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ABSTRACT 
The increasing complexity of software systems makes change 
management costly and time consuming. To ensure the cost-
effective system longevity and endurance, it is crucial to apply 
change management in the early stages of software development. 
In this paper, we introduce a rule-based approach to make 
software architecture evolving based on counter examples 
provided by a model checker for violated, changing functional 
requirements. The approach works on software architecture in 
AADL and is based on verifying functional requirements using 
Maude model checker. Our goal is to provide guidelines to the 
architect about potential changes. Using an industrial example, we 
show how our approach helps in determining changes to produce 
a new version of the architecture. 

CCS Concepts 
• Software and its engineering Software evolution;  

Keywords 
Software Architecture; Change Management; AADL; Maude. 

1. INTRODUCTION 
The requirements of software systems are subject to changes due 
to newly emerging business goals and to changes in the systems’ 
operational environment. The increasing system complexity 
makes change management costly and time consuming. Even a 
single requirements change may have a significant impact on the 
system. To reduce the cost of changes, it is crucial to analyze 
requirements changes as early as possible during software 
development, and to propagate them to lower-level artifacts. 

Considerable research has been devoted to the analysis of 
requirements and design changes on lower-level artifacts such as 
source code and test cases. For instance, Briand et al. [2] propose 
an approach to support test selection from regression test suites 
based on the change analysis of object-oriented designs. Gallagher 
et al. [5] employ program slicing to delineate the effects of 

changes in source code. Mens et al. [16] discuss the need of 
tracing the architecture to the implementation so that any 
architecture change is reflected in the implementation. Less 
attention has been paid to the analysis of requirements changes on 
high-level design artifacts such as architecture. There are works 
[15] dealing with architecture evolution, but mainly focus on 
architecture refactoring. The analysis of requirements changes on 
architecture are beneficial due to several reasons. Immediate 
identification of source code changes caused by requirements 
changes can be difficult since there is an abstraction gap between 
requirements and code. Architecture is at a higher level of 
abstraction and can be employed for automated code generation. 
The system sustainability largely depends on the architecture 
sustainability. Managing architecture evolution is crucial to 
ensure the cost-effective architecture longevity and endurance, 
i.e., the architecture sustainability. 

In this paper, we present an approach that proposes changes for 
software architecture given in Architecture Analysis & Design 
Language (AADL) when the architecture does not satisfy 
new/changed functional requirements. The approach is based on 
verifying functional requirements on the software architecture. 
The verification output is a counter example if the requirements 
are not satisfied. The counter example is used together with a 
classification of architecture changes to identify changes for the 
architecture. The identified changes are guidelines for the 
architect during the manual design activity. By considering these 
changes, the architect manually produces a new version of the 
architecture that possibly satisfies the requirements.  

We use AADL because it is an industry-driven language proposed 
by companies in different domains and because of the availability 
of its formal behavioral semantics. We employ behavioral 
semantics for a part of AADL [19] expressed in rewriting logic 
supported by the Maude language and tools [3]. Having the 
formal semantics makes the AADL models executable and enables 
the formal verification of functional requirements on the 
architecture, which is also employed in our previous work [7] [10] 
to generate traces between requirements and architecture. The 
verification uses the discrete event simulation, which introduces 
the notion of events, states, and state space. The architecture is 
executed and a state space is produced. A state describes the loci 
of data values within the architecture. Two states are connected by 
a transition encoded by a transition rule, while all states are 
captured by the state space. A counter example is an ordered set 
of states which are generated when the requirement is not satisfied 
in the verification. There is no transition rule applicable (i.e., term 
rewrite rules and equations in Maude) in the last state of the 
counter example. A state transition rule is fired if its left-hand side 
pattern matches the current state. The next state is formed based 

 
 



 

on the right-hand side of the transition rule. The main idea behind 
our approach is to make such changes in the architecture that 
make the application of some transition rules possible in the last 
state of the counter example. Changes can be applied iteratively 
until the requirement is eventually satisfied. 

The paper is structured as follows. Section 2 gives the 
background. Section 3 introduces an industrial example used in 
the following sections. In Section 4, we give the approach 
overview, while we present the details in Section 5. Section 6 
describes the related work, and Section 7 concludes the paper. 

2. BACKGROUND 
In this section we first give the AADL basics, the main language 
elements, and the graphical notation (Section 2.1). After Maude is 
summarized (Section 2.2), we present a brief introduction of the 
behavioral semantics of AADL in Maude (Section 2.3).    

2.1 Preliminaries on AADL  
AADL [1] is an industrial standard to describe performance-
critical embedded real-time systems in avionics, automotive, 
medical, and robotics domains.  

In AADL, a system 
is given as a 
hierarchy of 
hardware and 
software 
components. A 
component contains 
interfaces with 
input/output ports, 
subcomponents and 
their interaction, and 
other type-specific 
properties. At the 
top-level, there is 
system component, 
containing other 

system components as well as of hardware and software 
components. Hardware components processor scheduling and 
executing threads, memory storing code and data, device for 
sensors and actuators, and bus connecting processors, memory, 
and devices. Software components are thread representing a unit 
of concurrent execution, thread group used to create a hierarchy 
among threads, process for protected memory accessed by its 
thread subcomponents, subprogram representing a piece of source 
code, data for data types, data store storing data, and data access 
for access to the stored data. 
There are three types of ports: data, event and event-data. Data 
ports are for data transmissions without queuing while event ports 
are for queued communications. Connectors between data ports 
are either immediate or delayed. Event data ports are for message 
transmission with queuing (see Figure 1 for the AADL notation). 
An AADL model specifies how different components are 
integrated to form a complete system. The AADL standard [1] 
includes behavioral semantics for exchange and control of data, 
including message passing, event passing, synchronized access to 
shared components, thread scheduling protocols, timing 
requirements, and remote procedure calls. A mode abstraction is 
a configuration of components, connections, and property value 

associations. Modes represent alternative operational states of a 
system or component such as a thread or subprogram [1]. 
A thread is the main unit for modeling the concurrent execution. 
Its behavior can be given as a state machine. In AADL, thread 
behavior is typically described using AADL’s behavior annex, 
which models programs as transition systems with local state 
variables. A thread state can be initial, active, inactive, or 
completed. In the annex, a variety of execution properties can be 
assigned to threads, including timing (e.g., worst case execution 
times), dispatch protocols (e.g., periodic, aperiodic, etc.), memory 
size, and processor binding [1].  

2.2 Rewriting Logic and Maude  
Maude is a language supporting both membership equational 
logic and rewriting logic [3]. Rewriting logic is about concurrent 
change based on state and concurrent computations. Membership 
equational logic is a sub logic of rewriting logic [3] where atomic 
sentences are equalities t = tƍ and membership assertions in the 
form t: s, stating that a term t has a sort s.  

A Maude module is in the form (�, E U A, R) where � is a 
signature, E is a set of equations, and A is a set of equational 
axioms. R is a collection of labeled (conditional) rewrite rules 
denoting transitions in a state space. Rewrite rules are universally 
quantified by the variables appearing in the terms given as a 
signature. In object-oriented Maude, terms are given in the form 
of classes and objects. 

Class  C  |  att1 : s1 , … , attn : sn  .  
<  O  :  C  |  att1  :  val1 , …  ,  attn  :  valn  > 

where a class C is with the attributes att1 to attn of the sorts s1 to sn 
and an object O of the class C with the values val1 to valn of the 
attributes att1 to attn. The Maude syntax has three statements: 
equations (the keywords eq and ceq), membership (the keywords 
mb and cmb) stating that a term has a sort, and rewrite rules (the 
keywords rl and crl). The keywords var and vars are used to 
declare mathematical variables. A conditional rewrite rule is given 
in the following form. 

crl [ l ]  : { t }  => { tƍ } if  cond . 
where l is a label for the rewrite rule and cond represents the 
condition. The rewrite rule specifies a transition from a match of t 
(left-hand) to a match of tƍ (right-hand).  

2.3 Behavioral Semantics of AADL in Maude  
The AADL standard is given in English and the behavioral 
semantics in the standard is ambiguous due to the use of natural 
language. It is possible to have multiple interpretations of the 
semantics. To avoid ambiguities and support formal verification 
in AADL models as part of our approach, we use the behavioral 
semantics of AADL models given in object-oriented real-time 
Maude by Ölveczky et al. [19]. Listing 1 gives the representation 
of an AADL component with an object-oriented style in Maude.  

Listing 1 AADL Component Representation in Maude 
1     class Component | features : Configuration, subcomponents : Configuration, 
2                                  connections : ConnectionSet, properties : Properties, 
3                                  modes : ModeTransitionSystem, inModes : ModeNameSet . 
4     class System .   subclass System  <  Component  . 

The semantic definitions are given mainly as equations and 
rewriting rules in Maude. They can be considered as a formal 

 
Figure 1 Graphical Notation for AADL 



 

semantics for AADL and an interpretation of what the informal 
and ambiguous descriptions in the AADL standard mean [19]. We 
only give the semantics of message passing along a level-up 
connection in AADL (Listing 2). The reader is referred to [19] for 
the details of the AADL behavioral semantics.   
The message transmission between ports via a series of 
connections is implemented as equations [19]. The equation gives 
the message passing semantics from an out port (P1) of a 
subcomponent (C1) to an out port (P) of a component (C) 
containing the subcomponent along a connection (C . C1 . P1 - -> 
C . P). By applying the equation, the port P now has the value 
transfer(ML), and the subcomponent’s port (P1) buffer is empty. 
Listing 2 Maude Equation for Message Passing between Ports 
1     op transfer : MsgList -> MsgList [ctor] . 
2     vars C C1 C2 : ComponentId .        vars P P1 P2 : PortId . 
3     vars PORTS PORTS2 OTHER-COMPONENTS : Configuration . 
4     vars ML ML' : MsgList .                 var CONXS : ConnectionSet . 
5     eq < C : Component | features : < P : OutPort | buffer : nil > PORTS, 
6        subcomponents :  < C1 : Component | 
7          features : < P1 : OutPort | buffer : transfer(ML) > PORTS2 > 
8            OTHER-COMPONENTS,  connections : (C1 . P1 --> P) ; CONXS > 
9     =  < C : Component | features : < P : OutPort | buffer : transfer(ML) > PORTS, 
10           subcomponents : < C1 : Component | features : < P1 : OutPort  
11              | buffer : nil> PORTS2 >  OTHER-COMPONENTS > . 

3. EXAMPLE: REMOTE PATIENT 
MONITORING SYSTEM 
We use the Remote Patient Monitoring (RPM) system to illustrate 
our approach. The system was developed by a Dutch company 
and had already been running when we started studying it. The 
goal is to enable monitoring patients’ conditions such as blood 
pressure, heart rate, and temperature (see Table 1). 

Table 1 Some of the Requirements for the RPM System 
R1 The system shall measure temperature from a patient. 

R2 The system shall measure blood pressure from a patient. 

R3 The system shall measure blood pressure and temperature from a patient. 

R4 The system shall store temperature measured by the sensor in the central 
storage. 

R5 The system shall store patient blood pressure measured by the sensor in the 
central storage. 

R6 The system shall store data in the central storage. 

R7 The system shall warn the doctor when the temperature threshold is violated. 

R8 The system shall generate an alarm if the temperature threshold is violated. 

R9 The system shall show the doctor the temperature alarm at the doctors’ 
computers. 

R10 The system shall store all generated temperature alarms in a central storage. 

R11 The system shall enable the doctor to set the temperature threshold for a 
patient. 

R12 The system shall enable the doctor to retrieve all stored temperature 
measurements for a patient. 

R13 The system shall allow retrieving the stored temperature alarms for a patient. 

R14 The system shall store patient temperature measured by the sensor in the 
central storage and it shall warn the doctor when the temperature threshold is 
violated. 

R15 The system shall store patient Central Venous Pressure (CV Pressure) 
measured by the sensor in the central storage.    

 

The architecture is derived by reverse engineering the source code 
of the RPM system (Figure 2). Figure 2 shows only the most 
abstract components (system and process in AADL). SD (Sensor 
Device) contains sensors carried by the patient. The sensors 
perform measurements at a regular interval. SD sends the 
measurements to HPC (Host Personal Computer) through SDC 
(Sensor Device Coordinator). HPC contains SDM (Sensor Device 
Manager), AS (Alarm Service) and WS (Web Server) process 
subcomponents. SDM stores measurements and alarms in data 
stores (Temp_alarms and Temp_Meas) for temperature. WS serves 
as a web-interface for the doctors. AS forwards alarms to CPC 
(Client Personal Computer) for the doctors to monitor patients. 
The AR (Alarm Receiver) process in CPC receives alarms from AS 
and notifies the doctor. The WC (Web Client) process uses WS to 
retrieve measurements and alarms stored by SDM.  

 

Figure 2 Overview of the RPM Architecture 
The RPM architecture has also thread and subprogram 
components. The system computation is modeled as subprogram 
and thread behavior. Subprogram and thread behavior is given 
with a finite set of states and a set of state variables in the 
behavioral annex. Listing 3 gives the annex of the behavior of 
sdmThr in SDM for storing blood pressure measurements.  

Listing 3 AADL Annex for Thread Behavior 
1      thread sdmThr 
2         features  sdm_blood_edp2: in event data port Behavior::integer;  
3                         sdm_blood_strg: out event data port Behavior::integer;  
4         properties Dispatch_Protocol => aperiodic;      
5      end sdmThr; 
6      thread implementation sdmThr.i 
7       annex behavior_specification {** 
8          states  s0: initial complete state;  bloodStored: complete state; 
9          state variables inMessage: Behavior::integer; 
10           transitions  sdm_blood_edp2?(inMessage)]->      
11                    bloodStored { sdm_blood_strg!(inMessage); };     **};   
12       end sdmThr.i; 

sdmThr has the event data ports sdm_blood_edp2 (Line 2) and 
sdm_blood_strg (Line 3) for blood measurements. The annex 
gives a transition system with state variables where each transition 
contains a guard (Lines 10-11) for the existence of events/data in 
the input ports (sdm_blood_edp2), and for the value of the data 
received (inMessage). The thread is activated upon receiving the 
input (Line 4). It has s0 as the initial state and bloodStored as the 
complete state (Line 8). If the thread is in the s0 state and receives 
the measured data in sdm_blood_edp2, then the received data is 
stored via sdm_blood_strg while the bloodStored state is reached. 

4. OVERVIEW OF THE APPROACH 
The approach is based on verifying functional requirements on 
software architecture. The output of the verification is a counter 



 

example if the input requirement to be verified is not satisfied by 
the architecture. The counter example is used together with a 
change classification to automatically propose architecture 
changes. As we already discussed, the main idea behind the 
approach is to make such changes in the architecture that make 
the application of some transition rules possible in the last state of 
the counter example. The counter example analysis has the 
following limitations and assumptions. 

• Analyzing the counter example in our approach is limited to 
the behavioral semantics of AADL given in [19]. The 
semantics mostly deals with passing & storing data in a data 
flow, dispatching & executing threads, and switching modes, 
which are used to identify architecture changes. We need 
different architecture change types for different architecture 
description languages with different versions of semantics. 

• Architecture changes in our approach are limited to the 
possible missing parts of the architecture for mainly data 
flow and thread execution. Designing architecture is a 
creative process. There are infinite designs that satisfy 
requirements for a given project. Therefore, changes over the 
architecture are infinite. We do not consider changes such as 
adding new systems, processes or threads which may cause 
infinite number of solutions for changed requirements.  

• It is assumed that, with changes in the architecture, it is 
possible to have a next state from the last state of the counter 
example. It is possible that the last state might be the final 
state and there is no architecture change which makes the 
application of some transition rules possible in the last state. 
In this case, the architect should check all the states in the 
counter example to change the architecture. Even if the last 
state is not the final state, changing the architecture to enable 
a next state may not produce an architecture that satisfies the 
changed requirement. The architect may need iterations for 
verifying the requirement and changing the architecture. 

Verification of Functional Requirements & Proposing Architectural Changes
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Figure 3 Overview of the Tool Support 
The approach contains three components (the rounded boxes in 
Figure 3). The Open-Source AADL Tool Environment (OSATE) 
– Topcased (http://www.topcased.org) includes an AADL front-
end which provides plug-ins to support architecture analysis 
capabilities. We employ MOMENT2-AADL [19], an OSATE 
plug-in, to generate the Maude representation of AADL models 
for verification. It takes the architecture model in AADL as input 
and produces the Maude specification as an intermediate output 
(Figure 3). The architecture in AADL is transformed to a Maude 
term. The generated Maude specification contains AADL 
behavioral semantics given as rewrite rules and equations [19]. 

The verification is performed by the model checker in Maude. 
Maude is equipped with an explicit-state linear temporal logic 
(LTL) model checker analyzing whether all the behaviors from the 
initial state satisfy an LTL formula. Real-Time Maude extends the 
Maude model checker for real-time properties such as execution 
time. Our approach does not consider real-time properties. 
Counter Example Analyzer in Figure 3 parses the counter example 
and analyzes its last state to identify changes using the change 
classification and the AADL behavioral semantics. 

5. RULE-BASED ARCHITECTURE 
EVOLUTION 
This section details the approach. Section 5.1 explains the 
verification of functional requirements. In Section 5.2 we present 
the use of counter example to propose architecture changes. 

5.1 Verification of Functional Requirements 
The purpose is to check if functional requirements are correctly 
implemented in the architecture. In our previous work [7] [10], 
we already give a detailed description of the verification of 
functional requirements since we also use the verification output 
(i.e., execution trace and counter example) to generate traces 
between requirements and architecture. In this section, we revisit 
the verification employing the Maude model checker (Figure 4). 
The verification is represented by the Satisfies and ConformsTo 
relations in Figure 4. ConformsTo implies that the state space 
captures the specified properties. We have the following artifacts: 

 
Figure 4 Verification of Functional Requirements 

Property Specifications in Maude is the formal description of the 
required behavior of the architecture. The requirements are 
reformulated as properties in terms of the solution, which is the 
architecture (reformulate and uses). These properties are checked 
by the model checker. The property specification can use any 
logic such as Linear Temporal Logic (LTL), First-Order Logic 
(FOL), or Computation-Tree Logic (CTL). Our approach uses the 
property specification feature of Maude, which is limited to LTL.  
 

The presence of the AADL behavioral semantics in Maude makes 
the AADL models executable. The architecture is executed and a 
state space is produced (simulate). This execution simulates the 
behavior of the system on the architecture level to see how the 
system will work. Discrete event simulation, which introduces the 
notion of events, states, and state space, is used. A state describes 
the loci of data values within the architecture. Two states are 
connected by a transition and all states are captured by the state 
space. The verification result might be a counter example or an 
execution trace. An execution trace is the ordered set of states 
which are generated when the reformulated requirement is 
satisfied. A counter example is the ordered set of states generated 
when the reformulated requirement is not satisfied. 



 

5.2 Proposing Architecture Changes 
We identified a set of architecture evolution rules for AADL by 
using the AADL semantics in Maude. Each rule is a pair of a 
pattern matching the last state of the counter example and a set of 
proposed architectural changes. A pattern in the rule is a 
configuration of architecture elements such as data port, thread, 
and data. When the verification output is a counter example, our 
approach searches patterns, given in the rules, in the last state of 
the counter example, and proposes the corresponding architecture 
changes for matched patterns if any (Counter Example Analyzer 
in Figure 3). Table 2 gives some architecture evolution rules. We 
give the complete set of rules in the supplementary material [18].  

Table 2 Some of the Architecture Evolution Rules 
Patterns  Proposed Architecture Changes 

 
 
 
 
Event/Data M1 at the 
buffer of the (event) 
data-in-port of System 
S1 

Add connection to the (event) data-in-port 
of Subsystem SS1 of System S1 
Add (event) data-in-port to Subsystem 
SS1 of  System S1 & Add connection to 
the added (event) data-in-port of 
Subsystem SS1  
Add connection to the (event) data-in-port 
of Process P1 of System S1 
Add (event) data-in-port to Process P1 of  
System S1 & Add connection to the added 
(event) data-in-port of Process P1 
Change mode of System S1 

 
Event/Data M1 at the 
buffer of the (event) 
data-in-port of Process 
P1 

Add connection to the (event) data-in-port 
of Thread T1 of Process P1 
Add (event) data-in-port to Thread T1 of  
Process P1 & Add connection to the 
added (event) data-in-port of Thread T1 
Change the mode of Process P1 

Event/Data M1 at the 
buffer of the (event) 
data-in-port of Thread 
T1 

Change the behavior of Thread T1 

Change the mode of Thread T1 

Event/Data M1 at the 
internalbuffer of the 
(event) data-in-port of 
Thread  T1 & Thread 
T1 is in the active state 

Change the mode of Thread T1 

Change the behavior of Thread T1 

The first column represents the patterns. In the second column we 
give the architecture change alternatives to be proposed when the 
pattern matches the last state in the counter example. For instance, 
the architect may change either the behavior or mode of the thread 
if the last state in the counter example has an event/data at the 
buffer of the event data-in-port of the thread. We followed two 
steps to identify the rules in Table 2. 

• Identifying patterns of the architecture evolution rules. By 
analyzing the right-hand side patterns of the state transition 
rules, we identified architecture configurations that need 
changes to fire further transition rules in the counter 
example. These configurations are with no more than three 
architecture elements (e.g., data at the buffer of a thread) and 
form the patterns in the architecture evolution rules. Table 3 
gives the transition rule classification with those patterns. 

• Deriving architecture changes for the patterns. We 
compared the left-hand side of the state transition rules with 
our patterns to determine change alternatives in the 
architecture evolution rules. For instance, after the thread 

dispatch, the next transition rule is the execution of a thread. 
If a thread is dispatched but not executed in the last state of 
the counter example (Dispatching Thread T1 in Table 3), we 
can apply some changes to make satisfied the conditions of 
the state transition rule for thread execution (the last row of 
Table 2). To make the dispatched thread executed, either the 
thread behavior or thread mode should be changed. Table 4 
lists the architecture change types. 

Table 3 AADL State Transition Rules and Patterns in the 
Architecture Evolution Rules 

State Transition 
Rules in AADL 

Patterns in the Architecture Evolution 
Rules 

 
 
 
 
 
Passing Message 
M1  

Event/Data M1 at the buffer of the (event) 
data-in-port of System S1 
Event/Data M1 at the buffer of the (event) 
data-in-port of Process P1 
Event/Data M1 at the buffer of the (event) 
data-in-port of Thread T1 
Event/Data M1 at the buffer of the (event) 
data-out-port of Device D1 
Event/Data M1 at the buffer of the (event) 
data-out-port of System S1 
Event/Data M1 at the buffer of the (event) 
data-out-port of Process P1 

 
Dispatching 
Thread T1  

Event/Data M1 at the internalbuffer of the 
(event) data-in-port of Thread  T1 & Thread 
T1 is in active state  
Thread T1 is in the active state 

 
Executing Thread 
T1 

Event/Data M1 at the buffer of the (event) 
data-out-port of Thread T1 
& Thread T1 is in the completed state 
Thread T1 is in the completed state 

Switching the 
Mode of Thread 
T1  

Thread T1 is in the inactive state 
Thread T1 is in the completed state 

Table 4 Change Types for AADL  
There are more change 
types for AADL such as 
adding new systems and 
threads. The number of 
solutions is infinite for 
designing architecture. 
We do not consider 
changes (e.g., adding 
new systems, processes 
or threads) which may 
lead to infinite number 
of solutions. 

In the following, we use one of the state transition rules in Table 3 
(i.e., Passing Message M1 - Event/Data M1 at the buffer of the 
(event) data-in-port of Thread T1) to explain how we identify the 
architecture evolution rules.  
Listing 4 is one of the state transition rules of Passing Message 
M1. It is for transmission of a data along a level-down connection 
C.P --> C.C1.P1 from P data-in-port of C component to P1 data-
in-port of C1 subcomponent of C component. As a result of 
applying the rule to a model where C1 is a thread, P1 data-in-port 
of C1 thread has the data (Line 10) and the P data-in-port’s buffer 
is empty (Line 9). 

Change Types 
Add (event) data-in-port to System 
Add (event) data-out-port to System 
Add (event) data-in-port to Process 
Add (event) data-out-port to Process 
Add (event) data-in-port to Thread 
Add (event) data-out-port to Thread 
Add connection to (event) data-in-port 
Add connection to (event) data-out-port 
Change the mode of System 
Change the mode of Process 
Change the mode of Thread 
Change the behavior of Thread 



 

The possible transition is dispatching the thread when the data is 
at the buffer of (event) data-in-port of the thread. If the last state 
of the counter example contains the data at the data-in-port of a 
thread, an architecture change has to make possible the 
application of the state transition rule for the thread dispatch.  

Listing 4 Maude Equation for Passing Message M1 
1     op transfer : MsgList -> MsgList [ctor] .  
2     vars  C  C1 : ComponentId .       vars P  P1 : PortId .   
3     vars PORTS  PORTS2  OTHER-COMPONENTS : Configuration .  
4     vars ML  ML’ : MsgList .           var CONXS : ConnectionSet .  
5     eq < C : Component |  features : 
6         < P : InPort | buffer : transfer(ML) > PORTS, subcomponents : 
7           < C1 : Component | features : < P1 : InPort | buffer : ML' > PORTS2 > 
8             OTHER-COMPONENTS,  connections : (P --> C1 . P1) ; CONXS > 
9          =  < C : Component | features : < P : InPort | buffer : nil > PORTS, 
10           subcomponents : < C1 : Component | features : < P1 : InPort | buffer : ML' :: 
11            transfer(ML) > PORTS2 >.  OTHER-COMPONENTS > . 

There are two state transition rules for thread dispatch: periodic 
and aperiodic thread dispatch. Listing 5 gives the conditional 
rewrite rule [19] in Maude for the aperiodic thread dispatch. 

Listing 5 Rewrite Rule for the Aperiodic Thread Dispatch 
1   var O : ThreadId . var P : PortId. var PROGRAM : ThreadBehaviour . 
2   var MTS : ModeTransitionSystem .    var TN : ThreadName . 
3   var  IMPL : ImpleName . var  PORTS : Configuration . vars ML  ML’ : MsgList .   
4      crl [aperiodic-incoming-message] : 
5         < O : Thread | properties : aperiodic-dispatch ; TP,  used : U,  modes : MTS,  
6           deactivated : false, features : (< P : InEventDataThreadPort | buffer :  
7              ML :: transfer(ML') >  PORTS), status : completed, behavior : PROGRAM, 
8              threadType : TN, implementationType : IMPL > 
9         =  < O : Thread | used : true, features :  dispatchInputPorts( < P : 
10               InEventDataThreadPort | buffer : ML :: ML' > PORTS),  status : active >   
11        if  someTransEnabled(transitions(TN, IMPL), PROGRAM, dispatchInputPorts 
12         (< P : InEventDataThreadPort | buffer : ML :: ML' > PORTS)) . 

The rule has the left-hand side pattern (Lines 5-8) with the 
condition part (Lines 11-12). To fire the rule for the aperiodic-
incoming-message, the following conditions should hold: (1) 
thread is active (Line 6); (2) thread is in the complete state (Line 
7); (3) some transitions in the behavioral annex of the thread are 
enabled (Lines 11-12); (4) there is an incoming data at the buffer 
of the data-in-port of the thread (Lines 12). 
From the equation for Passing Message M1, we already know that 
there is a data at the buffer of the data-in-port of the thread. 
Therefore, architecture changes, which make the conditions 1, 2 
and 3 hold, should be proposed. For these conditions, there are 
two architecture changes: changing the mode of the thread and 
changing the behavior of the thread. The thread may have 
different states and transitions in different modes. It might be 
activated and its state might be set to complete by changing the 
mode of the thread. The thread behavior is coded as states, state 
transitions, and thread activation in the behavioral annex. 
Changing the thread behavior (the behavioral annex) may activate 
the thread and set its state to complete. If no transition in the 
behavioral annex is enabled (the condition 3), either some of the 
transitions or the mode of the thread should be changed. There 
might be multiple applicable state transition rules which effect 
different parts of the architecture. The architect should analyze 
each proposed change to decide which one to implement.  

Example: Proposing Architecture Changes 

Suppose that there is a new requirement for the RPM system. 
Requirement X The system shall store patient Pulmonary Artery 
(PA) Pressure measured by the sensor in the central storage. 
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Figure 5 Changed Part of the RPM Architecture  
We first decide to change the architecture. We added a new sensor 
(Sensor 3) and new event data ports (e.g., sd_pa_blood_edp1, 
sdc_pa_blood_edp1, hpc_pa_blood_edp1) to measure and 
transmit the patient PA pressure (see Figure 5). Sensor 3 measures 
and transmits the patient PA pressure via the new event data ports 
and the threads (i.e., sdThr, sdcThr and sdmThr). The measured 
PA pressure is stored in the data store sd_blood_strg. The 
following is the LTL formula to verify the new requirement. 
LTL formula in Maude: (mc initializeThreads({ MAIN system 
Wholesys . imp }) |=u <> ((MAIN -> hpc -> sdm -> sdmTh) @ 
bloodStored) .) 
For the LTL formula, the Maude model checker returns a counter 
example. Figure 6 gives the last state of the counter example. 
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Figure 6 Last State of the Counter Example in the First Check 
In Figure 6, the DI data instance is at the buffer of the 
sd_pa_blood_edp3 data-in-port of the sdThr thread. Our approach 
automatically proposes two changes based on Table 2: Change the 
behavior of sdThr or Change the mode of sdThr. 
We inspect the requirement, architecture and proposed changes. 
The sdThr thread has no mode. Therefore, we decide to change 
the thread behavior by introducing new states and state transitions 
in the annex. We add the following state transition with the new 
state cvBloodPassed in the behavioral annex of the sdThr thread: 
        idle -[sd_pa_blood_edp3?(inMessage)]-> cvBloodPassed { 
sd_pa_blood_edp4!(inMessage); }; 
The new state transition is the following: If the sdThr thread is in 
the idle state and receives the measured data at the 
sd_pa_blood_edp3 event data port, then the received data is 
passed to the sd_pa_blood_edp4 event data port. We re-execute 
the model checker over the changed architecture. The LTL 
formula is again false and another counter example is returned. 
After the first check, we have three more iterations that we do not 
illustrate here because the architecture changes are changing the 
behavior of the thread as well. We add new states and new state 
transitions in the behavioral annex of the threads sdcThr and 
sdmThr after the second and third iterations. In the fourth check, 
the LTL formula is satisfied with an execution trace (Figure 7). 
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Figure 7 Last State of the Execution Trace 
In the last state of the execution trace, the DI data instance is 
stored and the bloodStored state is reached. Therefore, the 
architecture satisfies the new requirement. 

6. RELATED WORK 
Feng and Maletic [4] address the impact of architecture changes 
within the same architecture, but do not take into account 
requirements changes. Tang et al. [17] introduce an approach to 
capture casual relations between architectural elements and 
decisions using probabilities. These relations enable architects to 
identify impacted elements in architecture based on probability 
theory. However, this approach does not propose any change. Han 
[13] introduces an approach for change propagation based on 
dependencies of software artifacts. The approach is applied to 
identify the impact of design changes in design and source code. 

Slicing techniques are employed to understand dependencies 
using independent slices of the program [5]. Slicing is based on 
data and control flows and limit change propagation by 
identifying the scopes of changes. Architectural slicing [20] 
determines one slice of architecture for proposing changes. It 
answers the question of ‘If a change is made to a component c, 
what other components might be affected by c?’, while we address 
the question of ‘If a change is made to a requirement r, which 
components might be affected by r and what are the proposed 
changes for impacted components?’.  

In our previous work [11] [14], we proposed a change impact 
analysis approach which propagates requirements changes to 
other requirements by using requirements relations [6] [8] [9]. We 
also proposed another approach [12] to propagate requirements 
changes to architecture but it heavily relies on the types of 
requirements relations.  

7. CONCLUSIONS 
In this paper, we presented a rule-based approach that proposes 
changes for architecture given in AADL. The proposed changes 
are guidelines for the architect in the manual design activity. The 
approach is based on verification of functional requirements using 
Maude, a formal language based on rewriting logic. Our approach 
has some limitations and assumptions. The architecture change 
types may not be generalized for other ADLs. We do not consider 
changes such as adding new systems, processes or threads which 
may cause infinite number of solutions for changed requirements. 
Analyzing counter example is limited to the behavioral semantics 
of AADL in Maude. It is assumed there is a potential next state 
after the last state of the counter example. It is possible the last 
state might be the final state where no transition is fired further.    
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