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Fig. 1. Four applications enabled using automated transformations of a generic renderer. (a) Polarized spectral rendering of an optical experiment that analyzes
light with elliptical polarization. (b) A coherent MCMC rendering algorithm that explores bundles of nearby light paths to improve convergence at equal
render time. (c) A refractive slab optimized by inverse rendering to focus light with three primary colors into a rendition of the painting A Sunday Afternoon
on the Island of La Grande Jatte by Georges Seurat. (d) Reconstruction of a smoke volume from reference images; multiple iterations of the optimization
are shown. Please refer to the supplemental video for animated visualizations of many results shown in this paper.

Modern rendering systems are confronted with a dauntingly large and
growing set of requirements: in their pursuit of realism, physically based
techniques must increasingly account for intricate properties of light, such
as its spectral composition or polarization. To reduce prohibitive rendering
times, vectorized renderers exploit coherence via instruction-level paral-
lelism on CPUs and GPUs. Differentiable rendering algorithms propagate
derivatives through a simulation to optimize an objective function, e.g., to
reconstruct a scene from reference images. Catering to such diverse use
cases is challenging and has led to numerous purpose-built systems—partly,
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because retrofitting features of this complexity onto an existing renderer in-
volves an error-prone and infeasibly intrusive transformation of elementary
data structures, interfaces between components, and their implementations
(in other words, everything).

We propose Mitsuba 2, a versatile renderer that is intrinsically retar-
getable to various applications including the ones listed above. Mitsuba 2 is
implemented in modern C++ and leverages template metaprogramming to
replace types and instrument the control flow of components such as BSDFs,
volumes, emitters, and rendering algorithms. At compile time, it automati-
cally transforms arithmetic, data structures, and function dispatch, turning
generic algorithms into a variety of efficient implementations without the
tedium of manual redesign. Possible transformations include changing the
representation of color, generating a “wide” renderer that operates on bun-
dles of light paths, just-in-time compilation to create computational kernels
that run on the GPU, and forward/reverse-mode automatic differentiation.
Transformations can be chained, which further enriches the space of algo-
rithms derived from a single generic implementation.

We demonstrate the effectiveness and simplicity of our approach on sev-
eral applications that would be very challenging to create without assistance:
a rendering algorithm based on coherent MCMC exploration, a caustic de-
sign method for gradient-index optics, and a technique for reconstructing
heterogeneous media in the presence of multiple scattering.

CCS Concepts: • Computing methodologies→ Rendering.
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1 INTRODUCTION
Realism has been a major driving force since the inception of the
field of computer graphics, and algorithms that generate realistic
renderings using physical light transport simulations are now in
widespread use. These methods approximate high-dimensional in-
tegrals over sets of light paths using Monte Carlo (MC) or Markov
Chain Monte Carlo (MCMC) sampling along with sophisticated ap-
pearance models that account for the interaction of light and matter.
Because they simulate the intricacies of the visual world, these sys-
tems tend to be large and complex: for instance, current versions
of PBRT [Pharr et al. 2016] and Mitsuba [Jakob 2010] consist of
over 60 and 180 thousand lines of C++ code, respectively. Industrial
rendering systems are larger still, with typical sizes on the order of
one million lines of code [Hanika 2019].
Despite their size, these systems lack many features of growing

importance: for instance, predictive rendering applications require
that simulations correctly account for the effects of both spectral
transport and polarization. In theory, this is a straightforward ex-
tension: one must simply replace RGB radiance and reflectance
values by wavelength-dependent Stokes vectors and Mueller ma-
trices and update a few models that are directly affected by these
phenomena, e.g., by switching from a spectrally constant refractive
index to Cauchy’s equation and adopting the complex-valued form
of the Fresnel equations. In practice, the modification changes the
representation of quantities central to any renderer, requiring a
substantial redesign of the entire system.

Vectorized rendering systems, such as MoonRay [Lee et al. 2017]
and Iray [Keller et al. 2017], leverage Single Instruction/Multiple
Data (SIMD) units on modern CPUs and GPUs to efficiently sample
many light paths in parallel, thereby reducing the overall compu-
tation time. Efficient vectorization generally involves a mechani-
cal translation into a sequence of compiler intrinsics or specialized
compiler infrastructure to generate SIMD machine instructions, al-
gorithms with improved coherence1, and data structures arranged
in structure of arrays (SoA) form. The latter requires transposing
the memory layout of the entire application, which constitutes
another example of a highly intrusive change to every system com-
ponent. Designing vectorized renderers remains a time-consuming
endeavor—for instance, the recent MoonRay project marks the re-
sult of a concerted four-year development effort of a team of engi-
neers [Lee et al. 2017; Fascione et al. 2017].
Over the last decade, gradient-based optimization techniques

have fueled dramatic progress in machine learning, computer vision,
and related fields. In computer graphics, differentiable rendering
algorithms have opened the door to solving challenging inverse
problems including computational material design and methods

1i.e., regular control flow and memory accesses with spatio-temporal locality.

for scene reconstruction that account for global transport effects
such as shadows, interreflection, or even refraction. A differentiable
rendering algorithm is able to compute derivatives of the entire sim-
ulation with respect to input parameters that could include camera
pose, geometry (e.g. vertex positions), BSDFs, textures, and vol-
umes. Recently, Li et al. [2018a] presented the first comprehensive
technique for differentiable rendering that accounts for all salient
transport effects including discontinuities. Its freely available imple-
mentation reveals the inherent challenges of realizing such systems:
discontinuities aside, the basic loop of the underlying path tracer
(which would likely be realizable using at most 200 lines of C++
code in a “classical” renderer) expands into approximately 3000 lines
of hand-written derivative code partitioned over multiple CUDA
kernels that communicate through large groups of auxiliary buffers.
Adding a new model to the system entails manual differentiation of
all relevant expressions with careful consideration of what informa-
tion must be cached when and where, so that it can be passed from
kernel to kernel during subsequent gradient propagation passes.
More advanced (but well-understood) bidirectional or volumetric
techniques present a formidable challenge in this context.

To address these problems, we propose Mitsuba 2, an open-source
architecture for constructing renderers that are intrinsically retar-
getable to these application domains. Mitsuba 2 takes abstract im-
plementations of a set of standard components (e.g. rendering al-
gorithms, BSDF models, etc.), and lifts them onto a concrete set of
types, systematically transforming the underlying algorithms to en-
able a particular feature. Possible transformations include changing
the representation of radiance (e.g. to polarized spectra), generat-
ing a “wide” renderer that operates on bundles of light paths using
AVX512 vector instructions or CUDA kernels, and automatic dif-
ferentiation of the entire simulation. These transformations can be
chained, which further enriches the space of algorithms that can
be derived from a single generic implementation. Concretely, our
contributions are:
• A versatile framework of composable types that exploit compile-
time computation to retarget a complete rendering system from
a generic specification to concrete implementations suited to a
range of different tasks.

• A lazy just-in-time (JIT) compiler that symbolically executes
arithmetic and control flow to generate computational kernels
for later execution on a GPU.

• An efficient graph-based approach for simultaneous forward-
and reverse-mode automatic differentiation (AD) that seamlessly
composes with other transformations.

• A simplification algorithm that periodically simplifies the graph
data structure used by automatic differentiation to reduce the
memory usage of differentiable rendering.

In addition to these system contributions, we present several novel
applications that are enabled by our system:
• A MCMC rendering technique that explores bundles of nearby
light paths to generate coherent work. Our system is able to
exploit the similar control flow in each bundle to improve con-
vergence at equal render time.

• A method for creating gradient-index optics that focus incident
illumination into caustics that reproduce multiple user-specified
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images. Alternatively, height fields with constant index of re-
fraction can be optimized to reproduce color images from an
illuminant that provides three primary colors.

• A method for reconstructing the parameters of a heterogeneous
participating medium from a set of input images, while account-
ing for multiple scattering. We showcase reconstruction of 3D
densities (e.g. smoke or steam) and scattering-aware texture re-
production inside a dielectric slab.

The open source implementation of Mitsuba 2 and our experimental
validations are available at https://mitsuba-renderer.org.

2 BACKGROUND AND RELATED WORK
We now discuss prior work and introduce relevant background
material. Since our system touches on a large set of related topics,
we restrict our discussion to the most relevant articles.

Coherent and vectorized rendering. Monte Carlo rendering tech-
niques like path tracing sample their domain at random locations,
making them ill-suited for modern processor architectures that
rely on various forms of coherence to obtain good performance.
Coherent rendering techniques are designed to address this flaw,
for instance by accumulating a larger amount of work that is then
reordered based on the similarity of materials [Áfra et al. 2016],
or rays [Pharr et al. 1997]. Disney’s Hyperion [Burley et al. 2018]
and Dreamwork Animation’s MoonRay [Lee et al. 2017] use this
approach, the latter also vectorizing arithmetic operations using
ISPC [Pharr and Mark 2012]. Weta’s Manuka [Fascione et al. 2018]
renderer partially evaluates shaders in a coherent shading phase
followed by incoherent path tracing. A key issue faced by all of
these methods is the difficulty of finding coherent work within an
algorithm that is fundamentally incoherent. Our system enables
transparent vectorization similar to ISPC that we showcase in a
MCMC rendering algorithm that directly generates coherent work.

Automatic differentiation. Many numerical methods require cheap
access to derivatives, often tomaximize an objective function using a
variant of gradient descent. Automatic differentiation (AD) provides
a powerful tool to automate this process via systematic application
of the chain rule [Griewank and Walther 2008].

One of two AD variants is typically used depending on the nature
of the problem: starting with a set of inputs (e.g. a, b) and associated
derivatives (da, db) forward-mode AD instruments every operation
(e.g. c = a * b) with an additional step that tracks the evolution
of derivatives (dc = a*db + b*da). However, a separate propagation
pass is needed per input, and the approach thus becomes prohibi-
tively costly when there are many of them. Reverse-mode AD, also
known as backpropagation in the context of neural networks [Rumel-
hart et al. 1986], is the method of choice when the model has few
outputs but many inputs. It traverses the computational graph from
outputs to inputs, repeatedly evaluating the chain rule in reverse.
A traditional difficulty of reverse-mode AD is that differentiation
can only begin once the output has been computed. A record of all
intermediate computations must furthermore be kept in memory
to enable the backward traversal, which can become prohibitive
for long-running computations. Checkpointing strategies [Volin
and Ostrovskii 1985] reduce storage by discarding information that

can be recovered by repeating parts of the computation, but this
introduces considerable additional complexity.
Machine learning frameworks, such as PyTorch [Paszke et al.

2017] and TensorFlow [Abadi et al. 2015] provide a convenient
interface to array-based computation on GPUs with built-in reverse-
mode differentiation. Both are designed for neural networks, whose
computation graphs typically consist of a few hundred arithmeti-
cally intensive operations like matrix-vector multiplications or con-
volutions. In contrast, Mitsuba 2 works with highly unstructured
graphs that are potentially extremely large, containing millions of
operations with very low arithmetic intensity (e.g. additions).

Domain Specific Languages. A number of domain-specific lan-
guages (DSLs) have been proposed to accelerate the development
of efficient numerical algorithms in the area of computer graphics.
Halide [Ragan-Kelley et al. 2013] facilitates the design of highly
optimized image processing pipelines, decoupling the computation
from the way it is carried out to expose optimization opportunities.
The approach can be combined with reverse-mode AD to create new
neural network layers or solve inverse problems [Li et al. 2018b].
Anderson et al. [2017] recently proposed a DSL for Monte Carlo
rendering, which symbolically differentiates sampling code to de-
termine associated probability densities that are crucial for many
rendering techniques.

Our method is also related to work by Pérard-Gayot et al. [2019],
whose system builds on AnyDSL [Leißa et al. 2018] to generate
a vectorized implementation for rendering a specific input scene,
while applying partial evaluation to combine and specialize the
individual components of a renderer. In contrast, our work targets a
wider set of transformations including changes to the formulation
of light transport (e.g. polarization) and problem statement (e.g.
inverse rendering via differentiation) but does not specifically focus
on partial evaluation—combining both approaches is likely feasible
but beyond the scope of this article.

Differentiable rendering. Several approximate differentiable ren-
dering techniques have been proposed in prior work, which rely on
smooth rasterization of meshes or volumes, while ignoring global
light transport effects [Kato et al. 2017; Liu et al. 2019; Loper and
Black 2014; Petersen et al. 2019; Rhodin et al. 2015]. In contrast,
physically based methods that correctly account for interreflection
differentiate full transport-level simulations, e.g. to optimize mate-
rial parameters of surfaces [Azinović et al. 2019; Che et al. 2018] or
volumes [Gkioulekas et al. 2013; Khungurn et al. 2015; Zhao et al.
2016]. Special precautions are furthermore required to obtain cor-
rect derivatives of non-differentiable visibility changes at silhouette
edges [Li et al. 2018a].
Our system is most related to the second category of work, and

its main contribution is to provide a straightforward path from a
transport algorithm to an efficient differentiable implementation
that runs on the GPU. Our system also incorporates a novel approach
for dealing with non-differentiable transport effects using a change
of variables formulation that is the topic of a separate paper [Loubet
et al. 2019] (visibility involves a different set of challenges that are
orthogonal to the system-related aspects discussed in this article).
Note that none of the applications shown in this article rely on
visibility gradients.
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Automatic differentiation of a renderer is also helpful in applica-
tions other than differentiable rendering, for instance to construct
improvedMCMCproposals when rendering scenes with challenging
light transport [Li et al. 2015].

Template metaprogramming. The term metaprogramming refers
to a broad range of techniques, in which a program is able to rewrite
its own structure (or that of another program) either statically at
compile time or dynamically during execution. Template metapro-
gramming (TMP) denotes a static variant of this approach that was
“discovered” in the early 1990s when it was found that C++ templates
could be used to perform Turing-complete computation during com-
pilation [Meyers 2005]. Initially considered a dangerous feature due
to generally fragile support and superlinear complexity of template
expansion in early compilers, TMP has seen significant refinements
and extensions in later revisions to the standard (C++11, 14, 17) that
have elevated its status to that of a top-level language feature.
Mitsuba 2 performs nontrivial transformations of complete pro-

grams that would generally require custom compiler infrastructure
or tools for source code synthesis (in particular, our requirements
far exceed the capabilities of “generics” or “macros” available in lan-
guages such as Ada, Rust, and .NET). Even within C++, the specifics
of our design have only become possible due to extensions in the
recent 2017 standard revision. For this reason, we briefly review
relevant features, and how they are used by our system.

Note that TMPusagemainly occurswithin internals of our system—
rudimentary familiarity with template concepts suffices when de-
veloping Mitsuba 2 code.

• Templates.Mitsuba 2 components are specified as generic C++
functions and structures parameterized by unknown target-specific
types (e.g. the representation of colors or floating point values)
and / or constants (e.g. size or depth). For instance, the fragment

template <typename Float> struct MicrofacetDistribution {

using Vector3f = Array<Float, 3>; /* ... */

};

declares a data structure parameterized by an arithmetic type
(typename Float) that is then used in the declaration of a more
complex 3D vector type. In the simplest case, Float could be
an ordinary floating point value. More advanced usage might
involve types that perform arithmetic symbolically.

• Variadic templates are templates that accept an arbitrary number
of arguments. For example, the generic function

template <typename... T> auto f(const T&... args) {

return g(h(args)...);

}

rewrites function invocations of the form f(x1, x2, ...) into
g(h(x1), h(x2), ...). We use variadic templates to realize vir-
tual method calls (e.g. BRDF sampling) on the various targets.

• Compile-time conditionals facilitate targeted removal of code frag-
ments subject to user-specified conditions. For instance, suppose
that the nested block /* ...*/ in the snippet

if constexpr (is_polarized_v<Spectrum>) { /* ... */ }

is only meaningful when dealing with polarized spectra, gen-
erating a compilation error in the unpolarized case. To avoid

this problem, the if constexpr statement queries a type trait at
compile time, excising the nested block in the negative case.

• Type computation. It is often difficult or impossible to define types
of expressions in a generic program. To address this flaw, modern
C++ constructs enable type specifications that are themselves
the result of a compile-time calculation. For instance, the snippet

using Value = decltype(a[0] + b[0]);

constexpr int Size = A::Size + B::Size;

Array<Value, Size> result = /* ... */;

computes the type resulting from the concatenation of arrays A a

and B b, while applying standard promotion rules (combining
int and float yields float, etc.). Here, constexpr denotes com-
putation to be performed at compile time, and decltype returns
the type of a nested expression without evaluating it.

Expression templates. Widely used numerical libraries such as
Eigen [Guennebaud et al. 2010] and Adept [Hogan 2014] rely on a
technique known as expression templates (ET) [Veldhuizen 1995].
Mathematical expressions in these frameworks return complex types
that encode the sequence of operations needed for evaluation rather
than triggering evaluation immediately. This enables global opti-
mizations that would be unavailable when considering the opera-
tions individually.
We experimented with expression templates during the early

stages of this project but ultimately found them not to be a good
fit for Mitsuba 2. The approach is ideal for compact statements (e.g.
simple matrix updates in the case of Eigen) but does not scale to
large expressions that encode complex functionality (e.g. a complete
microfacet model with visible normal sampling). Because ET cannot
model variable reuse and common subexpressions, the size of the
expression templates tends to grow exponentially as a function of
the size of the program, which eventually prevents practical usage.

3 SYSTEM DESIGN
The design of Mitsuba 2 was influenced by three guiding principles:
• No duplication. Special cases will inevitably arise during certain
program transformations—we wish to support these without
creating many special variants of an algorithm.

• Unobtrusiveness. Several transformations discussed in Section 1
substantially increase the size and complexity of an implementa-
tion, obscuring physical and algorithmic concepts. We thus want
development to take place at the input end of such transforma-
tions. The development of generic algorithms should furthermore
resemble their “classical” counterparts as much as possible.

• Modularity. Physically based rendering systems admit a particu-
larly modular architecture and are often partitioned into a large
set of loadable plug-in modules that implement materials, render-
ing algorithms, and so on. To support the same level of modular-
ity, our approach should be compatible with separate compilation
of the various parts of the renderer.

Our system is composed of two principal components: the first,
named Enoki [Jakob 2019], is a template library responsible for vec-
torization, JIT compilation, and program transformations. Intended
to be as general as possible, it does not contain any rendering-
specific code.
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The second component builds on top of Enoki and implements
a complete rendering system designed for compatibility with the
Mitsuba 0.6 [Jakob 2010] scene description language. It replicates
Mitsuba’s interfaces and plugins with suitable abstractions that
admit the discussed program transformations. This component also
provides fine-grained bindings and utilities for prototyping forward
and inverse rendering pipelines in Python.
We begin with a discussion of the overall architecture, and how

arithmetic operations are realized in our system. Following this, we
turn to more complex cases that arise in the context of rendering.

Static arrays. The fundamental building block of Enoki is a generic
fixed-size container Array<Value, Size>, whose default implemen-
tation intercepts and carries out arithmetic operations component-
wise by forwarding them to its elements (for instance, a = b + cwill
be rewritten into a[i] = b[i] + c[i]). Its template parameter Value
could be an arbitrary data structure (e.g. a string), an arithmetic
type, or another Enoki array. In addition to Array, our system also
provides a set of specializations with slightly different semantics.
For instance, matrices or quaternions require a different product op-
erator, while points, vectors, and surface normals behave differently
under linear transformations. These containers can be arbitrarily
nested to create higher-order tensors, such as a 4 × 4 × 8 × N array
containing a packet of N spectral Mueller matrices that are each
sampled at 8 discrete wavelengths.

All arrays furthermore support implicit broadcasting, which suit-
ably expands the size of a tensor so that an operation can be car-
ried out. This is particularly important where vectorized and non-
vectorized portions of the system meet. For instance, suppose that
the aforementioned higher-order tensor occurs in a product involv-
ing another Mueller matrix or a discrete color spectrum. In such a
case, Enoki inspects the types of the involved operands at compile
time to determine that a broadcast to dimensions (1,2) or 3 of the
rank-4 tensor is necessary.

Enoki provides vertical and horizontal arithmetic operations that
are each split into a target-independent frontend portion responsible
for broadcasting and type conversion, and a target-specific backend
portion. Vertical operations proceed component-wise and produce
a tensor of the same shape, while horizontal operations involve a
reduction over one or more dimensions, returning a tensor of lower
rank. To illustrate these concepts, we show a cross-section through
front- and backend parts of a simple vertical product operation:

Frontend. The frontend part takes two arguments of type T1 and
T2, of which at least one must be an Enoki array.

template <typename T1, typename T2, enable_if_array_t<T1, T2> = 0>

auto operator*(const T1 &a1, const T2 &a2) {

using E = expr_t<T1, T2>;

if constexpr (is_same_v<T1, E> && is_same_v<T2, E>)

return a1.mul_(a2);

else

return operator*(E(a1), E(a2));

}

The expression expr_t<T1, T2> uses TMP to compute the type E

of an expression involving a1 and a2, while accounting for steps
such as type promotion and broadcasting. For instance, multiplying
a (scalar) floating point value by an n-d integer array will yield a

n-d floating point array. At this point, there are two possibilities:
either T1, T2, and E are all identical, in which case the operation is
forwarded to the backend method mul_(). Otherwise, the operation
invokes itself recursively, using the constructor of E to convert and
broadcast the input arguments into the right format and shape.

CPU Backend. The default backend executes the operation on the
desired target platform, relying on a pattern matching mechanism
known as partial specialization. A large set of Array<Value, Size>

specializations intercept certain combinations of Value and Size

that are natively supported. For instance, operations involving
Array<float, 16>map to a single instruction on processors with the
AVX512 instruction set, and Enoki thus routes them to a backend
that uses compiler intrinsics to generate the desired vmulpsmachine
instruction. The function shown below is a method of this backend.
Array mul_(const Array &a) const { return _mm512_mul_ps(m, a.m); }

The pattern matching mechanism is recursive—arrays with too
large or odd sizes that prevent vectorization are partitioned into
two sub-arrays, whose larger part is a power of two, and the process
repeats anew. This all happens during compilation and hence incurs
no runtime cost. In this way, an operation f = f * f involving a
hypothetical Array<float, 24> e.g. compiles to

vmulps zmm0, zmm0, zmm0 ; 16-wide multiplication

vmulps ymm1, ymm1, ymm1 ; 8-wide multiplication

We currently provide backends for SSE4.2, AVX, AVX2, and AVX512
on Intel-compatible processors, NEON on ARM processors, and a
scalar fallback mode. Unlike manually vectorized code that relies on
compiler intrinsics, the combination of routing and partial special-
ization makes algorithms developed in Enoki platform-independent
(a similar goal is pursued by ISPC [Pharr and Mark 2012]).

GPU backend. Another array type GPUArray<Value> provides dy-
namically sized 1D arrays that are stored on a graphics card. A
simple backend for such an array could dispatch each arithmetic
operation to a pre-compiled GPU kernel2, but this leads to poor
hardware utilization due to memory traffic (repeated reads and
writes of operands) and the large overhead of launching kernels
for such a small amount of computation. Consider the following
simple program, which counts how many elements of a randomly
distributed set of points on [0, 1]3 fall within a sphere of radius one:

1 using Float = GPUArray<float>;

2 using UInt64 = GPUArray<uint64_t>;

3 using Vector3f = Array<Float, 3>;

4 PCG32<UInt64> rng(arange<UInt64>(1000000));

5 Vector3f v(rng.next_float(), rng.next_float(), rng.next_float());

6 size_t inside = count(norm(v) < 1.f);

Here, lines 1-3 set up the necessary types, arange<UInt64>() in line 4
generates an integer sequence with 1 million entries to select sepa-
rate streams of a PCG32 random number generator [O’Neill 2014],
and line 6 carries out a horizontal counting operation. PCG32 is a
linear congruential generator, and operations involving it reduce
to a sequence of multiplications and bit-level manipulations (XOR,
OR, shifts, etc.).

2This is in fact what frameworks such as PyTorch do by default.
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Vector3f sample_ggx(const Point2f &sample, Float alpha) {
     auto [sin_phi, cos_phi] = sincos(2.f * Pi * sample.x());
 
     Float cos_theta = sqrt(1.f - sample.y() /
                          ((sqr(alpha) - 1.f) *
                            sample.y() + 1.f));

     Float sin_theta = sqrt(1.f - sqr(cos_theta));
 
     return { sin_theta * cos_phi,
              sin_theta * sin_phi,
              cos_theta };
} Generic Implementation

PTX Autodi�

.version 6.3

.target sm_75

.address_size 64

.visible .entry hydra_2440ed08(.param .u64 ptr,
                               .param .u32 size) {
    .reg.b8 %b<33>;
    .reg.b16 %w<33>;
    .reg.b32 %r<33>;
    .reg.b64 %rd<33>;
    .reg.f32 %f<33>;
    .reg.f64 %d<33>;
    .reg.pred %p<33>;

    // Grid-stride loop setup
    ld.param.u64 %rd0, [ptr];
    ld.param.u32 %r1, [size];
    mov.u32 %r4, %tid.x;
    mov.u32 %r5, %ctaid.x;
    mov.u32 %r6, %ntid.x;
    mad.lo.u32 %r2, %r5, %r6, %r4;
    setp.ge.u32 %p0, %r2, %r1;
    @%p0 bra L0;

    mov.u32 %r7, %nctaid.x;
    mul.lo.u32 %r3, %r6, %r7;

L1:
    // Loop body

    // Load register %f10: alpha
    ldu.global.u64 %rd8, [%rd0 + 0];
    mul.wide.u32 %rd9, %r2, 4;
    add.u64 %rd8, %rd8, %rd9;
    ld.global.f32 %f10, [%rd8];

    mul.rn.ftz.f32 %f11, %f10, %f10;
    mov.f32 %f12, 0f3f800000;
    sub.rn.ftz.f32 %f13, %f11, %f12;

    // Load register %f14: sample.1
    ldu.global.u64 %rd8, [%rd0 + 8];
    mul.wide.u32 %rd9, %r2, 4;
    add.u64 %rd8, %rd8, %rd9;
    ld.global.f32 %f14, [%rd8];

    mul.rn.ftz.f32 %f15, %f13, %f14;
    mov.f32 %f16, 0f3f800000;
    add.rn.ftz.f32 %f17, %f15, %f16;
    div.rn.ftz.f32 %f18, %f14, %f17;
    mov.f32 %f19, 0f3f800000;
    sub.rn.ftz.f32 %f20, %f19, %f18;

    // Compute register %f21: result.2
    sqrt.rn.ftz.f32 %f21, %f20;

    // Store register %f21: result.2
    ldu.global.u64 %rd8, [%rd0 + 16];

   ...

    vmovaps zmm4, zmmword ptr [rsi+64]
    vpslld zmm5, zmm5, 29
    vmulps zmm6, zmm6, zmm7
    vpbroadcastd zmm7, dword ptr [rip+C_4]
    vfmadd213ps zmm6, zmm2, zmm2
    vpbroadcastd zmm2, dword ptr [rip+C_17]
    vptestnmd k1, zmm3, zmm2
    vblendmps zmm2 {k1}, zmm9, zmm6
    vpsubd zmm3, zmm7, zmm5
    vpbroadcastd zmm5, dword ptr [rip+C_18]
    vpandq zmm1, zmm1, zmm5
    vpxorq zmm1, zmm1, zmm2
    vmovaps zmm6 {k1}, zmm9
    vfmadd213ps zmm0, zmm0, dword ptr [rip+C_19]{1to16}
    vfmadd213ps zmm0, zmm4, zmm8
    vdivps zmm0, zmm4, zmm0
    vpandq zmm2, zmm3, zmm5
    vpxorq zmm2, zmm2, zmm6
    vsubps zmm0, zmm8, zmm0
    vsqrtps zmm0, zmm0
    vfnmadd231ps zmm8, zmm0, zmm0
    vsqrtps zmm3, zmm8
    vmulps zmm2, zmm3, zmm2
    vmulps zmm1, zmm3, zmm1
    vmovaps zmmword ptr [rdi], zmm2
    vmovaps zmmword ptr [rdi+64], zmm1
    vmovaps zmmword ptr [rdi+128], zmm0
    mov rax, rdi
    ret

sample_ggx:
    vmovaps zmm1, zmmword ptr [rsi]
    vmulps zmm1, zmm1, dword ptr [rip+C_0]{1to16}
    vandps zmm2, zmm1, dword ptr [rip+C_1]{1to16}
    vmulps zmm3, zmm2, dword ptr [rip+C_2]{1to16}
    vcvttps2dq zmm3, zmm3
    vpternlogd zmm4, zmm4, zmm4, 255
    vpsubd zmm3, zmm3, zmm4
    vpandd zmm5, zmm3, dword ptr [rip+C_3]{1to16}
    vcvtdq2ps zmm6, zmm5
    vpslld zmm7, zmm3, 29
    vcmpeqps k1, zmm2, dword ptr [rip+C_8]{1to16}
    vfnmadd231ps zmm2, zmm6, dword ptr [rip+C_5]{1to16}
    vfnmadd231ps zmm2, zmm6, dword ptr [rip+C_6]{1to16}
    vpxorq zmm1, zmm7, zmm1
    vfnmadd231ps zmm2, zmm6, dword ptr [rip+C_7]{1to16}
    vmulps zmm6, zmm2, zmm2
    vmovaps zmm6 {k1}, zmm4
    vmulps zmm4, zmm6, zmm6
    vbroadcastss zmm7, dword ptr [rip+C_9]
    vfmadd213ps zmm7, zmm6, dword ptr [rip+C_10]{1to16}
    vfmadd231ps zmm7, zmm4, dword ptr [rip+C_11]{1to16}
    vbroadcastss zmm8, dword ptr [rip+C_12]
    vfmadd213ps zmm8, zmm6, dword ptr [rip+C_13]{1to16}
    vfmadd231ps zmm8, zmm4, dword ptr [rip+C_14]{1to16}
    vmulps zmm4, zmm6, zmm8
    vbroadcastss zmm8, dword ptr [rip+C_15]
    vmovaps zmm9, zmm8
    vmovaps zmm9, zmm8
    vfmadd231ps zmm9, zmm6, dword ptr [rip+C_16]{1to16}
    vfmadd231ps zmm9, zmm6, zmm4 AVX512
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Fig. 2. Starting from an algorithmic template (shown: importance sampling a GGX lobe), our implementation is able to generate high-quality vectorized
implementations for CPUs and GPUs. Further instrumentation to track the computation graph enables forward and reverse-mode automatic differentiation.

This example is extremely simple compared to a typical phys-
ically based shading model, yet over 180 kernel launches would
be needed to execute it using the previously mentioned approach
(56 for seeding the random number generators, 32 per sample, and
7 for the final count). While we could create specialized kernels
that combine some of these operations (e.g. to generate uniform
variates), this approach clearly does not scale to the complexities of
an entire renderer.

Our solution to this problem is to perform arithmetic symbolically:
the backend merely records the desired sequence of operations, post-
poning evaluation of the kernel for as long as possible. Only once we
“peek” inside an array (e.g. in line 6 of the previous example) is it nec-
essary to actually compute its contents. Our GPU backend exploits
this using a lazy tracing just-in-time (JIT) compilation approach. We
use NVIDIA’s Parallel Thread Execution (PTX) intermediate repre-
sentation to construct a program in single static assignment (SSA)
form: for example, the backend operation GPUArray<float>::mul_()

appends a PTX instruction of the form mul.f32 $r1, $r2, $r3 that
reads its operands and stores the result in a new variable. Thus, a
GPUArray is only a thin wrapper around an index that references a
particular assignment in the SSA intermediate representation.

Each assignment has two reference counters: the first (“external”)
specifies how many GPUArray instances directly point to the associ-
ated GPU variable, while the second (“internal”) counts how many
times it is referenced by other expressions. The assignment is super-
fluous if both counters reach zero, in which case we remove it from
the kernel. To understand the need for two separate counters, con-
sider a function that performs a calculation involving its argument:

Point2f square_to_uniform_disk(const Point2f &sample) {

Float r = sqrt(sample.y());

auto [s, c] = sincos(2.f * Pi * sample.x());

return Point2f(s * r, c * r);

}

To generate a uniformly distributed point on a disk, this function
creates both local variables (r, s, c) and temporaries (e.g. the ar-
gument to sincos). All are used as part of subsequent computations,
and their internal reference count is thus positive. When the func-
tion returns to the caller, only the return value remains explicitly
reachable (for instance, there is no straightforward way of accessing
r short of recomputing it), which means that the external reference
count of all local variables and temporaries is zero. This enables
an important optimization: since their contents are no longer di-
rectly addressable, these variables don’t need to be stored in global
memory and can use fast processor registers. Applied to the entire

renderer, this optimization significantly increases performance and
lowers memory usage.
Note that PTX is only an intermediate representation—a subse-

quent compiler pass is necessary to generate an executable kernel
using the native GPU instruction set SASS. The same pass also
performs register allocation and optimizations, such as common
subexpression elimination and constant folding. Since this is by far
the costliest part of JIT compilation, we cache the resulting kernels
and reuse them if the same computation occurs again, which helps
when running an iterative algorithm like stochastic gradient descent
(compilation typically only occurs once during the first iteration).

Relation to existing frameworks. Our approach is related to tools
like TensorFlow [Abadi et al. 2015] and PyTorch [Paszke et al. 2017]
but addresses fundamental problems that arise in the context of
rendering. Both PyTorch and Tensorflow provide two main opera-
tional modes: eager mode directly evaluates arithmetic operations
on the GPU, which yields excellent performance in conjunction
with arithmetically intensive operations like convolutions and large
matrix-vector multiplications, both of which are building blocks
of neural networks. When evaluating rendering code created from
much simpler arithmetic, the resulting memory traffic and sched-
uling overheads induce severe bottlenecks. An early prototype of
Enoki provided a TorchArray<T> type that carried out operations
using PyTorch’s eager mode, and the low performance of this com-
bination eventually motivated us to develop the lazy JIT approach
proposed in this article.
The second operational mode requires an up-front specification

of the complete computation graph to generate a single optimized
GPU kernel (e.g. via XLA in TensorFlow and jit.trace in PyTorch).
This is feasible for neural networks, whose graph specification is
very regular and typically only consists of a few hundred operations.
Rendering code, on the other hand, involves much larger graphs,
whose structure is unpredictable: program execution could jump to
almost any part of the system when rendering a complex scene. The
full computation graph would simply be the entire codebase (∼100K
lines of code), which is of course far too big.
Our system was designed to handle the intricacies of physically

based rendering and could be interpreted as a middle ground be-
tween the two extremes discussed above. Graphs are created on
the fly while simulating the process of scattering and transport and
tend to be several orders of magnitude larger compared to typical
neural networks. They consist mostly of unstructured and compa-
rably simple arithmetic and are lazily fused into optimized CUDA
kernels. Since our system works without an up-front specification
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(a) Color image (b) Gradient image

Fig. 3. Visualization of the gradient of an image with respect to the density
of a participating medium, computed using forward-mode automatic differ-
entiation (red and blue encode positive and negative values, respectively).

of the full computation graph, it must support dynamic indirection
via virtual function calls that can simultaneously branch to multiple
different implementations. The details of this are described shortly.

Another related framework is ArrayFire [Yalamanchili et al. 2015],
which provides a JIT compiler that lazily fuses instructions similar to
our GPUArray<T> type. ArrayFire targets a higher-level language (C),
appears to be limited to fairly small kernels (100 operations by
default), and does not support a mechanism for automatic differen-
tiation. In contrast, Mitsuba 2 emits an intermediate representation
(PTX) and fuses instructions into comparatively larger kernels that
often exceed 100K instructions.
Autodiff backend. Enoki’s last array type, DiffArray<Value>, en-

ables transparent forward and reverse-mode differentiation. Similar
to autograd in PyTorch [Paszke et al. 2017] or Stan [Carpenter et al.
2015], gradient evaluation requires a declaration of relevant inputs
followed by a statement that triggers the graph traversal:

// Forward-mode AD:

using Float = DiffArray<float>;

Float in = 1.0f;

set_requires_gradient(in);

auto [out1, out2] = f(in);

forward(in);

float grad1 = gradient(out1),

grad2 = gradient(out2);

// Reverse-mode AD:

using Float = DiffArray<float>;

Float in1 = 1.f, in2 = 2.f;

set_requires_gradient(in1);

set_requires_gradient(in2);

Float out = f(in1, in2);

backward(out);

float grad1 = gradient(in1),

grad2 = gradient(in2);

Both forward and reverse-mode AD have useful applications in the
context of rendering: the former to visualize gradients for a scene
parameter (Figure 3), and the latter to optimize a scene with respect
to an objective function involving a rendered image (Figure 1 (c, d)).
A DiffArray consists of two parts: a value that is used during

the forward pass, and an index that refers to a node in a separately
maintained directed acyclic graph capturing the structure of the
computation. By default, the index is set to an invalid state indi-
cating that the variable does not participate in AD. Returning to
our previous example of the multiplication c = a * b, the backend
creates a new node c (if applicable) referencing the operands:

a

b

c

a

b

Edges areweighted and store partial derivatives of the operationwith
respect to its inputs—here, this is simply the product rule. Reverse or

forward mode traversal entails a sequence of multiply-accumulate
operations to apply the chain rule. A reverse-mode traversal of the
above graph triggers two updates: da += b * dc and db += a * dc.

Automatic differentiation on the GPU. In practice, we generally
combine the previous two array types by nesting them, making
DiffArray<GPUArray<float>> the basic numeric type of our differ-
entiable renderer. The combination of lazy JIT compiler and AD
has interesting consequences: computation related to derivatives is
queued up along with primal arithmetic and can thus be compiled to
into a joint GPU kernel3, leveraging subexpression elimination and
constant folding to further improve efficiency. The performance
of our JIT-compiled kernels for differentiable rendering is competi-
tive with hand-written derivative code: in particular, we find that
Mitsuba 2 is typically 10-15% faster than Redner, the open source
implementation of the method by Li et al. [2018a] (Table 1).

Number of Parameters Redner Mitsuba 2

Cornell box 5 × 3 0.4672 s/it 0.4275 s/it
Textured monkey 512 × 512 × 3 0.2297 s/it 0.2017 s/it
Textured sphere 1024 × 1024 × 3 0.1981 s/it 0.1749 s/it

Table 1. Timing comparison against Redner when optimizing diffuse appear-
ance model parameters. Special handling of discontinuities was disabled in
both renderers to only benchmark the differentiable parts of the problem.
Additional information on this comparison can be found in the supplemental
material. For benchmarks that include the effects of visibility, please refer
to the separate paper by Loubet et al. [2019].

Graph simplification. Rendering algorithms vectorized using Mit-
suba 2 use a wavefront tracing approach that tends to be storage
intensive even without differentiation—for instance, the basic in-
tersection data structure of Mitsuba 2 stores shape pointers and
primitive indices, position, ray distance, wavelengths (if applicable),
time, differential geometry, and texture differentials. At 172 bytes
per intersection, this yields 1376 MiB for a single wavefront of a
low-resolution 512×512 image at 32 samples per pixel. Other data
structures for querying BSDFs or light sources are similarly affected.

In a differentiable renderer, these are generally all functions of dif-
ferentiable scene parameters that influence the rendered image and
hence have to be kept in memory to enable the final reverse-mode
graph traversal. This makes direct applications of AD to rendering
very costly: in scenes with interreflection, it is necessary to record
many large data structures in memory, including the computation
graphs that were used to create them.

To avoid this problem, Enoki periodically simplifies the computa-
tion graph by eagerly evaluating the chain rule at interior nodes to
reduce storage requirements. Consequently, our system does not fol-
low a strict reverse- or forward-mode graph traversal, making it an
instance ofmixed-mode, or hybrid AD [Griewank andWalther 2008].
When working with differentiable GPU arrays, simplification occurs
before each JIT compilation pass. The fundamental operation of
the simplification process is known as vertex elimination [Griewank
and Reese 1991; Yoshida 1987] and collapses an interior node with

3For example, if a forward computation evaluates the expression sin(x), the weight
of the associated backward edge in the computation graph is given by cos(x). The com-
putation of both of these quantities is automatically merged into a single joint kernel.
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No JIT JIT

No graph simplification 2.92 s
2.54GiB

0.19 s
2.43GiB

Graph simplification 4.45 s
1.86GiB

0.20 s
1.36GiB

Table 2. We show the effects of graph simplification and JIT compilation
on runtime and memory consumption of Mitsuba 2 when differentiating a
rendering of a Cornell Box scene (256 × 256 pixels, 16 samples per pixel)
with respect to the complex-valued index of refraction of a rough conductive
material assigned to the interior.

di in-edges and do out-edges, creating di · do new edges, whose
weights are products of the original edge weights. These are then
merged with existing edges, if applicable:

a

b

d

e

a

b

c

d

e

Before simpli�cation A�er simpli�cation

g1

g1*g4g3

g2
g0

g4

g0 + g1*g2

g3*g2

g5 + g3*g4
g5

Although this operation may increase the density of the graph con-
nectivity if di ,do > 1, collapsing such nodes is often worthwhile
since it enables later simplifications that can reduce an entire sub-
graph to a single edge. Compared to direct traversal of the original
graph, simplification increases the required amount of arithmetic
in exchange for lower memory usage.

In conjunction with the GPU backend, this optimization is partic-
ularly effective: removals often target nodes whose primal compu-
tation has not yet taken place. Since edge weights of collapsed nodes
are no longer directly reachable, they can be promoted to cheap
register storage.
We found that the order of collapse operations has a significant

effect on the efficiency and size of the resulting kernels. Unfortu-
nately, propagating derivatives in a way that results in a minimal
number of operations is known to be NP-hard [Naumann 2007].
We use a greedy scheme that organizes nodes in a priority queue
ordered by the number of edges di · do that would be created by a
hypothetical collapse operation, issuing collapses from cheapest to
most expensive until the cost exceeds an arbitrary threshold that
we set to 10 edges. Note that removal of a node changes the cost
of adjacent nodes due to the creation of new edges, hence their
position in the priority queue must be updated. Table 2 shows the
effect of both JIT compilation and graph simplification on runtime
and memory consumption.

Custom data structures. Modern renderers use auxiliary data struc-
tures to facilitate communication between different system compo-
nents. This includes surface and medium interactions, data struc-
tures for direct illumination and BSDF sampling, and so on. Mit-
suba 2 uses the same overall approach, except that these are now
specified in generic form to permit retargeting. A definition usu-
ally begins with a series of statements that compute the necessary
types, followed by the declaration of matching fields. For example,

the renderer’s surface intersection data structure roughly looks as
follows:
template <typename Point3f> struct SurfaceInteraction {

using Float = value_t<Point3f>;
using Vector3f = Vector<Float, 3>;
using Frame3f = Frame<Vector3f>;
using UInt32 = uint32_array_t<Float>;
using Shape3f = replace_scalar_t<Float, const Shape<Float> *>;

Float t; // ray distance
Point3f p; // position
Vector3f wi; // incident direction
Frame3f sh_frame; // shading coordinate frame
UInt32 prim_id; // intersected primitive (e.g. triangle ID)
Shape3f shape; // pointer to Shape<..> instance
/// ...

};
ENOKI_STRUCT(SurfaceInteraction, t, p, wi, sh_frame, prim_id, shape)

Here, value_t<T> extracts the value underlying an array T, and
replace_scalar_t<T, X> returns an array of the same structure as T,
but using a representation based on the (scalar) type X. For instance,
uint32_array_t<T> is an alias for replace_scalar_t<T, uint32_t>

and returns an unsigned integer version of the argument. The macro
on the last line allows certain Enoki operations to be applied to the
data structure itself, causing them to recursively propagate through
all fields.
This type of recursive lifting greatly facilitates tasks such as

switching data structures to a Structure of Arrays (SoA) representa-
tion. For this, we can simply substitute a vectorized floating point
type at the root level (e.g. Array<float, 16> or GPUArray<float>),
letting the type system do the remaining work.

Masks. Vectorized algorithms process multiple elements at once,
hence standard language features like if statements are unsuitable
for modeling their control flow4. Comparisons and other logical
operation involving Enoki arrays thus produce masks (arrays of
boolean values), which support arbitrary nesting, broadcasting, and
are realized using bit-efficient hardware registers whenever possible.
Masks are often used to select from one of two expressions using the
ternary conditional operator select(mask, expr_true, expr_false).
Consider the following example usage of masks to create a two-

sidedmaterial that samples one of two BRDFs depending onwhether
the incident direction wi lies on the top or bottom side of a surface:

using Mask = mask_t<Float>;

Mask active_top = wi.z() > 0.f;

BSDFSample3f bs;

bs[ active_top] = brdf_top->sample(/* ... */);

bs[!active_top] = brdf_bot->sample(/* ... */);

Here, mask_t<T> returns the mask type associated with an array T,
and the last two lines are conditional assignments that automatically
propagate through the structure’s fields. Although correct, this ex-
ample is unsatisfactory in two ways: first, the sample() calls do not
inform the callee if entries are handled elsewhere and could have
been skipped, which may generate unnecessary memory traffic (e.g.
texture lookups). Secondly, one of the function calls could be elided
if all directions lie on the same side. Detecting this case requires a
horizontal reduction.

4A compiler frontend like ISPC [Pharr and Mark 2012] has an advantage here,
since it can automate the conversion of conditional statements to masks.
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Horizontal operations. Horizontal operations involve a reduction
over one or more dimensions, returning a tensor of lower rank.
Examples are logical reductions that can be applied to masks (all(),
any(), none(), count(), etc.) and arithmetic reductions for standard
arrays (horizontal sums, products, maxima, etc.). Their realization
depends on the target: in scalar mode, horizontal operations simply
return their argument as no reduction is needed. On CPU vector tar-
gets, they are implemented using a sequence of vertical operations
and are hence slightly more expensive than normal arithmetic.
When working with GPU arrays, horizontal reductions are best

avoided whenever possible. Vertical operations are scheduled asyn-
chronously and execute concurrently on the entire chip, which is
key to their efficiency. In contrast, horizontal operations create syn-
chronization barriers that require all queued computation to finish
before the reduction can take place. They are also often unnecessary:
for example, any(mask) is almost certainly true if mask is a large array
and the underlying condition is satisfied with a nonzero probability.
For this reason, Enoki provides logical reductions with a default
choice (e.g. all_or<true>) that take precedences when targeting the
GPU. Integrating these improvements into the previous example
addresses the discussed flaws. Note that a mask active is generally
also provided by the calling function when masks are consistently
maintained.
Mask active_top = wi.z() > 0.f && active,

active_bot = wi.z() < 0.f && active;
if (any_or<true>(active_top))

bs[active_top] = brdf_top->sample(/* ... */, active_top);
if (any_or<true>(active_bot))

bs[active_bot] = brdf_bot->sample(/* ... */, active_bot);

Scatters and gathers. Enoki arrays provide natural scatter, gather,
and atomic scatter-add primitives, which are essential for texture
and volume lookups or splats into an image buffer. The main chal-
lenge of these operations is they constitute a special case during
automatic differentiation. Consider the following operation, which
selects a subset of an input array:

1
2
3

1
2
34

5
a

b = gather(a, index)

b

Here, reverse propagation of a derivative db into da requires a suit-
able scatter_add() operation. Analogously, scatters turn into gath-
ers during reverse-mode AD. Our differentiable array backend rec-
ognizes these operations and inserts a special type of edge into the
graph to enable the necessary transformations. In the context of
rendering, these edges e.g. encode the sparsity pattern of a large
Jacobian matrix that relates pixels in the rendered image to texels
or voxels in the scene definition. One current limitation of Enoki
is that such special edges cannot be merged into ordinary edges
during graph simplification. Handling this case could further reduce
memory usage and is an interesting topic for future work.

Method dispatch. Indirect branches are a common feature of ren-
dering code, for example to sample the BSDF of an intersected shape:

SurfaceInteraction3f si = /* ... */;

BSDFSample3f bs = si.bsdf->sample(si, sample);

In a scalar program, this operation represents an ordinary virtual
function call that requires no special handling. Vectorization, how-
ever, turns si.bsdf into an array of pointers, that potentially refer to
many different BSDF instances. Enoki intercepts such function calls
by overloading the “->” operator and dispatches them using one
method call per unique pointer. The details of this step vary depend-
ing on the target: when vectorizing for CPUs (e.g. Intel AVX512),
we repeatedly extract a nonzero pointer from the array (using the
vpcompressq instruction, if available) and zero-fill all entries of the
same value. We then perform an indirect branch, providing the
callee with a mask of the active entries.
To handle indirect branches involving GPU arrays, we issue a

horizontal operation to extract a list of unique pointers along with
a list of indices per pointer specifying what elements of the array
refer to it. This is realized using a parallel radix sort and run length
encoding via NVIDIA’s cub library [Merrill 2015]. Following this,
we gather the argument values associated with a particular instance,
perform the function call, and then scatter the results back into the
output array, which looks roughly as follows:

// foreach (bsdf, indices) in partition(si.bsdf):

BSDFSample3f temp = bsdf->sample(gather(si, indices),

gather(sample, indices));

scatter(bs, temp, indices);

All three steps merely enqueue computation to be executed at a
later point. Enoki uses TMP to automatically rewrite the earlier
virtual function call into this form, hence no target-specific code is
necessary. For differentiable arrays, Enoki automatically propagates
derivative information through virtual function calls.

Note that method calls on the GPU typically produce computation
involving arrays of different sizes—for instance, n1 rays of a large
wavefront may have interacted with one type of BRDF, n2 with
another, and so on. Sampling these BRDFs consequently leads to
arithmetic operations involving arrays of size n1, n2, etc., which
we track in separate queues of the JIT compiler. The operations in
each queue can execute in parallel to work in other queues, and
we therefore flush queues into independent CUDA streams. Cached
kernels can be reused even if they were generated for a computation
involving a different array size (in other words, size is a runtime
kernel parameter). In the context of rendering, this means that
the number of wavefront elements following a particular path of
execution can change over time without requiring re-compilation.

Mathematical support library. Enoki includes an extensive mathe-
matical support library with types that are relevant for physically
based rendering, such as complex numbers, matrices, quaternions,
and related operations (determinants, matrix, inversion, etc.). A
set of transcendental and special functions supports real, complex,
and quaternion-valued arguments in single and double-precision
using polynomial or rational polynomial approximations, generally
with an average error lower than 1/2 ULP (unit in the last place)
on their full domain. These include exponentials, logarithms, and
trigonometric and hyperbolic functions, as well as their inverses.
Our system also provides real-valued versions of error function
variants, Bessel functions, and elliptical integrals.

Importantly, all of this functionality is realized using the abstrac-
tions of Enoki, which means that it transparently composes with
vectorization, the lazy JIT compiler, automatic differentiation, etc.
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Language bindings. Mitsuba 2’s focus on types has another less ob-
vious benefit: they provide a rich description of structure and mem-
ory layout that enables high-quality language bindings.We extended
pybind11 [Jakob et al. 2017]—itself based on metaprogramming—to
create bindings from one-line declarations of the form

module.def("func", &func);

Ametaprogram then analyzes the function’s type to synthesize code
that automatically converts function arguments and return values.
We used this approach to create fine-grained Python language bind-
ings of all major rendering system components for CPU (scalar and
vectorized) and GPU (vectorized differentiable) targets, enabling
prototyping of complete rendering algorithms, e.g., using interac-
tive Jupyter notebook sessions. Enoki arrays also support implicit
bidirectional conversion to other array libraries, such as NumPy and
PyTorch. The latter allows the renderer to be used as a differentiable
layer in a larger computation graph realized using PyTorch.

Development and challenges. We used the abstractions of Enoki
to implement a complete rendering system that currently includes a
path tracer, volumetric path tracer, and adjoint light tracer (all with
multiple importance sampling). Our system supports standard light
sources (point / area / directional lights and environment maps)
and both specular and rough microfacet BRDFs with visible normal
sampling [Heitz and d’Eon 2014] for conductors, dielectrics, and
plastic-like materials. Each component of the renderer is compiled as
a plugin (i.e. a shared library) that contains multiple instantiation of
an abstract implementation. Please refer to the supplemental mate-
rial to see a longer example of typical Mitsuba 2 source code, specif-
ically an annotated path tracer with multiple importance sampling.
The renderer is currently spectral by default and uses Monte

Carlo sampling to integrate over continuous wavelengths spanning
the 360 to 830nm range using 4 sampled wavelengths per ray. A
monochromatic mode is also available, which is mainly used in
automated tests, and for debugging. The transformation from RGB
values (e.g. in texture maps) to reflectance spectra relies on the
vectorized spectral upsampling model of Jakob and Hanika [2019].

Three backends are available for ray tracing: scalar and packet
tracing on the CPU either use a builtin kd-tree or Embree [Wald
et al. 2014], and ray tracing on the GPU relies on OptiX [Parker et al.
2010]. The builtin kd-tree is useful for debugging, e.g. to render an
image in double precision which neither Embree nor OptiX support.
All results shown this article were created using Embree and OptiX.

During development, we encountered two standard constructions
that require special precautions. First, sampling code often relies
on Newton or Newton-Bisection iterations to numerically invert
cumulative distribution functions (CDFs), whose inverse does not
have a closed-form expression. The iteration’s stopping criterion
if (all(converged)) poorly interacts with the GPU backend, since
this is a horizontal operation that would serialize the computation
at every step. In such cases, we determined5 suitable fixed upper
bounds for the iteration count that we use instead. A related example
are discrete CDFs inverted using a binary search, e.g., to pick rows
and columns of an environment map. Here, a tight bound is given by

5There are “only” 4 billion single precision floating point values, and it is normally
possible to test all of them in a few minutes.

⌈log2(N − 2)⌉ + 1, where N is the number of entries. Following this
change, all Newton iterations or binary search steps are unrolled
into the current kernel.
For gradient-based optimization, we had to ensure that certain

operations that normally run as a pre-process step before render-
ing begins are recorded in the computation graph. An example is
the computation of smooth shading normals from vertex positions.
One is a function of the other, hence it is important to accurately
capture their relationship during optimization. Our system provides
reconstruction filters (e.g. a Gaussian or Mitchell-Netravali filter),
whose contribution to the image is differentiable with respect to the
position of a sample. This is necessary e.g. to optimize the shape of
caustics due to chains of purely specular transport.

Our optimization examples were all developed in Python scripts
that begin by loading an XML scene that specifies the starting point
of the optimization. The scene can be queried for differentiable pa-
rameters, some of which are subsequently connected to an optimizer
(SGD, Adam, etc.) along with custom loss functions.

4 APPLICATIONS
We demonstrate the effectiveness and simplicity of our approach on
several challenging applications. Please refer to the supplemental
material for details on timing and optimization parameters.

4.1 Polarized light transport
The polarization state of a beam of light is normally described us-
ing a 4-dimensional quantity known as the Stokes vector, which
parameterizes the elliptical shape of the associated transverse os-
cillation. When the beam interacts with a surface, this polarization
state changes, and the details of this change can be encoded in a
4 × 4 Mueller matrix [Collett 1993; Wilkie and Weidlich 2012].

The distinction between Stokes vectors and Mueller matrices
unfortunately introduces an asymmetry that has the potential of
significantly complicating the structure of a rendering system like
ours [Jarabo and Arellano 2018; Mojzík et al. 2016]. For instance,
spectra are normally used to represent emission, reflectance, and
importance in non-polarized renderers, but polarization requires us
to change them to Stokes vectors in the former case, and Mueller ma-
trices in the latter two cases. Each matrix is only valid with respect
to specific incident and outgoing reference coordinate frames that
need to be correctly aligned when sampling or evaluating materials.

In Mitsuba 2, we made the decision to represent all of the above
quantities using Mueller matrices, which leads to some unnecessary
arithmetic but allows for a simpler API (in particular emitters and
sensors are symmetric). We furthermore compute the necessary
reference frames on demand, rather than storing them.

Using these simplifications, polarized algorithms are almost equiv-
alent to their classical counterparts, the main difference being some
additional care regarding the alignment of coordinate frames when
evaluating reflectance models. Assuming that this detail is con-
sidered during development, type transformation can easily and
automatically instantiate polarized and non-polarized forms of ren-
dering algorithms, reflectance models, etc. Since the signature of
essentially any function or data structure quantifying light or re-
flectance requires modifications, such a change would be tedious in
a system that provides no assistance (e.g. Mitsuba 0.6).
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(a) Front polarizer at 0◦ (b) Front polarizer at 90◦

Fig. 4. Close-up rendering through the optical setup from the scene in
Figure 1 (a): a dielectric object is placed between two linear polarization
filters. In a cross-polarized configuration, the filters block transmission,
while refraction yields elliptically polarized light that remains visible.

We also modified various reflectance models in Mitsuba 2 to cor-
rectly account for polarization during scattering. In particular, con-
ductors and dielectrics use the complex-valued form of the Fresnel
equations when polarization is active. We also support the pBRDF
model by Baek et al. [2018] that includes both a polarized specu-
lar component based on microfacet theory and a polarized diffuse
component. Finally, our system provides BSDFs of standard optical
elements such as linear polarizers or phase retarders like quarter-
wave plates that are useful for prototyping optical experiments.

Figure 4 shows renderings of a dielectric object mounted between
two linear polarizers generated with Mitsuba 2’s path tracer. The
two orthogonal polarizers block transmitted light completely, while
refraction through the glass introduces elliptical polarization that is
able to pass through the second filter.

Polarization could in principle be composedwith differentiation to
solve inverse problems. This is an interesting area for future research,
for instance to improve geometric reconstruction from photographs
taken with filters, while accounting for polarized interreflection.

4.2 Coherent MCMC sampling
Vectorization using Mitsuba 2 enables simultaneous generation of
multiple light paths using modern SIMD instruction sets. Unfor-
tunately, a naively vectorized path tracer only obtains marginal
performance improvements on most scenes, due to the algorithm’s
fundamental lack of coherence (Figure 5a). Metropolis-type render-
ing techniques [Kelemen et al. 2002; Veach 1997] explore nearby
light paths, improving coherence somewhat, but their sequential
nature makes them challenging to vectorize. In this section, we
discuss two MCMC schemes that are designed to produce coherent
workloads, better leveraging the vector capabilities of our system.

Coherent Pseudo-Marginal MLT. We propose a novel MLT method
that improves coherence by replacing point evaluations with co-
herent bundles of light paths. A key assumption of our approach is
that nearby points in primary sample space [Kelemen et al. 2002]
correspond to paths that undergo similar control flow, and which ref-
erence nearby regions of memory. The core idea of our method is to
sample a modified target function π that is the result of convolving

the path contribution function f with a Gaussian kernel G:

π (u) =
∫
U

G(δ) · f (u − δ) dδ , (1)

whereU is primary sample space. Intuitively, blurring the integrand
should facilitate exploration, even in the presence of discontinuities
e.g. due to visibility changes.
Target functions used in MCMC are normally deterministic: for

example, given a particular primary sample space position u, eval-
uating the path contribution f (u) will always produce the same
result. A key observation of pseudo-marginal MCMC [Andrieu and
Roberts 2009] is that it is possible to retain the fundamental proper-
ties of MCMC when π is replaced by an unbiased estimator. We use
this insight to replace evaluations of the target function π (u) with
a Monte Carlo estimate of the convolution:

π (u) = EG(δ ) [f (u − δ)] ≈
1
N

N∑
i=1

f (u − δi ). (2)

where the offsets δi are drawn from a multivariate normal distribu-
tion, as shown in the following visualization:

We use a standard Metropolis iteration to sample the center position
u and apply vectorization to evaluate all path contributions f (u−δi )
at once. We thus name our method Coherent Pseudo-Marginal MLT
(CPMMLT). Setting N to the maximum vector instruction width
(e.g. N = 16 for AVX512), sampling and evaluation of these paths
is easily vectorized in Mitsuba 2. A qualitative comparison against
paths evaluated by a vectorized path tracer or PSSMLT is shown in
Figure 5. Weighting the particles by f (u − δi )/π (u) yields unbiased
samples of the original distribution that can be used to reconstruct
the non-blurred image.

Multiple-TryMetropolis. Our approach is related towork by Segovia
et al. [2007a; 2007b], who integrate Multiple-Try Metropolis (MTM)
[Liu et al. 2000] into a vectorized MLT renderer. Unlike standard
Metropolis-Hastings random walks, MTM generates a set of N pro-
posals to choose from at each iteration (“trial set”). After drawing

(a) Vector Path Tracer (b) PSSMLT (c) CPMMLT (Ours)

Fig. 5. Qualitative comparison of ray distributions generated using three
different methods: (a) paths in a packet path tracer decohere at the first
bounce, thus losing the benefits of vectorization. (b) PSSMLT’s exploration
is more coherent, but evaluates only one ray at a time. (c) our method
evaluates coherent bundles of e.g. 16 rays at each iteration.
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Fig. 6. Equal-time comparisons on the Torus, Kitchen, Salle de Bain and Glass Egg scenes. Convergence of our method is superior to MTM and PSSMLT.
The Root Mean Squared Error (RMSE) numbers shown are computed on the entire image for each method and averaged over three runs.
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Fig. 7. Left: At equal run time on the Staircase scene, the average number
of cache misses and branch mispredictions decrease when working with
coherent bundles of rays. The kernel’s standard deviation (horizontal axis)
provides a trade-off between exploration and coherence. Textures were
scaled by a factor of 10 to simulate a production use case where scene data
does not fit in cache. Right: vectorized evaluation of coherent ray bundles
allow our method to compute 2 to 6 times more rays per second than a
PSSMLT sampler. Scenes with lower geometric complexity benefit the most
from vectorization.

one proposal ui from the trial set, a “reference set” with N states u′i
is sampled around ui . The new state’s ui acceptance probability is
computed using a generalized Metropolis-Hastings ratio.

trial set reference set

In our evaluations, we compare to an improved variant of MTM
with waste recycling [Murray 2007, Section 3.2.3] that enables the
use of intermediate samples in the reconstruction of the final image.
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Fig. 8. We render a variety of scenes from Bitterli’s repository [2016] at
equal time with our sampler and baselines. To simplify comparison across
scenes, we report Root Mean Squared Error relative to the error obtained
by PSSMLT on each scene (lower is better).

Results. We benchmark our method against (scalar) PSSMLT and
vectorized waste-recycled MTM on a variety of scenes [Bitterli
2016]. All methods were implemented in Mitsuba 2. We select the
parameters for each MLT method using a grid search. Since they
are not very scene-dependent, we use the same parameters for all
experiments.
Our experiments show that CPMMLT’s improved coherence re-

sults in faster convergence at equal time, as shown in Figures 6
and 8. Experiments were run on 28-core machines supporting 16-
wide SIMD (Intel Xeon Gold 6132, 2.60GHz). Error numbers were
averaged over 3 equal-time runs.
Assuming that the Gaussian kernel’s standard deviation is not

too large, our method evaluates positions in primary sample space
which map to light paths with matching control flow, virtual func-
tion calls and memory access patterns. Figure 7 (left) plots branch
mispredictions and L3 cache misses as a function of G’s standard
deviation, confirming this claim: coherence increases considerably
compared to a naive path tracer when using our sampling method.
We found that CPMMLT evaluates 2 to 6 times more rays per second
than PSSMLT, depending on the scene and its geometric complexity
(Figure 7, right).
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Optimized density voxels

Multi-view setup

Uniform illumination

View

Optimized albedo voxels

Optimized gradient-index lens

Directional area lights

Projected causticOptimized geometry

Directional area light

(a) Caustic design: surface displacement (b) Caustic design: gradient-index optics (c) Volume density reconstruction (d) Textured translucent slab

Fig. 9. We showcase four different material design and reconstruction applications that optimize (a) a refractive height field focusing collimated illumination
into a desired image on a target surface. (b) a cube with spatially varying index of refraction that propagates light along curved rays, encoding two separate
images for illumination arriving from perpendicular directions. (c) a heterogeneous medium with multiple scattering that approximates reference imagery from
multiple camera positions. (d) heterogeneous parameters of a dielectric slab with subsurface scattering, whose appearance approximates a reference image.

4.3 Caustic design
Mitsuba 2’s differentiable rendering capabilities greatly facilitate
material design applications. In this section, we present two meth-
ods for computational caustics that optimize either the geometry
of a glass slab or the index of refraction of a gradient-index lens so
that they project a desired image onto a target surface. The corre-
sponding experimental setup is shown in Figure 9 (a) and (b).

Surface displacements. This first problem has been studied by
Papas et al. [2011], who used a decomposition of Gaussian kernels
and Yue et al. [2014], who solve a sequence of Poisson problems to
construct a smooth height field. Schwartzburg et al. [2014] used a
tailored optimization formulation based on optimal transport.

While our current results do not match the quality of a purpose-
built system in terms of contrast and precision, its ease of use is
appealing: the only requirement is a suitable forward simulation,
which can then be optimized using a variant of gradient descent.
The method’s generality makes it immediately applicable to broader
settings. For instance, in Figure 10 (c), the optimization generates
geometry that blends primary colors in the right proportions to
create a color image.

We render caustics using a standard light tracer. For optimization,
differentiable image reconstruction filters are crucial to capture the
relationship between the geometry and brightness and position of
the various parts of a caustic. Figure 10 (a-c) shows three results and
intermediate optimization states for displacement-based caustics.

Gradient-index optics. In materials with a varying index of re-
fraction, light travels along curved rays according to the Eikonal
equation. Expressed as a second-order ODE [Sharma et al. 1982], it
relates the change in position to the gradient of the refractive index:

d2x
dt2
= n(x) ∇n(x). (3)

Gradient-index optics exploit this effect to create lenses that lack
the typical aberrations of spherical lens elements. For instance,
the (mostly theoretical) Maxwell fish-eye lens with a radially sym-
metric index of refraction (η(r ) = 1/1+r 2) or the Luneburg lens
(η(r ) =

√
2 − r2) image a point onto an antipodal point or collimate

it, respectively:

Fabrication of materials with a varying index of refraction is an
active area of research [Nguyen et al. 2017] that could one day reduce
the cost of current aspherical optics. Here, our differentiable renderer
already provides a helpful tool for optimizing the properties of such
a material based on a user-specified objective function. Figure 10
(d–e) shows two caustics that are simultaneously projected by a
gradient-index cube illuminated from perpendicular directions. Note
that the discrete appearance of intermediate optimization steps is
due to the trilinear interpolation of refraction values, which causes
piecewise constant gradients in the ODE in Equation 3.
Integrating a differentiable ODE solving step in our system is

easy—we reproduce the central solver loop used to create this result:

1 Point3f p_out; Vector3f v_out;

2 Mask active = true;

3 for (size_t i = 0;; ++i) {

4 auto [ior, ior_grad] = evaluate_ior(p, active);

5 Vector3f v_half = fmadd(.5f * step_size * ior, ior_grad, v);

6 Point3f p_next = fmadd(step_size, v_half, p);

7 Mask escaped = active && !is_inside(p_next);

8 active &= !escaped;

9 p_out[escaped] = p; v_out[escaped] = v;

10 if (i >= 2.f / step_size && none(active))

11 break;

12 p = p_next;

13 v = fmadd(half_step * ior, ior_grad, v_half);

14 }

Here, lines 5, 6, and 13 are the Leapfrog discretization of the Eikonal
equation (3), where fmadd denotes a fused multiply-addition oper-
ation. Lines 7–9 keep track of which lanes have exited, saving the
final state when rays leave the material. Line 10 is the stopping con-
dition, written is such a way that the potentially costly horizontal
reduction none(active) is skipped as long as it is likely that at least
one ray remains inside.
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(a
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(b
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(c
)

(d
)

(i)

(e
)

(ii) (iii) (iv) (v)

Fig. 10. We optimize (a–c) refractive height fields to focus collimated light
into a desired image (Figure 9a), and (d–e) the spatially-varying index of
refraction of a single gradient-index lens to project different images when
illuminated from two incident directions (Figure 9b). (i) starting from a
uniform solution that simply refracts light through, (ii–iii) the optimization
quickly approximates the main features of the target image (v). We render
the final state (iv) after adjusting the emitters’ intensity, which was not
part of the optimization.

We optimize both types of caustics using gradient descent with
momentum and a multiresolution approach. For details on the opti-
mization procedure, please see our supplemental text document.

4.4 Heterogeneous Participating Media
Finally, we apply our system to the solution of several challenging
inverse volume rendering problems. Volumetric light transport in
computer graphics generally relies on the radiative transfer equation
(RTE), which models the material as a suspension of unresolved scat-
tering and absorbing particles [Chandrasekhar 1960]. The integral
form of RTE is given by

L(x,ω) =

∫ ∞

0
Tr(x, xt )

∫
S2

σs L(x,ω ′) fp (ω,ω
′) dω ′ dt , (4)

where L(x,ω) is the radiance in directionω at position x. We define
xt = x + t ·ω as the position at distance t on the ray (x,ω) and the
transmittance as Tr(x, xt ) = exp(−

∫ t
0 σt (xt ) dt). The extinction co-

efficient σt is the sum of the absorption σa and scattering coefficient
σs and quantifies the loss in radiance along a ray due to absorption
and out-scattering. For simplicity, we assume that σt does not vary
spectrally. The phase function fp (ω ′,ω) models the angular distri-
bution of scattered directions. The above integral can be estimated
using volumetric path tracing, which involves alternating steps of

sampling the distance to the next scattering event proportional to
the transmittance, and choosing a scattered direction according to
the phase function.

Differentiable volumetric path tracing. In the following applica-
tions, we wish to minimize the pixel-wise difference between a refer-
ence image and an image rendered using a differentiable volumetric
path tracer. The main challenge here is to sample the free-flight dis-
tance in a differentiable way. We initially experimented with delta
tracking [Woodcock et al. 1965], which uses a form of rejection sam-
pling to sample either virtual or real medium interactions. While
this approach initially appears non-differentiable, it is possible to
use the formulation of Galtier et al. [2013] to move the gradient into
the integral before introducing the discrete rejection sampling step
involving virtual particles [Tregan et al. 2019].

However, the potentially unbounded number of iterations make
delta tracking a poor fit for our GPU-based differentiable renderer,
resulting in incoherent execution paths and low GPU utilization.
Therefore, we resort to ray marching, which steps through the
medium in regular steps and results in more coherent code, at the
cost of introducing a small amount of bias into the rendered image.
Even when using ray marching, we must be careful to ensure dif-
ferentiability. The distance sampling step could sample a position
outside of the volume’s bounding box, or an interaction with a sur-
face inside of the medium. While this is no problem when rendering
normal images, issues arise during a direct application of AD to the
estimator. Importance sampling a distance according to a desired
density p(x) can be interpreted as a change of variables in primary
sample space involving a transformation T with Jacobian determi-
nant 1/p(x). Furthermore, all terms depend on scene parameters θ .∫

Ω
fθ (x) dx =

∫
U

fθ (Tθ (u))

pθ (Tθ (u))
du (5)

When the free-flight distance e.g. leaves the bounding box, the
functionsT and p become discontinuous, and it is no longer legal to
differentiate under the integral sign. The solution is to differentiate
before transforming to an integral over primary sample space:

∇θ

∫
Ω
fθ (x) dx =

∫
Ω
∇θ fθ (x) dx =

∫
U

∇θ fθ (Tθ (u))

pθ (Tθ (u))
du (6)

This approach was also used by Khungurn et al. [2015]. Enoki pro-
vides a function detach() that removes a node from the computation
graph, which we use to disable gradient computation for the func-
tions T and p while sampling free-flight distances. In the remainder
of this section, we use our differentiable volumetric path tracer to
solve several different inverse problems.

Volume density reconstruction. A differentiable path tracer can be
used to reconstruct medium densities from captured images with
multiple scattering. We demonstrate the feasibility of this idea using
a synthetic smoke plume rendered in front of a black background
(constructing a calibrated system for real-world volume acquisition
is beyond the scope of this paper).

We use a multiresolution approach as in Section 4.3 to robustly op-
timize the high-resolution density grid. Several intermediate steps of
the optimization are shown in Figure 11. The density is constrained
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(a) It. 0 (b) It. 75 (c) It. 150 (d) Optimized (e) Reference

Fig. 11. Reconstruction of a heterogeneous smoke volume. The images show
intermediate optimization results, as well as a higher-quality rendering of
the final optimized smoke and ground-truth density.

(a) Single view (b) 9 views (c) Reference

Fig. 12. Comparison of a single-view volume reconstruction and a multi-
view approach. The single-view reconstruction suffers from artifacts when
the medium is observed from a novel viewpoint.

to lie between zero and one, and we use a L1 loss function. A single-
view reconstruction results in artifacts (Figure 12a), and multiple
views are thus needed to sufficiently constrain the medium density.
We optimize the medium to match nine different reference views,
which addresses this problem (Figure 12b).

Textured translucent slab. With recent 3D printers capable of print-
ing colored ink mixtures, there has been increased interest in op-
timizing the appearance of 3D printed objects. Since the printed
material is translucent, accurately reproducing a desired surface
texture is non-trivial due to the effect of multiple scattering. While
several optimization methods exist [Elek et al. 2017; Sumin et al.
2019], they build on complex and highly problem-specific optimiza-
tion routines. Within our framework, we can solve similar problems
without the need for specialized solvers. We demonstrate this in a
slightly simplified setting, in which we assume the medium’s ex-
tinction coefficient to be homogeneous and monochromatic. We
optimize the heterogeneous albedo values of a medium contained
within a dielectric boundary, illuminated by a uniform environment
emitter (Figure 9 (d)). The real fabrication setting is more complex,
but we believe that this example nevertheless shows the flexibility
of our system to solve a variety of inverse problems.
In Figure 13 we show how our optimization reduces the differ-

ences between the scattering volume and a diffuse surface with an
image texture. We compare against a naive solution that also consti-
tutes the starting guess of our optimization. To initialize it, we first
render a semi-infinite medium using a range of single scattering
albedo (σs/σt ) values, tabulating the resulting overall albedo of the
material. This table can then be inverted to map colors from the
target image to medium coefficients, which we extrude along the

(a) Initialization (b) Optimized (c) Di�use reference

(d) L1 error: 0.040 (e) L1 error: 0.022 (f) Optimized volume slices

Fig. 13. Comparison of a naive voxel color assignment (a) to the result after
optimization (b), with L1 error maps (d), (e) compared to the reference (c).
In (f) we show different vertical slices through the optimized slab.

depth of the slab (only coloring the top layer of voxels would lead to
significant color reproduction errors). We then render differentiable
1282 images with 64 scattering events within a voxel grid of size
256 × 256 × 64 and use them to optimize the medium parameters.
Compared to the naive solution, which has relatively low contrast
(Figure 13), our method is able to account for the influence of ma-
terial variation in the neighborhood of a voxel, resulting in better
agreement to the reference.

5 CONCLUSION
Physically based rendering is the result of a complex interplay in-
volving countless different system components. Similar to how a
photon can interact with distant parts of a large and detailed scene,
program execution in a renderer tends to take twisty paths through
immense codebases, whose size is measured in multiple hundred
thousand lines of code. But simply rendering an image is often not
enough—depending on the application, the entire process needs to
be very accurate, very fast, or differentiable (or worse, several of
the above). Such requirements imply painstaking global transforma-
tions into highly specialized implementations that are challenging
to understand and maintain.
These challenges motivate the design of our system: the combi-

nation of generic algorithms and composable compile-time transfor-
mations of types enable development at a high level of abstraction.
Without code duplication, our system is then able to generate high-
quality scalar, vector and GPU implementations with competitive
performance. Another type of transformation changes the represen-
tation of radiance, making light transport effects like polarization
considerably easier to support. Finally, Mitsuba 2’s lazy JIT com-
piler and automatic differentiation unlock a path to straightforward
conversion of any rendering algorithm or appearance model into
an optimization technique for solving associated inverse problems.
A number of limitations and open questions remain: due to our

reliance on deeply nested templates, error messages provided by the
compiler can be cryptic. We address such problems by performing
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a scalar-only build of the renderer—once this succeeds, the other
variants should follow suit, assuming that the transformations them-
selves are correct. C++20 introduces a feature named concepts that
will likely address this problem more elegantly. Mitsuba 2 code also
requires a conversion of conditional statements into masks, which
can be tedious when a model requires intricate conditional logic.
Despite the optimizations pursued in this article, reverse-mode

automatic differentiation significantly increases the amount of appli-
cation state, and parameters like resolution, sample count, and num-
ber of passes, require careful adjustment to avoid out-of-memory
errors. In contrast to neural networks, gradient-based optimization
of renderings is prone to low-quality local minima and hence re-
quires careful initialization. Our GPU backend renders images using
a sequence of separate kernel launches that exchange information
through global memory, which causes large communication-related
overheads. Systems like OptiX that compile an entire renderer into
a single “megakernel” avoid this type of overhead, although their
increased register usage tends to impede the latency-hiding abil-
ity of modern GPUs [Laine et al. 2013]. We currently unroll loops
and recursive algorithms, which is likely not always ideal. It would
be interesting to study these various trade-offs, particularly in the
context of differentiable rendering algorithms.
Other relevant areas of future work include more aggressive

graph simplifications that reduce memory requirements, the design
of specialized sampling strategies that improve variance specifi-
cally for gradients, and the development of parameterized sampling
strategies embedded within the renderer that are trained end-to-end
in conjunction with a denoising step.

We believe that Mitsuba 2 will be a helpful tool for researchers in
computer graphics, computer vision, and many other areas (e.g. de-
sign or architecture) that optimize geometry or materials to achieve
a goal that can be specified as a differentiable algorithm.
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