = (3|u|/4v)'/? to zero.
The additional term d(z)f1(M) mimics the microscopic changes of the interaction
parameters near the free surface. If fi(M) is expanded in powers of of M (up to
second order), one obtains:

1

h(M) = SaM? (2.7)

where a; > 0 is a constant called extrapolation length, which is independent of tem-
perature. Inclusion of the higher-order terms in this expression does not change
significantly the results deduced from the theory.
By minimizing the free energy 6 F'/dM = 0 one obtains a differential equation for
the order parameter:
dM

—— = [2F(M) = 2f (M3)]"”? (238)

together with the implicit equation for the surface layer:

afl(]wl) 1/2
—anr -~ 2SO0 =2 (M) (2.9)

where M; = M(z = 0). From the last equation one finds the temperature dependence

of order parameter M; as T'— T from below:

const, a; < \/?
Ml ~ |T — T*|1/4 a; = \/E (210)

T — T/ ay > Va*

where a; is inverse extrapolation length, and a* is a Landau coefficient at T' = T™.
Thus, two different types of phase transition are obtained, referred as O; and O,.
(See Fig. 2.2) At the transition O; (when the inverse extrapolation length is small

a; < va*), the surface order parameter M; is discontinuous like the bulk order

CHAPTER 2. SURFACE MELTING 26

N -

Figure 2.2: Phase diagram, from ref. [28].

parameter Mp. However, at the transition Oy (when the inverse extrapolation length
is large a; > v/a*) and at the the tricritical point 5 (a; = v/a*), the surface order
parameter goes continuously to zero with the surface exponents 5, = 1/4 (for O,)
and B, = 1/2 (for 5). This is rather surprising since there are no corresponding
bulk exponents. An additional unexpected feature, discovered by Lipowsky, is that
a layer of disordered phase intervenes between the free surface and the ordered bulk

as the critical point 7% is approached from below (See Fig. 2.3). Hence, an interface

’Mtz'r

MB. -
1

0 4 e
0 i z

Figure 2.3: Order-parameter profile M(z) as Oy and § are approached from T < T,
from ref. [28].

appears at z = [, which separates the disordered surface layer from the ordered
phase in the bulk. As 7™ is approached, this interference becomes delocalized since
[~ |In(T* — T)|. Within Landau theory, such a logarithmic divergence has also been
found in wetting transition.

In order to decide whether the new type of continuous surface melting, i.e. the

CHAPTER 2. SURFACE MELTING 27

O, transition may take place one has to estimate the magnitude of the inverse ex-
trapolation length a;. The parameter a; should be calculated relying on microscopic
model. As a first step toward this goal, the semi-infinite g state Potts model on a
lattice has been investigated by means of mean-field theory. The Hamiltonian of the

g state Potts model is given by:

g
H=Y Jbss + Ji0s.s, (2.11)

<ij>
here J; is the coupling constant for a pair of spins at the surface, and J is the
coupling constant for a pair of spins in the bulk, and g is the number of possible spin
orientations, and the sum includes the nearest neighbors. It was found that in a three
dimensional Potts model with ¢ = 3 the new continuous transition occurs, provided

J1 < 1.1J. It seems very likely that the interaction parameters of real systems fulfill

this inequality.

2.4 Layering effect

The surface premelting of solids is explained in terms of a repulsive and attractive
interactions between the solid-liquid and the liquid-vapor interfaces. Ercolessi et al.
[31] showed how a crucial part of this interaction originates from the layering effects
near the liquid metal surface. The layering effect [32,98,99] is density oscillations
which are observable at the liquid surface of metals and semiconductors (See Fig.
2.4). The layering effect was first noted in molecular dynamics simulations [33], and
recently have been observed experimentally for Hg [34]. The layering effect in metals
is very similar to a layering of a fluid near a wall. It is presumed that the liquid-
vapor interface acts as a sort of a rigid wall for the liquid metal. Different models has

been proposed to explain the layering effect in metals, for instance, Rice et al. [35]

CHAPTER 2. SURFACE MELTING 28

.9
100 (WWJ'\,-‘_\\’.;\LJ'I 'I.U.' I|I

PP

.34 l

Figure 2.4: Density profile of the liquid surface of aluminum exhibits pronounced
oscillations at the liquid-vapor interface. Figure from ref. [32].

claimed that the density oscillations are due to the coupling between the electronic
and ionic profiles. The electron density profile decays very abruptly and generates an
effective wall potential against which the ions need to rearrange themselves to reduce
the energy cost and lay orderly.

The oscillation is characterized by a typical liquid periodicity, 27/Qo, where Qg is
the absolute value of the wave vector, at which the liquid radial distribution function
has its maximum. Besides that periodicity, 27/@Qp, there is another one, a second
oscillation at the solid-liquid interface. This is due to the crystal planes which induce
density fluctuation in the liquid layer. The periodicity of this oscillation is given by
the distance between the crystal planes, a, which in turn depends on the orientation
{hkp} of the planes of the underlying crystal.

These two distinct layering oscillations - one with the periodicity 27/Qq (tied to
the liquid - vapor interface) and another with the periodicity of the interlayer spacing a

(tied to the solid - liquid interface) overlap and interfere inside the liquid film, provided

CHAPTER 2. SURFACE MELTING 29

that the separation between the solid-liquid and the liquid-vapor interfaces is small.
The kind of interference depends strongly on the orientation of the underlying crystal.
For the close packed face, for example (111) face of fcc crystals, the periodicities are

match, e.g. 27/Qy = a, and one have constructive interference (See Fig. 2.5). The

3 L) 3 L v

SN — S —

Aufnil)

— ———a
> i

- Au(110)

s R N
=20 =15 =10 =5 =40 =20 o

z (LJ units) z (A)

Figure 2.5: Comparison between the density profiles of the (111) and (110) surfaces
of a Lennard-Jones crystal and gold obtained by MD simulations, from ref. [32].

interference induces oscillation of the free energy, and the deepest minimum of the
free energy of the close packed face is at zero thickness of the quasiliquid film as it
is shown in Figure 2.6. The interfaces strongly attract each other and this attraction
leads to the absence of surface premelting. In the opposite case, when 27/Qo # a the
interference is destructive, and therefore there is a repulsion between the interfaces

and surface premelting is observed.

CHAPTER 2. SURFACE MELTING 30

o1 f Ly

a 005]_|'|_|1_,-._,._,._.._.._.-,_|-|J'IJ

A
B —

Figure 2.6: Variation of the surface free energies as a function of the interface
separation [. Upper panel: the close packed (111) face of a fcc crystal, constructive
interference. Lower panel: the least packed (011) face of a fcc crystal,
deconstructive interference, from ref. [32].

2.5 Lattice theory

The first microscopic theory of surface melting have been developed by A. Troyanov
and E. Tossati [36]. For a microscopic theory, one would need for a start a simple
and accurate model, capable of accounting for the bulk phase diagram including solid,
liquid and vapor phases, the triple point and the critical point of any substance. Such
a complete theory has not yet been developed and the very basic building block for
a microscopic surface melting theory is missing.

Nevertheless A. Troyanov and E. Tossati [36] developed a theory of surface melting,
based on the fact that at the price of introducing a discrete reference lattice and using
a drastic simplification like the mean-field approach, the partition function, Zy, of a

system of particles interacting via a pairwise potential can be calculated. In order to

CHAPTER 2. SURFACE MELTING 31

calculate the free energy F' of an assembly of N atoms they introduced a reference
lattice. The volume vy of each cell is chosen to be so small, that possibility of multiple
occupancy of a lattice cell can be neglected.

The partition function Zy is:

In = vév{%;}/vo /UO exp l—g Zpiij(ri,rj) dridry...dry = e PF (2.12)
where U(r;,r;) is a pair-wise interaction potential of a Lennard-Jones type, § =
(kT)~! is the inverse temperature, and p; = 0, 1, i.e. it is zero if a considered lattice
site is empty and unity otherwise. The summation 3y, is taken over all possible
configurations of N atoms on the lattice sites. The main approximation of the model
is splitting of Zy onto a separate lattice sum, (), and a free volume term €2, e.g.
Zn =~ Qf). The lattice term is an Ising-like spin lattice model state sum which is
evaluated using the saddle-point approximation. The second term €2 depends on
cooperative motion of the atoms and it is a complicated function of their positions,
which calculated using the special effective volume method [36].

In order to describe order-disorder transition two order parameters - “crystallinity”,
¢;, and average density, pg, are defined and calculated for each layer of the reference

lattice separately. The “crystallinity” in each layer [is given by:

. _ <pog>—<Dp1g>
=
<pos >+ <p1>

(2.13)

where [is the layer number, < po; > is the average occupation of the first reference
lattice, and < p;; > is the average occupation of the second one. The free energy of
the system is expressed in term of density p; and crystallinity ¢;. The minimization
of the free energy with respect to these variables leads to a set of nonlinear algebraic

equations which is supplemented by the boundary conditions for the solid bulk. This

CHAPTER 2. SURFACE MELTING 32

system of a large number of coupled layer-by-layer equations (M = 400) is solved
iteratively, with an initial guess for the set of {c?, p{}. It was found that the solution
of the set of those equations is unique, i.e. it does not depend on the initial guess of
{c, AP}

According to the calculation, surface melting takes place both on the (100) and
(110) surfaces. A thin liquid-like film gradually appears at the surface region. The
crystallinity inside the quasiliquid film drops rapidly to zero, and also density is
jumping rather abruptly from liquid-like to solid-like (See Fig.2.7), but this drastic
change of the density is seem to be due to the mean-field approximation, e.g. due
to ignoring of fluctuations. Molecular dynamics studies have shown substantially

broader transition from a solid-like to liquid-like region in surface premelting. The

1

.o

0.5

0.0

DENSITY
CRYSTALLIMITY

20 6

Figure 2.7: Density profiles at the solid-to-liquid and liquid-to-gas interfaces at
various temperatures T7/T,,, from ref. [36].

CHAPTER 2. SURFACE MELTING 33

thickness of the quasiliquid film increases very fast as T, is neared. The growth
behavior is depended on the range of inter-atomic interactions, and in this case of rare-
gas solids the interactions are considered to be long-ranged (van der Waals potential),
and therefore the power law of the thickness growth with temperature was expected
[~ t7P, where [is the thickness of the quasiliquid film, t = 1 — T/T,, is reduced
temperature and the exponent p = 1/3. In the frame of this model, [is defined to
be equal to the number of layers whose crystallinity is less than 1/2 (the interface
with the solid) and the density is no less than 90% of the bulk liquid density (the
interface with the vapor). The theory confirmed the power-law dependence of the

thickness on reduced temperature (See Fig. 2.8). The surface free energy 7 decreases

100 F—— ~
173 SLOPE

LIC1 s

-

L REP(IID)

NUMBER OF LAYERS

Int

Figure 2.8: Dependence of the quasilquid layer thickness upon the reduced
temperature, from ref. [36].

with temperature very fast when T, is neared (See Fig. 2.9). The anisotropy of
~ diminishes with temperature, and both the (100) and (110) surfaces free energies

merge at about 0.97,,. The overall decrease is remarkably large, about 200% form

CHAPTER 2. SURFACE MELTING 34

o 30 U

& (110)

2 _

5 (100)

m Z0f i

T3]

E |

g 1.0}

z | !

= P ..

i g 0.8 i0 1.2
TEMPERATURE

Figure 2.9: Temperature dependence (1'/T,,) of the surface free energy ~ of the
(110) and (100) LJ faces, from ref. [36].

0.5T,, to T,,, in contrast to roughening, where the same decrease of the surface free
energy ~ is about 1%. In this model the surface transition appears to be continuous.
At T,,, v has a vertical tangent and jumps to the value of the surface free energy of
the liquid-vapor interface.

In order to understand the influence of the form of the inter-atomic potential
on surface melting A. Troyanov and E. Tossati [36] investigated the phenomenon
when the sign of the tail of the LJ potential was reversed. The physical origin
of such a weak repulsive at long-range distance was not proposed and the reversion
was merely considered as a tool for better understanding of the phenomenon. But it
seems plausible, that many-body interactions might effectively lead to a long-range
repulsion.

It turns out that a small change of the interatomic potential has a dramatic effect

on surface melting. The surface starts to melt, i.e. few layers become disordered with

CHAPTER 2. SURFACE MELTING 35

the increase of temperature, but further increase of temperature does not increase the
number of molten layers. This phenomenon is called “blocked surface melting” (an
analog of incomplete wetting). This “blocked surface melting” was predicted by phe-
nomenological theories of surface melting [37] and also was observed experimentally
at the Ge(111) surface [38]. It was concluded that the mode of growth of the quasilig-
uid layer is extremely fragile and sensitive to the range and sign of the interatomic
potential.

This theory excludes fluctuations, which may play an important role in surface
melting. For example, both the solid-liquid and the liquid-vapor interfaces are ex-
pected to execute very close to T, a joint “meandering”, i.e. out-of-plane fluctuations,
which is typical for all surfaces about their roughening temperature. It is not clear
that effect could roughening have on the results predicted by the model. Surface
melting and roughening are, respectively, short-range and long-range phenomena,
and need not necessarily interfere one with another. It may happen that locally, on
a short-range scale, the physics is described by surface melting, while globally only
roughening will matter, irrespective of whether surface melting taking place or not.
If in-plane fluctuations are considered, then there is a possibility of a “first layer
melting” [39] at temperatures of order 0.77,,. This transition is acting as a kind of
“gateway” to the subsequent development of a quasiliquid layer. The surface layers
become shear unstable due to anharmonic effects and diffusion of the surface atoms

sets 1in.

CHAPTER 2. SURFACE MELTING 36

2.6 Density functional theory of surface melting

The first density functional theory of surface melting was proposed by R. Ohnegson
et al. [40]. In the density functional approach the central quantity is the grand
canonical free energy functional Q[p| of an inhomogeneous system with local density
p(7), temperature T, and chemical potential p. The grand canonical free energy

functional is given by:

ol = Feaelpl + [@rp(r) {Veu(r) =+ kT (n(A%(r) — 1)} (2.14)
where A denotes the thermal wavelength A ~ (#;)27 Vewt(r) is an external po-

tential, and F...[p] = F[p] — Fia[p] is an excess free energy functional. In general,
the explicit form of Fi..[p] is not known and one has to rely on approximations. For
example, R. Ohnegson et al. [40] used the analytical Percus-Yevick expressions [41]
for the excess free energy functional of particles interacting via Lennard-Jones po-
tential. The main problem is to find the equilibrium density pe,(r) which minimizes
the grand canonical free energy functional §Q[p.,(7)]/0p = 0. The minimization of
the free energy functional was done numerically, using the simulated quenching [40],
which is similar to conjugated gradient method, but considered to be more efficient
than the last one.

Surface melting and especially the onset of anisotropic surface disordering was also
investigated theoretically for the first time (in the framework of density functional
theory). This issue can not be addressed with a phenomenological approach where
the existence of a wetting film viewed as an undercooled liquid is taken for granted,
but requires a fully microscopic theory. Surface melting is visible for each orientation,
with a clear anisotropy in the structure of interface (See Fig. 2.10). The more loosely

packed (110) and (100) planes of a fcc Lennard-Jones crystal are more disordered

CHAPTER 2. SURFACE MELTING 37

than the dense (111) plane. The theory predicts the logarithmic growth law for

p‘ﬂs
AT
) (a)

(100}

pa® ()

“A

| |
;)Il d| ||U|| |u|| \J\J{ U_ﬂj\:_%\ 110y _

i

Figure 2.10: Density profile p(z) vs z for a LJ system obtained from hard-sphere
perturbation theory at the reduced temperature ¢t = 1 — T'/T,,, from ref. [40].

the quasiliquid film [~ —In(¢), which is determined by a short-ranged interaction
between the particles. Besides this, for the (100) surface orientation the hysteresis
effect in minimizing the density functional was observed for increasing and decreasing

temperatures which hints layer-by-layer growth of the quasiliquid layer via a first-

order surface phase transition.

Chapter 3

Numerical Methods

3.1 Molecular dynamics

Molecular Dynamics method (MD) [42,54,55] has become a very powerful tool to at-
tack many-body problems in statistical physics. This method allows studying specific
aspects of complex systems in great detail via computer simulations. Simulations
need specific input parameters that characterize the system in question, and which
come either from theoretical models or from experimental data. These data help to
fix the parameters of the model, the main part of which is interactions between atoms
represented by an interatomic potential.

Once the potential is specified and the initial conditions, i.e. initial coordinates
and velocities, are chosen the MD method can be applied. Molecular Dynamics
are governed by the system’s Hamiltonian H and consequently by Hamiltonian’s

equations of motion:

T (3.1)
qT o (3.2)

38

CHAPTER 3. NUMERICAL METHODS 39

We integrate these equations to move particles to new positions {¢;} and calculate new
momenta {p;}. The Hamiltonian of a system in classical MD simulations is usually
written as a sum of the potential energy V' ({¢;}), which depends on coordinates only,
and the kinetic energy K ({p;}), which is a function of momenta:

2

H=K({p})+V{a}) =3 25 +vig (3.3)

— 2m

The next step is the integration of these equations. For this purpose an integrator
is needed, which propagates particle positions and velocities in time. It is a finite
difference scheme, which moves particle trajectories discretely in time. The require-
ments for the integrator are the following: the integrator has to be accurate, in the
sense that it approximates the true trajectory well enough, as well as it has to be
stable, in the sense that it conserves the total energy and that small perturbations do
not lead to instability. Different integrators could be used to solve Newton’s equations
differing in accuracy, complexity and speed. Among these the predictor-corrector (

PC) [54-56], method was chosen for our simulations (See Appendix A).

Obviously, a statistical ensemble has to be chosen, where thermodynamic quan-
tities like temperature, pressure and number of particles are controlled. There are
algorithms, which fix temperature, volume or pressure to an appropriate value. In
our simulations we use the canonical ensemble (NVT), with Nose-Hoover algorithm
[60] which controls the temperature (See Appendix B) and the extended isothermal-
isotension ensemble (NtT)(See Appendix C) of statistical mechanics [57, 58]. The
last one is used to calculate the shape and the volume, as well as the shear elastic
moduli(See Appendix D) of vanadium containing point defects.

The above mentioned steps essentially define the MD simulations. Having this

CHAPTER 3. NUMERICAL METHODS 40

tool at hand, it is possible in principle to obtain exact results, within numerical
precision and round off computer errors. Of course, these results are only valid with
respect to the model, which enters into simulations. The results of simulations have
to be tested against theoretical predictions and experimental findings.

An important issue of MD simulations is the accessible time and length scale,
which can be explored in MD simulations. It is clear that the more elaborate and
detailed simulation technique is applied, the shorter is the time scale and smaller the
length scale are accessible in simulations, due to limitation on the available CPU time
and/or accessible computer memory. In classical molecular dynamics, in the case
of solid state simulations, the time scale is dominated by the time scale of atomic
vibrations (picosecond), and the accessible length scale is about ~ 100 A.

With the development of faster parallel architecture computers the accessible time
and length scales are gradually increasing. In 1999, as quoted in [59], J. Roth demon-
strated on the Cray T3E-1200 computer in Julich, that it is possible to simulate
more than 5,000,000,000 particles corresponding to the length scale of several thou-
sand angstroms. In another demonstration run quoted in [59] Y. Duan and A. Koll-

man extended the time scale of a MD simulations up to 1 us.

3.2 The interatomic potential

The heart of the MD simulations is the inter-atomic potential. In classical simulations
the atoms are most often represented by point-like centers, which interact through
many-body interactions potential. In that way the highly complex description of
electron dynamics is abandoned and effective picture is adopted. In this picture

the main features like the hard core of particles and internal degrees of freedom are

CHAPTER 3. NUMERICAL METHODS 41

modeled by a set of parameters and analytical functions, which depend on the mutual
positions of the atoms in the configuration. These parameters and functions give a
complete information about the system energy, as well as about the forces acting on
each particle.

The best choice of a potential for simulations of metals is a many-body potential.
It is well known fact that pair-wise potentials, like Lenard - Jones (LJ) potentials :

0_12 0_6

O 0r) = 4% —) (3.4)

r2 - 6
do not give adequate description of all the properties of metals. For example, the
LJ potential imposes the Cauchy relation C1o = Cyy (Ch2, Cyy are elastic constants).
This relation is proved to be wrong for most of the metals. Pair-wise potentials fail to
estimate the structure relaxation and reconstruction around point defects (vacancies
and self-interstitials) in metals. The vacancy formation energy obtained by means of
pair - wise potentials is overestimated, and is found to be about equal to the bulk
cohesive energy.

The solution of the problem is an introduction of a many-body potential, which
include a pair-wise interactions only as part of the full potential. This first part of
the many-body potential accounts for the core - core interactions (or ion - ion inter-
actions), while the second part incorporates the complex nature of metallic cohesion

by an additional term:

v:m+w:§i¢wm+ivw> (3.5)

it i) i=1
where the ®(r) is the two-body part, and the many-body part U(n;) depends on
electronic charge density n; around the atom :

ni=3 plry) (3.6)

ij

CHAPTER 3. NUMERICAL METHODS 42

N, is the number of nearest neighbors of the atom <.

Various many-body potentials for metals, include the Finnis-Sinclair potentials
(FS) [44], the effective medium potentials [45], tight-binding type potentials [47,48],
as well as potentials based on the embedded atom methods (EAM) [43] and the glue
model [46]. Many-body potentials for fcc metals are well developed and thoroughly
tested in numerous simulations. The situation with the many-body potentials for
bcc metals is not so good. That can be explained by the more complicated nature of
the bee metals (especially transition bee metals), where d-orbitals have to be taken
into account. Different versions of the many-body potentials for bce metals are often
adopted for some specific problems, for example, to describe defect configurations in
transition metals at low temperatures. Therefore, it is not clear if these potentials
could be applied to simulate bce metals at high temperatures up to the melting
point. One way to find the answer is to perform simulations, using these potentials,
and compare the results with available experimental data and theoretical predictions.

In our project, the Finnis - Sinclair (FS) potential for a bce metal vanadium [42]

was chosen, for the following reason:
First, the F'S potential gives good description of the properties of transition bcc
metals, and it is widely used in Molecular Dynamics and Monte - Carlo simulations.
Second, the F'S potential is an analytical one, which is more convenient for to use in
MD simulations, than the numerical EAM type potentials. It is especially important
when we calculate high-order derivatives of the potential, for example, in calculation
of the shear elastic moduli.

The FS potential includes the pair-wise and many-body parts:

1 N N
4,3

C i i=1

CHAPTER 3. NUMERICAL METHODS 43

The pair-wise part Vj(r;;) is represented by a quartic form (see below), and the many-

body part V5(n;) of the potential is given by:

Va(ni) = f(n) = —Ay/m; (3.8)

where n; is the local electronic charge density around the atom :
Ng
it i#j

the function ®(r;;) is given by:

O(ry;) = (ry = 4%,y <d (3.10)
0, rj >d
where r;; is distance between the atoms ¢ and j,
and A, d are the fitting parameters.

The function f(n;) is obviously taken to mimic the results of the tight-binding
theory. Indeed, n; can be considered as the local electronic charge density at a site ¢,
which is constructed by a rigid superposition of atomic charge densities ¢(r). This is
actually a viewpoint of Daw and Baskin [49]. To a first approximation, the energy of
an atom at a site 7 is assumed to be the same as if the atom is placed into an uniform
electron gas of that density. The remaining part of the potential is based on empirical
fitting. The pair-wise potential represents repulsive core - core interactions. The pair
potential can be written in the form:

1 N
U = 3 ‘Z'Vl(rij) (3.11)
it 1]

where the pair potential V; is a quartic polynomial:

rij —)% X (co+ crrij + cor?), i <c
Vi(ry) = (ry =)" x{eo Feary - cary), 7y (3.12)

0, Tri; > C

CHAPTER 3. NUMERICAL METHODS 44

It is assumed that c lies between the second and the third nearest neighbors
interatomic distance. The three fitting parameters cg, ¢1, ca can be found using ex-
perimental data. Values of a lattice spacing ag, cohesive energy E,, bulk modulus
B, and the three independent elastic constants C;1,C12 and Cyy have to be taken as
an input to find these fitting parameters. In the case of vanadium, which has a bcc
structure, the values of the above mentioned physical quantities measured at room

temperature, are listed in Table 3.1. The elastic coefficients C71, C1o and Cyy are

‘ Exp. quantities ‘ Numerical values ‘

ao 3.0399 A
E, 5.31 eV
Chy 2.279 eV /A3
Cia 1.187 eV/ A3
om 0.426 eV/A3
B 1.551 eV// A3

Table 3.1: Experimental data used for a semi-empirical FS potential of vanadium,
from ref. [50,51].

taken from the compilation of Bujard [50] and the cohesive energy E, of vanadium is
taken from Kittel [51]. The resulting values for the two-body part of the F'S potential
are summarized in Table 3.2. The most important feature of the F'S potential is its
many-body part, which is explicitly non-central. Therefore this potential is capable to
reproduce correctly the elastic constants. In addition to this property, it reproduces
exactly the lattice parameters, bulk modulus, cohesive energy as well as the phonon
dispersion, surface and vacancy formation energy in good agreement with experiment
[42,44].

Despite the fact that the F'S potentials were explicitly constructed in order to cope

with highly defective systems, such as crystals with point defects, dislocations, cracks,

CHAPTER 3. NUMERICAL METHODS 45

‘ Fitting parameters ‘ Numerical values ‘

d 3.692767 A
A 2.010637 eV
c 3.8 A

o -0.8816318
c1 1.4907756
Co -0.397637

Table 3.2: Parameters of the F'S potential of vanadium, taken from ref. [42].

etc., it was found by Rebonato et al.[52], that some modification must to be introduced
to the original potential for bee metals. It was discovered in series of MD and MC
simulations that the original F'S potentials [42], appear to give unphysical results for
properties involving small interatomic separations, namely the pressure versus volume
relation [52, 53]. Marshese et al. [53], have shown that the F'S potentials predict
thermal expansion that is too low in comparison with experiment and in some cases
even negative. This flaw implies that the FS potentials may be inaccurate at large
distortions of the lattice of the perfect crystal. In order to overcome these problems
Rebonato et al.[53], suggested some modifications of the original F'S potentials. The

repulsive part of theF'S potential was changed in the following way:

Vi(r) — Vi(r) + h(r) (3.13)

where:

K(FND —r)", r<FND
h(r) = (3.14)
0, r>FND

CHAPTER 3. NUMERICAL METHODS 46

with FND as the first-neighbor distance at zero pressure.
FND = agV/3/2 (3.15)

The many-body part was left unaltered.

These fitting parameters for vanadium are in Table 3.3 This modification improves

| KeV/A®| n [FND A |
| 33 [3.0]263271 |

Table 3.3: Parameters of the modified F'S potential of vanadium, from ref. [53].

substantially the original F'S potentials to get adequate description of the pressure
versus volume behavior, as well as overcome high-compression instability of these
potentials. The energies of the stable configurations of vacancies and self - interstitials,
are in good agreement with experimental data [53].

Once a potential is selected the energy and the forces can be calculated. Usually
the potential is cut-off at some distance to speed up the calculations. The cut-off
determines the accuracy of the simulation results, the larger the cut-off length, the
more accurate the results. Besides that, the length of simulation box has to be larger
than the cut-off length. An atom i interacts only with the atoms, whose distance
from the atom i is less than the cut-off length of the potential. The neighbors of the
1 atom are accounted by means of a neighbor list, which contains information about
the environment of the ¢th atom. The neighbor list is usually extended beyond the

cutoff length to avoid the need to update it in every simulation time step.

CHAPTER 3. NUMERICAL METHODS A7

3.3 The initial and boundary conditions

The initial configuration in our simulations is set up by a distribution of all atoms at
the sites of a bee lattice. Afterward the point defects are introduced either by insertion
of extra atoms in a random fashion between the lattice sites (self-interstitials), or by
removal of atoms from the lattice sites (vacancies). These point defects are located at
long distances one from another to avoid, as far as it possible, their interactions. The
initial velocities of all atoms and point defects are set to values which depend on the
temperature according to the Maxwell distribution. When these random velocities
have to be adjusted again to ensure that the center of mass of the system is stationary,
(i.e the velocity of the center of mass is equal to zero).

Molecular dynamics is applied to systems containing usually a few thousands
atoms. Surface effects, i.e. interactions of atoms with the container wall or effects of
the free surface, are dominant in such small systems. In simulations of the crystal bulk
those surface effects are not of interest and may be eliminated by means of periodic
boundary conditions. In order to implement the periodic boundary conditions for N
atoms in a volume V', we imagine that the volume V' is only a small part of the bulk
material. The volume V' is called the computational (or primary) cell, it represents the
bulk material to extent that the bulk is assumed to be composed of the primary cell
surrounded by exact replicas of itself. These replicas are called image cells. The image
cells are the same size and shape. Thus, the primary cell is periodically replicated in
all directions to form a macroscopic sample (See Fig. 3.1).

In order to simulate the surface the periodic boundary conditions have to be
altered. We use periodic boundary conditions only in the z and y directions, which

are parallel to the surface. The system is represented as a slab of layers oriented

CHAPTER 3. NUMERICAL METHODS 48

Figure 3.1: A computational cell and periodic boundary conditions

perpendicular to the z direction. Each layer contains atoms arranged in a bce pattern.

The bottom layers are fixed to mimic the effects of an infinite bulk of the solid.

3.4 Other numerical techniques:
simulated annealing and simulated tempering

Sometimes, we are interested not in dynamics, but in static configurations of the
system, generated by a potential, which describes particle interactions. Minimization
techniques aim to find the configurations that minimize this potential (i.e. local and
global minima). There are different numerical recipes, which can handle this problem
and the most popular one is simulated annealing. Another interesting method, which

was applied in our project, is simulated tempering. This method belongs to the wide

CHAPTER 3. NUMERICAL METHODS 49

class of the accelerated Monte-Carlo methods. These two methods have been applied
to find the equilibrium configurations of point defects at non-zero temperatures in
vanadium.

Let us begin with the simulated annealing. In this method an initial configuration,
a random or a completely ordered one, is chosen and the system is heated up to a
high temperature 7. Then the system is cooled down in a very slow rate, which
depends on specific system under investigation. The Monte-Carlo algorithm is used
to equilibrate and to sample the system during this cooling process.

The sampling of the system is performed in the following way:
1.) A random atom selected and displaced randomly, therefore a new configuration
of the atoms is generated. This displacement is called a trial mowve.
2.) The potential energy of the new configuration of the system F, is calculated and
compared with the potential energy of the system before the trial move Ey;.
3.) If the energy of the system after the trial move is lowered E;. < Ep: the trial
move accepted unconditionally.
4.) But, if the energy of the system is increased, than this trial move could be accepted
with a certain probability, i.e. we generate a random number between 1 € [0, 1] and
compare it with exp(—(Ey — Eyf)/kT).
If this expression larger than the n < exp(—(Ey — Eyf)/kT) trial move accepted,
otherwise it is rejected.

5.) This procedure repeats again and again.

This method allows us to escape from local minima, while we are sampling the
phase space and looking for the global minimum. However, we can not be confident

in general, that using this method we will not be trapped in some local minimum,

CHAPTER 3. NUMERICAL METHODS 20

due to limited time of our Monte-Carlo run (and therefore we can not prove that the
the global minimum is necessary found). If we are trapped in a local minimum most
of the simulation time, then only a small part of the phase space will be explored,
and hence the physical quantities will not be calculated with appropriate accuracy
(pure statistics).

One of effective way to overcome those difficulties is to perform simulations in
a so called generalized (extended) ensemble, where the probability to cross energy
barriers (get away from local minima) could be increased in an artificial way, thus
MC simulations can be sufficiently accelerated. The simulated tempering method,
which belongs to the class of MC' accelerated algorithms [69], has been applied in
studying of point defects configurations at room temperature. This methods was
originally invented by Lubartsev et al. [70], and independently about at the same
time by Marinary and Parisi [71]. In simulated tempering we perform a random
walk in the energy space, like in standard Monte-Carlo method, as well as in the
temperature space. The temperature space, unlike the energy space, is chosen in a

special way, i.e. it has a discrete structure:
T, e {11, Ts,..,T,} (3.16)

We start with an initial temperature T},;;, belonging to the set of the temperatures
{T;}, and perform a usual MC simulation in the energy space:

a particle is picked up randomly, its position changed, and the new configuration is
accepted or rejected according to the Metropolis scheme. After several thousands
of MC steps in the energy space we try to update the current temperature, i.e. to
perform random walk in the temperature space. The current temperature could

be increased or decreased to the value of the nearest neighbor in the temperature

CHAPTER 3. NUMERICAL METHODS 51

space. The higher the temperature, the larger the probability to escape form a local
minimum. In order to accept or reject the temperature update, we have to introduce a
criterion for acceptance (or rejection) of these updates. This can be done by extension
of the canonical Metropolis scheme. We introduce a new probability distribution
P({z},8), 0 = 1/(kT) for the extended ensemble ({z}, (), where by {z} we

denote coordinates of the atoms:

P({z}) = exp(=FE({z}) — P({z}, 8) = exp(=BE({z} + g(5)) (3.17)

where an arbitrary function g(f3), that controls the {f;} = {1/(k,T;)} distribution is
introduced. The function g(() is determined for the set of {3;} => g({5;}) , and we
can use the Metropolis update when we try to change the current temperature. The
algorithm steps are following:

1.) Trial move - change temperature or f3;:

Bi — B
o (3.18)
or B — Bi1
2.) Calculate Ag :
Agiiv1 = 9(Biv1) — (i
9iiv1 = 9(Bir1) — 9(B) (3.19)
Agii1 = 9(Bi—1) — 9(5B:)
3.) If Agi;x1 <0 accept it
4.) Otherwise, pick up a random number 7 from n € [0, 1].
of exp(—Agiit1) > accept it
f (=Agiiz1) > 1 (3.20)

else exp(—Ag;x1) <n reject it
5.) Back to the usual MC steps.
The only question is how to determine g{/;} function? Well, unfortunately, there

is no prescription how to find this function in general. Actually, for each system there

CHAPTER 3. NUMERICAL METHODS 52

is its own special g(f3) function, which reflects the system properties. This function
has to be chosen very carefully, if we want to be efficient, otherwise the system gets
stuck around of some, usually uncontrolled value of 3, and there is no good sampling
in the temperature space, and we return to a standard Monte-Carlo scheme. The

simplest way to choose g(3;) is following:

9(8:) = —log(Z(5)) (3.21)

where Z(3;) = exp(—FF) is the state sum. In this case the system visits all points
of the temperature space and for a long computation run spends at each value of
{f;} approximately the same amount of time. But how do we know value of Z(3)
a priori before the simulation? Any algorithm that requires the value of Z(3) as
inputs appears to be unrealistic because Z(f3) is usually unknown quantity that is
computed , for example, by means of Monte Carlo simulation. The simple solution
is to perform a preliminary MC run, calculate Z(3) and find the initial parameters
of g(/3;) which will be optimized by iterations in several consequent runs. Hence it is
an algorithm which learns to find the optimal values of g(f;) iteratively by means of

the preliminary runs [69-71].

3.5 Analysis of errors

It is often stated that a computer simulation generates “exact” data for a given
model. However, this is true only if we can perform an infinitely long simulation,
which is impossible in practice. Therefore, the results of simulations are always
subject to statistical errors which have to be estimated. Besides that, finite-size
effects, unreliable generator of random numbers, inaccurate potential and numerical

techniques have to be taken as sources of systematic errors into account.

CHAPTER 3. NUMERICAL METHODS 23

The main source of systematic errors could be the interatomic potential, which
is in our case the Finnis-Sinclair potential. The validity of the potential is tested
in our simulations, and it was found that the potential is sufficiently reliable and
gives adequate description of vanadium. The predictor-corrector methods is accurate
enough, provided the time step is chosen appropriately [55,59]. A random number
generator proposed by Ziff et al. [60] which is used in our simulations was checked
earlier and considered to be very dependable [60].

Special attention was payed to statistical errors. In order to gather better statis-
tics, we repeated our simulations with different initial conditions several times, e.g.
the distribution of the initial velocities of all atoms, and positions of point defects were
changed using different seeds for the random number generator. Various correlation
functions were monitored during our simulations, and corresponding characteristic
decay time of these functions were estimated to make sure that equilibrium is indeed
achieved. An average statistical error is calculated according to recipes of statistical
analysis:

(3.22)

where s is a standard deviation:

(3.23)

and T is a simple arithmetic mean value:

T =

zk:x (3.24)

| =

CHAPTER 3. NUMERICAL METHODS o4

3.6 Visualization of MD and MC simulations

Visualization was essential for the development of this project. The complicated
geometries of the crystal surfaces and point defect configurations inside the bulk,
and the correct implementation of periodic boundary conditions are best tested by
visualization tools. Once the simulation programs were prepared and debbuged, the
visualization of the intermediate and final states helped identify phenomena suitable
for a quantitative studying. In one word, it may be stated that "a picture is worth a
thousand words”.

The Atomic Visualization package (AViz) was used extensively in all stages of
this project. Our computational physics group developed the AViz package [72].
This is a very powerful visualization tool which helps to enhance the 3D perception.
It includes a lot of various options, which let one to rotate the still sample, change
relative sizes of atoms, create animations and movies, add and remove the bonds and
borders of the sample, use color coding, slice of the sample and much more. The
user-friendly interactive interface (See Fig. 3.2) simplifies the use of all these options

in the visualization of computer simulations.

CHAPTER 3. NUMERICAL METHODS 25

X -+

File Views dettings [Data Help

AutoMation... |

Fender Styk: [Spherss | Spe: [100% =] Qualiy: [Final -]) _abnsg)

dnap
W Live Update ¥ Showe Axes Only Contour W Cantaur Off

Autofinap

|Loaded wan_3150000%/2

Figure 3.2: Atomic Visualization package developed by the Computational Physics
Group, Technion.

Chapter 4

Results: bulk melting transition

4.1 Bulk melting:
the objectives of the research

The main question, that is addressed in this part of our research, is how point defects
influence on properties of the solid, and especially on its bulk melting temperature. To
answer this question we investigated the various properties of a crystal of vanadium,
containing point defects at different concentrations, as a function of temperature.
The first task was to investigate the “structure” of point defects, i.e. to find all pos-
sible configurations of atoms around a self-interstitial, and choose the most stable
one (at low temperatures). The second objective was to find whether the various
properties of the solid are affected to the same extent by self-interstitials and vacan-
cies. Futhermore, to gain a better understanding of the role of the lattice structure a
comparison was made between the results of our simulations (vanadium, bce lattice)
and the results obtained by A. Kanigel et. al [67] (copper, fcc lattice).

A. Kanigel et al. discovered that the bulk melting temperature of copper depends

56

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 57

on the concentration of point defects (namely self-interstitials). Point defects expand
the volume of the solid to a critical value at which the mechanical melting transition
is triggered. According to A. Kanigel et. al the bulk melting transition is lowered
by point defects! However, it was not clear if this mechanism of bulk melting is
universal or it is specific for the fcc lattice of copper. Therefore, the primary aim of
our investigation was to establish whether this mechanism is applicable for vanadium

and point defects could lower the bulk melting temperature of this solid.

4.2 Investigation of the properties of
a perfect crystal of vanadium

The aim of this project is to investigate the role of point defects in the bulk melting
transition. With this aim in mind we examine the properties of a perfect crystal of
vanadium before introducing defects into the bulk of the solid. We have chosen a set
of physical properties of the solid, which are relevant in studying of melting transition.

First of all, a structure order parameter n was considered which can help in
distinguishing between the crystalline and liquid phases, as well as in the detection

of the melting transition. The structure order parameter is defined as:

y = <% > (4.1)

where: k = 0,0, %’T] is a vector of the reciprocal lattice, r; is a vector pointing on the

N
Z exp(ikr;)

=1

atom i, N is the number of the atoms in the system, <> is ensemble average. The
structure order parameter is unity at zero temperature, when all atoms are at rest at
their lattice sites (See 4.2), but at non-zero temperatures 7' < T,, its value is less than

unity, 0 < 1 < 1 due to the atom vibrations and defect formation (See Fig. 4.3). This

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 58

parameter fluctuates around zero (n ~ 0) for a molten crystal 7" > T}, when the bcc
structure is completely lost (See Fig. 4.1). The shape and the volume of the sample

0.7

vanadium b.c.c
0.6
.
Q
7]
g 05¢ .e
] 0 0 ‘o Temperature 2500 K
8 P lai, :,23?
= PR a2
() 0438 a°% ok 2% °,
2 ’ ?0 - FOR
= .
6 I X
E . Rt
=1 .
£ o03f ."'
2 H)
7] %
0.2 B
.
.
H
01)
Il Il Il
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7
6
MD Steps x10

Figure 4.1: Evolution with time of the structural order parameter at melting
transition, initial conditions are those of a solid at 7" = 2500K.

at various temperatures are other properties of interest to us. Those properties could
be investigated by means of the Parinello - Rahman (PR) method [68]. Using this
method we inspected the diagonal as well as the off-diagonal elements of the H,g
matrix which describes the shape and the volume of the sample (See Appendix D
for more details). The elements of H,g were recalculated in each MD step, and their
mean values were obtained by averaging over more than 4,000, 000 steps in a steady-
state. The variation of the diagonal elements, of a sample containing 2000 atoms is
shown in Figure 4.4, and the variation of the off-diagonal elements are represented
in Figure 4.5. We found that the shape of the computational cell, at zero stress
and pressure, is a cubic one. The values of the off-diagonal elements fluctuate around

zero, and the difference between the diagonal elements of the H,3 matrix is negligible.

CHAPTER 4. RESULTS: BULK MELTING TRANSITION

59

¥
MW T

i‘l'f e

Tn

.
£7 0 DR I e NS

& e e 8 @

et
* e L)
NN
e B
i e Wy &

Figure 4.2: A perfect bee lattice of vanadium at 7' = 0K, 2000 atoms.

Figure 4.3: A bce lattice of vanadium at T=2100K, 2000 atoms.

CHAPTER 4. RESULTS: BULK MELTING TRANSITION

60

Vanadium B.C.C. atoms: 2000

32

—
— 22
— 33

angstrom

MD Steps x10°

Figure 4.4: Variation of the diagonal elements of H,s in time at 7" = 2450 K.

Vanadium B.C.C. atoms: 2000
olp

-0.1
0
MD Steps

Figure 4.5: Variation of the off - diagonal elements of H,s in time at T = 2450 K.

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 61

BCC Vanadium: 2000 Atoms
154

® simulaions
—— experimental extrapolation

.

o

N
T

i
a
T

[N

>

©
T

Specific volume N
= N
B B
IS >
T T

[
>
N

l/
13.8 I I I I I I I I I I
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Temperature T(K)

-
~

Figure 4.6: Specific volume of a sample with 2000 atoms as function of temperature
in comparison with extrapolated experimental data.

Knowledge of the elements of the matrix H,s allows us to calculate the volume of the
sample V' = det(H,p3) as a function of temperature (See Fig. 4.6). Relying on these
data the thermal expansion coefficient is estimated

_ 1oV
VvV or

Qi

(4.2)

We found that the thermal expansion coefficient at low temperatures is

Qeate = (18 £6) x 107¢ [1/K] and its value is the same order as the experimental
value measured at room temperature v, = 8.6 x 1079 [1/K]. The thermal expan-
sion of vanadium was studied experimentally only at the room temperatures, far from
the melting point. Thus, in order to compare the results of our simulations at high
temperatures with the experiment we would have to extrapolate the available experi-
mental data to the high temperature region. The simplest approximate extrapolation

formula for the thermal expansion was applied:

v(T) = vy exp(Qexp (T — 1)) (4.3)

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 62

where vy is the molar volume at room temperature 7y (See Fig. 4.6). The calculated
values are closer to the experimental data at low temperatures. This result could be
expected, since the lattice constant a measured at that temperatures was used as an
input parameter for the FS potential. At higher temperatures deviation from the
experiment is larger, possibly due to the large anharmonicity introduced by the F'S
potential.

The above mentioned quantities: the structure order parameter, the shape and
volume as well as the total energy and pressure of the system were calculated in
the framework of the Parinello Rahman method (NtT' ensemble). The bulk melting
temperature (strictly speaking its upper limit) was also estimated by slowly heating
the perfect sample up to the temperature at which the crystal lattice becomes unstable
and collapses. At the same time the order parameter jumps to zero and the shape
of the sample changes from cubic to tetragonal. In addition, we calculated the shear
elastic moduli C,3 using method proposed by Parinello and Ray (NVT ensemble) (See
Appendix C). The stress tensor fluctuations as well as the mean value of the Born term
were calculated to find the shear elastic coefficients. The Born term converges very
fast in comparison with the stress tensor fluctuations which reach their equilibrium
value at a given temperature after a very long time (about 1, 500, 000 steps in average).

The variation of the elastic coefficients as a function of MD time steps is shown in

Fig.4.7

4.3 Bulk melting and point defects

After investigation of a perfect crystal of vanadium, point defects, i.e. the simplest

structural imperfection in solids, are introduced either by removal of atoms (vacancies)

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 63

Vanadium B.C.C. Atoms: 2000 T=2200 K
0.5

— “u
—C

0.4r

| —

0.2

Shear Elastic Coefficients

0.1r

Il Il Il Il Il I}
0 0.5 1 15 2 2.5 3
MD Time Steps x 10°

Figure 4.7: The shear elastic moduli vs. time at temperature 2200 K.

from lattice sites or by insertion additional atoms of the same kind (self - interstitials)
between the lattice sites (See Fig. 4.8). Initially these point defects are distributed
homogeneously inside the bulk of the solid. In our simulations we introduced point
defects of one type only to avoid their mutual annihilation or recombination. The
off - lattice Monte Carlo method, namely simulated tempering, was implemented to
find the most stable configuration of atoms in the vicinity of a point defect inside the
bulk at low temperatures. Our simulations were carried out for a sample containing
128 atoms plus a self-interstitials (128 + 1), and the temperature set was chosen
to be {75 K,80 K,85 K,90 K}. The most energetically favored configuration was
found to be the < 011 > dumb-bell split - interstitial with a formation energy of
E; =4.18+0.02 eV (See Fig. 4.9). The defect formation energy was calculated in
following way:

E; = E(N —1,1) — E(N,0) (4.4)

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 64

ol
~

R
%JJJJ
v & 9 899

r A U O R R
L IEL BT S S A

1T ST R R R A

P

")
A 8 & 8 @ 2
T B T R R R
= BT BEl B N N)
4 & &9 8
.“.
AT SEL SEY BRSNS
F & F 80

4

,'-.“'
AT T BT R I A

AT TR R R

o
o
-

4

LY
‘_"n
R
“r
o
:#
‘-‘
‘J

Gl o 8
‘,.-"
¥
s
'y
a
"

Figure 4.8: An initial configuration of 5 interstitials in a sample with 2000 atoms.

where E(N, Ng.r) is the potential energy of a sample which contains N lattice atoms
and Ny point defects. The potential energy of a perfect crystal with N atoms is
given by:

E(N,0) = NEqp (4.5)

where E.,, is the cohesion energy per atom calculated for a pure sample. The cal-
culated value of the defect formation energy Ey = 4.18eV is close enough to the
results obtained by Ackland et. al [73] using the DEVIL program which based on the

conjugate-gradient method. (See Table 4.1).

‘ Type of split - interstitial ‘ Formation energy, eV ‘

< 001 > 4.963
< 011 > 4.163
<111 > 4.608
crowdion 4.6

Table 4.1: Defect formation energy of various split-interstitial defects, from ref. [73].

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 65

Figure 4.9: A < 011 > dumb - bell split - interstitial in a bec metal vanadium.

Other possible configurations (octahedral, tetrahedral, crowdion) possess larger defect
formation energy, and therefore they are less energetically favored and less stable. In
our simulations we implemented various initial configurations:either we started very
close to the most stable configuration, i.e. < 011 > dumb-bell split - interstitial, or
inserted an additional atom in a random fashion between the lattice sites (See Fig.
4.10) In each case, the configuration with lowest formation energy was found (See
Fig. 4.11). When the most stable configuration of point defects inside the bulk
of vanadium was found, we began to study how point defects influence the various
properties of vanadium which is interested to us. To simulate bulk properties of
vanadium we prepared various samples with different concentrations of point defects.
The MD simulations were performed in the NtT ensemble by using the PR method.
We found that introduction of point defects leads to the structural disordering (see
Fig. 4.12). Increase in the concentration of self - interstitials results in noticeable

decrease of the structure order parameter 7, while the same effect of vacancies is

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 66

Figure 4.10: An initial configuration: an interstitial (white color) and its neighbors.

Figure 4.11: Equilibrium configuration of the < 110 > split interstitial.

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 67

Temperature

T=2200 K

A T=2300 K
T=2400 K

+ T=2450 K
+ T=2500 K

n Structure Order Parameter

.

0
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
Interstitial Concentration

Figure 4.12: Structure order parameter as a function of concentration of
self-interstitials at several temperatures.

relatively weak (See Fig. 4.13). Self - interstitials expand the volume of the sample as
it is shown in Fig. 4.14 where the lattice parameter a ~ (V/N)'/3 while vacancies lead
to decrease of the volume (See Fig. 4.15). It is interesting to compare the dependence
of the specific volume on the concentration of self - interstitials for vanadium (bce
lattice) and copper (fce lattice). In both cases the specific volume is increased, but
for fcc lattice the effect is more noticeable. This effect can be attributed to the
more compact structure of the fcc lattice, where even a small concentration of self -
interstitials lead to a large distortion of the fcc lattice, and therefore is more noticeable
in comparison with the bcc lattice.

The next stage of our bulk simulations is the most important one - investigation of
the role of point defects in bulk melting transition. According to the Born criterion
[9, 16] bulk melting transition takes place when the specific volume of the crystal

reaches a critical value. As shown by Kanigel et. al [17,67] and it does not matter

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 68

0.651
064 A A
LR X A
. X A
9 T~ A
£ e “
s 0.55[* * A
3
o o o o
b o o ¢
o o _e® o
S o5 ~eee o
(¢] ~_ e =]
o T~ e
=] T ~
o e
50451
2 Temperatures:
= & siT=2200K
@ siT=2400K
0.4r A vaT=2200K
O vaT=2400K
035 Il 1 I
0 0.005 0.01 0.015

Concentration of point defects C%

Figure 4.13: Structure order parameter as a function of point defect concentration.
A comparison between interstials and vacancies. The lines to guide the eye.

in which way the critical value is reached. The critical volume at which crystal melts
could be attained either by heating of the sample or by doping it with point defects at
a constant temperature which leads to the expansion of the sample and in the end to
melting. The temperature at which melting occurs can lower than the bulk melting
point of a perfect sample, i.e. point defects lower the bulk melting temperature! In
this sense the mechanical melting process is universal, e.g. it determined only by the
sample expansion up to the critical volume.

In our simulations we verified that theoretical prediction. We prepared samples
with a specified concentrations of point defects, and heated them gradually up to
the melting point. In this way the value of the critical volume and the bulk melt-
ing temperature T, was obtained. By repeating this procedure for various defect
concentrations we found the dependence of the bulk melting temperature on the con-

centration of point defects.

CHAPTER 4.

RESULTS: BULK MELTING TRANSITION

69

Figure 4.14: The lattice parameter a as a function of the concentration self -

311

3.1

A AT T=2200 K

Lattice parameter (A)

A Temperature:

-4 - T=2300 K
T=2400 K
-v- T=2450 K

3.105

3.0950

I I I I I I |
0.002 0.004 0.006 0.008 0.01 0.012 0.014

Self —interstitial concentration (%C)

3.085 ¢

Lattice Parameter, [A]

3.08

3.075

interstitials.
4
° -
/or e
o0 _
_ @ _
B 4
_é
- -
= =
7 u} o o
X/‘ ¢ o o
N A A
A
A
A
Temperature A

—- siT=2200K
@ siT=2400K
A vaT=2200K
O vaT=2400K

3.07
0

I I |
0.005 0.01 0.015

Conentration of point defects C%

Figure 4.15: The lattice parameter a as a function of the point defect concentration.
A comparison between self - interstitials and vacancies.

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 70

The initial temperature is far below the melting point of a perfect sample T" ~
0.7T}, (the bulk melting temperature T, = 2500+5 K is calculated in the simulations
of perfect sample). After each 100,000 MD steps we increased the temperature by 100
K until we reached 2100 K. After that the temperature was increased by in a smaller
step of 50 K followed by 200,000 MD steps. In the end we reached the temperature of
2400 K, and from this point and onward we increased the temperature incrementally
by 10 K. In this region each sample configuration (positions and velocities of all
atoms) was saved before the elevation of the temperature, in order to use the stored
configurations again if needed. The number of MD steps between two successive
temperature changes was increased to 2,000,000 MD steps. At some temperature we
observed an abrupt decrease of the structure order parameter, and a drastic increase
of the total energy and the volume of the sample (See Fig. 4.16 and Fig. 4.17).

At that temperature one sees a sharp bifurcation in the lattice dimension where

Vanadium

° Temperature 2440 K
B

Total Energy, eV
A
N
T

MD Time Steps x10°

Figure 4.16: Increase of the total energy at the melting point.

CHAPTER 4. RESULTS: BULK MELTING TRANSITION

Vanadium 2000 atoms + 4si

* Temperature 2490 K \

155

Volume, A2

[
&

0.7 0.8 0.9 1 11 1.2 13 1.4 15
MD steps x 10

Figure 4.17: Jump of the sample volume at the melting transition.

Vanadium B.C.C. Atoms:2015

azp [Temperaiure 2440K |
4l 1’1, \ w ’\ Aﬁ "}Wﬂ

3.8

Y
i W) oy

J

3.6

3.4

ao

3.2

28 W
a6l WWWW M
24r
22 I I I I I I I I}
6 6.5 7 75 8 8.5 9 9.5 10
MD Steps X 105

Figure 4.18: Variation of the diagonal elements of the H,3 matrix at the bulk
melting transition.

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 72

the system elongates in two directions and contracts in the third (See Fig. 4.18).
This is a clear sign of symmetry change, from cubic to tetragonal. The same effects
were observed at melting transition of fcc metals [63]. Bulk melting transition occurs
during a very short time scale corresponding approximately to the several vibration
periods of atoms.

It is not improbable that we do not encounter the true bulk melting temperature,
but find only its upper limit. It is not known in advance how long the simulation
has to be carried out before the expected phenomenon will be observed. There is a
possibility that we missed the melting point during the heating of the sample and
the melting transition would occur at a lower temperature, provided we could run
our simulations for a longer time. Therefore, after the upper limit is detected, we
returned to one of the previous configurations. The temperature of the recovered
configuration is lower than the bulk melting temperature, but close enough (actually
we took the closest one). The simulation were repeated for a quite long time up
15,000,000 MD steps, in the hope to observe a possible melting transition. If the
transition was observed, we repeated the procedure again.

The results of the various simulations performed at the different temperatures and
the defect concentrations can be summarized in a phase diagram (See Fig. 4.19). We
see that increase in concentration of the self - interstitials leads to decrease of the
bulk melting temperature, while the vacancies almost do not affect the bulk melting
temperature, at least if their concentration is small. The same effect of decrease of
the bulk melting temperature induced by point defects was obtained by A. Kanigel
[67] for the fcc metal copper (See Fig. 4.20). If we compare the phase diagram of
vanadium with the phase diagram of copper, then it can be immediately seen that the

melting point of vanadium is lowered by 50K at a concentration of self-interstitials

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 73

BCC Vanadium: 2000 Atoms + Point Defects
2520

B self-interstitials
A vacancies
2500 B A A A A A A
L]
2480] A A
L]
o] L]
2
© 2460
a
5]
(3}
= 24401 L]
j=2)
£
ko)
= 2420+
[}
e
=
2400
2380
L]
2360 1 1 1 1 1 1
0 2 4 6 8 10
Point Defect Concentration X107

Figure 4.19: The influence of point defects on the melting temperature of vanadium
obtaining using periodic boundary conditions.

about 0.006%, while the melting point of copper is lowered by 80K at the same defect
concentration. Interstitials in copper induce larger distortion of its close packed fcc
lattice, than interstititials in vanadium. Therefore, the specific volume of copper is
increases more than that of vanadium, and a smaller temperature increase is needed
to expand copper up to the critical volume, at which melting occurs.
In conclusion, some additional remarks are necessary:

First, the concentration of point defects in the simulations is increased up to a high
enough value ng; ~ 1072 [defects]/[atoms] to see their possible effect on the bee
lattice of vanadium. This is unrealistically large value in comparison with the typical
laboratory values ng.; ~ 107° [defects]/[atoms]. At these high defect concentrations
the effect of self - interstitials and vacancies could not be considered as a simple lattice

expansion in analogy with the thermal expansion. One has take interactions between

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 74

1580 .
. Melt
lh“‘m,p
DM&“ * .
1530 T) 8
& o O »qu. . .
— o T, = »
— O e"-a
‘"“'-\-h‘__ ®
1480 r oo B e
Solid %
m
O O
1430
0 0.002 0.004 0.006

Concentration of split-interstitials

Figure 4.20: The influence of point defects on the melting temperature of Cu, a
sample of 1372 atoms, from ref. [67].

these defects into account, which alter in some way the physics of the phenomenon
Second, we can not neglect the fact that MD simulation with the Noose - Hoover
thermostat is plagued by temperature fluctuations due to the small sample size. That
means it is hard to approach Tj to an accuracy of better than about ~ 1%. In
summary, it could be noted that the calculated phase diagram is qualitative, because

of the finite sample size and the finite time of our computer simulations.

4.4 Influence of interstitials on the shear moduli

Some time ago it was shown that for the bulk melting transition a strong correlation
exists between the volume dependence of shear elastic coefficient and melting. It was
discovered [16,67] that the volume of the melt at the melting point can be predicted

by a continuous extrapolation of the shear modulus to zero as a function of volume

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 75

(at zero external stress). In another words, a bulk melting transition will occur in an
infinite crystal when it will be expanded up to a critical volume (molar volume of the
liquid phase) at which the shear moduli (or at least one of them) will vanish. This
observation lends considerable credibility of the Born mechanism of melting. Accord-
ing to the Born criterion, mechanical melting at zero external stress, is described by
the criterion C’ = 0, either in perfect or imperfect crystal containing point defects.
This could be verified directly in MD simulations by calculation of the shear elastic
moduli at various concentrations of point defects. For any concentration of defects the
number of atoms and unit cells in the sample is kept constant in our simulations, so
that the number of externally introduced defects is conserved. Under this constraint,
atoms and point defects are free to diffuse, agglomerate, etc.

The simulations at various temperatures and concentrations showed that the shear
moduli C” and Cyy decrease when temperature or/and concentration is increased (See
Figs. 4.21 -4.24). The common trend is that self - interstitials induce a noticeable
softening of the shear moduli. This softening is anisotropic, in the sense that Cyy
softens more than C’. The absolute change of the shear elastic coefficients per percent

of interstitals is larger for Cyy at the high temperatures, as summarized in Table 4.2.

| Temp(K) | AC'/AS (GPa/%inters) | ACyu/AS (GPa/%inters) |

2100 —8.1 £2.6 —11.3 £0.5
2300 —6.27 £1.8 —8.97 £1.0
2400 —5.25 £24 —10.07 £0.7

Table 4.2: Change in shear elastic moduli C” and Cyy of vanadium per percent of
self - interstitials (S) at various temperatures.

The same effect of anisotropy in softening of the shear moduli was observed for copper

[67] (See Table 4.3). Qualitatively, a similar dependence of the C’ and Cyy on point

CHAPTER 4. RESULTS: BULK MELTING TRANSITION

76

0.6

0.4

C' (eVIAY)

0.2

Shear Elastic Coefficient C’

Self =interstitials
concentration (%):

voobo

i
L L L L L L L L L L L
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Temperature, T(K)

Figure 4.21: Variation of C’ with temperature.

0.4

0.35

0.3

C, (eViA®)

44

0.2
0.15

0.1

Figure

Shear Elastic Coefficient C 4

Self —interstitial
L B concentration (%):

0
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035

<
*AYPLODO

i i i
500 1000 1500 2000 2500
Temperature, T(K)

4.22: Variation of Cyy with temperature.

CHAPTER 4. RESULTS: BULK MELTING TRANSITION

77

The shear modulus C’

0.16 -
- o Temperature:
0147 T TTerelll T=2100K
o i T
5] T
012 I . ?
s T =2200 K
m;:\ L 4
S o R : 0
o v Voo v o
~ [- -
13) v . T=2300K
0.08- : Ve
006} Iz % B
“A . T=2400K
0.04 L L L L L L L L I
-0.5 0 0.5 1 15 2 25 3 35 4
Concentration of self — interstitials (%) x10°

Figure 4.23: Variation of C” with self-interstitial concentration. The dashed lines to

0.26

0.24

o
N
N

3
C,, (eVIA%)

0.18

0.14

guide the eye.

The shear modulus C44

I
T -- ~) Temperature:
‘ = el T=2100 K
1 g g Tl
T T=2200K @
L o] u]
J VA v
T=2300 K
L v <
v
A A A v
[- A
w - T=2400 K
> A H
k T=2500 K
p >
1 L L L L L L L
0 0.5 1 15 2 25 3 35

Concentration of self-interstitials (%)

Figure 4.24: Variation of Cyy with self-interstitial concentration. The dashed lines

to guide the eye.

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 78

| Temp(K) | AC'/AS (GPa/%inters) | ACyu/AS (GPa/%inters) |

1400 —3.5 £2.0 —-23 £1.7
1450 -4.1 £2.0 —18 £25
1480 —7.8 £3.5 —155 £1.3

Table 4.3: Change in the shear elastic moduli C’, Cyy of copper per percent of self -
interstitials (S) , obtained by A. Kanigel et al. [67].

defects concentration is obtained (See Figs. 4.25 and 4.26), yet quantitatively bcc
lattice is less softened by the presence of self - interstitials, especially for the shear
modulus Cyy.

We compare the change of the shear elastic moduli caused by point defects with
the similar change induced by thermal expansion of a perfect sample, i.e. we heated a
sample without point defects up to a temperature at which its volume is equal to the
volume of a sample with point defects but at a lower temperature and compared the
shear moduli. We knew from the simulations in canonical ensemble (NVT), how the
shear moduli depend on the concentration of interstitials. Dependence of the specific
volume on the concentration of defects was obtained by means of the PR method.
If we take into account that there is a one-to-one correspondence in both cases, then
we can find how the shear moduli depend on the specific volume (See Fig. 4.27).

We found that the dependence of the shear moduli on the specific volume is
the same whether the volume expansion is induced by the thermal expansion or by
point defects. That is to say that effect of interstitials is mainly to expand the bcc
lattice of vanadium, and when the critical volume is reached the solid melts. It
was obtained in the PR simulation of melting that specific volume per atom at the
melting point is v, = 15.02 £0.1 A*. An identical value (within the stated accuracy)

of v, = 14.95 £0.08 A3 is obtained by extrapolating the dependence of C” on specific

CHAPTER 4. RESULTS: BULK MELTING TRANSITION

Shear elastic coeficient C .
014 :

e o
&
—~ ©
o
<
>
@ o012
3 Temperature:

(@]

0.1 L L L L L L L L i

-05 0 05 1 15 2 25 3 35 4

Concentration of self - interstitials -3

Figure 4.25: Dependence of Cyy on the self-concentration of interstitials.

404

mBr

C,{GPa)

30

25 * |nterstitials
o \Vacancies

20

0 D002 0.004 0.0086 0.008
Defect concentration

Figure 4.26: Dependence of Cyy on the concentration of defects at T=1400K,
obtained by A. Kanigel et al. [67].

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 80

Vanadium
015

Self — interstitials
at various temperatures

2200
2250
2300
2400
2450
2460
2465
2480

*AyPLODO

@ Thermal expansion

Shear Elastic Coefficient C’

The critical volume

0 1 1 1 1 1 1 1 1]
14.6 14.65 147 14.75 14.8 14.85 14.9 14.95 15 15.05 15.1

Specific Volume, IN

Figure 4.27: Variation of the elastic modulus C’ with specific volume. Solid line is a
quadratic extrapolation.

volume up to the point at which C’(7,) = 0. The values of the critical specific volume
are close to the specific volume of liquid vanadium at the thermodynamic melting
temperature [74] is vy, = 15.431 A?

Similar results were obtained for copper (fcc lattice) by A. Kanigel et al.[67,92](See
Fig 4.28), and J. Wang et al.[15]. Using the molecular dynamics method, it was shown
that the Born’s melting criterion is valid for the mechanical melting which occurs when
the free energy based heterogeneous melting starting from surface or grain boundaries
is kinetically suppressed. It was predicted that the incipient instability C’ = 0,
occurring at the observed lattice strain a/ay = 1.024, where a lattice parameter at
T = 1350K, and ay lattice parameter at T = 0K . Therefore the specific volume
ratio of copper is (a/ag)® = 1.074 which is very close to the value obtained for Va
v(T,,)/v(To) = 1.075. This result hints that the ratio a/a¢ could be a univesal and

independent of lattice structure, but to check that assumption it is necessary to

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 81

investigate the bulk melting transion of other bce crystals.

30 ‘
4 thermal expansion
0 defects at 400K
A o defects at 1450K
20 | m@ < defects at 1480K
T B
& 2 liquid
O
10 - A i
4 a
A
" j
0 ‘ '\Xij
3.6 3.7 3.8

o

Lattice constant(A)

Figure 4.28: Dependence of C” on the lattice constant for bulk Cu, showing the
equivalent effect of addition of point defects at constant T and heating without
point defects, from ref.[67,92].

4.5 Influence of vacancies on the shear moduli

The significant influence of self - interstitials on the shear elastic moduli raise the
question of whether vacancies could have a similar effect. It is known that if the
lattice is distorted in the neighborhood of a vacancy some new vibrational modes of
atoms are created. The effect could lead to softening of the solid. Yet, according
to our simulations the shear elastic coefficients are less affected by the vacancies in
comparison with self - interstitials, as it is shown in Figs. 4.29-4.30. It is interesting to
notice that at high vacancy concentration of 20/2000 = 1% we observe the noticeable
reduction of the shear elastic moduli of vanadium, in contrast to the results obtained

for copper by A. Kanigel [67] (See Fig. 4.26). However, at these concentrations

CHAPTER 4. RESULTS: BULK MELTING TRANSITION 82

interactions between the vacancies are not negligible, and that complicates the physics

of the phenomenon.

Vanadium
012
011t A
A
o1f A
[

& 009 = A
<
H L
o 008 : : L A
H L) B
g o7t o o =
2 e T
g -
T 006 ~® S
g ° Te- [
B 0.05- T

0.04F T @ siT=2300K a

@ siT=2400K
A vaT=2300K
003l . . . O vaT=2400K

L L L L L L L L L i
0001 0002 0003 0004 0005 0006 0007 0008 0009 001

Point Defect Concentration S%

Figure 4.29: Dependence of C’ on the concentration of point defects at T = 2300 K
and T = 2400 K , showing the difference between influence of vacancies and
interstitials. The dashed lines to guide the eye.

Vanadium
023
A @ siT=2300K
022 vaT
< a o _vaT=2400K
oz} 3 A A
o A
<
H 02F .
& N N
< o * -
2 o} e ® R £
3 [N
= N N
o oasf A
s X
= N
o N g
E 0171 [
& N
e
0.6 <
015 a
014 i i i i i i i i i ;
o 0001 0002 0003 0004 0005 0006 0007 0008 0009 001

Point Defect Concentration S%

Figure 4.30: Dependence of Cy4 on the concentration of point defects at T = 2300 K
and T = 2400 K , showing the difference between influence of vacancies and
interstitials. The dashed lines to guide the eye.

Chapter 5

Results: surface melting

5.1 Surface melting: the goal of research

As is stated above the bulk melting transition is preempted by the surface melting
transition and therefore can not be observed experimentally (at standard conditions).
The aim of this part of our research was to investigate the phenomenon of surface
disordering and premelting.

The questions that are addressed in our computer simulations are following:
What is the thermodynamic melting point at which the solid starts to melt from
the surface in our model? How the structural, transport and energetic properties
of the solid change at the surface region as a function of temperature? At which
temperature surface disordering and premelting begins and an adlayer appears on
the top of the surface layers 7 Whether surface premelting of various low-index bcc
faces of vanadium is different (anisotropy)? If the phenomenon is anisotropic, whether
the anisotropy “follows” the packing structure of the vanadium faces (e.g. one could

expect the least packed surface (111) begins disorder first, while the close packed

83

CHAPTER 5. RESULTS: SURFACE MELTING 84

surface (011) may preserve its crystalline structure up to 7,,)? Of course, this is not
a complete list of questions which might be asked, the list can be easily continued
furthermore. However, the main question, to which we want provide the answer,
was whether the Born scenario for the bulk melting transition (e.g. the concept of
a critical volume) can be applied to explain the surface melting? In the following

section we will try to answer these questions.

5.2 Initial configuration

In our simulations a semi-infinite system is modeled via a thick slab: 3 fixed layers
at the bottom (to mimic the effect of the presence of the infinite bulk of the crystal),
and on top of these 3 layers there are 24 layers free to move (See Fig.5.1). Due to
the relatively short range of the repulsive part of the modified FS potential, the 3
fixed layers are sufficient to represent the static substrate. We use a slab with [10x10]
geometry (100 atoms in a layer), for samples with Va(001) and Va(111) faces (see
Fig. 5.2 and Fig. 5.3), and a slab with [7x7] geometry (98 atoms in a layer) for
the Va(011) sample as shown in Fig. 5.4. A free boundary at the top (z axis is
perpendicular to the free surface) and periodic boundaries at the sides along the x
and y axes are implemented.

In order to construct samples with the different low-index faces one can use primi-
tive unit cell vectors. Alternatively, it is possible to construct a large Va(001) sample,
rotate the axes and cut a subsample with the desired low-index face geometry (See
Fig 5.5 and Appendix E.) The geometric properties of the different samples are sum-
marized in Table 5.1. The lattice parameter ag is calculated for various temperatures

at zero external pressure by means of Parinello-Rahman method. In each simulations

CHAPTER 5. RESULTS: SURFACE MELTING 85

of the surface premelting aq is rescaled with temperature by interpolating the data

obtained in the bulk simulations.

‘ Surface ‘ ay ‘ ay ‘ a, ‘ Ps ‘
Va(001) | ag ag ap/2 1/a?
Va(011) | v2a0 ag ag/ V2 V2/a?
Va(111) | V2ap | \/3/2a0 | ao/(2V3) | 1/V/3d2

Table 5.1: A list structure parameters of different low-index faces of a bec crystal;
ag, ay, a, are the nearest - neighbor distances in the x, y and z direction,
correspondingly, (indicated in units of the lattice parameter ag), and py is in-plane
surface density

5.3 Equilibration and calculation

In order to reach an equilibrium at various temperatures 1T’

(See Fig. 5.6) a sample is equilibrated for N, = 10,000 integration time steps (with
time step dt = 1.02 x 107'%sec). Thereafter the various structural and transport
properties of the system were calculated, accumulated and averaged over a long period
of Npeas =~ 6,000,000 MD steps. The trajectories of the atoms of the sample are
produced for data analysis by using the canonical ensemble (NVT).

Various physical properties are monitored continuously during the simulation. An
equilibrium state is considered to be achieved when there are no significant temporal
variations (beyond the statistical fluctuations) in the total energy, layer occupation
number, structure order parameters, and diffusion coefficients are seen in any of
surface layer. A uniform profile of kinetic temperature across the sample is observed
at the equilibrium for each temperature (See Fig. 5.7). The statistical averages have

been calculated typically over 3,000 configurations, separated by 1000 time steps

CHAPTER 5. RESULTS: SURFACE MELTING 86

Figure 5.1: An initial configuration (Va(001) sample) : different colors are given to
the atoms of the different layers to visualize their mixing in the course of surface
premelting.

Figure 5.2: Geometry of the Va(001) surface. Top view.

CHAPTER 5. RESULTS: SURFACE MELTING

87

Figure 5.3:

Figure 5.4:

POOOEEOEEEES
OO0 EOEEEEEES
POOOOEOEEGE
PeOOOEOEOEES
POOOOOEOGEOGE
PeEOOEOEEEEES
COOCOIEEEE
e OOOCOEES
COOOOEEEEO
POeOOOOEOOEOEES

Geometry of the least packed Va(111) surface. Top view.

Geometry of the close packed Va(011) surface. Top view.

CHAPTER 5. RESULTS: SURFACE MELTING 88

Figure 5.5: Construction of the Va(111) sample, see Appendix B for details.

which is concluded, relying on analysis of behavior of the time correlation function
of fluctuations in the various variables of the system (i.e. temperature, pressure,
energy, velocity, etc), to be sufficient to make the collected configurations statistically

independent.

5.4 Thermodynamic melting point

In order to study the phenomenon of premelting, we have to find the thermodynamic
melting point 7}, of our model. At least three different methods for estimation of
the melting point have been given in the literature. The most elegant and thermody-
namically valid is based on the calculation of the Gibbs free energies of the bulk solid

and liquid phases as a function of temperature at given pressure. The melting point

CHAPTER 5. RESULTS: SURFACE MELTING 89

(L)

Figure 5.6: Snapshots of Va(001),Va(011), and Va(111) at 2200 K.

BCC (FS) Vanadium : Surface [001], Atoms: 2700 layers: 24

25001
IR RS SR EE SRS R R
4«1«:{144444«444q<1<1<?<!<q<14444
2000 oD Brogrele BB Bprrper b prope e BB by
AQAAAAAAAAAA.AQAAQ.;A'.A‘AA
v vV VY V" VYV VYV U9TVYYVYYTVYYTV YV Vv VYVvVYw
¥ v
R T R R R R T L
g
§- - N - T = S - B - O - T = I - O = N = E - < Y - - T - T - R < O - O -~ R - - N - A - A - |
51000‘--00-oeocooooooeeoooo-oce
@ 1000
Temperature, K: | = 1200
@ 1500
v 1700
& 1900
00
0 > 2000
4 2100
* 2200
& 2215
1 L L wi- 2220 i ! 1 1 'l I(‘
0 o
] 2 4 6 C 2019 14 15 18 20 22 24

Number of layer

Figure 5.7: Temperature profiles across the Va(001) sample in the equilibrium state
(simulations at different temperatures).

CHAPTER 5. RESULTS: SURFACE MELTING 90

is then found, by definition, by making the Gibbs free energies of solid and liquid
equal [19]. Hoverer, this method is computationally quite elaborate and contains a
fairly large source of inaccuracy, due to the fact that the Gibbs free energies usually
depend quite weakly on temperature, and 7,,, is then an intersection point of two flat
curves. Therefore, it is quite difficult to find the position of the intersection point
precisely and a small error in the obtained position of the point leads to a large error
in estimation of T,,.

In the second method, proposed by J.F. Lutchko et al. [77] one determines the
temperature dependent velocity of the moving solid-to-liquid interface vy (7T) at T' >
T,, and thus, by extrapolating this velocity to the zero v(7T,,) = 0 one can obtain
the solid-liquid coexistence point, which is interpreted as T},. This method has been
shown to give a melting point comparable to what is obtained from the free energy
method.

The third method, is computationally the most straightforward one. In this
method, an excess amount of kinetic energy is supplied to the atoms of the sur-
face region of the sample. This results in a temperature gradient and in a nucleation
of liquid phase at the surface. Heating is then stopped and the sample is allowed to
evolve back to equilibrium. The temperature at which a solid-liquid coexistence takes
place is interpreted as the thermodynamic melting point 75, [89]. All these methods
can estimate T, with comparable accuracy. However, the second method is easier for
implementation and less CPU time consuming than the first and the third methods,
at the same level of accuracy.

We chose the second method and determined the velocity of the solid-melt inter-
face at different temperatures (in the range of 2300 - 2500 K) in the samples with

various low-index free surfaces. The value of T}, varies with the geometry of the

CHAPTER 5. RESULTS: SURFACE MELTING 91

simulation cell, and especially with the number of the surface layers. To test such
effects we performed simulations for the samples with the different number of layers,
N, using 64 atoms in a layer (Va(111), Va(001)) and 72 atoms (Va(011)).

A temperature above T, (the upper limit of T, was found in the bulk simula-
tions) was reached using the following method. We started the simulation at a low
temperature (usually at 7' = 1800 K) far below T),, and increased the temperature
at a high rate (by AT = 50 K) after each 1000 steps. In this way the system could
be superheated up to T" = 2500 K. A very simple method of the velocity rescal-
ing in each MD step is used, e.g. the instantaneous kinetic energy is calculated as
Epin = >, mv?/2 and velocity of each atom is rescaled by the same factor to satisfy
Ekin, = 3/2kgT. This simple method of the velocity rescaling was chosen instead
of the Nose-Hoover mechanism to significantly reduce the fluctuations of tempera-
ture. Another alternative to feedback control is the of mechanical constraints [54],
which enforce constant temperature very effectively, and therefore could be applied
in calculation of T,,. When the desired temperature is reached, the velocity of the
solid-melt interface is determined by monitoring the decrease of the structure order
parameters, 7, as a function of time (See Fig. 5.8). The order parameter was cal-
culated only over the top 10 surface layers to avoid the ordering effects introduced
by the static substrate. The temperature dependence of the velocity vy is governed

by the thermodynamic free-energy driving force, given by the free energy difference,

AG = G4 — Gy, between the solid G and the liquid G, phases [90,91].

Dliqu AG
o~ =t (1= (7)) (5:1)

where A is the mean free path in the liquid phase, dj, is the thickness of the liquid

film, Dy, is the self-diffusion coefficient of atoms in the liquid phase. One can write

CHAPTER 5. RESULTS: SURFACE MELTING 92

Order Parameter

7 75
MD Time Steps

Figure 5.8: Order parameters of the superheated Va(011) system vs. time (MD
steps) at temperature 2420/ . The sample contains 2520 atoms.

with a good approximation [90] AG ~ (T — T,,)AS, where AS is entropy difference
between the solid and liquid phases, and obtain at temperatures close to the melting

point

<(T . RT;)AS

)) ~ const X (T —T,,) (5.2)
Using this expression for vgy(T") as a function of temperature, T, we calculate the
thermodynamical melting point by a linear fit (See Fig 5.9). The temperature at which
the propagation velocity vanishes is considered to be the thermodynamical melting
point T,,, [89]. The melting temperatures obtained for the samples with different
number of surface layers and the various types of low-index faces are summarized in
Table 5.2. The smaller the number of the layers, the larger the apparent 7,,,. This is
due to the influence of the underlying static substrate, which stabilizes and orders the

samples. Therefore, to obtain more accurate and reliable estimation for the melting

point T, we use the sample with the largest number of free surface layers.

CHAPTER 5.

RESULTS: SURFACE MELTING

93

%10 ; : ; - .
Surface [111]: 35x8x8
A st b e e iy e S i W e W e e e e e SR e i i o TR
u ; ; ; :
£ . The melting’point :
E Tr‘n =2222+ 5
& : : =
o :
B B e D e s e i S M e e e P e e
5 5 : o M ; : : 2
5 5 A
2 e
e : mE®
2] e .
Do st o E T L L L OO | I N .
i i i i i i i i i i

2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600
Temperature, in K

Figure 5.9: Velocity of propagation of the solid-to-liquid interface, vy, as a function

of temperature and extrapolation to zero velocity. The Va(111) sample, 2240

atoms, 35 layers.

The calculated melting temperature of the sample with the least packed face Va(111)

is T,, = 2222 + 10K is the close one to the experimental value 7,, = 2183K. For

other surfaces T,, is insignificantly larger due to superheating effects on the solid-

liquid interface just above the thermodynamical melting point T},. This effects are

Table 5.2: The melting temperatures for the various surfaces of vanadium,
calculated for the samples with different number of the surface layers, N;.

N, | T,, Va(111) | T,, Va(001) | T,, Va(011)

23 | 2241 £ 10K | 2230 £ 10K | 2260 + 10K

26 | 2234 £ 10K | 2200 £ 12K | 2252+ 10K

29 | 22208 K | 2235 £ 11K | 2260 £ 12K

32 | 2224 £ 10K | 22378 K | 2270 £ 11K

35 | 2222+£9 K | 2228+ 10K | 22406 K

CHAPTER 5. RESULTS: SURFACE MELTING 94

very significant for the close packed Va(011) surface. This dependence of the ther-
modynamic melting point on the geometry of the crystal face is also observed in MD
simulations when temperature is increased gradually up to the melting point. It was
found the Va(111) and Va(001) surfaces melt approximately at the same temperature
T, ~ 2230 £ 30 K, while the sample Va(111), with the close packed free surface,
melts at more elevated temperature about 7,, ~ 2245 + 10 K.

We want to point out again that in the bulk simulations, where we employed
periodic boundary conditions in all directions, melting is observed to happen at a
temperature 7, = 2500 £ 5K . This melting temperature is not the true thermody-
namic melting point 7,,, but a temperature at which mechanical instability arises,
leading ultimately to a mechanical collapse of the crystal lattice. The temperature
at which mechanical instability occurs can be determined by using the Born criterion
at zero-external stress. This shows that the superheating region, 7, — 7},, in MD
simulations of metals may be large enough (250 K in case of vanadium). Therefore,
it is very important to distinguish between the thermodynamic melting tempertaure

T, and the temperature 7, above which the lattice become mechanically unstable.

5.5 Local density profile

A local density profile p(z) is defined as the average number of atoms in a slice of
width Az, which is parallel to the solid substrate. The proper choice of the width Az
of a slice is a trade-off between two factors. First, a very small width results in too
few particles in each slice, and therefore one observes large statistical errors and data
scattering. Second, a very large width of a slice will not show the actual dependence

of the properties on the distance from the surface. Hence a balance between those two

CHAPTER 5. RESULTS: SURFACE MELTING 95

requirements must be achieved. To facilitate the presentation we use p(z) represented

by a continuous function (See Fig. 5.10) defined according to Chen et al.[79] :

1 (z — 2)?
o(2) = < L Zefp<—TAz>> (53)

where z; is z coordinate of atom 4, with z = 0 set at the bottom of the non-fixed

slab, and the angular brackets indicate time average. We use Az = 0.1lag/ 21/3,
where ag is the lattice parameter. The premelting of the crystal surface exhibits itself

Va (001)
160

—— Temperature 2200 K
140
120~

100

80

Local Density Profile

40

20

5 10 15 20 25
Angstrems

Figure 5.10: Density profile of Va(001) at T=2200 K

in the loss of long-range order. This transition can be examined by monitoring the
layer-by-layer modulation of the density profile of the system at various temperatures
up to the melting point 7,,. Sets of the plots of the local density profiles for the
samples Va(111),Va(001), and Va(011) are shown in Figs. 5.11-5.13, respectively. At
low temperatures the density profile p(z) consists of a series of sharp, well resolved
peaks. The atoms are packed in the layers with constant density in each layer and

virtually no atoms in between these parallel layers. As the temperature is increased

CHAPTER 5. RESULTS: SURFACE MELTING 96

the effective width of the each layer becomes broader due to the enhanced atomic
vibration, and the position of the peaks move to larger values of z due to thermal
expansion.

At the temperatures close to the melting point the atomic vibration becomes so
large, especially in the first layer, that disorder sets in, with atomic migration taking
place between the layers, as evidenced by the fact that the minima of p(z) between
two peaks rise to non-zero values. This is a reminiscent of a liquid-like structure
(which is also observed in the plane radial distribution function). Hence, the system

crosses over to a state of “premelting” at elevated temperatures. At some temperature

l

(T* ~ 1000 K for the Va(111), T* ~ 1500 K for the Va(001), T* ~ 2200 K for
the Va(011)) the density of the topmost layer becomes slightly lower than that of
the underlying layers. The loss of density is compensated by appearance of atoms
on top of the first surface layer. These atoms are called adatoms and the additional
surface layer is termed as an adlayer. As the temperature is elevated atoms from the
deeper subsurface layers start to diffuse toward the adlayer. The distinction between
the layers becomes blurred. The generation of adatom-vacancy pairs induces disorder
and converts the topmost layers into a thin quasiliquid film.

A general conclusion is made concerning the formation of an adlayer relying on
analysis of the temperature dependence of the density profiles; the formation begins
first on the least packed surface Va(111), thereafter at higher temperature a quasilig-
uid film appears on the Va(001) face, which has an intermediate density between the
Va(111) and Va(011) faces. Finally, surface premelting occurs on the close packed face
Va(011) at a temperature which is very close to the melting point T,,, and practically
all adatoms come from the first surface layer.

These results are in good agreement with the of investigation of surface premelting

CHAPTER 5. RESULTS: SURFACE MELTING

Density Profile: {111) swface
2 WAAAANSIASSASPSADAAANA AN
EAAAASAAAAANSAAAANNAN N
o (VAT AVLYAYAVAYAVAVAVAVAVAYAVANAVAVAYAVANLYTS W
& _ MAAAANAANAS AN DAL ANFRET
_ SMAMAAA AN AN ANS AN A
2 AAASANPASANAANNS AN A
8 LANMAAASANAANSNR AN A
B WAAAALAPNVAAN A A
£ MWAANAAANAAAAS AN
B A AAAASANANNAAAANNN A
§ BANMAAANAANAASASANAAS A
|UWmWWﬂWﬂWJV'V -
F AV NANAAAAANNANN NS
2 A AN AAAAASASAAAAAAAAA A
P A A A A AL A e,
|;\,“v\m\/\,ﬂmnmmmmmw-mm.n.a -~

FED

[ali]

Temperaturg, K
144l

1700

1500

|p\ﬁu’\x'vvvvu R AT R L P NPl

2000

2050

|M\j\mwvwwwm

=
g |N"U\MWWMW~——_____

2150

2200

T .

|N*_;ﬂ,f\,ﬂ_mhuf\umh..nﬁ S T R —

L
o |.\,r'_.-' B e e e e SR
] =
% ||_|"\fr\'f\.r' 1 1 1
4 g 12 16 20 24
Distance, &

Figure 5.11: Density profile across Va(111) along the z direction perpendicular to
the surface at various temperatures as indicated.

CHAPTER 5. RESULTS: SURFACE MELTING 98

Surface (001}

IAAAAASAAAAAANNANAA AN
AAAAN NP NS A
IAASAASAAAAIA IS A e
BAAMAAN AN S
AAAAANAAAAAAN AN A
AP AR A AASAA A
[AAAAAAAAAANAAAAA e

[e
|W\{\,AMN--~—~—H
e e S

1 1 1
4 & 12 16 20 24 28 32 36 40 44
Distance, A

Ternperature, K
2300 2250 2230 2215 2200 2150 2100 2050 2000 1900 1800 1700 1600 1500 1350 1200 1000

Figure 5.12: Density profile across Va(001) along the z direction perpendicular to
the surface at various temperatures, as indicated.

CHAPTER 5. RESULTS: SURFACE MELTING 99

Temperature, K
2300 2285 2270 2250 2240 2230 2200 2150 2100 2050 2000 1900 1500 1700 1500 1300 1200 1000

|WW"%‘W

g 12 16 20 24 23 32 36 40 44 43 52 56 6O
Distance, A

Figure 5.13: Density profile across Va(011) along the z direction perpendicular to
the surface at various temperatures, as indicated.

CHAPTER 5. RESULTS: SURFACE MELTING 100

of fcc metals Al [78], Ni [79], and Cu [80]. It was found that an adlayer appears first
on the least packed (011) surface, then at higher temperature on the (001) face,
and finally the onset of disorder is observed on the close packed (111) surface at a

temperature close the melting temperature.

5.6 Structure order parameters

Structure order parameters (structure factors) are useful for monitoring the order-
disorder transition in the course of surface premelting. The structure order parameter
is also related to low energy electron diffraction (LEED) intensity [97], which can be
measured experimentally. Atomic vibrations break to some extent the periodicity of
lattice and diffraction effects provide essentially direct information about the vibration

amplitude. The structure factor is defined as a Fourier transformation of the atomic
density of the system.
2

=) (5.0

where N is the number of atoms, and the vector 7; describes the position of the atom

> eap(iqr;)
J

Jj, while the vector ¢'is related to elastic moment transfer (diffractive scattering).

In the case of a surface, the order parameter is often defined for each layer sepa-
2

Mo = <nil2 > (5.5)

where « = 1,2,3 = z,y, z are indices of the Cartesian axis z,y, z and

rately:

> exp(igat;)

jel

2w 5 2m 27

J1, G2, g3 = oy oy, 1%, 1s a set of vectors which define a set of different directions
(the order parameter is calculated along those directions), a, is the nearest-neighbor

distance in « direction (See table 5.1), n; is the instantaneous number of atoms in

CHAPTER 5. RESULTS: SURFACE MELTING 101

the layer [, the sum extends over the particles in the layer [, and the angular brackets

denote averaging over time.

PR T L R i AT e e Freee

=]

o =l
-
L
»
3
-
4
&
g
e

o ; : 4 : [}
T S T S oS A]
ammmmmmmmmﬂmgnmm.am

=
=

Order Parameter
o
o

=t
[

2
i

=

=]

o 5 10 15 20
Mumber of Layer

Figure 5.14: Order parameters of Va(011) at 2000 K. The difference between 1, ,
and 1, reflects the anisotropy of the Va(011) surface.

For an ordered crystalline surface the order parameter is a unity at zero tempera-
ture. The deviation of the 7, , from the unity originates from thermal vibrations and
from formation of surface defect. The structure order parameters of the Va(001) sam-
ple at T'= 2000 K is shown in Fig. 5.14. Note the decrease of the order parameter
in the surface region, which reflects enhanced atomic vibrations and adatom-vacancy
pair creation. The existence of vacancies does not directly affects the order parameter,
since a normalization procedure is employed during each measurement by using the
instantaneous layer occupation n; of a layer. Nevertheless, vacancies have an indirect
effect on the order parameter by introducing a lattice distortion around them.

As is evident from the Figs. 5.15 the structure order parameter of the Va(011)
sample is lower along the y-direction than along the z-direction. The same effect
is observed for the Va(111) sample, but is absent for the Va(001) sample. This

anisotropy 1, < 1, actually arises from the anisotropic structure of the low-index

CHAPTER 5. RESULTS: SURFACE MELTING 102

L] The topmost layer

'
a7t L
@
w @
LAY
1
E
&
Ena- a
1
o o Karecion |
B Y dieciion
o3t Zdrecion |
02 i
i o
ot
o L I b
1600 1200 1500 1600 1700 1800 1909 2000 2100 £203 2303 2400

Temperature

Figure 5.15: Comparison of order parameter of the layers of Va(011) as a function
of temperature.

faces Va(011) and Va(111), where the distances between the nearest-neighbors are
different in the x and y directions a, > a,. Assuming, in the first approximation,
that each atom oscillates with the same amplitude in both the and y directions.i.e.
< uj >~< u} >, and expanding the structure order parameter in term of < u* > /a2
(it is found in our MD simulations that mean square amplitude of vibration is order
of < u? >~ 1072A? while the lattice parameter squared is about a2 ~ 3.052A42) we

obtain:
472 (u?)
nja3

(5.6)

Mo ~]1— Z

jEl

Hence it follows that if a, > a, then n, > n,, because the smaller < u? > /a2, the
less the decrease of the order parameter. The same consideration can be applied to
explain the difference between in-plane components of the order parameter (x and
y directions) and the out-of-plane component (z-direction), but one has to take into
account that mean square vibrational amplitude in the plane direction is larger than

in the out-of-plane ones.

The structure order parameter profiles at various temperatures are plotted in Figs.

CHAPTER 5. RESULTS: SURFACE MELTING 103

5.16-5.18. Note a continuous decrease of the order parameter for the Va(111) sample,
which begins to premelt first. In contrast, one can see a relatively abrupt decrease
of the order parameter of the close packed Va(011) sample, which takes place only in

vicinity of the melting transition.

Vst ok e R R s R R e AR

0 s

e S

O0%ed¢aé o@ oe . o
(L = RS ssnte 000000, @ 1000
§§ oooon - o o
05| >§§§§§§§g . dal)
A EEEEb b v 1400
i d99a94a49 = & 1500
psLEREtaht A ah fh ko n el DT YO | b 5
: :.;'*’F*#;dn : S : 4 1700
."ﬁzigﬁ*ﬁ"ﬁ FT & 1800
T | ;ni; o 1o
i g TS <% 2000
e DO e 2050
- : + - 2100
] @ 2150
0 |-m 2200
#2215
4| v 2230
D] L R i 2250
B B " Ce@pdE o 2300

M zsﬁmggnu

1 L 1
0246810121416182022242628
Humber of layer

Figure 5.16: = component of the order parameter of Va(001) at various
temperatures.

5.7 Plane radial distribution function

The structure of the system, and in particular the formation of a quasiliquid film can

be analyzed by using a plane radial distribution function defined as

pilry) = <l 3 M> (5.7)

(L 27y,
where 75 is the component of the 73 — 7; parallel to the surface plane, n; is the
instantaneous number of atoms in the layer [, the sum extends over all particles in
the layer [, and the angular brackets denote averaging over time (See Fig. 5.19) . In

practice, the equilibrium p;(r)|) function calculated using a histogram method [54,82],

CHAPTER 5. RESULTS: SURFACE MELTING 104

(i1

ks
: Temperap.ure,K

nat e o0

o 750

i

ost <GB0
ol w 400
& a - 1000
g 07r Bo1100
E 41200
L # 1250

o #1300
2 4+ 1350
0S5t #1420

g + 1450
L @ - 1500

= i @ 1600
2 4. 1700
E o03r = 1900
& 2000

o2tk B 2050
cao 2100

-4 2150

0.1 e 2200
s 2215

o o 2230

0 2 4 & 8 10 12 14 16 18 20 22 24 25
Number of layer

L%
(=

Figure 5.17: o component of the order parameter of Va(111) at various

temperatures.
1t imeer e eaas o
Lok o1y : Lo
o8 _® Eoe o R e s S P TEIIIISEI‘B.WJ‘E,K
Q@ o oo o @ o B9 @ Q@ Qg
0ol 2898800 EE8EEEEE0808888, o 10w
5 YRE R R TR T TR T YT T YT TYT vy o0 | O 1200
T o AlE§EEssEE ettt aRataciit) o
L % E Eig % % %g :iziﬂ-? & 1700
E : AR : HEgw s g
Ok - E-® e R B B +:2§..*.I:§. 4 1500
g LIS W@ 1o .'_-i— jd & 2000
o] R S At R R P R Tl & 2050
E 2 ; 2100
% 2150
0.4 4+ 2200
x e 2230
£ 03p @ 2240
] e 2250
2270
ozt g 5 336s
; . : :] B : B 2300
o bﬂ.gvl
ol i rkedEEoespepupmpenl;

02 4 & 8 10 12 14 16 18 20 22 24 26 28
Humber of layer

Figure 5.18: 2 component of the order parameter of Va(011) at various
temperatures.

CHAPTER 5. RESULTS: SURFACE MELTING 105

Plane Radial Distribution Function

— Temperature 1800 K

8 1‘0 1‘2 1‘4 1‘6
Distance (A)

Figure 5.19: Radial distribution function p(r)) of the 6th surface layers of Va(001)
system at 1800 K.

based on counting and binning of the atom pair separations. Let hi(r, Ar) to be the

number of the atom pairs (4, j) in a kth bin (or shell):
(k= 1)Ar <ri < kAr (5.8)

then the plane radial distribution function (RDF) is obtained from:

pu(ry) = <éw> (5.9)

n 27 Ar

where A is the area of a layer, n; is the instantaneous number of atoms in layer [.
The two-dimensional radial distribution function p(r|) for the top surface layers of
Va(001) at different temperatures are shown in Figs. 5.20. As seen from the figure the
intra-layer structure in these layers changes gradually from crystalline to liquid-like as
the temperature increased. Particularly noticeable is disappearance of the crystalline
features in p(r)) corresponding to the second, third and other nearest neighbors. In
addition to the heights of the peaks, the area under the p(r|) curve changes, which
reflects the change in the density across the solid-liquid interface.

We note that for the adlayer at T' < T;,, the probability of finding particles with

CHAPTER 5. RESULTS: SURFACE MELTING 106

Surface [001]

Shadds /VW
Q
o | | | | | |
005 /_/\’/\/\/,\/‘\/
o i i i i i i
o 0051 //\/\/‘v\/_m
&
o | | | | | |
© 0.05- //\/\/\/’\JN
Q
o | | | | | |
o | i i i i i
021
Temperature 2200 K
o | ! !]] ; ;

2 4 6 8 10 12 14
Distance (A)

21

25

Figure 5.20: Two-dimensional radial distribution function p(r) of the five top layers
of Va(001) at temperature T=2200K. The layer n=25 corresponds to the adlayer,
n=24 corresponds to the (first) surface layer, n=23 corresponds to the second one.

separation beyond the first-neighbor shell is relatively small, indicating a tendency
for clustering which persists, though to a smaller extent, even to T ~ T,,.

The plane pair correlation functions of the first surface layer at elevated temper-
atures for the various low-index faces is shown in Fig. 5.21. It is clear that the
crystalline order vanishes gradually and the quasiliquid film thickness increases when
the melting point T, is approached. We can conclude relying on the analysis of the
2D radial distribution functions of the various faces, that surface premelting begins
first on the least packed Va(111) surface at temperature around 2000 450 K, e.g. 200
K below the estimated thermodynamical melting point, while at the face Va(001) lig-
uid phase starts nucleate at around 2050450 K, and on the most close packed Va(011)
surface noticeable changes in the p(r||) functions occur at temperature 2150 £ 50 K,
which is close to the melting point.

Similar results were obtained in studies of surface premelting of low-index faces

CHAPTER 5. RESULTS: SURFACE MELTING 107

2D Radial Distribution Function

Temperature (K): — 1800

01r-

0.04

8
Distance (A)

Figure 5.21: Two-dimensional radial distribution function p(r)) of the surface layer
of Va(001) at various temperatures.

of fcc metals in computer experiments by Hékinen et al. [83] (Cu), by Chen et al [79]
(Ni) and by Carnevali et. al [84] (Au), as well as in some real experiments [23,26,85].
The close packed face (the (111) face of a fec lattice) preserves its crystalline order up
to the melting point. This non-melting behavior of (111) is in striking disagreement
with theoretical predictions and results of computer simulations based on a simple
type of Lennard-Jones potentials, which are a crude approximation for fcc metals.
More sophisticated MD simulations, which use many-body potentials do not confirm
the theoretically predicted very pronounced premelting effects for the close packed

(111) surface below the triple point [86-88].

5.8 Diffusion coefficients

Diffusion coefficients of the surface layers are calculated to investigate transport prop-

erties of the Va(111),Va(001) and Va(011) samples. The coefficients are found from

CHAPTER 5. RESULTS: SURFACE MELTING 108

the particle trajectories, 7; ,(t), by calculating the average mean square displacement

R}, (See Fig 5.22):
1 o —
RlQ,u - <n_l D [t +7)— ri,u(T)]2> (5.10)

i€l

where © = z,y, z is a coordinate index, the sum includes atoms in the layer [, and
the angular brackets denote averaging over time from the origin (7). The diffusion
coefficients D, , are calculated separately in the x,y and z directions, according to

Einstein relation for each layer:

R
Dy, = lim —2 (5.11)

Surface [011]

160 Temperature, K:

— 1000
1401 1200
1500 The topmost layer
1700
120 — 1800
2000
2200
2250
— 2270
80/ —— 2285
2300

Mean Sguare Displacement <r2=, a?
2
s

z direction: [001]

} : ; T
0 500 1000 1500 2000 2500 3000 3500
Time, in 10" sec

Figure 5.22: Mean square displacement R?’Z in the z direction of an atom in the
surface layer of Va(111) vs. time. Note the increased mobility of particles with
temperature.

The diffusion coefficients are larger at the surface region.(See 5.23) The mobility
of the atoms increases with elevation of the sample temperature and converges to
the liquid bulk values. These observations correlate with the structural variations

in the surface region exhibited in the pair correlation functions, the structural order

CHAPTER 5. RESULTS: SURFACE MELTING 109

Diffusion coefficients
0.025 . :

0.02 -

—
(8]
Q -
2 °
£ o015 : ‘ : : B
(8]
b
3
~. Temperature : 2200 K
Q" ooif m D,
£ D
QX ° Ty °
=]

0.005 -

5 7 10 13 15 17 20 22
Number of Layer

Figure 5.23: Diffusion coefficients of Va(001) as a function of layer number at
temperature T=2200 K.

parameters, and the local density profiles. The diffusion coefficients of the first crystal
layer of the Va(011) as a function of temperature are shown in Figs. 5.24. The
diffusion coeflicients are different in different directions D, > D, for Va(011) and
Va(111). In the course of diffusion an atom jumps from one point (its current position)
to another one (the nearest vacant place on the lattice), the distance between these
two points is termed as jump distance. This jump distance is larger along the z-
direction than in the y-direction, because the nearest-neighbor distance is larger in
the z-direction than in the y, ie. a, > a, (See Table 5.1). Hence the diffusion
coefficients are larger in the z-direction D, > D,. The diffusion coefficient along the
z-direction is smaller than along the x and y directions. That difference can again
be explained by the fact that a, < a,, a, (See Table 5.1), and therefore, the jump
distance is the smallest along the z direction, thus D, < D,, D,.

The diffusion coefficients of the least packed Va(111) surface are the largest one.

CHAPTER 5. RESULTS: SURFACE MELTING

110

BB s o R e o SR RS e
Surface (011)

DDES -\.
w @
® :
2 002f - A R e R ‘o
" . Thetopmostlayer : o
i : & Dx | : : :
.ED.EHE o g!.-' SR B R CHE L
2 - : : o
E : : : L=
g ; ;
L] : :
= 0 b e s e s s T o-ie-
= . -
'E : ;
£ s
= :

A1 L T S S S L e

B
; ; : a] i
i+ 34 ' IR - © ¢ o¢
1000 1200 1600 1&00 2000 2200

Temperature, T(K)

Figure 5.24: Diffusion coefficients of the surface layer of Va(011) vs. temperature in
different directions. Note an anisotropy of the in-plane diffusion coefficients :

D, > D,

The diffusion coefficients of the Va(001) are smaller than the Va(111) ones, yet they

are larger than the diffusion coefficients of the close packed Va(011) surface, which

are close to zero even at the elevated temperatures (See Fig 5.25).

5.9 Distance between layers

Structural information, like an interlayer relaxation and surface thermal expansion

can be calculated directly from the difference between the average heights of the 7

and ¢ + 1 layers:

1 1
dz’,z’+1:< Z Zj__zzj>
Nit1 jeiva

(5.12)

=

CHAPTER 5. RESULTS: SURFACE MELTING 111

The topmost surface layer

O v momane mewanan i R L e 3 :

s R S B S e AR T [g e

; : : w* ;

W [...................................... 3
2 Suraces i i ;
o ? ; R i
;? oo2gho i DP[DEH] g R iy e
= g D,01] : L oob :
£ o]
.E go2fk..o & L Ll e el e e e e @D
1) T R RN R R R P
L&) . 5 <> o :
= .
2 o]
'E O b i e et e e e s e e e i <>®E|
= I
& : H <>_ . :

AR R ey R E"<>"<>"® 0 DO

G . @ .a .
Yo oI @
- - O
500 1000 1500 2000 2500

Figure 5.25: In plane diffusion coefficients as a function of temperature for the
surface layer of Va(111),Va(001) and Va(011) calculated for the y direction).

where z; is a z-coordinate of the atom ¢, the sum includes atoms in the layer ¢ and
1+ 1, and the angular brackets denote averaging over time. Distances between the
neighboring layers could be calculated at temperatures up to the temperatures where
surface premelting is sets in. Above such temperature the very concept of distinct
layers becomes somehow doubtful, even though some structure is still visible in the
local density profiles. At low temperatures the topmost surface layers exhibit an

inward relaxation, i.e. A4 < 0, where

dio — dp,
Ay = 2k (5.13)
’ bk

here d; o is the distance in the z-direction between the first and the second surface
layers, and dy,; is distance between the two neighboring layers in the bulk, as it is

shown in Figs. 5.26. One of explanation of the inward relaxation is following [83]; the

CHAPTER 5. RESULTS: SURFACE MELTING 112

el
(%]

th
o

=L
g
£
E
‘52.15
L
g P
£ 214 .
g ¥ 1w 1500
E] s 14 1700 g
32]2_2 e 1800 |-
Py : % 4 1900 ¥
£ : * 2000
‘E 21_g ke 2050 g
g - CE e 2100
SR] 2150
; .+ 2200
Db ot mr e G @ 2230
B 8 10 12 14 16 18 20 22

Humber of layers

Figure 5.26: Distance between the neighboring layers vs. temperature of Va(011).
Note the inward relaxation of the topmost surface layers.

surface suffers a “deficit” of the electron density, relative to the electron density in the
bulk, and therefore it compensates the “deficit” by contracting the distance between
the first and the second layers. The second and third layers exhibit a downward relax-
ation. The distance between neighboring layers increases with the temperature, and
the thermal expansion of the surface layers is sufficiently larger than the thermal ex-
pansion of the layers close to the bulk. The observed “anomalous” thermal expansion
of the surface layers is a direct manifestation of the broken symmetry of positional
inversion at the crystal surface. Therefore, atoms rearrange their equilibrium posi-
tions in the surface layers and probe the more anharmonic region of the potential.
The difference in the geometry of the faces is reflected in the thermal expansion at
the surface region, a surface with the less packed layers expands more than a surface
with close packed ones (See Fig. 5.27)

We also compare the averaged distances between the first and second surface

CHAPTER 5. RESULTS: SURFACE MELTING 113

Vanadium B.C.C. F5 Potential

J2 oo s s s
: : Temperature 2200 K :
: : & @
: e il
= : : D 5 H
E 1lg @030 .D...U.:.B..ﬂ...m...n..!:.‘..E"
o : H :
E Surface:
E :
s 2 i
‘:098 ...
-
]
-]
2
=
g
mDBE ...
F
1 1 1 1
g 12 16 20

Mumber of layer

Figure 5.27: Interlayer distances, normalized to the distance between bulk
neighboring layers at T=0 K, of Va(001) and Va(011) at T=2200 K.

layers of the Va(011),Va(111) and Va(001) samples (See Fig. 5.28). It is found that
the Va(111) surface layers exhibit the largest thermal expansion in comparison with
the other faces, and therefore the onset of “anomalous expansion” takes place at lower
temperatures, than for the Va(011) and Va(001) systems. (Beyond the temperature
T = 1500K the first crystal layers of the Va(111) are molten and therefore the concept
of distinct layers becomes meaningless) The larger thermal expansion of the Va(001)
surface layer in comparison with the Va(011) surface layer can be followed to much

higher temperatures.

CHAPTER 5. RESULTS: SURFACE MELTING 114

3 i ¥] :)
108 oy S S = e
+ :
7 Surface: i
Ty RTINS, SSVVISPRL B, STRNRTEN. NSRRI NSNS o ooty |-
& (011} :
: : * (111 i
= s :
102
; .
i] R R S
= o ¥ sy
ne8] i] i] i i
500 1000 1200 1400 1600 1800 2000 2200

Temperature, in K

Figure 5.28: Interlayer distance between the first and second surface layers di5 as a
function of temperature.

5.10 Layer occupation and energetics

The occupation of the topmost surface layers at various temperatures is calculated.
The first surface layer is the most affected by disordering effects, i.e. adatom-vacancy

pair formation.

CHAPTER 5. RESULTS: SURFACE MELTING 115

Since the layers beneath the first are fully occupied at low temperatures, this
leads to the formation of an adlayer on the top of the first layer (See Fig. 5.29). The

adatoms leave behind an equivalent number of vacancies.

Figure 5.29: Snaphot of Va(001) at 1800K, notice the adatoms (white color) on the
top of the surface layer.

The occupation of the surface layers at different temperatures for the various

faces of vanadium are shown in Figs. 5.30-5.32. The formation of an adatom layer

]20_ e B e P
: :] (001) : :
s @ § 8868 e sevamyy -
& : : $; : : A
E‘ . Layernumber: Y ¥V o : i d
@ GOF iy 6_4 e ‘:_.':...‘a'...n_f.‘j.v.vx?
£ : ®oS | ; : melting
2 Lo e 2| 1l
e o A T YT S
g Ol S
- ;] e
Q i 3 F
] : 3] : : : :
E 40_ --ﬁ
2 :preméiting e
; ; ; : S
o - S A | T el A-'—-‘?‘-"‘--:
¥ &k
A A # 1 1 1 1

1000 1200 1400 1600 1800 2000 2200
Temperature, in K

Figure 5.30: Layer occupation of the Va(001) sample as a function of temperature
for the adatom layer.

CHAPTER 5. RESULTS: SURFACE MELTING 116

on the least packed surface Va(111) begins at around T = 800 K. The onset of an
adlayer involves generation of vacancies in the first surface layer, while at higher
temperatures (7' > 1600K) vacancies in the underlying layers (the second and third
layers) begin to appear via promotion of atoms to vacant places of the first surface
layer, i.e. so called interlayer vacancy migration mechanism. Atom migration from the
deeper layers increases significantly as the temperature approaches the melting point.
In contrast to the Va(111) sample, an adlayer formation and generation of adatom-
vacancy pairs in the other samples becomes observable at more elevated temperatures
(about T=1400 K for the Va(001) and T = 2000K for the Va(011)). Practically, all
adatoms come from the first surface layer.

The same effect of disordering and gradual thickening of the surface region was ob-
served in computer simulations of surface premelting of fcc metals [24,79,80,86,87,89].
The least packed face (110) of fcc metals (in analogy with the (111) bee face) begins
to disorder first, while the close packed (111) face (in analogy with the (011) bec face)
preserves its ordered crystalline structure almost up to the melting point.

Knowledge of the equilibrium averaged number of atoms in the adlayer allows us

to estimate the surface defect formation energy FE according to the formula:
n = exp(—FEs/kgT) (5.14)

where n is the adlayer occupation, e.g. the equilibrium averaged number of atoms in
the adlayer at a current temperature divided by the number of atoms in the layer at
a zero temperature. The adlayer occupation vs. temperature fitted to the Boltzmann
factor n = exp(—E,/kgT) are shown in Figs. 5.33-5.35 for the Va(111), Va(001) and
Va(011), respectively.

The calculated surface defect formation energies of the various low-index faces of

CHAPTER 5. RESULTS: SURFACE MELTING

117

ol T—— S o

P e

Mumber of atoms in a layer

20k o i i 57
. 4
aaitd

WO
o . Eé.gﬁgﬁ.g..@ggggag.g.n..;.._..=-
] 3 ;i ; ; .

WA

e B B

&

o T LN TS T S, —

Gl o v i s e L o Ly kA gmsesaa

: b i L'ai;ernumber

&
O = POl

800 1000 1200 1400 1800 18500 2000 2200

Temperature, in K

Figure 5.31: Layer occupation of the Va(111) as a function of temperature for the

adatom layer and the first few crystal layers.

120 i

L -

Humber of atoms in a layer

A A

1 b ! o, P

100 T ;.......5 o

Bt s SN T —— AR — T

PdoOe
]
s

a0l s o T S I 4k S——

20} L S T - - =T

1000 1200

1400 1600 1500 2000
Temperature, in K

2200

Figure 5.32: Layer occupation of the Va(011) as a function of temperature for the

adatom layer and the first few crystal layers.

CHAPTER 5. RESULTS: SURFACE MELTING 118

vanadium are tabulated in Table 5.3. Data for various faces of copper (fcc lattice)
[80] are given for comparison. The surface defect formation energy is largest for the
close packed surfaces Va(011) in case of a bce lattice, and Cu(111) in case of a fcc

lattice, and the lowest one for the least packed surfaces, the Va(111) and Cu(011),

respectively.
| Suwrface | (111) | (001) | (011) |
Va (bee) Eg | 0.27+£0.04 eV | 0.84 £0.02 €V | 2.36 £ 0.01 eV
Cu (fec) Eq 1.92 eV 0.86 eV 0.39 eV

Table 5.3: Energy of surface defects (adatom-vacancy pairs) is calculated using the
adlayer occupation data of the various surfaces of vanadium as a function of
temperature. The data for copper is from ref. [80]

=
o
&

o
[
==l
T
8
JE|.
2
]

o =}
L

=

]

7]
T
W

Hddatnms:DN e dl!N F—
‘ S ‘ :
oo

=
=1
[

...................

B
B

IIE Y
P

0
500 200 1000 1200 1400 1600
Temperature, in K

Figure 5.33: Equilibrium adlayer occupation vs. temperature for the Va(111).

It is possible, that the adatom-vacancy pairs creation in the first crystal layers at

high temperature is not the only one surface defect formation mechanism. Recent

CHAPTER 5. RESULTS: SURFACE MELTING

119

0.03

atoms
°
)
&

Adlayer occupation: NaddI/N

o

Q

]
T

0.015-

0.005

Va(001)
%

1

I I I I I I
1000 1100 1200 1300 1400 1500 1600

Temperature (K)

Figure 5.34: Equilibrium adlayer occupation vs. temperature for the Va(001).

Figure 5.35:

0oE

noie
w
20014

=
0012

=
=

Addatoms: N »
[] [}
o o
= [}
(a3} oo

0004

ooz

1400 1600 1800 2000 2200 2400

Temperature, in K

Equilibrium adlayer occupation vs. temperature for the Va(011).

CHAPTER 5. RESULTS: SURFACE MELTING 120

calculations carried out for fcc metals [79,89] indicate that it is energetically more
favorable for the least packed surface to form a pair consisting of a divacancy and
two adatoms, than to form two independent vacancy-adatom pairs, i.e. surface defect
formation is a kind of a cooperative phenomenon. Therefore, surface defect formation
energy, calculated on the basis of information about the adlayer occupation number,
may be related to more complicated mechanism of defect formation. We did not
study in detail the adatom-vacancy formation mechanism and used the obtained
equilibrium averaged adlayer occupation numbers for a straightforward estimation of
the adatom-vacancy surface defect formation energy.

Surface defect formation energy, calculated for the least packed surface, can be
related to the thermodynamic melting point 7;,, according to E. Polturak et al.[92], i.e.
Egey ~ ckpT,,, where c is a constant which is determined below and kg is Boltzmann
factor. In this scenario, the nucleation of a liquid phase on the free surface of a
solid can be associated with the same mechanism which describes melting in a bulk
of a solid (the Born criterion). Bulk melting occurs once the specific volume of a
crystalline phase attains a critical value, which is close enough to the specific volume
of a corresponding liquid phase. The same conditions, leading to melting in a bulk
of a solid, are thought to occur at the surface, but at a lower temperature. In line
with this assumption, we observe that the quasiliquid film appears first on the least
packed surface Va(111), where surface defect formation is minimal with respect to
the other low-index faces. Formation of the surface defects is considered to be a very
effective mechanism of a stress release. The structure order parameters, plane radial
distribution function, transport properties of the top surface layers in the premelting
region exhibit liquid-like properties. We can assume that at high temperatures the

shear elastic stress at the surface is insignificant. Therefore the Born criterion (at

CHAPTER 5. RESULTS: SURFACE MELTING 121

zero external stress) can be applied to the surface layers, and in this way it is possible
to give explanation why do melting of a crystal begins at the free surface.

To obtain a linear relation between the melting temperature and surface defect
formation energy, let us consider the evolution of the volume of a surface layers with
temperature [92]. At low temperature, the volume of the first crystal layer is given
by V' = vyN, where vy is the volume per atom, and N is the number of atoms in
the layer. While the temperature increases, the layer expands, and the atoms are
displaced of the layer forming adatom-vacancy pairs. The temperature dependence

of V(T') can be written as:

V(T) = vo(T)N + v4Ng = vo(T)N (1 + U:{gm (5.15)

here v, is the volume added to the layer by a creation of one defect, and Ny is
the number of surface defects, which dependence on temperature is given by the

Boltzmann factor:

Ny B
N = P <— o > (5.16)

where FEj is the surface formation energy. According to the Born criterion, at T' = T,
the V/N reaches its critical value that of the liquid phase (melt), then volume per
atom is V/N = wvj;,. Taking a natural logarithm of V/N (eq. 5.15) and rearranging
this expression, we can restate the Born criterion as a linear relation between E, and

T

B, = {ln (%) —In (Uoi(’;?m) - 1) } kT = ckpTy (5.17)

It is assumed, in the lowest order approximation, that vy ~ vo(7,). Indeed, upon cre-
ation of an adatom, one atomic volume is added to the first surface layer. To be more
precise, since the adatom is weakly bounded to the surface, its vibration amplitude

and therefore effective volume should be somewhat larger than vo(7"). However, due

CHAPTER 5. RESULTS: SURFACE MELTING 122

to the reconstruction of the atoms around the created vacancy, it is expected that the
volume of the vacancy to be smaller than the average atomic volume vy(7"). Within
the logarithmic accuracy of the equation (5.16) it is expected that these correlations

cancel each in the first approximation, i.e. vg ~ vo(7},) and consequently

Viig
E,=<—In — 11| kgT,, = ckgT,, 5.18
{ <UO(Tm) >} 7 7 (518)

The right hand side of this equation predicts the value of E, without any adjustable

parameters. To check it validity, we compare value of E (for the least packed surface
Va(111)) calculated using this equation and Ej obtained directly in the MD simu-
lations of bulk and surface melting. According to the results of the MD study of
mechanical melting the volume per atom in the bulk at T}, is vo(T},) = 14.740.3 A?,
while the volume per atom in the melt is vy(7,,) = 15.47 £ 0.3 A3. The thermody-
namic melting point is found to be 7;, = 2220 £ 18 K by using the method proposed
by Lutchko et al. [77]. Hence we obtain Es = 0.52+£0.04 eV by means of the formula
(5.30). We can also estimate the surface defect formation energy using experimental
data: the melting temperature 7,, = 2183 K, the volume per atom in the melt is
vo(T),) = 15.431 A3, and the volume per atom in the crystalline bulk at 7}, can be

estimated approximately as
up(Thn) =~ vo(To) exp(a(Ty, — Tp)) (5.19)

where Ty = 300 K, the volume at vo(7p) = 14.03 A3 and o = 8 x 10751/K is the
thermal expansion coefficient of vanadium measured at T;,. Thus we can calculate
in approximation vy(7,,) ~ 14.25 A3 and consequently E, &~ 0.468 ¢V. The result
of the MD simulations of surface melting the surface defect formation energy F, of
the least packed surface Va(111) is found to be E; = 0.27 £ 0.05 eV relying on the

analysis of the adlayer occupation as a function of temperature. We may conclude

CHAPTER 5. RESULTS: SURFACE MELTING 123

that agreement between the theoretically predicted and calculated values of Ej is
encouraging.

Finally we remark, that the Born melting criterion was applied in a study of
surface melting of fcc metals [92]. It was found that a linear relation between the
surface defect formation F, energy and the melting temperature 7, is valid for metals
with the fec lattice structure (See Fig. 5.36 and Tab. 5.4) This linear relation agrees
quantitatively with the experimental and simulation values of the activation energy of
the surface defects, without any additional adjustable parameters. Our results imply
that the Born criterion correctly describes both surface and bulk melting, and may
well provide the “missing link” which will finally tie together these two scenarios for

the melting transition.

CHAPTER 5. RESULTS: SURFACE MELTING

124

0.6-

05—

E. (eV)

0.0

.

B Experimental
® Calculated

Linear fit

0

400

T T T T T T T
BOO 1200 1600 2000 2400

T, (K)

Figure 5.36: The activation energy of surface defects F, vs. T,, for Pb, Al, Ag, Au,
Cu, Ni and Pt. The solid line is a linear regression. From ref. [92]

[Metal | Pb Al Ag Au [Cu] N | P
T.K| 600 933 1235 1337 [1356 1726 2045
E, eV | 0.18 % 0.04 | 0.26 £ 0.02 | 0.37 £ 0.03 | 0.32 = 0.03 | 0.41 | 0.49 £ 0.04 | 0.49 £ 0.05

Table 5.4: The activation energy of surface defects E, vs. the melting temperatures

for fcc metals. The data from ref. [92]

Chapter 6

Summary and conclusions

The existing theories aimed to explain melting transition are still far from being
complete and raise futher questions. Hence the main purpose of the present project
was to gain a better understanding of the mechanism of melting transition, and
especially to investigate the role of point defects and the surface of the solid in this
phenomenon.

An interatomic potential proposed by Finnis and Sinclair [42] was chosen to in-
vestigate the bulk and the surface of vanadium at different temperatures. In order
to validate the computer program and to check the potential we calculated thermal
expansion coefficient and the shear moduli of a perfect sample of vanadium at various
temperatures. The results were compared with available experimental data, and the
agreement between was found to be reasonable.

After validation of the pure system, point defects were introduced into the lattice
by either removal an atom (vacancy) or by addition (self-interstitial). The most
stable, energetically favorable configuration of atoms around an interstitial at low

temperatures was found by using simulated tempering method. The configuration

125

CHAPTER 6. SUMMARY AND CONCLUSIONS 126

of point defects in the bulk of vanadium (bcc lattice) was found to be a dumb-bell
< 110 > split-interstitial with the formation energy F; = 4.18+0.02 eV, in contrast to
< 100 > split-interstitial of copper (fcc lattice) with the formation energy Ey = 3.28
eV.

Point defects change the volume of the solid, while the shape of the sample, below
the melting point, is almost unchanged, provided that the concentration of point
defects is small enough. Self-interstitials expand the sample, while the introduction
of vacancies leads to decrease in the volume of the sample. These changes of the
volume due to point defects are less noticeable for vanadium in comparison with
copper. This can be ascribed to the more loose-packed structure of a bcc lattice,
which is less distorted by the presence of defects than a fcc lattice. In addition,
variation of the shear elastic moduli with the concentration of defects and temperature
was investigated. We found that the shear moduli are softened as a result of the
volume expansion of the solid, which is associated with increase in temperature and/or
interstitial concentration. Comparison of our results with the corresponding data for
copper shows that softening of the shear moduli is less pronounced for vanadium.
This again is attributed to the more compact structure of the fcc lattice of copper.

There is a strong evidence that the Born instability is the trigger for melting. This
instability could be set in by self-interstitials which expand the solid up to a critical
volume, where the lattice of crystal becomes mechanically unstable and collapses.
This defect mediated mechanical melting occurs at temperatures below the melting
temperature of the perfect crystal. We found that the critical volume at which crystal
melts is independent of the path throw the phase space by which it reached, either by
heating the crystal without defects, or by adding defects at a constant temperature.

We performed computer simulations with various concentrations of point defects using

CHAPTER 6. SUMMARY AND CONCLUSIONS 127

the Parinello-Rahman method. Starting with a given concentration of point defects
we gradually heat the solid up to the melting transition at Tj. In addition, 7T} is deter-
mined relying on the dependence of the shear elastic moduli on the temperature at a
given concentration of point defects. The melting point is extracted by a continuous
extrapolation of the shear modulus C’ to zero (at the zero external stress). We found
that interstitials lower Tj by approximately 50 K for the defect concentration 0.5%,
however for copper the effect is more pronounced. Vacancies almost do not affect
Ty(at least at small concentrations).

The temperature at which bulk melting transition occurs is found to be T}, =
2500£8 K. This temperature is larger than the thermodynamic melting temperature,
T,, = 2220 + 10K at which the vanadium crystal with the free surface melts (the
same effect of was observed for copper [67] which has T, = 1580K and T, = 1323K)).
The thermodynamic melting temperature 7,, of vanadium was determined using the
method proposed by Lutchko et al.[77]. The simulations were carried out for various
low-index surfaces of vanadium, and it was found that a sample with the least packed
surface melts at lower temperature, than a sample with the close packed surface
structure (the difference is about 10 K).

Surface premelting, i.e. formation of the quasiliquid melt in the surface region, was
studied in detail. The structural, transport and energetic properties of low-index faces
Va(001), Va(011) and Va(111) were examined at various temperatures. We found that
upon increasing the temperature, the vibrations of atoms in the surface region become
larger than in the bulk, they start to disturb each other. As a result a formation of
point defects begins in the surface region. These defects migrate between the surface
layers, opening the way to a “disordered” surface regime (premelting). The regime

of premelting is characterized by enhanced diffusion of atoms in the surface region,

CHAPTER 6. SUMMARY AND CONCLUSIONS 128

and by an increased formation of the surface defects. Finally, an adlayer emerges
on the top of the surface layer and a quasiliquid phase appears as an intermediate
layer between the solid and gas phases. The transition region between the solid and
quasiliquid is the sharpest one for the close packed Va(011) surface. The surface
premelting of the Va(011) is observed only in the close proximity of T,,, reflecting a
large activation energy need for formation of surface defects. The surface premelting
is more noticeable for the loose packed surface, and especially for the least packed
face Va(111).

The results of our simulations of surface premelting of the bec metal vanadium
are similar to the result obtained for various fcc metals. The least packed surface
(011) of those metals (with fcc lattice) begins to disorder first at low temperatures,
while the close packed (111) surface preserves its crystalline structure almost up to
T, (in some cases could be superheated).

Why do crystals start to melt at their surface? To answer this question we applied
the Born criterion of melting transition to the surface region. The generation of point
defects is enhanced with increase of the temperature in the surface region. Therefore,
these defects expand the solid up to the point where the mechanical instability of the
lattice (in the surface region)sets in. According to E. Polturak [92], the Born criterion
is being applied to the surface melting leads to a simple linear relation between the
activation energy of surface defects and T;,. This theoretical prediction was tested
by results of experiments and computer simulations of fcc metals. In order to test
the validity of the theory for vanadium (becc lattice), we evaluated the activation
energy of the surface defects for the least packed Va(111) face and compared it with
the value predicted by the theory. The available experimental data and results of

bulk simulations were used as input parameters in the theoretical calculations of

CHAPTER 6. SUMMARY AND CONCLUSIONS 129

surface defects formation energy. The activation energies of surface defects estimated
from the Born criterion and obtained in our computer simulations are in reasonable
agreement. Therefore, a general conclusion is made that the Born criterion correctly
describes both surface and bulk melting, and may well provide the “missing link”
which will finally tie together these two scenarios of the melting transition.

Many aspects of melting transition were investigated in our computer simulations,
nevertheless many other questions remain to be answered. First, one could investigate
the mechanism of bulk and surface melting using alternative versions of the many-
body potential for vanadium (or any other bce metal) and compare with the present
results. In particular, it would be very interesting to apply the latest version of an
interaction potential for bece metals, the second nearest-neighbor modified embedded
atom potential (MEAM) developed by B. Lee et al. [100]. In order to considerably
improve the accuracy of calculations we one could to increase the number of atoms
(and number of the free layers in case of surface melting). This would be achieved by
substantional improvement the parallel version of our MD code and more intensive
use of supercomputers.

Another interesting problem, which was outside of the scope of the present re-
search, is the nature of the phonon spectrum in the vicinity of point defects. It is
expected that point defects create additional local and resonance modes in the phonon
spectrum. These modes play an essential role in the bulk and surface melting transi-
tion. In addition, it would be very interesting to verify whether the inhomogeneous
bulk melting transition (i.e. formation of the “clusters” of the liquid phase inside
the crystalline phase) observed in computer simulation with the simple L.J potential
[6] could be observed if more a complicated FAM potential is used. Besides that,

it would be instructive to investigate whether the bulk melting transition could be

CHAPTER 6. SUMMARY AND CONCLUSIONS 130

initiated around complexes of point defects (e.g. polyvacancies or polyinterstitials).
It would be very important to investigate the relation between surface premelting and
surface roughening as well as the surface reconstruction at low temperatures.
Finally, it is a fascinating problem to investigate bulk melting as well as surface
premelting of metals with hcp lattice structure. Furthermore, next in order of com-
plexity to crystals containing point defects are crystals with more complex defects
(dislocations, disclinations, etc). The challenge is how to study the mechanism of the

melting transition of those crystals by means of computer simulations?

Appendix A

Predictor - corrector method

Amongst the different versions of integrators, the predictor-corrector (PC) [54-56],
method was chosen for our simulations. The goal is to solve the second order ordinary

differential equations:

= iz, a0 t) (A1)
where
&= ‘fl—f (A.2)
and
f(t) = f(a(t),4(t),1) (A.3)

This is Newton’s equations of motion for the z component of the ith atom, and the
same equation could be written for y and z. We omit the ¢ index now for simplicity.
The PC method is composed of three steps: prediction, evaluation, and correction.
In particular, from the initial position z(t) and velocity &(t) at time t, the steps are

as follows:

131

APPENDIX A. PREDICTOR - CORRECTOR METHOD 132

Prediction

1.) Predict the position x(t + h), where h is the time step of integration:
k—1
z(t+h)=a(t)+hi(t)+h D o f(t+h(l—1i) (A.4)
i=1
In our simulation we use k=4, and therefore we can write explicitly the formula, using

the {a;} from [54] :

z(t + h) = 2(t) + hi(t) + h? {%f(t) — %f(t —h) + 23—4f(t — 2h)} (A.5)

2.) Predict the velocities:

x(t+h]z—x(t) +h]§oz;f(t+h(1 — 1)) (A.6)

=1

B(t+h) =

and therefore:

x(t+ h) — x(t)

B(t+ h) = -

+h{§f(t) - gf(t— h) + 2—74f(t— zh)} (A7)

Evaluation

3.) Evaluate the force using the predicted values:
ft+h)=flz(t+h)) (A.8)

Correction
4.) The final step is to correct the predictions by using some combinations of the

predicted and previous values of position and velocity:
k—1
x(t+h) = x(t) + hi(t) + 1> Bif(t+ h(2 —1)) (A.9)
i=1
or

(t+) = 2(t) + hi(t) + h? {23—4f(t) 7(0) — 5 wh o a0

APPENDIX A. PREDICTOR - CORRECTOR METHOD 133

and for velocity:

z(t+ h) — x(t)
h

#(t+h) = +h]§6§f(t+h(2—i)) (A.11)

and therefore:

x(t+’72_x<t) +h{lf(t+h)+%f(t)_ if(t—h)} (A.12)

#(t+h) = =

The set of parameters {«a;, af, 5;, i} @ = 1,2,3 promotes numerical stability of the
algorithm. Gear [56] determined their values by applying the predictor-corrector
algorithm to linear differential equations and analyzing the stability of the method.

The values of {«;, af, 5;, B/} were chosen specially to make the local truncation
error of order of O(h*), and the global error for the second order differential equations
is order of O(h?). Tt worth to mention, that interactions are evaluated using the results
of the predictor step, but they are not re-evaluated again following the corrector
step. It was shown that mean error, induced by the absence of force re-evaluation, is
insignificant [55].

The main ingredient of the predictor - corrector method is the corrector step,
which accounts for a feedback mechanism. The feedback can damp the instabilities
that might be introduced by the predictor step. This method provides both the
positions and velocities of the atoms at the same time and it can be used to calculate
forces, which depend explicitly on the velocity, this is in turn usually needed in

algorithms which control temperature and pressure.

Appendix B

Nose-Hoover algorithm

The simplest extension of the NVE ensemble is the canonical one (NVT), where
the number of particles, the volume and the temperature are fixed to the prescribed
values. The temperature T'; in contrast to the number of particles N and volume V',
is an intensive parameter. The extensive counterpart is kinetic energy, related to T’

through:

2 Fin 1 Xp?
T=2 — E = B.1
3 Nk 3Nk ()

i—1 M

There are different methods which control the temperature: the differential, propor-
tional, stochastic and the integral thermostat [59]. The integral thermostat method
was selected for our MD simulations. The integral thermostat method (which some-
times called the extended system method or the Nose-Hoover algorithm [60]) intro-
duces additional degrees of freedom into the system’s Hamiltonian, for which equation
of motion can be derived. These equations for the additional degrees of freedom are
integrated together with "usual” equations for spatial coordinates and momenta.
The idea of the method proposed by Nose [59,96] was to reduce the effect of an

external system, acting as heat reservoir, to an additional degree of freedom. This

134

APPENDIX B. NOSE-HOOVER ALGORITHM 135

heat reservoir controls the temperature of the given system, i.e. the temperature
fluctuates around target value. Actually, the thermal interaction between the heat
reservoir and the system results in exchange of the kinetic energy between them. Nose
introduced two sets of variables: real {p;,¢;} and wvirtual {m;, p;} ones. The virtual

variables are derived from the so called Sundman’s transformation [62]:

_dr
Cdt

S

(B.2)

where 7 is the virtual time, ¢ is the real time and s is a resulting scaling factor, which
also treated as a dynamical variable. The transformation from the wvirtual variables

{mi, pi} to the real ones {p;, ¢;} is performed according to:
pi =T (B.3)

4% = pi (B.4)

The introduction of the effective mass M, connects also a momentum to the additional
degree of freedom 7. The resulting Hamiltonian, expressed in terms of the virtual
coordinates can be written as:

N 2 2

T v
H = — +Ulpy, pa...... 5 kTl B.5
; s +U(p1, p2s ooy pn) + S0, + gkyTln(s) (B.5)

where g = 3N+1 is the number degrees of freedom of the extended system (N particles
+ 1 the new degree of freedom). It was shown, that this Hamiltonian H* leads to a
density of probability in phase space, corresponding to the canonical ensemble[61].
The equations of motion obtained from the Hamiltonian are:
dp; OH* 7
dr 07 ms?

d7; OH* QU

dr — op;, Op;

(B.6)

(B.7)

APPENDIX B. NOSE-HOOVER ALGORITHM 136

ds_@H*_ Ty

dr — om, M, (B#)
dm OH* gk,T XL n?
— " _ ¢ B.
dr 0s S + Z 2ms (B.9)

=1

If one transforms these equations back into the real variables {p;, ¢;} and intro-

duces a new variable (:

ds ds dr OH*dr

U T Cara Sama (B.10)
then one obtains (according to Hoover [63]):
dg; _ pi
— = — B.11
dp; ou
= — — (P B.12
= oa P (B.12)
Jln(s)
= B.13
o) (B.13)
d¢ 1 (&L p?
— = — — gk T i = |pi B.14
TR (; o~ IR | pi =17 (B.14)

These equations describe the Noose-Hoover thermostat [64]. The parameter M is
a thermal inertia parameter, which determines rate of the heat transfer. The value
of this parameter must be set carefully, because if it is chosen to be too small the
phase space of the system will not be canonical [65], and it is chosen to be too large
the temperature control will not be efficient. In our simulation, for example, we set
M, = 1/6. By means of the Noose-Hoover thermostat we can impose time averaged

value of temperature to be equal to the prescribed value.

Appendix C

Calculation of the shear moduli

If an external force acting on a body or if one part of the body applies force on
another part, it is said that the body is in the state of stress. Stress is defined in
units of force per unit area 0 = F'/A and can be characterized in general case by the
stress tensor. Strain describes the state of deformation of a solid; there is dilatational
strain which changes the volume, but not the shape and deviatoric strain which in
contrast changes the shape, but not the volume.

For a field of deformations (z,y, z), we can define a symmetric strain tensor in

the following way:

1 <8ua +%

€aB = § 8—[[‘16 axa>, Oé,ﬁ = 1,2,3 (Cl)

Hook discovered that the strain € is proportional to the stress o:
e=So or 0=Ce (C.2)

These relation between the stress and the strain could be generalized for an anisotropic

solid, in the terms of tensors:

€ap = Z Sapys0ys (C.3)

¥

137

APPENDIX C. CALCULATION OF THE SHEAR MODULI 138

or

Oap = Z Capys€ys (C4)

7%
The fourth-rank tensor C,g,s has 3x3x3x3 = 81 components, but thanks to cubic

symmetry (of simple cubic, fcc and bee lattices) there are only three independent
components of the elasticity tensor Cyp,s.

It is customary to reduce the number of subscripts by means of an abbreviated
notation for pairs of coordinate directions, as follows [67]:
in the full tensor notation the indices of Cyp,5: 11, 22, 33, 23 32, 13 31, 12 21,
while in the abbreviated notation they are Cpp: 1, 2, 3, 4, 5, 6

and there is a correspondence:

11— 1=>Cuyy =Chy (C.5)
22 — 2 => 1o = O (C.6)
33 = 3=>Clas = O3 (C.7)
23,32 — 4 => (i3 = Cazzz = Cly (C.8)
13,31 — 5 => Cy113 = Ciz13 = Css (C.9)
21,12 — 6 => Chag1 = Cora1 = Ceg (C.10)

In these notation the three independent components of the elasticity tensor [67]:
CYll7 CVl27 CV44

Of course, one can use linear combinations of these elastic constants, to express other

physical quantities such as: bulk modulus: B = C; + %012 and shear modulus:

C" = 1(C; — C12) The free energy of a distortion can be expressed in powers of the
2 gy

strain tensor components. Assuming that the distortion of a crystal lattice too small

APPENDIX C. CALCULATION OF THE SHEAR MODULI 139

to break the four-fold cubic symmetry and neglecting high order terms we can write
the free energy as:

1 1 1
U = ZCQIBGaﬁ = 53(2611 + 623)2 + 30/(633 - 611)2 + 5044(531 + 6%3) (C.11)
af

On the base of elasticity theory, Born [68] derived the general conditions for stability
of a crystal lattice:

B>0,C'">0and Cy >0 (C.12)

and showed that the melting temperature could be found from the condition Cy4(T},,) =
0. Therefore, calculation of these elastic coefficients is very important in studying the
melting transition. The elastic constants C4y, C9, Cyy are calculated by means of
fluctuation formulas obtained by Ray and Rahman [57,58]. It was shown that the

elastic coefficients C 46 are related to fluctuations of the stress tensor
< OanOpp > — < Opp >< Ogy > (C.13)

and the ensemble average of the Born term B,g,,. The elastic coefficients are calcu-

lated in the following way:

Coprp = (=V/kT) (< 00y, > — < 0np >< 08y >
Bp (/)(vYBp p By) (C.14)
+ 2NET V) (< dar0pp > + < baplpy >) + < Bagyp >
where 0,4 is the stress tensor, d,s5 is Kroneker delta, and <> is ensemble averaging,

N,V,T are the volume, the number of atoms and the temperature, respectively.

The Born term is defined as:

1 Neeion /9207 " 1 OU,ui \ TiiaTiiaTiinTiis
Bujs = — pot L OUpo ijalijBTijyTij .15
pre 2V i,j;?Ej (87’% Tij arij 7"2-2]- ()

here afyd = 1,2, 3 are Cartesian indices and 7, j = 1,2, .., Ny, numerate the neigh-

bor atoms, and r;; = |r; — 7| is distance between the atoms ¢ and j. Potential energy

APPENDIX C. CALCULATION OF THE SHEAR MODULI 140
is represented by the Finnis - Sinclair potential:
N
pOt — 5 Z (b ng ZF(PZ) (016)
zg i#£] i=1
and therefore the Born term is given by the formula:
Bapys = (Bl)agys + (B2)agys + (B3)agys (C.17)
where:
N 2
0 1 0P\ rijarijsTijyTijs
Bl a o4 tjol ijBTijy g C.18
(prd = Z <8Ti2j Tij 8Tij> T?j ()
N 2
Fp 1 0p \ TijalijsTijyTijs
(B2)aprs = (—) L (C.19)
Y ; jzz;é] arij Tij 87’@' ,rz'2j
here
Nneigh
pi= Y p(ri) (C.20)
J
and finally:
N
(B3)agrs = 2 F'[pilgiasgivs (C.21)
while the function g;,s defined as:
Nnei h /
1 P Tjar
Giap =5 2 Ary)ieriss]3”.7 2 (C.22)
J: g#i i

The main advantage of this method is the fast convergence of the stress fluctuation

term to its equilibrium value.

In order to calculate the shear elastic modulus using the above mentioned formula

two steps are required. The first step is to find the zero-stress reference matrix for

the computational cell H 05 and the second step is to run the NVT MD simulation

to calculate the elastic coefficients, using stress tensor fluctuations and average value

of the < B,gy, > term.

Appendix D

Isothermal-isotension ensemble

An extended ensemble, which was implemented in this project, is the isothermal-
isotension ensemble with constant number of atoms (NtT). We study the behavior
of vanadium containing self-interstitials and vacancies, at temperatures close to the
melting point. In this case, one expects changes of the volume and shape of the sample
due to the thermal expansion and point defects. Therefore, in order to describe the
system accordingly we have to implement an algorithm, which allows for fluctuation
of the shape and volume of the computational cell, and at the same time controls the
pressure of the system.

Parinello and Rahman in 1980 [66] invented a new method, in which the shape
and volume of the computational cell are dynamical variables. This technique is
very helpful in study of the phase transitions. The statistical ensemble designed by
Parrinello and Rahman, combined with Nose-Hoover thermostat is identified as an
isothermal-isotension (NtT) ensemble.

The realization of this method is in the following way. First of all, we introduce

141

APPENDIX D. ISOTHERMAL-ISOTENSION ENSEMBLE 142

scaled coordinates {s’} in addition to the usual ones {r’} :

s, = Z Hopry (D.1)
B=1

where the Greek indices «, 3, are the coordinate indices {a = 1,2,3 or a = x,y, 2},
the Latin indices ¢ { ¢ = 1, N} count the atoms, and H,g is a transformation matrix.

The volume of the computational box is given by:
V = det(H,p) (D.2)
One can introduce a metric tensor G, by using the H,s matrix:
N=3
Gap = Z HyoHyp (D.3)
y=1
or
G=H"H (D.4)
where T is stands for transpose. A distance between any two atoms are i and j is

simply given by:

HEDY (r; - ri)z =) (sfl - sfl) Gop (slﬁ - 3]5) (D.5)

« a?/B

where o and (3 are the coordinate indices.
The Lagrangian of the system has to be extended from 3N coordinate degrees of

freedom to 3N+9, including the new 9 degrees of freedom of the real matrix H,g :
L=T-U—L=T+Tyg—-U-Uy (D.6)

where the extra ’kinetic’ energy Ty and the corresponding 'potential’ Vi energy are
added to the original Lagrangian to account for the new decrees of freedom.

The ’kinetic’ energy term is given by:

3 3
Ty ==Q3 Y HugHag (D.7)
a=1 =1

N =

APPENDIX D. ISOTHERMAL-ISOTENSION ENSEMBLE 143

where () is a parameter, its physical meaning will be explained latter.

The ’potential’ Uy energy term is:
Uy =PV (D.8)

here V' is volume of the system V = det(H,g) and P its pressure, which can be
obtained according to the wvirial theorem:
1 L o=
P=NkT+ 3 < izjrijFij > (D.9)
where ﬁij is the force acting on atom ¢ due to the atom j, and 7;; = 7, — 7 is the
vector which connects the atoms ¢ and j, and < ... > stands for ensemble averaging.

The modified Lagrangian is written in the terms of new variables:

3
L' = 1227}18 G 5sﬁ Z U(rij)

=1 o, Z] i#£]

DO |
[\Dli—‘

3 3
ZZ Hu,sH.3— PV (D.10)

here, for the sake of simplicity we omit for a while the terms corresponding to the

Noose-Hoover thermostat. The equations of motion are obtained in the usual way:

oL d oL
4oL D.11
Ost, dt 0s, ()
oL’ d oL
oh — aﬁh; = (D.12)
Therefore we obtain:
msl, = (H agfi — > m(G ")as(G)sy8, (D.13)
B By
QHaﬁ = VZ(UM - P(Sm)(H_I)EV (D.14)
¥
where fj = ;. ng and m; =mg = ... =m; =m,

the 0,4 is the stress tensor which describes anisotropy of the solid.

APPENDIX D. ISOTHERMAL-ISOTENSION ENSEMBLE 144

The stress tensor 0,4 is defined in the following way [67]:

1 Nvf‘v]@ 1 X \ﬁ”h’grg
“aﬁ——(z TR

Vg i,j: i£]

(D.15)

here v{* is ath component of the atom 7 velocity,
and r¢ is ath component of the vector connecting atoms ¢ and j.

The hydrostatic pressure components are the diagonal elements of the stress tensor:
Do =< Oy > Dy =< Oyy >; Py =< 0z > (D.16)

The stress tensor can be rewritten in the terms of the scaled variables {s’ }:

N N
705 = 3 (Z (30 8 o) (0 Hos) + 5 > Hoo (55— szgmj,ﬁ) (D.17)

i=1 ~ 5 i,J: i#£]
here F;; g is the Bth component of the force acting on the atom 4 due to the atom j.

The system is driven by dynamic imbalance between the applied external stress
and the internally generated stress. The () parameter corresponds to the relazation
time of recovery from the imbalance between the external and the internal stress. It
can be shown that the value of) does not influence the ensemble average [67].

The equations of motion generated by the Lagrangian can be effectively solved
numerically. One has take into account that the Parinello-Rahman model is repre-
sented by a system of coupled ordinary differential equations for scaled coordinates
{s’} and for the { H,5} elements of the H matrix. These equations have to be solved
simultaneously.

This can be done using the predictor-corrector (PG) method, which includes the
following steps:

1.) New scaled positions {s’,(t + 0t)} and velocities {s’,(t + dt)} are predicted on the

basis of the old ones,

APPENDIX D. ISOTHERMAL-ISOTENSION ENSEMBLE 145

including the accelerations {s’,(t), s’ (t), 8., (¢), 8% (t — dt), &, (t — 26¢)} :

e e

st (t+0t) = s (t) + & (t)ot + (6t) ZaPG’ (t+ (1 — k)ét) (D.18)

k=1

8L (t+ 0t)ot = s (t + 6t) — s (t) + &, (t)ot + (6t) ZbPG L4 (1 —k)ot) (D.19)

k=1
here {af’%, ¢} are the (PG) prediction coefficients.
k ke

2.) The force acting on the atom i is calculated using the predicted coordinates

{st(t+ 6t)}:

3
= —V Uy (r(t + 1)), 7, Z 3Ss (D.20)

l

.

3.) The temperature of the system and the stress tensor are evaluated at t + dt:

2 N 3]
=32 > m(i) (D.21)
i=1 a=1
1 (& vy,]
TaB = 77 (Z m(Y 8L Hoa) (Y Hpsss) + 5 Z Ho (5 = 53)F, 5) (D-22)
i=1 Y 6 zg i#£]

4.) The values of the elements of the matrices H,g, Haﬁ are predicted:

Heop(t 4 6t) = Hop(t) + Hop(t)ot + (1) i af Hop(t + (1 — k)ot) (D.23)

k=1
3
Hop(t4+0)6t = Heop(t+0t)—Hop(t)+Hop(t)0t+(01)2 > bEC Hop(t+(1—k)ot) (D.24)
k=1

5.) The values of the matrix Haﬁ is evaluated at t + dt using the predicted values of

the matrix H,g according to:

’ > (Oay = Péar) (H)87 (D.25)

oy =~
g Q%

6.) The acceleration of of the atom i is calculated:

Solt +0t) = %(H_l)aﬁfé - ﬁz m(G ™)as(G)py8, (D.26)

APPENDIX D. ISOTHERMAL-ISOTENSION ENSEMBLE 146

if we take into account the Noose-Hoover thermostat:
(t+0t) = (H apfs — Z m(G™)as(G) gy — St E g, (D27)
B S

ot % ky2m(r;)?
M NkT |3 3

Yt + 0t) = P(t) + — Nk T| 5, 4(0)=0 (D.28)

7.) Now the values of H,3 and Hag are corrected:

Hop(t + 6t) = Hop(t) + Hap(t)dt + (61)° i FOHop(t + (2 — k)Ot) (D.29)

k=1

Hop(t+0t)6t = Hop(t+0t)—H, (t)—l—Hag(t)(St—l—(ét)zidfeﬁaﬁ(t—i—@—k)ét) (D.30)

k=1

here {cf¢, dF%} are the (PG) correction coefficients.
8.) Finally, the cycle is completed by correction of positions {s? (t+4dt)} and velocities
{s:(t + dt)} of all atoms:

st (t 4 6t) = st (t) + & (t)5t + (6t) ZCPG Ut (2 — k)ot) (D.31)

k=1

8L (t+ 6t)0t = s'(t + 5t) — sL,(t) + &, (t)6t + (5t)* 23: dres (t4 (2 —k)ot) (D.32)

k=1
9.) Go to the step 1.

The structural phase transitions can be studied using this algorithm. We used this
algorithm to find the volume and the shape of the sample under the zero external

pressure, close to the melting point T,.

Appendix E

Computer programs

Readers interested in downloading the software described in this MS Thesis should
contact the home page of this Thesis at :
http://phycomp.technion.ac.il/~phsorkin/vanadium.html

an

http://phycomp.technion.ac.il/~phsorkin/index.html

The MD program (for surface premelting simulations) accepts an input file “initdata.h” where the size of the compu-

tational cell and all the relevant parameters (which are not changed frequently) are assigned.

//************** The lnput control file: ‘EinitdataAh”************//
#ifndef INITDATA_H

#define INITDATA_H

#define surface 0 // 0-> [001], 1-> [011], 2->[111]

if surface !=1
#define size_x 10 // number of x-size atoms
#define size_y 10 // number of y-size atoms
#define Atoms 2700 // Number of atoms =size_x*size_y*size_z
#define FROZEN_ATOMS 300 // NUMBER_OF_FROZEN_LAYERS*size x*size_y
else //[011]
#define size_x 7 // number of size atoms
#define size_y 7 // number of size atoms
#define Atoms 2646 // Number of atoms =2%size x*size_y*size_z
#define FROZEN_ATOMS 294 // 2*NUMBER_OF_FROZEN_LAYERS*size x*size_y
#endif

#define size_z 27 // number of size atoms

#define INIT_LAYERS size_z

#define NUMBER_OF_FROZEN_LAYERS 3

#define NUMBER_OF_LAYERS INIT_LAYERS-NUMBER_OF_FROZEN_LAYERS+1
#define a00 3.0399 /* size of initail cell at T=0 K*/

147

APPENDIX E. COMPUTER PROGRAMS 148

##define alpha_t 0.0000086 /*Thermal Expansion Coefficient*/
#define dt 0.002 /*Time step*/

#define N_neigh_step 100 /*Number of neighbour steps*/
#define step_EPT_meas 30000

#define step_backup 200000

//Pressure & Temperature Control

#define press 0.0

// Density Profiles

#define DELTA 20

#define RESOLUTION DELTA*(INIT_LAYERS+5)
//Chen_density

define Z_RES 500

// Pair_Correlation Data

define PAIR_.STEP 200

// Order Parameter

define NUMBER_OF_DIRECTIONS 3

// Diffusion Date

define TMAX 3000 /* number of measurements*/

define TOmax 300 /* max number of tO time origins*/
define NUMBER_OF_CALLS 10

/* time interval between set of a new t0 time origin*/

#endif

An example of the input file “aaa_info.txt” where the parameters which are most frequently changed (type of

surface, temperature, number of measurements, etc) are assigned. This file is generated automatically at the first run.

ks RO o 11 £ et KRR SRR Rk o ks ok

1800

1000

100

100

30000

100

100.0

6.000000

2700

100

3

24

[001]

sk RRRRRR R \ain Parameters ®FFRRsRsskokod R ko
Regime: 0—> start, 1 —> equilibration, 2—> measurements
Temperature
Number of steps in order to approach to the equilibrium
Number of steps between two succesive measurements
Number of measurements
Initial step
Number of the aviz pictures

Percent of the accomplished job

APPENDIX E. COMPUTER PROGRAMS 149

NVE/NVT parameter

Number of the atoms

Number of the atoms in a layer
Number of frozen layers
Number of free layers

The surface type

AR KRR RRE © fupe cp 7 RRERRR R R Rk

« »

The ¢ func_cp.h ” file describes all the functions are used by the main “md.c
ifndef NPTFUNC_H
define NPTFUNC_H

void add_info();

program.

double scale_lattice();

void aviz_layer(char *fn);

void check_initial_data();

void layer_colors(void);

void comments(char *fn);

long get_inform(char *fn);

void save_inform(char *fn);

void backup(char *fn, int mode);

void save_configuration(int mode);

void equilibration();

void measurements(void);

void measurements_initialize_n_backup(int mode);
void measurements_make_n_output(int mode);
// Trajectories

void init_trajectories(int mode);

void trajectories();

// Layer distribution

void energy_temp_pressure();

void atom_distribution_in_layers (int mode);
void atom_distribution_in_layers_rw (char *fn, int mode);
//Diffusion

void diffusion_rw(char *fn,int mode);

void find_diffusion_times(void);

void diffusion(int mode);

void pbec_rw(char *fn,int mode);

// Pair Correlation Functions

void pair_correlation(int mode);

void pair_correlation_rw(char *fn, int mode);
// Inter Layer Distances

void inter_layer_dist(int mode);

void inter_layer_dist_rw(char *fn,int mode);

// Order Profile Functions

void order_parameters(int mode);

void order_parameters_rw(char *fn, int mode);
// Temperature Profile Functions

void temperature_profile (int mode);

void temperature_profilerw(char *fn, int mode);
// Density Profile Functions

void density_profile(int mode);

APPENDIX E. COMPUTER PROGRAMS 150

void density_profilerw(char *fn, int mode);
void chen_density_profile(int mode);
void chen_density_profile_rw(char *fn, int mode);
//Initalization

void init_r_init(void);

void init(void);

void aviz(char *fn);

//Setup

void bec_011(void) ;

void bec_001(void);

void velocity_init(void);

double lattice_parameter(double x);
void setup-111();

void create_001();

//Input Output

void read_coord_from_file(char *);
void read_vel_from_file(char*);

void save_to_file(long,int);

// Basis

void build_neigh_list(void);

void predictor(void);

void corrector(void);

void compute_f(void);

void eval_PTO(void);

// Density part of potential

double density(double pr_dis);

double density_dot(double pr_dis);
double density_dot_dot(double pr_dis);
double density_cut(double r);

double density_dot_cut(double r);

// Phi potential

double phi_pot(double pr_dis);

double phi_pot_dot(double pr_dis);
double phi_pot_dot_dot(double pr_dis);
double phi_pot_cut(double r);

double phi_pot_dot_cut(double r);
double phi_pot_dot_ren(double x);
double phi_pot_dot_dot_ren(double x);
//F_potential

double F_pot(double);

double F_pot_dot(double);

double F_pot_dot_dot(double x);
double max3_plus(double R1,double R2,double R3,double M);
F#endif

SRR G otantial b RRER KRR Rk

// All the parameters of the modified FS potential for vanadium are collected in this file
ifndef POTENTIAL_H
define POTENTIAL_H

APPENDIX E. COMPUTER PROGRAMS 151

#define cutoff 3.8 /*Cutoff of potential*/

#define neicutoff 14.440000 /*Square of the nearest neighbour distance */

define FS_d 3.692767

define r_cut 3.8

define c1 -0.8816318

define c2 1.4907756

define ¢3 -0.3976370

define A -2.010637

define FND 2.63185120210091

define B 23.0

define alp 0.5

define b0 2.632

#endif

sk R R RO Coonatantg. KRRk ks sk ko ok
The various constants (w,kg) are defined here
ifndef CONSTANT_H

define CONSTANT_H

F#define pi 3.1415926535897932384626433832795

#define kb 0.0000862 /* Boltzman constant */

F#endif

s R G (00 RS R SRR R R sk oK
The main program “md.c” which calls other functions.

include <stdio.h>

include <stdlib.h>

include <math.h>

include ”func_cp.h”

include ”potential.h”

include ”initdata.h”

include ”constants.h”

int Color[Atoms J;

double r[Atoms][3];

double v[Atoms][3];

double f[Atoms][3];

int nei[Atoms|[Atoms];

// Predictor-Corrector

double f1[Atoms][3];

double f2[Atoms][3];

double r1[Atoms][3];

double v1[Atoms][3];

//General properties

double a0,Q,temp,ksi=0;

double temp_current,press_current;

double pot_E kin_E,virsum;

double 1x,ly,lz,Width;

double pten[3][3];

int regime;

//Layer structure

int atoms_distribution[NUMBER_OF_LAYERS];

long counter_of_atoms_distribution;

long stepO,step,num_eq_steps,num_of_meas;

int interval,Limit_aviz_pict,number_aviz_pict=0,step_Aviz;

APPENDIX E. COMPUTER PROGRAMS 152

int layersf]NUMBER_OF_LAYERS][Atoms J;

// Pair Correlation Function

double Profile[NUMBER_OF_LAYERS][PAIR_STEP],width_rdf,
normFac,half_box;

long pair_corr_count;

// Order parameter profile

double S[NUMBER_OF_LAYERS][NUMBER_OF_DIRECTIONS][2];

// Chen Density profile

int z_profile[RESOLUTION];

long count_density_profile ;

double dens_ch[Z_RES],temp_ch[Z_RES], chen_counter;

//Diffusion
long diff_counter,tmax,tOmax;
int ntime[TMAX],time0[TOmax],t0=0;

double rO[Atoms][3][TOmax];

double r2f[TMAX][3][NUMBER_OF_LAYERS];

int pbc[Atoms][2];

//Temperature profile

double dis_bet_lay[NUMBER_OF_LAYERS], counter_dist;
double temp_profile [NUMBER_OF_LAYERS], counter_temp;
int main()

{

int i,j,dd;

FILE* outd;

char fn[50];

check_initial_data();

get_inform(” aaa_info.txt”);

// Take thermal expansion into account

a0=lattice_parameter(temp);

if(surface==0)//==== Structure b.c.c. [001] ==

{

bcc_001() ;

Width=a0/2;

Ix=a0*size_x; // a0 Angstrems lattice constants

ly=a0*size_y; // 1x, ly length of the box Angstrems lattice constants
e ————

if(surface==1)

{

Width=a0/sqrt(2.); // Distance between layers in ordered crystal
Ix=sqrt(2.)*a0*size_x; // a0 Angstrems lattice constants

ly=a0*size_y; // 1x, ly length of the box Angstrems lattice constants
bcc_011() ;

¥

//================

if(surface==2)

{

Width=a0/(2*sqrt(3.));

Ix=sqrt(2.)*a0*size_x; // a0 Angstrems lattice constants
ly=sqrt(3./2.)*a0*size_y; // 1x, ly length of the box Angstrems lattice constants

read_coord_from_file(”r00.log”);

scale_lattice();

APPENDIX E. COMPUTER PROGRAMS 153

//================== ===//
1z=Width*(INIT_LAYERS-NUMBER_OF _FROZEN_LAYERS);

layer_colors();
aviz(”van_0.xyz");

add_info();

step=stepO;

init();

if(regime){ read_coord_from_file("r.log”); read_vel_from_file(”v.log”);}
if(regime < 2)

{

if(regime==0)

{

velocity_init();

aviz(”van_0.xyz”);

regime=1;

¥

else fprintf(stderr,”\n Continue approaching to the equilibrium”);
//Continue simulation without the structure measurements
equilibration();

stepO=step;

regime=2;

}

if(regime==2)

{

fprintf(stderr,” \n Start measurements”);

measurements();

}

fprintf(stderr,” \n\t ********* The Happy End ¥¥¥xkkkfsthiin|),

return(0);

} ekl ok Snitialization.c? FRRERRRE KRR Rk K

Set to zero all the parameters of the system
include <stdio.h>

include <stdlib.h>

include ”initdata.h”

void init(void)

{

extern double f1[Atoms][3];

extern double f2[Atoms][3];

extern double r1[Atoms]([3];

extern double v1[Atoms][3];

extern int z_profilel RESOLUTION];

int i,j;

for(i=0;i<Atoms;i++)
for(j=0;j<35j++)
r1[i][j]=v1[i][§]=f1[][]]=f2[i][j]=0.;
for(i=0;i<RESOLUTION;i-++)

z_profile[i]=0;

APPENDIX E. COMPUTER PROGRAMS 154

}
I1017007771707711771771177111111177111711717711711111111111117
void pbec_rw(char *fn,int mode)

{

extern int pbc[Atoms][2];

extern double r[Atoms][3];

FILE *fd;

int i;

if(mode==0)

{
H1017707707071777717770107711111711711111717
if((fd=fopen(fn,”r”))!=NULL)

{

for (i=FROZEN_ATOMS;i<Atoms;i++)
fscanf(fd,” \n %d %d ”,&pbcl[i][0],&pbc[i][1]);
fclose(fd);

}

else

{

fprintf(stderr,”\n ! pbc initialization (:) 7);
system(”rm -rf diffusion.back atom*.txt ”);

if((fd=fopen(”r0.log”,”w”))!=NULL)

{
for (i=0;i<Atoms;i++)
{
fprintf(fd,” \n %If %1f %If, r[i][0],r[i][1],r[i][2]);
pbcli][0]=pbc[i][1]=0;//Check & keep p.b.c. for each atom
}
fclose(fd);
}
}
H00117070077177101711711711717711111111117
}
if(mode==1)
{

1101707771171711111171171111117117111111171
if((fd=fopen(fn,”w”))!=NULL)

{

for (i=FROZEN_ATOMS;i<Atoms;i++)
fprintf(fd,” \n %d %d ”,pbcli][0],pbc[i][1]);
fclose(fd);

}

}

}

skesksk sk ook ok ok kR ok OR 6 99 skeskook sk sk sk s sk sk ok sk sk ook skok

equilibration.c

Equilibration of the system

include <stdio.h>
include <stdlib.h>
include <math.h>

include ”func_cp.h”

APPENDIX E. COMPUTER PROGRAMS 155

include ”potential.h”
include ”initdata.h”
include ”constants.h”
void equilibration()
{
extern int number_aviz_pict,Limit_aviz_pict,step_Aviz;
extern long step,nume_eq-steps;
extern double temp_current,press_current,kin_E,pot_E;
int i,j,eq_steps;
char fn[50];
eq_steps=(int)1.0*num_eq_steps/N_neigh_step;
buildneigh_list();
compute_f();
//Launching calculations
for(i=0;i<eq-steps;i++){
for(j=0;j<N_neigh_step;j++)
{
step++;
predictor();
compute_f();
eval_PTO();
corrector();
}
build_neigh_list();
fprintf(stderr,” \n step=%ld temp=%g pressure=%g
total E=%g ”,step,temp_current,press_current,(kin_E+pot_E));
if(step % step_EPT_meas==0) energy_temp_pressure();
if(step % step_Aviz==0)
{
if(number_aviz_pict++ < Limit_aviz_pict)
{ sprintf(fn,”van_%ld.xyz" step);
aviz(fn);
}
}
if(step % step_backup==0)backup(”aaa_info.txt”,1);
} // The Main Cycle: over i
backup(”aaa-info.txt”,1);
}

ok KRR RHOK () e b (99 skokskokok s sk R ok o o

Measurement of the various physical properties

include <stdio.h>

include <stdlib.h>
include <math.h>
include ”func_cp.h”
include ”potential.h”
include ”initdata.h”
include ”constants.h”
void measurements()

{

extern long step,num_of_meas,step_Aviz;

APPENDIX E. COMPUTER PROGRAMS 156

extern int interval,Limit_aviz_pict,number_aviz_pict;
extern double temp_current,press_current;

extern double pot_E kin_E;

long number_of_steps;

int i, j, write_.intermediate_results;

char fn[50];
write_intermediate_results=(int)1.0¥*num_of_meas*interval /4.0;
number_of_steps=(long)1.*num_of_meas*interval /N_neigh_step;
measurements_initialize_n_backup(0); // Initialize or read some functions:
// Starting calculations

build_neigh_list();

compute_f();

for(i=0;i<number_of steps;i++){

for(j=0;j<N_neigh_step;j++)

step++;

predictor();

compute_f();

eval_PTO();

corrector();

}

build_neigh_list();

fprintf(stderr,” \n step=%ld temp=%g pressure=%g
total E=%g ”,step,temp_current,press_current,(kin_E+pot_E));

if(step % interval==0)

if(step % write_intermediate_results) measurements_make_n_output(1);
else measurements_make_n_output(2) ;

}

if(step % step_Aviz==0)
{
if(number_aviz_pict++ < Limit_aviz_pict)

{

sprintf(fn,” van_%ld.xyz” ,step);
aviz(fn); aviz_layer(fn);

}

¥

if(step % step_backup==0) measurements_initialize_n_backup(1);
[j===== mmmmmmm——eey/

} // Main cycle

// Final measurements:
measurements_make_n_output(2) ;
// Final backup:
measurements_initialize_n_backup(1);

}

111711171117711111111117

void measurements_initializen_backup(int mode)

{

backup(”aaa_info.txt” ,mode);

APPENDIX E. COMPUTER PROGRAMS

157

density_profile_rw(”dens_prof.back”,mode);

chen_density_profile_rw(” chen_dens_prof.back” ,mode);

atom_distribution_in_layers_rw (”at_dist_prof.back” ,mode);

temperature_profilerw(” temp_prof.back” ,mode);
order_parameters_rw(” order_prof.back” ,mode);
inter_layer_dist_rw(” inter_layer_dist.back”,mode);
pair_correlation_rw(” pair_func.back” ,mode);
diffusion_rw(”diffusion.back”,mode);
pbcrw(”pbc.back” ,mode);
¥

111777117711171171711171111717

void measurements_make_n_output(int mode)

{

energy_temp_pressure();

chen_density_profile(mode);

atom_distribution_in_layers(mode);

temperature_profile(mode);

order_parameters(mode);

inter_layer_dist(mode);

pair_correlation(mode);

diffusion(mode);

}

SRR AR AR G oo getup, e R KRR K ok

How to construct the various low index faces of a bcc crystal and initialize the velocities

include <stdio.h>
include <math.h>
#include <stdlib.h>
#include <time.h>
include ”initdata.h”
include ”constants.h”

include ”potential.h”

void velocity_init(void){
extern double v[Atoms][3],temp;
int j,k;
double sum(3];// Initial Temperature
double x1,x2,x3,y1,y2,y3,Sf;
for(j=0;j< FROZEN_ATOMS;j++)
{ vBI01=0.; v(l[11=0.; v(l[21=0; }
for (j=03j<3;j++)
sum(j]=0.;
srand((unsigned)time(NULL));
/* Seed the random-number generator with current
time so that * the numbers will be different every time we run
/* Generate gaussian distribution */
for (j=FROZEN_ATOMS:j<Atoms;j-+-+)
{
x1=((double)rand())/RAND_MAX;
x2=((double)rand())/RAND_MAX;
x3=((double)rand())/RAND_MAX;

*/

APPENDIX E. COMPUTER PROGRAMS 158

/*The Box Muller method */
y1l=sqrt(-log(x1))*cos(2*pi*x2);
y2=sqrt(-log(x2))*cos(2*pi*x1);
y3=sqrt(-log(x3))*cos(2*pi*x1);
V[illol=
vil[1]=y2;
v[il[2]=y3;
for (k=0;k<3;k++)suml[k]+=v[j][k];

}

/* Center of mass velocity */
for (k=0;k<3;k++)
sum([k]/=(Atoms-FROZEN_ATOMS);
for (j=FROZEN_ATOMS;j<Atoms;j++)
for (k=0;k<3;k++)
V[i][K]-=sum(i];

y1;

Sf=0.;
for (j=FROZEN_ATOMS;j<Atoms;j++)
St=v[jl[01*v[jl[0]+v[i] [1]*v[jI[1]+v[i] [2*v[]][2];
/* Let’s rescale the velocities */
Sf=sqrt(3*kb*temp*(Atoms-FROZEN_ATOMS) /Sf);
for (j=FROZEN_ATOMS;j<Atoms;j++)
for (k=0;k<3;k++)
v[jl[k]*=5sf;
/*Now check it and be sure, that T appropriate and Vem=0 */
Sf=0;
for (j=0;j<35j++)
sumlj]=0.;
for (j=FROZEN_ATOMS;j<Atoms;j++){
St+=v[j][01*v {1 0]+l (L *v] [1]-+vIj] (21 (] 2];
for (k=0;k<3ik-+-+){ sumk|=sum(K]-+v[j][kls}
}
fprintf(stdout,” \n Center_of_Mass
\n Vx=%If Vy=%If Vz=%If ”,sum[0],sum[1],sum]2]);
fprintf(stdout,”\n temp=%lf ”, Sf/(3*(Atoms-FROZEN_ATOMS)*kb));
// for (j=0;j<Atoms;j++)
//fprintf(stderr,”\n j=%ld %lf %Ilf %If”,j,v[j][0],v[j][1],v[j][2]);
}
I11117707177711177177177111117777711117111111717
void bec 001 (void){
extern double r[Atoms][3];
extern double a0;
int i,j,k,pa;
double a02;//Initial coordinates

FILE *fd;

a02=a0/2;
pa=0;
for (k=0;k<INIT_LAYERS;k++){
for (j=03j< sizexij++){
for(i=0;i<size_y;i++){
r[pa][0]=a0%*i;

APPENDIX E. COMPUTER PROGRAMS

159

r[pa][1]=a0%};
r[pa][2]=a02%k;
if(k%2!1=0){
r[pa] [0]+=a02;
rlpal 1]+ =a02;}

pa++;
}
}
}
if((fd=fopen(”r0.log”,”w”))!=NULL)
{

for (j=0;j<Atoms;j-++)

fprintf(fd,” \n %If %If %If’,
r[j][0],r [5][1],x] [2])s

fclose(fd);

}

else

{fprintf(stderr,”\n I can’t read file:\”
r0.log \””);exit(0);}

}

H101710717111771111111117771

void bee 011 (void)

{

extern double r[Atoms][3];

extern double a0;

int i,j,k,n,index;

FILE *fd;

double E1[3][1],E2[3][1],E3[3][1],E4[3][1];

// The Unit vectors of the cell

E1[0][0]=a0*sqrt(2);E1[0][1]=E1[0][2]=0;
//B1=[sqrt(2);0;0];

E2[0][0]=E2[0][1]=a0/sqrt(2);E2[0][2]=0.;
//E2=[1./sqrt(2);1/sqrt(2);0];

E3[0][0]=E3[0][1]=0.;E3[0][2] =a0;
//E3=(0;0;1.0;

EA4[0][0)=a0*sqrt(2) /2;E4[0][1]=0.;E4[0][2] =a0*0.5;
//BA=[sqrt(2)/2;0;1/2];

index=0;

for (k=0;k<size_y;k++){

for (j=0;j<size_z;j++){

for (i=0;i<sizex;i++){

n=i+j*size_x+k*size_x*size_y;

rlindex][2]=E1[1][0]*i+j*E2[1][0];

r[index][1]=E3[2][0] *k;

r[index][0]=E1[0][0]*i+E2[0][0];

// Set the center atoms for odd lines

if(j%2) r[index][0]+=E2[0][0];

index++;

Y/

Y /i

Y1k

APPENDIX E. COMPUTER PROGRAMS 160

//////1]/// ADD CENTRAL ATOM ///////////1////]
for (k=0;k<size_y;k++){
for (j=0;j<size_z;j++){
for (1=0;i<sizex;i++){
rlindex] [2]=E4[1][0] %i+j*E2([1][0];
r[index][1]=E3[2][0]*k+E4[2][0];
r[index][0]=E1[0][0]*i42*E4[0][0];
if(j%2) r[index][0]4+=E4[0][0] ;
index++;
n++;
Y7
Y /i
Y1k
[1111711177111171111111111117
if((fd=fopen(”r0.log”,”w”))!=NULL)
{
for (j=0;j<Atoms;j++)
fprintf(fd,”\n %If %If %I1f’,
ri] o], [j1{1],x [i][2]);
fclose(fd);
}
else {fprintf(stderr,”\n I can’t read file:\”
r0.log \7”);exit(0);} }
11017177771717711771171171111111111111111117
void layer_colors(void)
{
extern double r[Atoms][3],Width,a0;
extern int Color[Atoms]; double live[Atoms-FROZEN_ATOMS]|[3], frozen[FROZEN_ATOMS][3];
int i,j,cold=0,hot=0;
double h,barrier;
barrier=Width*(NUMBER_OF _FROZEN_LAYERS-1)+0.001;
for (i=0;i<Atoms;i++)
{
h=r[i][2]-barrier;
if(h<=0)
{
frozen[cold][0]=r[i][0];frozen[cold][1]=r[i][1]; frozen [cold][2]=r[i][2];cold++;
//fprintf(stderr,” \n cold= %d Atoms=%d h=%g ”, cold,Atoms,h);
}
else
{
live[hot][0]=r[i][0];live[hot][1]=r[i][1]; live[hot] [2]=r[i][2];
hot+4+;
//fprintf(stderr,”\n hot= %d i=%d”, hot,i);
}
}
// Chek post
if (cold-FROZEN_ATOMS)
{
fprintf(stderr, ” That strange somehow !!!l >> cold != FROZEN_ATOMS”);
fprintf(stderr, ” \n \t cold =%d”,cold);

APPENDIX E. COMPUTER PROGRAMS 161

fprintf(stderr, ” \n \t FROZEN_ATOMS=%d” , FROZEN_ATOMS);
exit(0);
}
if (hot+FROZEN_ATOMS-Atoms)
{fprintf(stderr, ” That strange somehow !!!! >>hot |= FROZEN_ATOMS-Atoms ”); exit(0);}

//Rearrange the atoms:

for (i=0;i<cold;i++)

{ r[i][0]=frozen[i][0]; r[i][1]=frozen][i][1];r[i][2]=frozen[i][2];}

for (i=0;i<hot;i++)

{ j=i+FROZEN_ATOMS;x(j][0]=live[i][0]; r[j][1]=live[i][1]:r[j][2]=live[i][2];}

//Redefine Colors again:
for (i=0;i<Atoms;i++)

{

h=r[i][2]-Width/2.0;

if(h<0) Color[i] =0;

else Color[i] =(int) h/Width+1;
}
//fprintf(stderr, ”\n \n \t Bye !!l! 7);
}

HIITITTT0107177077777101771111171111777

void check_initial_data()

{
switch(surface)
{

case 0: break;
case 1: break;
case 2: break;
default:

printf(” This is an error, the parameter could be surface [0,3] only ”);exit(0);

break;

¥

[11177711771117117171117171111117171111111117

if(surface==1){

// Let’s check the initial conditions:

if(2*size_x*size_y*size_z-Atoms)

{

fprintf(stderr, ”\n Attention : 2*size_x*size_y*size_z-Atoms
'=0, \n Check the \” initdata.h
\" file 7);

fprintf(stderr, ”\n Write \”#define

Atoms %d \” 7 ,2%size_x*size_y*size_z);

exit(0);}

if(2*size_x*size_y *NUMBER_OF_FROZEN_LAYERS-FROZEN_ATOMS) {

fprintf(stderr, ”\n Attention : 2*size_x*size_y*NUMBER_OF_FROZEN_LAYERS-FROZEN_ATOMS
!= 0, \n Check the \” initdata.h
\" e 7);

APPENDIX E. COMPUTER PROGRAMS 162

fprintf(stderr, ”\n Write \”
#define FROZEN_ATOMS %d \” 7,

2*size_x*size_y*NUMBER_OF_FROZEN_LAYERS);
exit(0);
¥
¥
[111777111771111111111177
if(surface==2 || surface==0){
if(size_x*size_y*size_z-Atoms)
{
fprintf(stderr, ”\n Attention : size_x*size_y*size_z-Atoms

!=0, \n Check the \” initdata.h

\” file 7);
fprintf(stderr, ”\n Write \”#define

Atoms %d \” 7,size_x*size_y*size_z);
exit(0);}

if(size_x*size_y*NUMBER_OF_FROZEN_LAYERS-FROZEN_ATOMS)
{
fprintf(stderr, ”\n Attention :

size_x*size_.y *NUMBER_OF _FROZEN_LAYERS-FROZEN_ATOMS

!= 0, \n Check the \” initdata.h

\" file ");

fprintf(stderr, ”\n Write \”
#define FROZEN_ATOMS %d \” 7,
size_x*size_y*NUMBER_OF _FROZEN_LAYERS);
exit(0);
¥
¥
¥
I111777117711171171711111111717
double lattice_parameter(double x)
{
int i;
double z;
// The Bulk simulations:
double lattice_set[10]=
{3.0482,3.0626,3.0706,3.073,3.089,3.092,3.095,3.096,3.096,3.18};
double temp_set[10]={400,1200, 1600,1700,2300,2400,2450,2480,2480,2500};
z= a00*exp(alpha_t*x);
if(x < temp_set[0]){return(z);}
if(x > temp_set[9]){return(z);}
if(x == temp_set[0]){return(lattice_set[0]);}
i=1;
while(x>temp_set[i])i++;
// The simplest linear interpolation:
z=(lattice_set[i]*(x-temp_set[i-1])+lattice_set[i-1]*(tempset[i]-x))/

(temp_set[i]-temp_set[i-1]);

APPENDIX E. COMPUTER PROGRAMS 163

return(z);
}
11111111111111111111111]] double scaleattice() {
extern double a0;
extern double r[Atoms][3];
FILE *fd;
int i;
for (i=0;i<Atoms;i++)
{r (i) [0]*=a0;r [i][1]*=a0;r [i][2]*=a0; }
if((fd=fopen(”r0.log”,”w”))!=NULL)
{
for(i=0;i<Atoms;i++)
fprintf(fd,” \n
%lf %lf %17 ,x[i][0],r[i][1],r[i][2]);
fclose(fd);

}

bR build _neigh list.c.o? FRERR ROk ok

Neighbor-list method - keep the list of the nearest neighbors

include ”constants.h”

include ”initdata.h”

include ”potential.h”

include <math.h>

void build_neigh_list()

{

extern int nei[Atoms][Atoms];
extern double r[Atoms][3];
extern double 1x,ly;

int i,j,k;

double dis[3]={0.,0.,0.};

double pr_dis;

for(i=0;i<Atoms;i++)
for(j=0;j<Atoms;j++)
nei[i] [j]=0;
for(i=0;i<Atoms;i++){
for(j=i+1;j<Atoms;j++){
pr_dis=0.;

// x&y periodic boundary conditions
dis[0]=r[i][0]-r([j][0];
if(fabs(dis[0])> 1x/2.0)

{

if(dis[0] > 0.)dis[0]-=Ix;
else dis[0]+=lx;

}

dis[1]=r[i][1]-r[j][1];
if(fabs(dis[1])> ly/2.0)
{
if(dis[1]>0.)dis[1]-=ly;
else dis[1]+=ly;

}

dis[2]=r[i][2]-r[j][2];
pr_dis=sqrt(dis[0]*dis[0]+dis[1]*dis[1]4dis[2]*dis[2]);

APPENDIX E. COMPUTER PROGRAMS 164

[/ e
if(pr_dis<neicutoff)
{
neili][0]++;

nei[i] [nei[i] [0]]=j;
}

} // for(i=0;i<Atoms;i++)

} /) for(i=i+1lij<Atomsij+-+)
}

stk sk sk e ok ok sk ok s ook sk ok) 93 sk ok ok sk sk ok ok sk sk ok o ok sk sk ok

compute_f.c
Calculation of force and potential energy per atom (with the modified FS potential) # include <math.h>
#include ”initdata.h”
include ”func_cp.h”
//Modification of FS by Rebonato and et.al
#define Reb_FND 2.6319
#define Reb_K 3.3
#pragma_CRI inline density,density_dot,density_dot_dot,phi_pot,phi_pot_dot,
phi_pot_dot_dot,F_pot,F_pot_dot,F_pot_dot_dot
/* vectorization of compute_f,build neigh_list , parallelization of compute_f */
[10177770777717777717171717117171711111111111171111
void compute_f()
{
extern double r[Atoms][3],f[Atoms][3];
extern int regime,nei[Atoms][Atoms];
extern double pot_E,virsum,lx,ly;
extern double op;
int 1i,j,k,ll,mm;
double phi,dphi;
double dphi_ren,ddphi_ren;
double pr_dis,fr,frl,fr2;
double rho,drho,ddrho;
double ui,dui,duj,ddui;
double dis[3],n[Atoms],Atoms];
/*Vectorization: A new part !!!l */
double nj[Atoms],f_tmp[Atoms]|[3],ni,fi0,fil,fi2,pot_ E_tmp,virsum_tmp;
pot_E=0.;
virsum=0.;
for(i=0;i<Atoms;i++)
for (11=0;11<3;11++) f[i][11]=0.0;
for(i=0;i< Atoms;i++){
n[i]=0.0;
}
#pragma _CRI parallel shared(gl1,g22,g23,n) defaults
for(j=0;j<Atoms;j++) {
nj[j]=0.0;
}
/* The first loop: the background n(i) calculation */
#pragma _CRI taskloop
for(i=0;i<Atoms;i++){
ni=0.0;
#pragma _CRI ivdep

APPENDIX E. COMPUTER PROGRAMS

165

for(k=1;k<=nei[i][0];k++){
j=neili][K];
dis[0]=[i] [0]-x[j][0];
if (dis[0] > 1x/2.0) dis[0]-=1x;
if (dis[0] < -1x/2.0) dis[0]+=lx;
dis[1]=x[i][1]-x[{][1];
if (dis[1] > ly/2.0) dis[1]-=ly;
if (dis[1] < -ly/2.0) dis[1]4+=ly;
dis[2]=r[i] [21-x[j][2];
pr_dis=dis[0]*dis[0]+dis[1]*dis[1]+dis[2]*dis[2] ;
pr_dis=sqrt(pr_dis);
if(pr_dis<cutoff)
{
rho=density(pr_dis);
//cj moved to the if regime block ! drho=density_dot(pr_dis);
//¢j nli]+=rho;
ni+=rho;
//<j nlil+=rho;
njj]+=rho;
} // <j end of cutoff
} //cj end of k loop
// nlil+=ni;
n[i]=ni;
} //cj end of i loop
#pragma _CRI guard
for(j=03j< Atoms;j+-+) {
nfj]+=njljl;
if(regime==3){
g11[j]+=g11_tmpl[j];
822[j]+=g22-tmp|[j];
823[j]+=g23-tmp|[j];
}
}
#pragma _CRI endguard
#pragma _CRI endparallel
//THE SECOND LOOP
#pragma _CRI parallel shared(gl1,g22,g23,n) defaults
pot_E_tmp=0.0;
virsum_tmp=0.0;
for(j=0;j<Atoms;j++)
for(11=0;11<3;114+-+) f_tmp[j][11]=0.0;
#pragma _CRI taskloop
for(i=0;i<Atoms;i++){
fi0=fi1=fi2=0.0;

wi=F pot(n[i]);
dui=F_pot_dot(n[i]);
ddui=F_pot_dot_dot(n[i]);
pot_E_tmp+=ui;

#pragma _CRI ivdep
for(k=1;k<=nei[i][0];k++){

APPENDIX E. COMPUTER PROGRAMS 166

j=neili][k];

dis[0]=r[i] [0]-r[j][0];
if (dis[0] > 1x/2.0) dis[0]-=1x;
if (dis[0] < -1x/2.0) dis[0]+=lx;

dis[1]=r[i] [1]-r[j][1];

if (dis[1] > ly/2.0) dis[1]-=ly;

if (dis[1] < -ly/2.0) dis[1]+=ly;
dis[2]=r[i][2]-r[j][2];
pr_dis=dis[0]*dis[0]+dis[1]*dis[1]4dis[2]*dis[2] ;

pr_dis=sqrt(pr-dis);

if(pr_dis < cutoff)
{
phi=phi_pot(pr_dis);
dphi=phi_pot_dot(pr_dis);
drho=density_dot(pr_dis);

if(regime==3)

dphi_ren=phi_pot_dot_ren(pr_dis);
ddphi_ren=phi_pot_dot_dot_ren(pr_dis);
ddrho=density_dot_dot(pr_dis);
}
pot_E_tmp+=phi;
duj=F_pot_dot(nj]);

fr1=-dphi;
fr2=-drho*(dui+duj);
fr=fr1+fr2;

virsum_tmp+=fr*pr_dis;
for (11=0;11<3;114-+)
{
//cj fi0,fil,fi2 will be used instead of
f[i][11]4+=fr*dis[ll] /prdis;
f_tmplj][1l]-=fr*dis[11] /prdis;
}
fio+=fr*dis[0] /prdis;
fil+=fr*dis[1] /pr_dis;
fi2+=fr*dis[2] /pr_dis;
} //cutoff loop
} //nei loop
/*cj add fi0,fi1,fi2 to the force field */

£[i] [0] =fi0;
£[i] [1)=61;
£fi][2)=fi2;

} //i Atoms loop

#pragma _CRI guard

for (j=03 < Atoms;j++)

for(1=0;11< 3;114-+) f[j][11]+=~ftmp[j][11];
pot_E4+=pot_E_tmp;

virsum+=virsum_tmp;

APPENDIX E. COMPUTER PROGRAMS 167

#pragma _CRI endguard

#pragma _CRI endparallel

}
[1101717177171171111177111111111111111177
double F_pot(double x)

{

return(A*sqrt(x));

}
HI1017707707071777717770107711111711711111717
double F_pot_dot(double x)

{

if(fabs(x)<0.0000000000001)
x=0.0000000000001;

return(0.5%A /sqrt(x));

}

11017177711717711171111171111171111117
double phi_pot(double x){

double y;

if(x>r_cut) return(0);

y=(x-r_cut)*(x-r_cut)*(cl+c2*x+4c3*x*x);

// FS+ Rebonato et al
if(x<Reb_FND)y+=Reb_K*(Reb_FND-x)*(Reb_FND-x)*(Reb_FND-x);
return(y);

}

JI11101117111071711111171111111111111111111111] double phi_pot_dot(double x){
double y;

if(x>r_cut)return(0);
y=2%(x-r_cut)*(cl4c2*x+c3*x*x)+ (x-r_cut) *(x-r_cut) *(c242*c3*x);
// FS+ Rebonato et al
if(x<Reb_FND)y+=-3*Reb_K*(Reb_FND-x)*(Reb_FND-x);
return(y);

}

[110171717717177711111711711111111111117

double density(double pr_dis)

{

double rho;

if(pr_dis>FS_d)

return(0);

else

rho=(pr_dis-FS_d)*(pr_dis-FS_d);

return(rho);}

H101700717770077117171711711711117111117

double density_dot(double pr_dis)

{

double rho;

if(pr_dis>FS_d)

return(0);

else

rho=2%*(pr_dis-FS_d);

return(rho);

APPENDIX E. COMPUTER PROGRAMS 168

}

skeskok sk ok ok ok kR ok oK 4 99 skosk sk sk sk s sk sk sk s sk sk ok sk ook ok

predictor_corrector.c
Use the predictor corrector to solve the equations of motion # include ”initdata.h”

include <stdio.h>

void corrector()

{

extern double r[Atoms][3],v[Atoms][3],f[Atoms][3];

extern double f1[Atoms][3],f2[Atoms][3],r1[Atoms][3],v1[Atoms][3];

extern double Ix,ly;

extern int pbc[Atoms][2],regime;

double cr[]={3.0,10.,-1.};

double cv[]={7.,6.,-1.};

double div=24.;

int i;

for(i=FROZEN_ATOMS;i<Atoms;i++){

[i][0]=r1[1][0] 4+ [i] [0]*dt-+ (dt *dt /div)*(er[0] *[i] [0]+cr 1] *F1[i] [0]+
er[2]*£2(i] [0));
e [i)[1]=rL[5)[1] v [i] [1]*de-+ (dt*dt /div) * (er[0] *€i] [1]+er[1] <11 [1]+
er[2]*£2(i][1));
[i][2)=rL[1][2]+v[i] [2]*dt-+ (dt*dt /div) * (er[0] (i) [2]+cr 1] *£1[i] [2]+
er(2]*£2(i][2));

v[i][0]=(r[i][0]-r1[i][0]) /dt+(dt/div)*(cv[0]*{[i][0] +-cv[1]*f1[i] [0] 4

[
cv[2]*£2(i][0]);
v{i][]=(r[i] [1]-r1[i][1]) /dt+(dt/div)*(cv[0]*f[i] [1]+-cv[1]*F1[i] [1] 4
ev[2]*£2(i][1]);
vli][2]=(r[i] [2]-r1[i][2]) /dt+(dt/div)*(ev 0] *f[i][2]+-cv [1]*f1[i] [2]+
cv[2]*f2(i][2]);

// Periodic Boundary Conditions for xy coordinates:
if(regime>1)

{

if(r[i] [0]>1x) {r[i}[0]-=1x;pbc[i] [0] +-+:}

if(e[i] [1]>1y) {r[i}[1]-=ly;pbe[i] [1]++:}

if(r[i][0] <0.){r[i] [0] +=1x;pbecl[i] [0]=pbc[i][0]-1;}
if(r[i] [1]<0.) {r[i] [1]+=ly;pbcl[i] [0]=pbe[i][0]-1; }
¥
else

{
if(r[i][0]>1x){r[i][0]-=1x;}
(e [i] [1>1y){r[i][1]-=1y;}

if(r[i][0]<0.){r[i][0]+=Ix;}
if(r[i][1]<0){r[i][1]+=1y;}
}

void predictor()

APPENDIX E. COMPUTER PROGRAMS

169

{

extern double r[Atoms][3],v[Atoms][3],f[Atoms][3];

extern double f1[Atoms][3],f2[Atoms][3],r1[Atoms][3],v1[Atoms][3];
double cr[]={19.,-10.,3.};

double cv[]={27.,-22.,7.};

double div=24.;

int i,k;
for(i=FROZEN_ATOMS;i<Atoms;i++){
for(k=0;k<3;k++){

r1[i] [k]=r(i] [k];

v1[i] [k]=v[i][k];

r[i] [k]+-=v[i][k]*dt+(dt*dt/div)* (cr[0] *f[i] [k]+-cr [1]*f1[i] [k]+
cr[2]*£2[i][k]);

v[il[k]=(r[i] [k]-r1[i] [k]) /dt+(dt/div)*(cv[0] *f[i] [k]+cv[1]*f1[i] [k] 4+
cv[2]*£2[i][k]);

£2[i][k]=f1[i][k];

L[] [k]=f[i][k];
}
}
}
sk ke s e e e s sk sk R sk ok ok 4¢ 99 skesksk sk sk sk sk sk sk sk sk sk sk sk ok ok

evap-pto.c

Evaluate the current pressure and temperature. Use the Noose-Hoover thermostat.

include <math.h>

include ”initdata.h”

include ”constants.h”

void eval_PTO()

{

extern double ksi,lx,ly,1z,Q;

extern double f[Atoms][3],v[Atoms][3],r[Atoms][3];

extern double kin_E;

extern double temp,temp_current,press_current,virsum;
int i,k;
double vvsum,vol;
vol=Ix*1y*1z;
vvsum=0.0;

for(i=FROZEN_ATOMS;i<Atoms;i++)

vsum-=(v[i] [0]*v[i] 0]+ i) [1]*v[i] L]+ i) [2) v [i][2]);
kin_.E=1.0*%vvsum/2.;
temp_current=vvsum/(3.0¥kb*(Atoms-FROZEN_ATOMS));

press_current=(temp_current*(Atoms-FROZEN_ATOMS)*kb+virsum/3.) /vol;

ksi4+=dt*Q*((temp_current/temp)-1.0);
for(i=FROZEN_ATOMS;i< Atoms;i++)
for(k=0;k<3;k++)
£[i]) (K] =£[i] [k]-Q*ksi*v[i] [k];
}

SRR G| guapg @ 7 KRR R R K

Evaluate the atom distribution (instant and average) between the layers.

layers.

Calculate distance between the neighboring

APPENDIX E. COMPUTER PROGRAMS 170

include ”initdata.h”
include ”func_cp.h”
include <math.h>
include <stdio.h>
include <stdlib.h>
void inter_layer_dist(int mode)
{
extern double r[Atoms][3],dis_bet_lay[NUMBER_OF_LAYERS-1],counter_dist;
extern int layersyfNUMBER_OF_LAYERS][Atoms];
int i,k,p;
double z_prev, z_new;
FILE *fd;
if(mode==0)
{
//Initialization:
fprintf(stderr,” \n Inter Layer Distances initialization (:)”);
counter_dist=0.;
for (i=0;i<NUMBER_OF_LAYERS-1;i4++)
dis_bet_lay[i]=0.;
¥
//Start calculations
z_new=z_prev=0.;
for (i=0;i<NUMBER_OF_LAYERS;i++)
{
z_new=0;

for (p=1;p<=layers[i][0];p++)

k=layers[i][p];
z_new—+=r[k|[2];

if(layers[i][0] >0)

{
z_new/=layers[i][0]; // Coordinate of c.m.c. of the layer
if(i>0) dis_bet_lay[i-1]+=z_new-z_prev;

Z_prev=z_new;

}
}
counter_dist++; // Number of the time measurements
if(mode==2)

{ //Result Output

if((fd=fopen(”dis_betlay.txt”,”w”))!=NULL)

{

for (i=0;i<(NUMBER_OF_LAYERS-1);i++)

{
if(counter_dist >0)

fprintf(fd,” %d %If \n”,i+1,dis_bet layl[i]/counter_dist);

}

fclose(fd);

}

APPENDIX E. COMPUTER PROGRAMS 171

[11171711771117117171111111111117171177
void inter_layer_dist_rw(char *fn,int mode)
{

extern double dis_bet_lay[NUMBER_OF_LAYERS-1],counter_dist;
int i;

FILE *fd;

if(mode==0)

{

/117

if((fd=fopen(fn,”r”))!=NULL)

{

fscanf(fd,” \n%I1f” ,&counter_dist);

for (i=0;i<NUMBER_-OF_LAYERS-1;i4++)
fscanf(fd,” \n%I1f”, &dis_bet lay[i]);

fclose(fd);

}

else inter_layer_dist(0);

/117

}

if(mode==1)

{

111111111177
if((fd=fopen(fn,”w”))!=NULL)
{

fprintf(fd,” \n %1’ ,counter_dist);

for (i=0;i<NUMBER_-OF_LAYERS-1;i4++)
fprintf(fd,” \n%If”, dis_bet layli]);
fclose(fd);

¥

/1111111117

¥

¥

void atom-_distribution_in_layers (int mode)

{

extern double r[Atoms][3],Width;

extern int layersfNUMBER_OF_LAYERS]|[Atoms];
//[l[]-Number of a layer, number of Atoms [0][],[][i>0] indexes
extern double a0;

extern int atoms_distribution[NUMBER_OF_LAYERS];
extern long counter_of_atoms_distribution,step;

double ZO0;

double dz;

int i,j,index;

FILE * fd;

char fn[80];

if(mode==0)

{

fprintf(stderr,” \n Atoms distribution in the layers initialization (:) 7);
counter_of_atoms_distribution=0;

for (i=0;i<NUMBER_OF_LAYERS;i++)

APPENDIX E. COMPUTER PROGRAMS 172

atoms_distribution[i] =0;
}
for (i=0;i<NUMBER_OF_LAYERS;i++)
for (j=0;j<Atoms;j++)
tayers(i][j]=0;
// Collect the Statistics
Z0=NUMBER_OF_FROZEN_LAYERS *Width-Width/2;
for (i=FROZEN_ATOMS;i<Atoms;i++)
{
dz=r[i][2]-Z0;
if(dz<0)
{
if(r[i][2] <(NUMBER_-OF _FROZEN_LAYERS -1)*Width)
{
fprintf(stderr,” \n layers.c: Very Negative Base Layer
i=%d Z0=%]If r(i,3)=%1f diff=%]lf ”,i,Z0,r[i][2],r[i][2]-Z0);
exit(0);
¥
dz=-dz;
¥
11111111171
if(fmod(dz,Width)==0)

{
index=(int)(dz/Width)-1;
if(index< NUMBER_OF_LAYERS){layers[index|[0] +=1; layers[index][layers[index]|[0]]=i;}
else {fprintf(stderr,”\n layers.c :Super adlayer %d”,index);exit(0);}
}
else
{index=(int)(dz/Width);
if(index<NUMBER_OF_LAYERS)
{
layers[index][0]+=1;
layers[index]|[layers[index][0]]=i;
}
else {
//Adlayer
index=NUMBER_OF_LAYERS-1;
layers[index][0]+=1;
layers[index]|[layers[index][0]]=i;
}
}
¥
for (i=0;i<NUMBER_OF_LAYERS;i++)
{

atoms_distribution[i] +=layers|i][0];

sprintf(fn,” layer_%d.txt”,i);

if((fd=fopen(fn,”a+”))!=NULL){

fprintf(fd,” \n%ld %d”, step,layers[i][0]);
fclose(fd); }

counter_of_atoms_distribution++;

APPENDIX E. COMPUTER PROGRAMS 173

void atom-_distribution_in_layers_rw (char *fn, int mode)
{
extern int atoms_distribution[NUMBER_OF_LAYERS];
extern long counter_of_atoms_distribution;
int i;
FILE * fd;
if(mode==0)
{
if((fd=fopen(fn,”w”))!=NULL)
{
111711111111177
fprintf(fd,” \n%ld” ,counter_of_atoms_distribution);
for (i=0;i<NUMBER.OF_LAYERS;i++)
fprintf(fd,” \n%d” ,atoms_distribution][i]);
fclose(fd);
111177111111111117
}
}
if(mode==1)
{
if((fd=fopen(fn,”’r”))!=NULL)
{
fscanf(fd,” \n%1d” ,&counter_of_atoms_distribution);
for (i=0;i<NUMBER_OF_LAYERS;i++)
fscanf(fd,” \n%d”, &atoms_distributionli]);
fclose(fd);
}
else atom_distribution_in_layers (0);
}
}
kR S ensity_profile.c? FRERERRR R kK
Evaluate the atomic density along the z-direction. Use the Chen et al. method to facilitate the obtained data.
include <stdio.h>
include <math.h>
include <stdlib.h>
include ”func_cp.h”
include ”potential.h”
include ”initdata.h”
include ”constants.h”
void chen_density_profile(int mode)
{
extern double r[Atoms][3],Width;
extern double dens_ch[Z_RES],chen_counter;
double z_in,z_fin,delta,z,f,sigma_ch;
int i,j;
FILE *fd;
z_in=NUMBER_OF_FROZEN_LAYERS*Width;
z_fin=z_in+(NUMBER_OF_LAYERS+4)*Width;
delta=(z_fin-z_in) /Z_RES;

APPENDIX E. COMPUTER PROGRAMS 174

sigma_ch=0.1*Width;

if(mode==0)
{
//Initialization:

fprintf(stderr,”\n Chen density profile initialization (:) ”);
chen_counter=0;
for (i=0;i<Z_RES;i++)
dens_chl[i]=0.;
¥
// Let’s start calculations
for (i=0;i<Z_RES;i++)
{
z=z_in+i*delta;
for (j=FROZEN_ATOMS;j<Atoms;j++)
{
f=(z-r[j][2])*(2-r[j][2])/ (2*sigma-ch*sigma_ch);
dens_ch[i]+=exp(-f)/(sqrt(2*pi)*sigma_ch);
¥
¥

chen_counter++; // Number of the measurements

// Let’s print the results

if(mode==2)

{
if((fd=fopen(” chen_density.txt”,”w”))!=NULL)
{

for (i=0;i<Z_RES;i++)
fprintf(fd,” %1f %If \n”,z_in+i*delta,dens_ch[i] /chen_counter);
fclose(fd);
¥
¥
¥
[1117771177111777117111717117
void chen_density_profile_rw(char *fn, int mode)
{
extern double dens_ch[Z_RES],chen_counter;
int i;
FILE *fd;
if(mode==1)
{
// BackUp
if((fd=fopen(fn,”w”))!=NULL)
{
fprintf(fd,” %1f” ,chen_counter);
for (i=0;i<Z_RES;i++) fprintf(fd,” %If ” ,dens_ch[i]);
fclose(fd);
}
}
if(mode==0)
{
//Read
if((fd=fopen(fn,”r”))!=NULL)

APPENDIX E. COMPUTER PROGRAMS 175

{

fscanf(fd,” %1f” ,&chen_counter);
for (i=0;i<Z_RES;i++) fscanf(fd,” %lf ” ,&dens_chli]);

fclose(fd);

}

else chen_density_profile(0);
}

}

AR KA ARE Cpornp Drof.c ¥ RREE KRRk Rk

Find the temperature profile along the z-directions.
include ”initdata.h”
include ”constants.h”
include ”func_cp.h”
include ”potential.h”
include <math.h>
include <stdio.h>
void temperature_profile (int mode)
{
extern double v[Atoms][3],temp_profile[NUMBER_OF_LAYERS],counter_temp;
extern int layersyfNUMBER_OF_LAYERS][Atoms];
int i,j,k;
double s;
FILE *fd;
if(mode==0)
{ //Initialization:
fprintf(stderr,” \n Temperature profile initialization (:) ”);
counter_temp=0.;
for (i=0;i<NUMBER_OF_LAYERS;i++)
temp_profile[i]=0.;
¥
//Start calculations

for (i=0;i<NUMBER_OF_LAYERS;i++)

{
s=0.;
for (j=1;j<=layers[i][0];j++)
{
k=layers{i][j];
s+=(v[k][0]*v[K][0)+v[K][1]*v[K] [1]4+v[K] [2]*v[K][2]);
¥
if(layers[i][0] >10)
{
s/=kb*3*layers[i][0];
temp_profile[i]+=s;
¥
}

counter_temp++; // Number of the time measurements
if(mode==2)
{ //Result Output
if((fd=fopen(”temp_profile.txt”,”w”))!=NULL)
{
for (i=0;i<NUMBER_OF_LAYERS;i++)

APPENDIX E. COMPUTER PROGRAMS 176

if(counter_temp>0) fprintf(fd,”%d %lf \n”,i+1,temp_profile[i]/counter_temp);

// for (i=0;i<NUMBER_OF_LAYERS;i++)

// fprintf(stderr,” \n %lf %lf ”,counter_temp,temp_profile[i]/counter_temp);
fclose(fd);

}

//===== === //

void temperature_profile_rw(char *fn,int mode)

{

extern double temp_profile[NUMBER_OF_LAYERS],counter_temp;

int i;
FILE *fd;
if(mode==0)

{
if((fd=fopen(fn,”r”))!=NULL)
{
for (i=0;i<NUMBER_OF_LAYERS;i++)
fscanf(fd,” \n %lf ” ,&temp_profile[i]);
fscanf(fd,” \n %If ”,&counter_temp);
fclose(fd);
¥
else temperature_profile(0) ; // initialization
}
if(mode==1)
{

if((fd=fopen(fn,”w”))!=NULL)

{ for (i=0;i<NUMBER_OF_LAYERS;i++)
fprintf(fd,” \n %If ”,temp_profile[i]);
fprintf(fd,” \n %If ”,counter_temp);
fclose(fd);

}
}

SRR R Sorder_parameter.c 7 FRRRRRR Rk ook

Calculate the structure order parameters along the x,y, and z-directions.
include ”initdata.h”
include ”constants.h”
include ”func_cp.h”
include ”potential.h”
include <math.h>
include <stdio.h>
void order_parameters(int mode)
{
extern double r[Atoms][3];
extern int layersy)NUMBER_OF_LAYERS][Atoms];
// The order parameter is defined in each layer and in various directions
extern double SINUMBER_OF_LAYERS][NUMBER_OF_DIRECTIONS][2] ;

extern double a0;

double k[NUMBER_OF_DIRECTIONS][3];

APPENDIX E. COMPUTER PROGRAMS 177

double sx,sy,sz,dx,dy,S_c,S_s;
int index,p,i,j,Ns,parity;
double orl,or2,0r3;
FILE *fd;
char fn[50];

// Directions [001]

if(surface==0)

{

k[0][0]=4%pi/a0; k[0][1]=0.; k[0][2]=0.;
k[1][0]=0.; k[1][1]=4%*pi/a0; k[1][2]=0.;
k[2][0]=0.; k[2][1]=0.; k[2][2]=4%pi/a0;

}

if(surface==1)

{

k[0][0]=2%*sqrt(2)*pi/a0; k[0][1]=0.; k[0][2]=0;
k[1][0]=0; k[1][1]=4%*pi/a0; k[1][2]=0.;
k[2][0]=0; k[2][1]=0; k[2][2]=2%sqrt(2)*pi/a0;
}

if(surface==2)

{

k[0][0]=4%pi/(a0*sqrt(2.)); k[0][1]=0.; k[0][2]=0.;
k[1][0]=0; k[1][1]=4%*pi/(2.*a0%sqrt(3./2.)); k[1][2]=0.;
k[2][0]=0; k[2][1]=0; k[2][2]=2%pi/(a0/(2*sqrt(3.)));
}

if(mode ==0)

{

// Initiallization of the arrays
fprintf(stderr,”\n Order parameter profile initialization (:) ”);
for (i=0;i<NUMBER_OF_LAYERS;i++)

for (j=0;j<NUMBER_OF_DIRECTIONS;j++)
{ sli](j][0]=0.; S[i][j}[1]=0.; }

}

for (p=0;p<3;p++)//3D space

{//p

for (i=0;i<NUMBER_OF_LAYERS;i++)
{//Initialization of the arrays

Ns=0;

S_c=S_-5=0.0;

for (j=1;j<=layers[il [0]sj++)

{

index=layersli] [j];

//Take all the particles

sz=k[p][0]*r[index] [0]+k[p][1]*r[index][1]+k[p][2] *r[index][2];
S_c+=cos(sz);

S_s+=sin(sz);

Ns++;

} // end of the j cycle

if(Ns)sx=(S_c * Sc+S_s * Ss)/ (Ns*Ns);
if(layers[i] [0] >20)

{

S[il[p][0]+=sx; S[i][p][1]++;

APPENDIX E. COMPUTER PROGRAMS 178

}

} // end of the i Layer

} // 3D space

if(mode==2)

{

if((fd=fopen(” order_prof.txt”,”w”))!=NULL){
for (i=0;i<NUMBER_OF_LAYERS;i++)

{

orl=or2=o0r3=0.;

§£(S[1][0)[1] > 0)or1=S[i] (0] 0] /S[i] 0] 1];
if(S[i][1][1]>0)or2=S[i][1][0]/S[i][1][1];
if(S[i][2][1]>0)or3=S[i] [2][0]/S[i][2][1];
fprintf(fd,” \n %d %1f %lf %1f”,i+1,0rl,or2,or3);
// Start calculate from 1

}

fclose(fd);

}

else{fprintf(stderr,”\n Can’t open the %s file ”,fn);exit(0);}
}//if(mode==2)

}

void order_parameters_rw(char *fn, int mode)

{

extern double SINUMBER_OF_LAYERS][NUMBER_OF_DIRECTIONS][2] ;
int i;

FILE *fd;

if(mode==0)

{

[111777177777107177171117171171117171717
if((fd=fopen(fn,”r”))!=NULL)

{

for (i=0;i<NUMBER_OF_LAYERS;i++)

fscanf(fd,” \n %If %If %If %If %lf %1f”,
&S[i][0][0],&S[i] [1][0], &S[i][2][0], &S [i][0] [1], &S [i] [1] [1],&S[i] [2] [1])
fclose(fd);

}

else order_parameters(0);
111717117711177171711111711111111171177

¥

if(mode==1)

{

I11177711777710711717111717117111717717
if((fd=fopen(fn,”w”))!=NULL)

{

for (i=0;i<NUMBER_OF_LAYERS;i++)
fprintf(fd,” \n %1f %lf %1f %lf %lf %lf”,
S[il{o][o],S[i][1][0],S[i][2][0],S[i] (0] [1],S 1] (1] (1],S[i][2][1]);
fclose(fd);

}

11177711771117117171111171111111717177

¥

APPENDIX E. COMPUTER PROGRAMS 179

}

skeskok sk ok ok ok kR ok ok 4 2 skeskosk sk sk ok s sk sk sk ke sk ook Kok

pair_correlation.c
Evaluate the atomic 2D radial distribution function

include ”initdata.h”
include ”constants.h”
include ”func_cp.h”
include ”potential.h”
include <math.h>
include <stdio.h>
include <stdlib.h>
void pair_correlation(int mode)
{
extern double r[Atoms][3],Profile]NUMBER_OF _LAYERS][PAIR_STEP];
extern double 1x,ly,width_rdf, normFac,half_box;
extern int layers) NUMBER_OF_LAYERS][Atoms];
extern long pair_corr_count;
extern double a0;
int i, j, k, index;
int kk,jj;
double dist,s;
double dis[2];
char fn[30];
FILE * fd;
if(mode ==0)
{
if (Ix>ly) half_box=ly/2;
else half_box=Ix/2;
width_rdf=half_box/PAIR_STEP;
normFac=Ix*ly/(2*pi*width_rdf*width_rdf);
// Initiallization of the arrays
fprintf(stderr,” \n Pair Correlation initialization (:) ”);
for (i=0;i<NUMBER_OF_LAYERS;i++)
for (j=0;j<PAIR_STEP;j++)

Profile[i][j]=0.;

pair_corr_count=0;
}
// Designing the G(r) function
for (i=0;i<NUMBER_OF_LAYERS;i++)
{
for (kk=1;kk<layers[i][0];kk++) { // layers[i][0] is instant number of atoms in i layer
for (jj=kk+1;jj<=layers[i][0];jj++) {

//Periodic Boundary Conditions for the xy (parallel to the surafce) components
dist=0.;
k=layers[i] [kk];
j=layers[i][jil;
dis(0]=r[j][0]-x[K] [0];
if(fabs(dis[0])> 1x/2.0)

if(dis[0]>0.)dis[0]-=1x;
else dis[0]+=lx;

APPENDIX E. COMPUTER PROGRAMS 180

dis[1]=r[j][1]-r[K][1];
if(fabs(dis[1])> ly/2.0)

if(dis[1]>0.)dis[1]-=ly;
else dis[1]+=ly;

}

// End of the Periodic Boundary Conditions for the xy (paralle to the surafce) components
dist=dis[0]*dis[0]+dis[1]*dis[1];

dist=sqrt(dist);

// Check what you still inside the box (just to be on the safe side)
index=(int)(dist/widthrdf);

if (index < PAIR.STEP) {

if(layers[i] [0] >0) {
Profile[i][index]+=2./(layers[i][0] *layers[i][0]); // Rij & Rji contributions
}

Y /i

Y/ kk

} // i: NUMBER_OF_LAYERS

pair_corr_count+-;

if(mode==2){

/*Final Output for each layer*/

for (i=0;i<NUMBER_OF_LAYERS;i++)
{

sprintf(fn,” pair_func_%d.txt”,i);

if((fd=fopen(fn,”w”))!=NULL)
{
for(j=0;j< PAIR_STEP;j++)
{
if(pair_corr_count>0) {
fprintf(fd,” %1f %I1f \n”,(j+0.5)*width_rdf, normFac*Profile[i][j]/((j4+0.5)*pair_corr_count));

}
else
{fprintf(fd,” %1f %If \n”,j*width_rdf,0.); }
}
fclose(fd); }
} // end for
}
}
e
void pair_correlation_rw(char *fn, int mode)
{

extern double Profile NUMBER_OF_LAYERS][PAIR_STEP];
extern long pair_corr_count;
int i,j;

FILE *fd;

APPENDIX E. COMPUTER PROGRAMS 181

if(mode==0)

{
if((fd=fopen(fn,”r”))!=NULL)
{

for (i=0;i<NUMBER_OF_LAYERS;i++)
for (j=0;j<PAIR_STEP;j++)
fscanf(fd,” \n %If ”,&Profile[i][j]);

fscanf(fd,” \n %ld ”,&pair_corr_count);

fclose(fd);
¥
else pair_correlation(0);
}
if(mode==1)
{
if((fd=fopen(fn,”w”))!=NULL)
{

for (i=0;i<NUMBER_OF_LAYERS;i++)
for (j=0;j<PAIR_STEP;j++)
fprintf(fd,” \n %If ”,Profilel[i][j]);
fprintf(fd,” \n %ld ”,pair_corr_count);
fclose(fd);

}

}

}

HorokkorckookoR ok Rk G iffusion.c P RRFRRRRR Rk Rk ok K

Calculate in-plane the out-plane diffusion coefficients
diff_counter = — number of diffusion(1) calls

NUMBER_OF_CALLS — number of calls when a new tO is taken

interval — number of steps betwee two succesive calls

TOmax — maximal number of time origins in the “initdata.h”
TMAX — maximal number of sampling in the “initdata.h”
tOmax — maximal number of time origins

tmax — maximal number of sampling

t0 — number of time origins

include ”initdata.h”

include ”constants.h”

include ”func_cp.h”

include ”potential.h”

include <math.h>

include <stdio.h>

void diffusion(int mode)

{

extern double r[Atoms][3],lx,ly;

extern int layers)NUMBER_OF_LAYERS][Atoms];
extern long num_of_meas,diff_counter,tOmax,tmax;
extern int ntime[TMAX],pbc[Atoms][2],time0[T0Omax],t0,interval;
extern double rO[Atoms][3][TOmax];

extern double r2f[TMAX][3][NUMBER_-OF _LAYERS];
long delta,tt0;

int i,j,k,n,p;

APPENDIX E. COMPUTER PROGRAMS 182

double dtime, norm;

FILE *fr;

char fn[30];

if(mode ==0)

{

fprintf(stderr,” \n Diffusion initialization (:) ”);
tmax=t0+num_of_meas;

if (tmax > TMAX)

{

if((fr=fopen(”README”,”w”))!=NULL)

{

fprintf(fr,” \n tmax=%ld > TMAX=%l1d”,tmax, TMAX);
fprintf(fr,” \n Only the shortest time TMAX=%]ld is taken ”,TMAX);
fclose(fr);

tmax=TMAX;

}

}
tOmax=(long)1l.*tmax/NUMBER_OF_CALLS;

if (tOmax > TOmax) tOmax = TOmax;
for(i=t0;i<tOmax;i++)
time0[i]=0;//The current time origin
for(i=t0;i<tmax;i++) {
ntime[i]=0; // delta table
for(j=0;j< NUMBER_OF_LAYERS;j++) {
for(k=0;k<3;k++)
r2A[i] [k] [j]=0.; }
}
for (i=EFROZEN_ATOMS;i<Atoms;i++)
for (k=t0;k<tOmax;k++)
for (j=03j<3;j++)
r0[i][j][k]=0.;//Starting Points
} // End of Start Initialization
// Start of Sampling
if(diff_counter% NUMBER_OF_CALLS==0)
{ //Let’s take a new time origin
tt0=t0-(int)(t0/tOmax)*tOmax;//Check if number of time origins less than tmax, if not remove the first meas.
++4t0; //Number of time origins are taken
timeO0[tt0]=diff_counter; // Store the time at t=0;
for (i=FROZEN_ATOMS;i<Atoms;i++)
{
//For Future Parallelization
r0[i][0][tt0]=r[i][0]+pbc][i][0]*1x; //Starting Points
r0[i][1][tt0]=r[i][1]+pbc][i][1]*1ly; //Starting Points
r0[i][2][tt0]=r][i][2]; //Starting Points
} // for(i=FROZEN_ATOMS;i<Atoms;i++)
} // if(diff_counter% NUMBER_OF _CALLS==0)
n=(t0<tOmax)?t0:t0Omax;
for(k=0;k<n;k++) //Update the r2f now
{
delta=diff_counter-timeO[k]; //Actual time minus time origin

if(delta<tmax) // Watch out the matrix boundaries

APPENDIX E. COMPUTER PROGRAMS 183

{
ntime[delta]++;
// morm=1.0/(Atoms-FROZEN_ATOMS);// Divide on the number of the particles in the layer
for (j=0;j<NUMBER_OF_LAYERS;j++)
{
for (p=1;p<=layers[j][0];p++)
{
i=layers(j][p];
if(layers[j][0]) norm=1.0/layers[j][0];// Divide on the number of the particles in the layer
else norm=0.0;
r2f[delta][0] [j]+=(r[i] [0]+pbe[i] [0] *1x-rO[i] [0} [k]) * (r[i] [0]+-pbe[i] [0] *1x
- r0[i][0][k]) *norm;
r2f[delta] [1][j]+=(r[i][1]+pbe[i] [1]*1y-rO[i] (1] [k])*(x [i] [1]+pbe[i] (1] *1y
- r0 [i][1][k])*norm;
r2f[delta] [2][j]+=(r[i][2]-rO[i][2] [k])*(x[i] [2]-rO[i][2] [k]) *norm;
} // for (p=1;p<=layers[j][0];p++)
} // for (j=0;j<NUMBER.OF.LAYERS;j++)
}// if(delta< TMAX)
} // for(k=0;k<n;k++)
diff_counter++; // Number of calls
// End of the Sampling
if(mode==2)
{ // Output of the Results
dtime=2%0.721*dt*interval;
for (k=0;k<NUMBER_OF_LAYERS;k++){
sprintf(fn,” r2f%d.txt” k);
if((fr=fopen(fn,”w”))!=NULL){///——-
for(i=0;i<tmax;i++)
{
if(ntimeli] >0)
{
norm=1./ntimel[i];
fprintf(fr,” %1f %1f %If %If \n”,
dtime*(i+0.5),r2f[i][0] [k] *norm,r2f[i][1] [k] *norm,r2f[i][2] [k] *norm);
} //(ntime[i]>0)
Y // for(i=0;i< TMAX;i++)
fclose(fr); }
else{fprintf(stderr,” \n\n\n Can’t open: r2f%d.txt” k);}
}
}//End of Output of the Results }

void diffusion_rw(char *fn,int mode)

{

extern long diff_.counter,tOmax,tmax;

extern int ntime[TMAX],timeO[TOmax],t0;

extern double rO[Atoms][3][TOmax];

extern double r2f[TMAX][3][NUMBER_OF_LAYERS];
FILE *fd;

int i,j;

if (mode==0)

{

APPENDIX E. COMPUTER PROGRAMS 184

if((fd=fopen(fn,”r”))!=NULL)
{
fscanf(fd,” %ld %ld %ld ”,&diff_counter,&tOmax,&tmax);
fscanf(fd,” \n %d ”,&t0);
for(i=0;i<tmax;i++)
fscanf(fd,” \n %d ”,&ntimel[i]);
for(i=0;i<tOmax;i++)
fscanf(fd,” \n %d ”,&time0[i]);
for(i=0;i<tmax;i++)
for(j=0;j< NUMBER_OF_LAYERS;j++)
fscanf(fd,” \n %If %If %If ”,&r2f[i][0][j],&r2f[i][1][j],&r2f[i][2][j]);
for (i=FROZEN_ATOMS;i<Atoms;i++)
for (j=0:j<tOmax;j++)
fscanf(fd,” \n %LIf %1f %1f 7 &r0[i][0][j],&rO[i][1][j],&r0[i][2][i]);
fclose(fd);
}
else {diffusion(0);system(”rm -f pbc.back;”);}
¥
if (mode==1)
{
if((fd=fopen(fn,”w”))!=NULL)
{
fprintf(fd,” %ld %ld %ld ”,diff_counter,tOmax,tmax);
fprintf(fd,” \n %d ”,t0);

for (i=0;i < tmax;i+)
fprintf(fd,” \n %d ”,ntimel[i]);
for(i=0;i<tOmax;i++)
fprintf(fd,” \n %d ”,time0[i]);
for(i=0;i<tmax;i++)
for(j=0;j < NUMBER_OF_LAYERS;j++)
fprintf(fd,” \n %If %If %If »,r2f[i][0] [j],r2f[i][1][j],r2f[i][2][i]);
for (i=FROZEN_ATOMS;i<Atoms;i++)
for (j=0;j<tOmax;j++)
fprintf(fd,” \n %If %If %If *,r0[i][0][j],r0[i][1][j],x0[i][2][i]);
fclose(fd);
}}
}

okt Rk kR KRR R (e n] 93 stk ke ok stk s ke ok sk sk sk ok ok ok

_save.c
The various input-output functions: Aviz, mixing, read_vel_from_file(char *fn), read_coord_from_file(char *fn) save_to_file(long
no,int d), save_inf(long step,long counter,float stam_real), get_inf(void) pbc_recover(void), pbc_init(void)

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

include ”initdata.h”

include ”constants.h”

include ”func_cp.h”

void aviz(char *fn)

{

extern double r[Atoms][3];

extern int Color[Atoms];

APPENDIX E. COMPUTER PROGRAMS 185

FILE * fd;

int j,i;

char *color[]=

{7al”,7a2”,”a3",”a4” " a5”,
”a6”,7a7”,7a8”,”a9” " b1”,
”b2”,7b3”,7b4”,”b5”,"b6”,
"H77,7b8”,7b9" " c1”,7c2”,
6877 4" 7 c5” 7 c6,7 e,
7¢87,7¢9”,7d1”,7d2”,7d3” } ;

if(surface==0) {

if((fd=fopen(fn,”w”))!=NULL)

{

fprintf(fd,” %d ”, Atoms);

fprintf(fd,” \n ##+# Surface simulations ”);

for (j=0;j< FROZEN_ATOMS:j++)

fprintf(fd,”\n Cu %If %If %If ”, r[j][0],r[j][1],r[j][2]);
for(i=0;i<INIT_LAYERS-NUMBER_OF_FROZEN_LAYERS;i++)

for (j=FROZEN_ATOMS+i*size x*size_y;j< FROZEN_ATOMS+ (i+1)*size x*size_y; j++)
fprintf(fd,” \n %s %Ilf %If %If ”,color[i],r[j][0],r[j][1],x[i][2]);

fclose(fd);

¥

else { fprintf(stderr,”I can’t open the file %s !!!”,fn); exit(0);}

} if(surface==1)

{

if((fd=fopen(fn,”w”))!=NULL)

{

fprintf(fd,” %d ”, Atoms);

fprintf(fd,” \n ##+# Surface simulations [011] ”);

for (j=0;j<Atoms;j++)

if (Color[jjJ< NUMBER_OF_FROZEN_LAYERS)fprintf(fd,”\n Cu %If %If %If ”, r[j][0],r[j][1],r[j][2]);
else fprintf(fd,”\n %s %If %If %If ”,color[Color[j]],r[j][0],r[j][1],r[j][2]);
fclose(fd);

}

else { fprintf(stderr,”I can’t open the file %s !!!”,fn); exit(0);}

}

if(surface==2) {

if((fd=fopen(fn,”w”))!=NULL)

{

fprintf(fd,” %d ”, Atoms);

fprintf(fd,” \n ##+# Surface simulations [111] ”);

for (j=0;j<Atoms;j++)

if (Color[j]< NUMBER_OF_FROZEN_LAYERS)fprintf(fd,”\n Fe %1f %If %lf *, r[j][0],r[i][1],r[i][2]);
else fprintf(fd,”\n %s %If %If %If ”,color[Color[j]],r[j][0],r[j][1],r[j][2]);

fclose(fd);
}
else { fprintf(stderr,”I can’t open the file %s !!!”,fn); exit(0);}
}

}
—

void read_vel_from_file(char *fn)

APPENDIX E. COMPUTER PROGRAMS 186

{

extern double v[Atoms][3];
int i;
FILE *fp;
fprintf(stderr,”\n %s”,fn);
if((fp=fopen(fn,”r”))!=NULL)
{
for(i=0;i<Atoms;i++)
fscanf(fp,” %lf %1f %If \n”,&v([i][0],&v[i][1],&V[i][2]);
//printt("N=%d %g %g %g \n”i,v[i][0],v[i][1],v[i][2]);
fclose(fp);
}
else

{fprintf(stderr,”\n I can’t read file: %s”,fn);exit(0);}

void read_coord_from_file(char *fn)
{
extern double r[Atoms][3];
int i;
FILE *fd;
fprintf(stderr,”\n %s”,fn);
if((fd=fopen(fn,”’r”))!=NULL){
for(i=0;i<Atoms;i++)
fscanf(fd,” %lf %Ilf %I1f \n”,&r[i][0],&r[i][1],&r[i][2]);
//fprintf(stderr,” N=%d %g %g %g \n”,i,r[i][0],r[i][1],r[i][2]);
fclose(fd); }
else

{fprintf(stderr,”\n I can’t read file: %s”,fn);exit(0);}

//===== === ====//

void energy_temp_pressure()

{

extern long step;

extern double pot_E kin_E,temp;

extern double temp_current,press_current;
FILE *fd;
if((fd=fopen(”infoEPT.txt”,”a+"))!=NULL)
{

fprintf(fd,”\n %ld %lf %lf %lf %I’ ,step,pot_E kin_E,temp_current,press_current);
fclose(fd);

¥

¥

void save_configuration(int mode)

{

extern double r[Atoms][3],v[Atoms][3];
FILE *fd;

int i;

if(mode)

APPENDIX E. COMPUTER PROGRAMS 187

{

if((fd=fopen(”r.log”,”w”))!=NULL)

{

for(i=0;i<Atoms;i++)

fprintf(fd,” \n %If %If %1, r[i][0],r[i][1],r[i][2]);
fclose(fd);

}

if((fd=fopen(”v.log”,”w”))!=NULL)

{

for(i=0;i<Atoms;i++)

fprintf(fd,” \n %If %If %1 ,v[i][0],v[i][1],v[i][2]);
felose(fd);

}

}

}

void save_inform(char *fn)
{
extern int regime,interval,Limit_aviz_pict;
extern long step,step0,num_eq_steps,num_of_meas;
extern double temp,Q;
FILE *outd;
float percent;
// Calculate percentage of the accomplished job
if(regime<2)
{percent=100.0*(step-step0) /num_eq_steps;}
else
{percent=100.0*(step-step0)/(num_of_meas*interval); }
if((outd=fopen(fn,”w”))!=NULL)
{
fprintf(outd,” \n %d” ,regime);
fprintf(outd,” \n %4.0f” ,temp);
fprintf(outd,”\n %ld” ,num_eq_steps);
fprintf(outd,” \n %d” ,interval);
fprintf(outd,” \n %ld” ,num_of_meas);
fprintf(outd,” \n %1d”,step);
fprintf(outd,” \n %d”,Limit_aviz_pict);
fprintf(outd,”\n %3.1f” ,percent);
fprintf(outd,” \n %f”,Q);
fprintf(outd,”\n %d”,Atoms);
fprintf(outd,”\n %d”,(int)size x*size_y);
fprintf(outd,” \n %d”,NUMBER_OF_FROZEN_LAYERS);
fprintf(outd,” \n %d” ,INIT_LAYERS-NUMBER_OF_FROZEN_LAYERS);
switch (surface)
{
case 0:
fprintf(outd,” \n [001]”);
break;
case 1:
fprintf(outd,”\n [011]”);
break;

APPENDIX E. COMPUTER PROGRAMS 188

case 2:

fprintf(outd,”\n [111]”);

break;

default:

printf(” Too Strange, too much different surface=%d \n”, surface);
exit(0);

break;

¥

fclose(outd);

comments(fn);

}

else

{

fprintf(stderr,”\n Can’t open the file:\” %s\””,fn);
exit(0);

long get_inform(char *fn)

{

// Get all necessary information

extern int regime,interval,Limit_aviz_pict,step-Aviz;
extern long step,step0,num_eq_steps,num_of_meas;
extern double temp,Q;
float percent;
FILE *outd;
if((outd=fopen(fn,”’r”))!=NULL)
{
fscanf(outd,”\n %d”,®ime);
fscanf(outd,” \n %Ilf” ,&temp);
fscanf(outd,” \n %ld” ,&num_eq_steps);
fscanf(outd,”\n %d”,&interval);
fscanf(outd,” \n %1d” ,&num_of_meas);
fscanf(outd,” \n %ld”,&step0);
fscanf(outd,” \n %d”,&Limit_aviz_pict);
fscanf(outd,” \n %g” ,&percent);
fscanf(outd,” \n %1f’,&Q);
fclose(outd);
if (regime) fprintf(stderr,”\n Regime: %d —> measurements” ,regime);
else fprintf(stderr,”\n Regime: %d —> equilibration” ,regime);
fprintf(stderr,” \n\n Temperature %4.0f K”,temp);
fprintf(stderr,”\n Number of steps in approaching to the equilibrium %ld” ,num_eq_steps);
fprintf(stderr,”\n Number of steps in the measurement regime %d \n ”,interval*num_of_meas);
fprintf(stderr,”\n\t Number of steps between two measurements %d”,interval);
fprintf(stderr,”\n\t Number of measurements %ld” ,num_of_meas);
fprintf(stderr,”\n \t The last step was = %ld \n ”,step0);
fprintf(stderr,”\n \t The task have been complited on = %3.0f percent” ,percent);
fprintf(stderr,”\n \n \t Layers + addlayer = %d + %d”,NUMBER_OF_LAYERS-1,1);

fprintf(stderr,” \n \t Frozen Atoms =%d”,FROZEN_ATOMS);

fprintf(stderr,” \n \t Frozen Layers %d” ,NUMBER_OF_FROZEN_LAYERS);

APPENDIX E. COMPUTER PROGRAMS 189

fprintf(stderr,”\n \n \t Total number of steps =%d”,num_eq_steps+num_of_meas*interval);

fprintf(stderr,”\n \t Real time = %lf psec”,(num-_eq-steps+num_of_meas*interval)*dt*0.721);

step_Aviz=(int)(1.0*num-_eq_steps+num_of_meas*interval) /Limit_aviz_pict;
}
else
{
fprintf(stderr,”\n Can’t open the file:\”%s\” , I try to guess ”,fn);
if((outd=fopen(fn,”w”))!=NULL)
{
fprintf(outd,” \n %d”,0);
fprintf(outd,” \n %4.0£”,1800.0);
fprintf(outd,” \n %d”,1000);
fprintf(outd,” \n %d”,100);
fprintf(outd,” \n %d”,100);
fprintf(outd,” \n %d”,0);
fprintf(outd,”\n %d”,10);
fprintf(outd,” \n %3.1f”,0.0);
fprintf(outd,” \n %I1f”,6.0);
fprintf(outd,”\n %d”,Atoms);
fprintf(outd,”\n %d”,(int)size x*size_y);
fprintf(outd,” \n %d” ,NUMBER_OF_FROZEN_LAYERS);
fprintf(outd,” \n %d”,INIT_LAYERS-NUMBER_OF_FROZEN_LAYERS);
switch (surface)
{
case 0:
fprintf(outd,” \n [001]”);
break;
case 1:
fprintf(outd,”\n [011]”);
break;
case 2:
fprintf(outd,”\n [111]”);
break;
default:
printf(” Too Strange, too much different surface=%d \n”, surface);
exit(0);
break;
¥
fclose(outd);
}
comments(fn);
system(” more -d aaa_info.txt”);
exit(0);

}

void comments(char *fn)

{

FILE *outd;

APPENDIX E. COMPUTER PROGRAMS

190

if((outd=fopen(fn,”a”))!=NULL)
{
fprintf(outd,”\n **F*Ekskkakakit Main Parameters ***skiskkionkrtk 7y,
fprintf(outd,” \n Regime: 0—> start, 1 —> equilibration, 2—> measurements”);
fprintf(outd,” \n Temperature”);
fprintf(outd,” \n Number of steps in order to approach to the equilibrium ”);
fprintf(outd,” \n Number of steps between two succesive measurements ”);
fprintf(outd,” \n Number of measurements ”);
fprintf(outd,” \n Initial step ”);
fprintf(outd,” \n Number of the aviz pictures”);
fprintf(outd,” \n Percent of the accomplished job”);
fprintf(outd,”\n NVE/NVT parameter”);
fprintf(outd,” \n Number of the atoms ”);
fprintf(outd,” \n Number of the atoms in a layer ”);
fprintf(outd,” \n Number of frozen layers”);
fprintf(outd,” \n Number of free layers”);
fprintf(outd,” \n The surface type: ”);
fprintf(outd,”\n *¥FEERRROOE Main Parameters ki isitioniootk 1),

fclose(outd);

else

{ fprintf(stderr,”\n Can’t open the file:\”%s\””,fn); }

}

void backup(char *fn,int mode)
{

extern long step;

if(mode)

{

save_configuration(mode) ;
save_inform(fn);

¥

¥

void add_info()

{

extern double Ix,ly,1z,a0;

fprintf(stderr,”\n \n \t Lattice constants: a0(0)=%g a0(T)=%g”,a00,a0);
fprintf(stderr,”\n \t Lattice box: [X Y Z] =%g x %g x %g 7 ,Ix,ly,lz);

}

void aviz_layer(char *fn)

{

extern double r[Atoms][3];

extern layerssNUMBER_OF_LAYERS][Atoms];
FILE * fd;

int j,i,k;

char *color[]=

{7al”,7a2”,”a3”,”ad” ,”ab”,
»a6”,”a7”,”a8”,”a9”,”b1”,

7H2” PH3” PHa” Pb5”. " bE”

APPENDIX E. COMPUTER PROGRAMS 191

b7, b8, 79”7 el 2,

7¢3”,7cd”,7ch?,"c6”,7cT”,

»c8”,7¢9”,7d1”,”d2” " d3"} ;
if((fd=fopen(fn,”w”))!=NULL)

{ fprintf(fd,” %d ”, Atoms);

switch (surface)

{

case 0:

fprintf(fd,” \n ##+# Surface simulations (001) ”);
break;

case 1:

fprintf(fd,” \n ##+# Surface simulations (011) ”);
break;

default :

fprintf(fd,” \n ### Surface simulations (111) 7);
break;

¥

for (j=0;j< FROZEN_ATOMS;j++)

fprintf(fd,”\n Cu %If %If %If ”, r[j][0],r[j][1],r[j][2]);
for(i=0;i<NUMBER_OF_LAYERS;i++)

for (j=1;j<=layers[il[0] ; j+-+)

{

k= layers[i][j];

fprintf(fd,” \n %s %lf %lf %lf ”,color[i],r[k][0],r[k][1],r[k][2]);
}

fclose(fd);

}

else { fprintf(stderr,”I can’t open the file %s !!!” ,fn); exit(0);}

}

ok koK O\ [pkefile P KRR AR s ok o ok sk

The Makefile for complitation and creation an executable file vanadium
INCS=initdata.h func_cp.h constants.h potential.h
CC=gcc -03
LIBS=-1m
OBJS= measurements.o equilibration.o layers.o temp_prof.o bcc_setup.o compute_f.o density_profile.o evap_pto.o initialization.o
md.o pair_correlation.o predictor_corrector.o read_save.o buildmeigh_list.o order_parameter.o diffusion.o
vanadium: $(OBJS) $(INCS)
$(CC) $(OBJS) -o vanadium $(LIBS)
order_parameter.o: order_parameter.c $(INCS)
$(CC) -c order_parameter.c
pair_correlation.o: pair_correlation.c $(INCS)
$(CC) -c pair_correlation.c
bce_setup.o: beesetup.c $(INCS)
$(CC) -c bccsetup.c
build neigh_list.o: build_neigh_list.c potential.h $(INCS)
$(CC) -c buildneighlist.c
density_profile.o: density_profile.c $(INCS)
$(CC) -c density_profile.c
compute_f.o: compute_f.c $(INCS)
$(CC) -c compute_f.c

evap_pto.o: evap_pto.c $(INCS)

APPENDIX E. COMPUTER PROGRAMS 192

$(CC) -c evap-pto.c
initialization.o: initialization.c $(INCS)
$(CC) -c initialization.c
predictor_corrector.o: predictor_corrector.c $(INCS)
$(CC) -c predictor_corrector.c
read_save.o: read_save.c $(INCS)
$(CC) -c read_save.c
md.o: md.c $(INCS)
$(CC) -¢ md.c
diffusion.o: diffusion.c $(INCS)
$(CC) -c diffusion.c
temp_prof.o: temp_prof.c $(INCS)
$(CC) -c temp_prof.c
layers.o: layers.c $(INCS)
$(CC) -c layers.c
equilibration.o: equilibration.c $(INCS)
$(CC) -c equilibration.c
measurements.o: measurements.c $(INCS)
$(CC) -¢ measurements.c
[Rk The m-script file “setup_surf_geom.m” ¥kttt / /
20=1.0;
%Type of the cell: 0-> [001]; 1-> [011]; 2-> [111];
keys=1;
keys=input(’Type of the cell: 0-> [001]; 1-> [011]; 2-> [111]);
% Draw (1) or not to draw(0) the super cell points
draw_super_cell=0;
% Draw (1) or not to draw(0) the xy,xz,yz projections
draw_sections=0;
if(keys==0)
%% %% % %0 % %6 % % % %0 %o [001] %% % % %6 % %o %o Yo %o %o %o %o Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo
A=eye(3); B=inv(A);
Nx=5; Ny=5; Nz=5;
Lx=a0*Nx; Ly=a0*Ny; Lz=a0*Nz;
6% % %6 % % %6 % % %6 % % %o [001] %% % %6 %6 % %o %o %o %o %o %o %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo Yo

end

if(keys==1)
6% % %6 % % %0 % % %6 % % %o [011] %% % % %6 % %o %6 %o %o %o %o %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo Yo
A=[-1./sqrt(2) 1./sqrt(2) 0
0 0 1.0
1./sqrt(2) 1./sqrt(2) 0];
Nx=5; Ny=>5; Nz=1;
B=inv(A);
Lx=sqrt(2)*a0*Nx; Ly=a0*Ny; Lz=sqrt(1/2)*a0*Nz;
6% % %6 % % %0 % % %6 % % %o [001] %% % %6 %0 % %0 %o %o %o Yo %o %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo Yo
end
if(keys==2)
6% % %% % %6 % % % % % %o [111] %% % %6 %6 % %0 %6 %o %o %o %o %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo Yo
A=[-1./sqrt(2.) 1./sqrt(2.) 0
-1./sqrt(6.) -1./sqrt(6.) sqrt(2./3.)
1./sqrt(3.) 1./sqrt(3.) 1./sqrt(3.0)];

APPENDIX E. COMPUTER PROGRAMS 193

B=inv(A);
Nx=6; Ny=6; Nz=18;
Nx=input(’Input the number of Nx=Ny atoms ’);
Ny=Nx;
Nz=input(’Input the number of Nz atoms ’);
Lx=(a0*sqrt(2))*Nx; Ly=(a0*sqrt(3/2))*Ny; Lz=a0/(2*sqrt(3))*Nz;
%% % % %% % %0 %6 %6 % % %0 Yo [111] %% % % % Yo %o %o %o Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo
end
% Define dimension of the new surface:
Q=[0 0 0
Lx0 O
0 LyoO
0 0 Lz
Lx Ly 0
0 Ly Lz
Lx 0 Lz
Lx Ly Lz];

% Change the frame and find: the Limits

Xmax=-1000000; Xmin=1000000; Ymax=-1000000; Y min=1000000; Zmax=-1000000;Zmin=1000000;

for i=1:8
x=Q(i,1);y=Q(1,2);2=Q(i,3);
xx=B(1,1)*x+B(1,2)*y+B(1,3)*z;
yy=B(2,1)*x+B(2,2)*y+B(2,3)*z;
zz=B(3,1)*x+B(3,2)*y+B(3,3) *z;
if(xx>Xmax)Xmax=xx;end
if(yy>Ymax)Ymax=yy;end
if(zz>Zmax)Zmax=zz;end
if(xx<Xmin)Xmin=xx;end
if(yy<Ymin)Ymin=yy;end

if(zz<Zmin)Zmin=zz;end

QQ=[QQ;[xx,yy,zz]];

end
%Now, let’s builda b.c.c crystal
ix=floor((Xmax-Xmin)/a0+0.5);
iy=floor((Ymax-Ymin)/a0+0.5);
iz=2*floor((Zmax-Zmin)/a0+0.5);
r=[};
pa=1;
for i=0:ix
for j=0:iy
for k=0:iz+2
r(pa,1)=Xmin+i*a0;
r(pa,2)=Ymin+j*a0;
r(pa,3)=Zmin+k*a0/2;
if(rem(k,2)==0)

r(pa,1l)=r(pa,1)4a0/2;

APPENDIX E. COMPUTER PROGRAMS 194

r(pa,2)=r(pa,2)+a0/2;
end
pa=pa+1;
end
end
end
%Let’s cut of the sample now
s=0;
R=[J;RR=[];
epss=-0.00001;
for i=1:pa-1
x=r(i,1);y=r(i,2);z=r(i,3);
xx=A(1,1)*x+A(1,2)*y+A(1,3)*z;
yy=A(2,1)*x+A(2,2)*y+A(2,3)*z;
2z=A(3,1)*x+A(3,2)*y+A(3,3)*z;
%check the limits Lx,Ly,Lz
if(xx >= epss & xx <Lx+epss)
if(yy >= epss & yy <Ly-+epss)
if(zz>= epss & zz <Lz+epss)
RR=[RR;[r(i,1),r(i,2),r(i,3)]];
R=[R;[xx,yy,zz]];
s=s+1;
end
end
end end
% Save the configurations:
fd=fopen(’r00.log’,’w’);
for i=1:s
fprintf(fd,”%4.8f %4.8f %4.8f \n’,R(i,1),R(i,2),R(i,3));
end

fclose(fd);
The MD program (for Parinello-Rahman Bulk simulations) accepts an
input file “initdata.h” where the size of the computational cell and all the

relevant parameters (which are not changed frequently) are assigned.

#ifndef INITDATA_H
#define INITDATA_H

#define a0 3.0399 /* lattice parameter: spacing for Va at T=300K */
#define size 18 /* its a double size of the computational cell */
#define Interstitials 6

#define Vacancies 0

#define Atoms 1464 /* Atoms: size*size*size/4+Interstitials - Vacancies*/

#define NDIM 3

APPENDIX E. COMPUTER PROGRAMS 195

#define N_neigh_step 100

#define press 0.0 /* setpoint pressure*/

#define Q 0.01
#define W 9.0
#define dt 0.001

#define step_backup 100000
#define save_meas_step 200

#define sizeHistRdf 200 /*Grid for rdf functions*/

/*contants*/

#define pi 3.14159265358979

#define kb 0.0000862

define M 16383 /* Size of a random numbers array */
#endif

#ifndef FUNCTIONS_H

#define FUNCTIONS_H

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

#define SignR(x,y) (((y) >=0) ? (x) : (- (x)))
#define Sqr(x) ((x) * (x))

typedef double mat_mt[3][3];
typedef double mat_c[7][7];

typedef double ** matrix;
typedef double * vector;
typedef double real;
typedef int ** matrix_int;

typedef int * vector_int;

typedef struct
{
real av,av2;
real sig,mean;

long step;

} meas_list;

typedef struct

{
int mode, Num_aviz,aviz_frames, Interval, Num_meas;
long Num_eql_step,Num_meas_step,Step;
int seed_num, atoms;

double temp,Press;

APPENDIX E. COMPUTER PROGRAMS 196

} inputist;

typedef struct
{
long countRdf;
real deltaRdf;
} rdflist;

double Det(mat_mt a);

void SaveOrdFFT(vector order, real delta,inputlist *data);
void CalcOrderFFT (input_list *data);

void EvalOrd(inputlist *data);

void SaveOrdDis(vector order, input_ist *data);
/*Miscellaneous™* /

void printR(char *fn, real num);

/*Rdf functions*/

void EvalRdf (vector histRdf, rdf_list *rdf, int mode);

real Min3R (real x1, real x2, real x3);

real Max3R (real x1, real x2, real x3);

void PrintRdf (char *fn, vector histRdf, rdflist *rdf);

int RestoreRdfBackUp(char *fn, vector histRdf, rdf_list *pt);
void BackUpRdf(char *fn, vector histRdf, rdf_list *pt);

/*Basic functions*/
void SingleStep();
void SaveStatics(char *fn , meas_list *m);

void Measure(int mode, meas_list *m, inputlist *input);

void SetInitParam(inputist *input);

void InitSimulation(int code, input.list *data);

void randinit(long seed);

void Velocity_Init(inputlist *p);
void init(int code,input_list *data);
void CalcOrder();

void read_input_list(char *fn, input_list *data);

/*Matrix Allocation: allocation.c*/
matrix AllocMatR(int sizel, int size2);
void FreeMatR (matrix a, int sizel);
matrix_int AllocMatI (int sizel, int size2) ;
void FreeMatI(matrix_int a, int sizel);
vector AllocVecR (int sizel);
void FreeVecR(vector v);
vector_int AllocVecl (int sizel);

void FreeVecI(vector_int v);

APPENDIX E. COMPUTER PROGRAMS 197

long *AllocVecL (int sizel) ;

void SaveData(char *fn, long step, real variable);

/* Backup functions*/

void SaveRV ();

void ReadRV();

void SaveMatH(char *fn, mat_mt H);
void ReadMatH (char *fn, mat_mt H);
void ReadParam(char *fn);

void SaveParam(char *fn);

void set_inform(char *fn, input_list *p);
void BackUp(input.list *input);

void RestoreBackUp(input_list *input);

void save_for_nvt(void);
double determ(double x00,double x01,double x10,double x11);
void locate_interstitials(void);

void setup-interstitials(void);

real CalcTemp();
int comp_nums(const double *numl, const double *num?2);
void display_nums(double *array, int count);

int find_num(int i, int j,int k);

void setup_vacancies(void);

void getch(char *fn);
//Mon Nov 19 12:44:18

void write_rv(void);

//Defect setup

void setup_vacancies_ordered(void);
void setup_interstit_ordered(void);
void setup_vacancies_random(void);
void setup_interstit_random(void);

void interstit_setup(void);

//Fri Oct 12 23:25:58 2001
void velocity_init(inputlist *p);
void save_to_file(int mode);
void save_EPTVOh(void);

double my_abs(double x);

void compute_f();

APPENDIX E. COMPUTER PROGRAMS 198

void cry_setup();

void defects();

void save_h();

void read_h();

void scale_vel();
void read_from_file();
void buildmei_list();
void predictor();
void corrector();
void evalPT();

void leapfrog();

void scaled_frame();
void real_frame();
void init_var();

void predictorP();
void correctorP();
void rahman();

void parinello();
void init();

void accumulate_h();

void comp_c();

/*matrix functions*/
void print_mat();
void mat_mul();
void mat_sca_mul();
void mat_add();

void transpose();
double det();

void invert();

void mat_vec_mul();
void inv();

void Aviz(char *fn);

void init_h(mat_mt a);

// Density

double density(double pr_dis);

double density_dot(double pr_dis);
double density_dot_dot(double pr_dis);
// Phi potential

double phi_pot(double pr_dis);

double phi_pot_dot(double pr_dis);
double phi_pot_dot_dot(double pr_dis);
//F_potential

double F_pot(double);

double F_pot_dot(double);

double F_pot_dot_dot(double x);

#endif

#include ”initdata.h”

APPENDIX E. COMPUTER PROGRAMS 199

#include ”functions.h”

/* Ziff part of random generator*/

long ra[M+1], nd;

int MODE;

double r[Atoms][3];
double v[Atoms][3];
double f[Atoms][3];
(3]
(3]

double r1[Atoms][3];

double f1[Atoms][3];
1(3];

double f2[Atoms

double v1[Atoms][3];

int nei[Atoms][300];

double n[Atoms];

double temp;

double s_temp,s_press;
double potE,kinE,virsum;
double op;

mat._mt pten;

mat_-mt h,hdot,hddot;

mat_mt h_zero;

double hlvec[9],hd1vec[9],hdd1vec[9],hdd2vec[9];
double ksi;
double vol,l;

int main()

{
long i,j,Step0,meas_step=0;
char fn[30];

int meas_param=4;/*vol,press,temp,ord*/

input._list input;
meas_list *meas;
rdf_list rdf;

vector histRdf;

histRdf=AllocVecR(sizeHistRdf);

meas=(meas_list *)malloc(meas_param*sizeof(meas_list));

/* Get the parameters */

APPENDIX E. COMPUTER PROGRAMS 200

read_input_list(”input.list”, &input);

/*Set the parameters*/
SetInitParam(&input);
InitSimulation(MODE, &input);

build_nei_list();
compute_f();

rahman();

StepO=input.Step;
while(MODE < 3)
{

for(j=0;j<N_neigh_step;j++)

SingleStep(h,hdot,hddot);

build_nei_list();

input.Step+=N_neigh_step;

if(input.Step % step_backup == 0)
{
BackUp(&input);

BackUpRdf(”rdf.back” histRdf,&rdf);
¥
if(MODE==1)
{ /*Equilibration*/
if(input.Step-Step0 > input.Num_eql_step)
{MODE=2;input.mode=MODE; StepO=input.Step;}
}
else

{ /*Measurements*/

if(input.Step-Step0 > input.Num_meas_step) MODE=3; /*exit the loop*/
if(input.Step%input.Interval==0)
{
if(meas_step==0)
{/*Initialize*/
Measure(0, meas,&input); /*volume, temp, press, ord*/
EvalRdf (histRdf, &rdf, 0); /*radial dist. func.*/
¥
else if(meas_step%save_meas_step==0)

{ /*Statitstics Output*/

fprintf(stderr,” \n energy=%1f volume=%If pressure=%lf",(potE+kinE)/Atoms,det(h)/Atoms,s_press);

fprintf(stderr,” \n step=%d order=%lf temp=%I1f",input.Step,op,s_temp);

Measure(2, meas,&input);

APPENDIX E. COMPUTER PROGRAMS

201

else

EvalRdf (histRdf, &rdf, 2);
CalcOrderFFT(&input);
}

{ /*Just measure*/

Measure(1, meas,&input);
EvalRdf (histRdf, &rdf, 1);
EvalOrd(&input); /*order dist.*/

}

++meas_step;

}/*measurements are allowed*/

}

if(input.Step % input.aviz_frames ==0)

{
sprintf(fn,” van_%ld.xyz” ,input.Step);
real_frame(r,Atoms);
Aviz(fn);
scaled_frame(r,Atoms);

¥

}/*end of the main loop*/

/*Statitstics*/

CalcOrderFFT(&input);

Measure(2, meas,&input);

EvalRdf (histRdf, &rdf, 2);

BackUp(&input);

BackUpRdf(”rdf.back” histRdf,&rdf);

FreeVecR (histRdf);

fprintf(stderr,” \n Happy End ”);

return(0);

}

Rk KRR KRR ok ok R KR KRRk ok sk K KRRk ok s R R ok koo

begin

copyright

basis.c - description

: Sat Jan 11 2003
: (C) 2003 by slava

APPENDIX E. COMPUTER PROGRAMS 202

email : phsorkin@technion.ac.il
A R R
#include ”initdata.h”

#include ”functions.h”

void SingleStep(h,hdot,hddot)
{
predictor();
compute_f();
evalPT();
predictorP (h,hdot,hddot);
rahman(h);
parinello();
correctorP (h,hdot,hddot);

corrector();

JRRRR R R R R KRR R
void BackUp(input_list *input)
{
extern double r[Atoms][3],v[Atoms][3];
extern mat_mt h,hdot;

extern double ksi;

real_frame(r,Atoms);

real_frame(v,Atoms);

SaveRV();
SaveMatH (”hr.log” ,h);
SaveMatH(”hv.log” ,hdot);

SaveParam(” param.log”);

scaled _frame(r,Atoms);
scaled_frame(v,Atoms);

set_inform(”input.list”, input);

/**********************************/
void RestoreBackUp(input_list *input)

{

extern double r[Atoms][3],v[Atoms][3];
extern mat_mt h,hdot;

extern double ksi;
int i;
ReadMatH(”hr.log”,h);

ReadMatH(”hv.log” ,hdot);
ReadRV();

APPENDIX E. COMPUTER PROGRAMS 203

scaled _frame(r,Atoms);
scaled_frame(v,Atoms);

ReadParam(” param.log”);

/* check temp
fprintf(stderr,” \n temp=%]If ksi=%I1f",CalcTemp(),ksi);
*/

}

/**********************************/
void SetInitParam(input.list *input)

{

extern double temp,l;

extern int MODE;

temp=input->temp;
1=a0*size/2.0;
MODE=input->mode;
input->atoms=Atoms;

}

/**********************************/
void Measure(int mode, meas_list *m, input_list *input)

{

extern double op,s_temp,s_press,vol;

int i;

double volume,x,x2;

volume= vol/Atoms;

switch(mode)

{

case 0 : fprintf(stderr, ”Initialization”);

for(i=0;i<4;i++)
{

mli].step=0;
mli].av=0.;
mli].av2=0.;
m[i].sig=0.;

}

break;

case 2 :

APPENDIX E. COMPUTER PROGRAMS 204

for(i=0;i<4;i++)

{

if(m[i].step >0)

{

x= mli].av/m[i].step;

x2= ml[i].av2/m[i].step;
m[i].sig= sqrt(fabs(x2-Sqr(x)));
m[i].mean=x;

}

SaveStatics(”report.txt”,m);

}

break;

default

/*— volume—*/
m(0].step-++;
m|0].av+=volume;
m(0].av24+=volume*volume;

SaveData(”volume.txt”, input->Step,volume);

/*— temp—*/
m[1].step+-+;
m(l].av+=s_temp;
m(l].av2+=s_temp*s_temp;

SaveData(”temperature.txt”, input->Step,s_temp);

/*— press—*/
m(2].step-++;
m|2].av+=s_press;
m(2].av2+=s_press*s_press;

SaveData(”pressure.txt”, input->Step,s_press);

/*— order—*/
CalcOrder();
m[3].step++;
m(3].av+=op;
m(3].av2+=op*op;

SaveData(”order.txt”, input->Step,op);

/*— matrix—*/

SaveHij(input);

break;

APPENDIX E. COMPUTER PROGRAMS 205

Rk KR KRR ok ok R KK KRRk ok kR KRR Rk ook s KR R ok koo

alocation.c - description

Dynamic Memory Allocation

begin : Tue Dec 17 2002

R R R R R R R R R R R R SRR R R SRR R R SRR R SRR SRR SRR SR SR Sk

include ”initdata.h”

#include ”functions.h”

matrix AllocMatR(int sizel, int size2)
{

int i;

matrix a;

a=malloc(sizel*sizeof(vector));

for (i=0;i<sizel;i++)

afi]=malloc(size2*sizeof(real));

return(a);

}

void FreeMatR(matrix a, int sizel)

{

int i;

for (i=0;i<sizel;i++)
{
//printR(7i=",1.%i);
free(ali]);

}

free(a);

matrix_int AllocMatI(int sizel, int size2)

int i;
matrix_int a;

a=calloc(sizel, sizeof(vector_int));

for (i=0;i<sizel;i++)

afi]=calloc(size2,sizeof(int));

return(a);

}

void FreeMatI(matrix_int a, int sizel)

{

int i;

APPENDIX E. COMPUTER PROGRAMS 206

for (i=0;i<sizel;i++)
free(ali]);

free(a);

}

vector AllocVecR (int sizel)

{

vector v;

v = (vector) malloc (sizel * sizeof (real));
return (v);

}

void FreeVecR(vector v)

{ free(v); }

vector_int AllocVecl (int sizel) {
vector_int v;
v = (vector_int) malloc (sizel * sizeof (int));
return (v);
}

void FreeVeclI(vector_int v)

{ free(v); }

long *AllocVecL (int sizel) {
long *v;
v = (long *) malloc (sizel * sizeof (long));
return (v);

}

void PrintMatI(int sizel, int size2, matrix_int beta, char *fn)
{ int i,j;

for (i=0 ;i<sizel;i++)

for (j=0 ;j<size2;j+-+)

fprintf(stderr,”\n %s[%d][%d]=[%d] ”,fn,i,j,betali][j]);

}

void AddMatR (int sizel, int size2, matrix a,matrix b, matrix c)
{ int i,j;

for (i=0 ;i<sizel;i++)

for (j=0 ;j<size2;j++)

c[i]j]=ali] [j]+bli] [il;

}

#include ”initdata.h”

#include ”functions.h”

APPENDIX E. COMPUTER PROGRAMS 207

/* Functions:

void read_input_list(char *fn, input._list *data) Line 4

void set_inform(char *fn, input.list *p) Line 179
*/
/* === read the input list ==
void read_input_list(char *fn, input_list *data)
{
char buffer[BUFSIZ];
char * ptr;
FILE * in;

printf(”Reading an input file \” %s \”: \n \n ”,fn);

if ((in = fopen(fn, "1"))) {

fgets(buffer, BUFSIZ, in);
ptr = buffer;

while ((*ptr) !="2")
ptr++;

ptr+;

data->mode= atoi(ptr);

printf(”mode %d\n”, data->mode);

fgets(buffer, BUFSIZ, in);

ptr = buffer;

while ((*ptr) !="2")

ptr+;

ptr+;

data->temp = atof(ptr);

printf(” temp %f\n”, data->temp);

fgets(buffer, BUFSIZ, in);

ptr = buffer;

while ((*ptr) !="2")

ptr+;

ptrd+;

data-> Num_eql_step= atol(ptr);

APPENDIX E. COMPUTER PROGRAMS

208

printf(” num equil step %ld\n”, data-> Num-_eql_step);

fgets(buffer, BUFSIZ, in);

ptr = buffer;
while ((*ptr) !="2")
ptr++;

ptr++;

data-> Num_meas= atoi(ptr);

printf(” number meas %d\n”,data-> Num._meas);

/* Read 5th line */
fgets(buffer, BUFSIZ, in);

ptr = buffer;
while ((*ptr) !="2")
ptr+-+;

ptr++;

data-> Interval= atoi(ptr);
printf(” interval %d\n”,data-> Interval);

data->Num._meas_step = data-> Interval * data-> Num_meas;

/* Read 6th line */
fgets(buffer, BUFSIZ, in);

ptr = buffer;
while ((*ptr) !="2")
ptr++;

ptrd+;

data-> Num_aviz= atoi(ptr);
printf(” AViz frames %d\n”,data-> Num_aviz);
data->aviz_frames= (int)1.0*data->Num_meas_step/data->Num_aviz;
/* Read 7th line */
fgets(buffer, BUFSIZ, in);

ptr = buffer;
while ((*ptr) !="2")
ptr++;

ptrd+;

data-> Step= atol(ptr);

printf(” initial step %1d\n”,data-> Step);

APPENDIX E. COMPUTER PROGRAMS

209

/* Read 11th line */
fgets(buffer, BUFSIZ, in);

ptr = buffer;
while ((*ptr) !="2")

ptr++;

ptr++;

data-> seed_num= atoi(ptr);

fclose(in);

}

else {

printf(”Error: file \”%s\” does not exist —> exiting.\n”, fn);

fprintf(stderr,”\n \t
fprintf(stderr,”\n \t

I tried to guess the initial parameters”);

Check them and start again ”);

if((in=fopen(fn,”w”))!=NULL)

{

fprintf(in,” mode %d 7,0);

fprintf(in,” \n temperature: %d ”,400);

fprintf(in,” \n num_eq_step: %d ”,3000);

fprintf(in,” \n num_of_meas: %d ”,100);

fprintf(in,” \n meas_interv: %d ”,1000);
fprintf(in,” \n num_AViz_fr: %d ”,10);
fprintf(in,” \n step0 %d 7,0);
fprintf(in,” \n seed <20 : %d ”,1);

fclose(in);
exit(0);
}
}
}
e

void set_inform(char *fn, input_list *p)

{

FILE *outd;

if((outd=fopen(fn,”w”))!=NULL)

{

fprintf(outd,” mode : %d 7, p->mode);

fprintf(outd,” \n
fprintf(outd,” \n
fprintf(outd,” \n
fprintf(outd,” \n

fprintf(outd,” \n

temperature: %lf 7, p->temp);
num_eq_step: %ld 7, p->Num-_eql_step);
num_of_meas: %d ”, p->Num_meas);
meas_interv: %d ”, p->Interval);

num_AViz_fr: %d ”, p->Num_aviz);

fprintf(outd,” \n stepO : %ld 7, p->Step);

APPENDIX E. COMPUTER PROGRAMS 210

fprintf(outd,” \n seed<20 : %d \n ”, p->seed_num);
fclose(outd);
system(”date >inpljcat input.list inpl >inp2;mv inp2 input.list ;rm inpl; ”);

}

}

#include ”initdata.h”

#include ”functions.h”

#define NewRandomlInteger (ra[(nd++)&M] = ra[(nd-471)&M] "ra[(nd-1586)&M] "ra[(nd-6988)&M] ra[(nd-9689)&M])
#define NewRandomFloat (NewRandomInteger/2147483648.0)

/* */
void cry_setup()

{

extern double r[Atoms]|[3];

int i,j,k,pa;
double a02;//Initial coordinates
FILE *fid;

a02=a0/2;

pa=0;

for (k=0;k< size;k++){
for (j=05j< (size/2);j++){
for(i=0;i< (size/2);i++){
r[pa][0]=a0*i;
r[pa][1]=a0%j;
r[pa][2]=a02%k;

if(k%2!1=0){
r[pal (0] +=202;

r[pa][1]4+=a02;}

pat+;

/* */
void velocity_init(inputlist *p){
extern double v[Atoms][3],temp;
extern long ra[M+1], nd;

int j,k;

double sum|3];

double x1,x2,x3,y1,y2,y3,Sf;

long seeds[]={ 606842583, 485982468,891298966, 762096833,
556467665, 118503643, 821407164,444703364, 19543234,
39193703, 921812970, 73820724, 17626614, 405706210,

APPENDIX E. COMPUTER PROGRAMS

211

935469691, 816904431, 410270205, 893649533, 157891307,

3568130 ,57689780, 1099068} ;

fprintf(stderr,” \n temp=%g” ,temp);

randinit(seeds[p->seed num]);

for (j=0;j<3;j++)sum[j]=0.;

/*srand((unsigned)time(NULL)); */
/* Seed the random-number generator with current time so that

* the numbers will be different every time we run. */

/* Generate gaussian distribution */
for (j=0;j<Atoms;j++)

{

/* RAND_MAX is the Max integer random number
x1=((double)rand())/RAND_MAX;
x2=((double)rand())/RAND_MAX;
x3=((double)rand())/RAND_MAX; */

x1=NewRandomFloat;
x2=NewRandomFloat;

x3=NewRandomFloat;

/*The Box Muller method*/
yl=sqrt(-log(x1))*cos(2*pi*x2);
y2=sqrt(-log(x2))*cos(2*pi*x1);
y3=sqrt(-log(x3))*cos(2*pi*x1);

v[il[0]=y1;
v[il[1]=y2;
v([il[2]=y3;

for (k=0;k<3;k++)sum[k]+=v[j][k];

/* Center of mass velocity */

for (k=0;k<3;k++) sum|k]/=(Atoms);

for (j=0;j<Atoms;j++)
for (k=0;k<3;k++)

v[j][k]-=sum[k];

APPENDIX E. COMPUTER PROGRAMS 212

Sf=0.;
for (j=0;j<Atoms;j++)
St+=v[jl[0]*v[j][0]+v [[T *v[I[1]+v) [2]*v[j][2];

/* Let’s rescale the velocities */

Sf=sqrt(3*kb*temp*(Atoms)/Sf);

for (j=0;j<Atoms;j++)

for (k=0;k<3;k++)
v[il[k]*=Sf;

/*Now check it and be sure, that T appropriate and Vem=0 */

Sf=0;

for (j=0;j<3;j++)sum[j]=0.;

for (j=0;j<Atoms;j++)

{
St+=v[jl[0]*v[jl[0]+v][*v [l [1]+v [l [2]*v[il[2];
for (k=0;k<3;k++){ sum[k]=sum[k]+v[j][k];}
}
fprintf(stdout,” \n Center_of_Mass Velocity \n Vx=%If Vy=%If Vz=%Ilf ”,sum[0],sum[1],sum|2]);
fprintf(stdout,” \n temp=%If 7, Sf/(3*Atoms*kb));
}

AR AR AR AR AR A AR A |
void randinit(long seed)
{ /* Initialization of a random massive */
double a, ee = -1 4+ 1/2147483648.0;
long i;

extern long nd, ra[M+1];

a = seed/2147483648.0;
for (nd = 0; nd <= M; nd++)

{

a *= 16807;

a += ce * (long)(a);

if (a >=1) a += ee;

ra[nd] = (long) (2147483648.0 * a);
}

nd = M;

APPENDIX E. COMPUTER PROGRAMS 213

for(i = 0; i<1000000; i++)
NewRandomlInteger;

}

Rk ok KRR ok kR KR KRRk ok kKRR Rk ook sk R R R ok ook

defect_setup.c - description
begin : Mon Oct 8 2001
copyright : (C) 2001 by
email : phsorkin@phsorkin.technion

AR AR AR AR AR AR OO AR SRR K
#define Rcr 0.1*%a0

#define Rcr2 Rer*Rer

#define bsize size/2

#define bsize2 bsize*bsize

#define PAtoms bsize*bsize*size

#include ”initdata.h”

#include ”functions.h”

R R R R SRR SRR R R R SRR SRR SRR R R R R R SRR R SRR R R R ok

void setup_interstitials(void)

{

extern double r[Atoms][3],];

double a02,a04,R[PAtoms][4];
int particle,point[5][2];
int bstep,rest;

int i,j,k,pa,m;

FILE *fd;

if(Interstitials >5*size)

{

fprintf(stderr,” \n You’ve exceeded the Maximal Number of Interstitials =%d”,5*size);
exit(0);

}

for (k=0;k<PAtoms;k++)R[k][3]=2.;

bstep=(int)(bsize/4);

point[0][0]=(int) (bsize/2.0)-bstep;
point[0][1]=(int) (bsize/2.0)-bstep;

point[1][0]=(int)(bsize/2.0)+bstep;
point[1][1]=(int)(bsize/2.0)-bstep;

point[2][0]=(int)(bsize/2.0)+bstep;
point[2][1]=(int)(bsize/2.0)+bstep;

APPENDIX E. COMPUTER PROGRAMS 214

point[3][0]=(int)(bsize/2.0)-bstep;
point[3][1]=(int)(bsize/2.0)+bstep;

point[4][0]=(int) (bsize/2.0);
point[4][1]=(int)(bsize/2.0);

// Setup the perfect b.c.c lattice
a02=a0/2;
a04=a0/6;

pa=0;

for (k=0;k<size;k++){
for (j=03j< bsize;j++){
for(i=0;i<bsize;i++){

R[pa][0]=a0%i;
R[pa][1]=a0%j;
R[pa][2]=a02%*k;

i(k%2!1=0){

Ripa] [0]+=202;
R[pal[1]+=a02;

pa++;

pa=(int)1.0*Interstitials/size;

rest=Interstitials-pa*size;

if(pa >= 1)

{

for (k=0;k<size;k++)
{

if(k%2){ i=point[0][0];j=point[0][1];}
else { i=point[2][0];j=point[2][1];}

/* Here is a vacancy*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the Interstitial neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle][3]) { R [particle][3]=1.;} }
if(i>0){particle=find num(i-1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }

if(j<bsize-1){particle=find num(i,j-1,k);if(R[particle] [3]) {R[particle][3]=1.;} }
if(j>0){particle=find_num(i,j+1,k);if(R[particle] [3]) { R[particle][3]=1.;} }

APPENDIX E. COMPUTER PROGRAMS 215

//if(k<size-1){particle=find_num(i,j,k+1);if(R[particle] [3]){R[particle][3]=1.;}}
//if(k>0){particle=find_num(i,j,k-1);if(R[particle][3]) {R[particle] [3]=1.;}}

if(pa >= 2)

{

for (k=0;k<size;k++)

{

i#(k%2){ i=point[2][0];j=point[2][1];}
else { i=point[0][0];j=point[0][1];}

/* Here is a Interstitial*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the Interstitial neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle] [3]) { R[particle][3]=1.;} }
if(i>0){particle=find num (i-1,j,k);if(R[particle] [3]) { R[particle][3]=1.;} }

if(j<bsize-1){particle=find num(i,j-1,k);if(R[particle][3]) {R[particle][3]=1.;} }
if(j>0){particle=find num(i,j+1,k);if(R[particle][3]) {R[particle][3]=1.;} }

¥

if(pa >= 3)

{

for (k=0;k<size;k++)

{

i#(k%2){ i=point([1][0];j=point[1][1];}
else { i=point[3][0];j=point[3][1];}

/* Here is a Interstitial*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the Interstitial neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle] [3]) { R[particle][3]=1.;} }
if(i>0){particle=find num (i-1,j,k);if(R[particle][3]) { R[particle][3]=1.;} }

if(j<bsize-1){particle=find_num(i,j-1,k);if(R[particle][3]) { R[particle][3]=1.;} }
if(j>0){particle=find num(i,j+1,k);if(R[particle][3]) {R[particle][3]=1.;} }
}

}

if(pa == 4)

{

for (k=0;k<size;k++)

APPENDIX E. COMPUTER PROGRAMS 216

{
if(k%2){ i=point[3][0];j=point[3][1];}
else { i=point[1][0];j=point[1][1];}

/* Here is a Interstitial*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the Interstitial neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle] [3]) { R[particle][3]=1.;} }
if(i>0){particle=find num (i-1,j,k);if(R[particle][3]) { R[particle][3]=1.;} }

if(j<bsize-1){particle=find num(i,j-1,k);if(R[particle] [3]) {R[particle][3]=1.;} }
if(j>0){particle=find num(i,j+1,k);if(R[particle][3]) {R[particle][3]=1.;} }
}

if(Interstitials >size){

pa=(int)size/rest;

for(m=0;m<rest;m++)
{

k=m*pa;

i=point[4][0];
j=point[4][1];

particle=find_num(i,j,k);R[particle][3]=0;

/* Here are the Interstitial neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle] [3]) { R[particle][3]=1.;} }
if(i>0){particle=find num (i-1,j,k);if(R[particle][3]) { R[particle][3]=1.;} }

if(j<bsize-1){particle=find num(i,j-1,k);if(R[particle] [3]) {R[particle][3]=1.;} }
if(j>0){particle=find num(i,j+1,k);if(R[particle][3]) {R[particle][3]=1.;} }

}

} //if(Interstitials<size)

[R R R R SRR SRR SRR R R R R SRR SRR SRR R R R R R SR

[R R R R SRR SRR SRR R R R R SRR SRR SRR R R R R SR

if(Interstitials<size)

{

pa=(int)size/rest;

//printf(”\n pa=%d”,pa);

for(m=0;m<rest;m++)

{

k=m%*pa;

APPENDIX E. COMPUTER PROGRAMS 217

//printf(”\n k=%d \n\t” ,k);

if(m%2){ i=point[3][0];j=point[3][1];}
else { i=point[1][0];j=point[1][1];}

/* Here is a Interstitial*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the Interstitial neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle] [3]) { R[particle][3]=1.;} }
if(i>0){particle=find num (i-1,j,k);if(R[particle][3]) { R[particle][3]=1.;} }

if(j<bsize-1){particle=find num(i,j-1,k);if(R[particle] [3]) {R[particle][3]=1.;} }
if(j>0){particle=find num(i,j+1,k);if(R[particle][3]) {R[particle][3]=1.;} }
}

} //if(Interstitials<size)

[R R R SRR SRR SRR R R R R SRR SRR SRR R R R R SR

i b

if(fd=fopen(” conf_init.xyz”,”w”))

{

Rk ok R Rk ok koK R KRR ok koK KRRk ook KRR ook /

Rk ok KR ok koK KRRk ok koK KRRk ook KRRk kR /

fprintf(fd,” %d \n”,Atoms);
fprintf(fd,” ##Cijkl simulations with Defects\n”);

pa=(int)PAtoms;

for(i=0;i<PAtoms;i++)

{

rfi][0]=R[][0}; r[i][1]=R[i][1]; r[i][2]=R[i][2];

if(R[i][3])
{
if(R[i][3]==1.0)

{fprintf(fd,” Al %1f %If %If \n”, r[i][0],r[i][1],r[i][2]);}//NN neighbors
else

{fprintf(fd,” Va %If %If %If \n”, r[i][0],r[i][1],r[i][2]);}//Others

Y /7 HRL]B])

else

{ /*Setup the interstitials*/

r[pal (0] =R[i][0]+202/2;
rlpal (1]=Rl[i][1]+a02/2;
r[pa][2]=R[i][2]+a04/2;

APPENDIX E. COMPUTER PROGRAMS 218

fprintf(fd,”Fe %1f %If %Lf \n”, r[i][0],r[i][1],r[i][2]);
fprintf(fd,” Cu %lf %Ilf %If \n”, r[pa][0],r[pa][1],r[pa][2]);
pa++;

}//Setup the interstitials

} //for cycle
fclose(fd);
}

else

fprintf(stderr,”I can’t open the file conf_init.xyz ”);
exit(0);
¥

//system(”aviz conf_init.xyz");

JRRRRR ARk Rk Rk]

void setup-_interstit_random (void)
{
extern double r[Atoms][3],1;
double a02;
int place[(size/2)][(size/2)][2*(size/2)];
int t1,t2,t3,index=0;
int i,j,k,pa;
a02=a0/2;
pa=0;
// Setup the perfect b.c.c lattice
for (k=0;k<size;k++){
for (j=05j< (size/2);j++){
for(i=0;i< (size/2);i++){

r[pa][0]=a0%*i;
r[pa][1]=a0%j;
r[pa][2]=a02%k;

if(k%2!=0){
r[pa][0]+=a02;

rlpal[1]+=202;}

pat+;

APPENDIX E. COMPUTER PROGRAMS 219

}

//Add the selfinterstitials randomly

for(t1=0;t1<(size/2);t1++)

for(t2=0;t2<(size/2);t2++)

for(t3=0;t3<2*(size/2);t34++)
place[t1][t2][t3]=1;

srand((unsigned)time(NULL));
/* Seed the random-number generator with current time so that

* the numbers will be different every time we run.

*/
while(index<Interstitials)
{
t1=(int)((size/2-1)*((double)rand())/RAND_MAX+0.5);
t2=(int)((size/2-1)*((double)rand())/RAND_MAX+0.5);
t3=(int)((size/2-1)*((double)rand())/RAND_MAX+0.5);

//fprintf(stderr,”\n t1=%d t2=%d t3=%d ”,t1,t2,t3);
if(place[t1][t2][t3])

{

place[t1][t2][t3]=0;
r[Atoms-Interstitials+index][0]=a0*t14+a02;
r[Atoms-Interstitials+index][1]=a0*t2+a02;
r[Atoms-Interstitials+index][2]=a0*t3;

index++;

¥

}//while(index<Interstitials)

Aviz(” Defect.xyz");

//system(”aviz -ar Defect.xyz”);

Rk R KRR Rk R KR KR Rk Rk KRR KK
Rk kKRR KRR Rk KRR KRRk Rk K KRRk

[R R SRR R R R R R SR SRR R R R R ok

/* Setup Interstitials ordered: Another Version */
void interstit_setup(void)

{

extern double r[Atoms][3],1;

int i,j,k,m,index,N,pa;

int nx,ny,nz,odd=0;

double Ix,ly,lz;

double x,y,z,xc,yc,zc,dist2,ex,ey,ez,a02;

a02=a0/2;

pa=0;

APPENDIX E. COMPUTER PROGRAMS 220

// Setup the perfect b.c.c lattice
for (k=0;k<size;k++){
for (j=05j< size/2;j++){
for(i=0;i<size/2;i++){

r[pa][0]=a0%*i;
r[pa][1]=a0%j;
r[pa][2]=a02%k;

i(k%2!1=0){
r[pal (0] +=202;
r[pa][1]4+=a02;}

pa++;

//Let’s analyse the Interstitals structure
if(Interstitials%2)

{

odd=1;

// Set the coordinates in the center of the box
x=y=z=1/2;

// Check if there is no overlapping

for(i=0;i< Atoms-Interstitials;i++)
{

dist2= (x-r[i][0]) * (x-r [i] [0]) + (y-r[i] [1]) * (y-r[i][1])
+(z-r[i][2])* (z-r[i] [2]);
if(dist2<Rcr2)

{

dist2=sqrt(dist2);

if(dist2)

{

ex=(r[i][0]-x)/dist2;
ey=(r[i][1]-y)/dist2;
ez=(r[i][2]-z)/dist2;

x+=Rcr*ex;
y+=Recr*ey;
z+=Rcr*ez;
}

else

x+=Recr;
y+=Rer;
z+=Recr;

APPENDIX E. COMPUTER PROGRAMS 221

} // if(dist2<Rcr)

}// for(i=0;i<Atoms;i++)
r[Atoms-Interstitials][0]=x;
r[Atoms-Interstitials][1]=y;
r[Atoms-Interstitials][2]=z;

} //if(Interstitals%2)

//Now let’s divide the box onto small boxes

nx=ny=nz=1;

N=Interstitials;

if(odd)N—;

while(1)

{
if(N%2==0){nx*=2;N/=2;}
else { nx*=N;break; }

if(N%2==0){ nz*=2;N/=2; }
else { nz*=N;break; }
if(N%2==0) { ny*=2;N/=2; }
else { ny*=N;break; }
}//while

index=0;

if(odd)index=1;//Take into account an odd atom

Ix=1/nx;
ly=1/ny;
1z=1/nz;

xc=0.5%1x;
yc=0.5%*ly;

zc=0.5%1z;

for(i=0;i<nz;i++){
for(j=0;j<nx;j++){
for(k=0;k<ny;k++){

x=xc+j*Ix;
y=yc+k*ly;

z=zc+i*lz;

for(m=0;m<Atoms-Interstitials;m++)

{

dist2=(x-r[m][0])* (x-r[m][0])+ (y-r[m][1])*(y-r[m][1])
+(z-r[m][2])*(z-r[m][2]);

if(dist2<Recr2)

{

dist2=sqrt(dist2);

APPENDIX E. COMPUTER PROGRAMS 222

if(dist2)

{
ex=(r[m][0]-x)/dist2
ey=(r[m][1]-y)/dist2;
ez=(r[m][2]-z)/dist2;

x+=Rcr*ex;
y+=Rcr*ey;
z+=Rcr*ez;
¥

else

x+=Recr;
y+=Rer;
z+=Recr;

} // if(dist2<Rcr)
}// for(i=0;i<Atoms;i++)

r[Atoms-Interstitials+index][0]=x;
r[Atoms-Interstitials+index][1]=y;
r[Atoms-Interstitials+index][2]=z;
index++;

}

}

}

Aviz(”Defect.xyz");

//system(”aviz Defect.xyz");

II0110077777077717777117771117711717111111771117117111111111117171

void setup-_interstit_ordered(void)
{
extern double r[Atoms][3],1;
double a02;
int i,j,k,pa,m;
a02=a0/2;
pa=0;
// Setup the perfect b.c.c lattice
for (k=0;k<size;k++){

for (j=05j< (size/2);j++){

for(i=0;i< (size/2);i++){

r[pa][0]=a0*i;
r[pa][1]=a0%};
r[pa][2]=a02%k;

APPENDIX E. COMPUTER PROGRAMS 223

if(k%2!=0){
r[pa][0]+=a02;
r[pa)[1]+=a02;}

pat++;

¥

//Add the self interstitials in order
m=(int)size*(size/2)*(size/2);
i=j=k=0;
for(pa=0;pa<Interstitials;pa++)

{

r[m+pa] [0]=a0*i+a02;
r[m+pal[1]=a0%j+a02;
r[m+pal[2]=a0%k;

if(k<(size/2))k++;

else if(i<(size/2)) {k=0ii++:}

else if(j<(size/2)){k=0;i=0;j++;}

else

{

fprintf(stderr,” N=%d Too many defects !!! ” Interstitials);
exit(0);

}

Aviz(” Defect.xyz");

//system(”aviz Defect.xyz");

I110170017717077117717111711111711771111177171117111111111117111117
// VACANCIES //

I10170077777077711717711777111711777111111171117111117111117111117

void setup_vacancies_random (void)

{

extern double r[Atoms][3],1;

double R[2*(size/2)*(size/2)*(size/2)][3];
int place[2*(size/2)*(size/2)*(size/2)];
int t,index=0,N;

int i,j,k,pa;

double a02;//Initial coordinates

a02=a0/2;

pa=0;

APPENDIX E. COMPUTER PROGRAMS 224

for (k=0;k<2*(size/2);k++){
for (j=0;j< (size/2);j++){
for(i=0;i< (size/2);i++){

// fprintf(stderr,”\n i=%d j= %d pa=%d ”,i,j,pa);

R[pa][0]=a0%i;
R[pa][1]=a0%j;
R[pa][2]=a02%k;

if(k%2!=0){
R[pa)[0]+=a02;
R[pal[1]+=a02;}

pat+;

N=(int)size*(size/2)*(size/2);
for(t=0;t<N;t++)

place[t]=1;

srand((unsigned)time(NULL));
/* Seed the random-number generator with current time so that
* the numbers will be different every time we run.
*/
index=0;
while(index < Vacancies)

{
t=(int)((N-1)*((double)rand())/RAND_MAX-+0.5);

fprintf(stderr,”\n t=%d ”,t);
if(place[t])

{

place[t]=0;
R[t][0]=1000000.0;

index++;

¥

}//while(index<Interstitials)

index=0;
for(t=0;t<N;t++)
{

if(R[t][0]!=1000000.0)
{
r[index][0]=R[t][0];

APPENDIX E. COMPUTER PROGRAMS 225

rlindex][1]=R[¢][1];
rlindex][2]=R[¢][2];
index++;

}

Aviz(” Defect.xyz");

//system(”aviz Defect.xyz &”);

}
II017007771707771771771177111111177111711117711711111111711117

101700777170777177177117171111117711171111171171111111111111717
void setup_vacancies_ordered(void)

{

extern double r[Atoms][3],1;

double R[2*(size/2)*(size/2)*(size/2)][3];

double a02;

int i,j,k,pa,m,index;

a02=a0/2;

pa=0;

// Setup the perfect b.c.c lattice
for (k=0;k<2*(size/2);k++){
for (j=05j< (size/2);j++){
for(i=0;i< (size/2);i++){

R[pa][0]=a0%i;
R[pa][1]=a0%j;
R[pa][2]=a02%k;

if(k%2!=0){
R[pa][0]+=a02;
R[pal[1]+=a02;}

pat+;

}

//Add the self interstitials in order

i=j=k=0;
for(pa=0;pa<Vacancies;pa++)

{
m=i+j*(size/2)+k*(size/2)*(size/2);
m=(int)m;

fprintf(stderr,” \n m=%d”,m);
R[m][0]=-100000000;
if(k<(size/2))k+-+;

APPENDIX E. COMPUTER PROGRAMS 226

else if(i<(size/2)){k=0;i++;}

else if(j<(size/2)){k=0;i=0;j++;}

else

{

fprintf(stderr,” N=%d Too many defects !!! 7, Vacancies);
exit(0);

}

index=0;
for(m=0;m<2*(size/2)*(size/2)*(size/2);m++)

{

if(R[m][0]!=-100000000)
{

rlindex] (0] =R[m][0];
rlindex][1]=R[m][1];
rlindex][2]=R[m][2];
index++;

}

}
//for(m=Atoms-Interstitials;m <Atoms;m-++)
//fprintf(stderr,”\n m=%d x%If y%If z%1f t%d ”,m,r[m][0],r[m][1],r[m][2],index);

Aviz(”Defect.xyz”);

//system(”aviz Defect.xyz");

[R R SRR R SRR R R R SRR SRR R R R R R R R R KoK /
A A AR SRS R R R R oK

Rk ok KRR KRR ok KRR KRR ok kKRR Rk Rk KK

void setup_vacancies(void)

{

extern double r[Atoms][3],];

double a02,a04,R[PAtoms][4];
int particle,point[5][2];
int bstep,rest;

int i,j,k,pa,m;

FILE *fd;

if(Vacancies>5*size)
{
fprintf(stderr,” \n You’ve exceeded the Maximal Number of Vacancies =%d”,5*size);

exit(0);

APPENDIX E. COMPUTER PROGRAMS 227

for (k=0;k<PAtoms;k++)R[k][3]=2.;

bstep=(int)(bsize/4);

point[0][0]=(int) (bsize/2.0)-bstep;
point[0][1]=(int)(bsize/2.0)-bstep;

point[1][0]=(int)(bsize/2.0)+bstep;
point[1][1]=(int)(bsize/2.0)-bstep;

point[2][0]=(int)(bsize/2.0)+bstep;
point[2][1]=(int)(bsize/2.0)+bstep;

point[3][0]=(int)(bsize/2.0)-bstep;
point[3][1]=(int)(bsize/2.0)+bstep;

point[4][0]=(int)(bsize/2.0);
point[4][1]=(int)(bsize/2.0);

// Setup the perfect b.c.c lattice
a02=a0/2;
a04=a0/6;

pa=0;
for (k=0;k<size;k++){
for (j=0;j< bsize;j++){

for(i=0;i<bsize;i++){
R(pa)[0]=a0%i;
R[pa][1]=a0%j;
R[pa][2]=a02%k;
if(k%2!=0){

R[pa] [0]+=a02;
R[pal[1]+=a02;

pat++;

pa=(int)1.0*Vacancies/size;

rest=Vacancies-pa*size;

if(pa >= 1)

APPENDIX E. COMPUTER PROGRAMS

228

{

for (k=0;k<size;k++)

{

i£(k%2){ i=point[0][0);j=point[0][1];}
else { i=point[2)[0];j=point[2][1];}

/* Here is a vacancy*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the vacancy neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle] [3]) { R[particle][3]=1.;} }
if(i>0){particle=find num(i-1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }

if(j<bsize-1){particle=find num(i,j-1,k);if(R[particle][3]) {R[particle][3]=1.;} }
if(j>0){particle=find num(i,j+1,k);if(R[particle][3]) {R[particle][3]=1.;} }

//if(k<size-1){particle=find _num(i,j,k+1);if(R[particle][3]){R[particle][3]=1.;} }
//if(k>0){particle=find_num(i,j,k-1);if(R[particle][3]) { R[particle][3]=1.;} }

}

}

if(pa >= 2)

{

for (k=0;k<size;k++)
{

if(k%2){ i=point[2][0];j=point[2][1];}
else { i=point[0][0];j=point[0][1];}

/* Here is a vacancy*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the vacancy neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }
if(i>0){particle=find num (i-1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }

if(j<bsize-1){particle=find num(i,j-1,k);if(R[particle][3]) {R[particle][3]=1.;} }
if(j>0){particle=find_num(i,j+1,k);if(R[particle] [3]) { R[particle][3]=1.;} }

}

if(pa >= 3)

{

for (k=0;k<size;k++)

{

i£(k%2) { i=point[1][0);j=point[1][1];}
clse { i=point[3][0];j=point[3][1];}

APPENDIX E. COMPUTER PROGRAMS 229

/* Here is a vacancy*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the vacancy neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }
if(i>0){particle=find num (i-1,j,k);if(R[particle][3]) { R[particle][3]=1.;} }

if(j<bsize-1){particle=find_num(i,j-1,k);if(R[particle] [3]) { R[particle][3]=1.;} }
if(j>0){particle=find_num(i,j+1,k);if(R[particle] [3]) { R[particle][3]=1.;} }
}

}

if(pa == 4)

{

for (k=0;k<size;k++)

{

if(k%2){ i=point[3][0];j=point[3][1];}
else { i=point[1][0];j=point[1][1];}

/* Here is a vacancy*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the vacancy neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }
if(i>0){particle=find num (i-1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }

if(j<bsize-1){particle=find_num(i,j-1,k);if(R[particle] [3]) { R[particle][3]=1.;} }
if(j>0){particle=find_num(i,j+1,k);if(R[particle] [3]) { R[particle][3]=1.;} }
}

if(Vacancies>size){

pa=(int)size/rest;

for(m=0;m<rest;m++)
{

k=m%*pa;

i=point[4][0];
j=point[4][1];

particle=find_num(i,j,k);R[particle][3]=0;
/* Here are the vacancy neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }

if(i>0){particle=find num(i-1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }

if(j<bsize-1){particle=find num(i,j-1,k);if(R[particle] [3]) {R[particle][3]=1.;} }
if(j>0){particle=find num(i,j+1,k);if(R[particle][3]) {R[particle][3]=1.;} }

APPENDIX E. COMPUTER PROGRAMS

230

}

} //if(Vacancies<size)

JRRRRRE ARk oK KR okkok KRR KRR ok ko KRRk ook kK

JRRRRRE ARk oKk Rk Rk KRR KRR ok ko KR Rk ook ok

if(Vacancies<size)

{

pa=(int)size/rest;

for(m=0;m<rest;m++)

{

k=m%*pa;

if(m%2){ i=point[3][0];j=point[3][1];}
else { i=point[1][0];j=point[1][1];}

/* Here is a Interstitial*/

particle=find_num(i,j,k);R[particle][3]=0.;

/* Here are the Interstitial neighbors and their colors*/
if(i<bsize-1){particle=find_num(i+1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }
if(i>0){particle=find num (i-1,j,k);if(R[particle][3]) {R[particle][3]=1.;} }

if(j<bsize-1){particle=find_num(i,j-1,k);if(R[particle] [3]) { R[particle][3]=1.;} }
if(j>0){particle=find_num(i,j+1,k);if(R[particle] [3]) { R[particle][3]=1.;} }

}

} //if(Vacancies<size)

Rk R Rk ok ks KRk ok kR R KRRk ook KRR okkok o/

if(fd=fopen(”conf_init.xyz”,”w”))

{

fprintf(fd,” %d \n”,Atoms);
fprintf(fd,” ##Cijkl simulations with Defects\n”);

pa=0;
for(i=0;i<PAtoms;i++)
{

if(R[i][3])

{

if(R[i][3]==1.0)

{fprintf(fd,” Cu %If %If %If \n”, R[i][0],R[i][1],R[i][2]);}

APPENDIX E. COMPUTER PROGRAMS 231

else

{fprintf(fd,” Va %If %If %If \n”, R[i][0],R[i][1],R[i][2]);}

r[pa][0]=R[i][0]; r[pa][1]=RI[][1]; r[pa][2]=R[i][2];
pat+;
Y /7 HRL]B])

}
fclose(fd);

}
else
{
fprintf(stderr,”I can’t open the file conf_init.xyz ”);
exit(0);
}

//system(”aviz conf_init.xyz");

}

R R R R SRR SRR R R SRR SRR SRR R R R R R SRR R SRR R R R ok

R R R SRR SRR R R R SRR SRR SRR SRR R R R SRR R SRR R R R ok

int find_num(int i, int j,int k)
{
return(i+j*bsize+k*bsize2);
}

#include <stdio.h>
#include ”initdata.h”

#include ”functions.h”

void InitSimulation(int code, input.ist *data)

{

extern double r[Atoms][3],v[Atoms][3];
extern double ksi;
extern mat_mt h;

extern MODE;

int i,j;

ksi=0.0; /*thermostat*/

init_var();

if(code==0) /* initialization */

{

/* remove the old *.txt files */
system(”rm *.txt *.back”);
MODE=1;
data->mode=MODE;

APPENDIX E. COMPUTER PROGRAMS 232

if(Interstitials)

setup-interstitials();

/*
setup_interstit_random();
setup-interstit_ordered();
*/

else if(Vacancies)
setup_vacancies();

/*
setup_vacancies_random();
setup_vacancies_ordered();
*/
else

cry_setup();

Aviz(”init.xyz”);

init_h(h);

/*convert to the scaled frame */
scaled_frame(r,Atoms);
velocity_init(data);

/*convert to the scaled frame */

scaled_frame(v,Atoms);

}
else /*Continue simulation */
{
RestoreBackUp(data);
}
}

1101717777170777177177117777117777711711111711171111111111111711117

void init_var()

{

extern double f1[Atoms][3];
extern double f2[Atoms][3];
extern double r1[Atoms][3];
extern double v1[Atoms][3];
extern mat_.mt hdot,hddot;

extern double hlvec[9],hd1vec[9],hdd1vec[9],hdd2vec[9];

int ik;

for(1=0;i< Atoms;i++)
for(k=0;k<3;k++)

r1[i][K]=v1[i] [k] =£1[i] [k] =£2[i] [k] =0.0;

APPENDIX E. COMPUTER PROGRAMS 233

for(k=0;k<9;k++)
hlvec[k]=hd1lvec[k]=hddlvec[k]=hdd2vec[k]=0.;

for(1=03i<3;i++)
{
hdot][i][0]=hdot[i] [1]=hdot[i][2]=0.;
hddot[i][0]=hddot[i][1]=hddot[i][2]=0.;
}

}

AR A A AR AR
* init_h
*************************/
void init_h(a)

mat.mt a;
{
int i;
for(i=0;1<3;i++)
ali)[0]=ali) 1] =ali] 2] =0.0;

a[2][2]=a[1][1]=a[0][0] =(size/2.0)*a0;

/*******************

* init_h
********************/
#include <math.h>
#include ”initdata.h”

#include ”functions.h”

#define neicutoff 17.0
void build_neilist()

{

extern double 1;
extern double r[Atoms][3];
extern mat_mt h;

extern int nei[Atoms][300];

int i,j;
double rdis[3];
double dis;

mat_mt G, htr;

transpose(h,htr);
mat_mul(htr,h,G); /*build G*/

APPENDIX E. COMPUTER PROGRAMS 234

for(i=0;i<Atoms;i++) neili][0]=0;

for(i=0;i<Atoms;i++)
{
for(j=i+1;j<Atoms;j++)
{

rdis[0]=r[i][0]-r[j][0];
if(rdis[0]>0.5)rdis[0]-=1.;
if(rdis[0] <-0.5)rdis[0]+=1.;

rdis[1]=r[i][1]-r[5][1];
if(rdis[1]>0.5)rdis[1]-=1.;
if(rdis[1]<-0.5)rdis[1]+=1.;

rdis[2]=r[i][2]-r[j][2];
if(rdis[2]>0.5)rdis[2]-=1.;
if(rdis[2]<-0.5)rdis[2]+=1.;

dis=rdis[0]*G[0][0] *rdis[0] +rdis[0]*G[0][1]*rdis[1] +rdis[0]*G[0][2]*rdis[2];
dis+=rdis[1]*G[1][0]*rdis[0] +rdis[1]*G[1][1]*rdis[1] +rdis[1]*G[1][2]*rdis[2];

2
dis+=rdis[2]*G[2][0]*rdis[0] +rdis[2]*G[2][1]*rdis[1] +rdis[2]*G[2][2]*rdis[2];

[
[

if(dis < neicutoff)
{
neili][0]++;

neii] [nei[i] [0]]=i;

/* nei[j][0]++;
neilj][nei[j][0]]=i;*/
}
}
}
}
/* =¥/

#include <math.h>

#include ”initdata.h”

#include ”functions.h”

/*potentail parameters for Va*/
#define cutoff 3.9 /*Cutoff of potential*/

#define neicutoff 15.0000 /*Square of the nearest neighbour distance */

APPENDIX E. COMPUTER PROGRAMS 235

//Analitical Finnis-Sinclair Potential
#define FS_d 3.692767

define r_cut 3.8

define c1 -0.8816318

define c2 1.4907756

define ¢3 -0.3976370

define A -2.010637

// And its modification by Ackford and et.al.
define FND 2.63185120210091

define B 23.0

define alp 0.5

define b0 2.632

// And its modification by Rebonato and et.al
#define Reb_FND 2.6319 //2.45 ///
#define Reb_K 3.3

#pragma _CRI inline density,density_dot,density_dot_dot,phi_pot,phi_pot_dot,phi_pot_dot_dot,F_pot,F _pot_dot,F _pot_dot_dot

void compute_f()

{

extern double r[Atoms][3],f[Atoms][3];
extern int nei[Atoms][300];
extern double potE kinE,virsum,l,vol;
extern double op,n[Atoms];

extern double pten[3][3], h[3][3];

int i,j,k;

int 11,mm;

double dis,fr,fr1,fr2;
double phi,dphi,rho,drho;
double ui,dui,duj;

double rdis[3],x,y,z;

mat_mt htr,G;

double nj[Atoms],f_tmp[Atoms][3],ni,fi0,fil,fi2,
pt00,pt01,pt02,
ptl0,ptll,ptl2,

pt20,pt21,pt22,pot_E_tmp,virsum_tmp;

transpose(h,htr);
mat_mul(htr,h,G); /*build G*/

APPENDIX E. COMPUTER PROGRAMS 236

for(i=0;1<3;i++)
ptenli][0]=pten[i][1]=pten[i][2]=0.;

for(i=0;i<Atoms;i++)
n[i] =f[i] [0] =f[i] [1]=f[i] [2]=0.0;

potE=0.0;

virsum=0.0;

/*first loop calc ni*/
#pragma _CRI parallel shared(n,G) defaults
for(i=0;i<Atoms;i++) nj[i]=0.0;

#pragma _CRI taskloop
for(i=0;i<Atoms;i++)
{
ni=0.0;
#pragma _CRI ivdep
for(k=1;k<=neili][0];k++)
{

j=neili][k]; /*neigh atom*/

rdis[0]=r[i][0]-r[3][0];
if(rdis[0]>0.5)rdis[0]-=1.;
if(rdis[0]<-0.5)rdis[0]+=1.;

rdis[1]=r[i][1]-r[j][1];
if(rdis[1]>0.5)rdis[1]-=1.;
if(rdis[1]<-0.5)rdis[1]+=1.;

rdis[2]=r[i][2]-r[j][2];
if(rdis[2]>0.5)rdis[2]-=1.;
if(rdis[2]<-0.5)rdis[2]+=1.;

dis=rdis[0]*G[0][0]*rdis[0] +rdis[0]*G[0][1]*rdis[1] +rdis[0]*G[0][2]*rdis[2];
dis+=rdis[1]*G[1][0]*rdis[0] +rdis[1]*G[1][1]*rdis[1] +rdis[1]*G[1][2]*rdis[2];
dis+=rdis[2]*G[2][0]*rdis[0] +rdis[2]*G[2][1]*rdis[1] +rdis[2]*G[2][2]*rdis[2];

dis=sqrt(dis);

if(dis<cutoff)
{
rho=density(dis);
ni+=rho;
nj[j]+=rho;
} //if(dis<cutoff)

APPENDIX E. COMPUTER PROGRAMS 237

} //for(k=1;k<=nei[i] [0];k++)
n[i]=ni;

} //for(i=0;i<Atoms;i++)

#pragma _CRI guard
for(j=0;j<Atoms;j++)

n[j]+=njljl;

#pragma _CRI endguard

#pragma _CRI endparallel
[I017770777771077777717177771717177777717171717777111717111111711171
#pragma _CRI parallel shared(n,G) defaults
pot_E_tmp=0.0;

virsum_tmp=0.0;

pt00=pt01=pt02=0.0;
pt10=ptll=pt12=0.0;
pt20=pt21=pt22=0.0;

for(j=0;j<Atoms;j++)
£_tmp(j) (0] =¢_tmp[j) (1] =¢_tmp[j][2]=0.0;

#pragma _CRI taskloop
for(i=0;i<Atoms;i++)
{
fi0=fi1=£i2=0.0;
wi=F_pot(n[i]);
dui=F_pot_dot(n[i]);

pot_E_tmp+=ui;

#pragma _CRI ivdep
for(k=1;k<=nei[i][0];k++)
{

j=neili][k]; /*neigh atom*/

rdis[0]=r[i}[0]-r[i][0];
if (rdis[0] > 0.5) rdis[0]-=1.;
if (rdis[0] < -0.5) rdis[0]4+=1.;

rdis[1]=r[i][1]-r[j][1];
if (rdis[1] > 0.5) rdis[1]-=1.;
if (rdis[1] < -0.5) rdis[1]+=1.;

rdis[2]=r[i][2]-r[j][2];
if (rdis[2] > 0.5) rdis[2]-=1.;
if (rdis[2] < -0.5) rdis[2]+=1.;

dis=rdis[0]*G[0][0]*rdis[0] +rdis[0]*G[0][1]*rdis[1] 4rdis[0]*G[0][2]*rdis[2];
dis+=rdis[1]*G[1][0]*rdis[0] 4rdis[1]*G[1][1]*rdis[1] +rdis[1]*G[1][2]*rdis[2];
dis+=rdis[2]*G[2][0]*rdis[0] 4rdis[2]*G[2][1]*rdis[1] +rdis[2]*G[2][2]*rdis[2];

APPENDIX E. COMPUTER PROGRAMS

238

dis=sqrt(dis);

if(dis < cutoff)

{
phi=phi_pot(dis);

dphi=phi_pot_dot(dis);
drho=density_dot(dis);

duj=F_pot_dot(nlj]);

pot_E_tmp-+=phi;
fr1=-dphi;
fr2=-drho*(dui+duj);

fr=fr1+fr2;

virsum_tmp+=fr*dis;

x=rdis[0];
y=rdis[1];
z=rdis[2];

rdis[0] =h[0][0]*x + h[0][1]*y + h[0][2]*z;
rdis[1] = h[1][0]*x + h[1)[1]*y + h[1][2]*z;

h
rdis[2] = h[2][0]*x + h[2][1]*y + h[2][2]*z;

f_tmpl[j][0]-=fr*rdis[0] /dis;
f_tmplj][1]-=fr*rdis[1]/dis;
f_tmplj][2]-=fr*rdis[2] /dis;

fi0+=fr*rdis[0] /dis;
fil+=fr*rdis[1]/dis;
fi24+=fr*rdis[2]/dis;

pt00+=fr*rdis[0]*rdis[0] /dis;
ptO14=fr¥*rdis[0]*rdis[1] /dis;
pt024=fr¥*rdis[0] *rdis[2] /dis;

pt104+=fr¥*rdis[1]*rdis[0] /dis;
ptll+4=fr*rdis[1]*rdis[1]/dis;
ptl2+4=fr*rdis[1]*rdis[2]/dis;

APPENDIX E. COMPUTER PROGRAMS 239

pt20+=fr¥*rdis[2]*rdis[0] /dis;
pt21+=fr*rdis[2]*rdis[1]/dis;
pt22+=fr*rdis[2]*rdis[2] /dis;
} //if(dis < cutoff)

} // cycle: k

}// cycle: i
#pragma _CRI guard

for(j=0;j< Atoms;j++)
{

£[j][0]4+=f-tmp][j][0];

] [1]4+=ftmp[j][1];
f(j][2]4+=ftmp[j][2];

¥

pten[0][0] +=pt00;
pten[0][1]+=pt01;
pten[0][2]+=pt02;

pten[1][0]4+=pt10;
pten[1][1]4+=pt11;
pten[1][2]4+=pt12;

pten[2][0]4+=pt20;
pten[2][1]+=pt21;
pten([2][2]+=pt22;

potE4+=pot_E_tmp;

virsum+=virsum_tmp;

#pragma _CRI endguard

#pragma _CRI endparallel

HII0170077777077717777717777717777777777177777177777717777717777777777177177177177777177777171777717771771771777171771771711111711711111111,
double F_pot(double x)

{

return(A*sqrt(x));

}

APPENDIX E. COMPUTER PROGRAMS 240

[1017077777707771771771171771777777177717717717717717777777177177177111177117771111171111177
[1017007777707771771771177711177777177717717717717717777777177177177111177117771171171111177
double F_pot_dot(double x)

{

if(fabs(x) <0.0000000000001)

x=0.0000000000001;

return(0.5%A /sqrt(x));

}

[I1017077777707771771771177771177777717717717711777717777777177177177111177117771111171111177
[I1017007777707771771771177771177777777717717717717717777777177177117111177117771111171111177

double F_pot_dot_dot(double x)
{

if(fabs(x) <0.0000000000001)
x=0.0000000000001;

return(-0.25%A /(x*sqrt(x)));

}

[I1017007777707771771771177711177777717717717711777717777771177117177111177117171111171171177
I1017007777707771771771177771177777177717717717717717777771177117117117177117771111171111177
[I1017077777707771771771177711177777717717717711771717777777177117117111177117171111171111177
double phi_pot(double x){

double y;

if(x>r_cut) return(0);

y=(x-r_cut)*(x-r_cut)*(cl+c2*x+4c3*x*x);
// FS+ Rebonato et al
if(x<Reb_.FND)y+=Reb_K*(Reb_FND-x)*(Reb_FND-x)*(Reb_FND-x);

// FS+ Acland et al: Original and true version FND=10000000000

//if(x<FND)//{
//y+=B*(b0-x)*(b0-x)*(b0-x)*exp(-alp*x);

return(y);

¥
[I070700777007777771777777777777771777717177777717777771717771717777771717771777717171717717
double phi_pot_dot(double x){

double y;

if(x>r_cut)return(0);

y=2*(x-r_cut)*(cl+c2*x+c3*x*x)+ (x-r_cut) *(x-r_cut) *(c2+2*c3*x);

APPENDIX E. COMPUTER PROGRAMS 241

// FS+ Rebonato et al
if(x<Reb_FND)y+=-3*Reb_K*(Reb_FND-x)*(Reb_FND-x);

// FS+ Acland et al
//if(x<FND)
//y+=B*(b0-x)*(b0-x)*exp(-alp*x)*(-3-alp*(b0-x));

return(y);

}
[I1017077777707771771771177771777777717711717711777717777777177177117111177117771111171171177
double phi_pot_dot_dot(double x){

double y;

if(x>r_cut)return(0);

y=2%(cl4c2¥*x+c3*x*x)+4%(x-r_cut)*(c242*c3*x)+ (x-r_cut) *(x-r_cut) *2*c3;
// FS+ Rebonato et al
if(x<Reb_FND)y+=6*Reb_K*(Reb_FND-x);

// FS+ Acland et al
//if(x<FND)
//y+=B*(b0-x)*exp(-alp*x)*(6+6*alp*(b0-x)+alp*alp*(b0-x)*(b0-x));

return(y);

}
HI00T1007007777077777777777077777777717777177777717777717177177777177177177177171177111177
I 777707 77101777777777717777777777717777177777711777717777111777117117117771

double density(double pr_dis)

{

double rho;

if(pr_dis>FS_d)

return(0);

else
rho=(pr_dis-FS_d)*(pr_dis-FS_d);

return(rho);}

[I017770077770077777717177777777777717777771777177717777771717771717777771717771777717171717717
double density_dot(double pr_dis)

{

double rho;

if(pr_dis>FS_d)

return(0);

else

rho=2*(pr_dis-FS_d);

return(rho);

}

APPENDIX E. COMPUTER PROGRAMS 242

I1017077777707771771771177771177777777717717717777717777777177117177111177111171111171111177
double density_dot_dot(double pr_dis)

{

double rho;

if(pr_dis>FS_d)

return(0);

else

rho=2.0;

return(rho);}

[I10171077777707771771771177771177777777717717717717717777771177117117111177117171111171171177

#include <stdlib.h>
#include <stdio.h>

#include <memory.h>

#include ”initdata.h”

#include ”functions.h”

A A A A A A A SRS R A A SR S S A S Sk ok
* Rahman Calculate the unit cell matrix accelerations *

R R R R R R R R SRR R SRR R SRR R R R SRR SRR R R SR R R SRR R KRR

void rahman()

{

extern double vol;

extern mat_mt pten,h,hddot ;

extern double f[Atoms][3],r[Atoms][3],v[Atoms][3];

mat_mt //stress, /* Stress tensor */
h_tr, /* Transpose of h */
h_tr_inv, /* Inverse of transpose of h */
sigmay; /* P & R sigma matrix */
int i, j; /* Counters */
vol=det(h);

for(i=0;1 < 35 i++)
for(j = 05 j < 3; j++)

ptenli][j] /= vol;

for(i = 0; 1 < 3; i++)

pten[i][i] -= press; /* Subtract applied pressure from diagonal */

transpose(h, h_tr); /* Calculate sigma = vol*h transpose inverse */

APPENDIX E. COMPUTER PROGRAMS 243

invert(h_tr, h_tr_inv);

mat_sca_mul(vol, h_tr_inv, sigma);

mat_mul(pten, sigma, hddot); /* Calculate unit cell accelerations */

mat_sca_mul(1.0/W, hddot, hddot);

/* Zero unwanted degrees of freedom. Refson PhD Thesis (1986)
hddot[2][0]=hddot[2][1]=hddot[1][0]=0.0;*/

}

[k KK Rk ok KRR R Rk ok R R KRRk ok R KRRk Rk ok

void parinello()
{ extern mat_mt pten,h,hdot ;

extern double f[Atoms][3],r[Atoms][3],v[Atoms][3];

mat_mt h_tr, /* Transpose of h */
h_tr_dot, /* Transpose of h_dot */
h_tmp_1, /* Store for intermediate terms */
h_tmp_2, /* Store for intermediate terms */
G, /* h_tr * h (metric tensor) */
G.inv, /* Inverse of G */
G_dot, /* Derivative of G */
Giid; /* G.inv * G_dot */

int i, imol; /* Counters */

double fc[Atoms][3];

transpose(h,h_tr);

mat_mul(h_tr,h,G); /* We now have the G matrix */
invert(G, G.inv); /* G (-1) done */
transpose(hdot, h_tr_dot);

mat_mul(h_tr_dot, h, h_tmp_1);

mat_mul(h_tr, hdot, h_.tmp_2);

mat_add(h_-tmp_1, h_.tmp_2, G_dot); /* G dot now complete */
mat_mul(G_inv, G_dot, G._d); /* G.inv * G_dot */
mat_vec_mul(G_.d, v, fc, Atoms); /* Calculate correction term */

scaled_frame(f,Atoms); /* trans the forces to scaled frame */

for(i = 0; i < 3; i++) /* Add correction term */
for(imol = 0; imol < Atoms; imol+4+) /* to accelerations */
flimol][i] = f[imol][i] - fc[imol][i];

}

AR AR A R R R R Rk R ok
* print_mat *

kSRR AR AR AR R R A R AR R KR
void print_mat(a)

mat_mt a;

{

APPENDIX E. COMPUTER PROGRAMS 244

int i;

for(i=0;1<35i++)
{
fprintf(stderr,”\n”);
fprintf(stderr,” %1f %If %1f”,a[i][0],a[i][1],a[i][2]);

Rk Rk ko KRR Rk sk R R ok ko KRR KRR ok K KKK

* mat_-mul Multiply two 3 x 3 matrices. Result can NOT overwrite input. *

kR KK KRR ok KRR KRRk R KRRk ook KRR Rk ok K

void mat_mul(a, b, c)

mat_mt a, /* Input matrix 1 (in) */
b, /* Input matrix 2 (in) */
c; /* Result matrix (out) */

register int i, j; /* Counters */

for(i = 0; 1 < 3; i++)
for(j = 05 j < 35 j++)
c[il{i] = a[i][0]*b[0][i] + ali][(1]*b[1][j] + ali][2]*b[2][i];
}

i e

* mat_sca_mul. Multiply a 3x3 matrix by a scalar *

AR R SRR R R R R R SRR R SRR R SRR R R R SRR SRR R SR SR R R SRR R KRR

void mat_sca_mul(s, a, b)

register double s; /* Scalar (in) */
mat_mt a, /* Input matrix (in) */
b; /* Result matrix (out) */

register int i, j;
for(i = 0; i < 3; i++)
for(j = 0; j < 3; j++)
b[i][j] = s * a[i][j};
}

RIS R R R SRR SRR R R R R R SRR SRR SRR SRR R R R R SR R R

* mat_add Add two 3 x 3 matrices. *

R R SRR R R R R R SRR R SRR R R R R R SRR SRR SRR SR R R SRR R KRR

void mat_add(a, b, c)

mat_mt a, /* Input matrix 1 (in) */
b, /* Input matrix 2 (in) */
c; /* Result matrix (out) */

register int i, j; /* Counters */

APPENDIX E. COMPUTER PROGRAMS 245

for(i=0;i < 3; i++)
for(j = 05 j < 3; j++)
cfi][j] = ali][j] + b[illil;
}

Rk Rk ook KRR Rk kKRR ok ko KK KK Rk ok K KKK

* Transpose Transpose a 3 x 3 matrix. Will handle case of a = b *

okt A R A o A Rk A R AR Aok ok Ak Ak A ok ok ok ok bk Ak
void transpose(a, b)
mat_mt a, /* Input matrix (in) */

b; /* Transposed matrix (out) */

mat_mt tmp;

memcpy (tmp, a, sizeof tmp);

b[0][0] = tmp[0][0]; b[1][1] = tmp[1][1]; b[2][2] = tmp[2][2];
b[0][1] = tmp[1][0]; b[1][0] = tmp[0][1];
b[0][2] = tmp[2][0]; b[2][0] = tmp[0][2];
b[1][2] = tmp[2][1]; b[2][1] = tmp[1][2];

}

R R AR R SRR R R SRR R R R R SRR SRR SRR SRR R R S R R R SRR R R

* Det. Determinant of a 3 x 3 matrix *

kR KK KRR Rk KRR KRRk kR KRRk ook KRR KRRk ok K

double det(a)

mat_mt a; /* Matrix (in) */
{
int i, j, k; /* Counters */
register double deter = 0.0;

for(i=0,j =1,k =2 i< 3; i++4, j=(+1)%3, k=(k+1)%3)
deter += a[0][i] * (a[t][j]*a[2][k] - a[1][k]*a[2][j]);
return(deter);

}

AR A AR A AR AR A AR R A A Ao ok A A K
* invert. Calculate the inverse of a 3x3 matrix. Adjoint method. *

kR KK KRR ook KRR KRRk KRRk ook KRR Rk ok K

void invert(a, b)

mat_mt a, /* Input matrix (in) */
b; /* Inverse matrix (out) */
{
int 1i,j, k, 1, m, n; /* Counters */
register double deter; /* Reciprocal of determinant */

if((deter = det(a)) == 0.0)
fprintf(stderr,”\n det = 0 !”);
deter = 1.0 / deter;
for(i=10,j =1,k =2;i< 3; it+, j=(+1)%3, k=(k+1)%3)
for(l =0, m =1, n = 2;1 < 3; I4++, m=(m+1)%3, n=(n+1)%3)
b[1][i] = deter*(afj][m]*a[k][n] - a[j][n]*a[k][m]);

APPENDIX E. COMPUTER PROGRAMS 246

AR A AR A A AR R A A A A o A A A
* 3 x 3 Matrix - vector multiply (of multiple vectors) *

* The input and output vectors need not necessarily be distinct

koo Rk ok R KRR R ok ok R R KRR Rk kR KRR KR Rk K

double my_abs(double x)
{

if(x > 0.0) return x;

else return -1.0%x;

}

[R SRR R R R R SRR SRR R S R R SR R R R KRR

void mat_vec_mul(m, in_vec, out_vec, number)

int number;
mat_mt m;
double in_vec([][3],

out_vec(][3];

int i;
register double aaal, aaal, aaa2;
if(in_vec == out_vec)

{

for(i = 0; i < number; i++)
{

aaa0 = in_vec[i][0]; aaal = in_vec[i][1]; aaa2 = in_vec[i][2];

[0][0]*aaa0 + m[0][1]*aaal + m[0][2]*aaa2;

in_vec[i][0] = m
m[1][0]*aaa0 + m[1][1]*aaal + m[1][2]*aaa2;

in_vecl[i][1]

in_vec[i][2] [2][0]*aaa0 + m[2][1]*aaal + m[2][2]*aaa2;

else

for(i = 0; i < number; i++)
{

aaa0 = in_vec[i][0]; aaal = in_vec[i][1]; aaa2 = in_vec[i][2];

out_vecl[i][0] = m[0][0]*aaa0 + m[0][1]*aaal + m[0][2]*aaa2;
out_vecl[i][1] = m[1][0]*aaa0 + m[1][1]*aaal + m[1][2]*aaa2;
out_vecli][2] = m[2][0]*aaa0 + m[2][1]*aaal + m[2][2]*aaa2;

APPENDIX E. COMPUTER PROGRAMS 247

I1717171717171717717171771717171771711717171717177171717117171111717171171117

[R R SRR R SRR KR SRR SRR SRR KRR SRR R R R SRR R R R R R ko
* Det. Determinant of a 3 x 3 matrix *
R R R R R SRR SRR R R R R K

double Det(mat_mt a)

{

register double deter = 0.0;

deter=al[0][0]*(a[1][1]*a[2][2]-a[1][2]*a[2][1]);
deter-=a[0][1]*(a[1][0]*a[2][2]-a[2][0] *a[1][2]);
deter+=a[0][2]*(a[1][0]*a[2][1]-a[2][0] *a[1][1]);

return(deter);

#include ”initdata.h”
#include ”functions.h”

#include <math.h>

void evalPT()
{
extern mat_mt pten,h ;

extern double f[Atoms][3],r[Atoms][3],v[Atoms][3],temp,s_temp,s_press,virsum,ksi,op,kinE;

int i,1,k;

double vvsum;

vvsum=0.0;

real_frame(v,Atoms);
for(i=0;i<Atoms;i++)
{
for(k=0;k<3;k++)
wsum-+=v il [k]*v][]
for(1=0;1<3;1++)
for(k=0;k<3;k++)
pten(1](K]-+=v[i] 1]*v[il[Kl;

kinE=1.0*vvsum;
s_temp=vvsum/(3.0*kb*Atoms);

s_press=(s_temp*Atoms*kb+virsum/3.) /det(h);

ksi4+=3.*Atoms*dt*kb*(s_temp-temp)/Q;

APPENDIX E. COMPUTER PROGRAMS

248

/*fprintf(stderr,” \n %If %If ” ksi,edot); */
for(i=0;i<Atoms;i++)
for(k=0;k<3;k++)
{
£i][k])-=ksi*v[i] [k];

}

scaled_frame(v,Atoms);

}
/* */

real CalcTemp()

{

extern double v[Atoms][3];
int i;

real vvsum;

vvsum = 0;

for (i = 0; i<Atoms; i ++)

vvsum+=8qr(v[i][0])+Sqr(v[i][1])+Sar(v[i][2]);

vvsum/=(3.0¥kb*Atoms);

return(vvsum);

#include ”initdata.h”

#include ”functions.h”

void corrector()

{

extern double r[Atoms]|[3];
extern double v[Atoms][3];

extern double f[Atoms][3];

APPENDIX E. COMPUTER PROGRAMS

249

extern double f1[Atoms][3];
extern double f2[Atoms][3];
extern double r1[Atoms][3];

extern double v1[Atoms]|[3];

double cr[]={3.0,10.0,-1.0};
double ¢v[]={7.0,6.0,-1.0};
double div=24.0;

int i,k;

for (i=0;i< Atoms;i++)
for(k=0;k<3;k++)
{
vfi] (k] =r1[i] [k] +dt*v1[i] [k]+
(dt*dt/div)* (cr[0]*£[i] [k]4-cr[1]*£1[i] [k] +cr[2]*F2[i] [K]);

v[i][k]=(r[i] [k]-r1[i] [k]) /dt +
(dt/div)*(cv[0]*f[i][k] + ev[1]*F1[i][k] + ev[2]*£2[i][k]);

if(r[i] [K] > 1.0) r[i][k]-=1.0;
else if(r[i][k] < 0.0) r[i][k]+=1.0;
}
}
/* -*/
void predictorP (hvec,hdvec,hddvec)

double hvec[9],hdvec[9],hddvec[9];
{
extern double hlvec[9],hd1vec[9],hdd1vec[9],hdd2vec[9];
double cr[]={19.0,-10.0,3.0};
double cv[]={27.0,-22.0,7.0};
double div=24.0;

int i;

for(i=0;i<9;i++)
{
hlvec[i]=hvecli];
hd1lvec[i]=hdvecl[i];
hvecli]+=dt*hdvec[i]+
(dt*dt/div)*(cr[0]*hddvec[i]4cr[1]*hdd1veci]4cr[2]*hdd2vec]i]);

hdvec[i]=(hvec[i]-hlvec[i]) /dt +
(dt/div)*(cv[0]*hddvec[i]+cv[1]*hdd1vec[i]4+cv[2]*hdd2vec[i]);
hdd2vec[i]=hdd1lvecl[i];
hdd1lvec[i]=hddvecli];
}
}
/* */
void correctorP (hvec,hdvec,hddvec)

double hvec[9],hdvec[9],hddvec[9];

APPENDIX E. COMPUTER PROGRAMS

250

{ extern double hlvec[9],hdlvec[9],hdd1lvec[9],hdd2vec[9];
double cr[]={3.0,10.0,-1.0};
double cv[]={7.0,6.0,-1.0};
double div=24.0;

int i;
for(i=0;i<9;i++)
{
hvecl[i]=h1lvec[i]+dt*hd1vec[i]+
(dt*dt/div)*(cr[0]*hddvec[i]4cr[1]*hdd1veci]4cr[2]*hdd2vec(i]);
hdvec[i]=(hvec][i]-hlvec[i]) /dt+

(dt/div)*(cv[0]*hddvec[i]+cv[1]*hdd 1vec[i]+cv[2]*hdd2vec]i]);

}

/* -*/
void predictor()

{

extern double r[Atoms][3];

extern double v[Atoms][3];
extern double f[Atoms][3];

extern double f1[Atoms][3];
extern double f2[Atoms][3];
extern double r1[Atoms][3];

extern double v1[Atoms]|[3];

double cr[]={19.0,-10.0,3.0};
double cv[]={27.0,-22.0,7.0};
double div=24.0;

int ik;
for(i=0;i<Atoms;i++)
for(k=0;k<3;k++)
{
r1[i] [k]=r(i] [k];
v[i][k]=vl[i] [K];
r[i][k]+=dt*v[i][k] 4+ (dt*dt/div)*
(cr[0)*f[i] [k]+cr [1]*F1[i] [k]+cr [2] *£2[i] [K]);

Vi) k)= (x[i] (k]-r1 5] K]) /dt +
(dt /div)* (ev[0] *#[i] (k] +ev[1]*F1[i] (k] +ev[2) *£2[i][k]):
£211] k] =£1[i] [];
1[5 k] =£[1] [
)

Rk KK Rk ok koK KR KRRk ok R R KR Rk ook

rdf.c - description

begin : Mon Jan 13 2003

email : phsorkin@technion.ac.il

APPENDIX E. COMPUTER PROGRAMS 251

This part of software is based on copyrighted material, reproduced from the book
”The Art of Molecular Dynamics Simulation” by D. C. Rapaport,
published by Cambridge University Press (1995).

void EvalRdf (vector_int histRdf, rdf_list *rdf, int mode);

real Min3R (real x1, real x2, real x3);

real Max3R (real x1, real x2, real x3);

void PrintRdf (char *fn, vector histRdf, rdf_list *rdf);

int RestoreRdfBackUp(char *fn, vector histRdf, rdf_list *pt);

void BackUpRdf(char *fn, vector histRdf, rdflist *pt);
***/
#include ”initdata.h”

#include ”functions.h”

void EvalRdf (vector histRdf, rdf_list *rdf, int mode)
{
extern double r[Atoms][3];

extern mat_mt h;

real rangeRdf;

real deltaR, normFac, rr, rrRange;
int j1, j2, m;

vector rdis;

mat_mt G, htr;

rdis=AllocVecR(NDIM);

/*Build G*/
transpose(h,htr);
mat_mul(htr,h,G);

if (mode== 0)
{
if(RestoreRdfBackUp(”rdf.back” histRdf,rdf))
{
/*Initialization*/
for (m = 0; m < sizeHistRdf; m +4) histRdf[m] = 0.;
rdf->countRdf=0;
rdf->deltaRdf=0.;

/*Calculate number of measurements*/
rdf->countRdf ++;;
rangeRdf=Min3R(h[0][0]/2,h[1][1]/2,h[2][2]/2) ;

rrRange = Sqr (rangeRdf);
deltaR = rangeRdf / sizeHistRdf;

APPENDIX E. COMPUTER PROGRAMS

252

rdf->deltaRdf+=deltaR;

for (j1 = 0; j1 < Atoms - 1; j1 ++4) {
for (j2 = j1 + 1; j2 < Atoms; j2 ++) {

/*Calculate the distance between the pair of atoms (j1,j2) */
rdis[0]=1(j1)[0]-x[2] [0];
if(rdis[0] >0.5)rdis[0]-=1.;
else if(rdis[0]<-0.5)rdis[0]+=1.;

rdis[1]=r[j1][1]-r[i2][1];
if(rdis[1]>0.5)rdis[1]-=1.;
else if(rdis[1]<-0.5)rdis[1]+=1.;

rdis[2)=1[j1][2]+[12][2];
if(rdis[2]>0.5)rdis[2]-=1.;
else if(rdis[2]<-0.5)rdis[2]4+=1.;

rr=rdis[0]*G[0][0] *rdis[0] +rdis[0]*G[0][1]*rdis[1] +rdis[0]*G[0][2]*rdis[2];
rr+=rdis[1]*¥*G[1][0] *rdis[0] +rdis[1]*G[1][1]*rdis[1] +rdis[1]*G[1][2]*rdis[2];
rr+=rdis[2]*G[2][0]*rdis[0] +rdis[2]*G[2][1]*rdis[1] +rdis[2]*G[2][2]*rdis[2];

/*Check the range and add*/

if (rr < rrRange) {
m = (int) (sqrt (rr) / deltaR) ;
histRdf[m]= histRdf[m] + 1.;

+}

if(mode==2)

/*Calculate the rdf functions */

normFac = det(h)/ (2. *pi * pow (deltaR, 3.) * Atoms * Atoms*rdf->countRdf);
for (m = 0; m < sizeHistRdf; m ++)

histRdf[m] = histRdf[m] * normFac / Sqr (m + 0.5);

PrintRdf ("rdf.txt”, histRdf, rdf);

} /** output *¥*/

FreeVecR(rdis);

}

AR A R R SRR SRR R SR
real Min3R (real x1, real x2, real x3)

{
if (x1 < x2 && x1 < x3) return (x1);
else if (x2 < x1 && x2 < x3) return (x2);

else return (x3);

APPENDIX E. COMPUTER PROGRAMS

253

}

Rk R KRRk kR KR KRRk ok ok /

real Max3R (real x1, real x2, real x3)

{
if (x1 > x2 && x1 > x3) return (x1);
else if (x2 > x1 && x2 > x3) return (x2);
else return (x3);

}

[R R R SRR SRR R R SRR R/

void PrintRdf (char *fn, vector histRdf, rdflist *rdf)

{
int m;
real rBin;
FILE *fd;
if((fd=fopen(fn,”w”))!=NULL)
{
if(rdf->countRdf)
{
for (m = 0; m <sizeHistRdf; m ++)
{
rBin = (m+ 0.5) *(rdf->deltaRdf/rdf->countRdf) ;
fprintf (fd, ”%8.4f %8.4f \n”, rBin, histRdf[m]);
}
}
fclose(fd);
}
else
{
fprintf(stderr,”I can’t open the file *%s’”,fn);
exit(0);
}
}

int RestoreRdfBackUp(char *fn, vector histRdf, rdf_list *pt)
{
int m;

FILE *fd;

if((fd=fopen(fn,”r”))!=NULL)
{
for (m = 0; m <sizeHistRdf; m ++)
fscanf (fd, ”%1f \n”, & histRdf[m]);

fscanf (fd, ”%1lf \n”, & pt->deltaRdf);
fscanf (fd, ”%ld \n”, & pt->countRdf);
fclose(fd);

return(0);

}

APPENDIX E. COMPUTER PROGRAMS

254

else
{
fprintf(stderr,” \n I can’t open the file *%s’: Initialization of rdf ”,fn);
return(1);
¥
¥

JRRRR R R R R R
void BackUpRdf(char *fn, vector histRdf, rdf_list *pt)

{
int m;

FILE *fd;

if((fd=fopen(fn,”w”))!=NULL)
{
for (m = 0; m <sizeHistRdf; m ++)
fprintf (fd, ?%If \n”, histRdf[m]);

fprintf (fd, ?%1f \n”, pt->deltaRdf);

fprintf (fd, "%ld \n”, pt->countRdf);
fclose(fd);

else

fprintf(stderr,”I can’t open the file *%s’”,fn);

#include <math.h>

#include ”initdata.h”

#include ”functions.h”

/* vector r contains scaled position of the
atoms, to get the real dis between tow atoms

we use : dis"2 = transpose(si-sj)*G*(si-sj).*/

void scaled_frame(vec,n)
double vec[][3];

int n;

extern mat_mt h;

mat_mt invh;

APPENDIX E. COMPUTER PROGRAMS 255

invert(h,invh); /*invert h*/
mat_vec_mul(invh,vec,vec,n);

}

/* */

void real_frame(vec,n)

double vec(][3];
int n;

{

extern mat_mt h;

mat_vec_mul(h,vec,vec,n);

ord.c - description

#include ”initdata.h”
#include ”functions.h”

#define sizeHistFFT 600
void EvalOrd(inputlist *data)
{

extern double r[Atoms][3];
extern mat_mt h;

int i,j,k;

matrix_int layer;

vector order;

real delta, height, klat;

real cossum,sinsum;

//int num;

order=AllocVecR(size);
layer=AllocMatI(size, Atoms) ;

/*Initialization*/
for(j=0;j<size;j++)
for(i=0;i<Atoms;i++)
layer(j] [i]=0;

real_frame(r,Atoms);

/*Distribute Atoms between layers*/
height=pow(det(h),1./3.);
delta=height /size;

for(i=0;i<Atoms;i++)
{
j=(int)(r[i][2]/delta+0.5);

if (j>size-1){ j:size—l;}
if (7<0){ j=0;}
tayer(3][0]++;

layer[j] layer[j][0]]=i;

APPENDIX E. COMPUTER PROGRAMS 256

/* Number of atoms
num=0;
for(i=0;i<size;i++)
{

num+=layer[i] [0];

}

fprintf(stderr,” Atoms=%d” ,num); */

/*Calculate Order in each layer*/

klat=2.0*pi*size/height;
for(j=0;j<size;j++)

{

cossum=0.;

sinsum =0.;

for (k=1;k<=layer[j][0];k++)
{

i=layer[j][k];
cossum-+=cos(klat*r[i][2]);
sinsum+=sin(klat*r[i][2]);
/A

order[j]=sqrt(cossum*cossum+sinsum*sinsum) /layer[j][0];

Y /1

SaveOrdDis(order,data);
scaled_frame(r,Atoms);
FreeMatI(layer ,size);
FreeVecR (order);

}

JREE R R |
void CalcOrder()
{

extern mat_mt h ;

extern double r[Atoms][3],0p;

int i;
double klat;
double cossum=0.0;

double sinsum=0.0;

klat=2.0*pi*size/pow(det(h),(1./3.));

real_frame(r,Atoms);
cossum=sinsum=0.0;

for(i=0;i<Atoms;i++)
{

APPENDIX E. COMPUTER PROGRAMS 257

cossum+=cos(klat*r[i][0]);
sinsum+=sin(klat*r[i][0]);

}

op=sqrt(cossum*cossum+sinsum*sinsum)/Atoms;

scaled_frame(r,Atoms);

}

JREE R
void SaveOrdDis(vector order, input_ist *data)
{

int m;

char fn[40];

FILE *fd;

m=0;

while(m<=size)

{
m;
sprintf(fn,” ord_lay_%d.txt” ,m);
if((fd=fopen(fn,”a”))!=NULL)
{
fprintf (fd, ”%ld %1f \n”, data->Step,order[m]);
fclose(fd);
}
else
{
fprintf(stderr,”I can’t open the file *%s’”,fn);
}
¥
}

JRERRAA AR AR |
void CalcOrderFFT (input_list *input)

{

extern mat_mt h ;

extern double r[Atoms][3];

int i,k;

double a_0,klat;
double cossum=0.;
double sinsum=0.;
real delta;

vector order;

order=AllocVecR (sizeHistFFT);

a_0=pow(det(h),(1./3.))/size;

APPENDIX E. COMPUTER PROGRAMS

258

delta=3.*a_0/sizeHistFFT;
real_frame(r,Atoms);

for(k=1;k<=sizeHistFFT ;k++)
{

cossum=sinsum=0.;
klat=2%pi/(k*delta);

for(i=0;i<Atoms;i++)
{
cossum+=cos(klat*r[i][2]);

sinsum+=sin(klat*r[i][2]);

order[k-1]=sqrt(cossum*cossum+sinsum*sinsum)/Atoms;

}

scaled_frame(r,Atoms);
SaveOrdFFT (order, delta, input);
FreeVecR(order);

}

AR A A A R |
void SaveOrdFFT(vector order, real delta, input_list *input)
{ FILE *fd;

int m=0;

char fn[50];

sprintf(fn,” fft_%d.txt” ,input->Step);
if((fd=fopen(fn,”w”))!=NULL)

{

for(m=0;m<sizeHist FFT;m++)

fprintf (fd, ”%If %1f \n”, (m+1)*delta,order[m]);

fclose(fd);
}

else

fprintf(stderr,”I can’t open the file *%s’”,fn);

#include <stdio.h>
#include <stdlib.h>

APPENDIX E. COMPUTER PROGRAMS 259

#include ”initdata.h”
#include ”functions.h”
void Aviz(char *fn)

{

extern double r[Atoms][3];
int i;

FILE * fd;

if((fd=fopen(fn,”w”))!=NULL)
{

fprintf(fd,” %d \n”,Atoms);

fprintf(fd,” ##Cijkl simulations with Defects\n”);
for (i=0;i<Atoms-Interstitials;i+-+)

{

fprintf(fd,” Va %1f %I1f %If \n”, r[i][0],r[i][1],r[i][2]);

¥

for (i=Atoms-Interstitials;i<Atoms;i++)
fprintf(fd,” Cu %lIf %If %If \n”, r[i][0],r[i][1],r[i][2]);
fclose(fd);

else

fprintf(stderr,”I can’t open the file *%s’”,fn);
exit(0);

}

}

IIT110077700777777170777777777777777771717177777717777771717171777777111717777171717177717117
#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include ”initdata.h”

#include ”functions.h”

int MODE,LAST_MODE;

long N_meas_stepl,N_meas_step2,step_avizl,step_aviz2;

double r[Atoms][3];
double v[Atoms][3];
double f[Atoms][3];
double f1[Atoms][3];
double f2[Atoms][3];

APPENDIX E. COMPUTER PROGRAMS 260

double r1[Atoms][3];
double v1[Atoms][3];

int nei[Atoms][300];
double nei_data[Atoms][200][5];

double n[Atoms];

double temp;

double s_temp,s_press;
double potE,kinE,virsum;
double op;

mat._mt pten;

mat_-mt h,hdot,hddot;
mat_mt h_zero;

mat_mt e;

mat_mt e_avg;

double ee_avg[3][3][3][3];

double hlvec[9],hd1lvec[9],hdd1lvec[9],hdd2vec[9];
double ksi;

double vol,l;
//double tau2,beta;
long step;

long stepO;

long step-e;

int SL[Atoms][7];

int main()
{
int lattice_measurements=1;
long i,j;
double lat;
char fn[30];

/*Let’s analyze it*/
long *t;
double *x,*y,*z,A[2][2],B[2];
double Det,Dett,kx,ky,lx;
double err,av;
int counter;

FILE *fd;

//Let’s analyze the obtained results

APPENDIX E. COMPUTER PROGRAMS 261

/*Read files and calculate number of elements*/

sprintf(fn,”h_11_22_33.txt”);
step =202000;

counter=(int)1.*step/N_neigh_step;

fprintf(stderr,” \n Number of lines in %s = %ld \n”,fn,counter);

t=(long *)malloc(counter*sizeof(long));
x=(double *)malloc(counter*sizeof(double));
y=(double *)malloc(counter*sizeof(double));

z=(double *)malloc(counter*sizeof(double));

counter=0;

if(fd=fopen(fn,”r”))

{

while(!feof(fd))

{

fscanf(fd,” %ld %I1f %1f %If \n 7,
&t[counter],&x[counter],&y[counter],&z[counter]);
//fprintf(stderr,” %1d %If %If %If \n ”,
//t[counter],x[counter],y[counter],z[counter]);
counter+-+;

}

fprintf(stderr,” \n Hello, I've found N=%d elements”,counter);
fclose(fd);

}

else

{

fprintf(stderr,”\n \t Can not open file *%s’ ”,fn);
exit(0);

}

Al0][0]=A[1][0]=A[0][1]=A[1][1]=0.;
B[0]=B[1]=0.0;

//A0][0]=2;A[0][1]=1.2;A[1][1]=0.2;A[1][0]=2;B[0] =1;B[1]=0.0;

err=0.0;
j=(int)floor(0.4*counter+0.5);

fprintf(stderr,” \n err=%If av*av=%d counter=%d j=%ld” err,(int)floor(counter*0.2),counter,j);

for (i=j;i<counter;i++)
{

A[0][0]+=t[i]*¢[i];
A][0]+=t[i;

B0]+=ti]*x[il;
B1]+=x[il;

err+= x[i]*x[i];

APPENDIX E. COMPUTER PROGRAMS 262

counter-=j;
Alo][1]=A[1][0};

A[1][1]=counter;

Det=determ (A [0][0],A[1][0],A[0][1],A[1][1]);
Dett=determ (B[0],B[1],A[0][1],A[1][1]);
Ix=Dett/Det;

Dett=determ (A[0][0],A[1][0],B[0],B[1]);
kx=Dett/Det;

av=B[1]/counter;
err=err/counter;
fprintf(stderr,” \n err=%If av*av=%lf counter=%d j=%ld” ,err,av*av,counter,j);

err=err-av*av;

fprintf(stderr,”\n \t av=%If err=%]If Ix=%If kx=%If ”,2*av /size,2.*err /size,2*1x /size,2*kx /size);

exit(0);

Rk

// Let’s check if the initial data are determined in selfconsistent way
if(size*size*size/4-(Atoms-Interstitials +Vacancies))
{
fprintf(stderr,”\n \t Check the size or Number of Atoms \n \t ”);
fprintf(stderr,”\n \t You should setup Atoms=%d, for the size=%d \n \t ”,size*size*size/4+Interstitials -Vacancies,size);
exit(0);}

//Defaults values
1=a0*size/2.0;
if(Vacancies)
{lattice_measurements=0;fprintf(stderr,” \n Vacancy Concentration c=%If \%”,Vacancies*1./Atoms);}
if(Interstitials)
{lattice_measurements=0;fprintf(stderr,” \n Self Interstitials Concentration c=%Ilf \%”,Interstitials*1./Atoms);}

if(lattice_measurements)init_lattice();

fprintf(stderr,”\n \t Atoms %d”,Atoms);
fprintf(stderr,”\n \t lattice box length=%g”,1);

get_inform();

APPENDIX E. COMPUTER PROGRAMS 263

if(MODE==0)

{

fprintf(stderr,” \n \t Starting from the beginning ”);
init(1);

step0=0;

¥

else

{

if(MODE==1)

{

fprintf(stderr,” \n \t Continue approaching to the steady state ”);
LAST_MODE=1;

}

else

{

fprintf(stderr,”\n \t Cijkl measurements ”);
LAST_MODE=2;

¥

init(2);
step=stepO0;

}

buildnei_list();
compute_f();
fprintf(stderr,” \n potE=%g virial=%g volume=%g ”,potE,virsum,det(h));

rahman();

if(MODE!=2)
{
for(i=0;i<N_meas_stepl;i++)
{
for(j=0;j<N_neigh_step;j++)
{
step+-+;
predictor();
compute_f();
evalPT();
rahman(h);
predictorP (h,hdot,hddot);
parinello();
correctorP (h,hdot,hddot);

corrector();

buildnei_list();

APPENDIX E. COMPUTER PROGRAMS 264

if(step % step-.EPTVO_meas==0)
{
save_EPTVOh();
if(lattice_measurements)
{
lat=lattice();
fprintf(stderr,” \n a0=%If ” lat);

}

if(step % step_backup == 0.0)
{
save_h();
save_h0();
save_to_file(0);
save_inform();

}

if(step % step_avizl==0)

{

sprintf(fn,” pos_%ld.xyz" ,step);
real_frame(r,Atoms);

Aviz(fn);

scaled _frame(r,Atoms);

}

/*if(step % step_rv_meas==0)save_to_file(step+step0,1); // For the future Fourier Transformation*/

fprintf(stderr,” \n step=%d order=%lf temp=%I{" ,step,op,s_temp);

fprintf(stderr,” \n energy=%If volume=%lf pressure=%If" ,potE+kinE,det(h),s_press);

[111117111111111111711177
real_frame(r,Atoms);
Aviz(”Val.xyz”);system(”aviz -ar Val.xyz &”);

scaled_frame(r,Atoms);

H10111077110717711177711777

if(N_meas_step2) {MODE=2;LAST_MODE=1;}
save_h();

save_h0();

save_to_file(0);

save_inform();

} // if MODE !=2

[1017077771707771771771177711177777711711717711711711771711117111117111177

for(i=0;i<N_meas_step2;i++)

APPENDIX E. COMPUTER PROGRAMS 265

{
for(j=0;j<N_neigh_step;j++)
{
step+-+;
predictor();
compute_f();
evalPT();
rahman(h);
predictorP (h,hdot,hddot);
parinello();
correctorP (h,hdot,hddot);
compc();
corrector();

}

build meilist();

if(step % step_EPTVO_meas==0)
{
save_EPTVOh();
if(lattice_measurements)
{
lat=lattice();
fprintf(stderr,” \n a0=%If ”,lat);
}
}

if(step % step_backup == 0.0)
{
save_h();
save_h0();
save_to_file(0);
save_inform();
e_ee_backup();

}

if(step % step_aviz2==0)
{
real_frame(r,Atoms);
sprintf(fn,” pos_%ld.xyz" ,step);
Aviz(fn);
scaled_frame(r,Atoms);
¥
fprintf(stderr,” \n step=%d order=%lf temp=%I{" ,step,op,s_temp);

fprintf(stderr,” \n energy=%lf volume=%If pressure=%1f" ,potE+kinE,det(h),spress);

}
LI1017007771707711777771777171111777117717111711111111111771117111117171

// Now, save it

APPENDIX E. COMPUTER PROGRAMS 266

save_h0();
save_h();
save_to_file(0);
save_inform();
e_ee_backup();
// And visualize it
real_frame(r,Atoms);
real_frame(v,Atoms);
// Now, save velocities and coordinates for NVT
write_rv();
// And visualize it
if(N_meas_step2){Aviz(” Va2.xyz”);system (" aviz -ar Va2.xyz &”);}

fprintf(stderr,” \n\t*******¥* The Happy End *¥¥s¥srkkksttk nr),

return(0);

JRAR R ROk |
double determ(double x00,double x01,double x10,double x11)
{return(x00*x11-x01*x10); }

References

[1] F. Lindemann, Z.Phys, 11, 609, (1910)

2] Roberts and Miller, Heat and Thermodynamics,

Blackie and Son, London, 1960
[3] J.J.Gilvary, Phys. Rev., 102, 308, (1956)
[4] P. Debye, Ann. Physik, 49, 49, (1914)
[5] J. N. Shapiro, Phys. Rev, 18, 3982, (1970)

6] Z. H. Jin, P. Gumbsch, K. Lu, and E. Ma, Phys. Rev. Lett., 87, 055703,
(2001)

[7] L. H. Cohen, W. Klement and G.C. Kennedy, Phys. Rev., 145, 519, (1966)
[8] Y. Ida, Phys. Rev., 187, 951, (1969)
[9] M. Born, Journ. of Chem. Phys., 7, 591, (1939)

[10] L. Hunter, S. Siegel.Phys. Rev., 61, 84 (1942)

[11] Y. P. Varishni, Phys. Rev. B, 2, 3953, (1970)

[12] R. M. Niklow and A. A. Young, Phys. Rev., 129, 1936, (1963)

267

REFERENCES 268

[13] A. W. Lawson, Phys. Rev., 48, 85, (1950)

[14] J. Wang, S.Yip, S. R. Phillpot and D. Wolf, Phys. Rev. Lett., 71, 4182,
(1993)

[15] J.Wang, J. Li, and S. Yip, Phys. Rev. B, 52, 12627, (1995)
[16] J.L.Tallon, Phyl. Mag.A, 39, 151, (1978)

[17] A. Kanigel, J. Adler and E. Polturak, International Journal of Modern
Physics C, 12, 727, (2001)

[18] J. Wang, J. Li, S. Yip and D. Wolf, Physica A, 240, 356, (1997).

[19] A. R. Ubbeldone, Melting and Crystal Structure,
Clarendon press, Oxfrord, 1965

[20] T.A. Weber and F.H. Stillinger, Journ. of Chem. Phys., 81, 5095, (1984)
[21] A. Granato, Phys. Rev. Lett., 68, 974, (1992)

[22] Tammann, Z. Phys. Chem. Stoechiom. Verwandtschalft, 68, 205, (1910)
[23] J. Frenkel and J.F. Van der Veen, Phys. Rev. B, 34, 7506, (1986)

[24] H. Hakkinen and U. Landmann, Phys. Rev. Lett., 71, 1023, (1993)

[25] D. M. Zhu and J.G. Dash, Phys. Rev. Lett., 57, 2959, (1986)

[26] J. Frenkel and J. F. Van der Veen, Phys. Rev. Lett., 54, 134, (1986)

[27] J. F. van der Veen, Phase Transitions in Surface Films 2,

ed. H. Traub, Plenum Press, New York, 1991

REFERENCES 269

28] W. Lipowsky, Phys. Rev. Lett, 49, 1575, (1982)
[29] W. Lipowsky and W. Speth, Phys. Rev. B, 28, 3983, (1983)

[30] W. Lipowsky, U. Breuer, K. C. Prince, and H. P. Bonzel, Phys. Rev. Lett.,
62, 913, (1989)

[31] O. Tomagnini, F. Ercolessi, S. Iarlori, F.D. Di Tolla and E. Tosatti,
Phys. Rev. Lett., 76, 1118, (1996)

[32] F.D. Tolla, F. Ercolessi, S. Iarlori, Surf. Sci., 211/212, 55, (1989)

[33] S. Iarlori, P. Carnevali, F. Ercolessi, and E. Tosatti, Surf. Sci.211/212, 75
(1989).

[34] O. M. Magnussen, Phys. Rev. Lett., 74, 4444, (1998)

[35] L. Rice, J. Brawn, S. Pott, Chem. Phys., 87, 3069, (1987)

[36] A. Traynov and E.Tossati, Phys. Rev. B, 38, 6961, (1989)

[37] A.S. Levi and E.Tossati, Surf. Sci., 189/196, 641, (1990)

[38] J. Krim, J. P. Coulomb and J. Bouzidi, Phys. Rev. Lett., 58, 583, (1987)
[39] C. S. Jayanti et al., Phys. Rev. B, 31, 3456, (1985)

[40] R. Ohnesorge, H. Lowen, and H. Wagner, Phys. Rev. E, 50, 4801, (1994)

[41] J. P. Hansen and 1. R. McDonald, Theory of Simple Liquids,
2nd ed., Academic, London, 1986

[42] M. Finnis and J. Sinclair, Philos., Mag. A, 56, 11, (1987)

REFERENCES 270

[43] S. Foiles, M. Baskes, and M. Daw, Phys. Rev. B, 33, 7983, (1986)

[44] M. Finnis and J. Sinclair, Philos., Mag. A, 50, 49, (1984)

[45] K. Jacobsen, J. Norskov, and M. Puska, Phys. Rev. B, 35, 7423, (1987)
[46] F. Ercolessi and J. Adams, Europhys. Lett., 26(8), 583, (1994)

[47] F. Ducastelle, Computer simultions in material science,

Kluwer, Doredrect, 1991

[48] A. Sutton, Electronic Structure of Materials,

Clarendon Press, Oxford, 1993
[49] S. Foiles, M. Baskes, and M. Daw, Phys. Rev. B, 33, 7983, (1986)
[50] P. Bujard, PhD Thesis , University of Geneva, 1982
[51] C. Kittel, Introduction to Solid State Physics, 5th edition, NY, Willey, 1983

[52] R. Rebonato, D. O. Welch, R. D. Hatcher and J. C. Billelo, Phi-
los., Mag. A, 55, 655, (1987)

[53] M. Marchese, G. Jacucci and C. P. Flynn, Philos. Mag. Lett., 57, 25, (1988)

[54] D. Rapaport, The art of MD simulations,

Cambridge, University Press, 1991
[55] H. Haile, MD simulation elementary methods, Willey, 1989

[56] Gear, Numerical initial value problems in ordinary differential equations,

Prentice Hall, EngleWood, 1973

REFERENCES 271

[57] J. Ray and A. Rahman, J. Chem. Phys., 80 , 4423, (1984)
[58] J. Ray and A. Rahman, J. Chem. Phys., 82 | 4243, (1985)

[59] G. Sutmann, Classical Molecular Dynamics,

http://www.fz-juelich.de/nic-series/volumel0
[60] B. Ziff, Computers in Physics, 12, 385, (1998)
[61] S. Nose, J. Chem. Phys., 81, 511, (1984)
[62] G. Sundman, Celestial Mech., 11, 469, (1985)
[63] W. G. Hoover, Phys. Rev. A, 31, 1695, (1985)

[64] D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algo-

rithms to Applications Academic Press, 1996

[65] W. G. Hoover, Time Reversibility, Computer Simulation and Chaos,
World Scientific, 1999

[66] M. Parinello and A. Rahman, Phys. Rev. Lett., 45, 1196, (1980)

[67] A. Kanigel, The Role of Defects in the Melting Transition,
Research Thesis, Technion, 1999

[68] M. Born and H. Huang, Dynamical Theory of Crystal Lattices,
Clarendon Press, 1988

[69] 1. Yukito, Intern. Journ. Of Mod. Physics C, 12, No.5, 623, (2001)

[70] M. Lubartsev and V. Vorontzov, J. Chem. Phys., 96, 1776, (1992)

REFERENCES 272

[71] E. Marinary, R. Parisi, Europhys. Lett., 69, 2292, (1992)

[72] J. Adler, A. Hashibon, N. Schreiber, A. Sorkin, S. Sorkin and G. Wagner,
Comp. Phys. Comm., 12, No.5, 623, (2002)

http://phycomp.technion.ac.il/~aviz/index.html
[73] G.J. Ackland and R. Thefford, Phil. Mag. A, 50, 313, 1987

[74] Handbook of Chemistry and Physics, 81’st edition 2000-2001 year, D. R.
Lide, editor in chief, CRC Press

[75] P. H. Dederichs, C. Lehmann, and T. Scholz, Phys. Rev. Lett., 31, 1130,
(1973)

[76] J. Frenkel, Kinetic Theory of Liquids, Clarendon, Oxford, (1946)

[77] J. F. Lutchko, D. Wolf, S. R. Phillipot and S. Yip, Phys. Rev. B, 40, 2841,
(1989)

[78] P. Stolz, J. K. Norskov, and U. Landman, Phys. Rev. Lett., 61, 440, (1988)
[79] E. T. Chen, R. N. Barnett, and U. Landman, Phys. Rev. B, 41, 439, (1990)
[80] H. Hakkinen, and M. Manninen, Phys. Rev. B, 46, 1752, (1992)
[81] A. A. Maradudin and P. A. Flinn, Phys. Rev., 129, 2529, (1963)

[82] M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids,
Clarendon Press, Oxford, 1987

[83] H. Hakinen and M.Mannine, Phys. Rev. B, 46, 1690, (1991)

[84] P. Carnevali, E. Ercollesi and E. Tossati, Phys. Rev. B, 36, 6701, (1987)

REFERENCES 273

[85] K. D. Stock and E.Menzil, Surf. Sci., 61, 272, (1976)

[86] U. Landmann and R. N. Barnett, Phys. Rev. Lett., 45, 2032, (1980)

[87] U. Landmann and R. N. Barnett, Phys. Rev. B, 37, 4637, (1988)

[88] B. Bilgramm, Phys. Rep., 153, 1, (1983)

[89] E. T. Chen, R. N. Barnett, and U. Landman, Phys. Rev. B., 40, 924, (1989)

[90] D. Wolf, P. R. Okamoto, S. Yip, J. F. Lutsko, and M. Kluge, J. Mater.
Res, 5, 286, (1990)

91] J. Q. Broughton, G. H. Gilmer, and K. A. Jackson, Phys. Rev.
Lett., 49, 1496, (1982)

[92] E. Polturak, private communication
[93] J. Daeges, H. Geiter and J. H. Peperezko, Phys. Lett. A, 119, 79, (1986)

[94] W. K. Bucton, N. Carbera and F. C. Frank, Philos. Trans. R. Soc. London,
243, 299, (1951)

[95] G. Grimvall and S. Sjodin, Physica Scripta, 10, 340, (1974)
[96] S. Nose, Molec. Phys. , 52, 255, (1984)
[97] H. Lowen, Phys. Rep, 237, 249, (1994)

[98] A. Hashibon, “Atomistic study of structural correlations at a model

solid/liquid metal interface”, Research Thesis, Technion,(2002)

[99] A. Hashibon, J. Adler, M. Finnis and W. D. Kaplan, Computational Ma-
terials Science, (2002) 24, 443,(2001)

REFERENCES 274

[100] B. Lee, M. I. Baskes, H. Kim and Y. K. Cho, Phys. Rev.
B, 64, 184102, (2001)

(12017 2’907 1327 ,8°° 177121 024D

192710 11250

12077 AP0 1327 ,0°°NTIR1 0%72AD

PN Sy NN

ININ N2APS MWITN OV SPoN N0 = DWO
DOYTNIY 00NN

NP o9

17770 11250

IR MNONIV NIN — PIDVN VIDD YIN

2005 92NLOYD NN n'ovn 5PN

20219 PN '9199) DTN NINY 1T NIITNA NWYI jPNN 2Y NN

NP9 NLNPAI

DTN 10N

NONPA PNV DNIN AN TN MINY "IT IMPNINA NYYI IPNNN
70219 PN 9119 DTN NINY 'IT0 MTIND 2N JIDVA NP9
TUNI NI DINIZAD DY 0 MINY 2 YN ,ITIONN DNIITN DY
12PO MRNIND WK 2 NIV 290 YYD DY oY) MNONYNN IR
INND
Linux Cluster 19 DXVNN DY TIAYY 2 IWORY DY X"ANNY NTIN N
MIPY 53 DNNY JY 172720 XWINS) S0 111D THPNKI MTIND 21872
72N ,POVDIN PNYIND NTIN NN .DWINN TPNVIAPNI NOWIN
NPRODA DNYN DY T I OPP TPNY ,IM N NYN ONTN

IPYIDN MNYN DY O2AYNHN

NTIN TPODIN NPNNN JY INIY PINN YIPNY PIDONT DTN N

MNONYNI

07371y 190

XV n"93IX2 ¥PN
1 0°omd nnwA
3 nvIom nonn 1
3 mTpn 11
S e YTYO PIWNMP 12
8 M2 VNP 13
12 . 97D IN-1TD 72¥0 Yy MODINN NONNN NYINRN 14
14 DYNTIPI DD HY MODINN NONNN NPNRN 15
17 . (MY DN DM Y MODINN NINNN IPINRN - 1.6
19 nonYI-190 70t 2
19 mTpn 21
21 TPNOYN NONN YV DNIVONS DOTM 2.2
24 L. INTIZ DY TPNRNN DY DDIANY TPHOVWN NONN 9T 2.3
27 MOV LPPON 24
30 TPNHOWN NONN DY IPNHPOIN ST 25
360 TPHOYN NINM TPIVNPNN MIND NV 26

T Q%" 127N

38 NPT MW 3
38 PWPOM NPT 31
B0 L MMON PAN INONION 3.2
B7 NOWN ONIM NONNNN ONIN - 33
48 TN PO TPMNTN DWPPN NNONNDY NPIWN MO 34
52 MNXNY NPV 35
53 NN MNSHN NIITH - 36
56 NIRXIN N0 79N 4
56 e PN IO PN TOND 4.1
57 ... IONTN DT W) DV NN NNONN DY Ppnn - 4.2
62 DPNTNPI DN TN 19NN 4.3
74 DPVOONN DWVAP DY interstitials IVOYD 4.4
81 D»VOINN DYIAP DY vacancies YWD 4.5
83 NIRYIN NP T-1990 73903 5
83 POBN IOV TPPPT-ININ NONN - 5.1
B4 DTN NI NONTNN NN 5.2
85 DWW NI 7PN PONN 5.3
B8 TIRPT-IINN NINNN NN 54
9 MNPNN MDANN PN 55
100 . o 970N IONIY PO 56
103 .. TPTON-YTN TPIONTIN NNDONN TPSPNY - 5.7
107 NI MTPN 5.8
110 . o YN DY MIAOYN PPN 59

114 ... D»NLYN DM DY TN NINIINY MIAOWN DWIPN 510

N Q%" 127N

125 mIpoRI DI 6
131 MW 7702 NIORIXINDNT NIRIIWA N2V [IPON-"12% NV X
134 9297-073 5 Yy oW1 noY 2
137 ATAT MTpn WN A
141 (GIPDIVITR-DIMITR) DYO1wM 1A% T
147 awnn NN 1
266 mMMpn NP

v ¥R

11

15

18

Q7R NS

YA YTNASPNG TDY92 123D 2 1) YNYI NPT P> 109 1) NPV
............. IYNOIYNDIN 1) NPOTHNT 2 92 99 NPPANID WO
WNOAYNDID NIPAND VA GYGVIN WKIIYNDID NPPAND MYNIID W
........... (591 1Y DI ,19NY NNIADIND YOI NN MDA
-12) PNADINK TV 1) TTNIYAIND IPATIVIYT WO 1) NPIATPIANDN 3
NIV 002-02 VYP PIINDT PR 2)aC T/T,, = 0.79 92 PO
-55209(POTAYAI NNADIHND? MV PN IPITYIT DTA9) WINYA(
NYAZ YN I GNNNDT VTN DYR 9 1N OTVP HNITYT Wayn N
MY VPP AWINT NOTOYI) 711 NN 781 412,912 VP PVINDT
............. [6] 1Y DY WOINATIMNY WAYN NN 3T717) 1)
....... 1011 1y DY, 999 NP0 WO ¥aM Oy ¥) NPADYIN WO

1611 922910 G\PYIAN VIV YONDIN Y2910 VPP C7 1) NPADYIN O
DYPYPINDY D299 19 GIPNYVT WD P2 NPV TNYT 9T
Y DY . NOTNIAYY 12)2990Y 71192 12)A99-2910 19 M2 MLIN ,NINJIN

YT SN IO 1) NPT 2 92 VYT 1) YNYI MR P 0
1120 W OWR ¢t = T'/T,, PYNOIYNDID 9PN YR DPAIVOIYT

.......................... AT WD 2 P NPOATHOY

11

12

13

14

15

16

17

18

! 0"1°R NPWY
220 . MNTRNOD YPIAN-TPNDY N2 TPNDI-TPOIN 0 2.1
260 L, 1820 1Y DWR ,DAYNN A0 2.2
T < DWY MOTAWNI WA 5§ N2 O, 92 M(2) 1ORWI MNDAY-NNY 2.3
260 L, 1820 .y oWt [T
TN 9PV DYPOYTA 1) 1TRYNG TPNDD W09)N WI W9 24
28 L1230 Y DI NN TR0 YPIAN-TPNDD 109 92 GPeasTa)
MTAIYNG HOLL(D2 H111(IO }) NMITWI WP 1O INPAN PIPYAID) 2.5
DY, 90PONDG W) MDA N9IN NN D299UYT G-y 2t
29 L J230
YTAWON 1O 1) NPOTINT 2 G2 GPAYID NYT ITAIYNG 109) PPIVYL 26
S299WYT TT 2 1) 1T H111CMITI DT IV 19923 0 L PPIYINg
1) Y721 1100 MITAI 99219 YOI 91N M7) TTWRMOND? WA TNYOPIT
30 ..., 1230 Y DWY YIRS IQTYIMTIN D299WyT T1t 2
N9 GAN-19-TPNDIY TR TPNDIT-I9-TPYY) 0O 91 MINWI W) 27
320 . 1630 W OWR | T/T,, PYNOINODID GONPYIY 92 PrTa
-DID MMTNMY 109 PPN GNPV YLD FPYDNIND WO) ITINM 2.8
33 1630 1Y DR IPN9IYN)
H011(109 1) YRS MR YTAIWNG 109 1))T/ T, (YTIIMIND WD) 2.9
N 1630 W DWR ,NTAT H001(N2
WILI-IYAO DPE MDA DIVGWG 2 YR 2 98 p(2) 1PN WO 2.10
OWR ¢ = 1 — T/, WNIPNDID IYTNMY 09 92 UYNL NPAIYNO)
2 1040
48 PAPDINYT WYAMIND TIPYN NN 9NT YanPoaoIoyT 31

n Q°171°K NR"WwI
TGV 52NPHAONID] VI YWY MINININ INAITII NPAIATPLIANG TDYP 32

B DPNOTY INY
NYAND 92 MINDIYII WNY) DAYNITYYON 109 1) 1D VPP NP 4.1

58 . T =2500K 92 7’219 2 1119109 W2 GIPOINT 229> NPV

59 ..., 90192 2000 ,7 = 0K 92 D’NNIAN 1) IO TT) 9NV 4.2

59 . D92 0002 ,0012= 91 ONNINIAN IO T7) 4.3

60 .. T = 2450 92 YD°9 130 H,5 1) 990D 920NN 1DV 1) NPOVYI 44

60 . T = 2450 92109 1> H,p }) QOO 220NN -)0) NPIVYY 45
WNIAYNDND 1) NPOTING 92 D)2 0002 VP VIO A NIDNIWN PO 4.6

61 2930 Y29MDYITN MAATNIYIN LYP NIPYAIDYT 1

63 2200 WN9IYNDIN 92 IDH AN IONMD TO920 YL W 4.7
2000 LY DIDAG 2 P> GPIVOIPNOY? 5) NPAAYNMIINYT S N 4.8

Bd K njian]

65 .DYNNIAN DAND T 2 1 D999 - 03 55N - IOND < 011 > 4.9
99> 192 HYPYT IDLP(HVPIGPNAD> NI NPIAYNNINIT DD 1D 4.10

3 YPOMIN

66 2229299191 993 < 110 > 109 1) NPOIYNNINND)T DPYPIND 4.11
219) NPAIYATAYT 1) NPATHNT 2 G2 MNDIYII MNY) WNITNYI 4.12

67 MYNIIYNDID DANNN 92 §922999119)
SAYANYTAYT TINN 9921 1) NPATANT 2 92 MDY MINY) WNITNYD 4.13
19 QIPD W0 gPTNHITAN N2 GG PNPAN NIPYIDYT NP

B8 e UYL NN
- 219 NPAAYIMTNIT YO 1) NPOTHNT 2 92 a MNDIYII 19930 W 4.14

B9 922999191

v Q°171°K NI
-2YANYTAYT OTINN 9P IV) NPOTHNT 2 G2 ¢ IMDIYIAI I WV 4.15
69 PTNITIAN NI G229 - 11 NNPON NIPYAIDYT NP
70 .. A0 NNAD IV 92 YNYIN D299 1V) NAWTN 4.16
71 L PGV NP0 WO 91 DYV 1VIDAG IV) IDN 417
90N W09 91 PYNID H,p W09 1) 9D 220NN IV 1) NPOYI 4,18
74 NPV NPAND
DYN2NIN 1) WNOIYNDID NPAID VD N G9TINN PN N YTOWNRD W 4.19
73 NPT WYIAMIND NPV NN NDRI9)
-D29 2 ,X 1) WN9YNDID NPOND Y09 1I) G9TINND 9N 1) YTINAD IO 4.20
72 J76l My DWW ,qD)92 2731) D)
76 IYN9IYNDD LY C') NPIVYL 4.21
76 YN VP Cyy) NPOVYI 422
MLYIN IO NPAAYIMNTIT DDVAPNN-IDN) LYP C' 1) NPIYI 4.23
77 e WY 09 NN 1D YD
MLYIAN O NPAAYINTNNT JVVIPNIP-ING VDD Cyy ¥) NPOYI 4.24
47 WYV NN 1D YD
79 ..., 2229991910 1) NPAYINYTNNT-INN IV 1) Cyy 1) VTN 4.25
NI29)) ,0041= 92 GOTINN) PPAVINTIYT IV 1Y Cyuy 1) YIINN 4.26
79 e J761 92 MDA . W)
YD TPI) JONDIN VTG VDD C GNINMD 299221 1O) NPLYI 4.27
80 e JP925NIYHT THAIYNAND 1 P
WO NPPIOY X OON) YR 9NAGD)T 179935 VS 1Y C7) TN 4.28
02 9N2990)T 92 G9TIMN AP) NPNNA 1) SR MMTANND)
81 129,761 DI 997N 9P 9NV N9

091K NR*wY

82

82

86
86
87
87
88

89

89

92

93

95

97

702 0032 = 93 QOTIND M) 1) NPOAYANITHYT W0 1) C” 1) YT
702 GPTHIATAN 1) YTINTUD PNPON YR WS NPPIOY , 0042 =
.............. WY VD PN 19 PIPT ML IO DN
7 0032 = 92 GOTINN M) 1) NPAIVIIYTIYT W0 1) Cus 1) YT
702 GPTHATAN 1) YTRINTUD PNPON YR W09 NPPIOY , 0042 =

............ WY IO FPNN 19 PIDY MO IO 99999

NN IV GYIO)T AN 1 HIZIDAG)100(A(PPOAYNINT D9 1N
120 NYPO YV IPIANDPN 19 PNIYIAD MY IV 1) GO9I VI 19
........................ NPAIDIVI YTAIYNA 1) YN)T IV
.................. PPN) ITIWNG Va(001) 109 1) wyno)
......... VN) TN Va(111) 7MOT2) 99217 109 1) WyMo)
.......... PPN N TRYNG Va(011) MITAI 0T 109 ¥) wymo)
..... 292970 YR PN NG 029 Va(111) 109 1) npaTNvam)
.......... . 2200 92 Va(111) M2 ,Va(011),Va(001) 3y 9910910
DYYPINDY W09 1 193029 Va(001) 109 GNYTa MOV WKIIYND)
............... IPNYNIIYNDID PR 92 GIPOAIND(19299
MG (YD .98 DGV Va(011) MOILYNING YOI 1) PYIMDIYII NNY
........ D92 2520 G299)T 123D W 2420 K WNOIYVNDI 92

292 g YTAWON PNDID-19-PD)) 09 1) NPOINAWI 1) WT

4.29

4.30

5.1

5.2
5.3
54
5.5
5.6

5.7

5.8

59

Va(111) Y0 WOTN PIN 19 HDPOASPIYET 7122 WNIIYNDI 1) DPITIN

........................ A1y 35,0192 2240)0I0ag
..................... 2200= 92 Va(001)) 1203 W0
YVASNTINIYI NPT 2 TV NP Va(111) 99T 10 W) worgm
......... MO G2 PYNIIYNDIN GNPYIN 92 YTAIYNG 1LV 19

5.10

5.11

n) 07K NPT

PAINTPININ NPOTION 2 W09 MNP Va(001) 9T 1MW wogm 5.12
98 ... MOAPI G2 ,NYYOIYNDN GYPYIY 93 YTAIWNG 19 19

YANTIMIMN NPSTWON 2 WO NP Va(011) GpTa 1% warn) 5.13
99 MO G2, PIYYOIYNDI GYPYIY 97 YTAYNG 109 19

02 7, PNPON YIOWRPN IO . 2000 92 Va(011) 1) PNMNDIAYII MY 5.14
$10) DTAIYNG)110(2 YOI 1) WIOIPNI 10D QAT 7,

PPOTANY 2 92 Va(011) 1) WA 109 1) MINDIYII MNY) 1) MPYAID) 5.15
102 .. IYNDIYNONNA 1)

-AYNDI GYPYAY 92 Va(001) 1) MDY MNY) 109 1) OMIPO)T = 5.16

-APNODID GNPYAN 92 Va(111) 1) yIMDAYa) ;iny) 109 1) 9MNPDYT = 5.17

-AYNOID PNPYAY 92 Va(011) 1) YINDIYII NY) 0 1) 9INPT 2 5.18

)100(2 }) GIWAT YTAIWNG V96 Y09 ¥) p(r)) NPOTHNY NPONPYIPI DN 5.19
105 o . 0081 92 DVYYVY
N9 I 0 1) p(r)) NPOTINT NPOXPYAPN 5NAY SANPYNDN-NP 5.20
19 GIPNYYYT 52=10 YIYIAY 1O .0022= WNIIYIDID 91)100(2) GIVWID
32=0 YWD YTAWWNG G YOO 19 GINPNYVT 42=10 WIWIADN 10D
106 . . o M) YT IV 10 GIPNYYYT
YTAWNG Y09 ¥ p(ry) NPOTINT NPIXPYIPN JNAY DINPYNDN-)P 5.21
107 . DNMYNOIYNDID G¥PYAN 91 Va(001) ¥y ywWao
109 1 D192 NI) NPTV 2 Y09 1 R, 9MDYTAZIPN WANDG 02 5.22
-9y2) 1) YLD MG’ 109 19) 1029 g8)H111(2) VIVIAD YTAIWNG

108 . . IYNOAYNDIN VPP NOT

2 0°971°R n"w9

92 VNDYI VYD) NPT 2 92 Va(001) 1) G90PTRNIT NP 5.23
109 . . 0022=WN9IYNDD
WNOIYNDID 98 H110(2 }) YIWIAD YTAIYNG W09 1) GOVTNRNT NP 5.24
PPN M- IO 1) YIIWNPNIA 1D2 19) GIPITIWNN 9NN 19
110 . . D, > D, : Q0PTRNT
OO YR IWNIAYNDID 1) DPOTINT 2 G2 QORPTINYT PPNV MAYI N 5.25
-7 ¥ Y09 YR MOAJNTIAT 1102 NN)100(2,)111() MIWIAD YTV
110 e NPTV
21102) WNOIYNDID g8 GPNIYIAD NIPYNPONIN YOS PPN YTNIADY 526
112 AYIVAZ 1TV 99)D2)9 TV 1) NPHIIIZW NYIAP’ TV 19)
-ONI I PNPAN YTNANPT WV 19 MIPIAOYD NTNAPN NIWIAINND 5.27
1132200= 92 Va(011) 72 Va(001) ¥, 0= 92 gAY Noyn
GNIVIAD YTAIYNG DNYTIY N2 9GP YO INPAN VTNAIPN MVIAINND 528
118 WNOIAYNDID 1) NPITHNY 2 92 dyo
319109 NYHYPYT VLI GODIN YO YT ,0081 92)100(2 ¥) VLN 529
115 e MVWAT 1TRIYNG WO N
WNAIYNDD 1) NPATING 2 92123029 Va(001) W09 1) NPAINTT) VWA 5.30
115 e MYAY D)9IN2 WO YR
YOO Y IWNIAVIDID 1) PPOTINT 2 92 Va(111) W09 1) NPONTT) VWA 5.31
117 ... VIV D299UYT PR 999 1O NI YIWIAD D)9INA

09 YR IWNOIYNDID 1) NPOTINT 2 92 H110(2 I 1) NPONTT) WA 5.32

117 ... AMIVAY S299UYT PR 9G¥ 10 NN MWD DPAN
118 .. Va(111) 109 Y1t WN9IYNDID 8 NPSAINTT) MIWATNL DYPYPIND 5.33
119 .. Va(001) Y09 Y1t WN9IYNDID 98 NPOANTT) VIWATNL DYPYPIND 5.34

119 . . Va(011) Y09 ¥ WNOIYNDID 98 BPOAINTT) MIWATNA DVYPIND 5.35

n 091K NR*wY
Y NOND LI AR T, 98 E, 997N 1TAIWNG 1) WNYI) npaavaTa v 5.36
126 ... 1260 1Y DI JAPINYNMY YWD 2 § WY 79919 10 .9 Nna

44

45

46

75

78

85

93

NIXSav nNnows

,DNN202N 1) D229M9) DA TYID-DNI 2 YR MY 29370 529D
.................................. J15,050 2y Ot
J241 1y O 11029 ,08N20IN 1) S9N £S5 109 1) 9Daya

1350 1y DT ,DNN20AN 1) D299 NPHMD V9 1) GNNDaY]

OWY 99NN D2292999-993 G\PYIN 1) YNYIN) NPIIDYR 9T
...................................... 370
MYTYN YN ONNANIAN) C7 and Cyy PINMD 72992151 Y2109 12 INNIAV
............ MYNOIYNDID GYPYIAN 92)S(GoDDIPWNIND - ¥ 1)
1) OMYTYN YN YINT) C7, Cyy PONMD 7299221 Y2109 IV B> NNV
....... J760 92 9 9ywna . W) N9,)S (92229999 - D19

TTH 2 3 NTA NI-PYT OMIWRDN 1) GPNNDIYII WNITNVIG 9Py

109 1 GYTNASPN YPOMW - OSNYAIN W WA a,, a,, a. ;JI99WYT
109 1) QNN 1 MNP WINDINONPNIYYYT PPSTIWIN 2 N z, ¥
..... YOPNN YTAIWNG W29 P p, 7D)ag MINDIAYII 119935
-5927 , D028 1) PNTRYNG GYPYIY 109 YR NMYNIINDIN NPAND 10

-¥22 YTATYNG 0D 1) YNOND IMYNRDN VPP NZIDAN IO YR MAIAONT

31

32

33

4.1

4.2

4.3

5.1

5.2

v) nIRbav npow9

M9AONTOAT P HGYA) YTNIATAN-DIDINAC GOTINN ITAYNG ¥ WNym 5.3
-2)028 1) PNTAYNG GNPYAN Y0 112921 NPO2INTT) MWL WO NN
118 10SL 1Y DR P YT YR 2937 1O IYNOIYNDID }) NPITHNT 2 91 O\
-YNDD NPPAND WD G E, G9TIMN YTIWNG 1) Wm) npaavaTaw 54
126 1290 Y DWT 293710V GoAND TT YR YN

97X

N2 ,29 13t DTNRD NIOM NN NP2 1INV YAV MYNNN NN NONNNY 29 9y DN
12T NPNRD WINN DIYN TYNI NONNN TONN SW 0301 XNPONPMN NN O”)D
NNVIVY 230Y NT Lindemann ¥ PPN N NP IWITN DNYRIN NPNIRTN
12T DYDY SPYNN-1rY NP %20 DMUVND DY NYNINN NYIWN 12 N5 V2N
W9 TR DIVRY TY NITI 7PN NYSINN NYIWN IWNRD NIPN NINNN 27NN 29 DY
920N 27 Born NIPO NP ININD DNIY YYD N NP PP KD WA 1OV
9 DY 20N P WA MIAN DN DPIOON DININD NN AWN Born 191NN TPoNN
C" N Cyy (shear elastic moduli) PN MTPXN TNR IWNRD YNIND NONNN 27NN
91NN DY XNPOINHN NN NN MIWNPN TMIAT NPNRD MNP 0N .DINTY
NN DY TRND TN NN DM9N 11D 2170 WX DPNTPI DX DY DNV DY
¥ DMNDN DY DXODNINN DT I90N WNIN WA IR TNNY >TD DMNOMI »TY
297 9MWNN NN .(vacancies) IMVITYN | (interstitials) NPIPTN NI DNV D)
NNVINNLA DN 11272 MNNN VTN BY NINNN TPoNN 2V Mt KN YO0 D7D
Javnn
DONTPI DN SYW DTPAN DY NN VYN TIAYS NN NN NTIAYN DY MIVKIN INN
TN MINA T2 DY 9N DN 2P 1ID MAIN Oy DMWY DV NONNN TONNA
-NONMY (M D) TPANPYWD NPT NI DI DY YIDY WYY DX Y wa)

NN 2T INAIY IMOLN-PIN DNINIVIN NIN VRN NPINNN MOYXWN DY 0N 0P

9 ¥pn

DIRNIVIY NINY DPTN SV SNONIDID BY 7YY 139N .DMVNND P2 iPSPRIVIND NN
MNY MMNMVINNVI OVPTN MINT PN OYY Sinclair Y Finnis YT DY NMOY 29N-19
DY (Nose — Hoover ¥ DIPINON) INIPN 728N MNTHY M D NPIDNI NWRNUN
Parinello — Rahman 2¥ DIPIMINI NUNDNIVN 27 \NJ2 NI

209N MOYANN OTPN) DXJT) 190N DY 2PN T2 JY DIRNIVION NN NPT 1NN
2P0 DO NIRNNN .DMIND2) NN DY IRNYND DINNIY (DPVDIN DNTPN
TN OPNTPI DM YW 7PINNMN NNSNN DN NPT 1PN RS NPI0 NN O
MY . simulated tempering NIPIN DNIMINI NWYNHNYN T2 DY OPIN SV WD
NNNNN RN TINY NPINIX MY NPIVIR MNSN DY 17 1900 O interstitials
IWRD WY DI W, < 110 > split — interstitialcy RO NP2 NIMIN MININRD NoYa
INTI W2)T FPINNIVION 7PN NIPNAN LN YW DTN RNY DN DILVN DXOON
SV TNN) 199N DIMOLND WY TD IPNRN DTN NI 1D X¥NDIN DIOVND NN N0
N2 DOX SY D)7 DIPYN 2220 NTND? (QONN DILVNN XD NN DTN NND T
AR A

NPPRP T VIDY > Y NiPTA) DIODYNN DMIPN Yy DINTPI DO NYOWN
NMYPTN OY DINY DRI 0¥ DT YW DPVODIND DIWIAPN NN AN TPINPOM
D»VDONN DWIAPN DR MT IMPTNNY R¥DI . MNY MNVIDNNLA NPITYM
,DPVOINN DNTPNN 2 552 MPAYN NI NMYPTYN NN DNYD ,MiNM2) MNVINNVI
2Y IVYPTN NYOVN N9NNN NP0 MNP MNMVIDNLA DI DI MND
MNVINNVI INDI .Cyy YODIRN OTPNRN 2Y NYAVYIN NNTI INY C’ YOOINRN DTPNRN
T2 07 O DAND C' DWW 199y NN TNND XTI IMPTN DY JOP 1D 22900 MM
Born 2% 571 %9 5y w1 W NONNY DD

SV 11D D NRNN DPTN DY MONNN NNVIBNL Sy DI NYOIVWN NN TN
19NN NIAPI MY O NONNN PONN MOYN 40 2 NINNN NNVINV IR I 0.5%
ININA NUNINND 1PN N9NNY NINRSD IPHRPT-ININ NONN PONNN NIV 1PN

s ¥pn

-0 N9IY DD NNIY TITA XNWII MO PRI PV NDIY MY YNNI NAINY
,OPNTIPI D9 NADIN > Iy IMK NI IN PINTN ¥1A) DHNY 1) W9 973 S0
JPOMP NNVIL NMNA TPION 119NN NN IRNINN 12T HY MDA

797NN TMOIDNOY 72PN LAY DHNY TP KOY NN A0 AT TPIPD NT2W
> 9y NOINN NMLIVNL HYN GO YWY DPNY PN YA Dacglas DN oW
NONNN TIMLIDNL N DY NN PID MIAN Y2 YN NINY M HY NI NDN
NI PPAT NVWN »95Y NN M MDA DI SY NINNN NNVINNON M) 1NV Y
PN N9 TINA TPIMN NN¥A NYNITN KO NN 7127 5W W9 191NN TONN2
1IPIA TMTPIIM NOWN 239 5Y NPNIN KON

79NNN NMOIDNLY TN OPTN SV DITN TN DHNY VAN NOY NYSIDI
W R¥DY DONPON NYISWA DO IMNN 19V ONITA WIDY ST 5y 19W TPR»T-1mInn
DMLY YR T, = 2500 £ 5K NP DY DY 1IN 19NN MY 190NN NP
9910 1IN AWNT 1P T, = 2183K No N0 29 5y DTN SY 1PN T- WD NN
DONPI 2P DPINNN NIY ININ DPYYON DN NPEIIPDA TPRYT-IINN NINNN NN
NPNOPDN NN DY IWND DHPYON NOY INIT DIV SW5WN NP2 1PN 725
39 9y 513 NAOY NN TPHRPT-IINN NONNN NNOIDNLY 7Y NIY MDA
Y9N3 MYNY MPNNA YN TINY NP0 NNTRNN 9130 NIV N YY NOWNRN
MPIN NPT ST 5y IPHPT-INN NONNN TNOIDNL PAY DYTH IMLIMNY Pa
MNTPTNN TP DAY NNOIDNOLN TN PWND TP MHNOINL IODNI VTP
DI MPSSYPON TPHRPT-MIND 1ONNN NNVINL NN DINNN TN TR Hv
NNMOIMNLY N¥NI .(111)-) (001) ,011) VD ,DPTN HYW NOWN 29 HY DINY XM MY
MPAY 5¥2 NOWHRN INT) (111) NOWHN NN S¥a DXTH NIY TPRYT-IINN NN
T, = 2220 + 5K NN (AP 719WN FPODIMON

TN TPANPM NPYAPT NN WIATN TPIN NINN PN SY NINOIDY oM

DTN .DVIN DY (sur face premelting) NOWN-I9 W OTP NONN NRIPIN NIYOIND

2 ¥Pn

NONN YOI DY MR DA (superheating) DY DN DY MININND-IN DY 1PN
oY NPT NADY NP TPRPT-WIINN NINNN NP INNN INTD ,NOWYN 29 SV OTP
¢ TN DOVINN DMONN DIIMP KI N NIAIYD MTIN WD NOY-239 DY 51)
P2 1P AN YD 5Y DYPN NYNNI NTIYNI MAND IWIN N 199) , W TNN MNRN
NPNIAN NP PONTNA DOVINN DMOND OPP APY NRDPN NTPIZ 12yn 5t
2y YN DY NLYN 29 NAVIN DX D TPHVYN DTP NINND DHNND 117 PINRD
DONOLYN MY DYIAM D-PXM - TR DN NOLWN DIPNL TYNRD ,TPONIN MR ST
DO DN PHOYN NONN DY DIONNNN DOTINND 217 D-ONN SN-P3m : O»»
NTYN Y PP DY DDDNINY DNPOIN DTN WD NNINKD PN ,DNINNI
DYOIPN DX 22 HY NOWN 29 NONN NN INND DIONON V5N DOTIIN Y¥nn
NONN Y DNPONPHRN DXLION DY NN TIOYI MONDN NSO P73 N1 NTNI
YT TN NPT NNP MD I2YNN 2D NDW WIN DIPNNN D) Y NLYN 29
PL-NIXP NN DMONN P2 TPEPRIVIND IWNDI YIIN 239 HY 5PN NADY IV
NNVIVNL DY MNNVNIY 1NN NOTH NINN NN NAIWN 22 MO WD
-1 NPPRYTA WIDY OUY 9PN DPTN DY NLYN 29 1ONN PONN NN NTIAYa
M NN NLYN 29 132N DITH YI5) YN DV DNXT NYIDY 1111 T2 DY 7D
YUPOVN NI PN DINININ WA DOINNN NOY ININA PYRNW .(111)-) (011) ,(001)
-INING L DYTN TINA MANN D919 17103 iPNONPDN ToNN2 .DPYAN NOY ONINA -
NYTN MTPN P WD TPTON-ITN TPIONTIN INZNN TP¥PN ,NIAOY 532 ITON 0
NMLIMNLIY RY¥NY NNVITNVL MONI PP PHID YN SY MIAOWN DIYIN)
NOYN 29 SY NNYRIN N2V DPNTPI DNXO DY INMXID PYNT 22NNN 110N
570 DOPNTPIN DN ¥I2IN JY NOWN 239 DY NODN NATY NN NNMI NN
M5 PRI P TINN NOWYNN WM 2T DY INDA PN MNTPN DY DI NN DT
M9 OTPIN MN NOWNN 2T D9 11377 MY NPMION MDY 190NN 15NN

P2 DNIYW PNT ¥ 0w DITN NMOVINVY 533 DIWIN DINDIS MIIPM MNIDT 'Y

2 ¥pn

NRND NPINITNA NNP SN0 PN IAYN RON 20 TN 512) IR PN Pad 51N
DMLND MO 1AV, (111) PPIA DYTN DY NV NLWN 2 NONNA PNIANT IV
,(011) PPoa ANy ;W5 (T = 1800) NI FPON NMVINNLA VAN TN 719M)
12202 PN N TPHOVYN 19NN PIANNT 1112 ,INPA NMA) DDOLNN MY 1NIYY
JPNYT-IINN NONNN NN
NOYN 29 DY NONN DY NIYOINN DX PADNY NI DY Born DY 97102 DYNTIVN
NASVN DY MOLYINNZ DI NOWN 29 DY DOPNTIPI DI J¥ MIAXN NN WD
YR PLMPN TV YN R NIV DIORD YN NN 190 YN DY TPHOYNN
29 Dy 3PN 191N DY PONNN JN OMNRNY 19IND) DX IPX PID MD TIWD 2N
SNV P2 OIRYD DY POW YN NLYN 29 NONND M DTN DY DWW Polturak
TN NPT DPNOYN DD DY MINIPN TN PIAZ) IPRYTININN NONNN NNV
(adlayer) DADNN NADYN DY DVINRD NN WTTH MDD NPSMPD 'Y NINY NNXIAIN
112 .DPNHOYN DM DY MKV TPITIN NN NIAYN TN THD 53 1NNV MIND
239 7Y INMIRNN STIIN 29 DY NN DMININD NIIWND DMIND?) DINNA NWYHNHNYN 1D
Ey, = 0.3 £0.05eV ©PNOYN DM S¥ MM IIRY N80 (111) M2 NOVN
NYIN NPXONPON MNSINN TAD DY E, = 0.44eV TPINNNN NNIIY AN M 1900
NMZON TPNPT-ITIT NOINN DN 1IN NINN D) NN 1IN Born ¥ 9TV Mijpon?
VPN I2T 5¥ IMDIAY "NIDINN MPIINN" NUYNRD NN Nt DTINY DNPDN DIV NN

21NN 079N MY

