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Abstr act . Tournament select ion is a useful and rob ust select ion
mechanism commonly used by genet ic algorithms (GAs). The se­
lecti on pr essure of to urnament select ion direc tly varies wit h the tour­
nam en t size-the more compe t it ors , t he higher the resulting select ion
pr essur e. This pap er develops a model, based on order stat ist ics, that
can be used to quantita tively predict th e resul ting select ion pr essure
of a tournament of a given size. T his mo del is used to pr edict the
convergence ra tes of GAs utili zing tournament selection.

While to urnament selection is often used in conjunct ion wit h noisy
(imperfect) fitness fun cti ons, lit tl e is understood abo ut how the noise
affect s the resul ting select ion pr essur e. The model is extended to
quantit atively pred ict t he select ion pressure for tournam ent select ion
utili zing noisy fitn ess functions . Given the to urnament size and noise
level of a noisy fitness fun ct ion , the exte nded mod el is used to pr ed ict
t he resu lt ing select ion pr essure of to urnament select ion . T he accu­
racy of the mod el is verified using a simple test domain, t he onemax
(bit-count ing) domain . T he model is shown to accurately predict t he
convergence ra te of a GA using tournament select ion in the onemax
domain for a wide range of t ournament sizes and noise levels.

T he model develop ed in this paper has a number of immediat e
pra cti cal uses as well as a number of longer term rami fica tions. Imme­
diately, t he mod el may be used for determ ining appropria te ra nges of
cont rol para meters , for est imat ing stopping times to achieve a spec ified
level of solution qua lity , and for approximating convergence t imes in
impor tant classes offunction evaluatio ns that utilize sampling . Longer
term, the approach of this st udy may be applied to bet ter underst an d
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t he delaying effects of function noise in other selection schemes or to
approx imate t he convergence delays that resul t from inherently noisy
op erators such as select ion , crossover , and mutation .

1. Introduction

There are many select ion schemes for genet ic algorit hms (GAs) , each wit h
different cha racterist ics. An ideal select ion scheme would be , imp le to code,
and efficient for both nonparallel and par allel architectures . Furthermo re, a
select ion scheme should be able to adjust its selection pressure so as to tun e
its performance for different domain s. Tournament select ion is increasingly
being used as a GA selection scheme because it sa t isfies all of the above
crite ria . It is simple to code and is efficient for bo th nonp ar allel and par allel
architectures. Tournam ent select ion can also adjust the select ion pressur e
to adapt to different domains. Tournam ent select ion pressure is increased
(decreased) by simply increasing (decreasing) the tournam ent size. All of
these factors have contributed to the increased usage of tourname nt selection
as a select ion mechanism for GAs.

Good progress was made some time ago [3] in und erstanding the con­
vergence rates of var ious select ion schemes , including tournam ent select ion .
Recent ly, bu ildin g on work in [7], this understand ing has been refined to
bet ter underst and the t iming and degree of convergence more accurate ly [9].
Despite this progress, such detailed t iming and degree of convergence analy­
sis has not yet been ext ended to tournaments ot her tha n binary (8 = 2); nor
has the analysis been applied to dom ain s other tha n det erminist ic ones . In
this paper , we do these two th ings.

T he purpose of this paper is to develop a model for the selection pressure
of tournament selection . This model, based on order statistics, quantit at ively
predicts the select ion pressur e resulting from both different to urnament sizes
and noise levels. Given the curre nt pop ulation fitn ess mean and vari ance,
the model can predict the average pop ulat ion fitness of the next generat ion .
The model can also be used iteratively to predict the convergence rate of the
GA over time. T he predict ive model is verified , using the onemax domain ,
under a range of tournament sizes and noise levels.

Section 2 provides the reader wit h background information for the top­
ics of this pap er , includ ing tournament selection , noise, and orde r stat ist ics.
Sect ions 3 and 4 develop the predicti ve model for tournam ent select ion . Sec­
tion 3 develops a predict ive model that han dles varying tournam ent sizes for
noiseless environments , and sect ion 4 extends this model for noisy environ­
ments. Sect ion 5 assesses the accuracy of the predictive model, using the
onemax domain , for a vari ety of to urn am ent sizes and noise levels. Appli­
cation of the model for other research issues is described in sect ion 6. Some
general conclusions from this research are present ed in sect ion 7.
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2. B ackground

This sect ion gives some background information needed to understand this
pap er . T he first subsec tion describes selection schemes, selection pressure,
and tournament select ion . The second subsection det ails noise, noisy fitness
fun ctions, and approximate fitness funct ions. The third subsection gives a
brief overview of order statist ics, focusing on the maximal order statist ic for
normal distributions.

2.1 Tournament sel ection

GAs use a selection mechanism to select individuals from the population to
insert into a mating pool. Individuals from the mating poo l are used to
generate new offspring , wit h the resulting offspring forming the basis of the
next genera tion . As the individuals in the mating pool are the ones whose
genes are inh erited by the next generation, it is desirable that the mating pool
be comprised of "good" individuals. A select ion mechanism in GAs is simply
a process that favors the selection of bet ter individuals in the populat ion for
the mating pool. T he selection pressure is th e degree to which the better
individuals are favored: the higher the select ion pressur e, the more the bet ter
individuals are favored . T his selection pressure drives the GA to improve
the population fitness over succeeding generations . The convergence rate of
a GA is largely determin ed by the select ion pressure, wit h higher selection
pressur es resulti ng in higher convergence rat es. GAs are able to identify
optimal or near-optimal solut ions under a wide range of select ion pressure
[5]. However , if the select ion pressure is to o low, the convergence rate will be
slow, and the GA will unnecessar ily take longer to find th e optima l solution .
If th e select ion pressure is too high , there is an increased chance of the GA
prematurely converging to an incorrect (subopt imal) solution .

Tournam ent select ion provides select ion pressure by holding a tourna­
ment among S compet ito rs, wit h S being the tournament size. T he winner of
the to urnam ent is the individual wit h the highest fitness of the S tourn ament
comp et ito rs . T he winner is th en inserted into the mating poo l. The mat ing
poo l, being comp rised of tournament winners , has a higher average fit ness
tha n the average populat ion fitne ss. T his fitness difference provides the selec­
tion pressure , which dr ives the GA to improve the fitness of each succeeding
generation . Increased select ion pressure can be provided by simply increas­
ing the tournament size s , as the winner from a larger tournament will, on
average, have a higher fitn ess tha n the winner of a sma ller tourn ament.

2 .2 Noise and noisy fit n ess fu n ctions

T he noise inherent in noisy fitness functions causes the tournament select ion
pro cess to also be noisy. We assume that a noisy fitness function returns
a fitness score for an individu al equal to the sum of the real fitness of the
individual plus some noise. In this pap er , we assume that the noise is nor­
mally distributed and unbiased (mean of zero) . This assumption is true or
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approxima tely true in many noisy domains, and allows the effects of noise
to be more easily mod eled. The noise is assumed to be nondeterministic, so
that subsequent fitness evaluations of the same individu al may have differing
fitness scores .

T here are many factors tha t may necessitate the use of noisy fitness func­
tions. In some domains, there may be no known fitn ess function that can
accurately assess an individual's fitness, so an approximate fitness function
(noisy heur istic) must be used . Noisy information can also negat ively affect
the fitness evaluation. Noisy informat ion can come from a var iety of sources,
includ ing noisy sensor input , noisy data , knowledge uncertainty, and human
error . Measurement error can also be a source of noise, even when the fit­
ness function is known perfectly. To improve run-time performance, some
GAs will utilize fast , bu t noisier , fitn ess functions instead of more accurate ,
bu t slower, fitness funct ions that may also be availab le. Sampling fitn ess
funct ions are a good example of this phenomena , as a fitn ess funct ion that
uses sampling to assess an individu al's fitn ess can use smaller sample sizes to
increase run-time speed , at the expense of decreased accuracy of the fitness
evaluation.

2.3 Order statistics

This pap er uses order statistics to fur ther our understanding of tournament
select ion. This section briefly reviews them. For a detailed description of
order statist ics, the reader should see [2].

If a random sample of size n is arr anged in ascending order of magnitude
and then written as

we can let the random var iable X i :n represent the dist ribu tion of the corre­
sponding Xi :n over th e space of all possible samples of size n . The variable
X i :n is called the ith order statist ic. The field of order stat ist ics deals with
the prop ert ies and applicat ions of these random variables.

Of par t icular interest is the maximal order stat istic X n :n , which represents
the distribut ion of the maximum member of a sample of size n . This is
direct ly analogous to tourn ament select ion, where the competitor with the
maximum fitn ess is selected as the tournament winner .

The probab ility density funct ion P i:n ( X ) of the i th order stat ist ic, X i :n ,

gives th e probab ility tha t th e i th highest ind ividual from a sample of size n
will have a value of x . The value of Pi:n( X ) is calcula ted by

where P(x) represents the cumulat ive distribution funct ion of x (t he prob­
ability that {X S x}) . The probability that a single combination will have
i - I indi viduals less than or equal to x and n - i individuals greater than x
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is given by the product P( x)i-1(1_ p (x)) n- i. However , there are many pos­
sible sample comb inations that will yield the desired distribution of having
i- I individuals less than x an d n - i individuals greater or equal to x . For
n individuals, there are n slots that the i th greatest individu al could occupy.
For each of these slots, there are (~~n different ways of arranging the i - I
individ uals that are less th an or equal to x among the n - 1 remain ing slots .

T he expecte d value (mean ) Ui :n of an order stat istic X i:n can thus be
determined by

+00

Ui n = .I X Pi:n(x )dx
- 00

= nC~nJOOx p(X) i- 1(1 - p(x) )n- idP( x ).
- 00

For the maxim al order statist ic (i = n), the mean U n :n simplifies to

+00

Un:n = n .I x p(x)n- 1dP(x).
- 00

In th is pap er we are particularly interest ed in the norm al distribution
N(J-l , (}2) , wher e J-l and (}2 are the mean and vari an ce, respecti vely, of the
normal distribution. For the standard normal distribut ion N(O, 1) , the cu­
mulat ive distribution fun ction is P( x) for the unit normal 1>( x) , and thus

2

dP (x) is ¢(x )dx = Arre-",,- dx . The expec ted value (mean) of th e maximal
ord er statis t ic for the standard normal distribution is thus

+ 00

u -: « = n .I x 1> (x )n- 1¢(x )dx .
- 00

(1)

For samples of size n = {2, 3, 4, 5}, equation (1) for U n :n can be solved ex­
act ly in terms of element ary funct ions. Tab le 1 gives the values for the mean
of the maximal order stat istic for n = {2, 3, 4, 5} (see [1] for derivat ions).
For larger values of n , the mean s of th e order stat ist ics for the standard

Table 1: Expected value of maximal order sta tist ic for standard nor­
mal distribution.

I Values of J-ln'n I

2 ~ 0.5642

3 3 0.846327:

4 1r~ t an- 1
( V2) 1.0294

5 _5_ + ---.!.L sin - 1(l ) 1.16304-;;;; 2;J,; 3
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normal dist ribution have been tabulat ed extensively [6] . T he variances and
covariances of the standard norm al distribution order statistics can also be
calculated, and are tab ulated for n ::; 20 in [8], and for n ::; 50 in [10].

3 . Tournament select ion in deterministic environments

T his section develops a predict ive model for the select ion pressur e resultin g
from a tournament of size s in a deterministi c (noiseless) environment . In
a noiseless environment, the fitn ess function can accurately assess the true
fitness of an individual. Vve show that for a population whose fitness is nor­
mally dist ributed , the resul ting to urnament select ion pressure is proportional
to the pr od uct of the st andard deviation of th e population fitn ess and the
maximal order sta tist ic J.ls:s'

In a determinist ic environment , the fitness function returns the true fit­
ness value of an individual. T he popula tion 's fitn ess values, after crossover
and mut ation , are assumed to be normally dist ributed over the populat ion .
Although tournam ent selection by itself will generate a skewed (nonnormal)
distribution , th e crossover and mutation operations "remix" th e population ,
which forces the distri bu tion to become more norm al. This norm alizing ef­
fect of crossover and mutation allows the assumption of normally distributed
popula tion fitness to be reasonable for a wide variety of domains. Experimen­
tal results presented later demonst rate tha t GAs using only simple crossover
and no mutat ion can adequately norm alize the popul at ion distri bu tion.

Let the population fitness in generation t be normally dist ribut ed
N(J.lF,t , (Jh )· T he probabili ty th at an individual wit h fitness I will win a
tournament of s indi vid uals randomly picked from the population is given by

p(f = max(fl' " Is)) = s P (F < n S-1p(f) ,

which represents the probability of an ind ividual with fitness I occurr ing
along wit h s - 1 individuals having lower fitness scores. There are s different
ways of arranging the s - 1 "losers" and the "winner." The expected value
of the to urnament winner J.l F,t+1 from a tour nament of size s can thus be
calculated by

J.l F.t+l = E[f = max(fl . .. Is)]
+ 00

= JI p(f = max(fl '" Is))dI
- 00

+ 00

= s JI P(f )S-lp(f )df.
- 00

However , for a norm ally distr ibu ted population N (J.l F" , (J~ J , P(f )
<p ( f - J.LF., ) and

(7F,t '

p(f ) = dP(f ) = _1 ¢( I - J.l F,t ).
dI (J F,t (JF,'
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T hus

Substit ut ing z = !-I"F" gives
(JF,t

+00

f-lF,' + l = S )' (CJF"Z + f-lF,,) <I>(zy-l ¢(z)dz
- 00

+00 +00

= f-l F" 8 )' <J'l( zy - l ¢(z)dz + CJF,I (8 )' z <I>(z)S-l ¢( z)dz)
- 00 - 00

= f-lF,,[<I>(Z)S]!: + CJF,dlss

= {IF,i + CJF" f-lS:S' (2)

In equat ion (2), f-l s:s is the effecti ve selection pressure for a tournam ent
of size 8 , and can be directly obtained from Tab le 1. From equation (2) , it
is also apparent that the change in fitn ess between generations is given by

= CJ F" f-ls :s ' (3)

For binar y tournament s (8 = 2) , this matches the result obtained in [9],
where th e expected increase in the averag e population fitness for tournam ents
of size 8 = 2 was derived using t he difference between normal distr ibu t ions.
Their result , using th e notation in this paper, is f-lF,' + l = f-lF" + CJF".fir . T his
matches the result obtained using equation (2) wit h a tournament size of
8 = 2, as f-l2:2 = .fir from Table 1. Note that the ord er statist ic model derived
in th is paper is gener alizable to all to urnam ent sizes and is not limi ted to
8 = 2.

Equation (3) shows that for tournaments of size 8 , t he expected average
populat ion fitness increase is direct ly proportional to f-ls:s> the expected value
of the maximal order statist ic of size 8 . Tab le 1 gives f-ls: s> demonstrating
t ha t increasing the tournam ent size will cause successively smaller increases
in the expecte d average populat ion fitness.

4. Tournament selection in noisy envir on ment s

This sect ion extends the mod el developed in sect ion 3 to accurately pr edict
the select ion pr essure in the presence of noise. With noisy fitn ess funct ions,
there is a chance that the winner of a to urnament might not be the individu al
with the highest true fitness. T his sect ion concentrates on quan tifying the
reduction in to urnament select ion pressure due to noisy fitness funct ions.

T he model derivat ion in this section has three major ste ps. First , t he
relationship between an individu al 's noisy fit ness and true fitn ess values is
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determined , so that the true fitn ess value of an individual can be est imated
from the noisy fitness value. Next , the relat ionship is extended to handle
subsets of individuals, so that the true fitness average of a subset of the pop­
ulation can be est imated from the average noisy fitn ess value of the subset .
Lastly, we use the model derived in sect ion 3 to est imate the average noisy
fitness value of a part icular subset of th e popul ation- the subset consist ing
of noisy tour nament winners. This average noisy fitn ess value is then plugged
into the formula found in the second step to est imate the average true fit ness
of the winners of noisy tourn aments . The select ion pr essure, based on the
expected true fitness value of the tournament winners , can thus be deter­
mined . The resu lt is a predictive mod el for tournament select ion that can
handle varying noise and tourn am ent sizes.

In a noisy environment , the noisy fitness l' of an individual is given by
t' = f + noise, where f is the real fitn ess of th e individual , and nois e is th e
noise inherent in the fitn ess functi on evaluat ion . As in section 3, the real fit­
ness of th e population F is assumed to be normally distributed N (M p,l' a~ ,).

This section fur th er assumes that the noise is unbiased and normally dis­
tributed N( O,a~) . T his facilitates modeling the effects of the noise, and is
a reasonab le assumpt ion for many domains. Using these assumptions, along
with the additive prop erty of normal distributions, gives that the noisy fitness
F' is normally distribut ed N (Mp,,, 0' ;'_,+ a~ ).

Alt hough the real fitness value fm: an individ ual is unknown , the expec ted
value can be determined from the individ ual 's noisy fitn ess value, which is
generated by a noisy fitness funct ion evalua tion . As both the true fitness and
the noisy fitness are normally distr ibuted , the bivar iate normal dist ribut ion
can be used to obtain the expec ted tru e fitness value of F for a given noisy
fitness value l' of F '. For normal random variables X and Y , the bivariate
normal distribution st ates tha t the expected value of Y for a specific value x
of X is

ay
E (Yl x) = My + PXl"- (X - {Lx ) ,

ax

where Pn is the corre la tion coefficient for X and Y . The correlation coeffi­
cient Px y can be calculated by PXy = :~";;;, ' where a n is the covariance of
X and Y. The covariance between F and F' is simply a~ , t hus

(4)

As the above un numbered formula is linear , the expecte d value of F for
any subset R of the popula tion can be calculated using equat ion (4) , wit h
t' set to the noisy fitn ess mean MR of the subset . Of cour se, the subse t we
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are interested in is the noisy tournament winners . The expected mean of
the noisy tournament winn ers of tournam ent size s can be derived using the
same derivation as for the deterministic case:

{Lpl ,' +1 = {Lf' I" + (J'p' ,, {LS:S

= {Lf'I , t + J(J'~" + (J'~{Ls : s'

Set tin g i ' to {Lpl ,t+ 1 in equat ion (4) prod uces the expected true fitness
value of the tournament winners:

(5)

2

- (J' f',t ( V 2 2 )
- {LP,I. + 2 + 2 {Lpl ,1 + (J' r .c + (J' N {LS:S - {Lf'I ,1

a r.c U N

(J'~ ,
= {LP t + V ' {Ls :s ·, 2 2

«i: + (J'N

As expected , equation (5) reduces to equa tion (1), the formu la for the
deterministic (noiseless) case, when the noise variance (J'~ equals zero. Equa­
t ion (5) is significant in that it predicts the convergence rate of a GA using
to urnament select ion for any tournament size or noise level.

5 . Validation of m odel

T his sect ion test s the accuracy of the predict ive model, equation (5) , using
a samp le dom ain . The domain used is the bit-counting, or onemax, domain ,
which works well for ana lysis as the variance can be determined from the
average population fitness. This sect ion uses equation (5) to predict perfor­
man ce under a range of tournament sizes and noise levels. Experiments are
then run that show that the predict ive model is very accurate in determining
the tou rn ament select ion pressure for different tou rnament sizes and noise
levels.

5 .1 Onem ax domain

T he dom ain of interest is the onemax, which is also referred to as the bit­
counting problem. T he real fitness of an individu al in this domain is simply
the number of one bits in the chromosome. The optimal solut ion is the chro­
mosome consist ing of all one bits. This popu lation fitness in the onemax
domain is binomially distri bu ted . The mean and variance of the population
fitness can therefore be calculated using binomial distribution proper ties.
The population mean fitn ess at generation t is given by f(t) = {Lf',t = l p(t) ,
where l is the chromosome length, and p(t) is the percentage of correct al­
leles in t he population . The var ian ce of the population at t ime t is simply
(J'~" = l p(t)(l - p(t )). As the normal distribut ion closely approximates the
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binomial distribut ion for larger values of I , our model, although based on nor­
mal population distribu tions, is valid for the binomially distributed onemax
domain.

The experiments in this paper all use the following GA configurat ion
par amet ers. T he chro mosome length is I = 100, crossover is performed using
the un iform crossover operator , and no muta tion is used so as to bet ter
isola te the select ion pressure effects . The pr oportion of correct alleles in the
ini tial random population is assumed to be p(O ) = 0.5. The po pula tion size is
adjust ed for different noise levels, as described in [4]. For the onemax domain ,
the popula tion sizing equat ion redu ces to N = 8(o-] +a~ ) , with the populat ion
var ian ce aJconservatively set to a~.o = I p(O) (1 - p(O)) = 25. T he noise
variance a~ is spec ified by the user for each experiment. For experiments
with a nonzero noise variance a~ , a random number generat ed from the noisy
distr ibution N (O ,a~) is added to the real fitness score for each ind ividual
to produce a noisy fitness score. For the noisy expe riments, tournament
select ion is based solely on the noisy fitn ess values of the individuals.

5.2 Predictive model for the onemax domain

T his ection adapts equation (5) to determine the convergence rate of the
percentage of corre ct alleles over time for the onemax domain. From equa­
t ion (5) the fitness increase between two generations is given by:

f (t + 1) - f (t ) = f.1F,L+l - f.1 F.L

a;',1

For the onemax domain , f.1F,t = I p(t ) and a~, t = I p(t )(l - p(t )). Thus

- 1 -
p(t + 1) - p(t) = y (J (t + 1) - f (t ))

f.1 . :s a ;',t

- 1- va~, t + a~,

p(t)(l - p(t))

= f.1 s :s Vip(t)(l - p(t)) + a~ '

Approximating the above difference equation wit h a differential equation
yields

dp p(t) (l - p(t))
dt = f.1 s s Vip(t )(l - p(t)) + a~ '

(6)

Alt hough equation (6) is integrable, it does not reduce to convenient form
in the general case; however , it can be eas ily solved numerically for p(t ), an d
can be deter mined exac tly for the noiseless case (a~ = 0) p(t) . Sect ion 5.3
will deal with solving equation (6) for t (p). Given the ini tial percentage of
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correct alleles is p(O ) = 0.5 , equa tion (6) can be solved exactly for p(t) in the
noiseless case to yield , for t less than convergence tc:

p(t) = 0.5(1 + sin (fJ'')z t)) . (7)

Equations (6) and (7) together make up the predict ive model for the one­
max domain . Equation (6) is numerically solved to pr edict p(t ) for noisy do­
main s, while equation (7) is direct ly used to obtain p(t) for noiseless domains.
In both equations , J.l.s :s determines the selection pressur e for a tournam ent of

2

size s . For noisy domains, the term~ causes the predicted conver­
(jFt +UN

gence rate to decreas e as th e noise is increased. In section 5.4 we assess the
accuracy of these equat ions for a var iety of tournam ent sizes and noise levels.

5 .3 Convergence time for the onemax domain

While equation (6) is not directly solvable for p(t) , it can be solved for t as
a fun ction of p:

1 [ r, ( Vi(2P- 1) )t (p) = - v I arctan J
J.l.s s 2 a~, + l p( l - p)

(
p - 1 - 2a~ + I P- 2aN'Ja~ +I P( 1 - P)) ]

+aN log - - + c . (8)
p-1 2a~+ lp+2aNJa~+ lp(1 -p)

For binary alleles, at time t = 0 we can assume that half of the alleles are
ini tially correc t p = 0.5. Using this to solve for c in equa tion (8) gives th at
c = O. For the case where p = 1 (convergence), s = 2, and aN = 0, equa­
tion (8) redu ces to t (1.0) = v;l ~ , which agrees with the convergence t ime
found in [9] for binary tournament select ion . Of course , equation (8) is more
general than the convergence equation in [9], as it can handle tournam ent s
of different sizes and noise levels.

We are particularly interested in the tim e tc it takes for all alleles to
converge (p = 1). For the det erm inisti c case, equa t ion (8) reduces to

1rVi
t: = --.

2fJ's:s

A useful approximation of the convergence t ime for the noisy cases is

1 [ (Vi) ((1-1 )40'2) ]t.; = - Vi arct an -- + aNlog I 2 N .
J.l.s :s 2aN + 40'N

(9)

(10)

This approximat ion is obtained by set t ing p = 1 in equation (8), except for
the pS- fract ion in the log term. For the pS- term , we relax the convergence

crite rion by set t ing p = Il l, ind icat ing tha t 100(Ill ) percent of the bits in
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the popu lation have correct ly converged. Setting p = ti l in the ;;S- term
yields (1 - l) . Equation (10) is used to develop approx ima t ions for domains
charac terized by small, medium , and large amounts of noise.

For domains characterized by small levels of noise ((TN ~ 0), equation (10)
can be approximated by

i: = _1_ [Vi arctan ( Vi ) + 2(TNlog(2(TN)] ,
/-is:s 2(TN

(11)

as the log term is insignificant for very small levels of noise.
A medium noise level is defined as having the fitness function noise vari­

ance (T N approxima tely equal the ini tial population fitness variance (TJ level,

which for th e onemax domain is at most jli4 = {j- . Approxima t ing equa­

tion (10) using (T N~ {j- yields

(12)

For large amounts of noise ((TN~ oo), equation (10) can be approxi­
mat ed by

tc = _1_ [_l_ + (TNlog(l - 1)] ,
/-is:s 2(TN

(13)

as for small angles, arctan e~ e.
The approxima t ion equations for convergence with small, medium , and

large amounts of noise can be used to quickly est imate the convergence t ime
for a GA. These are useful for the GA designer trying to gauge the delaying
effects of noise on popu lat ion convergence.

5.4 Experimental r esults

In this sect ion we assess the accuracy of our predictive model. We compare
the predicted perform ance against the actual performance obtained from GA
runs for varying noise levels and to urnament sizes to validate our predict ive
mod el.

To assess the accuracy of the predict ive model, GA runs were made at
five different noise variance levels (T~ = {O, ~ (TJ , (TJ, 2(TJ , 4(TJ}. At each noise
variance level, GA runs were made with tournament sizes of s = {2,3 , 4,5}.
For each combinat ion of noise variance and tournament size, 10 GA runs
were made, and the results were averaged. T he exp eriment al result s were
then compared to the results predicted from equations (6) (noisy) and (7)
(deterministic) .

A sample plot is shown in Figure l (a). The noise variance, given on
the top line, is 50. The dashed lines in the plot represent the predicted
performance obtained using equations (6) and (7) for to urname nt sizes s =
{2, 3, 4, 5}. The solid lines display the GA performance, averaged over 10
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Figure 1: Effects of multiple crossovers.

runs, for the given noise variance and tournament sizes. T he dashed lines,
from left to right , correspond to the predicted perform an ce with tournament
sizes of five (highest select ion pressur e) , four , three, and two (lowest selec­
tion pressure). Similarly, the solid lines corres pond to the performan ce with
to urnament sizes, from left to right , of five (highest selection pressure), four ,
three, and two (lowest selection pressur e) .

Figure 1 compares the effects of performing one crossover versus two
when the noise varian ce is equa l to the fitness variance. W hile the predic­
tive model slightly overestimat es the performance of GAs using one crossover
(F igure l (a)), it accurately est imates the performance of the experiments us­
ing two crossovers (Figure 1(b)) . This is a result of crossover decreasing the
correlation between alleles [9], and the tendency of crossover to "normalize"
the population fitness distribu tions, making our model assumpt ion of a nor­
mal population distribu tion more accurate. As done in [9], we perform two
crossovers per generat ion in our experiments , so after the usual pro cedure of
to urnament select ion and recombination , we ran domly shuffle the population
and again recomb ine the populat ion using crossover. T his has the beneficial
effects of redu cing the correlat ion between alleles [9], and "normalizing" the
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populat ion fitn ess distribution . However , for domains cha racterized by high
allele interaction , this could redu ce the overall perform an ce of the GA , as
there would be a higher disruption rate for the evolving building blocks.

F igur e 2 summarizes our experimental result. Figure 2(a) plot s the de­
term inist ic case wit h noise variance zero for a var iety of tournament sizes.
F igur e 2(b) plots the experiments wit h noise variance 25 for a variety of tour­
nam ent sizes. Figur e 2(c) takes a different view, in that it plot s the results
of using a fixed tournam ent size (8 = 2) for a var iety of noise levels. T hese
figures demonstr a te that our model is very accurate for predict ing GA per­
form an ce in the onemax domain for a wide ran ge of to urnament sizes and
noise levels.

5 .5 Discussion of r esults

This subsect ion discusses th e general accuracy of the model and how selection
pressur e affects accuracy. The accuracy of the approximation convergence
equa tions is also discussed.

T he model proved to be very accurate over a wide range of noise levels
an d tournament sizes. On many experiment s, the predicted and expe rimen­
tal results were practically identical. However , the model is mar ginally less
accurate in domains characterized by high selection pressure. This is pr imar­
ily a result of the high select ion pressur e causing th e tournament select ion
process to generate a nonn orm al (skewed) distribut ion , which violates the
model assumpt ion of a normally distributed population. For our experi­
ment s, high selection pressure was caused by high tournam ent sizes (8 = 5).
Interest ingly, higher levels of noise actually reduces the tournament selection
pressur e, making the model more accurate. For our experiments, the highest
select ion pressur e was for 8 = 5 and !7 N = O. T he result s of th is experiment
are shown in Figur e 2(a), in the upper left two lines (predicted and experi­
mental results) of the plot. This demonstra tes that even wit h high select ion
pressur e, the model is st ill fairly accurate .

Crossover has a normalizing effect on the population fitness. When the
select ion pressur e is high , the mating pool selected is nonnorm al (skewed) .
Performing multiple crossovers per generation has a norm alizing effect on the
fitness dist ribution of the new offspring generated through crossover from the
mating pool, which in turn makes the mod el more accurate (see Figure 1).
The experiment s performed for this paper used two crossovers per generation
so as to facilitate comparison of result s with those ob tained in [9J . For very
high select ion pressur es, the model accuracy can be increased by simply
increasing the numb er of crossovers perform ed per generation . However , this
increased accuracy does not come free, for performing mult iple crossovers
per generat ion in domains cha rac terized by high allele interaction will retard
building block growth. T his slows the GA convergence rate, and would thus
make the model less accurate. For the onemax domain , which has no allele
interaction , mu ltiple crossovers only increase the model accuracy.
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Tab le 2: Convergen ce times for s = 2.

Noise Exper. Exact t Approximate t c
(J 2 tc (p = .99) Small Med . LargeN

0 28.0 27.8 28 .8 28.8 NA
12.5 40.0 39.9 42.8 38.3 55.6
25.0 49.0 49.9 56.5 50.2 60.4
50.0 64.0 65.4 79.9 70.9 72.4

100.0 870 88.4 118.2 105.5 93.3

These experiments also verified the accuracy of our approximation equa­
t ions for the convergence time. Tab le 2 presents the average convergence t ime
of the experiments for a var iety of noise levels when the to urn ament size is 2,
as well as the convergence times predicte d by the exact models (equations (8)
and (9)) , and the small, medium , and large noise approximat ions (equations
(11), (12), and (13)) . For the GA expe riments, convergence was defined as
the first generation in which the experimental average of the average popu­
lation fitness was over 99% converged . To determine the exac t convergence
t ime for the determ inist ic case , equation (9) is used wit h p set to 1.0. To
determ ine the exact convergence time for the noisy ca es, equat ion (8) is used
with p set to .99, as it evaluates to infini ty if p = 1.0. T he approximation
equat ions all estimate the tim e unt il absolute convergence p = 1.0.

Tab le 2 haws that the exact convergence equations (equa t ions (8) and
(9)) predict the expe rimental resul ts quit e well. T he small approximat ion

equa tion turns out to be fairly accurate a t (I N = 4- = 12.5, bu t it was
designed for smaller amounts of noise. For lower nois e levels, it should be
more accurate th an the medium approximation. T he medium approximation ,
being designed aro und a noise level of (J N = {} = 25 is fairly accurate for all
noise levels up to 100. At the high noise level of 100, the large approximation
mode l is the most accurate approximation . These results indicate that the
approximation equations do very well as a quick est imate of th e convergence
time for GAs utilizing tournament selection . The bold-face font indi cat es the
approximating mode l that is closest to the exact convergence time for each
noise level.

6. Future research

This sect ion describes several import ant areas for fut ure resear ch.

• Applying the new-found understanding of noise for other select ion schemes.

• Modeling ot her GA operators by utilizing the noise component of the
model to account for their effect on convergence .

• Test ing the model in mor e complex domains .

• Using the mod el to answer basic performan ce quest ions for a GA .
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• Applying the model to help tune GA configuration param eters.

• Determining appropriate sample sizes for fitness funct ions employing
sampling , so as to maximize perform ance wit hin a given environment .

This resear ch is impor tan t in tha t it has fur th ered our understanding of
noise and its delaying effect on convergence . The model has proved accur ate
at predict ing the convergence rate of a GA utilizing tou rn am ent select ion
for a var iety of noise levels and tournament sizes in the onemax domain.
The approach taken in section 4, where the deterministi c tournam ent selec­
tion mod el is extended to hand le noise, shows promise for adapt ing other
determ inisti c select ion models to hand le noise.

Wi th in this paper , the noise component was considered to be produced
by noise present in the fitn ess fun ctions. However , there is no reason why
the noise input for the developed model cannot include noise introduced from
ot her GA components . T he noise input indirect ly indica tes the degradat ion
of the mating pool fitness as compared to th e mating poo l selected with
no noise present . The noise input can th us be used to account for ot her
degrad at ions of mating pool fitn ess from ot her GA mecha nisms besides noi y
fitn ess functions. Other GA mechani sms that also intr oduce noise could be
included in the noise component, such as different mutat ion mechan isms an d
mutat ion rates, and tournament select ion used with or without replacement .
T his would increase the model's pr edict ive accuracy for a wider range of GA
configurations.

As discussed in sect ion 5.5, the use of ord er stat ist ics has proved very accu­
rate in predict ing tournam ent select ion pressure for the onemax domain. We
would like to extend our model to handle other domains that have different
cha racterist ics than the onemax domain . The onemax domain is character­
ized by equal allele weighting (each bit is equally important ), and no allele
interaction (no higher order building blocks) . We would like to extend our
model to handle more complex domains, includin g "domino-like" domains,
where the alleles have unequal weight ing, and for domains cha rac te rized by
high allele corre lat ion. However , the current mod el is st ill of use for these
types of domain , in that it can provide a lower bound on the convergence
ra te. Extend ing our model to directly handle more complex domain s will
increase the accuracy of the predicted convergence rates.

One of our model's strengths is that it predicts the distr ibu tion of the
popu lation fitness over successive generations. Order stat ist ics can be used
not only to predict both the increase in fitness between genera t ions, bu t also
to predict the populat ion fitn ess variance in the next generation . As the
population fitn ess mean and variance can be accurately modeled over time
using ord er statist ics, our model can be used to answer quest ions rela ting
to population fitness distr ibut ion . The model could thus be applied to an­
swer pro bab ly approximately correct (PAC) ty pe perform ance quest ions like:
"what is the probability that a solut ion of quality Y will be present at gener­
at ion X ," or "at what generation are we Z percent confident that a solut ion
of at least quality Y will be present in the population?" Answers to these
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quest ions could be used to det ermine how long a GA should run before a
solution of acceptable quality is likely to be produced . This would allow for
a GA designer to set GA stopping criteria that achieves a desired solut ion
quality.

T his model should be very helpful in determining appropriate set tings for
many GA parameters. While GAs wit h generic parameter set tings are good
at findin g good solutions in a reasonable amount of t ime , their performance
can be improved by tuning the par am eter settings for a spec ific domain. As
discussed above, our model can be used to determine appropria te stopping
crite ria for the GA . It can also be used to design a GA that has a desired
convergence rate for a given domain , by applying the model to determine th e
appropriate tournament size for achieving a spec ified convergence rate. It
could even be used to design a "custom" tournament that achieves a given
selection pr essur e (i.e., a tournament where the best 2 out of 5 compe tit ors
are selected for the matin g pool).

In some domains , a GA designer is faced wit h a range of poss ible fitness
fun ctions, all with different noise and ru n-t ime perform an ce cha racterist ics.
T he model can be app lied to help select a fitness fun ction that achieves an
acceptable solution in an acceptable amount of ru n-t ime for a given domain.
Some fitn ess funct ions are based on sampling , wit h the samp ling fitness func­
tion 's noise and run-time perform an ce cha racterist ics directly cont rolled by
the sample size. Our model, in conjunct ion wit h sampling theory being used
to predict the noise from a given sample size, should be able to determin e
the approp riate sample size needed for the GA to achieve a given conver­
gence rate.

7 . Conclusions

Tournament select ion is an important selection mechan ism for GAs. It is
simple to code , easy to implement on nonp ar allel or parallel archit ect ures,
robust in the presence of noise, and has adjustable select ion pressure. This
paper has developed a model that works under a wide range of noise levels and
tournament sizes to accurately predict the convergence rate of a GA ut ilizing
tournam ent select ion . T he model has been verified using the onemax domain ,
and shown to be accurate for pred ict ing the convergence rate under a wide
range of noise levels and to urnament sizes .

The paper has discussed a number of immedia te practi cal uses of the
model. It can be used to correctly set var ious GA cont rol parameters for a
given domain , including tournam ent sizes and mut at ion rates. The model
can determine appropriate st opping crite ria for achieving a desired solution
quality. The model can be used to answer basic perform an ce questions, such
as : "what is the probability that a solution of quality Y will be present at
generat ion X ?" In addit ion , the model can also be used to determi ne appro­
pri ate sample sizes for the class of fitness functions that employ sampling so
as to maximize GA perform an ce.
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T his resear ch has several long term ramificat ions. Through the st udy of
one select ion scheme-tourname nt selection- this paper has opened the do or
for underst anding no ise and its delaying effect for all select ion schemes. The
appro ach used in this study may also b applied to pred ict t he convergence
delays resu lting from inherently noisy operators such as select ion , crossover ,
and muta tion .
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