
...

PITON: A MANYCORE PROCESSOR
FOR MULTITENANT CLOUDS

...

PITON IS A 25-CORE MANYCORE PROCESSOR THAT REIMAGINES THE DATACENTER

ARCHITECTURE, BREAKING DOWN BARRIERS BETWEEN CHIPS, NODES, AND RACKS, AND

ENABLING FLEXIBILITY, PERFORMANCE, AND ENERGY EFFICIENCY AT SCALE. IT IS DESIGNED

NOT ONLY AS A SINGLE CHIP, BUT AS A LARGE-SCALE SYSTEM. PITON SUPPORTS SHARED

MEMORY ACROSS ARBITRARY CORES IN THE SYSTEM AND IS TAILORED TO

INFRASTRUCTURE-AS-A-SERVICE CLOUDS.

......Datacenters are expanding rap-
idly, fueled by cloud computing and the insa-
tiable need for server computing power to
drive web-hosted services. The conven-
tional architecture of such large-scale sys-
tems is relatively hierarchical and rigid,
with boundaries between chips, boards,
nodes, and racks, and it follows a scale-out
approach. Piton is a manycore processor
that looks to break down these boundaries
with a flat and flexible architecture. It is
designed not only as a single chip, but also
as a large, scalable system of up to 8,192
Piton chips (204,800 cores) connected
together. Shared memory is maintained
among arbitrary cores in the system, both
intrachip and interchip, to support flexibil-
ity in shared systems and facilitate a scale-
up approach with fine-grained control over
resources. Piton is designed to exploit similar
or identical code executing in a datacenter,
as can be found in shared cloud systems, and
enables novel infrastructure-as-a-service
(IaaS) economic models.

Piton is a 25-core manycore processor
that targets multitenant clouds and datacen-
ters. It implements the 64-bit SPARC V9

instruction set architecture (ISA), which lets
it support standard operating systems (OSs)
and toolchains. Piton uses a modern tiled
design and three 64-bit on-chip networks
(NoCs) configured in a 2D mesh topology to
facilitate seamless scalability. Cache coher-
ence is maintained using a directory-based
MESI (modified, exclusive, shared, invalid)
cache coherence protocol at the shared, dis-
tributed L2 cache. The NoCs and coherence
protocol extend off-chip to support system-
wide shared memory, enabled by the use of
coherence domains1 to reduce the directory
storage overhead and communication latency.
A memory bandwidth provisioning mecha-
nism improves utility for cloud users and pro-
viders,2 allowing providers to charge based on
the memory bandwidth an application or vir-
tual machine needs and enforce a particular
memory traffic distribution.

Energy efficiency and throughput are
Piton’s primary design goals, as these are
important metrics in datacenters. Thus, we
use an efficient multithreaded core and imple-
ment an energy-saving drafting mode3 in
each core to reduce the switching activity and
instruction cache accesses.

Michael McKeown

Yaosheng Fu

Tri Nguyen

Yanqi Zhou

Jonathan Balkind

Alexey Lavrov

Mohammad Shahrad

Samuel Payne

David Wentzlaff

Princeton University

...

70 Published by the IEEE Computer Society 0272-1732/17/$33.00�c 2017 IEEE

Piton was taped-out on IBM’s 32-nm
silicon-on-insulator process with a 36 mm2

die size, 6 mm � 6 mm. It contains more
than 460 million transistors and has a target
clock frequency of 1 GHz at the nominal
0.9 V supply voltage. This puts it among the
largest chips built in academia to date. We
have received silicon back from IBM and
have tested it working in the lab, running
multiple microbenchmarks and booting full-
stack Debian Linux. The die contains 331
total pads and is packaged in a 208-pin
ceramic quad flat package (QFP) with an
epoxy encapsulation. Figure 1 shows the
Piton die, wirebonds, and package (without
the epoxy encapsulation).

Piton has also been open sourced as a
research framework called OpenPiton (http://
openpiton.org),4 to facilitate at scale, realistic
manycore research in many domains.

Piton Architecture
Figure 2a shows Piton’s high-level architec-
ture. Piton uses a tile-based architecture,
with 25 tiles connected in a 5-�-5 2D mesh
topology—a topology used by other many-
core designs.5,6 The tiles are interconnected
with three full-duplex 64-bit NoCs (128
bits per link per NoC), providing ample
bandwidth for intercore communication.
We use three separate NoCs to avoid proto-
col-level deadlock. The three NoCs are
physically implemented and use dimen-
sion-ordered, wormhole routing for dead-
lock avoidance. We chose to implement the
NoCs physically, as opposed to virtually,
because we found wiring resources to be
plentiful on chip. This made for a good
tradeoff compared to the extra area required
for virtual NoCs. The networks have a
latency of one cycle per hop, plus an addi-
tional cycle for turns; use credit-based flow
control; and provide a point-to-point order-
ing guarantee. The tiles maintain cache
coherence at the shared, distributed
L2 cache, using the NoC for communication.

The top of Figure 2a shows Piton’s pri-
mary off-chip interface, the chip bridge. It
connects the tile array to off-chip logic,
namely the chipset, and to other Piton chips.
The NoC routers route off-chip traffic to
tile0, where the chip bridge connects to the

tile array. The chip bridge comprises two
32-bit unidirectional links and multiplexes
the three 64-bit physical NoCs using logical
channels for communication over the pin-
limited off-chip channel. This effectively
extends the NoCs and coherence protocol
off-chip, enabling shared-memory support
across up to 8,192 chips or 204,800 cores.
At the target off-chip clock frequency,
350 MHz, the chip bridge provides 2.8
Gbytes per second (GBps) of bandwidth.
Compared to other manycore process-
ors,5,6 Piton’s off-chip bandwidth is rela-
tively low due to pin limitations. The low
pin count was primarily a cost and design
risk-reduction decision, but it lets us
explore issues in future manycore designs,
in which the number of cores scales faster
than the available memory bandwidth, as a
research exercise. For instance, we are inter-
ested in exploring possible solutions such as
cache compression.7

Figure 2b shows the CAD tool layout
screenshot of Piton, highlighting the 25 tiles
and the chip bridge.

Tile Architecture
Figure 3 depicts a Piton tile’s architecture and
CAD tool layout screenshot. A tile is made
up of a modified OpenSPARC T1 core8; an
L1.5 cache; a slice of the shared, distributed
L2 cache; three NoC routers; a floating-point
unit (FPU); a cache-CPU crossbar (CCX)
arbiter; and a memory traffic shaper. The
tile’s physical area is 1.17 mm2.

Figure 1. Piton die, wirebonds, and package

without epoxy encapsulation.

...

MARCH/APRIL 2017 71

The core contains two-way multithread-
ing and implements an energy-efficient draft-
ing mode. The L1.5 cache is an 8-Kbyte,
inclusive, private data cache, implemented
with a three-stage pipeline, and it has two
primary purposes:

� to encapsulate the write-through L1
data cache in the core with a write-
back cache, which reduces the band-
width requirement to the shared,
distributed L2 cache; and

� to transduce between the Open-
SPARC T1 core (CCX protocol) and
Piton’s cache coherence NoC protocol.

The L1.5 connects to the slice of the dis-
tributed L2 cache through three NoC
routers that implement the routing for the
three physical networks. The NoC routers
also connect to other tiles in the system.
The L2 cache slice contains an integrated
directory cache for Piton’s MESI coherence
protocol.

The FPU located in each tile is taken
from the OpenSPARC T1. It is IEEE 754
compliant and is fully pipelined except for
multiply and divide operations. Simple float-
ing-point operations, such as move-type
instructions, are implemented in the core,
and the floating-point registers are also stored
in the core. The FPU interfaces through the

CCX protocol, so a simple CCX arbiter is
included in each tile to arbitrate over the sin-
gle, shared core CCX interface. We include
an FPU per core, as opposed to the original
OpenSPARC T1, which had one FPU for
eight cores, to boost floating-point perform-
ance and simplify the design.

Finally, a memory traffic shaper that pro-
visions memory bandwidth on a per-core
basis communicates with the L1.5 cache. The
memory traffic shaper shapes traffic on the
basis of hit and miss information from the
shared, distributed L2 cache.

Core and Drafting Mode
Piton repurposes a modified OpenSPARC
T1 core. It is implemented with a six-stage
in-order pipeline (see Figure 4a). The core is
two-way multithreaded, which facilitates
increased throughput and hiding of mem-
ory latency, which is important for many
multitenant cloud applications. It contains
a 16-Kbyte L1 instruction cache with a
32-byte line size and an 8-Kbyte L1 data
cache with a 16-byte line size. Both caches
are four-way set associative. The cache con-
figurations are maintained from the Open-
SPARC T1. The core implements the
SPARC V9 64-bit ISA, which enables
support for standard toolchains and OSs.

Tile1 Tile2 Tile3 Tile4

Tile5 Tile6 Tile7 Tile8 Tile9

Tile10 Tile11 Tile12 Tile13 Tile14

Tile15 Tile16 Tile17 Tile18 Tile19

Tile20 Tile21 Tile22 Tile23

Tile0

Tile24

Chip bridge

(a)

Tile 0 Tile 1 Tile 2 Tile 3 Tile 4

Tile 20 Tile 21 Tile 22 Tile 23 Tile 24

Tile 5 Tile 6 Tile 7 Tile 8 Tile 9

Tile 10 Tile 11 Tile 12 Tile 13 Tile 14

Tile 15 Tile 16 Tile 17 Tile 18 Tile 19

 PLLCB Chip bridge (CB)

(b)

Figure 2. Piton chip architecture. (a) High-level architecture diagram. (b) Annotated CAD tool

layout screenshot. The figure shows 25 tiles interconnected with networks on chip (NoCs) in

a 2D mesh, as well as Piton’s off-chip interface, the chip bridge.

..

HOT CHIPS

..

72 IEEE MICRO

Figure 4b shows the annotated CAD tool
layout screenshot of the core. The core’s
physical area is 0.55 mm2.

Each core is augmented with an energy-
efficient drafting mode.3 The drafting mode
aims to exploit identical or similar code exe-
cuting in a datacenter—for example, Ama-
zon’s Elastic Compute Cloud (EC2), in
which multiple tenants might run the same
or similar versions of an application such as
Apache. Another example can be found in
Facebook, wherein many users simultane-
ously upload images that need to be resized
and compressed.

Once duplicate code is scheduled to one
of Piton’s drafting-enabled multithreaded
cores, the drafting hardware aligns the execu-
tion points of the threads in time to identical
instructions using active synchronization.
Piton’s drafting mode has three synchroniza-
tion methods that are configurable by soft-
ware. This active synchronization can result
in a small performance overhead, but once
the threads are aligned to identical instruc-
tions, significant energy can be saved.

One source of energy savings is what
we refer to as drafting, or issuing identical
instructions from different threads consecu-
tively down the core pipeline. Because decod-
ing of identical instructions results in the
same control signals, the activity factor is
reduced in the core. Furthermore, if the data
happens to be identical, the activity factor is

reduced even more. Another source of energy
savings comes from disabling the core’s fetch
stage when it knows the threads’ code is
identical. In effect, the drafting mode dynam-
ically exploits the energy savings that single-
instruction, multiple-data (SIMD) execution
exploits, but for applications that are other-
wise difficult to execute in a SIMD fashion.
The drafting mode trades a small perform-
ance overhead for larger energy savings.

Figure 4a highlights the modifications to
the core for the drafting mode. Piton’s draft-
ing mode area overhead is only 2.12 percent
of the core.

Simulation results for the drafting mode
executing Apache hosting different websites
show a dramatic increase in throughput div-
ided by energy, up to 20 percent in many
cases and 8.57 percent on average, with mini-
mal impact on single-threaded performance
(0.13 percent on average), even in cases
where there is little to no gain in throughput
divided by energy.

L2 Cache, Coherence Protocol, and
Coherence Domains
Piton’s L2 cache is a distributed cache
shared by all tiles in the system. Each tile
contains a 64-Kbyte slice of the L2 cache,
providing 1.6 Mbytes of aggregate L2 cache
per chip. Although the L2 cache in aggre-
gate is comparably small with respect to

L2 cache slice
+

directory cache
NoC routers (3)

L1.5 cache

CCX arbiter

FPU

Modified
OpenSPARC T1

core

MITTS
(traffic shaper)

Core

L2 + directory cache

L1.5

Dynamic network 0

Dynamic network 1

Dynamic network 2

FPU

Memory traffic shaper

(a) (b)

Figure 3. Piton tile architecture. (a) Architecture diagram. (b) Annotated CAD tool layout screenshot.

...

MARCH/APRIL 2017 73

other manycore processors,5,6 we target a
multithreaded, throughput-oriented design
to cover memory latency. Moreover, the
shared, distributed nature of the cache, in
contrast to other manycore processors with
larger private caches,5 facilitates sharing in
cloud workloads and enables applications
to dynamically use as much of the cache as
needed. The L2 cache is four-way set asso-
ciative and has a 64-byte line size. The
cache is implemented with dual four-stage
pipelines. One pipeline handles requests
from the L1.5 and the other manages mem-
ory and L1.5 responses. Figure 5 illustrates
the L2 cache pipelines, with the memory
blocks implemented as SRAM arrays out-
lined in bold. This results in a five-cycle hit

latency from when a request enters the
cache to when a response leaves. The map-
ping of a cache line to an L2 cache slice
(home placement) is configurable by soft-
ware, permitting low-, middle-, or high-
order address bit interleaving or the bitwise
AND of the low- and middle-order address
bits.

As Figure 5 shows, a directory-cache for
the MESI coherence protocol is integrated
into the L2 cache. The coherence protocol is
implemented using 35 message types. The
protocol uses four-hop message communica-
tion—that is, there is no direct communica-
tion between private L1.5 caches—as shown
in Figure 6, which depicts the interfaces over
which different blocks in the memory system

Decode

Fetch stage Thread select stage

EXU
ALU,
MUL,

Shft, Div

Regfile
x 2

Decode Execute

D-cache
D-TLB
Store

Buffer x 2

Memory

Regfile
x 2

Writeback

I-cache
I-TLB

Inst
buffer

x 2 Th
re

ad
se

le
ct

 m
ux

Open
SPARC

T1 thread
select logic

Th
re

ad
se

le
ct

 m
ux PC

logic
x 2

D
ra

fti
ng

en
ab

le
 m

ux

Instruction type
Misses

Traps and interrupts

Resource conflicts

Drafting
enable

bit

Drafting
thread

sync logic

Control flow diverged

Thread PC x 2

Instruction buffer x 2

Drafting additions

S
ta

ll
In

st
ru

ct
io

n
re

p
ea

t m
ux

Repeat

Instruction PA x 2

S
yn

c

CCX interface

(a)

(b)

Execute

Regfile x 2

Floating-point FE

Instruction fetch

Load-store

Multiplier

Trap logic

Figure 4. Modified OpenSPARC T1 core. (a) Six-stage in-order pipeline with drafting mode additions highlighted. (b) Annotated

core CAD tool layout screenshot. The pipeline diagram is adapted from the OpenSPARC T1 Microarchitecture Specification.9

..

HOT CHIPS

..

74 IEEE MICRO

communicate. A cycle does exist in the coher-
ence protocol communication graph, in
which memory returns data to the L2 on
NoC3 and the L2 returns data to the L1.5 on
NoC2. We break this cycle using prealloca-
tion and prioritization in the L2 cache.

A unique feature of Piton’s coherence pro-
tocol is the concept of coherence domains.1

Coherence domains allow cores in the sys-
tem, both intrachip and interchip, to be
grouped by virtual machines, applications, or
page accesses. Coherence needs to be main-
tained only within a coherence domain, not
system-wide. Restricting the maximum
coherence domain size, 64 cores in Piton,
limits the directory storage to a constant,
independent of the number of cores in the
system. We chose 64 for the maximum
coherence domain size because we found
most cloud workloads do not scale beyond
that. If a coherence domain grows larger than
64 cores, Piton reverts to a broadcast policy
that allows for system-wide shared memory.
Coherence domains are key to enabling
Piton’s 8,192-chip scalability with support
for shared memory across arbitrary cores in
the system. Without them, the directory
storage overhead would be intolerable. In
addition, coherence domains facilitate the

dynamic relocation of L2 home placement to
optimize for communication latency.

Figure 7 shows the hardware used to
implement coherence domains. An addi-
tional indirection layer, called the sharer map
cache (SMC), is used to map a small space of
logical sharers to a larger space of physical
cores. The translation lookaside buffer entries
in the core are extended with coherence
domain IDs, which are managed by software.
The coherence domain IDs are transmitted
over the NoC along with coherence requests.
The coherence domain ID and logical sharer
ID from the coherence directory’s sharer vec-
tor are used as an index into the SMC to look

State array

Global control logic

MSHR

Stall logic
Response
generation

Decode Way selection Data access Response

NoC3
input
buffer

Tag array
Directory

array

Data array

NoC1
input
buffer

NoC2
output
buffer

SRAM
macros

Way selection

Stall logic Decode

Decode

Way selection

Figure 5. Shared, distributed L2 cache four-stage dual pipelines. Blocks outlined in bold are

implemented as SRAM macros.

NoC2

NoC3

NoC1
L1.5 L2

L1.5/
memoryNoC2

Load
Store
Ifill

Downgrade
Inv

Mem req

DG ack
Inv ack

Mem reply

Load ack
Store ack

Figure 6. Coherence protocol interface diagram. Three physical networks

along with preallocation and prioritization in the L2 cache are used to avoid

protocol-level deadlock.

...

MARCH/APRIL 2017 75

up the logical sharers’ physical core IDs.
These IDs can subsequently be used in coher-
ence messages. The SMC is backed up by a
full-size sharer map table in off-chip DRAM.
Home relocation is accomplished in a similar
way to restricting sharers by using an addi-
tional level of indirection on L2 home
placement.

Memory Traffic Shaping
Piton includes a memory traffic shaper in
each tile. The problem the memory traffic
shaper addresses is that off-chip memory
bandwidth is a significant limited resource
and applications currently do not share it
well. In today’s multitenant cloud-based
systems, cores contend for memory band-
width with little to no restrictions (see
Figure 8a). One core can consume a large
portion of the memory bandwidth and
starve other cores.

The solution implemented in Piton is to
restrict core or application memory bandwidth
to fit a particular distribution based on the
temporal distance between memory requests,
or the memory interarrival time. Thus, Piton’s
memory traffic shaper is called the Memory
Interarrival Time Traffic Shaper (MITTS).2

Figure 8b illustrates a few examples of differ-
ent memory traffic distributions, with the
left side representing time on the x-axis
and memory requests as vertical lines. These
plots effectively translate into histograms of

Virtual
address

CPU

L1.5
Directory

Sharer
map

cache

Directory
controller

Physical
address

Logical
sharer ID

Physical
core ID

Sharer domain ID
Physical
core ID

Coherence
messageLogical sharer ID

Sharer
map
table

Off-chip
DRAM

TLB

N
oC

1

N
oC

2

Constant storageExtended fields

New hardware

Figure 7. Coherence domain hardware implementation. An additional indirection layer maps a

small space of logical sharers to a larger space of physical cores.1

Core 1 Core 2 Core 3 Core 4

Memory controller
FIFO queue

Accumulated
traffic

(a)

Frequency

Request
interarrival

time

2t

t 3t

Uniform traffic

More bursty traffic

2tA distribution of traffic

Time

(b)

Figure 8. Memory traffic shaper motivating example. (a) Memory bandwidth

problem in today’s cloud systems. (b) Example memory interarrival time

distributions.2

..

HOT CHIPS

..

76 IEEE MICRO

request interarrival times (shown on the
right side of Figure 8b), the basis for shaping
traffic with MITTS.

MITTS is implemented using a token
bucket design. An array of bins, each repre-
senting different ranges of interarrival times,
contains credits for requests. If a memory
request enters the traffic shaper with an inter-
arrival time corresponding to a bin with zero
credits, MITTS stalls the request either until
it falls into a bin with credits or until the
credits are replenished, which occurs peri-
odically. Users can specify a memory traffic
distribution that fits their application by
specifying appropriate bin credit replenish-
ment configurations. Credits corresponding
to different bins can be priced differently,
according to an economic model, permitting
users to pay commensurately for the memory
bandwidth and distribution (bursty versus
bulk) an application needs.

Alternatively, MITTS can be used as a tra-
ditional memory traffic scheduler. Figure 9
shows application slowdown (lower is bet-
ter) simulating a mix of cloud workloads
and SPECint applications contending for
the same memory bandwidth. The bars on
the left show average slowdown, a proxy
for throughput, and the bars on the right
show maximum slowdown, a proxy for fair-

ness. The results from state-of-the-art mem-
ory schedulers10,11 are shown on the left
side of the graph. MITTS increases overall
throughput while maximizing fairness
compared to no traffic shaping and the state
of the art.

System Architecture
A single-chip Piton system consists of a cus-
tom Piton test board accompanied by a chip-
set field-programmable gate array (FPGA)
(see Figure 10). The custom Piton test board
was designed at Princeton University and is
based on the open source University of Cali-
fornia, San Diego, Double Trouble Daugh-
terboard (http://bjump.org). It comprises a
208-pin QFP socket to house Piton, which
connects to a gateway FPGA, a Xilinx Spar-
tan-6 that connects Piton’s chip bridge inter-
face over a FPGA Mezzanine Connector to a
chipset FPGA board. The Piton board also
includes voltage regulation to step-down a
12-V ATX power supply to the appropriate
voltages to drive Piton and the interfacing
devices and provides access to the Piton
JTAG interface and configuration signals.

The chipset FPGA implements Piton’s
I/O and DRAM memory controller. We
implemented the DRAM controller off-chip
to reduce design risk. In the chipset FPGA, a

1.
82

1.
8

1.
73

1.
74

1.
76

1.
77

1.
69

1.
54

1.
52

1.
52

1.
5

1.
41

1.
45

1.
4

1.
42

3.
19

3.
1

3.
09

2.
35 2.

48

2.
98

2.
32

2.
15

2.
11

2.
11

2.
08

1.
61

1.
6

1.
61

1.
59

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Average slowdown (throughput)
Maximum slowdown (fairness)

OnlineGA MITTS OfflineGA MITTS

Phase (fa
ir)

Phase (th
ro)

Fair
Thro

Phase (fa
ir)

Phase (th
ro)

Fair
ThroTCM

Source th
ro

MemGuard
MISE

Fair q
ueue

FR-FCFS

No QoS

P
ro

g
ra

m
 s

lo
w

d
ow

n
(8

 p
ro

g
ra

m
s)

Figure 9. MITTS simulation results showing application slowdown when running a mix of

Apache servers, mail servers, and SPECint applications contending for the same memory

bandwidth. The left side shows MITTS versus other state-of-the-art memory schedulers.

Lower is better.2

...

MARCH/APRIL 2017 77

chip bridge decoder demultiplexes the off-
chip logical channels to the same three physi-
cal networks that exist in Piton. The network
traffic is sent to the north and south bridges,
which separate memory and I/O traffic,
respectively, based on physical address values
and direct it to the corresponding device con-
trollers, also implemented in FPGA. This
stand-alone system can boot standard OSs
and has been successfully tested booting full-
stack Debian Linux.

Piton can also be configured in a multichip
system capable of supporting up to 8,192
Piton chips, enabled by Piton’s coherence
domains, connected with a packet-switched

network similar to Piton’s NoCs. The primary
difference between the single-chip and multi-
chip systems is the addition of interchip
routers implemented in the chipset FPGA.
Multiple interchip network topologies are pos-
sible. Logically, this system can be viewed as a
large, flat pool of Piton tiles providing a high
degree of flexibility, as memory can be shared
among arbitrary cores in the system. This flex-
ibility is ideal in shared cloud-based systems in
which core fragmentation can become an issue
during resource allocation. This system also
promotes a scale-up paradigm, providing fine-
grained control over resources similar to tradi-
tional distributed shared memory systems.
This contrasts with current datacenters that
have rigid boundaries between chips, boards,
and racks; follow a scale-out approach; and are
interconnected with networks that require tra-
versing a network stack to a network interface
card to communicate with other nodes in the
system.

As the number of chips increases, the total
number of cores available in the system also
increases proportionally. However, to opti-
mize for communication latency and band-
width, we should consider the physical
placement of cores. The bisection bandwidth
for Piton’s NoCs on a single chip is 288
GBps, which is two orders of magnitude
higher than the off-chip bandwidth, so it is
still much more efficient for an application to
run on cores within the same chip rather
than across multiple chips. The limited off-
chip bandwidth has clearly become the bot-
tleneck for multichip scalability, and we
believe increasing off-chip bandwidth can
alleviate this issue and enable more flexible
multichip resource scheduling.

OpenPiton
OpenPiton is the open source release of
Piton.4 It includes everything used to design
the chip: register transfer level (RTL) code,
simulation infrastructure, test and validation
suite, FPGA synthesis scripts, and applica-
tion-specific integrated circuit (ASIC) syn-
thesis and back-end scripts. The framework
is modified from the original Piton chip
framework to be highly configurable. The
design can scale up to 536 million cores
(65,536 cores intrachip with up to 8,192

Piton test board

Piton socket

Gateway FPGA

Vo
lta

g
e

re
g

ul
at

or
s

an
d

b
yp

as
s

ca
p

ac
ito

rs

1.
8

V

 0

.9
5

V

 0
.9

 V
I/O

S

R
A

M

 C
or

e

Piton configuration bits and JTAG
interface

FMC interface

Chipset FPGA
board FMC interface

C
hi

p
se

t F
P

G
ADRAM DRAM Ctl Chip bridge demux

North Bridge

South BridgeBoot ROM

Serial port
I/O Ctls

DRAM + I/O

Chipset FPGA
Kintex 7

Gateway FPGA
spartan 6

Piton + heat sink

Bulk
decoupling

Power supply

Misc.
configuration

FMC

(a)

(b)

Figure 10. Piton system architecture. (a) Piton single-chip system block

diagram and (b) photo.

..

HOT CHIPS

..

78 IEEE MICRO

chips), and the cache sizes and NoC topology
are configurable. The FPGA synthesis scripts
target multiple FPGA boards at different
price points. The design can run at tens of
megahertz on FPGA and boots full-stack
Debian Linux, enabling users to run real
applications.

OpenPiton is great for manycore research
in multiple domains, from applications
down to architecture. Researchers can make
modifications to OpenPiton, including the
processor RTL, compiler, and OS; seamlessly
synthesize the design to FPGA; boot Debian
Linux; and run real applications to evaluate
their research ideas at scale and at speed. The
large test and validation suite provides a
safety net to ensure major functionality is
maintained. The ASIC synthesis and back-
end scripts aid in taping-out OpenPiton-
based research chips, similar to Piton. Open-
Piton immensely reduces the barrier of entry
to at-scale, accurate, real-system manycore
research. OpenPiton is also great for educa-
tion and has already been used in the class-
room. OpenPiton can be downloaded at
http://openpiton.org.

I n this article, we presented Piton, a
25-core manycore processor designed for

IaaS clouds. We hope this work will encour-
age others to rethink the conventional data-
center design and build real systems in
architecture research. We plan to build larger
systems involving Piton and continue to
explore the challenges in datacenter architec-
tures, including I/O limitations, communica-
tion latency, energy efficiency, network
topologies, fault tolerance, and continued per-
formance scaling in the post-Moore’s law era.
We will also continue to support and improve
OpenPiton to aid other researchers in doing
real system manycore research. MICRO

..
References
1. Y. Fu, T. Nguyen, and D. Wentzlaff,

“Coherence Domain Restriction on Large

Scale Systems,” Proc. 48th Int’l Symp.

Microarchitecture, 2015, pp. 686–698.

2. Y. Zhuo and D. Wentzlaff, “MITTS: Memory

Inter-Arrival Time Traffic Shaping,” Proc.

43rd Int’l Symp. Computer Architecture,

2016, pp. 532–544.

3. M. McKeown, J. Balkind, and D. Wentzlaff,

“Execution Drafting: Energy Efficiency through

Computation Deduplication,” Proc. 47th Int’l

Symp. Microarchitecture, 2014, pp. 432–444.

4. J. Balkind et al., “OpenPiton: An Open

Source Manycore Research Framework,”

Proc. 21st Int’l Conf. Architectural Support

for Programming Languages and Operating

Systems, 2016, pp. 217–232.

5. A. Sodani, “Knights Landing (KNL): 2nd

Generation Intel Xeon Phi Processor,” Proc.

Hot Chips 27th Symp., 2015; doi:10.1109/

HOTCHIPS.2015.7477467.

6. C. Ramey, “Tile-GX100 Manycore Processor:

Acceleration Interfaces and Architecture,”

Proc. Hot Chips 23rd Symp., 2011;

doi:10.1109/HOTCHIPS.2011.7477491.

7. T. Nguyen and D. Wentzlaff, “MORC: A

Manycore-Oriented Compressed Cache,”

Proc. 48th Int’l Symp. Microarchitecture,

2015, pp. 76–88.

8. P. Kongetira, K. Aingaran, and K. Olukotun,

“Niagara: A 32-Way Multithreaded SPARC

Processor,” IEEE Micro, vol. 25, no. 2,

2005, pp. 21–29.

9. OpenSPARC T1 Microarchitecture Specifi-

cation, Sun Microsystems, report no. 819-

6650-11, Apr. 2008.

10. M. Caccamo et al., “MemGuard: Memory

Bandwidth Reservation System for Efficient

Performance Isolation in Multi-Core

Platforms,” Proc. IEEE 19th Real-Time and

Embedded Technology and Applications

Symp., 2013, pp. 55–64.

11. L. Subramanian et al., “MISE: Providing

Performance Predictability and Improving

Fairness in Shared Main Memory Sys-

tems,” Proc. IEEE 19th Int’l Symp. High

Performance Computer Architecture, 2013,

pp. 639–650.

Michael McKeown is a PhD candidate in
the Department of Electrical Engineering at
Princeton University. His research interests
include parallel computer architecture, cloud
computing, and energy efficiency. McKeown
received an MA in electrical engineering
from Princeton University. Contact him at
mmckeown@princeton.edu.

...

MARCH/APRIL 2017 79

Yaosheng Fu is a PhD candidate in the
Department of Electrical Engineering at
Princeton University. His research interests
include computer architecture, memory sys-
tems, parallel computing, and distributed
systems. Fu received an MA in electrical
engineering from Princeton University.
Contact him at yfu@princeton.edu.

Tri Nguyen is a PhD candidate in the
Department of Electrical Engineering at
Princeton University. His research focuses on
manycore processors and memory bandwidth
requirements. Nguyen received an MA in
electrical engineering from Princeton Univer-
sity. Contact him at trin@princeton.edu.

Yanqi Zhou is a PhD candidate in the
Department of Electrical Engineering at
Princeton University. Her research focuses
on configurable architecture and fine-
grained resource provisioning for clouds.
Zhou received a BS in electrical and com-
puter engineering from University of Michi-
gan and Shanghai Jiao Tong University.
Contact her at yanqiz@princeton.edu.

Jonathan Balkind is a PhD candidate in
the Department of Computer Science at
Princeton University. His research interests
include computer systems, programming
languages, and computer architecture with
the aim of improving the efficiency of mod-
ern multicore systems in mobile and data-
center environments. Balkind received an
MSci in computing science from the Uni-
versity of Glasgow and an MA in computer
science from Princeton University. Contact
him at jbalkind@princeton.edu.

Alexey Lavrov is a PhD candidate in the
Department of Electrical Engineering at
Princeton University. His research interests
include multitenant I/O devices, multicore
processor design, and reconfigurable architec-
tures. Lavrov received an MA in electrical
engineering from Princeton University and
an MA in applied physics and math from the
Moscow Institute of Physics and Technology.
Contact him at alavrov@princeton.edu.

Mohammad Shahrad is a PhD candidate
in the Department of Electrical Engineering

at Princeton University. His research focuses
on combining computer systems, computer
architecture, and economics to improve the
efficiency of large-scale computing systems.
Shahrad received an MA in electrical engi-
neering from Princeton University. Contact
him at mshahrad@princeton.edu.

Samuel Payne is a system software engineer
at Nvidia. His work focuses on writing effi-
cient software to abstract the technology in
Tegra embedded processors for high-per-
formance embedded and AI applications.
Payne received a BS in electrical engineering
from Princeton University, where he com-
pleted the work for this article. Contact him
at spayne@nvidia.com.

David Wentzlaff is an assistant professor in
the Electrical Engineering Department at
Princeton University. His research interests
include parallel computer architecture,
architectures for cloud computing, and bio-
degradable computing systems. Wentzlaff
received a PhD in electrical engineering and
computer science from the Massachusetts
Institute of Technology. He has received the
NSF CAREER award, the DARPA Young
Faculty Award, the AFOSR Young Investi-
gator Prize, and the Princeton E. Lawrence
Keyes Faculty Advancement Award. Contact
him at wentzlaf@princeton.edu.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

..

HOT CHIPS

..

80 IEEE MICRO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

