Supporting Information

Catalytic Asymmetric Conjugate Addition and Sulfenylation of

Diarylthiazolidin-2,4-Diones

Lihui Jiao,[†] Liwei Bu,[†] Xinyi Ye,[‡] Xiaowei Zhao,[†] and Zhiyong Jiang^{*,†}

[†]Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China, 475004 [‡]Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore

E-mail: chmjzy@henu.edu.cn

Table of Contents

1. Optimization of the reaction conditions	
	S3-4
2. Copies of HPLC spectra	
	S5-26
3. Determination of the absolute configuration by X-ray crystallography	
	S27-39
4. Copies of NMR spectra	
	S40-82

1. Optimization of the reaction conditions

Ph.N.K) ≻—Ph ⁺	PhNO2 —	catalyst ((10 mol 9 <i>m</i> -xylene, - 4 Å M3 60 h	G %) 20 ℃ S	Ph. N	O S Ph H 7a	`NO ₂
	entry	additive	ee (%)	dr	-		
-	1	K ₂ HPO ₄	77/1	87:13			
	2	Na_2HPO_4	73/7	85:15			
	3	KH ₂ PO ₄	77/6	87:13			
	4	NaH ₂ PO ₄	77/8	85:15			
	5	K ₃ PO ₄	53/9	71:29			
	6	Na ₃ PO ₄	17/21	62:38			
	7	NaPF ₆	20/0	66:34			
	8	LiF	77/0	88:12			
	9	NaF	76/8	90:10			
	10	KF	73/6	88:12			
	11	NaBr	86/14	94:6			
	12	NaI	81/1	91:9			
	13	PhSO ₂ Na	80/2	93:7			
	14	NH ₄ Cl	62/0	77:23			
	15	LiCl	85/6	91:9			
_	16	NaCl	89/4	90:10			

Table S1. Investigation on the effect of additives

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(5 0 5e 8a	′5ÅMS ^O ∕ ∎	9d Ar=	4-MeOPh
entry cat. solvent additive $T ({}^{\circ}C)$ ee (%) 1 H CH ₂ Cl ₂ 25 40 2 H toluene 25 12 3 H THF 25 12 4 H Et ₂ O 25 20 5 H DCE 25 32 7 H DCE 10 50 8 H DCE 0 55 9 H DCE -10 64 10 H DCE -10 73 12 J DCE -10 74 14 L DCE -10 72 15 M DCE -10 73 16 N DCE -10 72 19 K			S Ar" NH	H: Ar" = 3,5-(CF ₃) ₂ Ph I: Ar" = 3,5-(CCH ₃) ₂ Ph J: Ar" = 3,5-F ₂ Ph K: Ar" = 4-MeOPh L: Ar" = 4-HeOPh	M: Ar" = 4 N: Ar" = 3 O: Ar" = 2 P: Ar" = F	⊢CIPh ⊦CIPh 2-CIPh ≀h
1 H CH_2Cl_2 25 40 2 H toluene 25 12 3 H THF 25 12 4 H Et_2O 25 20 5 H DCE 25 32 6 H CHCl_3 25 32 7 H DCE 10 50 8 H DCE 0 55 9 H DCE -10 64 10 H DCE -10 67 13 K DCE -10 73 12 J DCE -10 74 14 L DCE -10 73 16 N DCE -10 72 15 M DCE -10 72 16 N DCE -10 68 <th>entry</th> <th>cat.</th> <th>solvent</th> <th>additive</th> <th>$T(^{\circ}C)$</th> <th>ee (%)</th>	entry	cat.	solvent	additive	$T(^{\circ}C)$	ee (%)
2 H toluene 25 12 3 H THF 25 12 4 H Et ₂ O 25 20 5 H DCE 25 32 6 H CHCl ₃ 25 32 7 H DCE 10 50 8 H DCE 0 55 9 H DCE -10 64 10 H DCE -10 64 10 H DCE -10 67 13 K DCE -10 73 12 J DCE -10 74 14 L DCE -10 73 16 N DCE -10 72 17 O DCE -10 72 19 K CH ₂ Cl ₂ -10 6	1	Н	CH_2Cl_2		25	40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Н	toluene		25	12
4 H Et_2O 25 20 5 H DCE 25 32 6 H CHCl ₃ 25 32 7 H DCE 10 50 8 H DCE 0 55 9 H DCE -10 64 10 H DCE -10 73 12 J DCE -10 74 14 L DCE -10 72 15 M DCE -10 73 16 N DCE -10 72 17 O DCE -10 72 18 P DCE -10 78 <td>3</td> <td>Н</td> <td>THF</td> <td></td> <td>25</td> <td>12</td>	3	Н	THF		25	12
5 H DCE 25 42 6 H CHCl ₃ 25 32 7 H DCE 10 50 8 H DCE 0 55 9 H DCE -10 64 10 H DCE -20 60 11 I DCE -10 67 13 K DCE -10 67 13 K DCE -10 74 14 L DCE -10 73 16 N DCE -10 70 17 O DCE -10 69 18 P DCE -10 68 20 K THF -10 59 21 K DCE -30 78 25 K DCE -50 79	4	Н	Et ₂ O		25	20
6 H CHCl ₃ 25 32 7 H DCE 10 50 8 H DCE 0 55 9 H DCE -10 64 10 H DCE -20 60 11 I DCE -10 73 12 J DCE -10 67 13 K DCE -10 67 13 K DCE -10 72 15 M DCE -10 73 16 N DCE -10 73 16 N DCE -10 72 19 K CH ₂ Cl ₂ -10 68 20 K THF -10 59 21 K DCE -30 78 25 K DCE -50	5	Н	DCE		25	42
7 H DCE 10 50 8 H DCE 0 55 9 H DCE -10 64 10 H DCE -20 60 11 I DCE -10 73 12 J DCE -10 67 13 K DCE -10 74 14 L DCE -10 73 16 N DCE -10 73 16 N DCE -10 70 17 O DCE -10 72 19 K CH2Cl2 -10 68 20 K THF -10 59 21 K DCE -20 76 24 K DCE -30 78 25 K DCE -50 79 <td>6</td> <td>Н</td> <td>CHCl₃</td> <td></td> <td>25</td> <td>32</td>	6	Н	CHCl ₃		25	32
8 H DCE 0 55 9 H DCE -10 64 10 H DCE -20 60 11 I DCE -10 73 12 J DCE -10 67 13 K DCE -10 74 14 L DCE -10 72 15 M DCE -10 73 16 N DCE -10 70 17 O DCE -10 70 17 O DCE -10 72 19 K CH2Cl2 -10 68 20 K THF -10 59 21 K DCE -30 78 25 K DCE -50 79 26 K DCE -60 72 </td <td>7</td> <td>Н</td> <td>DCE</td> <td></td> <td>10</td> <td>50</td>	7	Н	DCE		10	50
9 H DCE -10 64 10 H DCE -20 60 11 I DCE -10 73 12 J DCE -10 67 13 K DCE -10 67 13 K DCE -10 67 14 L DCE -10 72 15 M DCE -10 73 16 N DCE -10 70 17 O DCE -10 69 18 P DCE -10 68 20 K THF -10 59 21 K DCE -20 76 24 K DCE -40 79 26 K	8	Н	DCE		0	55
10 H DCE -20 60 11 I DCE -10 73 12 J DCE -10 67 13 K DCE -10 74 14 L DCE -10 72 15 M DCE -10 73 16 N DCE -10 70 17 O DCE -10 69 18 P DCE -10 68 20 K THF -10 59 21 K DCE -20 76 24 K DCE -30 78 25 K DCE -50 79 26 K DCE -60 72 28 K DCE -70 67 29 K CH2Cl2 -40	9	Н	DCE		-10	64
11 I DCE -10 73 12 J DCE -10 67 13 K DCE -10 74 14 L DCE -10 72 15 M DCE -10 73 16 N DCE -10 73 16 N DCE -10 70 17 O DCE -10 69 18 P DCE -10 72 19 K CH ₂ Cl ₂ -10 68 20 K THF -10 59 21 K DCE -20 76 24 K DCE -30 78 25 K DCE -50 79 26 K DCE -60 72 28 K DCE -70	10	Н	DCE		-20	60
12 J DCE -10 67 13 K DCE -10 74 14 L DCE -10 72 15 M DCE -10 73 16 N DCE -10 70 17 O DCE -10 69 18 P DCE -10 72 19 K CH ₂ Cl ₂ -10 68 20 K THF -10 59 21 K DCE -20 76 24 K DCE -30 78 25 K DCE -50 79 26 K DCE -60 72 28 K DCE -70 67 29 K CH ₂ Cl ₂ -40 78 30 K CHCl ₃	11	Ι	DCE		-10	73
13KDCE -10 7414LDCE -10 7215MDCE -10 7316NDCE -10 7017ODCE -10 6918PDCE -10 7219KCH ₂ Cl ₂ -10 6820KTHF -10 5921KDCE -20 7624KDCE -30 7825KDCE -40 7926KDCE -50 7927KDCE -70 6729KCH ₂ Cl ₂ -40 7830KCHCl ₃ 5 Å MS -40 86 $32^{\rm b}$ KCHCl ₃ 5 Å MS -55 91	12	J	DCE		-10	67
14LDCE -10 7215MDCE -10 7316NDCE -10 7017ODCE -10 6918PDCE -10 7219KCH ₂ Cl ₂ -10 6820KTHF -10 5921KDCE -20 7624KDCE -30 7825KDCE -40 7926KDCE -50 7927KDCE -70 6728KDCE -70 6729KCH ₂ Cl ₂ -40 8231KCHCl ₃ 5 Å MS -40 86 $32^{\rm b}$ KCHCl ₃ 5 Å MS -55 91	13	K	DCE		-10	74
15MDCE -10 7316NDCE -10 7017ODCE -10 6918PDCE -10 7219KCH ₂ Cl ₂ -10 6820KTHF -10 5921KDCE -20 7624KDCE -30 7825KDCE -40 7926KDCE -60 7228KDCE -70 6729KCH ₂ Cl ₂ -40 7830KCHCl ₃ 5 Å MS -40 8632 ^b KCHCl ₃ 5 Å MS -55 91	14	L	DCE		-10	72
16NDCE -10 7017ODCE -10 6918PDCE -10 7219KCH ₂ Cl ₂ -10 6820KTHF -10 5921KDCE -20 7624KDCE -30 7825KDCE -40 7926KDCE -60 7228KDCE -70 6729KCH ₂ Cl ₂ -40 8230KCHCl ₃ 5 Å MS -40 8632 ^b KCHCl ₃ 5 Å MS -55 91	15	Μ	DCE		-10	73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	Ν	DCE		-10	70
18PDCE -10 7219K CH_2Cl_2 -10 6820KTHF -10 5921KDCE -20 7624KDCE -30 7825KDCE -40 7926KDCE -50 7927KDCE -60 7228KDCE -70 6729K CH_2Cl_2 -40 8230K $CHCl_3$ 5 Å MS -40 8632 ^b K $CHCl_3$ 5 Å MS -55 91	17	0	DCE		-10	69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	Р	DCE		-10	72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	K	CH_2Cl_2		-10	68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	K	THF		-10	59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	K	DCE		-20	76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	K	DCE		-30	78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	K	DCE		-40	79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	K	DCE		-50	79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	K	DCE		-60	72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	K	DCE		-70	67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	K	CH_2Cl_2		-40	78
31 K CHCl ₃ 5 Å MS -40 86 32 ^b K CHCl ₃ 5 Å MS -55 91	30	K	CHCl ₃		-40	82
32 ^b K CHCl ₃ 5 Å MS -55 91	31	K	CHCl ₃	5 Å MS	-40	86
	32 ^b	K	CHCl ₃	5 Å MS	-55	91

Table S2. Optimization of t	the reaction	conditions of	of sulfenylation ^a
Ar N Ph + N	O catalyst K (10 mol %) CHCl ₃ , -55°	Ar N Ph	

^a**5e:8a** = 1:1.2. ^b**5e:8a** = 1:2.0

2. Copies of HPLC spectra

7a

WD1 A, 波长=254 nm (JLHULH03084H001720.D)				
mau	-	1		
40	6.23	57		
	⁵		345	~
30-			34.0	/ \
			\wedge	/ \
20-				
10-		/ \		
22.5	25 27.5	30	32.5 35	37.5 40 42.5

Entry	Retention Time	Area	Height	%Area
1	26.231	1386.2	33.8	19.281
2	29.269	2129.9	46.2	29.625
3	34.347	1455.8	25.5	20.249
4	41.174	2217.6	32.7	30.845

VWD1 A, 波长=254 nm (JLHLEEB001722.D

Entry	Retention Time	Area	Height	%Area
1	25.77	110	3	4.348
2	28.728	117.1	2.9	4.631
3	33.518	2169.4	41.2	85.775
4	40.16	132.7	2.3	5.247

Entry	Retention Time	Area	Height	%Area	
1	20.211	2740.1	51.2	26.411	
2	31.204	2573.5	35.4	24.805	
3	35.385	2305.2	28	22.220	
4	39.8	2756	26.5	26.564	
4 39.8 2756 26.5 26.564					

	VM/D1 A, 被长=254 nm (JLHU)	LH17052A001958.D)				
mAU 1	7			8		
120 -				31		
100 -				/ \		
80 -				/ \		
60 ·				/ /		
40 -			8	/		
20 -	- 110 80		ŝ		24	~
0.	÷	· · · · · · · · ·		·		
L	20	20	30	30	40	mn
						-

Entry	Retention Time	Area	Height	%Area
1	21.156	90.2	1.6	0.581
2	32.943	1206	15.2	7.762
3	37.659	13250.4	135.6	85.282
4	42.323	990.4	10.9	6.375

Entry	Retention Time	Area	Height	%Area
1	12.888	19735.9	522.3	35.504
2	17.365	7892.7	154.4	14.199
3	28.495	19554	272.5	35.177
4	32.527	8405.1	87.8	15.120

Entry	Retention Time	Area	Height	%Area
1	12.895	7571.7	192	9.110
2	17.443	3634.6	64.2	4.373
3	29.407	62218.8	685.2	74.860
4	32.68	9688.4	96.1	11.657

Entry	Retention Time	Area	Height	%Area
1	24.725	322	6.5	5.894
2	29.265	237.9	2.9	4.354
3	31.317	301.6	4	5.520
4	34.402	4601.7	61.7	84.231

Entry	Retention Time	Area	Height	%Area
1	22.358	4436.1	96.2	26.579
2	28.944	2725.2	44.2	20.438
3	30.918	3023.8	43.7	22.678
4	33.991	5260.5	69.9	31.519

MAU 1400 500 500 500 500 500 500 500 500 500	tt=254 nm (JLHIPH002139.0)	Gee 13	OBE DG	
30	35 40	45 50	55 60	65 min

Entry	Retention Time	Area	Height	%Area
1	29.507	6093	108.6	17.689
2	37.43	10808.8	152.6	31.380
3	51.336	6618.3	62.3	19.214
4	56.38	10925	94.1	31.717

			- 0 -	
1	29.625	188.1	3.2	1.018
2	37.592	518	7.7	2.805
3	51.679	17181.8	170.9	93.044
4	56.845	578.5	5.2	3.133

MeO NO₂ Ή 7g

S8

1	39.623	5648.9	68.4	32.688
2	44.451	3058.2	33.1	17.696
3	49.837	2871.2	30.3	16.615
4	72.872	5702.9	40.2	33.000

VWD1 A, 被长=254 nm (DEF_LC 2015-06-1	4 19-30-43/094-1201.D)	
mAU _		8
70-		4
60-		/ \
50		
40-		
30		
20-		
10-	41.587	
0		,

35 40	45 50	55	60 65	70 75 min
Entry	Retention Time	Area	Height	%Area
1	41.597	174.4	2.7	2.099
2	43.263	179.3	1.8	2.159
3	48.825	7653.3	80	92.126
4	69.96	300.5	2.5	3.617

960

20 26	30 36	40 46	50 55	60 65 min
Entry	Retention Time	Area	Height	%Area
1	30.228	20752.4	349.5	32.266
2	39.081	11222.8	133.1	17.449
3	52.814	11684.8	97.8	18.168
4	68.044	20656.5	135.6	32.117

Entry	Retention Time	Area	Height	%Area
1	30.113	3321.6	58.3	5.299
2	39.398	3991.6	50.1	6.367
3	53.439	52753.1	455.8	84.153
4	65.788	2621.1	25.7	4.181

Entry	Retention Time	Area	Height	%Area
1	24.891	7968.6	159.6	36.971
2	31.78	2793	41.9	12.958
3	36.303	2811.5	36.4	13.044
4	40.425	7980.8	96.2	37.027

WDIA.RtS-S4 rm (DEF_LC 201545-08.21-42-5707-2001.D) mWDIA.RtS-S4 rm (DEF_LC 201545-08.21-42-5707-2001					
Entry	Retention Time	Area	Height	%Area	
1	24.603	2291.4	44.1	5.183	
2	31.399	1862.5	21.5	4.213	
3	35.887	2083	24.4	4.712	
4	41,418	37973.6	310	85.893	

MeO N N N N N NO₂ Br 7j

Entry	Retention Time	Area	Height	%Area
1	30.377	2352.3	41.1	26.673
2	32.822	2100.5	31.3	23.817
3	55.569	2031.1	17.3	23.031
4	62.639	2335.3	20.3	26.479

VWD1 A, 彼作=254 nm (JLHULH000029.D)				
mAU T		2 A		
		R		
300-				
250				
200-		11		
150				
100				
1				
507		8		
		ă / 🔪		
0				
	· · · 20 · · ·	30 40	50 50	60 70 m

Entry	Retention Time	Area	Height	%Area
1	30.032	518.9	7.4	2.090
2	33.174	24315.8	340.4	97.910

-	10.102	1.0	•	
2	14.771	2091.9	61.7	88.338
3	22.509	40.1	1.1	1.694
4	37.404	95.7	1.7	4.041

Entry	Retention Time	Area	Height	%Area
1	46.617	3605.8	41.2	20.753
2	50.429	5546.8	61	31.923
3	69.66	3345.3	28.4	19.253
4	82.385	4877.4	29	28.071

Entry	Retention Time	Area	Height	%Area
1	47.296	482.6	3	3.864
2	50.359	648.4	4.6	5.191
3	69.117	11103.3	53.9	88.890
4	82.662	256.7	1.2	2.055

Entry	Retention Time	Area	Height	%Area
1	46.319	877.1	10.8	2.988
2	50.052	1214.8	14.6	4.139
3	69.03	26849.4	198.4	91.484
4	82.317	407.5	4	1.389

VWD1A,被长=	254 nm (JLH\M-ME002142.D)						
mAU]		2.2		S B			
120 -		22.5		a a a a a a a a a a a a a a a a a a a			Ŧ
100 -		Δ.		/\		8	2 ⁴
80 -						8	\wedge
60						\wedge	
40 -		$ \rangle$					
20 -		- 1	_		1	/	
0			$ \sim $		<u> </u>		\sim
	15	20	25	30	35	40	45 min

Entry	Retention Time	Area	Height	%Area
1	22.977	4972.2	117.3	19.287
2	33.302	7568.8	133.4	29.359
3	38.974	5405.4	68	20.967
4	44.641	7833.7	89.7	30.387

4	44.499	1045	12	4.472	
W01 A, 2014 A 20					
10 15	20	25 30	35	40 45 mi	
Entry	Retention Time	Area	Height	%Area	
1	23.107	170.6	3.6	3.532	
2	33.407	64.5	1.1	1.336	
3	39.097	4595.1	51.2	95.132	

Entry	Retention Time	Area	Height	%Area
1	27.083	5569	112.9	13.557
2	31.594	6027.9	94.5	14.674
3	55.612	15076	114.6	36.700
4	58.511	14406	126.3	35.069

23 30	35 40	45	50 55	60 65 min
Entry	Retention Time	Area	Height	%Area
1	28.737	3126.6	29	98.874
2	33.711	35.6	5.2E-1	1.126

Entry	Retention Time	Area	Height	%Area
1	35.85	5476.4	84.8	18.778
2	44.759	9117.2	114.4	31.262
3	51.698	5344	53	18.324
4	62.651	9226.4	81	31.636

Entry	Retention Time	Area	Height	%Area
1	13.669	1047.7	31.7	3.069
2	22.852	796.8	14.1	2.334
3	31.173	15624.2	202.8	45.769
4	35.258	16668	204.3	48.827

Entry	Retention Time	Area	Height	%Area
1	23.116	506.3	9.5	1.328
2	31.796	4976	68.2	13.052
3	36.048	32641.1	366.9	85.619

1	12.857	3269.1	88.2	22.492
2	17.458	3966.3	94.4	27.288
3	18.911	3969.5	70	27.310
4	22.172	3329.9	58.4	22.910

Entry	Retention Time	Area	Height	%Area
1	12.653	19690.8	552.4	14.272
2	17.249	112721.4	2315.1	81.703
3	18.713	1494.2	65.3	1.083
4	21.874	4057.9	63.3	2.941

MeO

Entry	Retention Time	Area	Height	%Area
1	26.079	8863.5	181.9	24.246
2	43.572	9218.6	115.8	25.217
3	58.763	8777.6	78.5	24.011
4	81.745	9697.4	50.3	26.527

MeO

160.7

27.443

22731.3

Entry	Retention Time	Alea	Height	%Alea
1	8.271	10861.8	388.5	6.616
2	11.083	9052.5	292.7	5.514
3	13.752	140428.5	2535	85.540
4	41.334	3823.8	31.5	2.329

39.107

Entry	Retention Time	Area	Height	%Area
1	12.76	1874.8	37.3	6.533
2	19.76	26823.1	278.9	93.467

9c

Entry	Retention Time	Area	Height	%Area
1	10.419	12155.5	440.4	50.579
2	13.042	11877.2	361.9	49.421

Entry	Retention Time	Area	Height	%Area
1	10.177	1278.9	45.1	4.945
2	12.552	24585.1	646.1	95.055

2

16.514

203.6

9246.8

Entry	Retention Time	Area	Height	%Area
1	11.589	806	21.7	4.480
2	16.631	17186.6	394.2	95.520

W01A, R5-254 m (BUVBU/40001678 E 100- 100- 1000- 800- 600- 400- 200-	~			
Entry	Retention Time	Area	Height	%Area
1	9.162	11501	342.4	50.431
2	11.399	11304.4	285.5	49.569

Entry	Retention Time	Area	Height	%Area
1	9.296	2150	98.5	6.713
2	11.46	29877.9	1149.8	93.287

Entry	Retention Time	Area	Height	%Area
1	14.568	50132.8	1306.6	49.719
2	16.524	50700	1134.2	50.281

Entry	Retention Time	Area	Height	%Area
1	15.043	2494.2	81	6.359
2	16.844	36728.1	993.5	93.641

Entry	Retention Time	Area	Height	%Area
1	10.351	16888.9	406.2	47.298
2	12.974	18818.3	448.5	52.702

	VWD1 A, 波长=254 nm (BLW/BLW4020001591.D)	
mAU	1	Re la
800		la l
600	o-1	
	1	
400	o-]	
	1	/ \
200	0-]	308
	}	
0	•	

0 2	4 0	8 10	12 14	10 10 111
Entry	Retention Time	Area	Height	%Area
1	10.409	1596.2	73.9	5.676
2	12.86	26526.6	933	94.324

Entry	Retention Time	Area	Height	%Area
1	13.141	3003.9	106.4	6.159
2	25.809	45767	773.3	93.841

Entry	Retention Time	Area	Height	%Area
1	13.100	1607.3926	1980.46	50.02
2	16.168	1606.1558	1976.27	49.98
450 3 BLW #58 [手动积分]		BBLW5072-A	<u>1</u> 1 - 13.34	UV_VIS_1 WVL:254 nm 5
				,2 - 16.318
-50 2.0	4.0 6.0	8.0 10.0	12.0 14.0	16.0 17.9
Entry	Retention Time	Area	Height	%Area
1	13.345	349.7697	422.62	55.96
2	16.318	275.3053	336.15	44.04
200 200 150 50 50			301185	
	10		50 TO CC OCC 	
Entry	Retention Time	Area	Height	%Area
Entry 1	Retention Time 22.159	Area 5794.9	Height 96.5	%Area 52.668
Entry 1 2	Retention Time 22.159 30.185	Area 5794.9 5207.7	Height 96.5 82.7	%Area 52.668 47.332
Entry 1 2 ^{WD1A, IE 1-254 nm (BLWBLW 402001780) ^{MU} ¹ ¹ ¹ ² ¹ ¹ ² ¹ ² ¹ ¹ ² ¹ ² ¹ ² ¹ ² ¹ ² ¹ ² ¹ ² ¹ ² ¹ ¹ ² ¹ ¹ ² ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹}	Retention Time 22.159 30.185	Area 5794.9 5207.7	Height 96.5 82.7	%Area 52.668 47.332
Entry 1 2 WD1A it I:-254 rm (BLVBLV 4020017802 MU 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 1	Retention Time 22.159 30.185	Area	Height 96.5 82.7	%Area 52.668 47.332
Entry 1 2 WD1A, 8 1: <254 rm (BLWBU/400001780) Entry 1 Entry 1 Entry 1 1 2 Entry 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Retention Time 22.159 30.185	Area 15 207.7	Height 96.5 82.7 Height 12	%Area 52.668 47.332 %Area 4.309

3.Determination of the absolute configuration by *X*-ray crystallography

1) Absolute configurations of 7 and the derivative **10** are determined by X-ray structure analysis of the product **7f** (CCDC1430350).

Displacement ellipsoids are drawn at the 30% probability level.

Table 1 Crystal data and structure refinement for JLH06047.

Identification code	JLH06047
Empirical formula	$C_{24}H_{20}N_2O_5S$
Formula weight	448.48
Temperature/K	291.15
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	8.6723(2)
b/Å	16.0081(4)
c/Å	16.3709(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2272.72(9)
Ζ	4
$\rho_{calc}g/cm^3$	1.311
µ/mm ⁻¹	1.585
F(000)	936.0
Crystal size/mm ³	$0.19 \times 0.17 \times 0.16$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.724 to 134.158
Index ranges	$-5 \le h \le 10, -19 \le k \le 19, -19 \le l \le 19$
Reflections collected	8203

Independent reflections	4076 [$R_{int} = 0.0282, R_{sigma} = 0.0382$]
Data/restraints/parameters	4076/0/290
Goodness-of-fit on F ²	1.017
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0378$, $wR_2 = 0.0914$
Final R indexes [all data]	$R_1 = 0.0447, wR_2 = 0.0958$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.15
Flack parameter	0.025(14)

Flack parameter	0.025(14)
Table 2 Fractional Atomic Coordinates (?)	×10 ⁴) and Equivalent Isotropic Displacement Parameters (Å ² ×10 ³)
for JLH06047. Ueg is defined as 1/3 of of t	the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
C1	2572(4)	5049(2)	1720.3(18)	48.7(7)
C2	3862(3)	3907.4(18)	2327.8(18)	40.5(6)
C3	3347(4)	4359.9(19)	3112.3(17)	40.8(7)
C4	4812(4)	4571(2)	3627.1(17)	41.9(7)
C5	4318(4)	4980(2)	4423.6(19)	50.6(8)
C6	3619(4)	3929.4(19)	835.0(17)	43.6(7)
C7	2674(5)	3303(2)	565.3(19)	52.2(8)
C8	2909(5)	2942(2)	-197(2)	54.6(9)
С9	4124(5)	3218(2)	-671.6(19)	50.1(8)
C10	5074(5)	3849(3)	-396(2) 6	60.3(10)
C11	4825(5)	4206(3)	363(2)	58.5(9)
C12	3435(7)	2334(3)	-1786(2) 8	32.7(15)
C13	2242(4)	3776(2)	3581.9(17)	45.7(7)
C14	729(5)	3979(3)	3738(3) 7	'3.1(12)
C15	-221(6)	3429(4)	4152(3) 9	98.8(18)
C16	326(6)	2667(4)	4403(3) 8	88.1(15)
C17	1826(6)	2459(3)	4255(2) 7	'1.0(11)
C18	2780(5)	3005(2)	3844(2)	56.2(9)
C19	6014(4)	5064.5(19)	3157.8(17)	41.8(7)
C20	7131(4)	4637(2)	2724(2)	52.6(8)
C21	8234(4)	5056(3)	2268(3) 6	5.1(10)
C22	8261(5)	5906(3)	2261(3) 6	69.6(11)
C23	7180(5)	6346(2)	2699(3) 7	'1.0(11)
C24	6051(4)	5934(2)	3144(2)	55.8(9)
N1	3344(3)	4294.8(16)	1626.9(15)	44.0(6)
N2	5682(4)	5125(2)	4963.8(17)	55.8(7)
01	2072(4)	5467.6(17)	1173.9(14)	71.8(8)
02	4618(3)	3277.5(14)	2327.7(13)	51.7(6)
03	4464(4)	2909.1(17)	-1424.9(15)	67.8(8)
O4	5797(4)	5792(2)	5298(2) 8	39.6(10)

 U_{eq} is t

05			6611(4)			4566(2)	5045.2(18)	82.9(9)
S 1			2394.4(10)			5313.8(5)	2758.0(5)	48.0(2)
Tabl	e 3 Anisot	ropic Displaceme	ent Parame	eters (Å ² ×	10 ³) for JI	LH06047. T	The Anisotropic displaceme	nt factor
expo	nent takes	the form: $-2\pi^2$ [h	² a* ² U ₁₁ +2h	ıka*b*U ₁	₂ +].			
Ato	m	U ₁₁	U ₂₂	U	33	U ₂₃	U ₁₃	U ₁₂
C1		53.2(18)	55.3(17)		37.7(14)	-2.2(13)	-4.3(15)	2.7(16)
C2		43.4(15)	43.6(16)		34.4(14)	-1.8(13)	-0.3(13)	-3.9(13)
C3		44.4(17)	45.5(16)		32.4(14)	-1.0(12)	-1.0(13)	4.4(14)
C4		47.0(17)	46.8(17)		31.9(13)	-1.9(13)	-2.4(13)	5.6(14)
C5		51.9(18)	64(2)		35.7(15)	-8.7(14)	-1.0(14)	1.7(17)
C6		50.3(17)	48.7(17)		31.9(14)	-2.2(13)	-3.5(13)	3.1(15)
C7		61(2)	54.1(18)		41.6(15)	-0.8(14)	7.3(16)	-8.2(18)
C8		68(2)	48.6(18)		47.7(18)	-7.2(14)	-6.7(17)	-9.3(17)
C9		67(2)	48.0(18)		35.4(15)	-3.3(13)	-4.8(16)	6.3(16)
C10		62(2)	74(2)		45.4(18)	-6.0(18)	9.0(17)	-14(2)
C11		63(2)	66(2)		46.9(18)	-11.7(17)	2.2(17)	-16.4(19)
C12		135(4)	65(2)		48(2)	-20.1(19)	-10(3)	-5(3)
C13		48.0(18)	58.7(18)		30.3(13)	-3.5(12)	0.8(13)	-3.3(15)
C14		62(2)	88(3)		69(3)	11(2)	15(2)	10(2)
C15		64(3)	130(5)		102(4)	33(4)	33(3)	3(3)
C16		86(3)	106(4)		73(3)	21(3)	19(3)	-23(3)
C17		88(3)	69(3)		57(2)	10.2(19)	1(2)	-15(2)
C18		59(2)	57.2(19)		52.4(19)	4.3(15)	0.5(17)	-4.6(18)
C19		44.5(16)	47.7(16)		33.1(13)	0.9(12)	-2.9(12)	4.2(14)
C20		50.1(17)	55.1(17)		52.6(17)	-5.5(17)	4.0(16)	1.1(16)
C21		50.1(19)	87(3)		58(2)	-5(2)	7.6(18)	-2.9(19)
C22		57(2)	87(3)		65(2)	19(2)	2(2)	-11(2)
C23		76(3)	52.5(19)		85(3)	23(2)	-8(3)	-5.9(19)
C24		55(2)	52.0(19)		61(2)	1.4(16)	-1.7(17)	4.9(17)
N1		50.3(15)	48.3(14)		33.2(12)	-2.9(11)	-2.8(11)	2.0(12)
N2		66.5(19)	66.3(19)		34.6(13)	-5.6(13)	-5.3(13)	-0.2(16)
01		98(2)	73.8(17)		43.4(13)	5.2(12)	-14.8(13)	27.1(16)
02		64.4(14)	48.1(12)		42.6(11)	-3.7(10)	0.1(11)	12.3(11)
03		91(2)	71.6(17)		41.2(13)	-16.0(12)	4.9(14)	2.3(16)
04		101(2)	82(2)		86(2)	-32.2(18)	-28.0(19)	-1.2(19)
05		89(2)	89(2)		70.8(18)	-5.9(17)	-31.4(16)	21.9(19)
S 1		54.4(4)	50.7(4)		38.8(3)	-4.4(3)	-4.4(4)	13.2(4)
Tabl	e 4 Bond l	Lengths for JLH()6047.					
Aton	n Atom	Length/Å	Atom	Atom	Len	gth/Å		
C1	N1	1.390(4)	С9	03		1.361(4)		

330

C1	O1	1.199(4) C10	C11	1.385(5)
C1	S1	1.758(3) C12	O3	1.411(5)
C2	C3	1.541(4) C13	C14	1.376(5)
C2	N1	1.379(4) C13	C18	1.388(5)
C2	02	1.203(4) C14	C15	1.383(6)
C3	C4	1.562(4) C15	C16	1.373(8)
C3	C13	1.544(4) C16	C17	1.365(7)
C3	S1	1.831(3) C17	C18	1.378(5)
C4	C5	1.521(4) C19	C20	1.382(4)
C4	C19	1.517(4) C19	C24	1.392(5)
C5	N2	1.494(4) C20	C21	1.387(5)
C6	C7	1.367(5) C21	C22	1.361(6)
C6	C11	1.373(5) C22	C23	1.375(6)
C6	N1	1.442(4) C23	C24	1.387(5)
C7	C8	1.391(5) N2	O4	1.204(4)
C8	С9	1.381(5) N2	O5	1.211(4)
C9	C10	1.379(5)		

Table 5 Bond Angles for JLH06047.

Aton	n Aton	n	Atom	Angle/°	Aton	n Aton	n Atom	Angle/°	
N1	C1	S 1		111.0(2)	C6	C11	C10	119.3(3)	
01	C1	N1		125.3(3)	C14	C13	C3	122.8(3)	
01	C1	S 1		123.7(3)	C14	C13	C18	118.3(4)	
N1	C2	C3		112.8(2)	C18	C13	C3	118.9(3)	
02	C2	C3		123.5(3)	C13	C14	C15	120.6(5)	
02	C2	N1		123.6(3)	C16	C15	C14	120.5(5)	
C2	C3	C4		108.4(2)	C17	C16	C15	119.5(5)	
C2	C3	C13		108.1(2)	C16	C17	C18	120.3(5)	
C2	C3	S 1		105.00(19)	C17	C18	C13	120.8(4)	
C4	C3	S 1		111.0(2)	C20	C19	C4	118.9(3)	
C13	C3	C4		111.6(2)	C20	C19	C24	118.0(3)	
C13	C3	S 1		112.5(2)	C24	C19	C4	123.1(3)	
C5	C4	C3		109.1(2)	C19	C20	C21	121.4(3)	
C19	C4	C3		113.5(2)	C22	C21	C20	120.0(4)	
C19	C4	C5		113.8(3)	C21	C22	C23	119.7(4)	
N2	C5	C4		110.6(3)	C22	C23	C24	120.8(4)	
C7	C6	C11		120.7(3)	C23	C24	C19	120.1(4)	
C7	C6	N1		119.2(3)	C1	N1	C6	122.1(3)	
C11	C6	N1		120.0(3)	C2	N1	C1	117.1(2)	
C6	C7	C8		120.5(3)	C2	N1	C6	120.8(3)	
C9	C8	C7		118.9(3)	O4	N2	C5	118.1(3)	

C10 C9 C8	12	20.4(3)	04	N2	05	123.4(3)
O3 C9 C8	12	23.9(3)	05	N2	C5	118.5(3)
O3 C9 C10	11	5.7(3)	C9	O3	C12	118.7(3)
C9 C10 C11	12	20.2(4)	C1	S1	C3	93.77(14)
Table 6 Torsion Ang	gles for JLH0604	47.				
A B C D	Angle/°	A B	C D	A	ngle/°	
C2 C3 C4 C5	-177.3(3)	C13 C3 S	S1 C1		-113.3(2)	
C2 C3 C4 C19	54.8(3)	C13 C14 C	C15 C16		-0.9(8)	
C2 C3 C13 C14	-117.9(4)	C14 C13 C	C18 C17		-0.4(5)	
C2 C3 C13 C18	60.7(4)	C14 C15 C	C16 C17		1.2(9)	
C2 C3 S1 C1	4.0(2)	C15 C16 C	C17 C18		-1.1(8)	
C3 C2 N1 C1	5.1(4)	C16 C17 C	C18 C13		0.7(6)	
C3 C2 N1 C6	-175.6(3)	C18 C13 C	C14 C15		0.5(7)	
C3 C4 C5 N2	175.2(3)	C19C4 C	C5 N2		-57.1(4)	
C3 C4 C19 C20	-89.5(3)	C19 C20 C	C21 C22		2.0(6)	
C3 C4 C19 C24	90.7(4)	C20 C19 C	C24 C23		0.5(5)	
C3 C13 C14 C15	179.1(4)	C20 C21 C	C22 C23		-0.8(6)	
C3 C13 C18 C17	-179.0(3)	C21 C22 C	C23 C24		-0.5(6)	
C4 C3 C13 C14	123.0(4)	C22 C23 C	C24 C19		0.7(6)	
C4 C3 C13 C18	-58.4(4)	C24 C19 C	C20 C21		-1.8(5)	
C4 C3 S1 C1	120.9(2)	N1 C1 S	S1 C3		-1.6(3)	
C4 C5 N2 O4	134.9(4)	N1 C2 C	C3 C4		-124.4(3)	
C4 C5 N2 O5	-45.3(4)	N1 C2 C	C3 C13		114.6(3)	
C4 C19 C20 C21	178.4(3)	N1 C2 C	C3 S1		-5.7(3)	
C4 C19 C24 C23	-179.8(3)	N1 C6 C	C7 C8		179.8(3)	
C5 C4 C19 C20	145.0(3)	N1 C6 C	C11 C10		180.0(4)	
C5 C4 C19 C24	-34.8(4)	01 C1 N	N1 C2		178.9(4)	
C6 C7 C8 C9	0.9(6)	01 C1 N	N1 C6		-0.3(5)	
C7 C6 C11C10	0.5(6)	O1 C1 S	S1 C3		177.7(4)	
C7 C6 N1 C1	-99.7(4)	O2 C2 C	C3 C4		56.5(4)	
C7 C6 N1 C2	81.1(4)	O2 C2 C	C3 C13		-64.6(4)	
C7 C8 C9 C10	-0.8(6)	O2 C2 C	C3 S1		175.1(3)	
C7 C8 C9 O3	179.8(3)	O2 C2 N	N1 C1		-175.7(3)	
C8 C9 C10C11	0.6(6)	O2 C2 N	N1 C6		3.6(5)	
C8 C9 O3 C12	6.8(5)	O3 C9 C	C10 C11		180.0(4)	
C9 C10C11C6	-0.4(6)	S1 C1 N	N1 C2		-1.8(4)	
C10C9 O3 C12	-172.6(4)	S1 C1 N	N1 C6		178.9(3)	
C11C6 C7 C8	-0.7(6)	S1 C3 C	C4 C5		67.9(3)	
C11C6 N1 C1	80.8(4)	S1 C3 C	C4 C19		-60.0(3)	
C11C6 N1 C2	-98.5(4)	S1 C3 C	C13 C14		-2.5(4)	

C13 C3 C4 C5	-58.4(3) S1 C3 C13 C18	176.1(2)
C13 C3 C4 C19	173.7(3)	

Table 7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2$	² ×10 ³) for
JLH06047.	

Atom	x	у	z	U(eq)
H4	5291	4037	3773	50
H5A	3818	5509	4308	61
H5B	3582	4624	4702	61
H7	1869	3118	894	63
H8	2260	2521	-385	66
H10	5883	4036	-721	72
H11	5468	4629	552	70
H12A	3802	2185	-2320	124
H12B	2432	2584	-1831	124
H12C	3371	1842	-1452	124
H14	342	4491	3564	88
H15	-1238	3577	4261	119
H16	-322	2294	4672	106
H17	2207	1947	4433	85
H18	3798	2854	3742	67
H20	7142	4056	2738	63
H21	8956	4756	1967	78
H22	9008	6189	1961	84
H23	7205	6927	2697	85
H24	5319	6238	3433	67

Experimental

The crystal was kept at 291.15 K during data collection. Using Olex2 [1], the structure was solved with the Superflip [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst., 40, 786-790; Palatinus, L. & van der Lee, A. (2008).
 J. Appl. Cryst. 41, 975-984; Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.
- 3. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal Data for $C_{24}H_{20}N_2O_5S$ (*M*=448.48 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), *a* = 8.6723(2) Å, *b* = 16.0081(4) Å, *c* = 16.3709(3) Å, *V* = 2272.72(9) Å³, *Z* = 4, *T* = 291.15 K, μ (CuK α) = 1.585 mm⁻¹, *Dcalc* = 1.311 g/cm³, 8203 reflections measured (7.724° $\leq 2\Theta \leq 134.158°$), 4076 unique ($R_{int} = 0.0282$, $R_{sigma} = 0.0382$) which were used in all calculations. The final R_1 was 0.0378 (I > 2 σ (I)) and wR_2 was 0.0958 (all data).

Refinement model description

Number of restraints -0, number of constraints - unknown. Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Ternary CH refined with riding coordinates: C4(H4) 2.b Secondary CH2 refined with riding coordinates: C5(H5A,H5B) 2.c Aromatic/amide H refined with riding coordinates: C7(H7), C8(H8), C10(H10), C11(H11), C14(H14), C15(H15), C16(H16), C17(H17), C18(H18), C20(H20), C21(H21), C22(H22), C23(H23), C24(H24) 2.d Idealised Me refined as rotating group: C12(H12A,H12B,H12C)

2) Absolute configurations of 9 and the derivative 11 are determined by X-ray structure

analysis of the product 11 (CCDC1489694).

Displacement ellipsoids are drawn at the 30% probability level.

Table 1 Crystal data and structure refinement for BLWyanghua.

Identification code	BLWyanghua
Empirical formula	$C_{23}H_{19}NO_5S_2$
Formula weight	453.51
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	8.62184(14)

b/Å	15.2120(3)
c/Å	16.4772(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2161.08(6)
Ζ	4
$\rho_{calc}g/cm^3$	1.394
μ/mm^{-1}	2.538
F(000)	944.0
Crystal size/mm ³	$0.15\times0.1\times0.08$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	7.91 to 141.83
Index ranges	$-9 \le h \le 10, -18 \le k \le 17, -19 \le l \le 19$
Reflections collected	8178
Independent reflections	4097 [$R_{int} = 0.0294$, $R_{sigma} = 0.0385$]
Data/restraints/parameters	4097/0/281
Goodness-of-fit on F ²	1.033
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0348, wR_2 = 0.0886$
Final R indexes [all data]	$R_1 = 0.0381, wR_2 = 0.0913$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.19/-0.23
Flack parameter	0.015(10)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for BLWyanghua. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
C1	8116(4)	4308(2)	6808.4(19)	44.1(6)
C2	5946(3)	3396(2)	6516.0(17)	40.7(6)
C3	5095(3)	4240.9(19)	6762.5(16)	38.8(6)
C4	3893(3)	4596(2)	6181.9(17)	42.4(6)
C5	3396(4)	4140(2)	5499.6(18)	51.9(7)
C6	2311(5)	4519(3)	4983(2)	62(1)
C7	1706(5)	5326(3)	5138(2)	65.5(10)
C8	2158(5)	5776(3)	5825(2)	66.9(10)
C9	3262(5)	5420(2)	6335(2)	56.4(8)
C10	2521(4)	3356(2)	7540(2)	51.0(7)
C11	1771(4)	3079(2)	8319(2)	47.1(7)
C12	705(5)	3621(3)	8696(3)	66.0(9)
C13	37(6)	3360(4)	9421(3)	86.1(14)

C14	401(6)	2578(4)	9767(3)	89.0(16)
C15	1442(6)	2043(4)	9400(4)	91.6(17)
C16	2137(5)	2286(3)	8675(3)	73.5(12)
C17	8582(3)	2759.6(19)	6486.9(18)	40.9(6)
C18	8438(4)	2045(2)	7007(2)	52.2(7)
C19	9454(4)	1353(2)	6940(2)	55.7(8)
C20	10639(4)	1371(2)	6371.2(18)	45.7(6)
C21	10795(4)	2089(2)	5857.7(18)	45.4(6)
C22	9750(4)	2779(2)	5920.5(19)	44.7(6)
C23	12837(6)	634(3)	5808(3)	80.8(14)
N1	7547(3)	3490.2(16)	6571.1(15)	41.7(5)
01	9445(3)	4499.4(16)	6872.2(19)	59.9(6)
02	5307(3)	2733.0(14)	6317.3(16)	52.2(5)
O3	3756(3)	4814.5(17)	8118.2(14)	60.3(6)
O4	5326(3)	3468.4(19)	8203.9(15)	62.1(6)
O5	11568(3)	646.8(18)	6352.8(18)	67.4(7)
S1	6579.5(9)	5054.1(5)	6980.8(5)	50.0(2)
S2	4219.3(8)	3992.5(5)	7772.9(4)	42.79(18)

Table 3 Anisotropic Displacement Parameters (Å2×103) for BLWyanghua. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11}+2hka^*b^* U_{12}+...].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	40.0(16)	43.7(14)	48.8(15)	2.4(12)	-1.1(13)	0.1(12)
C2	37.2(14)	43.2(15)	41.8(13)	-0.8(11)	0.8(12)	1.6(12)
C3	37.6(13)	41.3(14)	37.5(12)	-2.8(11)	-0.7(11)	1.6(11)
C4	39.3(15)	52.4(16)	35.5(12)	3.8(11)	2.3(11)	5.2(12)
C5	51.5(17)	65(2)	38.7(13)	-6.4(13)	-0.3(13)	5.8(17)
C6	57(2)	92(3)	36.7(15)	-0.1(16)	-5.5(14)	-1(2)
C7	57(2)	92(3)	47.6(17)	18.8(17)	-4.4(17)	16(2)
C8	69(2)	70(2)	62(2)	4.7(18)	-4.5(18)	25.8(19)
C9	64(2)	56.4(18)	48.5(16)	-5.2(14)	-6.7(16)	18.3(17)
C10	41.8(16)	65.9(19)	45.4(14)	-6.9(14)	-5.6(13)	-7.2(15)
C11	39.3(15)	50.6(16)	51.4(15)	-2.6(13)	-3.9(13)	-6.2(13)
C12	65(2)	63(2)	70(2)	6.4(18)	15(2)	0(2)
C13	85(3)	92(3)	81(3)	-7(3)	36(3)	-14(3)
C14	83(3)	116(4)	67(2)	23(3)	2(2)	-45(3)
C15	66(3)	85(3)	123(4)	57(3)	-12(3)	-23(3)
C16	52(2)	57(2)	111(3)	11(2)	-1(2)	-4.3(17)
C17	36.2(13)	40.2(14)	46.3(14)	2.2(11)	-2.7(12)	0.8(12)

S36							
45.2(15)	54.3(17)	57.1(17)	10.6(14)	11.1(14)	4.6(14)		
56.0(18)	50.7(16)	60.3(17)	16.0(15)	4.9(16)	8.7(15)		
41.3(14)	47.1(15)	48.7(14)	-0.3(12)	-6.2(13)	8.0(13)		
40.4(14)	53.7(16)	42.2(13)	0.6(12)	4.0(13)	1.6(14)		
43.6(15)	46.5(15)	43.9(14)	6.8(12)	-0.9(12)	-1.2(13)		
73(3)	94(3)	76(3)	4(2)	11(2)	46(3)		
35.0(12)	40.6(12)	49.6(12)	1.8(10)	-1.2(10)	0.8(10)		
38.5(12)	54.7(12)	86.5(17)	-4.7(12)	-2.4(12)	-6.9(10)		
42.4(11)	45.6(12)	68.5(13)	-10.8(10)	-4.6(10)	-1.2(9)		
68.0(16)	68.2(15)	44.6(11)	-13.8(11)	9.3(11)	-3.9(12)		
49.9(13)	81.7(17)	54.8(12)	16.8(13)	-12.9(10)	-5.1(12)		
62.8(15)	63.2(15)	76.3(16)	12.2(13)	7.6(14)	25.0(13)		
42.6(4)	39.9(3)	67.5(5)	-7.8(3)	-1.3(3)	-1.0(3)		
39.6(3)	55.3(4)	33.5(3)	-1.1(3)	-3.9(3)	-3.1(3)		
	$\begin{array}{c} 45.2(15) \\ 56.0(18) \\ 41.3(14) \\ 40.4(14) \\ 43.6(15) \\ 73(3) \\ 35.0(12) \\ 38.5(12) \\ 42.4(11) \\ 68.0(16) \\ 49.9(13) \\ 62.8(15) \\ 42.6(4) \\ 39.6(3) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	45.2(15) $54.3(17)$ $57.1(17)$ $56.0(18)$ $50.7(16)$ $60.3(17)$ $41.3(14)$ $47.1(15)$ $48.7(14)$ $40.4(14)$ $53.7(16)$ $42.2(13)$ $43.6(15)$ $46.5(15)$ $43.9(14)$ $73(3)$ $94(3)$ $76(3)$ $35.0(12)$ $40.6(12)$ $49.6(12)$ $38.5(12)$ $54.7(12)$ $86.5(17)$ $42.4(11)$ $45.6(12)$ $68.5(13)$ $68.0(16)$ $68.2(15)$ $44.6(11)$ $49.9(13)$ $81.7(17)$ $54.8(12)$ $62.8(15)$ $63.2(15)$ $76.3(16)$ $42.6(4)$ $39.9(3)$ $67.5(5)$ $39.6(3)$ $55.3(4)$ $33.5(3)$	S36 $45.2(15)$ $54.3(17)$ $57.1(17)$ $10.6(14)$ $56.0(18)$ $50.7(16)$ $60.3(17)$ $16.0(15)$ $41.3(14)$ $47.1(15)$ $48.7(14)$ $-0.3(12)$ $40.4(14)$ $53.7(16)$ $42.2(13)$ $0.6(12)$ $43.6(15)$ $46.5(15)$ $43.9(14)$ $6.8(12)$ $73(3)$ $94(3)$ $76(3)$ $4(2)$ $35.0(12)$ $40.6(12)$ $49.6(12)$ $1.8(10)$ $38.5(12)$ $54.7(12)$ $86.5(17)$ $-4.7(12)$ $42.4(11)$ $45.6(12)$ $68.5(13)$ $-10.8(10)$ $68.0(16)$ $68.2(15)$ $44.6(11)$ $-13.8(11)$ $49.9(13)$ $81.7(17)$ $54.8(12)$ $16.8(13)$ $62.8(15)$ $63.2(15)$ $76.3(16)$ $12.2(13)$ $42.6(4)$ $39.9(3)$ $67.5(5)$ $-7.8(3)$ $39.6(3)$ $55.3(4)$ $33.5(3)$ $-1.1(3)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

Table 4 Bond Lengths for BLWyanghua.

Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
C1	N1	1.394(4)	C11	C12	1.382(5)
C1	01	1.186(4)	C11	C16	1.377(5)
C1	S1	1.767(3)	C12	C13	1.385(6)
C2	C3	1.534(4)	C13	C14	1.356(8)
C2	N1	1.391(4)	C14	C15	1.355(9)
C2	02	1.195(4)	C15	C16	1.387(8)
C3	C4	1.510(4)	C17	C18	1.390(4)
C3	S 1	1.816(3)	C17	C22	1.373(4)
C3	S2	1.867(3)	C17	N1	1.432(4)
C4	C5	1.389(4)	C18	C19	1.374(5)
C4	C9	1.389(5)	C19	C20	1.386(5)
C5	C6	1.389(5)	C20	C21	1.388(4)
C6	C7	1.358(6)	C20	05	1.362(4)
C7	C8	1.379(6)	C21	C22	1.387(4)
C8	C9	1.381(5)	C23	05	1.416(5)
C10	C11	1.498(5)	03	S2	1.431(3)
C10	S2	1.797(3)	O4	S2	1.432(3)

Table 5 Bond Angles for BLWyanghua.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°				
----------------	---------	----------------	---------	--			
N1	C1	S 1	110.7(2)	C14	C13	C12	121.2(5)
------------	-----	------------	------------	-----	------------	-----	------------
01	C1	N1	125.7(3)	C15	C14	C13	119.5(4)
01	C1	S 1	123.5(3)	C14	C15	C16	120.7(5)
N1	C2	C3	111.8(3)	C11	C16	C15	120.1(5)
02	C2	C3	124.0(3)	C18	C17	N1	119.5(3)
02	C2	N1	124.2(3)	C22	C17	C18	120.1(3)
C2	C3	S 1	106.6(2)	C22	C17	N1	120.4(3)
C2	C3	S2	105.06(19)	C19	C18	C17	119.6(3)
C4	C3	C2	117.4(2)	C18	C19	C20	120.6(3)
C4	C3	S 1	111.4(2)	C19	C20	C21	119.9(3)
C4	C3	S2	111.1(2)	05	C20	C19	115.6(3)
S 1	C3	S2	104.25(14)	05	C20	C21	124.5(3)
C5	C4	C3	123.1(3)	C22	C21	C20	119.1(3)
C9	C4	C3	118.5(3)	C17	C22	C21	120.7(3)
C9	C4	C5	118.5(3)	C1	N1	C17	120.0(2)
C4	C5	C6	119.8(3)	C2	N1	C1	117.4(3)
C7	C6	C5	121.2(3)	C2	N1	C17	122.2(3)
C6	C7	C8	119.6(3)	C20	05	C23	118.6(3)
C7	C8	C9	120.0(4)	C1	S 1	C3	93.40(13)
C8	C9	C4	120.9(3)	C10	S2	C3	104.36(14)
C11	C10	S2	108.7(2)	03	S2	C3	106.90(14)
C12	C11	C10	120.3(3)	03	S2	C10	109.16(16)
C16	C11	C10	120.8(4)	03	S2	04	118.39(17)
C16	C11	C12	118.9(4)	04	S2	C3	106.60(14)
C11	C12	C13	119.5(4)	04	S2	C10	110.44(16)

Table 6 Torsion Angles for BLWyanghua.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
C2	C3	C4	C5	8.4(4)	C18	C19	C20	05	-179.4(3)
C2	C3	C4	C9	-171.3(3)	C19	C20	C21	C22	-0.3(5)
C2	C3	S 1	C1	-2.6(2)	C19	C20	05	C23	-177.7(4)
C2	C3	S2	C10	-78.7(2)	C20	C21	C22	C17	0.6(5)
C2	C3	S2	O3	165.7(2)	C21	C20	05	C23	3.7(6)
C2	C3	S2	04	38.2(2)	C22	C17	C18	C19	-1.2(5)
C3	C2	N1	C1	-1.7(4)	C22	C17	N1	C1	-62.9(4)
C3	C2	N1	C17	170.8(2)	C22	C17	N1	C2	124.7(3)
C3	C4	C5	C6	-178.5(3)	N1	C1	S 1	C3	1.8(2)
C3	C4	C9	C8	-180.0(4)	N1	C2	C3	C4	128.6(3)
C4	C3	S 1	C1	-131.9(2)	N1	C2	C3	S1	2.9(3)

C4 C3 S2 C10	49.2(2)	N1 C2 C3	S2 -107.4(2)
C4 C3 S2 O3	-66.4(2)	N1 C17C18	C19 -178.4(3)
C4 C3 S2 O4	166.1(2)	N1 C17 C22	C21 177.4(3)
C4 C5 C6 C7	-1.0(6)	O1 C1 N1	C2 -178.8(3)
C5 C4 C9 C8	0.3(6)	O1 C1 N1	C17 8.5(5)
C5 C6 C7 C8	-0.8(6)	O1 C1 S1	C3 -179.7(3)
C6 C7 C8 C9	2.3(6)	O2 C2 C3	C4 -52.8(4)
C7 C8 C9 C4	-2.1(6)	O2 C2 C3	S1 -178.5(3)
C9 C4 C5 C6	1.2(5)	O2 C2 C3	S2 71.2(3)
C10 C11 C12 C13	-179.1(4)	O2 C2 N1	C1 179.7(3)
C10 C11 C16 C15	179.4(4)	O2 C2 N1	C17 -7.7(5)
C11 C10 S2 C3	177.0(2)	O5 C20 C21	C22 178.3(3)
C11 C10 S2 O3	-69.0(3)	S1 C1 N1	C2 -0.4(3)
C11 C10 S2 O4	62.8(3)	S1 C1 N1	C17 -173.1(2)
C11 C12 C13 C14	-0.5(8)	S1 C3 C4	C5 131.7(3)
C12 C11 C16 C15	-0.1(6)	S1 C3 C4	C9 -48.0(4)
C12 C13 C14 C15	0.3(8)	S1 C3 S2	C10 169.29(16)
C13 C14 C15 C16	0.0(8)	S1 C3 S2	O3 53.71(18)
C14 C15 C16 C11	-0.1(7)	S1 C3 S2	O4 -73.82(18)
C16 C11 C12 C13	0.3(6)	S2 C3 C4	C5 -112.5(3)
C17 C18 C19 C20	1.4(6)	S2 C3 C4	C9 67.8(3)
C18 C17 C22 C21	0.1(5)	S2 C3 S1	C1 108.19(16)
C18 C17 N1 C1	114.4(3)	S2 C10C11	C12 87.4(4)
C18 C17 N1 C2	-58.0(4)	S2 C10C11	C16 -92.1(4)
C18 C19 C20 C21	-0.7(5)		

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for BLWyanghua.

Atom	x	у	Z	U(eq)
Н5	3787	3583	5389	62
Н6	1994	4214	4523	74
H7	990	5573	4783	79
H8	1720	6320	5944	80
Н9	3586	5736	6788	68
H10A	1802	3706	7222	61
H10B	2807	2843	7225	61
H12	438	4157	8464	79
H13	-675	3728	9675	103
H14	-61	2410	10253	107

H15	1694	1506	9636	110
H16	2851	1914	8428	88
H18	7660	2035	7397	63
H19	9346	868	7279	67
H21	11590	2107	5477	54
H22	9841	3260	5575	54
H23A	12460	670	5261	121
H23B	13410	99	5877	121
H23C	13502	1127	5916	121

Experimental

The crystal was kept at 293(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXS [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for $C_{23}H_{19}NO_5S_2$ (M = 453.51 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 8.62184(14) Å, b = 15.2120(3) Å, c = 16.4772(2) Å, V = 2161.08(6) Å³, Z = 4, T = 293(2) K, μ (CuK α) = 2.538 mm⁻¹, *Dcalc* = 1.394 g/cm³, 8178 reflections measured ($7.91^\circ \le 2\Theta \le 141.83^\circ$), 4097 unique ($R_{int} = 0.0294$, $R_{sigma} = 0.0385$) which were used in all calculations. The final R_1 was 0.0348 (I > 2 σ (I)) and wR_2 was 0.0913 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

Fixed Uiso
 At 1.2 times of:
 All C(H) groups, All C(H,H) groups
 At 1.5 times of:
 All C(H,H,H) groups

2.a Secondary CH2 refined with riding coordinates:
 C10(H10A,H10B)
 2.b Aromatic/amide H refined with riding coordinates:
 C5(H5), C6(H6), C7(H7), C8(H8), C9(H9), C12(H12), C13(H13), C14(H14),
 C15(H15), C16(H16), C18(H18), C19(H19), C21(H21), C22(H22)

2.c Idealised Me refined as rotating group:

C23(H23A,H23B,H23C)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S57

90 80 fl (ppm) 60 50

10 0

S61

S65

S69

