
A New Garbage Collector for

XEmacs

Diplomarbeit

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Arbeitsbereich für Programmiersprachen und Übersetzer

Marcus Crestani

31. August 2005

Betreuer: Prof. Dr. Herbert Klaeren
Dr. Michael Sperber

Hiermit versichere ich, die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben.

Tübingen, 31. August 2005

Dank

Ich danke Mike Sperber für seine hervorragende Betreuung.

Mein herzlichster Dank gilt meinen lieben Eltern und Großeltern, die
mir dieses Studium ermöglicht haben. Außerdem danke ich meiner

Freundin Bernadette für ihre Unterstützung und Motivation.

Zusammenfassung

XEmacs braucht eine schnelle und erweiterbare automatische Speicherverwal-
tung.

Der Garbage-Collector des XEmacs ist langsam: Der Benutzer wird bei
seiner Arbeit durch lange Programmpausen unterbrochen, die der Garbage-
Collector verursacht. Da zudem der Speichermanager eng mit dem restlichen
Programmcode verbunden ist, gibt es keine übersichtliche Schnittstelle zwis-
chen XEmacs und der Speicherverwaltung. Dies erschwert die Überarbeitung
des Speichermanagers. Mein Ziel ist es, die Programmpausen zu verkürzen und
den Speichermanager zu modularisieren.

Deshalb verbessere ich den Garbage-Collector: Ich beschreibe einen inkre-
mentellen Garbage-Collector für XEmacs, der die Unterbrechungen durch die
Garbage-Collection verkürzt, indem das Programm abwechselnd mit dem Gar-
bage-Collector ausgeführt wird. Die dafür erforderliche Schreibbarriere beschrei-
be ich ausführlich.

Im Allgemeinen bereite ich XEmacs darauf vor, andere Kollektoren nutzen
zu können. Dafür modularisiere ich den Speichermanager, beseitige Abhängig-
keiten und definiere eine einfache und übersichtliche Schnittstelle.

Abstract

XEmacs needs a fast and extensible automatic memory manager.
XEmacs’s garbage collector is slow: The user’s work is interrupted by the

garbage collector, which is causing long and annoying pause times. Additionally,
the memory manager is tightly coupled with other parts of XEmacs, it lacks
a straightforward interface and is not easily improvable. My intention is to
decrease pause times and modularize the memory manager.

Therefore, I improve the garbage collector: I describe an incremental garbage
collector for XEmacs that keeps garbage collection pause times short by inter-
leaving small amounts of collection work with program execution. I introduce
the needed write barrier algorithms in detail.

More generally, I enable XEmacs to use alternative garbage collection
schemes by modularizing the memory manager, removing dependencies, and
defining a straightforward interface.

Contents

1 Introduction 1
1.1 Motivation . 1

2 Overview 3
2.1 Automatic Memory Management 3

2.1.1 The XEmacs Allocator . 4
2.1.2 The XEmacs Garbage Collector 4
2.1.3 XEmacs’s Traditional Mark-and-Sweep Algorithm 5

2.2 Incremental Techniques . 6
2.2.1 Tricolor Marking . 7
2.2.2 Coloring Invariant . 7
2.2.3 Coordination of Mutator and Collector 10
2.2.4 Snapshot-at-beginning . 10
2.2.5 Incremental-update . 11

2.3 Summary . 11

3 Implementation 13
3.1 Write Barrier . 13

3.1.1 Overview of Mechanisms 13
3.1.2 Memory Protection . 14
3.1.3 Signal Handling . 15
3.1.4 Faulting Address . 16
3.1.5 Choosing a Write-Barrier Algorithm 17

3.2 Platform-Dependent Implementation 17
3.2.1 POSIX-Compliant Platforms 17
3.2.2 Old UNIX/Linux . 19
3.2.3 Mac OS X . 19
3.2.4 Native Windows . 20
3.2.5 Cygwin . 21
3.2.6 Debugging the Write Barrier 21

3.3 Changes to XEmacs . 22
3.3.1 Configuration . 22
3.3.2 Startup . 23
3.3.3 New Lisp Objects . 23
3.3.4 Garbage Collection—step-by-step 26
3.3.5 Invocation of Garbage Collection 28
3.3.6 Preparation . 29
3.3.7 Mark Phase . 30

i

3.3.8 Mark Root Set . 31
3.3.9 Traverse Live Objects . 31
3.3.10 Interrupt Mark Phase . 32
3.3.11 Write Barrier . 33
3.3.12 Resume Mark Phase . 34
3.3.13 Finish Mark Phase . 34
3.3.14 Sweep Phase . 35
3.3.15 Final clean up . 35
3.3.16 Garbage Collection Control 35
3.3.17 Newly allocated Objects during Garbage Collection . . . 37
3.3.18 Manual Freeing during Garbage Collection 37
3.3.19 Lisp Interface . 38

4 Results 41
4.1 Modularization . 41
4.2 Reactivity . 42
4.3 Measuring Performance and Memory Usage 43

4.3.1 Standard XEmacs Usage Pattern 43
4.3.2 Measuring Conditions . 45
4.3.3 Performance Results . 45
4.3.4 Memory Usage Results . 47
4.3.5 Discussion of Results . 50

5 Conclusion 51
5.1 Future Work . 52

A Interface to the Memory Manager 55
A.1 Interface to the Allocator . 55
A.2 Interface to the Write Barrier . 58
A.3 Interface to the Garbage Collector 59
A.4 Lisp Interface . 61

B Detailed Results of Measurements 63
B.1 Startup . 64
B.2 XEmacs Benchmark Suite . 66
B.3 Regression Tests . 68

ii

List of Figures

2.1 Structure of a program with automatic memory management . . 3
2.2 Mark-and-sweep garbage collection after the mark phase has com-

pleted . 4
2.3 State of an incremental traversal 8
2.4 Failing incremental traversal . 9

3.1 Implementation of incremental garbage collection 27

4.1 Modules of the memory manager 42
4.2 Comparison of traditional and incremental mark-and-sweep gar-

bage collection execution activity 43
4.3 Comparison of garbage collection and client pause times 46
4.4 Garbage collection times comparison 46
4.5 Memory usage of non-incremental garbage collection 48
4.6 Memory usage of incremental garbage collection 48
4.7 Memory usage of incremental and non-incremental garbage col-

lection . 49

iii

iv

Chapter 1

Introduction

Garbage collection is the automatic reclamation of computer storage [Wil92]. A
garbage collector is a program that performs automatic reclamation: it has to
find unused objects and make their space available for reuse again.

XEmacs is a powerful, highly customizable text editor and development en-
vironment [WTB+]. XEmacs’s abilities exceed simple text insertion or deletion;
it can indent and color source code of different programming languages auto-
matically, view two or more files at once, and it can be used as a web browser
and email reader.

XEmacs is programmable: The user can add new commands and implement
complex applications entirely within the system. Therefore, XEmacs comes with
its own programming language, Emacs Lisp. Big parts of XEmacs and all of its
extensions are written in this dialect of Lisp.

Like other Lisp-style programming languages, Emacs Lisp comes with an
automatic memory manager, a garbage collector. Basic functionality of XEmacs
is written in C, as is the memory manager.

1.1 Motivation

XEmacs has grown over the years; its automatic memory manager was written in
the 1970’s. The user has to deal with the outdated memory manager continually:
When it runs, the system freezes for several seconds, XEmacs does not react to
keystrokes, and the display is not updated.

Even the developers’ work is affected by the memory manager: its source
code is complex, and the memory manager is tightly coupled to the rest of
XEmacs. Simple modifications to XEmacs may lead to vast modifications to the
memory manager and vice versa. The memory manager lacks a straightforward
interface and is not easily changed. The developer has to cope with many details
and cannot concentrate on the intended work.

Purpose of my diploma thesis is to replace the old garbage collector with
a new one: In this document I describe an incremental garbage collector for
XEmacs that keeps garbage collection pause times short by interleaving small
amounts of collection work with program execution. Additionally, I modularize
the memory manager to make it amenable to future improvements.

In chapter 2, I give an overview about automatic memory management in

1

2 CHAPTER 1. INTRODUCTION

general and incremental garbage collection techniques in detail. Chapter 3 de-
scribes the implementation of a write barrier needed for an incremental garbage
collector and further changes to XEmacs. Chapter 4 lists the results of several
performance and memory usage measurements along with an evaluation. The
conclusion and future work can be found in chapter 5.

This work builds on earlier work done in the context of my term paper
[Cre04] that describes changes to the allocator that are required by the new
garbage collector.

Chapter 2

Overview

This chapter provides an overview about automatic memory management in
general and incremental garbage collection techniques in detail. A garbage
collector is part of an automatic memory manager, whose basics are described
in the first part of this chapter. The second part of this chapter focuses on an
improved garbage collection algorithm.

2.1 Automatic Memory Management

A program with automatic memory management logically consists of two parts
[JL96]:

1. The client—the part of the program which does “useful” work—requests
memory for its objects.

2. The memory manager serves the client’s memory needs and reclaims un-
used memory automatically.

After the client has allocated memory for its objects, it does not need to free
the memory occupied by an object explicitly when it is no longer in use: The
memory manager automatically determines which objects the client no longer
uses and frees these objects. A memory manager consists of two parts: the
allocator and the garbage collector. Figure 2.1 shows the basic structure of a
program with automatic memory management.

Client

requests memory

no explicit freeing
of objects needed

automatically determines

serves memory requests

Memory Manager

and frees unused objects
Task of
Garbage Collector

Task of
Allocator

Figure 2.1: Structure of a program with automatic memory management

3

4 CHAPTER 2. OVERVIEW

2.1.1 The XEmacs Allocator

The memory administrated by the allocator is called the heap. The allocator,
to quickly find successive blocks of free memory of a certain size, or to coalesce
adjacent free blocks into one big area, uses a data structure called the free list
that represents unused memory in a linked list. The allocator traverses the free
list to find a sufficiently-sized slot for newly allocated objects.

In this document I concentrate on the garbage collector—for a more thorough
treatment of the allocator, see my term paper [Cre04].

2.1.2 The XEmacs Garbage Collector

The garbage collector frees objects that can no longer be accessed by the running
program. These objects are referred to as garbage or dead. Objects that are
being used by the client are called live.

The process of garbage collection consists of two parts [Wil92]:

1. Garbage detection: distinguishing live objects from garbage

2. Garbage reclamation: reclaiming the storage occupied by garbage objects
for later use by the client

XEmacs is using one of the earliest garbage collection algorithms: the mark-
and-sweep garbage collection. It is named for the two phases that implement
the garbage collection process described above [JL96, Wil92]:

Heap Space
Root Set

Figure 2.2: Mark-and-sweep garbage collection after the mark phase has com-
pleted

2.1. AUTOMATIC MEMORY MANAGEMENT 5

1. The mark phase distinguishes live objects from garbage by constructing
a reachability graph. This is done by a global traversal of all live objects,
starting at the root set. The root set contains the pointers to the initially
reachable objects. Typically, this includes the global variables and the
local variables on the activation stack. The client has to register the root
set with the memory manager.

The traversal follows all pointers from the root set transitively to other
objects on the heap. Any object reachable from a live object is also live.
Thus the set of live objects is simply the set of objects on any directed
path of pointers from the roots. For all traversed objects the garbage
collector sets a bit—the objects are marked.

The client is often called mutator, since, as far as the collector is concerned,
its only task is to change or mutate the connectivity of the active objects
on the heap.

2. The sweep phase frees dead objects: The entire heap is scanned, then all
unmarked objects are swept, and their space is reclaimed.

Figure 2.2 shows a heap directly after the mark phase is finished. The objects
colored black are reachable from the root set and therefore marked. The white
objects are garbage, and are swept in the next phase.

Traditional mark-and-sweep garbage collectors have two major problems:

1. Management of free memory is difficult because the memory of a run-
ning program becomes fragmented: Reclamation of objects leads to holes
within the allocated memory. This leads to the accumulation of small
regions of free storage that are too small to be useful for allocation, even
though the sum of free space may be more than sufficient.

2. The cost of a collection is proportional to the size of the heap, including
both live and garbage objects:

• All live objects must be marked, and

• all garbage objects must be freed.

The first problem has already been taken care of in my previous work on the
allocator [Cre04]. Here, I deal with the second problem: Traditional mark-and-
sweep garbage collectors suspend the client during their work. Large heaps with
many objects and many references and large amounts of garbage lead to time-
consuming mark and sweep phases. The client is suspended for a long time,
which is annoying in interactive or real-time applications.

Consequently, it is necessary to take a closer look to XEmacs’s traditional
mark-and-sweep algorithm to determine which phase of the mark-and-sweep
scheme causes the long pause times.

2.1.3 XEmacs’s Traditional Mark-and-Sweep Algorithm

This section provides results of measurements of the execution time XEmacs’s
traditional mark-and-sweep garbage collection is spending in its phases.

It is difficult to measure the performance of garbage collection algorithms
[JL96]. The execution time of a full collection cycle depends largely on the

6 CHAPTER 2. OVERVIEW

topology and size of the data in the heap. Even simple issues, such as minor
changes to the size of the heap or the layout of objects, can cause radically
different results. The topology and size of its heap objects is defined by the way
XEmacs is used. Therefore, I assume a set of standard XEmacs applications
and user behavior patterns to be able to measure the collector’s performance
with these patterns. This standard XEmacs usage pattern is described in more
detail in section 4.3.1.

The measurements of time XEmacs is spending in the two phases of the
traditional mark-and-sweep scheme produce the following results:

• share of time spent in mark phase: 60%–80%

• share of time spent in sweep phase: 1%–15%

The broad derivation of the resulting values are caused by the difficulties de-
scribed above of making objective performance measurements. With a standard
XEmacs usage pattern, the mark phase consumes most of the garbage collection
times.

Of course, it is easy to write an XEmacs application that produces sig-
nificantly more garbage than live objects: If an application generates a large
number of objects that immediately become garbage, these objects are not tra-
versed during the mark phase, but the collector needs to free all these garbage
objects during sweep phase. This would lead to an inverted result in the above
measurements, since more objects have to be swept. But this is not usually the
way the memory layout evolves, assuming an average XEmacs usage.

Hence, the mark phase of its traditional mark-and-sweep garbage collection
causes long pause times that interrupts user interaction and the program’s reac-
tivity. The next section discusses improvements to the mark-and-sweep garbage
collection.

2.2 Incremental Techniques

When garbage collection is carried out as one atomic action while the program
is halted, the pause times are long. To shorten the pause times, small units of
garbage collection must be interleaved with small units of program execution.
This incremental garbage collection allows the running program to be able to
react to user interaction and resume whatever task it may have pending while
garbage collection is in progress.

The difficulty with incremental techniques is that, while the collector tra-
verses the graph of reachable objects, the graph may change, as the running
client may mutate the graph while the collector “is not looking” [Wil92]. An
incremental scheme must have some way of keeping track of the changes to the
reachability graph made by the client behind its back.

The following sections specifies that problems that may occur during incre-
mental traversal of the living objects and describe techniques for dealing with
them.

First of all, interruption and later resumption of a garbage collection is costly:
it incurs time and memory overhead, which is discussed more precisely later. As
shown in section 2.1.3, the mark phase is responsible for the long pause times.
Hence, I focus on an incremental mark phase, also called incremental traversal.

2.2. INCREMENTAL TECHNIQUES 7

An incremental sweep phase would not be too difficult to implement, but it
requires modifications to the allocator to keep the state of the sweep progress.
An experimental implementation has shown that it currently does not lead to
noticeable improvements.

The next section introduces an algorithm for incremental traversal.

2.2.1 Tricolor Marking

For understanding incremental garbage collection the abstraction of tricolor
marking is useful [Wil92]. Garbage collection traverses the graph of reachable
objects and colors them. The objects subject to garbage collection are white
at the beginning. By the end of the collection, those that will be retained are
colored black. When there are no reachable objects left to blacken, the traversal
of live data structures is finished. In traditional mark-and-sweep collectors, this
coloring is directly implemented by setting mark bits. In figure 2.2, a set mark
bit is indicated by coloring the object black.

In an incremental collector, the intermediate state of the traversal is im-
portant because of ongoing mutator activity: the mutator cannot be allowed
to change things in such way that the collector will fail to find all reachable
objects. To understand and prevent such interactions between the mutator and
the collector, it is useful to introduce a third color, grey.

Grey objects have been reached by the traversal, but its descendants may
not have been. White objects are changed to grey when they are reached by the
traversal. Grey objects mark the current state of the traversal: traversal pro-
ceeds by processing the grey objects. Processing a grey object means following
its outgoing pointers, and coloring it black afterwards.

The traversal starts with the root set. The objects pointed to from the roots
are colored grey. In the next step, all the grey objects are scanned and pointers
to their offspring are followed. The grey objects are colored black, after all
outgoing pointers have been examined. If the traversal reaches an offspring for
the first time—it is colored white—then it is colored grey. If an offspring has
already been reached—it is already marked grey or black—nothing has to be
done. This way the traversal always terminates.

Figure 2.3 illustrates a state of an incremental traversal: The first few steps
of the traversal have already been made; the grey objects denote the current
state of progress. The collector is finished with all black objects, and knows
nothing yet about the white ones.

In a mark-and-sweep garbage collector, the grey objects correspond to the
stack or queue of objects used to control the marking traversal, and the black
objects are the ones that have been removed from the queue. Objects that have
not been reached are colored white.

2.2.2 Coloring Invariant

Intuitively, the traversal proceeds in a wavefront of grey objects that separates
the unreached objects, which are colored white, from the already processed
black objects. The algorithm described above does not produce any pointers
from black objects to white objects.

This leads to an important invariant, called the coloring invariant : There is
no direct pointer from a black object to a white object. The importance of this

8 CHAPTER 2. OVERVIEW

Root Set
Heap Space

Figure 2.3: State of an incremental traversal

invariant is that the collector must be able to assume that it is finished with
black objects, and can continue to traverse grey objects to move the wavefront
forward.

When garbage collection is suspended and the mutator resumes, it may vio-
late the coloring invariant if no further provisions are made. When the mutator
creates a pointer from a black object to a white one, it must somehow coordi-
nate with the collector, to ensure that the collector’s bookkeeping is brought up
to date and that the traversal is resumed correctly.

Figures 2.4 demonstrate this need for coordination: Figure 2.4.1 is a cutout
from figure 2.3, with letters added to name the objects.

Figure 2.4.1 shows the first modification performed by the mutator. Suppose
object A has been completely scanned, and therefore colored black; its descen-
dant B has been reached and colored grey. Object D has also been reached and
therefore greyed. The pointer from D to C has not been traversed yet, thus C is
still colored white. Now, the mutator writes a pointer to C into A, overwriting
the pointer to B. Since the collector assumes that it is already done with A, the
newly written pointer to C will not be traversed any more. The client breaks the
coloring invariant. For the current scenario, this does not cause the traversal to
fail as C still will be reached from D when the traversal is resumed.

In figure 2.4.3 the mutator deletes the pointer from D to C. Now there is
no way for object C to be reached by the traversal. If the collector resumes
the traversal without any coordination, object C will not be marked. It will be
swept and leaves a dangling pointer from object A.

To have the collector falsely reclaim a live object, a white object must become
invisible to the collector but still be reachable by the mutator. Figure 2.4.4

2.2. INCREMENTAL TECHNIQUES 9

C D

BA

C D

BA

Figure 2.4.1 Figure 2.4.2

A B

C D

1.

A B

C D

2.

Figure 2.4.3 Figure 2.4.4

Figure 2.4: Failing incremental traversal

summarizes the two conditions that would break the traversal:

(Condition 1) Write a pointer to a white object in a black object, and

(Condition 2) remove the original pointer to the white object.

If either of these conditions does not hold, the object will be retained and no
special action is required. If Condition 1 does not hold, the graph will not
contain any pointers to white objects from black ones. If the white object is
reachable, there must be a path to it from a grey object, and the object will be
retained; if not, it is garbage and can be freed. On the other hand, if a pointer
to a reachable white object is installed in a black object, the white object will
still be reached by the collector through the original reference to it if Condition
2 does not hold.

Another important property of incremental collectors illustrates the example
in figure 2.4: their degree of conservativeness with respect to the changes made
by the mutator during garbage collection. Object B has already been reached by
the traversal before its pointer from object A gets overwritten and object B be-
comes garbage. Since B has already been marked reachable, it will be preserved
in this collection cycle, even though it is no longer in use. In general, objects
that become garbage during a collection cycle may or may not be reclaimed in
this cycle. These objects are called floating garbage because the collector has
already categorized these objects live before the mutator frees them. Floating
garbage is guaranteed to be collected after the next cycle.

The next section shows how the collector and the mutator can be coordinated
if the mutator violates the coloring invariant, to prevent traversal failures from
happening.

10 CHAPTER 2. OVERVIEW

2.2.3 Coordination of Mutator and Collector

There are two basic approaches to coordinating the collector and the mutator:
a read barrier or a write barrier. A read barrier detects when the mutator
attempts to access a pointer to a white object. The read barrier communicates
this read access to the garbage collector, which immediately colors the read
object grey. This prevents the mutator from writing a pointer to a white object
into a black object, because writing a pointer implies seeing it, which then
directly colors the object grey. The coloring invariant can no longer be violated
by the mutator. Unfortunately, a read barrier is unnecessarily expensive; there
is no need to protect the mutator from seeing an invalid version of a pointer.
A read barrier also incurs a larger overhead, since heap reads are way more
common than heap writes.

A write barrier is activated upon writes to heap objects. Catching heap
writes is cheaper because they happen less frequently. Jones and Lins point out
that over 90% of heap writes happen at allocation time; later writes into heap
objects are quite rare [JL96].

Write-barrier approaches fall into two different categories, depending on
which of the two conditions mentioned above they address:

Snapshot-at-beginning collectors ensure that the second condition cannot
happen: the original reference cannot be lost.

Incremental-update collectors preserve the first condition: changes to the
connectivity of the graph are caught.

I explain these techniques in more detail in the next two sections.

2.2.4 Snapshot-at-beginning

The first alternative to coordinating the mutator and the collector with a write
barrier is the snapshot-at-beginning algorithm. Snapshot-at-beginning algo-
rithms prevent the loss of the original reference to a white object by making a
copy of the original reference. These algorithms do not preserve the coloring
invariant. Instead, they guarantee that there is at least one path leading to each
reachable white object.

When the mutator updates a pointer in a black object, the write barrier traps
it and stores the original pointer for later inspection by the garbage collector.
When the collector resumes, it colors the object grey to which the original
pointer refers to. One of the best-known snapshot write-barrier algorithms is
Yuasa’s algorithm [Yua90]: When the mutator writes to a memory location, the
write barrier first saves the overwritten value and pushes it on a marking stack
for later examination. This guarantees that no objects will become unreachable
to the garbage collector traversal—all objects live at the beginning of garbage
collection will be reached, even if the pointers to them are overwritten.

Snapshot-at-beginning algorithms are very conservative: No objects that
become garbage in one garbage collection cycle can be reclaimed in that cycle; all
of the overwritten pointers are preserved and traversed. The garbage collector
reclaims these objects at the next garbage collection cycle. Additionally, all
newly allocated objects during a collection cycle are effectively allocated black
even though the chance of a young object dying within a single collection cycle

2.3. SUMMARY 11

may be high. Snapshot-at-beginning heaps cause significant memory overhead
because they incur large amounts of floating garbage.

2.2.5 Incremental-update

Incremental-update methods are less conservative than snapshot algorithms.
They incrementally record changes made by the mutator to the connectivity
of the graph, rather than making a static estimate of the reachability at the
start of a collection cycle. Incremental-update algorithms preserve the coloring
invariant: they prevent Condition 1. The best known incremental-update algo-
rithms are due to Dijkstra [DLM+78] and Steele [Ste75]; they were developed
independently and are quite similar.

When the client stores a pointer into an object that has already been passed
by the traversal and thus colored black, it changes the graph of reachable data
structures behind the collector’s back. The incremental-update write barrier has
to record such changes and notify the collector about black objects that currently
hold pointers to white objects. The collector then reverts such objects to grey.
This way, the traversal scans the formerly black objects again before garbage
collection completes, to find any live objects that would otherwise escape.

In the example shown in figure 2.4, object A would be colored grey and
traversed again when the garbage collection resumes. The traversal would then
reach object C that would survive the sweep phase, resulting in a consistent
heap without any dangling pointers.

Another flavor of the incremental-update mechanism exists that does not
re-color the modified object grey, but colors the pointed-to white object grey
to preserve the coloring invariant—in the example, object C would be colored
grey, and A would remain black. This is a more conservative coloring strategy
as it preserves C regardless of whether the pointer is subsequently deleted.

The performance overhead of an incremental traversal is as follows: When-
ever a collection is resumed, the write-barrier information has to be read out.
This means, the garbage collector has to re-color all the objects grey that are
recorded by the write barrier. Also the collection of the write-barrier data adds
extra cost to each heap write. The incremental-update write barrier increases
the time spent in the mark phase, because already reached, modified objects
have to be scanned again. On the other hand, the cost of the extra visits will
reduce the amount of floating garbage left at the end of the collection cycle.
Section 4.3 evaluates the measurements for performance and memory overhead.

The amount of floating garbage left behind by an incremental-update algo-
rithm is also affected by its policy towards new cells. If the mortality rate of new
cells is sufficiently high, many will die before they are reached by the traversal.
New dead cells that were allocated white can be reclaimed in the same collection
cycle, but cells allocated black or grey will survive the collection cycle, whether
they are still visible to the mutator or not. The cost of allocating white or grey
is that any newborn cells that do survive must be traversed.

2.3 Summary

XEmacs’s annoying pause times are caused by the slow garbage collector that
runs atomically while the client is stopped. Especially the traversal of the

12 CHAPTER 2. OVERVIEW

reachability graph, which decides which objects are live and which are garbage,
is taking up the most time of a collection cycle. To reduce the garbage collection
pauses, an incremental scheme can help. Traditional mark-and-sweep garbage
collection can be made incremental by interleaving collection with client activity.
Care must be taken to ensure that the collector and the client are synchronized
to make sure that no objects visible to the client are swept.

To interleave the client and the collector promises a more reactive system.
However, there is a price to pay: the mutator and the collector have to coordi-
nate. In particular, storing pointers into objects is more costly, and the modified
objects have to be traversed repeatedly.

Chapter 3

Implementation

The first part of this chapter introduces different write-barrier approaches and
describes implementations on different platforms. The write barriers make use
of memory protection and signal handling. The second part of this chapter
describes the changes made to the XEmacs source code to use the write barrier
and the new incremental garbage collector.

Because of the discussed benefits in respect to directness, performance, and
conservativeness, I use the incremental-update method that re-colors black ob-
jects upon write-barrier traps. Additionally, this technique interoperates better
with the write-barrier implementation I use than the other algorithms described.
I explain this decision in this chapter after the discussion of write-barrier im-
plementations is complete.

3.1 Write Barrier

The previous chapter explained the need for coordinating the collector and the
mutator with a write barrier to prevent the incremental traversal of the reacha-
bility graph from failure. This section gives an overview of different write-barrier
implementations, and then describes implementations for different operating
systems and machines in detail.

3.1.1 Overview of Mechanisms

A write barrier informs the collector about objects that are modified by the mu-
tator while a incremental collection runs. There are several distinct approaches
to implementing a write barrier [Boe]:

Explicit source code annotation: The most direct and most exact way to
set up a write barrier is to annotate the source code explicitly: Every
assignment in the sources has to be found and code has to be added to
inform the collector. One way to achieve this would be to wrap a macro
call around every pointer update, where the macro identifies the modified
object and communicates its address to the garbage collector.

Unfortunately, this approach is not easily implementable in XEmacs:
XEmacs contains several hundred thousand lines of code, which makes

13

14 CHAPTER 3. IMPLEMENTATION

it nearly impossible to identify all heap writes. Additionally, strict coding
rules have to be adopted by all other XEmacs code contributors because
all future written code also has to use the write barrier, which is not easily
enforceable.

Another possibility would be the development of a tool that automatically
annotates the code. This is outside the scope of my work, however.

Software write barriers impose an overhead on all pointer updates performed by
the mutator. On many systems, the overhead in the mutator can be removed
or at least reduced with assistance from the virtual memory. Virtual memory
provides dirty-bit information for logical memory pages rather than for single
objects. Modified objects and pages are called dirty—in an implementation this
is often reflected by setting a dirty bit for the modified object. The following
implementations make use of dirty-page information:

Virtual Dirty Bit: Most operating systems support a generic virtual-dirty-bit
mechanism: The write barrier write-protects memory pages containing
heap objects. If the mutator tries to modify these objects by writing into
the write-protected page, the operating system generates a fault. The
write barrier catches this fault, reads out the error-causing address and can
thus identify the updated object and page. Not all environments provide
the mechanism to write-protect memory, catch resulting write faults, and
read out the faulting address [Boe].

Special operating-system support: Some operating systems, such as Sun’s
Solaris 2, provide dirty-bit information through the process file system
/proc. The use of /proc involves reading the dirty bits from the entire
address space. Filtering out the dirty bits of the current process may be
slow [JL96].

External dirty bit information: Some external systems provide dirty-bit in-
formation that can be used by other applications. One example is the
Xerox Portable Common Runtime that provides functionality for reading
out dirty pages [Boe].

For maximum portability, I chose the virtual-dirty-bit write-barrier implemen-
tation.

The virtual-dirty-bit write barrier does depend on operating-system-specific
functionality, but the basic strategy is the same on all systems. Fortunately,
nearly all of today’s operating systems provide the needed features. Albeit,
there may be big differences how the virtual-dirty-bit implementation works on
different systems. The next sections provide the details and the prerequisites of
the virtual-dirty-bit write barrier and describe how the write-barrier implemen-
tation differs among most common operating systems.

3.1.2 Memory Protection

Memory protection is the first prerequisite of a virtual-dirty-bit write barrier:
The system has to provide a method for setting and removing write-protection
for certain memory blocks. Such a feature is provided by most current operating

3.1. WRITE BARRIER 15

systems like UNIX/Linux, Windows, and Mac OS. It is part of the POSIX
standard (IEEE 1003.1c) [IG04].

Memory protection does not work for arbitrary small memory regions; it only
works in terms of pages. Memory provided by the operating system is broken
into blocks of the same size called pages. The page size is usually defined by the
hardware, the size of a page is a power of 2, varying between 4,096 bytes and
4,194,304 bytes, depending on the computer architecture and machine model
[SGG03]. The PAGESIZE system variable that the operating system defines
specifies which page size in bytes the system uses. Implementations of a memory-
protection mechanism may restrict the size and the alignment of the memory
region to be on page-size boundaries. If an implementation has no restrictions
on size or alignment, it may specify a one-byte page size [IG04].

All objects subject to be covered by the write barrier have to be allocated on
logical memory pages, so that they meet the requirement to be write-protected.
In XEmacs, all objects of the Lisp engine, called Lisp objects, have to be allo-
cated on such pages. The allocator [Cre04] is aware of a system page size—it
allocates all Lisp objects on logical memory pages.

Since memory pages are large compared to most Lisp objects, many objects
may reside on a single memory page, which leads to coarse granularity of the
memory-protection mechanism. This causes an overhead that is described in
the next section.

Once a memory area is write-protected, write access to it causes a fault that
is signaled to the process. Every time the mutator updates a write-protected
Lisp object, the write access provokes a fault. Handling these faults generated by
illegal memory access is another requirement of a virtual-dirty-bit write barrier.
It is discussed in the next section.

3.1.3 Signal Handling

This section addresses the second prerequisite of a virtual-dirty-bit write barrier:
signal handling. A signal is used to notify a process that a particular event has
occurred [SGG03]. Examples of such events include detection of hardware faults,
timer expiration, division by zero, and illegal memory access. All signals follow
the following pattern:

1. A signal is generated by the occurrence of a particular event.

2. A generated signal is delivered to a process.

3. Once delivered, the signal must be handled.

Every signal has a default function that handles the signal, called signal handler.
This default action may be overridden by a user-defined signal-handler function.
In this instance, the user-defined function is called to handle the signal rather
than the default action.

For the implementation of a virtual-dirty-bit system, the write barrier has
to install its own signal handler function to catch the signals caused by illegal
memory access. Usually, the default action on illegal memory access is to kill the
process that caused the fault and print an error message. The signal handler of
the write barrier instead has to identify the Lisp object that caused the illegal

16 CHAPTER 3. IMPLEMENTATION

memory access, inform the garbage collector about the updated object, and
ensure that the desired change can be written to memory.

When a signal handler completes without killing the process, control is re-
turned to the client where it was interrupted. In our case the client was inter-
rupted during a heap write, typically an assignment, which has not completed
yet. To have it complete successfully, the signal handler has to remove the write-
protection from the memory area the Lisp object resides in before the client gets
control back.

As stated in the previous section, memory-protection operations only work
on logical pages. Therefore the write-protection is removed from the page as a
whole rather than the single modified Lisp object. Since the granularity of the
memory protection is coarse, many Lisp objects may be affected by removing
the protection. This leads to an unavoidable hole in the write barrier: It cannot
catch further writes to the Lisp objects on this page. Consequently, the garbage
collector has to treat all objects on this page as modified. This causes overhead:
The garbage collector has to re-scan objects that have not been modified by the
client, merely because they reside on the same page as a modified object.

Removing the write-protection from a page also removes the overhead caused
by the write-barrier signal handling for future writes. My experiments show
that a write-barrier heap write takes approximately twice as long as a heap
write without the write barrier:

• 100,000 heap writes with write barrier take 952 milliseconds, and

• 100,000 heap writes without write barrier take 511 milliseconds.

Calling the signal handler and removing the write protection takes up signifi-
cantly more time than heap writes without protection. But the overhead for
a heap write with running write barrier is swapped for the overhead of re-
examining unchanged objects: With this taken into account, the resulting over-
head is not too big—the incremental garbage collector is actually only about
12% slower than the traditional one. More performance evaluations can be
found in section 4.3.3.

3.1.4 Faulting Address

To identify the modified object and page, the write barrier needs to be able
to retrieve the faulting address of an illegal memory access. This is the third
requirement of a virtual-dirty-bit write barrier. Unfortunately, many systems
do not provide this feature.

The POSIX standard [IG04] describes a signal information data structure
that is passed to the fault handler. The data structure contains a field with
the fault-causing address. Some operating systems do not provide this field
or do not provide the data structure at all, even though they are purportedly
POSIX-compliant.

Some systems may provide alternative ways to retrieve the faulting address,
such as values retrieved directly from the kernel, or reading out registers of the
processor.

On systems that completely fail to provide the faulting address the virtual-
dirty-bit write barrier and the incremental garbage collector do not work.

3.2. PLATFORM-DEPENDENT IMPLEMENTATION 17

Once the write barrier retrieved the faulting address, it needs to identify the
modified object and the modified page. This mapping is done by a two-level
search tree implemented in the allocator [Cre04, RRSF00]: The upper and lower
bits of the faulting address are used to index into the two levels of the search
tree, which in turn leads to the address of the page header and the page itself.
With the information found in the page header the write barrier identifies the
object. The write barrier then marks the object and page dirty, and informs
the garbage collector. This is described in detail in section 3.3.

3.1.5 Choosing a Write-Barrier Algorithm

A disadvantage of the virtual-dirty-bit technique is the coarse granularity of the
memory-protection mechanisms. This directly influences the choice of a write-
barrier algorithm as it leads to an overhead due to re-examining unmodified
objects, as all objects of a page are subject to re-examination by the traversal
when the protection of the page is removed.

The snapshot-at-beginning approach—described in section 2.2.4—makes a
copy of the overwritten pointers. With the virtual-dirty-bit implementation, the
approach would have to make copies from all the pointers on a page. This is not
feasible: First, the identification of the pointers of all objects is costly; second,
large amounts of memory may have to be used to store the copies. Hence,
snapshot-at-beginning does not work well with the virtual-dirty-bit technique.

The incremental-update method—see section 2.2.5—re-colors modified black
objects grey. With the virtual-dirty-bit implementation, all black objects on a
page have to be changed to grey. Coloring grey usually corresponds to pushing
the object’s address on the mark stack in a real-life implementation. This is
cheap.

3.2 Platform-Dependent Implementation

Most of today’s operating systems provide the features needed for the previously
described write-barrier implementation. However, they provide them in different
ways. This section provides the details how the write-barrier implementation is
accomplished on different platforms.

My implementations are based on ideas and hints from implementations
of PLT’s MzScheme [PLT] and the Boehm-Demers-Weiser conservative gar-
bage collector for C and C++ [Boe]. Information about the system calls on
UNIX/Linux platforms is taken from the system manual pages [man], the
POSIX standard [IG04], and C manuals [KR88, FSF01].

3.2.1 POSIX-Compliant Platforms

POSIX is an acronym for Portable Operating System Interface [Wik05]. It
describes a standard set of behaviors and system calls for UNIX-like operating
systems. POSIX is the collective name for a set of standards specified by the
Institute of Electrical and Electronics Engineers, short IEEE, for UNIX-like
systems. The standards are formally designated as IEEE Std 1003. The POSIX
standard was developed, and is maintained, by a joint working group of members

18 CHAPTER 3. IMPLEMENTATION

of the IEEE Portable Applications Standards Committee, members of The Open
Group, and members of ISO/IEC Joint Technical Committee [IG04].

POSIX provides a common baseline for UNIX-like systems. On POSIX-
compliant platforms, there is a straightforward way to implement the virtual-
dirty-bit write barrier:

Memory protection: POSIX defines the mprotect(2) system call to control
access to a region of memory:

int mprotect (const void *addr, size_t len, int prot);

The mprotect function specifies the desired protection for the memory
area of the interval [addr, addr + len[. The value of addr has to be on
PAGESIZE boundaries, and len has to be a integer multiple of PAGESIZE.

The protection prot is a bitwise-or of the following values:

PROT_NONE The memory cannot be accessed at all.
PROT_READ The memory can be read.
PROT_WRITE The memory can be written to.
PROT_EXEC The memory can contain executing code.

The parameter prot is either PROT_READ to remove the write access by
setting the memory read-only, or it is set to (PROT_READ | PROT_WRITE)

to allow read and write access. If an access is disallowed by the given
protection, the program receives a signal.

Signal handling: The signal that the kernel generates when an illegal memory
access occurs is one of the following two [IG04]:

SIGSEGV for “segmentation violation,” better known as “segmentation
fault,” or

SIGBUS for “bus error”

The signal handler has to be installed on both signals. To install a sig-
nal handler according to POSIX, the write barrier has to use the sig-

action(2) system call:

int sigaction (int signum, const struct sigaction *act,

struct sigaction *oldact);

The signum parameter specifies the signal the new signal action act is
installed for. The previous action is saved in oldact.

The signal action structure struct sigaction contains a field sa_sig-

action that specifies the action to be associated with signum. It contains
a pointer to a fault-handler function with the following signature:

void fault_handler (int, struct siginfo *, void *);

When the fault handler is invoked, it receives the signal number as its
first argument, a pointer to a struct siginfo as its second argument
and a pointer to a ucontext_t (cast to void *) as its third argument.
Here, the ucontext_t is ignored; struct siginfo is more important, it
contains the faulting address.

3.2. PLATFORM-DEPENDENT IMPLEMENTATION 19

Faulting address: The fault handler’s second argument is a data structure
called struct siginfo. It contains a field si_addr, which is set to the
address that caused the fault. The faulting address can be retrieved by
accessing si_addr.

While the memory-protection and signal-handling interfaces described here can
be used on all POSIX-based platforms, the POSIX way to retrieve the fault-
ing address is not implemented on all platforms that call themselves POSIX-
compliant—see the implementation details for Mac OS X in section 3.2.3 and
Cygwin in section 3.2.5.

3.2.2 Old UNIX/Linux

Older UNIX-like systems and older Linux systems1 do not provide the POSIX
signal handling interface. These systems provide a restricted version: the
signal(2) system call.

Memory protection: The write barrier uses the mprotect(2) system call to
set the protection status, as described in section 3.2.1.

Signal handling: The signal(2) system call installs a new signal handler:

sighandler signal (int signum, sighandler handler);

The system call installs the new handler on the signal signum. The signals
the write barrier has to catch are SIGSEGV and SIGBUS. The handler is of
type sighandler, which is a pointer to function defined as follows:

typedef void (*sighandler) (int, struct sigcontext);

A signal handler is a function, that takes two arguments: the signal num-
ber and a struct sigcontext that contains additional information about
the signal.

The signal function returns the previously installed signal handler.

Faulting address: The fault handler’s second argument is a data structure
called struct sigcontext. It contains a field cr2, which is set to the
address that caused the fault, when the signal handler is invoked. The
faulting address can be retrieved by accessing cr2.

On modern UNIX/Linux systems this simple signal(2) mechanism is also avail-
able, but where possible one should use sigaction(2) instead [IG04].

3.2.3 Mac OS X

Mac OS X is based on a BSD Mach microkernel [App]. The Mach kernel does not
provide a POSIX-compatible method to obtain the faulting address. Instead,
it provides a more powerful fault handling facility, called the Mach Exception
Handler. On Mach systems, the POSIX signal handling gets emulated [SGG04].

1Linux kernel version < 2.4

20 CHAPTER 3. IMPLEMENTATION

The kernel translates all Mach exceptions to POSIX signals, but the field si_

addr of the siginfo data structure is not set [Boe].
To compensate this, there is a workaround that allows a POSIX fault handler

to read out the dar-field of the exception state—but this workaround fails when
running in the debugger. Thus, for the implementation of the write barrier I
chose to drop down to the Mach level. In the following I provide a rough outline
how the write barrier makes use of the Mach Exception Handler. For a thorough
treatment of the Mach Exception Handlers, see the work of Black and others
[BGH+88].

Memory protection: The write barrier is still able to use the mprotect(2)

system call to set the memory-protection status, as described in section
3.2.1. Now the resulting faults are not caught with POSIX signals, but
with Mach exceptions.

Signal handling: To use the Mach exceptions, the write barrier has to start
its own exception-handling thread and set up the communication with
this thread using communication channels called exception ports. The ex-
ception thread has to read the exception from the Mach exception server
and forward the KERN_PROTECTION_FAILURE exception—this is the Mach
equivalent for illegal memory access—to the write-barrier exception han-
dler.

Faulting address: The exception handler has access to a data structure called
exception_data. The faulting address can be retrieved from exception_

data.

3.2.4 Native Windows

To compile XEmacs natively for Windows, a Microsoft C/C++ compiler is
required. On native Windows, the virtual-dirty-bit write barrier has to use
the Microsoft Exception Handling Mechanisms. Microsoft calls its Structured
Exception Handling an “extension to Microsoft C/C++” [Pre00b].

Memory protection: The VirtualProtect Windows system call changes the
protection on a region of pages in the virtual address space of the calling
process [Pre00c].

Signal handling: To install an exception handler, I use AddVectoredExcep-

tionHandler. It adds the given fault handler—VectoredHandler in Win-
dows terms—to the front of a list of exception handlers. When an excep-
tion occurs, the handlers in this list are called in order. If the write-barrier
handler is called, it checks if the exception is an EXCEPTION_ACCESS_

VIOLATION, which is caused by illegal memory access. In this case, the han-
dler is really handling this exception and returns EXCEPTION_CONTINUE_

EXECUTION to tell the Windows exception mechanism that the exception is
taken care of and program execution can be continued; no further handler
has to be called. Otherwise the handler returns EXCEPTION_CONTINUE_

SEARCH to indicate that an other handler has to take care of the current
exception [Pre00a].

3.2. PLATFORM-DEPENDENT IMPLEMENTATION 21

Faulting address: The exception handler has access to a data structure called
ExceptionRecord. The faulting address can be retrieved from the field
ExceptionInformation of this structure.

3.2.5 Cygwin

Cygwin is a Linux-like environment for Windows—it provides a POSIX-com-
patible interface [Cyg]. It aids porting software that runs on POSIX systems
to Windows. The Cygwin version of XEmacs is an alternative to the native
Windows build.

Unfortunately, Cygwin does not implement all of POSIX yet; specifically, it
lacks a way to read out the faulting address. The field si_addr of the siginfo

data structure passed to the signal handler is containing bogus values. This is
a known bug—the Cygwin maintainers are working on it [Cyg].

Luckily, Cygwin also provides access to the underlying native Windows ap-
plication programming interface. Consequently, my implementation of the write
barrier under Cygwin uses the mechanisms described for native Windows in sec-
tion 3.2.4. Unfortunately, this approach has a downside: Using a debugger on
a Cygwin-built XEmacs with the virtual-dirty-bit write barrier does not work:
Cygwin-based debuggers, such as Cygwin’s gdb, conflict with the native Win-
dows exception handling; and Windows-based debuggers, such as the Microsoft
Visual Studio Debugger, do not produce usable results with Cygwin-compiled
executables.

The current situation is a temporary workaround and will be fixed as soon
as Cygwin’s implementation of the siginfo structure is complete.

3.2.6 Debugging the Write Barrier

The virtual-dirty-bit write barrier provokes signals on purpose, namely SIG-

SEGV and SIGBUS. When debugging XEmacs with this write barrier running,
the debugger always breaks whenever a signal occurs. This behavior is generally
desired: A debugger has to break on signals, to allow the user to examine the
cause of the signal—especially for illegal memory access, which is a common
programming error.

But the debugger should not break for signals caused by the write barrier.
Therefore, most debuggers provide the ability to turn of their fault handling
for specific signals. The following command prevents gdb from stopping and
printing information when SIGSEGV or SIGBUS occurs:

handle SIGSEGV SIGBUS nostop noprint

I added this command to gdb’s initialization file .gdbinit in the XEmacs
sources directory: whenever gdb is started to debug XEmacs with the virtual-
dirty-bit write barrier enabled, it does not break on signals caused by illegal
memory access.2

But what happens if a bug in XEmacs causes an illegal memory access? To
maintain basic debugging abilities, I use another signal: First, the write-barrier
signal handler has to determine if the current error situation is caused by the

2For the dbx debugger, I added ‘ignore SIGSEGV SIGBUS’ to .dbxrc.

22 CHAPTER 3. IMPLEMENTATION

write-barrier memory protection or not. Therefore, the signal handler checks if
the faulting address has been write-protected before. If it has not, the fault is
caused by a bug; the debugger has to break in this situation. To achieve this,
the signal handler raises SIGABRT to abort the program. Since SIGABRT is not
masked out by the debugger, XEmacs aborts and allows the user to examine
the problem.

Using a debugger on Windows does not need any precautions: Under Win-
dows, as seen in section 3.2.4, the debugger’s exception handler is not called
when the write barrier’s exception handler returns EXCEPTION_CONTINUE_EXE-
CUTION, because program execution resumes immediately. If the exception was
not caused by the write barrier, returning EXCEPTION_CONTINUE_SEARCH will
eventually call the debugger’s handler, which then breaks.

Using gdb on Mac OS X does also not need any precautions—the Mach
exception handlers occur on a lower level and never reach the debugger. Only if
the exception is not handled by the write barrier—if the illegal memory access
is not caused by the virtual-dirty-bit memory protection—the system translates
the exception to EXC_BAD_ACCESS, which the debugger catches.

Debugging on Cygwin is currently not possible, see section 3.2.5.

3.3 Changes to XEmacs

In this section I describe the changes I made to the XEmacs source code.
First, configuration and startup issues are resolved. Then, the steps of gar-

bage collection are illustrated and implementation details for each step are pro-
vided.

3.3.1 Configuration

The new incremental garbage collector is fully conditioned on the preprocessor
symbol NEW_GC. To enable the incremental collector, the argument
--enable-newgc has to be given to the configure script on systems that sup-
port the autoconf/automake-environment:

./configure --enable-newgc

This implicitly enables the prerequisites of the new garbage collector:

• the new allocator MC_ALLOC, and

• the new mark algorithm USE_KKCC.

The configuration script determines which virtual-dirty-bit write-barrier imple-
mentation to use: It checks if the POSIX interface sigaction(2) and struct

siginfo with the field si_addr is available, or if the signal(2) and struct

sigcontext with field cr2 interface has to be used.
The configure script recognizes Mac OS X and Cygwin and uses the special

case write-barrier implementations.
On systems that are not explicitly listed in the configure script, it always

checks for sigaction(2) and signal(2) availability. Consequently, the write
barrier runs out-of-the-box on all fully POSIX-compliant systems.

3.3. CHANGES TO XEMACS 23

Native Windows has a special configuration file nt/config.inc. To enable
the new garbage collector on native Windows, the configuration file must contain
the following lines:

USE_KKCC=1

MC_ALLOC=1

NEW_GC=1

If a systems fails to provide the functionality needed by the write barrier, a
fall-back “fake” implementation is used: This implementation simply turns of
the incremental write barrier at runtime and does not allow any incremental
collection. The garbage collector then acts like a traditional mark-and-sweep
garbage collector. Generally, the incremental garbage collector can be turned
off at runtime by the user or by applications. This feature is described in more
detail in section 3.3.19.

3.3.2 Startup

The installation of the write-barrier signal handler is among the first things
XEmacs does when it starts. XEmacs installs own signal handlers on all sig-
nals that cause program abortion, such as illegal memory access. These signal
handlers are used to print a Emacs Lisp backtrace that provides important in-
formation to identify crashes caused by Lisp code. To keep this functionality,
the write-barrier signal handler is installed after the backtrace signal handlers.
It stores the previously installed backtrace handler and resurrects it, when the
write-barrier signal handler is invoked by a invalid memory access that is not
caused by the write barrier. This way, basic debugging information in case of
an signal-caused program abortion remains available. The signal handler of the
write barrier is described in more detail in section 3.3.11.

3.3.3 New Lisp Objects

Some Lisp objects do not carry all their information in the object itself. External
parts are kept in separately allocated memory blocks that are not managed by
the allocator. Examples for these objects are hash tables and dynamic arrays,
two objects that can dynamically grow and shrink.

The separate memory blocks are not guaranteed to reside on page bound-
aries, and thus cannot be watched by the write barrier. Moreover, the separate
parts can contain live pointers to other Lisp objects. These pointers are not
covered by the write barrier and modifications by the client during garbage
collection do escape. In this case, the client changes the connectivity of the
reachability graph behind the collector’s back, which eventually leads to erro-
neous collection of live objects.

To solve this problem, I transformed the separately allocated parts to fully-
qualified Lisp objects that are managed by the allocator and thus are covered
by the write barrier. This also removes a lot of special allocation and removal
code for the out-sourced parts. Generally, allocating all data structures that
contain pointers to Lisp objects on one heap makes the whole memory layout
more consistent.

In the following, I demonstrate the needed steps to transform an external
data structure to a Lisp object, as described in the XEmacs Internals Manual

24 CHAPTER 3. IMPLEMENTATION

[WTB+], considering the new Lisp object Hash_Table_Entry as an example
that is described later in this section:

• Add the field lrecord_header as the first entry to the object’s declaration:

typedef struct htentry

{

struct lrecord_header lheader;

Lisp_Object key;

Lisp_Object value;

} htentry;

A hash table entry consists of a key and a value, and the newly added
Lisp object header.

• Add macros to declare and access the Lisp object and the object’s fields:

DECLARE_LRECORD (hash_table, Lisp_Hash_Table);

#define XHASH_TABLE(x) \

XRECORD (x, hash_table, Lisp_Hash_Table)

#define wrap_hash_table(p) wrap_record (p, hash_table)

#define HASH_TABLEP(x) RECORDP (x, hash_table)

#define CHECK_HASH_TABLE(x) CHECK_RECORD (x, hash_table)

#define CONCHECK_HASH_TABLE(x) \

CONCHECK_RECORD (x, hash_table)

• Create a memory description for the new object. Memory descriptions are
used to mark the object, see section 3.3.7.

static const

struct memory_description htentry_description_1[] = {

{ XD_LISP_OBJECT, offsetof (htentry, key) },

{ XD_LISP_OBJECT, offsetof (htentry, value) },

{ XD_END }

};

• Define the implementation structure of the object that describes the ob-
ject’s properties using DEFINE_LRECORD_IMPLEMENTATION.

DEFINE_LRECORD_IMPLEMENTATION ("hash-table-entry",

hash_table_entry,

1, 0, 0, 0, 0, 0,

htentry_description_1,

Lisp_Hash_Table_Entry);

• To initialize the new implementation, I added

INIT_LRECORD_IMPLEMENTATION (hash_table_entry);

to the hash table’s initialization function init_elhash_once_early.

3.3. CHANGES TO XEMACS 25

• Add a unique type identifier to the enumeration enum lrecord_type, in
this case lrecord_type_hash_table_entry.

In the following I provide more details to some of the external data structures
that I have transformed to Lisp objects:

Dynamic Arrays: A dynarr is a contiguous array of fixed-size elements with
no upper limit on the number of elements in the array—except available
memory. Because the elements are contiguous, random access to a par-
ticular element is constant-time. In the old garbage collector, dynamic
arrays held non-Lisp objects as well as Lisp objects. The new incremen-
tal garbage collector distinguishes between dynamic arrays that hold Lisp
objects and dynamic arrays that hold non-Lisp objects.

For dynamic arrays that hold Lisp objects, I created the new Lisp object
type “Dynamic Lisp Array,” called dynarr_lisp. It contains Lisp objects,
in contrast to the dynamic array dynarr that contains non-Lisp objects.
A dynarr_lisp can be created with the new macro

Dynarr_lisp_new (type, dynarr_imp, imp);

where type and dynarr_imp are previously defined dynamic-array-type
and implementation structures, and imp is the Lisp object implementation
of the objects stored in this instance of the array.

The rest of the interface remains the same: adding and removing elements
from dynamic Lisp arrays does not differ from how it is described for
dynamic arrays in the XEmacs Internals Manual [WTB+].

For dynamic Lisp arrays, the allocator has to be extended: I added two
more primitives to the new allocator to allow allocation of elements in
a contiguous block of memory: mc_alloc_array and alloc_lrecord_

array. Each element in the array is a regular Lisp object with its own
Lisp object header and mark bit. The internal allocation function

void *mc_alloc_array (size_t size, int elemcount);

allocates elemcount elements of given size in one contiguous block of
memory. It returns a pointer to the block.

The function

void *alloc_lrecord_array (Bytecount size,

int elemcount,

const struct

lrecord_implementation *imp);

calls mc_alloc_array with size and elemcount, and initializes every ob-
ject in this array with the lrecord implementation imp. This way the
entries of the array become regular Lisp objects. See the interface de-
scriptions in appendix A.

Newly created Lisp types for dynamic Lisp arrays are Lisp_Merged_

Faces, Lisp_Face_Cachels, Lisp_Glyph_Cachels, and Lisp_Display_

Blocks.

26 CHAPTER 3. IMPLEMENTATION

Hash Tables: Hash tables are internally represented in two parts: header in-
formation is stored in a Lisp object, and the actual data is allocated in
a separate memory block. With the old garbage collector, the separate
memory block was not allocated on the Lisp heap. But hash table entries
contain Lisp objects, therefore the hash tables with all entries have to be
allocated on the Lisp heap to have them covered by the write barrier.

I added the new Lisp object Hash_Table_Entry. Objects of this type are
allocated with the new array allocation primitives mc_alloc_array and
alloc_lrecord_array, described above and in appendix A.

The hash tables remain split up in two parts, but now both parts are
regular Lisp objects.

Consoles, Devices, Frames, Windows: A window that the user sees on the
screen is called frame in XEmacs terminology. Each frame is subdivided
into one or more non-overlapping panes, called windows. Frames and win-
dows are displayed on devices. Consoles in XEmacs terminology represent
instances of keyboards, like a keyboard of the local X Server or from a re-
mote TTY [WTB+].

All these objects carry a data field that contains information for a spe-
cific instance of the current object. This data is allocated separately and
contains live pointers to objects on the Lisp heap. The instances of these
objects are, for example, x for the X Server, tty for terminals, msw for
Windows instances, and stream for stream-oriented input/output. I trans-
formed all instances of all objects to Lisp objects, so that the write barrier
can cover them.

I transformed all data structures that contain live pointers to Lisp objects and
moved them to the Lisp heap. Consequently, the write barrier covers all cells
containing live pointers. The write barrier does not have any holes left, no
modification of a pointer can escape.

This is a prerequisite for the incremental garbage collector to work. The
new garbage collector is described step-by-step in the next section.

3.3.4 Garbage Collection—step-by-step

Figure 3.1 illustrates the incremental garbage collection scheme used by the
implementation. Each operational step of the new incremental garbage collector
is described in its own section:

1. invocation of garbage collection in section 3.3.5,

2. preparation in section 3.3.6,

3. mark phase in section 3.3.7,

4. mark root set in section 3.3.8,

5. traverse live objects in section 3.3.9,

6. interrupt mark phase in section 3.3.10,

7. write barrier in section 3.3.11,

3.3. CHANGES TO XEMACS 27

Traverse live Objects

Mark Root Set

Preparation

Garbage Collection
Invocation

Finish Mark Phase

Sweep Phase

Final clean-up

Interrupt

to do?

mark phase?
More traversal

Interrupt Mark Phase

Resume Mark Phase Client Activity

Write Barrier

no

Mark Phase

yes

Figure 3.1: Implementation of incremental garbage collection

28 CHAPTER 3. IMPLEMENTATION

8. resume mark phase in section 3.3.12,

9. finish mark phase in section 3.3.13,

10. sweep phase in section 3.3.14, and

11. final clean up in section 3.3.15.

The garbage collection control is described in section 3.3.16.

3.3.5 Invocation of Garbage Collection

The entry point of every garbage collection is the gc function on C level. Two
types of garbage collection exist:

Full collection: A full garbage collection runs atomically without any inter-
ruption. It guarantees that unused objects are freed.

Cycle of incremental collection: The collector makes incremental traversal
work. One incremental run of the garbage collector is called cycle. After
the cycle completes, the collector is suspended and the client resumes.
One cycle does not necessarily free any memory, it only guarantees that
the traversal of the heap makes progress.

The invocation can be triggered explicitly by calling the Lisp functions
(gc-full) for a full collection or (gc-incremental) for a cycle of incremental
garbage collection or it can occur implicitly in four different situations:

1. In the main function of XEmacs that is called at each startup, the garbage
collection is invoked after all initial creations are completed, but only if
the symbol ERROR_CHECK_GC for internal error checking is defined.

2. The disksave_object_finalization function of the portable dumper
clears the objects from memory which need not be stored with XEmacs
when image is dumped out.

3. Each time the function eval is called to evaluate a Lisp form, a garbage
collection could happen.

Three global variables control when garbage collection occurs:

consing_since_gc counts the allocated bytes since the last garbage col-
lection.

gc_cons_threshold is a threshold given in bytes that triggers a new gar-
bage collection when consing_since_gc exceeds gc_cons_thres-

hold.

gc_cons_incremental_threshold is a specified threshold given in bytes
that triggers the next cycle of a running garbage collection when
consing_since_gc exceeds gc_cons_incremental_threshold.

After object allocation, the function recompute_need_to_garbage_col-

lect is called that sets another global variable need_to_garbage_collect
to true if the above thresholds are exceeded:

3.3. CHANGES TO XEMACS 29

need_to_garbage_collect = write_barrier_enabled ?

(consing_since_gc > gc_cons_incremental_threshold) :

(consing_since_gc > gc_cons_threshold);

If an incremental garbage collection runs, the variable write_barrier_

enabled is true and consing_since_gc is compared to gc_cons_incre-

mental_threshold. If the write barrier does not run, consing_since_
gc is compared to gc_cons_threshold that then determines the need to
collect. If the thresholds are exceeded, need_to_garbage_collect is set
to true.

If need_to_garbage_collect is true when eval is called, it invokes the
next cycle of an incremental garbage collection or starts a new incremental
garbage collection if no collection is currently running.

4. Each time the function funcall is called to process a Lisp function call,
a garbage collection could happen. The invocation of a garbage collec-
tion works according to eval: If need_to_garbage_collect is true when
funcall is called, it invokes the next cycle of an incremental garbage col-
lection or starts a new incremental garbage collection if no collection is
currently running.

Garbage collection can occur upon calls to eval or funcall once a certain
amount of memory has been allocated since the last garbage collection. As calls
to these functions are hidden in various other functions and the Lisp engine uses
these functions to interpret the Lisp code, garbage collection can occur nearly
everywhere and at any time.

The frequency of garbage collection can be influenced by modifying the
thresholds. See section 3.3.19 for more details.

In the following sections, I describe exactly what happens upon garbage
collection.

3.3.6 Preparation

Some preparations are needed to start a garbage collection:

1. There are several cases in which a garbage collection is not allowed to
run, and the garbage collector is left immediately: when gc_in_progress

indicates that a collection already runs, when gc_currently_forbidden

indicates that garbage collection is somehow forbidden, for example when
the display is currently updated, or when XEmacs is shutting down due
to an unexpected failure—XEmacs “prepares for Armageddon” when the
variable prepare_for_armageddon is true.

2. Determine the current frame in which all output that may occur during a
garbage collection is put, and the current state of this frame is saved.

3. Before the traversal actually starts, references to objects that are no longer
used are pruned: events, specifiers and the buffer undo list.

4. The variable gc_in_progress is set to indicate that a collection is in
progress.

The next step is to start the mark phase.

30 CHAPTER 3. IMPLEMENTATION

3.3.7 Mark Phase

The incremental garbage collector is based on a mark implementation known
as KKCC [Cre04]. The mark algorithm uses an explicit stack that keeps track
of the current progress of the traversal. Objects that are pushed on the mark
stack are the grey objects of an incremental traversal scheme.

The mark stack is accessed with the following functions:

void kkcc_gc_stack_push (void *ptr,

const struct memory description *desc);

kkcc_gc_stack_entry *kkcc_gc_stack_pop (void);

The first function pushes the Lisp object pointed to by ptr and its memory
layout description desc onto the mark stack. The second one pops a kkcc_gc_

stack_entry from the mark stack. A kkcc_gc_stack_entry consists of two
fields: ptr contains the address of the object and desc contains the object’s
memory layout description.

Every Lisp object type has a memory layout description. Some examples:
The most basic Lisp object is the cons cell. A cons cell contains two Lisp

objects, known as car and cdr. Its definition is:

struct Lisp_Cons

{

struct lrecord_header header;

Lisp_Object car;

Lisp_Object cdr;

};

The header field contains type information, the car and cdr fields contain
references to other Lisp objects, in other words: live pointers. The memory
description holds the layout information of a cons:

static const struct memory_description cons_description[] = {

{ XD_LISP_OBJECT, offsetof (Lisp_Cons, car) },

{ XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr) },

{ XD_END }

};

The memory description lists the two fields car and cdr and provides informa-
tion about their contents: Both contain a reference to a Lisp object, indicated
by the constant XD_LISP_OBJECT. The exact position of the fields is calculated
by the offsetof function. This way, the mark algorithm is able to identify
and examine the elements. The KKCC mark algorithm parses the memory
description to determine all live pointers.

Objects processed by the incremental traversal are marked white, grey, and
black by the mark algorithm. Therefore, the allocator provides mark bits for
every object. These mark bits are kept in the page header of each page. The
allocator provides functionality to set and read the mark bits: MARK_WHITE

(ptr), MARK_GREY (ptr), and MARK_BLACK (ptr) to set the mark bit for the
object pointed to by ptr; and MARKED_WHITE_P (ptr), MARKED_GREY_P (ptr),

3.3. CHANGES TO XEMACS 31

and MARKED_BLACK_P (ptr) that evaluate to true if the mark bit is set to the
appropriate color.

The mark phase begins with examination of the root set.

3.3.8 Mark Root Set

Next the mark phase marks all accessible elements. All elements of the roots of
accessibility are initially pushed onto the mark stack. There are several distinct
mechanisms XEmacs uses to keep track of the root set. The roots are traversed
in this order:

• All constants and static variables containing Lisp objects that are regis-
tered via the staticpro function.

• All other Lisp objects that are registered via the mcpro function. Objects
that have formerly been read-only did not have to be added to the root
set, because the read-only property prevented them from being freed. The
new allocator does no longer use the read-only property, so these objects
have to be added to the root set with mcpro [Cre04].

• All local variables containing Lisp objects that are created in C functions
and are registered via GCPRO.

• All local variables that are bound during the evaluation by the Lisp engine
are pushed on the specbind stack.

• All catch blocks that the Lisp engine encounters during the evaluation are
stored in the catchlist.

• Every function application is pushed onto the backtrace stack of the Lisp
engine. The backtrace stack serves as a root of accessibility.

• All objects created for profiling purposes are allocated by C functions.
These objects are also roots.

The root set is pushed onto the mark stack in one atomic action that is not
interrupted.

As the root set does not reside in the heap, the write barrier cannot cover it.
Thus, there is no way to catch modifications to the root set when the client runs
during a garbage collection. The only solution is to re-examine the the root set
again at the very end of the mark phase. This is described in section 3.3.13.

3.3.9 Traverse Live Objects

The traversal of live objects works according to the algorithm described in sec-
tion 2.2.1:

All objects are initially colored white. Objects that are reached by the
traversal are pushed onto the mark stack and colored grey. The roots of acces-
sibility are the first objects that have been pushed onto the mark stack. Next,
the mark function

void gc_mark (int incremental);

32 CHAPTER 3. IMPLEMENTATION

is called. If incremental is > 0, incremental steps of traversal work are
done, before the garbage collector rests. If incremental is ≤ 0 the traversal is
executed in one atomic action without any interruption. If the collector works in
incremental mode, the standard value of incremental is set to the value of the
global variable gc_incremental_traversal_threshold. The variable contains
how many steps of incremental work have to be executed in one incremental
traversal cycle. One step of traversal work consists of the following actions:

1. Pop Lisp object obj and its description desc from the mark stack.

2. If obj is already marked grey or black, nothing has to be done: Skip
actions 3–5.

3. Otherwise, color obj black.

4. Parse the memory description desc and find each live pointer obj contains.

5. Push each live pointer inside the object onto the mark stack and color the
object pointed to grey.

These actions iterate until the mark stack is empty or incremental steps have
been made. When this threshold is reached before the stack is empty, the mark
phase is interrupted and the client is resumed, see the next section 3.3.10. If
the mark stack is empty, the mark phase is finished and the rest of the garbage
collection is executed without interruption, as described in section 3.3.13.

3.3.10 Interrupt Mark Phase

When gc_mark returns with an non-empty mark stack, the current garbage
collection is interrupted to give the control back to the client. Before the client
can resume, the write barrier needs to be set up: the heap has to be write-
protected. The function

void protect_heap_pages (void);

scans the entire heap and write-protects every page that contains black objects.
Only black objects have to be protected by the write barrier, because the col-
lector assumes that it is finished with black objects. Grey objects are currently
on the mark stack and do not require a write barrier. White objects have not
yet been reached by the traversal, so they also do not have to be covered by the
write barrier.

Consequently, only pages with black objects are write-protected—of course,
these pages may also contain grey or white objects—but these objects are not
re-pushed on the mark stack when the client is resumed in case this page gets
modified by the client.

Once the heap is write-protected, the write barrier is activated—any write
access invokes the write-barrier fault handler. Next the variable write_barri-

er_enabled is set to true.

3.3. CHANGES TO XEMACS 33

3.3.11 Write Barrier

To understand how the write barrier works, it is best to take a look at the fault
handler. The following listing shows the POSIX fault handler:

void

vdb_fault_handler (int signum, struct siginfo *siginfo,

void *UNUSED (ctx))

{

if (write_barrier_enabled

&& (fault_on_protected_page (siginfo->si_addr)))

{

vdb_designate_modified (siginfo->si_addr);

unprotect_page_and_mark_dirty (siginfo->si_addr);

}

First, the fault handler has to check if the illegal memory access is really caused
by the write barrier or if it is caused by something else—most likely an XEmacs
bug. The fault was caused by the write barrier if the write barrier is currently
enabled and the fault happened on a protected page.

In this case, the fault-causing address is added to the page_fault_table—
an internal data structure that keeps track of all modified pages—by passing it
to vdb_designate_modified.

The function unprotect_page_and_mark_dirty removes the write protec-
tion from the page and marks the page dirty by setting a dirty bit associated
with the page header. The dirty bit is only used for error checking.

If the fault is not caused by the write barrier, the else branch is executed:

else /* default SIGSEGV handler */

{

char *signal_name;

if (signum == SIGSEGV)

signal_name = "SIGSEGV";

else if (signum == SIGBUS)

signal_name = "SIGBUS";

fprintf (stderr,

"\n\nError: Received %s (%d) for address 0x%x\n",

signal_name, signum, (int) siginfo->si_addr);

vdb_remove_signal_handler ();

}

}

First, the signal name is determined, so that the fault handler is able to print a
usable error message; then the error message is printed.

To be able to debug XEmacs on such an illegal memory access, the function
vdb_remove_signal_handler resurrects the previously installed handler and
passes the current fault to it. Usually, this is the Lisp backtrace handler that is
described in section 3.3.2.

34 CHAPTER 3. IMPLEMENTATION

3.3.12 Resume Mark Phase

The mark phase resumes after gc_cons_incremental_threshold bytes have
been allocated by the client. Then, the function

void unprotect_heap_pages (void);

removes the write-protection from all formerly protected pages. This turns
off the write barrier, and write_barrier_enabled is set to false. Next, the
function

int vdb_read_dirty_bits (void);

loops over page_fault_table and passes all black objects of the listed pages to
the macro

gc_write_barrier (obj);

that re-colors the objects grey and pushes them onto the mark stack. The
number of re-pushed objects is returned by vdb_read_dirty_bits.

Afterwards the next mark cycle is started. The maximum of gc_incremen-
tal_traversal_threshold and repushed_objects defines how many traversal
steps are executed in the next cycle:

repushed_objects = vdb_read_dirty_bits ();

mark_work = (gc_incremental_traversal_threshold

> repushed_objects) ?

gc_incremental_traversal_threshold : repushed_objects;

The value of mark_work is passed to gc_mark. This way, in every mark cycle
more objects are examined than have been added in the previous write-barrier
session. Consequently, the traversal is guaranteed to always terminate. After
this mark phase, the traversal may be interrupted again.

3.3.13 Finish Mark Phase

When there are no more grey objects on the mark stack, the traversal is fin-
ished. However, as described in section 3.3.8, the root set is not covered by
the write barrier. To make sure that the traversal reaches all live objects, all
outgoing pointers from the root set have to be traversed again, without further
interruption, to examine newly added or modified root set entries.

In most cases, the re-traversal from the roots is fast: Black objects do not
have to be traversed again. Measurements in appendix B show that only ap-
proximately 3% of the execution time of the mark phase is spent for root-set
re-examination. This is included in the execution overhead of the write barrier,
which is discussed in detail in section 4.3.3.

This code fragment in gc_finish_mark re-marks the root set:

if (KKCC_GC_STACK_EMPTY)

{

/* Mark root set again and finish up marking atomically. */

gc_mark_root_set ();

kkcc_marking (0);

}

3.3. CHANGES TO XEMACS 35

Now the heap is fully traversed and the objects are classified in live and garbage.
Live objects have their mark bits set to black, all others have white mark bits.
The mark phase is finished.

3.3.14 Sweep Phase

The allocator scans the entire heap and frees all white marked objects. The
freed memory is recycled and can be re-used for future allocations. The sweep
phase is carried out atomically.

3.3.15 Final clean up

First, all variables with respect to garbage collection are reset. The variable
consing_since_gc that holds the allocated bytes since the last garbage collec-
tion is set back to 0, and gc_in_progress is set to false.

Finally, recompute_need_to_garbage_collect is called to reset the global
variable need_to_garbage_collect. The garbage collection is finished.

3.3.16 Garbage Collection Control

In the previous sections the several tasks of an incremental garbage collection
have been described in detail. This section describes the function

void gc (int incremental)

that dispatches the control during a garbage collection to the various functions
representing the tasks.

The gc function is called whenever a garbage collection is invoked, either
explicitly by the user or an application, or implicitly because the garbage col-
lection threshold is reached (see section 3.3.5). If it is called with a false ar-
gument, garbage collection is carried out in one atomic action. If a garbage
collection is already running, it is resumed without any further interruption. A
true argument causes gc to start or resume an incremental garbage collection.
The gc function is usually called with the argument gc_allow_incremental,
see section 3.3.19.

The functions gc_full and gc_incremental call gc:

void gc_full (void)

{

/* never incremental */

gc (0);

}

void gc_incremental (void)

{

/* incremental if allow_incremental_gc is set */

gc (allow_incremental_gc);

}

To resume the garbage collection at the right point, the function gc maintains
a variable gc_state that holds the current state of the garbage collection by

36 CHAPTER 3. IMPLEMENTATION

storing the last executed task. This way, the dispatcher is always able to call the
appropriate function and resume an already running garbage collection correctly.
The function is written with one big switch statement:

switch (gc_state)

{

case NONE: /* no gc running, start a new one */

gc_state = INIT_GC;

gc_prepare ();

case INIT_GC: /* initialization done */

gc_state = PUSH_ROOT_SET;

gc_mark_root_set ();

case PUSH_ROOT_SET: /* root set pushed */

gc_state = MARK;

gc_mark (incremental);

if (!KKCC_GC_STACK_EMPTY)

return; /* suspend gc */

If the mark stack is not empty after the first traversal cycle, an incremental
collection is running and the garbage collection has to be suspended. When gc

is called again, garbage collection resumes here:

case MARK: /* another mark cycle */

gc_resume_mark (incremental);

if (!KKCC_GC_STACK_EMPTY)

return; /* suspend gc */

gc_state = FINISH_MARK;

gc_finish_mark (); /* finish mark atomically */

More traversal cycles are executed while the mark stack is not empty. Once it is
empty, the mark phase is finished atomically and gc_state is set accordingly:

case FINISH_MARK: /* mark done */

gc_state = FINALIZE;

gc_finalize ();

case FINALIZE: /* finalization done */

gc_state = SWEEP;

gc_sweep ();

case SWEEP: /* sweep done */

gc_state = FINISH_GC;

gc_finish ();

case FINISH_GC: /* gc finished */

gc_state = NONE;

}

The gc_state has excess granularity: As only the mark phase is interleaved
with client activity, the states NONE, MARK, and FINISH_MARK would be sufficient.
But for the collection of statistics and debugging information it is very useful
to distinguish all states.

3.3. CHANGES TO XEMACS 37

3.3.17 Newly allocated Objects during Garbage Collec-
tion

The policy for allocating new objects during a garbage collection affects the
amount of floating garbage left behind by an incremental collection algorithm
as described in section 2.2.5. This section discusses what color shall be used for
allocating new objects when an incremental traversal is running.

If new objects are allocated black or grey, they will survive the garbage
collection cycle whether they are still in use by the client or not. This causes
floating garbage, if new objects tend to die soon. Additionally, if objects are
allocated black, more care has to be taken: As stated above, pages containing
black objects have to be covered by the write barrier. Thus, the page with the
newly allocated object has to be write-protected. Usually however, new objects
get initialized immediately after allocation, and initialization causes heap writes
that would immediately be trapped by the write barrier. Subsequently, the
new object and all other black objects on that page need to be re-colored grey
when the garbage collection is resumed. Consequently, allocating objects black
is effectively nothing more than allocating them grey, but requires additional
computation.

Allocating new objects grey produces additional traversal work: All new
objects have to be examined by the traversal, no matter whether they are really
in use by the client or not. If they are in use, their reference would be written
into a live object, that in turn would be re-examined by the traversal itself.
Allocating a new object grey may result in two objects pushed on the mark
stack—a waste of computation and execution time.

The best strategy for allocating new objects is to allocate them white. Not
only does this strategy require no special action to be taken by the allocation
functions, since all new objects are initially colored white; it is also the most
efficient and exact method: New white objects only survive the garbage collec-
tion if they are really in use and become part of the reachability graph. They
are in use if their reference is written into a live object that either has not been
reached by the traversal but will be, or was reached by the traversal and is now
colored black and thus covered by the write barrier. In both cases the new ob-
ject is reached: In the former case the live object is reached when the traversal
continues, in the latter case the write barrier catches the update of the black
object that subsequently gets re-examined by the traversal. This way the new
white object is reached by the traversal.

Consequently, new white objects are reached by the traversal only if they
really have to be kept alive. Otherwise they are garbage and die within only
one garbage collection cycle.

Conversely, allocating new objects grey or black leads to a averagely five
times slower garbage collection execution time than allocating new objects
white.

Therefore, the allocator allocates new objects white, and the functions that
perform allocation do not have to be modified.

3.3.18 Manual Freeing during Garbage Collection

XEmacs often frees temporary Lisp objects explicitly outside a garbage collec-
tion instead of letting the garbage collector do the work. XEmacs uses this

38 CHAPTER 3. IMPLEMENTATION

optimization excessively: more objects are freed explicitly outside garbage col-
lection than from the garbage collector, see appendix B for detailed numbers.
One example is the code fragment that deals with warnings in eval function in
eval.c:

Lisp_Object this_warning_cons = Vpending_warnings;

Lisp_Object this_warning = XCAR (this_warning_cons);

free_cons (this_warning_cons);

class = XCAR (this_warning);

level = XCAR (XCDR (this_warning));

messij = XCAR (XCDR (XCDR (this_warning)));

free_list (this_warning);

Here, the car of this_warning_cons is stored to this_warning, then this_

warning_cons is explicitly freed. The same happens with the list in this_

warning: The elements of the list are stored in the variables class, level, and
messij; then the surround list is manually freed. Objects are only explicitly
freed if it is guaranteed that no garbage collection can occur between object
generation and object freeing—as in the above code fragment, where eval is
not called.

The benefit of manual freeing is that memory becomes available for re-use
before the next garbage collection. However when a garbage collection is running
and an object is manually freed during client activity, special care has to be
taken: If the to-be-freed object is marked grey, there is another reference to
this object on the mark stack. Additionally to being freed, the reference has
to be removed from the mark stack. Otherwise, the traversal will fail because
it encounters an invalid reference: The memory pointed to may still be unused
or it may already contain a newly allocated object. Both cases can cause the
traversal to fail.

Removing an object from the mark stack is very costly: the entire stack has
to be scanned to find the object. Therefore, manual calls to the various free
functions for Lisp objects are ignored when a garbage collection is suspended.
This causes memory overhead, but only until the running garbage collection
is finished and the heap is swept. In that case, the objects are collected any-
way because temporary objects are not reachable and have not been marked.
Measurings of the memory usage and overhead can be found in section 4.3.4.

3.3.19 Lisp Interface

The new garbage collector can be accessed directly from Emacs Lisp. Basically,
two functions invoke the garbage collector:

(gc-full) starts a full garbage collection. If an incremental garbage collec-
tion is already running, it is finished without further interruption. This
function guarantees that unused objects have been freed when it returns.

(gc-incremental) starts an incremental garbage collection. If an incremental
garbage collection is already running, the next cycle of incremental traver-
sal is started. The garbage collection is finished if the traversal completes.
Note that this function does not necessarily free any memory. It only
guarantees that the traversal of the heap makes progress.

3.3. CHANGES TO XEMACS 39

The old garbage collector uses the function (garbage-collect) to invoke a
garbage collection. This function is still in use by some applications that explic-
itly want to invoke a garbage collection. Since these applications may expect
that unused memory has really been freed when (garbage-collect) returns,
it maps to (gc-full).

The new garbage collector is highly customizable during runtime; it can
even be switched back to the traditional mark-and-sweep garbage collector:
The variable allow-incremental-gc controls whether garbage collections may
be interrupted or if they have to be carried out in one atomic action. Setting
allow-incremental-gc to nil prevents incremental garbage collection, and
the garbage collector then only does full collects, even if (gc-incremental) is
called. Non-nil allows incremental garbage collection.

This way applications can freely decide what garbage collection algorithm
is best for the upcoming memory usage. How frequently a garbage collection
occurs and how much traversal work is done in one incremental cycle can also
be modified during runtime:

As seen in section 3.3.5, the number of bytes allocated since the last gar-
bage collection determines when the next garbage collection runs. The variable
gc-cons-threshold holds the number of bytes that have to be allocated before
the next garbage collection starts. The value of gc-cons-threshold is only used
after a garbage collection has completed. When an incremental garbage collec-
tion is interrupted, the variable gc-cons-incremental-threshold determines
when the next cycle has to be invoked. How many bytes have been allocated
since the last full garbage collection or the last garbage collection cycle, can be
queried by calling the function (consing-since-gc).

The duration of the interruption by the garbage collector can also be ad-
justed: The variable gc-incremental-traversal-threshold holds the number
of elements that are processed in one cycle of incremental traversal.

The following table shows the default values of the threshold variables:

Short Description and Variable Name Default Value

Bytes allocated between garbage collections
gc-cons-threshold 1,000,000 bytes

Bytes allocated between garbage collection cycles
gc-cons-incremental-threshold 200,000 bytes

Elements processed in one incremental traversal cycle
gc-incremental-traversal-threshold 100,000 elements

These default values provide good performance and are based on my experiences
and some trial-and-error tests. A future task is to write an application that runs
tests with different threshold settings to determine the best default configuration
for each system.

By changing the values of these variables, applications can influence the
frequency and execution times of garbage collections. For example, real-time
applications may decide to postpone garbage collection until they have finished.
The user can set these options through XEmacs’s customization interface that
groups settings together and provides an easy-to-use interface [SW]. I added
all the options to the “Storage Allocation Group” that holds all allocator and
garbage collector related settings. Customization of the collector’s options is
invoked by typing

40 CHAPTER 3. IMPLEMENTATION

M-x customize RET alloc RET

This way, the user can easily experiment with the new incremental garbage
collector and adjust it to her needs.

Chapter 4

Results

This chapter shows the results of the work on the new garbage collector. First,
the progress in modularizing XEmacs and increasing the client reactivity is
shown. Later, I support my statements by providing results of performance and
memory usage measurements.

4.1 Modularization

Information hiding, encapsulation, and abstraction are basic concepts of modern
software development; they all describe different views of one idea: hiding the
design decisions in a computer program that are likely to change. Required
information is only accessible through a stable interface that protects other
parts of the underlying design.

XEmacs’s old memory manager did not conform to these basic concepts
in all components: it had many dependencies with other, unrelated parts of
XEmacs. The memory manager’s close coupling to the client hinders program
development. By contrast, the new memory manager is fully separated from the
client and consists of three modules that are independent from each other; they
provide basic functionality through a well-defined interface that is described in
appendix A. Here are short descriptions of the modules:

Allocator: The allocator provides memory allocation and free functions to the
client, supports the garbage collector’s sweep phase and provides heap
protection mechanisms for the write barrier that work on pages.

Garbage Collector: The garbage collector provides functionality for the
client: The client communicates the roots of accessibility and can invoke
a garbage collection. The garbage collector receives information about
modified objects from the write barrier.

Write Barrier: The write barrier provides the platform-dependent memory-
protection mechanisms to be used by the allocator and the platform-
dependent fault handlers to inform the garbage collector about modified
objects. No interface between the client and the write barrier is needed.

Figure 4.1 shows a scheme of the memory manager’s modules connected by
lines indicating the interaction between the components. The full interface

41

42 CHAPTER 4. RESULTS

finalize
sweep

protect/unprotect/handler

Garbage CollectorAllocator

Write Barrier

Memory Manager

heap protecion

collect/root set

modified objects

alloc/free

Client

Figure 4.1: Modules of the memory manager

specification is listed in Appendix A.
Future changes and improvements to parts of the memory manager can be

accomplished more easily with the strict modularization.

4.2 Reactivity

Another result from using the new garbage collector is the increased reactivity
of the client. Figure 4.2 points out the difference between non-reactive tradi-
tional mark-and-sweep collectors and the new incremental one with increased
reactivity.

In the figure, the lower bars indicate client activity, while the upper bars
stand for memory manager activity. In the traditional scheme, garbage col-
lection is carried out as one atomic action, with no client activity while the
collector runs. Conversely, the incremental garbage collector stops repeatedly
to give the client execution time, and the client can resume whatever task it
may have pending. The pause times caused by the incremental collector are
smaller, and reactivity is increased.

As stated in section 2.1.3, it is hard to measure the performance of garbage
collection algorithms. It is especially difficult to express the interactive reactivity
of an incremental garbage collector in objective numbers and figures. Reactivity
is rather a subjective improvement that the user experiences by using XEmacs
for her daily work. However, the average client pause times and the general
performance of the collector give some indication, as evaluated in section 4.3.3.

Instead of being annoyed by the garbage collector’s interruptions, ideally the
user does not notice garbage collection at all. Of course, the garbage collection

4.3. MEASURING PERFORMANCE AND MEMORY USAGE 43

Client

Memory Manager

Time

Figure 4.2.1: Traditional mark-and-sweep execution

Memory Manager

Client

Time

Figure 4.2.2: Incremental mark-and-sweep execution

Figure 4.2: Comparison of traditional and incremental mark-and-sweep garbage
collection execution activity

still has to do its job and make garbage memory re-usable again. Garbage
collection has to occur unnoticed, but still provide a reasonable sized heap.
How much memory the different schemes are using is measured in section 4.3.4.

4.3 Measuring Performance and Memory Usage

This section measures how the new incremental garbage collector influences
performance and memory usage of XEmacs. First, the test cases and measuring
conditions are introduced; then, the results are discussed.

4.3.1 Standard XEmacs Usage Pattern

Shane Holden and Steve Baur wrote a benchmark that is part of the XEmacs
packages distribution, called bench.el. It provides a good basis for measuring
XEmacs’s performance, as well as verifying that XEmacs works as expected.
Here is a list of the tests:

(1) Towers of Hanoi: Solve the Towers of Hanoi game and show the solution
in an animation.

(2) Font Lock: Open a big file containing Emacs Lisp source code—the source
of the XEmacs news reader gnus.el—and color the source code according
to its syntax.

(3) Large File Scrolling: Scroll the whole file by moving the cursor—point
in XEmacs terms—forward line by line.

44 CHAPTER 4. RESULTS

(4) Frame Creation: Create new frames, wait until they come up, and de-
stroy them again.

(5) Generate Words: Generate 10,000 words containing less than 10 random
letters.

(6) Sort Buffer: Sort the buffer that contains the previously generated ran-
dom words alphabetically.

(7) Large File Bytecode Compilation: Compile the big file used in phase
(1) to bytecode.

(8) Text Insertion: Insert the string “0123456789\n” 100,000 times into an
empty buffer.

(9) Loop Computation: Run a loop that increments a counter.

(10) Make a Few Large Size Lists: Generate 10 large lists, each contain-
ing 1,000,000 elements. Immediately after generation these lists become
garbage.

(11) Garbage Collection Large Size Lists: A full garbage collection is run
to collect the garbage lists generated in the previous step.

(12) Make Several Small Size Lists: Generate 1,000,000 small lists, each
containing 10 elements. Immediately after generation these lists become
garbage.

(13) Garbage Collection Small Size Lists: A full garbage collection is run
to collect the garbage lists generated in the previous step.

The benchmark provides standard XEmacs usage with the tasks (1)–(9), and
extensive testing of the memory manager with (10)–(13).

Having both performance and memory manager test cases, bench.el pro-
vides good measurable results for standard XEmacs usage with a focus on gar-
bage collection issues. Apart from the standard XEmacs user pattern, other
measurements provide interesting results as well:

Startup speed: Starting an Editor should be fast. Do the modifications to
the memory manager alter startup performance?

Regression tests: make check provides an auto-testing facility for XEmacs,
to test if XEmacs behaves correctly. The tests are referred to as regression
tests, to allow developers to check if their changes lead to any unexpected
regressions in other parts of XEmacs [WTB+]. These tests provide a log
of passed and failed tests, which allow the developer to investigate the
source of the error and fix the bug. Every important feature of XEmacs
has its own test cases. Since these tests are pushing XEmacs to its limits,
they provide interesting results.

The results of these measurements are listed in appendix B.
The next section defines the conditions under which the measurements take

place.

4.3. MEASURING PERFORMANCE AND MEMORY USAGE 45

4.3.2 Measuring Conditions

The measurements are made with a MULE-enabled1 XEmacs 21.5 beta 21.
All tests are run with and without the described incremental garbage collector
enabled. In both cases, XEmacs is compiled in developer mode, which means
no compiler optimization2 and all error checking and debugging information
enabled. Note that collection and output of measuring data slows down XEmacs
additionally.

The tests are run on a machine equipped like this:

• Intel Pentium 4 with 3,0 GHz and 1 GB memory

• Linux Kernel 2.6.11

• gcc 3.3.5

All tests are run with a vanilla XEmacs—that is an XEmacs that does not load
any user specific configuration files. Starting XEmacs with the command-line
argument ‘-vanilla’ brings up a plain XEmacs without any user-side exten-
sions. This way no user setting can influence the results.

The test cases are run with the default values for the threshold variables, as
listed in section 3.3.19.

4.3.3 Performance Results

The collected information during the performance measurements brought up
the following results:

Total Time Number of Time per
Performance

Time in GC GCs Cycles GC Cycle

non-incremental 82.93 s 19.76 s 61 61 324 ms 324 ms
incremental 78.99 s 15.62 s 43 132 363 ms 118 ms

First of all it is interesting, that the total execution time of the bench mark
test was approximately 4 seconds shorter with the incremental collector en-
abled than with the non-incremental one. This is not caused by a faster gar-
bage collector—the incremental collector cannot be faster as it does the same
work only incrementally. The reason is that with the incremental collector less
complete collections are run than with the non-incremental collector. Figure
4.2 illustrates this fact: the non-incremental traditional mark-and-sweep collec-
tor makes two complete garbage collections, whereas the incremental collector
achieves less than one-and-a-half, because it allows more client activity.

The measured times and numbers reflect this: The time spent in the non-
incremental garbage collector is 19.76 seconds; in that time, 61 complete garbage
collections run. The incremental garbage collector executes only 43 complete
collections in 15.62 seconds. But the incremental collector splits these 43 collec-
tions into 132 single collection cycles. This means that one complete collection
consists averagely of three cycles—the client runs twice during one complete
garbage collection.

1MULE: multilingual environment, support for input handling and display of multilingual
text

2XEmacs runs approximatelly 20%–25% faster with optimization (-O2)

46 CHAPTER 4. RESULTS

Garbage collection execution times: Client pause times:

incremental

non−incremental

Time [sec]
0 0.1 0.2 0.3 0.4

incremental

non−incremental

Time [sec]
0 0.1 0.2 0.3 0.4

Figure 4.3: Comparison of garbage collection and client pause times

As expected, the time of one incremental collection (363 milliseconds) is slower
than a non-incremental collection (324 milliseconds). The overhead is about
12%; it is due to re-examining objects twice that have been caught by the write
barrier.

The average time per garbage-collection cycle shows the benefit of the incre-
mental collection: The time per garbage collection corresponds to the time the
client is interrupted. One cycle with the incremental collector takes only 118
milliseconds and improves the traditional collector’s 324 milliseconds by more
than 63%. The incremental collector decreases client pause times by two-thirds
on average.

Figure 4.3 illustrates comparisons of average garbage collection execution
times and average time per cycle which corresponds to the average client pause
time.

Figure 4.4 shows garbage collection and client interaction during bench mark
execution for incremental and non-incremental collection schemes.

The most noticeable client pause caused by the incremental garbage collector
happens at approximately 67 seconds into the execution. This is the time when

0 10 20 30 40 50 60 70 80 90
time [sec]

Client

GC

Client

GC

no
n-

in
cr

em
en

ta
l

in
ct

re
m

en
ta

l

Figure 4.4: Garbage collection times comparison

4.3. MEASURING PERFORMANCE AND MEMORY USAGE 47

the large-list benchmark (11) is finished and a full garbage collection (12) is
forced.

Since incremental collections run during the generation of the large lists, the
collector treats some of these lists as live—they are floating garbage. Thus, they
are marked by the non-interruptible traversal, which causes the long pause time.
The incremental garbage collector performs badly for the large-list benchmark:
The client is interrupted for a long time. Additionally, there is temporary mem-
ory overhead caused by floating garbage. This is discussed in the next section.

When the benchmark pushes the limits of the garbage collector with the
special large-list test, the incremental garbage collector shows its disadvantages.
Fortunately, the large-list test is not a typical scenario. Additionally, the bench-
mark forces a full garbage collection. Without this, these lists are marked and
collected after a few incremental cycles, that do not cause noticeable pause
times, as my measurements show:

Performance Total Time Number of Time per
without full GC Time in GC GCs Cycles GC Cycle

incremental 78.22 s 14.72 s 36 152 409 ms 96 ms

Without the forced full garbage collection, the average client pause time reduces
to 96 milliseconds, again approximately 19% less pause time than with the
incremental collector with forced full collections. And the average memory
usage only grows to 45.02 MB, and increases by only 1% compared to the
average memory usage of the incremental collector with the full collections that
the next section describes in detail.

The other tasks of the benchmark are all solved successfully: The average
client pause time is reduced to one-third, with the long pause time during large-
list collection included.

4.3.4 Memory Usage Results

Memory measurements of the Lisp heap and of the virtual memory of the process
brought the following results:

Heap Virtual Memory
Memory Usage

average maximum average maximum

non-incremental 7.68 MB 17.34 MB 54.43 MB 79.41 MB
incremental 11.64 MB 63.74 MB 44.37 MB 97.71 MB

The heap managed by the incremental collector is, on average, 52% bigger than
the non-incremental collector’s heap, and the maximum heap usage is nearly
three times as big. To analyze the memory usage I provide plots that show
the development of the memory usage over time during execution: Figure 4.5
shows the memory growth of the non-incremental collector, figure 4.6 illustrates
the incremental collector’s memory occupancy. In both figures, the upper line
indicates the virtual memory usage, the lower line the heap usage. The bars
along the x-axis indicate garbage collection activity. The correlation between
garbage collection and heap usage is easily observable: Garbage collection causes
the heap to shrink.

The first conspicuous item on both figures is the peek of the virtual memory
up to 80 MB at approximately 8 seconds into the execution. This peek is

48 CHAPTER 4. RESULTS

Virtual Memory
Heap Memory
Garbage Collection

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90

m
em

or
y

[M
B

]

time [sec]

GC

Figure 4.5: Memory usage of non-incremental garbage collection

Virtual Memory

Heap Memory

Garbage Collection

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

m
em

or
y

[M
B

]

time [sec]

GC

Figure 4.6: Memory usage of incremental garbage collection

not caused by the Lisp engine—the heap does not grow. The peek happens
concurrently when the XEmacs frame pops up on the screen. This indicates that
the peek is caused by generating the graphical user interface and connecting to
the X Server that displays the frame. It has nothing to do with the garbage
collector.

4.3. MEASURING PERFORMANCE AND MEMORY USAGE 49

The measurements for average virtual memory usage show that the incre-
mental collector uses on average 18% less memory than the non-incremental one.
I do not know why the incremental collector provides a better virtual memory
usage than the non-incremental does.

Although it is not easy to understand the virtual memory usage, it is still
interesting to take a look at the virtual memory: The memory manager’s allo-
cator can cause fragmentation. Therefore, it is important to keep an eye on the
virtual memory: does it shrink when the heap shrinks?

The growth of the heap also grows the virtual memory. This happens 60
seconds into the execution, when the large-list benchmark is run. The plot of
the non-incremental garbage collector shows how the generation of the lists grow
the heap and virtual memory, and how garbage collection shrinks both. The
virtual heap of the incremental collector does not shrink by the same amount
the heap does—the allocator wastes memory due to fragmentation. Fixing this
is on my future work list in section 5.1.

As described for the performance measurements, the large-list benchmark
shows that the incremental scheme can leave a lot of floating garbage behind.
When the benchmark generates the the first list, an incremental garbage collec-
tion cycle is started, because the threshold is exceeded. At that time, the list
is in use—the garbage collector marks it live. When the benchmark is finished
with the first list and discards it, the list is already part of the traversal and is
still kept alive. This happens repeatedly during the large-list benchmark, and
eventually causes the large heap.

Figure 4.7 shows a direct comparison of the incremental and non-incremental
heaps. Aside from the large-list benchmark there is no big difference between
them. For “normal” test cases that do not push the limits as the large-list test

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90

m
em

or
y

[M
B

]

time [sec]

Heap Memory (incremental)
Heap Memory (non-incremental)

Figure 4.7: Memory usage of incremental and non-incremental garbage collec-
tion

50 CHAPTER 4. RESULTS

does, there is no significant memory overhead, neither caused by floating gar-
bage, nor by the smaller number of complete garbage collections. The memory
overhead is large only in extreme cases.

4.3.5 Discussion of Results

The memory overhead of the incremental garbage collector seems large looking
at the 52% increase of average memory usage. But having a closer look at
figure 4.7 shows that the memory usage is approximately the same during the
most of the program execution, except for the large-list benchmark. The large-
list benchmark reveals the weakness of an incremental algorithm: When large
amounts of objects are allocated, the incremental garbage collector and the
client outrun each other. Thus, the incremental collector only achieves poor
performance and incurs memory overhead.

To solve these problems, special treatment of such situations has to be im-
plemented in the garbage collector. Another solution to this problem exists on
the application side: When the application plans to allocate large amounts of
memory but does not need it very long, it can modify the garbage collector’s
behavior by changing the threshold variables as described in section 3.3.19.

Aside from the measurings, the memory usage I observe by using XEmacs
with the new incremental garbage collector enabled on a day-to-day basis is
not significantly different than before, with the traditional collection scheme
enabled. However the reduced client pause times stand out positively.

Especially in the benchmark scrolling test one can easily see the difference:
The scrolling with the non-incremental collector seems to be stuck several times
for a few moments, whereas scrolling goes fluently with the incremental collector.

The results regarding performance and memory usage are promising. Es-
pecially the client pause times which have been reduced to one-third are a big
improvement.

Chapter 5

Conclusion

The new incremental garbage collector makes XEmacs more reactive by inter-
leaving small amounts of collection work with program execution. Garbage col-
lection no longer interrupts the user’s work, and using XEmacs feels smoother.

However, there is a price to pay: the mutator and the collector have to be
coordinated using a write barrier. In particular, storing pointers into objects
when the collector is suspended is more costly, and so is the repeated traversal of
modified objects. Consequently, a full garbage collection cycle is slightly slower
than before.

Additionally, the memory overhead of the incremental garbage collector is
bigger due to floating garbage, because garbage objects may go unreclaimed
until the next cycle. But measurements show that the memory usage is still
within reasonable boundaries, and the amount of floating garbage is typically
small.

Trading slower garbage collection and higher memory usage for better user
interaction and increased program reactivity is worth the price. Smooth user
interaction is crucial for interactive programs. XEmacs now meets the demands:
Client pause times caused by garbage collections have been reduced to one-
third. And there is still potential for improvement: The incremental garbage
collector was created with the focus on correctness rather than optimization.
Consequently, I expect performance improvements by turning the the focus to
optimization.

Along with the changes to XEmacs’s garbage collector I have modularized
the memory manager. Tight coupling of the memory manager and the client
is removed, so that future projects in this area can be accomplished easier and
faster.

This work shows, that the implementation of a write barrier is highly plat-
form-dependent. Currently ports exist to various UNIX/Linux systems, Mac
OS X, Cygwin, and native Windows.

The first real-life test for my new incremental garbage collector is coming up:
Within the next few weeks I am going to commit my changes to the XEmacs
source repository. Once published, the incremental garbage collector will be
tested on a variety of systems and platforms with different configurations by the
XEmacs developers and the XEmacs community. With the resulting feedback
I can fix bugs, advance the incremental garbage collector, and port the write
barrier to more systems.

51

52 CHAPTER 5. CONCLUSION

Finally, the achievement of my work can be summarized in on sentence:
The new incremental garbage collector provides a fast and extensible automatic
memory management for XEmacs.

5.1 Future Work

I have worked a lot on XEmacs’s memory manager so far, but there are still
some projects left to take care of:

Finalization of Dead Objects
Finalization is the name of a technique to apply actions to an object when
the object is no longer in use by the client. An object has a function called
finalizer that runs after the garbage collector found out that the object is
garbage.

Currently, XEmacs’s finalizers run synchronously during a garbage collec-
tion, just before the sweep phase. Since the finalizers run while still in the
middle of the collection, special care has to be taken how finalizers are
written and what actions they take. This can easily cause errors.

Therefore, it is better to have the finalizers run asynchronously after the
garbage collection. This is how finalization is implemented by the Boehm-
Demers-Weiser conservative garbage collector [Boe] and most other imple-
mentations described by Jones and Lins [JL96]. XEmacs already has an
asynchronous finalization strategy, currently only used for one Lisp object
type: ephemeron [Hay97]. The finalizers of ephemerons run after the gar-
bage collector. XEmacs needs to use this finalization strategy for all Lisp
objects.

Optimize the Allocator
The allocator is sometimes wasting memory due to fragmentation. The
allocator can be optimized to tap its full potential. My previous work
[Cre04] describes opportunities for optimizing the allocator.

Speedup Mark Phase
Performing the traversal of live objects is extremely costly with XEmacs’s
mark algorithm. One approach to speed it up is to treat the most com-
mon objects specially, like cons cells. This way, the traversal algorithm
would not have to parse frequent objects, as their treatment would be
hard-coded.

Reingruber [Rei01] worked on a different approach: He re-designed the
layout of the objects to separate their pointer-containing cells from no-
pointer opaque data. This way, the traversal would have no need to parse
a object, it can assume that every cell in the pointer part of the object
has to be examined. This speeds up the mark phase but is a big project.

Generational Garbage Collector
Although the incremental garbage collector outruns XEmacs’s traditional
mark-and-sweep garbage collector in client reactivity, incremental garbage
collectors still suffer from a number of drawbacks: Since all active data
must be marked in each garbage collection, a collection cycle takes very
long.

5.1. FUTURE WORK 53

Generational garbage collectors assume that younger objects are likely
to die soon, whereas older objects are likely to survive through many
collections. Generational collectors avoid to mark older objects repeatedly
by segregating objects into multiple areas by age, and scavenging areas
containing older objects less often than younger ones. The separation of
objects leads to faster garbage collections.

I will stay with the XEmacs community and keep on working on the memory
manager.

54

Appendix A

Interface to the Memory

Manager

A.1 Interface to the Allocator

Internal Allocator Functions

The internal allocator functions are the low-level interface to the allocator. The
client usually does not call these directly.

void init_mc_allocator (void) [Function]

Initialize the allocator. This has to be called prior to requesting memory.

void *mc_alloc (size_t size) [Function]

Allocate a block of memory of given size and return the pointer to it.

void *mc_alloc_array (size_t size, int elemcount) [Function]

Allocate a block of memory as an array with elemcount elements of given
size and return the pointer to it. Arrays contain several objects that are
allocated in one consecutive block of memory with each element being a
fully qualified object—that is, it has a Lisp object header and a mark bit.
Objects like hash tables and dynamic arrays use this function.

void *mc_free (void *ptr) [Function]

Free the object pointed to by ptr and make its memory re-usable again.
The memory must have been returned by a previous call to mc_alloc().
This can be used to free memory explicitly, outside a garbage collection.

void *mc_realloc (void *ptr, size_t size) [Function]

Modify the size of the memory block pointed to by ptr. Return the address
of the new block of given size. The content of the memory block will be
unchanged to the minimum of the old and new sizes: if the new size is
smaller, the overlaying data is cut off; if the new size is bigger, the newly
allocated memory will be uninitialized.

55

56 APPENDIX A. INTERFACE TO THE MEMORY MANAGER

void *mc_realloc_array (void *ptr, size_t size, [Function]
int elemcount)

Modify the size of the array pointed to by ptr. Return the address of the
new array block with elemcount elements of given size. The content of
the memory block will be unchanged to the minimum of the old and new
sizes: if the new size is smaller, the overlaying data is cut off; if the new
size is bigger, the newly allocated memory will be uninitialized.

EMACS_INT mc_get_page_size (void) [Function]

Return the PAGESIZE the allocator uses. Generally equals to the system’s
PAGESIZE.

Client Interface

Functions the client uses to allocate the Lisp objects:

alloc_lrecord_type (type, lrecord_implementation) [Macro]

Allocate a Lisp object of given type and initialize it with lrecord imple-
mentation imp. Use this macro if the size of the Lisp object is fixed, which
means it is equal to the size of its struct.

void *alloc_lrecord (Bytecount size, [Function]
const struct lrecord_implementation *imp)

Allocate size bytes for a Lisp object and initialize it with lrecord imple-
mentation imp. Use this function if the Lisp objects size varies—it is not
equal to the size of its struct.

void *alloc_lrecord_array (Bytecount size, [Function]
int elemcount, const struct lrecord_implementation *imp)

Allocate an array of elemcount Lisp objects of size size and initialize
every object in this array with lrecord implementation imp.

void free_lrecord (Lisp_Object rec) [Function]

Free the Lisp object explicitly. This can be used to free memory outside
a garbage collection.

Garbage Collection Support

Functions the allocator provides for the garbage collector:

void mc_finalize (void) [Function]

Scan the entire heap and finalize all unmarked objects that have a finalizer.

void mc_sweep (void) [Function]

Scan the entire heap and free all unmarked objects.

A.1. INTERFACE TO THE ALLOCATOR 57

Dumper Support

Functions the allocator provides for the portable dumper:

void mc_finalize_for_disksave (void) [Function]

Scan the entire heap and finalize all unmarked object that have a finalizer
for disk save. Used by the dumper to keep the dump image as small as
possible.

Mark Bits Interface

Functions the allocator provides to the garbage collector for dealing with mark
bits:

void set_mark_bit (void *ptr, EMACS_INT value) [Function]

Set the mark bit of the object pointed to by ptr to value.

EMACS_INT get_mark_bit (void *ptr) [Function]

Return the mark bit of the object pointed to by ptr.

MARK (ptr) [Macro]

Mark the object pointed to by ptr. Set the mark bit to BLACK.

UNMARK (ptr) [Macro]

Unmark the object pointed to by ptr. Set the mark bit to WHITE.

MARKED_P (ptr) [Macro]

Evaluate to true if the mark bit is set (mark bit 6= WHITE).

MARK_{WHITE|GREY|BLACK} (ptr) [Macro]

Mark the object pointed to by ptr WHITE|GREY|BLACK.

MARKED_{WHITE|GREY|BLACK}_P (ptr) [Macro]

Evaluate to true if the mark bit is set to WHITE|GREY|BLACK.

Write Barrier Support

Functions the allocator provides for the write barrier:

void protect_heap_pages (void) [Function]

Scan the entire heap and write protect all pages that contain BLACK ob-
jects.

void unprotect_heap_pages (void) [Function]

Scan the entire heap and remove write protection for all pages.

void unprotect_page_and_mark_dirty (void *ptr) [Function]

Remove write protection from the page ptr points to and set its dirty bit.

58 APPENDIX A. INTERFACE TO THE MEMORY MANAGER

int repush_all_objects_on_page (void *ptr) [Function]

Scan the dirty page ptr points to and push all BLACK marked objects on
the mark stack for re-examination by the traversal. Return how many
objects have to be re-examined by the garbage collector.

A.2 Interface to the Write Barrier

Platform-Dependent

Every platform-dependent version of the virtual-dirty-bit write barrier resides
in its own source code file. Files that currently exist are: vdb-posix.c for
POSIX-compliant platforms, vdb-darwin.c for Mac OS X, vdb-win32.c for
Cygwin and native Windows, and vdb-fake.c that holds a fake implementation
for platforms that currently do not support the virtual-dirty-bit write barrier.
This fall-back “fake” implementation turns of the incremental write barrier at
runtime and does not allow any incremental collection. The garbage collector
then acts like a tradtional mark-and-sweep collector.

void vdb_install_signal_handler (void) [Function]

Install the platform-dependent signal handler.

void vdb_protect (void *ptr, EMACS_INT len) [Function]

Set the platform-dependent memory protection for the memory region
[ptr, ptr+len[.

void vdb_unprotect (void *ptr, EMACS_INT len) [Function]

Remove the platform-dependent memory protection for the memory region
[ptr, ptr+len[.

Platform-Independent

The platform independent part of the virtual dirty bit write barrier is in vdb.c.

void vdb_start_dirty_bits_recording (void) [Function]

Start the write barrier. This function is called when a garbage collection
is suspended and the client is resumed.

void vdb_stop_dirty_bits_recording (void) [Function]

Stop the write barrier. This function is called when the client is suspended
and the garbage collection is resumed.

void vdb_designate_modified (void *addr) [Function]

Add the object pointed to by addr to the write barrier’s internal data
structure that stores modified objects. This function is called by the write
barrier’s fault handler.

A.3. INTERFACE TO THE GARBAGE COLLECTOR 59

void vdb_read_dirty_bits (void) [Function]

Read out the write barrier’s internal data structure that stores modified
objects and pass the information to the garbage collector. This function is
called by vdb_stop_dirty_bits_recording(). Return how many objects
have to be re-examined by the garbage collector.

A.3 Interface to the Garbage Collector

KKCC mark functions

Functions that manage the KKCC mark stack:

void kkcc_gc_stack_push (void *ptr, [Function]
const struct memory description *desc)

Push the Lisp object pointed to by ptr and its memory layout description
desc onto the mark stack.

kkcc_gc_stack_entry *kkcc_gc_stack_pop (void) [Function]

Pop a kkcc_gc_stack_entry from the mark stack. A kkcc_gc_stack_

entry consists of two fields: ptr contains the address of the object and
desc contains the object’s memory layout description.

Internal Functions

The internal garbage collector functions are the low level interface to the allo-
cator. The client usually does not call these directly.

void gc_start (void) [Function]

Start a full garbage collection, initialize needed data structures.

void gc_mark_root_set (void) [Function]

Initialize the mark stack and mark the root set.

void gc_mark (int incremental) [Function]

Proceed incremental steps of traversal work. If incremental is ≤ 0 do
not mark incrementally, but process the remaining traversal atomically.

void gc_suspend_mark_phase (int incremental) [Function]

Suspend the mark phase, start the write barrier, and return control to the
client.

int gc_resume_mark_phase (int incremental) [Function]

Resume the mark phase by stopping the write barrier and reading out the
write barrier’s data. Return how many objects have to be re-examined by
the garbage collector.

void gc_finish_mark (void) [Function]

Finish the traversal by wrapping up the mark phase without further in-
terruption.

60 APPENDIX A. INTERFACE TO THE MEMORY MANAGER

void gc_finalize (void) [Function]

Scan the entire heap and finalize all unmarked objects that have a finalizer.

void gc_sweep (void) [Function]

Scan the entire heap and free all unmarked objects.

void gc_finish (void) [Function]

Finish garbage collection, free used data structures.

void gc (int incremental) [Function]

Main garbage collection function that dispatches to the several garbage
collection functions mentioned above. Maintains a variable that keeps the
state of the current collection. The parameter incremental determines if
the collection is carried out incrementally or atomically.

Client Interface

Functions the client uses to invoke garbage collections:

void gc_full (void) [Function]

Perform a full garbage collection without interruption. If an incremen-
tal garbage collection is already running it is completed without further
interruption. This function calls gc() with a negative or zero argument.

void gc_incremental (void) [Function]

This function starts an incremental garbage collection. If an incremental
garbage collection is already running, the next cycle of traversal work is
done, or the garbage collection is completed when no more traversal work
has to be done. This function calls gc with a positive argument, indicating
how many objects can be traversed in this cycle.

void recompute_need_to_garbage_collect (void) [Function]

Determines if a certain threshold—see section A.4—is reached and if a
garbage collection has to be performed. This function is called whenever
Feval is executed.

Root Set Interface

The client uses the root set interface to inform the garbage collector about the
roots of accessibility.

void staticpro (Lisp_Object *obj) [Function]

Add static C variables containing Lisp objects to the root set.

void mcpro (Lisp_Object obj) [Function]

Add a Lisp object to the root set.

GCPRO (), UNGCPRO () [Macro]

Add/remove local variables containing Lisp objects to/from the root set.

A.4. LISP INTERFACE 61

Write Barrier Interface

The garbage collector has one function to receive notice about modified objects
from the write barrier:

gc_write_barrier (obj) [Macro]

Inform the garbage collector that the Lisp object obj has been modified
by the client. This function is called by vdb_read_dirty_bits(). This
function pushes the objects on the mark stack for re-examination by the
traversal.

A.4 Lisp Interface

These functions and variables can be accessed from Emacs Lisp:

(gc-full) [Function]

This function performs a full garbage collection. If an incremental gar-
bage collection is already running, it completes without any further inter-
ruption. This function guarantees that unused objects are freed when it
returns. Garbage collection happens automatically if the client allocates
more than ‘gc-cons-threshold’ bytes of Lisp data since the previous
garbage collection.

(gc-incremental) [Function]

This function starts an incremental garbage collection. If an incremental
garbage collection is already running, the next cycle starts. Note that
this function has not necessarily freed any memory when it returns. This
function only guarantees, that the traversal of the heap makes progress.
The next cycle of incremental garbage collection happens automatically if
the client allocates more than ‘gc-incremental-cons-threshold’ bytes
of Lisp data since previous garbage collection.

(garbage-collect) [Function]

The traditional garbage collector uses this function to invoke a garbage
collection. It starts a full garbage collection; it redirects to (gc-full),
to maintain backwards compatibility for programs that assume that the
heap is really swept after invoking this function.

allow-incremental-gc [Variable]

Non-nil means to allow incremental garbage collection. Nil prevents incre-
mental garbage collection, the garbage collector then only does full collects
(even if (gc-incremental) is called).

gc-cons-threshold [Variable]

Number of bytes of consing between garbage collections. Garbage collec-
tion can happen automatically once this many bytes have been allocated
since the last garbage collection. All data types count.

62 APPENDIX A. INTERFACE TO THE MEMORY MANAGER

gc-cons-incremental-threshold [Variable]

Number of bytes of consing between cycles of incremental garbage collec-
tions. The next garbage collection cycle can happen automatically once
this many bytes have been allocated since the last garbage collection cycle.
All data types count.

(consing-since-gc) [Function]

Return the number of bytes allocated since the last garbage collection.

gc-incremental-traversal-threshold [Variable]

Number of elements processed in one cycle of incremental traversal.

Statistics

Statistics to examine and debug memory manager issues:

(gc-stats) [Function]

Return statistics about garbage collection cycles in a property list.

(show-gc-stats) [Function]

Pretty-print statistics about garbage collection cycles to a buffer by using
(gc-stats).

(lrecord-stats) [Function]

Return statistics about Lisp object memory usage in a property list.

(show-lrecord-stats) [Function]

Pretty-print statistics about Lisp object memory usage to a buffer by using
(lrecord-stats).

Appendix B

Detailed Results of

Measurements

I made some measurements to document the current state of the work and to
collect information that may help research how the new incremental garbage
collector can be optimized in future work. I documented the results for startup,
benchmark, and regression tests, always in comparison to the non-incremental
traditional garbage collector.

Note that collecting and printing the data slows down execution.

• At the beginning and the end of each step of garbage collection (see section
3.3.4), and with every 100th allocation of a Lisp object a record is printed
out that contains the following information:

– time since startup

– name of current phase

– current heap memory usage

– current virtual memory usage as retrieved from /proc

This provides information about the memory usage and where the execu-
tion time is spent.

• Each processed Lisp object is counted whenever it is

– pushed onto the mark stack,

– removed from the mark stack,

– re-pushed by the write barrier,

– traversed by the second traversal of the root set,

– freed by the garbage collector,

– freed manually by the client outside the garbage collector, or

– it was not freed although the client tried to (see section 3.3.18).

The Lisp object counts are printed at the end of the test run.

The recorded data is used to plot the graphs shown in chapter 4. The results
mentioned in the previous chapters are calculated based on the collected data.
In the following, I present the measurements in detail.

63

64 APPENDIX B. DETAILED RESULTS OF MEASUREMENTS

B.1 Startup

Starting an Editor should be fast. Do the modifications to the memory manager
alter startup performance?

Command:

xemacs -vanilla -kill

Results

Memory Usage

The memory-usage statistics show information about the average and maximum
heap and virtual-memory sizes.

Heap Virtual Memory
Memory Usage

average maximum average maximum

non-incremental 4.94 MB 6.02 MB 33.41 MB 79.16 MB
incremental 4.94 MB 6.49 MB 33.56 MB 79.16 MB

+/− ±0% +8% ±0% ±0%

Program Execution Performance

The program-execution-performance statistics show information about the to-
tal program runtime and the respective shares of client and garbage collection
execution time.

Total Execution Times
Execution Time

Total Client (%) GC (%)

non-incremental 9.29 s 7.06 s (76%) 2.24 s (24%)
incremental 8.99 s 7.06 s (78%) 1.93 s (22%)

+/− −3% ±0% −14%

Garbage Collection Phases Execution Performance

The phases execution performance statistics show information about the respec-
tive shares of mark and sweep phase execution times.

GC Phases Execution Times
GC Phase Times

Total Mark (%) Sweep (%) Misc (%)

non-incremental 2.24 s 1.88 s (84%) 0.18 s (8%) 0.18 s (8%)
incremental 1.93 s 1.63 s (84%) 0.16 s (8%) 0.15 s (8%)

+/− −14% −13% −12% −18%

Garbage Collection Times

The garbage collection times statistics show information about how many full
garbage collections and how many garbage collection cycles occur. With this
information, the time per cycle can be calculated. Time per cycle is the average
client pause time.

B.1. STARTUP 65

Number of Time Time per
GC Times

GCs Cycles in GC GC Cycle

non-incremental 11 11 2.24 s 203 ms 203 ms
incremental 9 23 1.93 s 215 ms 84 ms

+/− −18% +109% −14% +6% −59%

Lisp Object Statistics

The Lisp object statistics show how many objects the mark algorithm traverses,
how many objects have to be re-pushed that have been modified by the client
during a garbage collection, and how many objects the collector re-examines
during completion of the traversal with re-pushing the root set. The freeing
statistics show how many objects the garbage collector actually frees and how
many temporary objects the client explicitly frees outside the garbage collector.
The number of Lisp objects not manually freed denotes how many objects the
client wanted to free but was not allowed to because the write barrier was
running.

Number of Lisp objects
Traversal Statistics traversed re-pushed by re-pushed by

write barrier root set

non-incremental
total 2,323,369 - -

per GC 211,215 - -
per Cycle 211,215 - -

incremental
total 1,926,876 48,346 299

per GC 214,097 5,372 33
per Cycle 83,777 2,102 13

Number of Lisp objects
Freeing Statistics freed freed not manually

in GC manually freed

non-incremental
total 150,348 520,902 -

per GC 13,688 - -
incremental

total 218,640 454,397 66,394
per GC 24,293 - -

66 APPENDIX B. DETAILED RESULTS OF MEASUREMENTS

B.2 XEmacs Benchmark Suite

The XEmacs Benchmark Suite is described in detail in section 4.3.1. It gives a
general overview about the overall performance of XEmacs.

Command:

xemacs -vanilla -l /home/crestani/src/xemacs/bench/bench.el \

-eval "(progn (bench 1) (gc-full))" -kill

Results

Memory Usage

The memory-usage statistics show information about the average and maximum
heap and virtual-memory sizes.

Heap Virtual Memory
Memory Usage

average maximum average maximum

non-incremental 7.68 MB 17.34 MB 54.43 MB 79.41 MB
incremental 11.64 MB 63.74 MB 44.37 MB 97.71 MB

+/− +52% +268% −18% +23%

Program Execution Performance

The program-execution-performance statistics show information about the to-
tal program runtime and the respective shares of client and garbage collection
execution time.

Total Execution Times
Execution Time

Total Client (%) GC (%)

non-incremental 82.39 s 62.63 s (76%) 19.76 s (24%)
incremental 78.99 s 63.37 s (80%) 15.62 s (20%)

+/− −4% +1% −21%

Garbage Collection Phases Execution Performance

The phases execution performance statistics show information about the respec-
tive shares of mark and sweep phases execution times.

GC Phases Execution Times
GC Phase Times

Total Mark (%) Sweep (%) Misc (%)

non-incremental 19.76 s 15.95 s (81%) 2.15 s (11%) 1.66 s (8%)
incremental 15.62 s 12.23 s (78%) 2.06 s (13%) 1.33 s (9%)

+/− −21% −23% −4% −20%

Garbage Collection Times

The garbage collection times statistics show information about how many full
garbage collections and how many garbage collection cycles occur. With this
information, the time per cycle can be calculated. Time per cycle is the average
client pause time.

B.2. XEMACS BENCHMARK SUITE 67

Number of Time Time per
GC Times

GCs Cycles in GC GC Cycle

non-incremental 61 61 19.76 s 324 ms 324 ms
incremental 43 132 15.62 s 363 ms 118 ms

+/− −30% +116% −21% +12% −63%

Lisp Object Statistics

The Lisp object statistics show how many objects the mark algorithm traverses,
how many objects have to be re-pushed that have been modified by the client
during a garbage collection, and how many objects the collector re-examines
during completion of the traversal with re-pushing the root set. The freeing
statistics show how many objects the garbage collector actually frees and how
many temporary objects the client explicitly frees outside the garbage collector.
The number of Lisp objects not manually freed denotes how many objects the
client wanted to free but was not allowed to because the write barrier was
running.

Number of Lisp objects
Traversal Statistics traversed re-pushed by re-pushed by

write barrier root set

non-incremental
total 20,545,307 - -

per GC 336,808 - -
per Cycle 336,808 - -

incremental
total 15,622,685 161,369 3,770,117

per GC 363,318 3,753 87,677
per Cycle 118,358 1,222 28,561

Number of Lisp objects
Freeing Statistics freed freed not manually

in GC manually freed

non-incremental
total 7,975,725 9,945,429 -

per GC 163,040 - -
incremental

total 8,239,090 9,649,673 250,741
per GC 225,464 - -

68 APPENDIX B. DETAILED RESULTS OF MEASUREMENTS

B.3 Regression Tests

XEmacs provides regression tests to allow developers to check if their changes
lead to any unexpected regressions in other parts of XEmacs [WTB+]. These
tests provide a log of passed and failed tests, which allow the developer to
investigate the source of the error and fix the bug. Each important feature of
XEmacs has its own test cases. Since these tests push XEmacs to its limits,
they provide interesting results.

Command:

xemacs -vanilla -batch -l ../tests/automated/test-harness.el \

-f batch-test-emacs ../tests/automated

Results

Memory Usage

The memory-usage statistics show information about the average and maximum
heap and virtual-memory sizes.

Heap Virtual Memory
Memory Usage

average maximum average maximum

non-incremental 8.02 MB 156.41 MB 44.50 MB 241.71 MB
incremental 8.24 MB 158.72 MB 44.35 MB 241.71 MB

+/− +3% +1% ±0% ±0%

Program Execution Performance

The program-execution-performance statistics show information about the to-
tal program runtime and the respective shares of client and garbage collection
execution time.

Total Execution Times
Execution Time

Total Client (%) GC (%)

non-incremental 81.48 s 33.24 s (41%) 48.24 s (59%)
incremental 79.22 s 34.07 s (43%) 45.15 s (57%)

+/− −3% +2% −6%

Garbage Collection Phases Execution Performance

The phases execution performance statistics show information about the respec-
tive shares of mark and sweep phases execution times.

GC Phases Execution Times
GC Phase Times

Total Mark (%) Sweep (%) Misc (%)

non-incremental 48.24 s 35.14 s (73%) 6.05 s (13%) 7.05 s (15%)
incremental 45.15 s 32.48 s (72%) 6.12 s (14%) 6.55 s (15%)

+/− −6% −8% +1% −7%

B.3. REGRESSION TESTS 69

Garbage Collection Times

The garbage collection times statistics show information about how many full
garbage collections and how many garbage collection cycles occur. With this
information, the time per cycle can be calculated. Time per cycle is the average
client pause time.

Number of Time Time per
GC Times

GCs Cycles in GC GC Cycle

non-incremental 163 163 48.24 s 296 ms 296 ms
incremental 143 298 45.15 s 316 ms 152 ms

+/− −12% +83% −6% +7% −49%

Lisp Object Statistics

The Lisp object statistics show how many objects the mark algorithm traverses,
how many objects have to be re-pushed that have been modified by the client
during a garbage collection, and how many objects the collector re-examines
during completion of the traversal with re-pushing the root set. The freeing
statistics show how many objects the garbage collector actually frees and how
many temporary objects the client explicitly frees outside the garbage collector.
The number of Lisp objects not manually freed denotes how many objects the
client wanted to free but was not allowed to because the write barrier was
running.

Number of Lisp objects
Traversal Statistics traversed re-pushed by re-pushed by

write barrier root set

non-incremental
total 43,223,872 - -

per GC 265,177 - -
per Cycle 265,177 - -

incremental
total 38,727,423 387,198 300,695

per GC 270,821 2,708 2,103
per Cycle 129,958 1,299 1,009

Number of Lisp objects
Freeing Statistics freed freed not manually

in GC manually freed

non-incremental
total 6,689,633 776,734 -

per GC 41,041 - -
incremental

total 6,786,902 681,502 776,632
per GC 47,461 - -

70

Bibliography

[App] Apple. Mac OS X Homepage. http://www.apple.com/macosx [On-
line; accessed 31-Jul-2005].

[BGH+88] David L. Black, David B. Golub, Karl Hauth, Avadis Tevanian, and
Richard Sanzi. The mach exception handling facility. In PADD
’88: Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop
on Parallel and distributed debugging, pages 45–56, New York, NY,
USA, 1988. ACM Press.

[Boe] Hans-J. Boehm. A garbage collector for C and C++. http://www.
hpl.hp.com/personal/Hans_Boehm/gc/index.html [Online; ac-
cessed 31-Jul-2005].

[Cre04] Marcus Crestani. Ein neuer Speicher-Allokator für XEmacs. Stu-
dienarbeit, Wilhelm-Schickard-Institut für Informatik, Universität
Tübingen, 2004.

[Cyg] Cygwin Homepage. http://www.cygwin.com [Online; accessed 31-
Jul-2005].

[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Sholten,
and E. F. M. Steffens. On-the-fly garbage collection: An exercise in
cooperation. In Communications of the ACM, pages 21(11):966–975,
1978.

[FSF01] The GNU C Library Reference Manual. Free Software Foundation,
2001. http://www.gnu.org/software/libc/manual [Online; ac-
cessed 31-Jul-2005].

[Hay97] Barry Hayes. Ephemerons: A new finalization mechanism. In Object-
Oriented Programming, Systems, Languages and Applications, pages
176–183, 1997.

[IG04] IEEE and Open Group. IEEE Std 1003.1. The IEEE and The Open
Group, 2004.

[JL96] Richard Jones and Rafael Lins. Garbage Collection Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons Ltd.,
1996.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall, Englewood Cliffs, New Jersey, 2 edition,
1988.

71

72 BIBLIOGRAPHY

[LAX] Archived XEmacs Mailing Lists. http://list-archive.xemacs.

org [Online; accessed 31-Jul-2005].

[man] Manual pages for several UNIX/Linux system calls. Part of all
UNIX/Linux distributions.

[PLT] PLT. PLT MzScheme Homepage. http://www.plt-scheme.org/

software/mzscheme [Online; accessed 31-Jul-2005].

[Pre00a] Microsoft Press. AddVectoredExceptionHandler. Mi-
crosoft Developer Network (MSDN) Library, 2000. http:

//msdn.microsoft.com/library/default.asp?url=/library/

en-us/debug/base/addvectoredexceptionhandler.asp [Online;
accessed 31-Jul-2005].

[Pre00b] Microsoft Press. Exception Handling Mechanisms. Mi-
crosoft Developer Network (MSDN) Library, 2000. http:

//msdn.microsoft.com/library/default.asp?url=/library/

en-us/vccelng/htm/key_s-z_3.asp [Online; accessed 31-Jul-
2005].

[Pre00c] Microsoft Press. VirtualProtect. Microsoft Developer Net-
work (MSDN) Library, 2000. http://msdn.microsoft.com/

library/default.asp?url=/library/en-us/memory/base/

virtualprotect.asp [Online; accessed 31-Jul-2005].

[Rei01] Richard Reingruber. Alternative Speicherverwaltung für XEmacs.
Diplomarbeit, Wilhelm-Schickard-Institut für Informatik, Univer-
sität Tübingen, 2001.

[RRSF00] Gustavo Rodriguez-Rivera, Mike Spertus, and Charles Filterman.
Conservative Garbage Collection for General Memory Allocators.
ISMM2000 International Symposium on Memory Management,
2000.

[SGG03] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Oper-
ating System Concepts. John Wiley & Sons, Inc., 6th edition, 2003.

[SGG04] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne.
Operating System Concepts. John Wiley & Sons, Inc., 7th
edition, 2004. Appendix B: The Mach System. Available
Online: http://www3.interscience.wiley.com:8100/legacy/

college/silberschatz/0471694665/appendices/appb.pdf [On-
line; accessed 31-Jul-2005].

[Ste75] Guy L. Steele. Multiprocessing compactifying garbage collection. In
Communications of the ACM, pages 18(9):495–508, 1975.

[SW] Richard Stallman and Ben Wing. XEmacs User’s Manual. Part of
the XEmacs distribution.

[Wik05] Wikipedia. POSIX. Wikipedia, the free encyclopedia, 2005. http:

//en.wikipedia.org/wiki/POSIX [Online; accessed 31-Jul-2005].

BIBLIOGRAPHY 73

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques. In
International Workshop on Memory Management, pages 1–42, St.
Malo, France, 1992. Springer-Verlag Lecture Notes in Computer Sci-
ence no. 637.

[WLLS] Ben Wing, Bil Lewis, Dan LaLiberte, and Richard Stallman.
XEmacs Lisp Reference Manual. Part of the XEmacs distribution.

[WTB+] Ben Wing, Stephen Turnbull, Martin Buchholz, Hrvoje Niksic,
Matthias Neubauer, Olivier Galibert, and Andy Piper. XEmacs
Internals Manual. Part of the XEmacs distribution.

[Yua90] Taichi Yuasa. Real-time garbage collection on general-purpose ma-
chines. In Journal of Systems and Software, pages 11:181–198, 1990.

74

Index

mprotect(2), 18
sigaction(2), 18
signal(2), 19
struct sigcontext, 19
struct siginfo, 19

allocator, 3, 4, 15, 22, 49, 52
automatic memory manager, 3

benchmark, 43

client, 3, 41, 42
colored object, 7
coloring invariant, 7
configuration, 22
cycle, 28, 38
Cygwin, 21

dead object, 4
debugger, 21

Emacs Lisp, 1

faulting address, 16
finalization, 52
finalizer, 52
floating garbage, 9
free list, 4
full collection, 28, 38

garbage
collector, 1, 3, 41
detection, 4
object, 4
reclamation, 4

garbage collection, 1
cycle, 28
full, 28, 38
generational, 52
incremental, 6, 31, 38
mark-and-sweep, 4

generational garbage collector, 52

heap, 4

incremental garbage collection, 6, 31,
38

incremental traversal, 6, 31
incremental-update, 11, 17
interface, 41

KKCC, 23, 30

Linux, 17, 19
Lisp object, 15, 23

external, 23
live object, 4

Mac OS X, 19, 22
mark phase, 5, 30, 52
mark stack, 30
mark-and-sweep, 4
memory manager, 3, 42
memory protection, 14
memory usage results, 47
modularization, 41
mutator, 5

native Windows, 20, 22
newly allocated object, 37

object
colored, 7
dead, 4
garbage, 4
live, 4
newly allocated, 37

performance results, 45
POSIX, 17
protection, memory, 14

reachability graph, 5
reactivity, 42
read barrier, 10

75

76 INDEX

regression tests, 44
results, 50

memory usage, 47
modularization, 41
performance, 45
reactivity, 42

root set, 5, 31

signal handling, 15
snapshot-at-beginning, 10, 17
standard XEmacs usage pattern, 6, 43
startup speed, 44
sweep phase, 5, 35

tricolor marking, 7

UNIX, 17, 19

virtual dirty bit, 14
virtual memory, 47

Windows
Cygwin, 21
native, 20, 22

write barrier, 10, 13, 33, 41
virtual dirty bit, 14

XEmacs, 1

