
Tattoo Detection Based on CNN and Remarks on the NIST Database

^{1, 2}Qingyong Xu, <u>¹Soham Ghosh</u>, ¹Xingpeng Xu, ¹Yi Huang, and ¹Adams Wai Kin Kong (adamskong@ntu.edu.sg)

¹School of Computer Science and Engineering, Nanyang Technological University, Singapore, ²Department of Computer, Nanchang University, China

Presented by

Soham Ghosh, (Undergraduate Student) June 15, 2016

Face detectors

Porn detectors

Child porn detectors

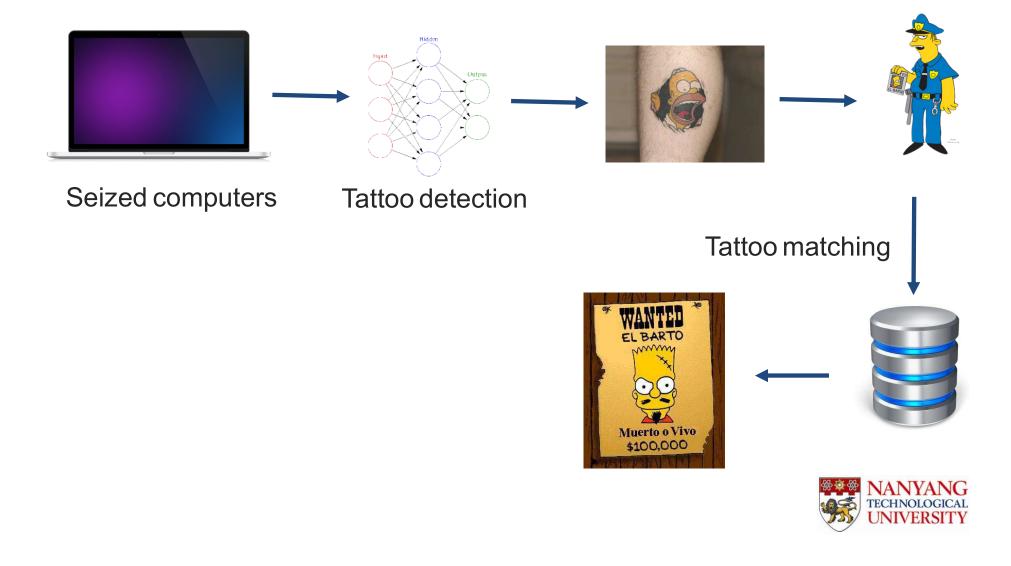
Why are tattoos important?

- Tattoos are an important soft biometric trait
- Many people have tattoos: estimated 45 million Americans
- Tattoos have a lot of information for investigation.

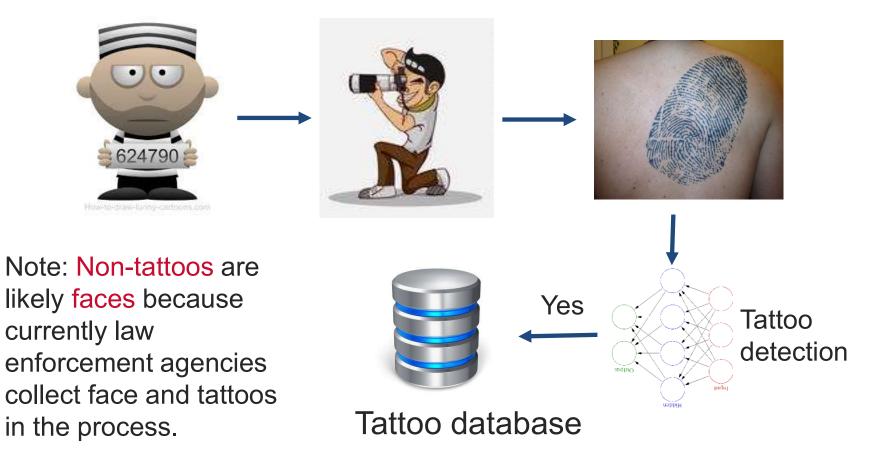
Target Application

Detecting tattoo images stored in IT devices of suspects

- There is a need to build **robust** automated
- algorithms for tattoo detection.


Why do we need to detect tattoos?

- To search other criminals related to the case.
- In child sexual offense cases 120 TB images and videos data should show a lot of offenders. If they have tattoos, they can be identified easily.
- Tattoo searching algorithms have been developed.



Why do we need to detect tattoos? (Case 1: For further investigation, our target)

Why do we need to detect tattoos? (Case 2: Tattoo database construction, mentioned in the NIST challenge)

Past work

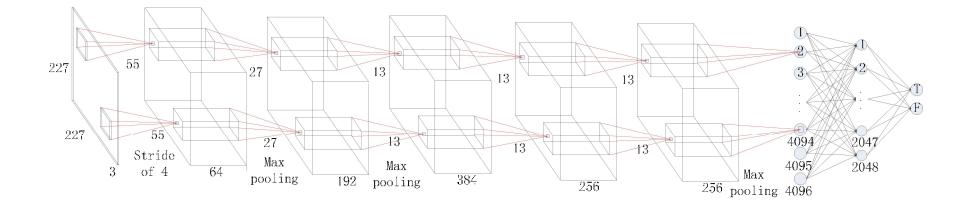
	NIST Tatt-C	Heflin et al.	Wilber et al.	Our study
•	 Positive: 1349, Negative: 1000 	• Total: 150		 Positive: 5,740 Negative: 4,260
U U		 Positive: 50 Negative: 500 	10tal: 100	 Positive: 5,740 Negative: 4,260
Remarks	 Images from inner environments 	Negative images were collected from dermatology forums and face databases		 5-fold cross- validation No limit on positive and negative samples Images collected from Flickr
Techniques	-	One class SVM	Exemplar Codes	CNN

NIST Tattoo Recognition Challenge

- To advance research and development into automated image-based tattoo recognition technology
 - identifying tattoos,
 - detecting region of interest,
 - matching visually similar or related tattoos using different types of non-tattoo imagery (e.g., scanned print and sketch),
 - matching similar tattoos from different subjects and
 - detecting tattoos from images
- The NIST challenge is **open-book**.

Results of NIST Tattoo Detection Challenge

Algorithm	Non-tattoo detection accuracy	Tattoo detection accuracy	Overall accuracy
French Alternative Energies and Atomic	<u>98.8%</u>	93.2%	95.6%
Energy Commission (CEA_1)			
Compass Technical Consulting	38.6%	79.8%	62.2%
(Compass)			
MITRE Corporation (MITRE 1)	75.0%	73.4%	74.1%
MITRE Corporation (MITRE 2)	94.8%	92.4%	93.4%
Morpho/MorphoTrak (MorphoTrak)	95.0%	<u>97.2%</u>	<u>96.3%</u>



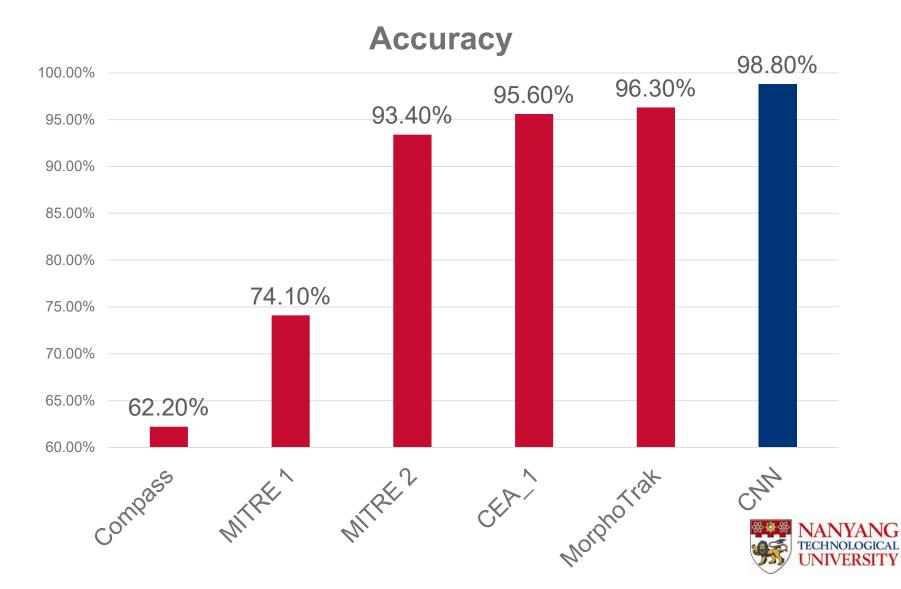
Questions to be answered

- 1. Can CNN outperform the past winner of Tatt-C challenge?
- 2. How does the training database affect detection performance?
- **3.** Is the NIST database suitable for our target application?

Convolutional Neural Network

NIST Tattoo Recognition Challenge Dataset

Positive (1349)



Negative (1000)

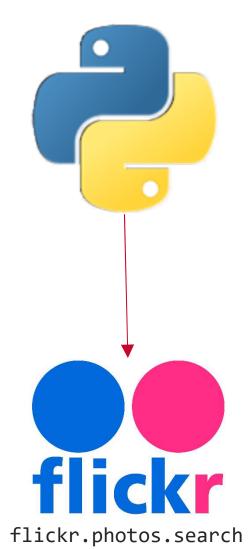
ANG LOGICAL RSITY

Results: NIST dataset

Results: NIST dataset

Algorithm	Non-tattoo detection accuracy	Tattoo detection accuracy	Overall accuracy
CEA_1	98.8%	93.2%	95.6%
Compass	38.6%	79.8%	62.2%
MITRE 1	75.0%	73.4%	74.1%
MITRE 2	94.8%	92.4%	93.4%
MorphoTrak	95.0%	97.2%	96.3%
CNN	<u>98.9%</u>	<u>98.7%</u>	<u>98.8%</u>

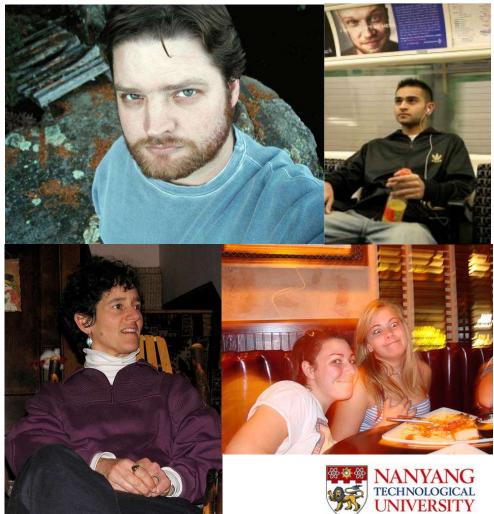
Remark 1: CNN is better than all the four participants in the NIST challenge.



Flickr Datasets

- Downloaded using Flickr API
- Four dataset sizes
 - Flickr2349
 - Flickr3.5K
 - Flickr5K
 - Flickr10K
- Same ratio of *positive:negative* (1.349:1)

These datasets are more similar to images in IT devices of suspects.



Flickr Datasets

Positive (keyword: *tattoo*)

Negative (keyword: *human, face*)

Results: Cross-dataset experiments

TRAIN	NIST	Flickr
NIST	98.81%	65.77%
Flickr	83.31%	78.29%

Key observations

- Accuracy drops significantly when the Flickr2349 dataset is used for testing.
- Train NIST Test Flickr performs the *worst*.
- Train Flickr Test NIST is better than Train Flickr – Test Flickr

Remark 2: NIST dataset is not suitable to train classifiers for our target application, detecting tattoos in IT devices of suspects. Remark 3: Flickr dataset is much more challenging.

What causes the drop in accuracy?

Experiments	Non-tattoo detection accuracy	Tattoo detection accuracy	Accuracy difference
1) Train NIST – Test NIST	98.70%	98.89%	-0.19%
2) Train NIST – Test Flickr	43.40%	82.36%	-38.96%
3) Train Flickr – Test NIST	74.40%	81.02%	-6.62%
4) Train Flickr – Test Flickr	70.10%	93.18%	-23.08%

Observations

- Detection accuracy for non-tattoos is much lower
- Discrepancy is largest for experiment 2 and 4.

What causes the drop in accuracy? (negative class)

• Negative (Flickr)

Negative (NIST)

What causes the drop in accuracy? (positive class)

• Positive (Flickr)

Positive (NIST)

Results: Flickr

Conclusions and suggestions

- Flickr images are more **challenging**
 - More diverse, hence closer to target application setting
- NIST database is suitable for tattoo database construction.
- NIST database is **not suitable** for the **target application**.
- Large, unconstrained dataset is needed

Suggestions

 For tattoo database construction, our prisoner data collection system may be a better solution. Tattoos and their accurate locations are collected at the same

NIR lighting DSLR camera

"A preliminary report on a full-body imaging system for effectively collecting and processing biometric traits of prisoners", *IEEE Symposium Series on Computational Intelligence*, 2014.

Future Work

- Collecting a larger database
- Improving network architecture

Acknowledgments

- Thanks:
 - NIST for sharing the data.
 - Ngan, Mei Lee, NIST pointed out the error of the database link in the revised version.
 - Grant agents, Ministry of Education, Singapore Singapore and China Scholarship Council.
 - Renaissance Engineering Programme, for financially supporting my conference trip.

Flickr database http://forensics.sce.ntu.edu.sg/.

THANK YOU

