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Abstract. Tournament selection is a useful and robust selection
mechanism commonly used by genetic algorithms (GAs). The se-
lection pressure of tournament selection directly varies with the tour-
nament size—the more competitors, the higher the resulting selection
pressure. This paper develops a model, based on order statistics, that
can be used to quantitatively predict the resulting selection pressure
of a tournament of a given size. This model is used to predict the
convergence rates of GAs utilizing tournament selection.

While tournament selection is often used in conjunction with noisy
(imperfect) fitness functions, little is understood about how the noise
affects the resulting selection pressure. The model is extended to
quantitatively predict the selection pressure for tournament selection
utilizing noisy fitness functions. Given the tournament size and noise
level of a noisy fitness function, the extended model is used to predict
the resulting selection pressure of tournament selection. The accu-
racy of the model is verified using a simple test domain, the onemax
(bit-counting) domain. The model is shown to accurately predict the
convergence rate of a GA using tournament selection in the onemax
domain for a wide range of tournament sizes and noise levels.

The model developed in this paper has a number of immediate
practical uses as well as a number of longer term ramifications. Imme-
diately, the model may be used for determining appropriate ranges of
control parameters, for estimating stopping times to achieve a specified
level of solution quality, and for approximating convergence times in
important classes of function evaluations that utilize sampling. Longer
term, the approach of this study may be applied to better understand
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the delaying effects of function noise in other selection schemes or to
approximate the convergence delays that result from inherently noisy
operators such as selection, crossover, and mutation.

1. Introduction

There are many selection schemes for genetic algorithms (GAs), each with
different characteristics. An ideal selection scheme would be simple to code,
and efficient for both nonparallel and parallel architectures. Furthermore, a
selection scheme should be able to adjust its selection pressure so as to tune
its performance for different domains. Tournament selection is increasingly
being used as a GA selection scheme because it satisfies all of the above
criteria. It is simple to code and is efficient for both nonparallel and parallel
architectures. Tournament selection can also adjust the selection pressure
to adapt to different domains. Tournament selection pressure is increased
(decreased) by simply increasing (decreasing) the tournament size. All of
these factors have contributed to the increased usage of towrnament selection
as a selection mechanism for GAs.

Good progress was made some time ago [3] in understanding the con-
vergence rates of various selection schemes, including tournament selection.
Recently, building on work in [7], this understanding has been refined to
better understand the timing and degree of convergence more accurately [9].
Despite this progress, such detailed timing and degree of convergence analy-
sis has not yet been extended to tournaments other than binary (s = 2); nor
has the analysis been applied to domains other than deterministic ones. In
this paper, we do these two things.

The purpose of this paper is to develop a model for the selection pressure
of tournament selection. This model, based on order statistics, quantitatively
predicts the selection pressure resulting from both different tournament sizes
and noise levels. Given the current population fitness mean and variance,
the model can predict the average population fitness of the next generation.
The model can also be used iteratively to predict the convergence rate of the
GA over time. The predictive model is verified, using the onemax domain,
under a range of tournament sizes and noise levels.

Section 2 provides the reader with background information for the top-
ics of this paper, including tournament selection, noise, and order statistics.
Sections 3 and 4 develop the predictive model for tournament selection. Sec-
tion 3 develops a predictive model that handles varying tournament sizes for
noiseless environments, and section 4 extends this model for noisy environ-
ments. Section 5 assesses the accuracy of the predictive model, using the
onemax domain, for a variety of tournament sizes and noise levels. Appli-
cation of the model for other research issues is described in section 6. Some
general conclusions from this research are presented in section 7.
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2. Background

This section gives some background information needed to understand this
paper. The first subsection describes selection schemes, selection pressure,
and tournament selection. The second subsection details noise, noisy fitness
functions, and approximate fitness functions. The third subsection gives a
brief overview of order statistics, focusing on the maximal order statistic for
normal distributions.

2.1 Tournament selection

GAs use a selection mechanism to select individuals from the population to
insert into a mating pool. Individuals from the mating pool are used to
generate new offspring, with the resulting offspring forming the basis of the
next generation. As the individuals in the mating pool are the ones whose
genes are inherited by the next generation, it is desirable that the mating pool
be comprised of “good” individuals. A selection mechanism in GAs is simply
a process that favors the selection of better individuals in the population for
the mating pool. The selection pressure is the degree to which the better
individuals are favored: the higher the selection pressure, the more the better
individuals are favored. This selection pressure drives the GA to improve
the population fitness over succeeding generations. The convergence rate of
a GA is largely determined by the selection pressure, with higher selection
pressures resulting in higher convergence rates. GAs are able to identify
optimal or near-optimal solutions under a wide range of selection pressure
[5]. However, if the selection pressure is too low, the convergence rate will be
slow, and the GA will unnecessarily take longer to find the optimal solution.
If the selection pressure is too high, there is an increased chance of the GA
prematurely converging to an incorrect (suboptimal) solution.

Tournament selection provides selection pressure by holding a tourna-
ment among s competitors, with s being the tournament size. The winner of
the tournament is the individual with the highest fitness of the s tournament
competitors. The winner is then inserted into the mating pool. The mating
pool, being comprised of tournament winners, has a higher average fitness
than the average population fitness. This fitness difference provides the selec-
tion pressure, which drives the GA to improve the fitness of each succeeding
generation. Increased selection pressure can be provided by simply increas-
ing the tournament size s, as the winner from a larger tournament will, on
average, have a higher fitness than the winner of a smaller tournament.

2.2 Noise and noisy fitness functions

The noise inherent in noisy fitness functions causes the tournament selection
process to also be noisy. We assume that a noisy fitness function returns
a fitness score for an individual equal to the sum of the real fitness of the
individual plus some noise. In this paper, we assume that the noise is nor-
mally distributed and unbiased (mean of zero). This assumption is true or
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approximately true in many noisy domains, and allows the effects of noise
to be more easily modeled. The noise is assumed to be nondeterministic, so
that subsequent fitness evaluations of the same individual may have differing
fitness scores.

There are many factors that may necessitate the use of noisy fitness func-
tions. In some domains, there may be no known fitness function that can
accurately assess an individual’s fitness, so an approximate fitness function
(noisy heuristic) must be used. Noisy information can also negatively affect
the fitness evaluation. Noisy information can come from a variety of sources,
including noisy sensor input, noisy data, knowledge uncertainty, and human
error. Measurement error can also be a source of noise, even when the fit-
ness function is known perfectly. To improve run-time performance, some
GAs will utilize fast, but noisier, fitness functions instead of more accurate,
but slower, fitness functions that may also be available. Sampling fitness
functions are a good example of this phenomena, as a fitness function that
uses sampling to assess an individual’s fitness can use smaller sample sizes to
increase run-time speed, at the expense of decreased accuracy of the fitness
evaluation.

2.3 Order statistics

This paper uses order statistics to further our understanding of tournament
selection. This section briefly reviews them. For a detailed description of
order statistics, the reader should see [2].

If a random sample of size n is arranged in ascending order of magnitude
and then written as

T1n S T S e S Tnim,

we can let the random variable X, represent the distribution of the corre-
sponding ;.,, over the space of all possible samples of size n. The variable
X, 1s called the ith order statistic. The field of order statistics deals with
the properties and applications of these random variables.

Of particular interest is the maximal order statistic X,.,, which represents
the distribution of the maximum member of a sample of size n. This is
directly analogous to tournament selection, where the competitor with the
maximum fitness is selected as the tournament winner.

The probability density function p;.,(z) of the ith order statistic, Xi.,,
gives the probability that the ith highest individual from a sample of size n
will have a value of z. The value of p;.,(x) is calculated by

n—1

Pin(T) = ﬂ(i B 1)P(:L‘)i"l(l — P(z))",

where P(x) represents the cumulative distribution function of x (the prob-
ability that {X < z}). The probability that a single combination will have
1 — 1 individuals less than or equal to z and n — ¢ individuals greater than x
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is given by the product P(z)"~!(1 — P(z))"*. However, there are many pos-
sible sample combinations that will yield the desired distribution of having
¢ — 1 individuals less than « and n — ¢ individuals greater or equal to z. For
n individuals, there are n slots that the ith greatest individual could occupy.
For each of these slots, there are C‘:ll
individuals that are less than or equal to @ among the n — 1 remaining slots.

The expected value (mean) wu;, of an order statistic X, can thus be
determined by

) different ways of arranging the ¢ — 1

+oo
Ujn = /T pzn(x)dT
“oo

:ncr_v;Zwaﬁﬂl—P@D“%P@)

1—1

For the maximal order statistic (i = n), the mean w,., simplifies to

+oo
%mzn/xmmwwm@.

—0oQ

In this paper we are particularly interested in the normal distribution
N(u,0?), where p and ¢? are the mean and variance, respectively, of the
normal distribution. For the standard normal distribution N(0,1), the cu-
mulative distribution function is P(z) for the unit normal ®(z), and thus

2

dP(z) is ¢(z)dx = ~\/12=We_%da:. The expected value (mean) of the maximal
order statistic for the standard normal distribution is thus
+oo

%m:n/x¢uw*amw. (1)

—00

For samples of size n = {2, 3,4, 5}, equation (1) for u,., can be solved ex-
actly in terms of elementary functions. Table 1 gives the values for the mean
of the maximal order statistic for n = {2,3,4,5} (see [1] for derivations).
For larger values of n, the means of the order statistics for the standard

Table 1: Expected value of maximal order statistic for standard nor-
mal distribution.

[n] Jorin

| Values of ft,., |

1
2 & 0.5642
3 oz 0.8463
4| S=tan(V2) 1.0294
5| izt anasin'(3) 1.1630
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normal distribution have been tabulated extensively [6]. The variances and
covariances of the standard normal distribution order statistics can also be
calculated, and are tabulated for n < 20 in [8], and for n < 50 in [10].

3. Tournament selection in deterministic environments

This section develops a predictive model for the selection pressure resulting
from a tournament of size s in a deterministic (noiseless) environment. In
a noiseless environment, the fitness function can accurately assess the true
fitness of an individual. We show that for a population whose fitness is nor-
mally distributed, the resulting tournament selection pressure is proportional
to the product of the standard deviation of the population fitness and the
maximal order statistic zg..

In a deterministic environment, the fitness function returns the true fit-
ness value of an individual. The population’s fitness values, after crossover
and mutation, are assumed to be normally distributed over the population.
Although tournament selection by itself will generate a skewed (nonnormal)
distribution, the crossover and mutation operations “remix” the population,
which forces the distribution to become more normal. This normalizing ef-
fect of crossover and mutation allows the assumption of normally distributed
population fitness to be reasonable for a wide variety of domains. Experimen-
tal results presented later demonstrate that GAs using only simple crossover
and no mutation can adequately normalize the population distribution.

Let the population fitness in generation ¢ be normally distributed
N(ppy,0%,). The probability that an individual with fitness f will win a
tournament of s individuals randomly picked from the population is given by

p(f =max(f;... f,)) = s P(F < f)*"'p(f),

which represents the probability of an individual with fitness f occurring
along with s — 1 individuals having lower fitness scores. There are s different
ways of arranging the s — 1 “losers” and the “winner.” The expected value
of the tournament winner pp;yq from a tournament of size s can thus be
calculated by

HF 1 = E[f = ma.x(fl cee fs)]

+oo
[ £9(f = max(fr.... £))df

I

+oo
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However, for a normally distributed population N(up,,0%,), P(f) =
q)(—f;l‘jlp"), and
P 1 P
o) = L Lyl ey

df OF OFyt
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Thus
+oo
f=triyoa  f = tray
pran = — [ f o(FLE g (L LR g
O O Opu
Substituting z = % gives
+oe
prin =5 [ (Orez+ irs) D) 9(:)dz
3 . .
= lip, S / O(2)*'p(2)dz + op, (s / 2 ®(2)* ' (2)dz)
= ,U/F,/,[(D(Z)s}i—g + Opihts:s
= Mg + Opifs:s- <2)

In equation (2), s is the effective selection pressure for a tournament
of size s, and can be directly obtained from Table 1. From equation (2), it
is also apparent that the change in fitness between generations is given by

Aplp, = e = My
= Op,ls:s- (3)

For binary tournaments (s = 2), this matches the result obtained in [9],
where the expected increase in the average population fitness for tournaments
of size s = 2 was derived using the difference between normal distributions.
Their result, using the notation in this paper, is fip, 41 = tp, + UF,r-ﬁ~ This
matches the result obtained using equation (2) with a tournament size of
§=2,88 ligy = —\}? from Table 1. Note that the order statistic model derived
in this paper is generalizable to all tournament sizes and is not limited to
5=12,

Equation (3) shows that for tournaments of size s, the expected average
population fitness increase is directly proportional to .5, the expected value
of the maximal order statistic of size s. Table 1 gives s, demonstrating
that increasing the tournament size will cause successively smaller increases
in the expected average population fitness.

4. Tournament selection in noisy environments

This section extends the model developed in section 3 to accurately predict
the selection pressure in the presence of noise. With noisy fitness functions,
there is a chance that the winner of a tournament might not be the individual
with the highest true fitness. This section concentrates on quantifying the
reduction in tournament selection pressure due to noisy fitness functions.
The model derivation in this section has three major steps. First, the
relationship between an individual’s noisy fitness and true fitness values is
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determined, so that the true fitness value of an individual can be estimated
from the noisy fitness value. Next, the relationship is extended to handle
subsets of individuals, so that the true fitness average of a subset of the pop-
ulation can be estimated from the average noisy fitness value of the subset.
Lastly, we use the model derived in section 3 to estimate the average noisy
fitness value of a particular subset of the population—the subset consisting
of noisy tournament winners. This average noisy fitness value is then plugged
into the formula found in the second step to estimate the average true fitness
of the winners of noisy tournaments. The selection pressure, based on the
expected true fitness value of the tournament winners, can thus be deter-
mined. The result is a predictive model for tournament selection that can
handle varying noise and tournament sizes.

In a noisy environment, the noisy fitness f’ of an individual is given by
f' = f + noise, where f is the real fitness of the individual, and noise is the
noise inherent in the fitness function evaluation. As in section 3, the real fit-
ness of the population F' is assumed to be normally distributed N (s, 0%,).
This section further assumes that the noise is unbiased and normally dis-
tributed N(0,0%). This facilitates modeling the effects of the noise, and is
a reasonable assumption for many domains. Using these assumptions, along
with the additive property of normal distributions, gives that the noisy fitness
F' is normally distributed N(pp,, 0%, + 0%).

Although the real fitness value for an individual is unknown, the expected
value can be determined from the individual’s noisy fitness value, which is
generated by a noisy fitness function evaluation. As both the true fitness and
the noisy fitness are normally distributed, the bivariate normal distribution
can be used to obtain the expected true fitness value of F' for a given noisy
fitness value f’ of F’. For normal random variables X and Y, the bivariate
normal distribution states that the expected value of Y for a specific value x
of X is

E(Y|z) = py + pxy—(x — pix),

Oy
Ox

where py,- is the correlation coefficient for X and Y. The correlation coeffi-
cient pyy can be calculated by py, = ZXX where oy, is the covariance of

oxoy’

X and Y. The covariance between F' and F” is simply o2, thus
! 03‘ OF ¢ 4
E(F|f') = pr + —(f" = )
OpOp Ot
OF (o
= pr + — (f' = ppr)
Uﬂ
0% ip
= B 1), 4
MF+0'12,+0'}2V(J( [ (4)

As the above unnumbered formula is linear, the expected value of F' for
any subset R of the population can be calculated using equation (4), with
1" set to the noisy fitness mean p of the subset. Of course, the subset we
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are interested in is the noisy tournament winners. The expected mean of
the noisy tournament winners of tournament size s can be derived using the
same derivation as for the deterministic case:

Hp! 1 = Hpl + Opr i flsis

= pp', + \/ U?’.L + Ui'us:s-

Setting [’ to ppr,,, in equation (4) produces the expected true fitness
value of the tournament winners:

E(F;S+1|/—1'F’,z+1) = HF41
2

o
=M ﬁ(uﬂt + 0%+ O%bsis — Hr'r)

Fyt N

2
o
= gy + (5)

Hs:s-
2 2
VOF: T OnN

As expected, equation (5) reduces to equation (1), the formula for the
deterministic (noiseless) case, when the noise variance 0% equals zero. Equa-
tion (5) is significant in that it predicts the convergence rate of a GA using
tournament selection for any tournament size or noise level.

5. Validation of model

This section tests the accuracy of the predictive model, equation (5), using
a sample domain. The domain used is the bit-counting, or onemax, domain,
which works well for analysis as the variance can be determined from the
average population fitness. This section uses equation (5) to predict perfor-
mance under a range of tournament sizes and noise levels. Experiments are
then run that show that the predictive model is very accurate in determining
the tournament selection pressure for different tournament sizes and noise
levels.

5.1 Onemax domain

The domain of interest is the onemax, which is also referred to as the bit-
counting problem. The real fitness of an individual in this domain is simply
the number of one bits in the chromosome. The optimal solution is the chro-
mosome consisting of all one bits. This population fitness in the onemax
domain is binomially distributed. The mean and variance of the population
fitness can therefore be calculated using binomial distribution properties.
The population mean fitness at generation t is given by f(t) = pp, =1 p(t),
where [ is the chromosome length, and p(t) is the percentage of correct al-
leles in the population. The variance of the population at time ¢ is simply

0%, =1 p(t)(1 —p(t)). As the normal distribution closely approximates the
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binomial distribution for larger values of [, our model, although based on nor-
mal population distributions, is valid for the binomially distributed onemax
domain.

The experiments in this paper all use the following GA configuration
parameters. The chromosome length is [ = 100, crossover is performed using
the uniform crossover operator, and no mutation is used so as to better
isolate the selection pressure effects. The proportion of correct alleles in the
initial random population is assumed to be p(0) = 0.5. The population size is
adjusted for different noise levels, as described in [4]. For the onemax domain,
the population sizing equation reduces to N = 8(0?4—0}1), with the population
variance o} conservatively set to o, = I p(0)(1 — p(0)) = 25. The noise
variance o2 is specified by the user for each experiment. For experiments
with a nonzero noise variance o2, a random number generated from the noisy
distribution N(0,0?) is added to the real fitness score for each individual
to produce a noisy fitness score. For the noisy experiments, tournament
selection is based solely on the noisy fitness values of the individuals.

5.2 Predictive model for the onemax domain

This section adapts equation (5) to determine the convergence rate of the
percentage of correct alleles over time for the onemax domain. From equa-
tion (5) the fitness increase between two generations is given by:

f(t + 1) i m = Hri+1 — HEe
o7

Hes:s-
2 2
V Ok T O

For the onemax domain, pr, =1 p(t) and o2, =1 p(t)(1 — p(t)). Thus

plt+1) —pt) = $(FE+1) - F)

2
Hs:s Op.

Lot +ad
P00 P
CJLp®) (1 - p(t) + 0%

Approximating the above difference equation with a differential equation
yields

o P - 2lt)) (6)

dt " o)1= p(t) + o
Although equation (6) is integrable, it does not reduce to convenient form
in the general case; however, it can be easily solved numerically for p(t), and

can be determined exactly for the noiseless case (02 = 0) p(t). Section 5.3
will deal with solving equation (6) for t(p). Given the initial percentage of
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correct alleles is p(0) = 0.5, equation (6) can be solved exactly for p(t) in the
noiseless case to yield, for ¢ less than convergence t..:

. Hs:s t
p(t) = 0.5(1 + sin . 7
p(t) ( ( i ) (7)
Equations (6) and (7) together make up the predictive model for the one-
max domain. Equation (6) is numerically solved to predict p(t) for noisy do-
mains, while equation (7) is directly used to obtain p(t) for noiseless domains.
In both equations, j.; determines the selgction pressure for a tournament of

2
i ; 3 o .
size s. For noisy domains, the term —=£— causes the predicted conver-
IFLTON

gence rate to decrease as the noise is increased. In section 5.4 we assess the
accuracy of these equations for a variety of tournament sizes and noise levels.

5.3 Convergence time for the onemax domain

While equation (6) is not directly solvable for p(t), it can be solved for t as
a function of p:

[\fl arctan ( \/Z(Zp =4 )
2y/0% +1p(1—p)

p —l—20%+1p—20x5/0%+1p(1—p)
+oy log +c|. (8)
P—1 202 +1p+20y/0%+1p(1l-Dp)

For binary alleles, at time ¢t = 0 we can assume that half of the alleles are
initially correct p = 0.5. Using this to solve for ¢ in equation (8) gives that
¢ = 0. For the case where p = 1 (convergence), s = 2, and oy = 0, equa-
tion (8) reduces to #(1.0) = v/zl . which agrees with the convergence time
found in [9] for binary tournament selection. Of course, equation (8) is more
general than the convergence equation in [9], as it can handle tournaments
of different sizes and noise levels.

We are particularly interested in the time ¢. it takes for all alleles to
converge (p = 1). For the deterministic case, equation (8) reduces to

gy T ©)
2fhs:s

t(p) - uSZS

A useful approximation of the convergence time for the noisy cases is
1 Vi l—1)402
t. = [\ﬁ arctan (20~> + oy log (ﬁ)} . (10)

/‘LSZS
This approximation is obtained by setting p = 1 in equation (8), except for
the ;% fraction in the log term. For the ;% term, we relax the convergence

criterion by setting p = l_Tl, indicating that 100(1_71) percent of the bits in
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the population have correctly converged. Setting p = == in the -5 term

yields (1 —1). Equation (10) is used to develop approximations for domains
characterized by small, medium, and large amounts of noise.

For domains characterized by small levels of noise (o5 = 0), equation (10)
can be approximated by

t, = 1 [\/l arctan (—2—\[5) + 20y log(ZUN)] , (11)

ILI‘SZS UN

as the log term is insignificant for very small levels of noise.
A medium noise level is defined as having the fitness function noise vari-

ance o, approximately equal the initial population fitness variance o, level,

which for the onemax domain is at most /1/4 = A, Approximating equa-

2
tion (10) using oy &~ % yields

) + 20y 1og(\/§o—N)] . (12)

/‘LSZS 0’1\7

t. = : [\[l arctan (Z\ﬁ

For large amounts of noise (oy & 00), equation (10) can be approxi-
mated by

1 l
t, = 5 (1),
= {20,\, + oy log( 1)} (13)

as for small angles, arctan § = 6.

The approximation equations for convergence with small, medium, and
large amounts of noise can be used to quickly estimate the convergence time
for a GA. These are useful for the GA designer trying to gauge the delaying
effects of noise on population convergence.

5.4 Experimental results

In this section we assess the accuracy of our predictive model. We compare
the predicted performance against the actual performance obtained from GA
runs for varying noise levels and tournament sizes to validate our predictive
model.

To assess the accuracy of the predictive model, GA runs were made at
five different noise variance levels o2 = {0, 307, 0%,20%,40%}. At each noise
variance level, GA runs were made with tournament sizes of s = {2,3,4,5}.
For each combination of noise variance and tournament size, 10 GA runs
were made, and the results were averaged. The experimental results were
then compared to the results predicted from equations (6) (noisy) and (7)
(deterministic).

A sample plot is shown in Figure 1(a). The noise variance, given on
the top line, is 50. The dashed lines in the plot represent the predicted
performance obtained using equations (6) and (7) for tournament sizes s =
{2,3,4,5}. The solid lines display the GA performance, averaged over 10
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(b) Two Crossovers

Figure 1: Effects of multiple crossovers.

runs, for the given noise variance and tournament sizes. The dashed lines,
from left to right, correspond to the predicted performance with tournament
sizes of five (highest selection pressure), four, three, and two (lowest selec-
tion pressure). Similarly, the solid lines correspond to the performance with
tournament sizes, from left to right, of five (highest selection pressure), four,
three, and two (lowest selection pressure).

Figure 1 compares the effects of performing one crossover versus two
when the noise variance is equal to the fitness variance. While the predic-
tive model slightly overestimates the performance of GAs using one crossover
(Figure 1(a)), it accurately estimates the performance of the experiments us-
ing two crossovers (Figure 1(b)). This is a result of crossover decreasing the
correlation between alleles [9], and the tendency of crossover to “normalize”
the population fitness distributions, making our model assumption of a nor-
mal population distribution more accurate. As done in [9], we perform two
crossovers per generation in our experiments, so after the usual procedure of
tournament selection and recombination, we randomly shuffle the population
and again recombine the population using crossover. This has the beneficial
effects of reducing the correlation between alleles [9], and “normalizing” the
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population fitness distribution. However, for domains characterized by high
allele interaction, this could reduce the overall performance of the GA, as
there would be a higher disruption rate for the evolving building blocks.

Figure 2 summarizes our experimental results. Figure 2(a) plots the de-
terministic case with noise variance zero for a variety of tournament sizes.
Figure 2(b) plots the experiments with noise variance 25 for a variety of tour-
nament sizes. Figure 2(c) takes a different view, in that it plots the results
of using a fixed tournament size (s = 2) for a variety of noise levels. These
figures demonstrate that our model is very accurate for predicting GA per-
formance in the onemax domain for a wide range of tournament sizes and
noise levels.

5.5 Discussion of results

This subsection discusses the general accuracy of the model and how selection
pressure affects accuracy. The accuracy of the approximation convergence
equations is also discussed.

The model proved to be very accurate over a wide range of noise levels
and tournament sizes. On many experiments, the predicted and experimen-
tal results were practically identical. However, the model is marginally less
accurate in domains characterized by high selection pressure. This is primar-
ily a result of the high selection pressure causing the tournament selection
process to generate a nonnormal (skewed) distribution, which violates the
model assumption of a normally distributed population. For our experi-
ments, high selection pressure was caused by high tournament sizes (s = 5).
Interestingly, higher levels of noise actually reduces the tournament selection
pressure, making the model more accurate. For our experiments, the highest
selection pressure was for s = 5 and oy = 0. The results of this experiment
are shown in Figure 2(a), in the upper left two lines (predicted and experi-
mental results) of the plot. This demonstrates that even with high selection
pressure, the model is still fairly accurate.

Crossover has a normalizing effect on the population fitness. When the
selection pressure is high, the mating pool selected is nonnormal (skewed).
Performing multiple crossovers per generation has a normalizing effect on the
fitness distribution of the new offspring generated through crossover from the
mating pool, which in turn makes the model more accurate (see Figure 1).
The experiments performed for this paper used two crossovers per generation
so as to facilitate comparison of results with those obtained in [9]. For very
high selection pressures, the model accuracy can be increased by simply
increasing the number of crossovers performed per generation. However, this
increased accuracy does not come free, for performing multiple crossovers
per generation in domains characterized by high allele interaction will retard
building block growth. This slows the GA convergence rate, and would thus
make the model less accurate. For the onemax domain, which has no allele
interaction, multiple crossovers only increase the model accuracy.
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Figure 2: Onemax experiments for various tournament sizes and noise
levels.
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Table 2: Convergence times for s = 2.

Noise | Exper. | Exact t Approximate %,
a? te (p=99) | Small [ Med. | Large
0 28.0 27.8 | 28.8 | 28.8 NA
12.5 40.0 39.9 42.8 | 38.3 55.6
25.0 49.0 49.9 56.5 | 50.2 60.4
50.0 64.0 65.4 79.9 | 70.9 72.4
100.0 87.0 88.4 | 118.2 | 105.5 | 93.3

These experiments also verified the accuracy of our approximation equa-
tions for the convergence time. Table 2 presents the average convergence time
of the experiments for a variety of noise levels when the tournament size is 2,
as well as the convergence times predicted by the exact models (equations (8)
and (9)), and the small, medium, and large noise approximations (equations
(11), (12), and (13)). For the GA experiments, convergence was defined as
the first generation in which the experimental average of the average popu-
lation fitness was over 99% converged. To determine the exact convergence
time for the deterministic case, equation (9) is used with p set to 1.0. To
determine the exact convergence time for the noisy cases, equation (8) is used
with p set to .99, as it evaluates to infinity if p = 1.0. The approximation
equations all estimate the time until absolute convergence p = 1.0.

Table 2 shows that the exact convergence equations (equations (8) and
(9)) predict the experimental results quite well. The small approximation
equation turns out to be fairly accurate at oy = —‘g = 12.5, but it was
designed for smaller amounts of noise. For lower noise levels, it should be
more accurate than the medium approximation. The medium approximation,
being designed around a noise level of oy = % = 25 is fairly accurate for all
noise levels up to 100. At the high noise level of 100, the large approximation
model is the most accurate approximation. These results indicate that the
approximation equations do very well as a quick estimate of the convergence
time for GAs utilizing tournament selection. The bold-face font indicates the
approximating model that is closest to the exact convergence time for each
noise level.

6. Future research
This section describes several important areas for future research.

e Applying the new-found understanding of noise for other selection schemes.

e Modeling other GA operators by utilizing the noise component of the
model to account for their effect on convergence.

e Testing the model in more complex domains.

e Using the model to answer basic performance questions for a GA.
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e Applying the model to help tune GA configuration parameters.

e Determining appropriate sample sizes for fitness functions employing
sampling, so as to maximize performance within a given environment.

This research is important in that it has furthered our understanding of
noise and its delaying effect on convergence. The model has proved accurate
at predicting the convergence rate of a GA utilizing tournament selection
for a variety of noise levels and tournament sizes in the onemax domain.
The approach taken in section 4, where the deterministic tournament selec-
tion model is extended to handle noise, shows promise for adapting other
deterministic selection models to handle noise.

Within this paper, the noise component was considered to be produced
by noise present in the fitness functions. However, there is no reason why
the noise input for the developed model cannot include noise introduced from
other GA components. The noise input indirectly indicates the degradation
of the mating pool fitness as compared to the mating pool selected with
no noise present. The noise input can thus be used to account for other
degradations of mating pool fitness from other GA mechanisms besides noisy
fitness functions. Other GA mechanisms that also introduce noise could be
included in the noise component, such as different mutation mechanisms and
mutation rates, and tournament selection used with or without replacement.
This would increase the model’s predictive accuracy for a wider range of GA
configurations.

As discussed in section 5.5, the use of order statistics has proved very accu-
rate in predicting tournament selection pressure for the onemax domain. We
would like to extend our model to handle other domains that have different
characteristics than the onemax domain. The onemax domain is character-
ized by equal allele weighting (each bit is equally important), and no allele
interaction (no higher order building blocks). We would like to extend our
model to handle more complex domains, including “domino-like” domains,
where the alleles have unequal weighting, and for domains characterized by
high allele correlation. However, the current model is still of use for these
types of domain, in that it can provide a lower bound on the convergence
rate. Extending our model to directly handle more complex domains will
increase the accuracy of the predicted convergence rates.

One of our model’s strengths is that it predicts the distribution of the
population fitness over successive generations. Order statistics can be used
not only to predict both the increase in fitness between generations, but also
to predict the population fitness variance in the next generation. As the
population fitness mean and variance can be accurately modeled over time
using order statistics, our model can be used to answer questions relating
to population fitness distribution. The model could thus be applied to an-
swer probably approximately correct (PAC) type performance questions like:
“what is the probability that a solution of quality Y will be present at gener-
ation X,” or “at what generation are we Z percent confident that a solution
of at least quality Y will be present in the population?” Answers to these
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questions could be used to determine how long a GA should run before a
solution of acceptable quality is likely to be produced. This would allow for
a GA designer to set GA stopping criteria that achieves a desired solution
quality.

This model should be very helpful in determining appropriate settings for
many GA parameters. While GAs with generic parameter settings are good
at finding good solutions in a reasonable amount of time, their performance
can be improved by tuning the parameter settings for a specific domain. As
discussed above, our model can be used to determine appropriate stopping
criteria for the GA. It can also be used to design a GA that has a desired
convergence rate for a given domain, by applying the model to determine the
appropriate tournament size for achieving a specified convergence rate. It
could even be used to design a “custom” tournament that achieves a given
selection pressure (i.e., a towrnament where the best 2 out of 5 competitors
are selected for the mating pool).

In some domains, a GA designer is faced with a range of possible fitness
functions, all with different noise and run-time performance characteristics.
The model can be applied to help select a fitness function that achieves an
acceptable solution in an acceptable amount of run-time for a given domain.
Some fitness functions are based on sampling, with the sampling fitness func-
tion’s noise and run-time performance characteristics directly controlled by
the sample size. Our model, in conjunction with sampling theory being used
to predict the noise from a given sample size, should be able to determine
the appropriate sample size needed for the GA to achieve a given conver-
gence rate.

7. Conclusions

Tournament selection is an important selection mechanism for GAs. It is
simple to code, easy to implement on nonparallel or parallel architectures,
robust in the presence of noise, and has adjustable selection pressure. This
paper has developed a model that works under a wide range of noise levels and
tournament sizes to accurately predict the convergence rate of a GA utilizing
tournament selection. The model has been verified using the onemax domain,
and shown to be accurate for predicting the convergence rate under a wide
range of noise levels and tournament sizes.

The paper has discussed a number of immediate practical uses of the
model. It can be used to correctly set various GA control parameters for a
given domain, including tournament sizes and mutation rates. The model
can determine appropriate stopping criteria for achieving a desired solution
quality. The model can be used to answer basic performance questions, such
as: “what is the probability that a solution of quality Y will be present at
generation X 77 In addition, the model can also be used to determine appro-
priate sample sizes for the class of fitness functions that employ sampling so
as to maximize GA performance.
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This research has several long term ramifications. Through the study of
one selection scheme—tournament selection—this paper has opened the door
for understanding noise and its delaying effect for all selection schemes. The
approach used in this study may also be applied to predict the convergence
delays resulting from inherently noisy operators such as selection, crossover,
and mutation.
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