

A Rule-based Approach for Evolution of AADL Models
based on Changes in Functional Requirements
Arda Goknil

University of Luxembourg

arda.goknil@uni.lu

Ivan Kurtev
Altran

ivan.kurtev@altran.com

Klaas van den Berg
University of Twente

vdberg.nl@gmail.com

ABSTRACT
The increasing complexity of software systems makes change
management costly and time consuming. To ensure the cost-
effective system longevity and endurance, it is crucial to apply
change management in the early stages of software development.
In this paper, we introduce a rule-based approach to make
software architecture evolving based on counter examples
provided by a model checker for violated, changing functional
requirements. The approach works on software architecture in
AADL and is based on verifying functional requirements using
Maude model checker. Our goal is to provide guidelines to the
architect about potential changes. Using an industrial example, we
show how our approach helps in determining changes to produce
a new version of the architecture.

CCS Concepts
• Software and its engineering Software evolution;

Keywords
Software Architecture; Change Management; AADL; Maude.

1. INTRODUCTION
The requirements of software systems are subject to changes due
to newly emerging business goals and to changes in the systems’
operational environment. The increasing system complexity
makes change management costly and time consuming. Even a
single requirements change may have a significant impact on the
system. To reduce the cost of changes, it is crucial to analyze
requirements changes as early as possible during software
development, and to propagate them to lower-level artifacts.

Considerable research has been devoted to the analysis of
requirements and design changes on lower-level artifacts such as
source code and test cases. For instance, Briand et al. [2] propose
an approach to support test selection from regression test suites
based on the change analysis of object-oriented designs. Gallagher
et al. [5] employ program slicing to delineate the effects of

changes in source code. Mens et al. [16] discuss the need of
tracing the architecture to the implementation so that any
architecture change is reflected in the implementation. Less
attention has been paid to the analysis of requirements changes on
high-level design artifacts such as architecture. There are works
[15] dealing with architecture evolution, but mainly focus on
architecture refactoring. The analysis of requirements changes on
architecture are beneficial due to several reasons. Immediate
identification of source code changes caused by requirements
changes can be difficult since there is an abstraction gap between
requirements and code. Architecture is at a higher level of
abstraction and can be employed for automated code generation.
The system sustainability largely depends on the architecture
sustainability. Managing architecture evolution is crucial to
ensure the cost-effective architecture longevity and endurance,
i.e., the architecture sustainability.

In this paper, we present an approach that proposes changes for
software architecture given in Architecture Analysis & Design
Language (AADL) when the architecture does not satisfy
new/changed functional requirements. The approach is based on
verifying functional requirements on the software architecture.
The verification output is a counter example if the requirements
are not satisfied. The counter example is used together with a
classification of architecture changes to identify changes for the
architecture. The identified changes are guidelines for the
architect during the manual design activity. By considering these
changes, the architect manually produces a new version of the
architecture that possibly satisfies the requirements.

We use AADL because it is an industry-driven language proposed
by companies in different domains and because of the availability
of its formal behavioral semantics. We employ behavioral
semantics for a part of AADL [19] expressed in rewriting logic
supported by the Maude language and tools [3]. Having the
formal semantics makes the AADL models executable and enables
the formal verification of functional requirements on the
architecture, which is also employed in our previous work [7] [10]
to generate traces between requirements and architecture. The
verification uses the discrete event simulation, which introduces
the notion of events, states, and state space. The architecture is
executed and a state space is produced. A state describes the loci
of data values within the architecture. Two states are connected by
a transition encoded by a transition rule, while all states are
captured by the state space. A counter example is an ordered set
of states which are generated when the requirement is not satisfied
in the verification. There is no transition rule applicable (i.e., term
rewrite rules and equations in Maude) in the last state of the
counter example. A state transition rule is fired if its left-hand side
pattern matches the current state. The next state is formed based

on the right-hand side of the transition rule. The main idea behind
our approach is to make such changes in the architecture that
make the application of some transition rules possible in the last
state of the counter example. Changes can be applied iteratively
until the requirement is eventually satisfied.

The paper is structured as follows. Section 2 gives the
background. Section 3 introduces an industrial example used in
the following sections. In Section 4, we give the approach
overview, while we present the details in Section 5. Section 6
describes the related work, and Section 7 concludes the paper.

2. BACKGROUND
In this section we first give the AADL basics, the main language
elements, and the graphical notation (Section 2.1). After Maude is
summarized (Section 2.2), we present a brief introduction of the
behavioral semantics of AADL in Maude (Section 2.3).

2.1 Preliminaries on AADL
AADL [1] is an industrial standard to describe performance-
critical embedded real-time systems in avionics, automotive,
medical, and robotics domains.

In AADL, a system
is given as a
hierarchy of
hardware and
software
components. A
component contains
interfaces with
input/output ports,
subcomponents and
their interaction, and
other type-specific
properties. At the
top-level, there is
system component,
containing other

system components as well as of hardware and software
components. Hardware components processor scheduling and
executing threads, memory storing code and data, device for
sensors and actuators, and bus connecting processors, memory,
and devices. Software components are thread representing a unit
of concurrent execution, thread group used to create a hierarchy
among threads, process for protected memory accessed by its
thread subcomponents, subprogram representing a piece of source
code, data for data types, data store storing data, and data access
for access to the stored data.
There are three types of ports: data, event and event-data. Data
ports are for data transmissions without queuing while event ports
are for queued communications. Connectors between data ports
are either immediate or delayed. Event data ports are for message
transmission with queuing (see Figure 1 for the AADL notation).
An AADL model specifies how different components are
integrated to form a complete system. The AADL standard [1]
includes behavioral semantics for exchange and control of data,
including message passing, event passing, synchronized access to
shared components, thread scheduling protocols, timing
requirements, and remote procedure calls. A mode abstraction is
a configuration of components, connections, and property value

associations. Modes represent alternative operational states of a
system or component such as a thread or subprogram [1].
A thread is the main unit for modeling the concurrent execution.
Its behavior can be given as a state machine. In AADL, thread
behavior is typically described using AADL’s behavior annex,
which models programs as transition systems with local state
variables. A thread state can be initial, active, inactive, or
completed. In the annex, a variety of execution properties can be
assigned to threads, including timing (e.g., worst case execution
times), dispatch protocols (e.g., periodic, aperiodic, etc.), memory
size, and processor binding [1].

2.2 Rewriting Logic and Maude
Maude is a language supporting both membership equational
logic and rewriting logic [3]. Rewriting logic is about concurrent
change based on state and concurrent computations. Membership
equational logic is a sub logic of rewriting logic [3] where atomic
sentences are equalities t = tƍ and membership assertions in the
form t: s, stating that a term t has a sort s.

A Maude module is in the form (�, E U A, R) where � is a
signature, E is a set of equations, and A is a set of equational
axioms. R is a collection of labeled (conditional) rewrite rules
denoting transitions in a state space. Rewrite rules are universally
quantified by the variables appearing in the terms given as a
signature. In object-oriented Maude, terms are given in the form
of classes and objects.

Class C | att1 : s1 , … , attn : sn .
< O : C | att1 : val1 , … , attn : valn >

where a class C is with the attributes att1 to attn of the sorts s1 to sn
and an object O of the class C with the values val1 to valn of the
attributes att1 to attn. The Maude syntax has three statements:
equations (the keywords eq and ceq), membership (the keywords
mb and cmb) stating that a term has a sort, and rewrite rules (the
keywords rl and crl). The keywords var and vars are used to
declare mathematical variables. A conditional rewrite rule is given
in the following form.

crl [l] : { t } => { tƍ } if cond .
where l is a label for the rewrite rule and cond represents the
condition. The rewrite rule specifies a transition from a match of t
(left-hand) to a match of tƍ (right-hand).

2.3 Behavioral Semantics of AADL in Maude
The AADL standard is given in English and the behavioral
semantics in the standard is ambiguous due to the use of natural
language. It is possible to have multiple interpretations of the
semantics. To avoid ambiguities and support formal verification
in AADL models as part of our approach, we use the behavioral
semantics of AADL models given in object-oriented real-time
Maude by Ölveczky et al. [19]. Listing 1 gives the representation
of an AADL component with an object-oriented style in Maude.

Listing 1 AADL Component Representation in Maude
1 class Component | features : Configuration, subcomponents : Configuration,
2 connections : ConnectionSet, properties : Properties,
3 modes : ModeTransitionSystem, inModes : ModeNameSet .
4 class System . subclass System < Component .

The semantic definitions are given mainly as equations and
rewriting rules in Maude. They can be considered as a formal

Figure 1 Graphical Notation for AADL

semantics for AADL and an interpretation of what the informal
and ambiguous descriptions in the AADL standard mean [19]. We
only give the semantics of message passing along a level-up
connection in AADL (Listing 2). The reader is referred to [19] for
the details of the AADL behavioral semantics.
The message transmission between ports via a series of
connections is implemented as equations [19]. The equation gives
the message passing semantics from an out port (P1) of a
subcomponent (C1) to an out port (P) of a component (C)
containing the subcomponent along a connection (C . C1 . P1 - ->
C . P). By applying the equation, the port P now has the value
transfer(ML), and the subcomponent’s port (P1) buffer is empty.
Listing 2 Maude Equation for Message Passing between Ports
1 op transfer : MsgList -> MsgList [ctor] .
2 vars C C1 C2 : ComponentId . vars P P1 P2 : PortId .
3 vars PORTS PORTS2 OTHER-COMPONENTS : Configuration .
4 vars ML ML' : MsgList . var CONXS : ConnectionSet .
5 eq < C : Component | features : < P : OutPort | buffer : nil > PORTS,
6 subcomponents : < C1 : Component |
7 features : < P1 : OutPort | buffer : transfer(ML) > PORTS2 >
8 OTHER-COMPONENTS, connections : (C1 . P1 --> P) ; CONXS >
9 = < C : Component | features : < P : OutPort | buffer : transfer(ML) > PORTS,
10 subcomponents : < C1 : Component | features : < P1 : OutPort
11 | buffer : nil> PORTS2 > OTHER-COMPONENTS > .

3. EXAMPLE: REMOTE PATIENT
MONITORING SYSTEM
We use the Remote Patient Monitoring (RPM) system to illustrate
our approach. The system was developed by a Dutch company
and had already been running when we started studying it. The
goal is to enable monitoring patients’ conditions such as blood
pressure, heart rate, and temperature (see Table 1).

Table 1 Some of the Requirements for the RPM System
R1 The system shall measure temperature from a patient.

R2 The system shall measure blood pressure from a patient.

R3 The system shall measure blood pressure and temperature from a patient.

R4 The system shall store temperature measured by the sensor in the central
storage.

R5 The system shall store patient blood pressure measured by the sensor in the
central storage.

R6 The system shall store data in the central storage.

R7 The system shall warn the doctor when the temperature threshold is violated.

R8 The system shall generate an alarm if the temperature threshold is violated.

R9 The system shall show the doctor the temperature alarm at the doctors’
computers.

R10 The system shall store all generated temperature alarms in a central storage.

R11 The system shall enable the doctor to set the temperature threshold for a
patient.

R12 The system shall enable the doctor to retrieve all stored temperature
measurements for a patient.

R13 The system shall allow retrieving the stored temperature alarms for a patient.

R14 The system shall store patient temperature measured by the sensor in the
central storage and it shall warn the doctor when the temperature threshold is
violated.

R15 The system shall store patient Central Venous Pressure (CV Pressure)
measured by the sensor in the central storage.

The architecture is derived by reverse engineering the source code
of the RPM system (Figure 2). Figure 2 shows only the most
abstract components (system and process in AADL). SD (Sensor
Device) contains sensors carried by the patient. The sensors
perform measurements at a regular interval. SD sends the
measurements to HPC (Host Personal Computer) through SDC
(Sensor Device Coordinator). HPC contains SDM (Sensor Device
Manager), AS (Alarm Service) and WS (Web Server) process
subcomponents. SDM stores measurements and alarms in data
stores (Temp_alarms and Temp_Meas) for temperature. WS serves
as a web-interface for the doctors. AS forwards alarms to CPC
(Client Personal Computer) for the doctors to monitor patients.
The AR (Alarm Receiver) process in CPC receives alarms from AS
and notifies the doctor. The WC (Web Client) process uses WS to
retrieve measurements and alarms stored by SDM.

Figure 2 Overview of the RPM Architecture
The RPM architecture has also thread and subprogram
components. The system computation is modeled as subprogram
and thread behavior. Subprogram and thread behavior is given
with a finite set of states and a set of state variables in the
behavioral annex. Listing 3 gives the annex of the behavior of
sdmThr in SDM for storing blood pressure measurements.

Listing 3 AADL Annex for Thread Behavior
1 thread sdmThr
2 features sdm_blood_edp2: in event data port Behavior::integer;
3 sdm_blood_strg: out event data port Behavior::integer;
4 properties Dispatch_Protocol => aperiodic;
5 end sdmThr;
6 thread implementation sdmThr.i
7 annex behavior_specification {**
8 states s0: initial complete state; bloodStored: complete state;
9 state variables inMessage: Behavior::integer;
10 transitions sdm_blood_edp2?(inMessage)]->
11 bloodStored { sdm_blood_strg!(inMessage); }; **};
12 end sdmThr.i;

sdmThr has the event data ports sdm_blood_edp2 (Line 2) and
sdm_blood_strg (Line 3) for blood measurements. The annex
gives a transition system with state variables where each transition
contains a guard (Lines 10-11) for the existence of events/data in
the input ports (sdm_blood_edp2), and for the value of the data
received (inMessage). The thread is activated upon receiving the
input (Line 4). It has s0 as the initial state and bloodStored as the
complete state (Line 8). If the thread is in the s0 state and receives
the measured data in sdm_blood_edp2, then the received data is
stored via sdm_blood_strg while the bloodStored state is reached.

4. OVERVIEW OF THE APPROACH
The approach is based on verifying functional requirements on
software architecture. The output of the verification is a counter

example if the input requirement to be verified is not satisfied by
the architecture. The counter example is used together with a
change classification to automatically propose architecture
changes. As we already discussed, the main idea behind the
approach is to make such changes in the architecture that make
the application of some transition rules possible in the last state of
the counter example. The counter example analysis has the
following limitations and assumptions.

• Analyzing the counter example in our approach is limited to
the behavioral semantics of AADL given in [19]. The
semantics mostly deals with passing & storing data in a data
flow, dispatching & executing threads, and switching modes,
which are used to identify architecture changes. We need
different architecture change types for different architecture
description languages with different versions of semantics.

• Architecture changes in our approach are limited to the
possible missing parts of the architecture for mainly data
flow and thread execution. Designing architecture is a
creative process. There are infinite designs that satisfy
requirements for a given project. Therefore, changes over the
architecture are infinite. We do not consider changes such as
adding new systems, processes or threads which may cause
infinite number of solutions for changed requirements.

• It is assumed that, with changes in the architecture, it is
possible to have a next state from the last state of the counter
example. It is possible that the last state might be the final
state and there is no architecture change which makes the
application of some transition rules possible in the last state.
In this case, the architect should check all the states in the
counter example to change the architecture. Even if the last
state is not the final state, changing the architecture to enable
a next state may not produce an architecture that satisfies the
changed requirement. The architect may need iterations for
verifying the requirement and changing the architecture.

Verification of Functional Requirements & Proposing Architectural Changes

Input
Reformulated
Requirement

MOMENT2-AADL Plug-in
(AADL-Maude Translator)

Counter
Example
Analyzer

Model
Checker in

Maude

Input
Architecture

Model

Maude
Specification

Architecture
Model with

Execution Trace or
Counter Example

Output Proposed
Architectural

Changes

Figure 3 Overview of the Tool Support
The approach contains three components (the rounded boxes in
Figure 3). The Open-Source AADL Tool Environment (OSATE)
– Topcased (http://www.topcased.org) includes an AADL front-
end which provides plug-ins to support architecture analysis
capabilities. We employ MOMENT2-AADL [19], an OSATE
plug-in, to generate the Maude representation of AADL models
for verification. It takes the architecture model in AADL as input
and produces the Maude specification as an intermediate output
(Figure 3). The architecture in AADL is transformed to a Maude
term. The generated Maude specification contains AADL
behavioral semantics given as rewrite rules and equations [19].

The verification is performed by the model checker in Maude.
Maude is equipped with an explicit-state linear temporal logic
(LTL) model checker analyzing whether all the behaviors from the
initial state satisfy an LTL formula. Real-Time Maude extends the
Maude model checker for real-time properties such as execution
time. Our approach does not consider real-time properties.
Counter Example Analyzer in Figure 3 parses the counter example
and analyzes its last state to identify changes using the change
classification and the AADL behavioral semantics.

5. RULE-BASED ARCHITECTURE
EVOLUTION
This section details the approach. Section 5.1 explains the
verification of functional requirements. In Section 5.2 we present
the use of counter example to propose architecture changes.

5.1 Verification of Functional Requirements
The purpose is to check if functional requirements are correctly
implemented in the architecture. In our previous work [7] [10],
we already give a detailed description of the verification of
functional requirements since we also use the verification output
(i.e., execution trace and counter example) to generate traces
between requirements and architecture. In this section, we revisit
the verification employing the Maude model checker (Figure 4).
The verification is represented by the Satisfies and ConformsTo
relations in Figure 4. ConformsTo implies that the state space
captures the specified properties. We have the following artifacts:

Figure 4 Verification of Functional Requirements

Property Specifications in Maude is the formal description of the
required behavior of the architecture. The requirements are
reformulated as properties in terms of the solution, which is the
architecture (reformulate and uses). These properties are checked
by the model checker. The property specification can use any
logic such as Linear Temporal Logic (LTL), First-Order Logic
(FOL), or Computation-Tree Logic (CTL). Our approach uses the
property specification feature of Maude, which is limited to LTL.

The presence of the AADL behavioral semantics in Maude makes
the AADL models executable. The architecture is executed and a
state space is produced (simulate). This execution simulates the
behavior of the system on the architecture level to see how the
system will work. Discrete event simulation, which introduces the
notion of events, states, and state space, is used. A state describes
the loci of data values within the architecture. Two states are
connected by a transition and all states are captured by the state
space. The verification result might be a counter example or an
execution trace. An execution trace is the ordered set of states
which are generated when the reformulated requirement is
satisfied. A counter example is the ordered set of states generated
when the reformulated requirement is not satisfied.

5.2 Proposing Architecture Changes
We identified a set of architecture evolution rules for AADL by
using the AADL semantics in Maude. Each rule is a pair of a
pattern matching the last state of the counter example and a set of
proposed architectural changes. A pattern in the rule is a
configuration of architecture elements such as data port, thread,
and data. When the verification output is a counter example, our
approach searches patterns, given in the rules, in the last state of
the counter example, and proposes the corresponding architecture
changes for matched patterns if any (Counter Example Analyzer
in Figure 3). Table 2 gives some architecture evolution rules. We
give the complete set of rules in the supplementary material [18].

Table 2 Some of the Architecture Evolution Rules
Patterns Proposed Architecture Changes

Event/Data M1 at the
buffer of the (event)
data-in-port of System
S1

Add connection to the (event) data-in-port
of Subsystem SS1 of System S1
Add (event) data-in-port to Subsystem
SS1 of System S1 & Add connection to
the added (event) data-in-port of
Subsystem SS1
Add connection to the (event) data-in-port
of Process P1 of System S1
Add (event) data-in-port to Process P1 of
System S1 & Add connection to the added
(event) data-in-port of Process P1
Change mode of System S1

Event/Data M1 at the
buffer of the (event)
data-in-port of Process
P1

Add connection to the (event) data-in-port
of Thread T1 of Process P1
Add (event) data-in-port to Thread T1 of
Process P1 & Add connection to the
added (event) data-in-port of Thread T1
Change the mode of Process P1

Event/Data M1 at the
buffer of the (event)
data-in-port of Thread
T1

Change the behavior of Thread T1

Change the mode of Thread T1

Event/Data M1 at the
internalbuffer of the
(event) data-in-port of
Thread T1 & Thread
T1 is in the active state

Change the mode of Thread T1

Change the behavior of Thread T1

The first column represents the patterns. In the second column we
give the architecture change alternatives to be proposed when the
pattern matches the last state in the counter example. For instance,
the architect may change either the behavior or mode of the thread
if the last state in the counter example has an event/data at the
buffer of the event data-in-port of the thread. We followed two
steps to identify the rules in Table 2.

• Identifying patterns of the architecture evolution rules. By
analyzing the right-hand side patterns of the state transition
rules, we identified architecture configurations that need
changes to fire further transition rules in the counter
example. These configurations are with no more than three
architecture elements (e.g., data at the buffer of a thread) and
form the patterns in the architecture evolution rules. Table 3
gives the transition rule classification with those patterns.

• Deriving architecture changes for the patterns. We
compared the left-hand side of the state transition rules with
our patterns to determine change alternatives in the
architecture evolution rules. For instance, after the thread

dispatch, the next transition rule is the execution of a thread.
If a thread is dispatched but not executed in the last state of
the counter example (Dispatching Thread T1 in Table 3), we
can apply some changes to make satisfied the conditions of
the state transition rule for thread execution (the last row of
Table 2). To make the dispatched thread executed, either the
thread behavior or thread mode should be changed. Table 4
lists the architecture change types.

Table 3 AADL State Transition Rules and Patterns in the
Architecture Evolution Rules

State Transition
Rules in AADL

Patterns in the Architecture Evolution
Rules

Passing Message
M1

Event/Data M1 at the buffer of the (event)
data-in-port of System S1
Event/Data M1 at the buffer of the (event)
data-in-port of Process P1
Event/Data M1 at the buffer of the (event)
data-in-port of Thread T1
Event/Data M1 at the buffer of the (event)
data-out-port of Device D1
Event/Data M1 at the buffer of the (event)
data-out-port of System S1
Event/Data M1 at the buffer of the (event)
data-out-port of Process P1

Dispatching
Thread T1

Event/Data M1 at the internalbuffer of the
(event) data-in-port of Thread T1 & Thread
T1 is in active state
Thread T1 is in the active state

Executing Thread
T1

Event/Data M1 at the buffer of the (event)
data-out-port of Thread T1
& Thread T1 is in the completed state
Thread T1 is in the completed state

Switching the
Mode of Thread
T1

Thread T1 is in the inactive state
Thread T1 is in the completed state

Table 4 Change Types for AADL
There are more change
types for AADL such as
adding new systems and
threads. The number of
solutions is infinite for
designing architecture.
We do not consider
changes (e.g., adding
new systems, processes
or threads) which may
lead to infinite number
of solutions.

In the following, we use one of the state transition rules in Table 3
(i.e., Passing Message M1 - Event/Data M1 at the buffer of the
(event) data-in-port of Thread T1) to explain how we identify the
architecture evolution rules.
Listing 4 is one of the state transition rules of Passing Message
M1. It is for transmission of a data along a level-down connection
C.P --> C.C1.P1 from P data-in-port of C component to P1 data-
in-port of C1 subcomponent of C component. As a result of
applying the rule to a model where C1 is a thread, P1 data-in-port
of C1 thread has the data (Line 10) and the P data-in-port’s buffer
is empty (Line 9).

Change Types
Add (event) data-in-port to System
Add (event) data-out-port to System
Add (event) data-in-port to Process
Add (event) data-out-port to Process
Add (event) data-in-port to Thread
Add (event) data-out-port to Thread
Add connection to (event) data-in-port
Add connection to (event) data-out-port
Change the mode of System
Change the mode of Process
Change the mode of Thread
Change the behavior of Thread

The possible transition is dispatching the thread when the data is
at the buffer of (event) data-in-port of the thread. If the last state
of the counter example contains the data at the data-in-port of a
thread, an architecture change has to make possible the
application of the state transition rule for the thread dispatch.

Listing 4 Maude Equation for Passing Message M1
1 op transfer : MsgList -> MsgList [ctor] .
2 vars C C1 : ComponentId . vars P P1 : PortId .
3 vars PORTS PORTS2 OTHER-COMPONENTS : Configuration .
4 vars ML ML’ : MsgList . var CONXS : ConnectionSet .
5 eq < C : Component | features :
6 < P : InPort | buffer : transfer(ML) > PORTS, subcomponents :
7 < C1 : Component | features : < P1 : InPort | buffer : ML' > PORTS2 >
8 OTHER-COMPONENTS, connections : (P --> C1 . P1) ; CONXS >
9 = < C : Component | features : < P : InPort | buffer : nil > PORTS,
10 subcomponents : < C1 : Component | features : < P1 : InPort | buffer : ML' ::
11 transfer(ML) > PORTS2 >. OTHER-COMPONENTS > .

There are two state transition rules for thread dispatch: periodic
and aperiodic thread dispatch. Listing 5 gives the conditional
rewrite rule [19] in Maude for the aperiodic thread dispatch.

Listing 5 Rewrite Rule for the Aperiodic Thread Dispatch
1 var O : ThreadId . var P : PortId. var PROGRAM : ThreadBehaviour .
2 var MTS : ModeTransitionSystem . var TN : ThreadName .
3 var IMPL : ImpleName . var PORTS : Configuration . vars ML ML’ : MsgList .
4 crl [aperiodic-incoming-message] :
5 < O : Thread | properties : aperiodic-dispatch ; TP, used : U, modes : MTS,
6 deactivated : false, features : (< P : InEventDataThreadPort | buffer :
7 ML :: transfer(ML') > PORTS), status : completed, behavior : PROGRAM,
8 threadType : TN, implementationType : IMPL >
9 = < O : Thread | used : true, features : dispatchInputPorts(< P :
10 InEventDataThreadPort | buffer : ML :: ML' > PORTS), status : active >
11 if someTransEnabled(transitions(TN, IMPL), PROGRAM, dispatchInputPorts
12 (< P : InEventDataThreadPort | buffer : ML :: ML' > PORTS)) .

The rule has the left-hand side pattern (Lines 5-8) with the
condition part (Lines 11-12). To fire the rule for the aperiodic-
incoming-message, the following conditions should hold: (1)
thread is active (Line 6); (2) thread is in the complete state (Line
7); (3) some transitions in the behavioral annex of the thread are
enabled (Lines 11-12); (4) there is an incoming data at the buffer
of the data-in-port of the thread (Lines 12).
From the equation for Passing Message M1, we already know that
there is a data at the buffer of the data-in-port of the thread.
Therefore, architecture changes, which make the conditions 1, 2
and 3 hold, should be proposed. For these conditions, there are
two architecture changes: changing the mode of the thread and
changing the behavior of the thread. The thread may have
different states and transitions in different modes. It might be
activated and its state might be set to complete by changing the
mode of the thread. The thread behavior is coded as states, state
transitions, and thread activation in the behavioral annex.
Changing the thread behavior (the behavioral annex) may activate
the thread and set its state to complete. If no transition in the
behavioral annex is enabled (the condition 3), either some of the
transitions or the mode of the thread should be changed. There
might be multiple applicable state transition rules which effect
different parts of the architecture. The architect should analyze
each proposed change to decide which one to implement.

Example: Proposing Architecture Changes

Suppose that there is a new requirement for the RPM system.
Requirement X The system shall store patient Pulmonary Artery
(PA) Pressure measured by the sensor in the central storage.

SD SDC HPC/SDM

Sensor2

Sensor3

sdThr sdcThr sdmThr

sd_pa_blood_edp1 sdc_pa_blood_edp1 hpc_pa_blood_edp1

sdm_blood_strg

Figure 5 Changed Part of the RPM Architecture
We first decide to change the architecture. We added a new sensor
(Sensor 3) and new event data ports (e.g., sd_pa_blood_edp1,
sdc_pa_blood_edp1, hpc_pa_blood_edp1) to measure and
transmit the patient PA pressure (see Figure 5). Sensor 3 measures
and transmits the patient PA pressure via the new event data ports
and the threads (i.e., sdThr, sdcThr and sdmThr). The measured
PA pressure is stored in the data store sd_blood_strg. The
following is the LTL formula to verify the new requirement.
LTL formula in Maude: (mc initializeThreads({ MAIN system
Wholesys . imp }) |=u <> ((MAIN -> hpc -> sdm -> sdmTh) @
bloodStored) .)
For the LTL formula, the Maude model checker returns a counter
example. Figure 6 gives the last state of the counter example.

SD SDC HPC/SDM

Sensor2

Sensor3

sdThr sdcThr sdmThr

sd_pa_blood_edp1 sdc_pa_blood_edp1
hpc_pa_blood_edp1

sdm_blood_strgsd_pa_blood_edp3

DI

sd_pa_blood_edp4

sdPrc

sd_pa_blood_edp2

Figure 6 Last State of the Counter Example in the First Check
In Figure 6, the DI data instance is at the buffer of the
sd_pa_blood_edp3 data-in-port of the sdThr thread. Our approach
automatically proposes two changes based on Table 2: Change the
behavior of sdThr or Change the mode of sdThr.
We inspect the requirement, architecture and proposed changes.
The sdThr thread has no mode. Therefore, we decide to change
the thread behavior by introducing new states and state transitions
in the annex. We add the following state transition with the new
state cvBloodPassed in the behavioral annex of the sdThr thread:
 idle -[sd_pa_blood_edp3?(inMessage)]-> cvBloodPassed {
sd_pa_blood_edp4!(inMessage); };
The new state transition is the following: If the sdThr thread is in
the idle state and receives the measured data at the
sd_pa_blood_edp3 event data port, then the received data is
passed to the sd_pa_blood_edp4 event data port. We re-execute
the model checker over the changed architecture. The LTL
formula is again false and another counter example is returned.
After the first check, we have three more iterations that we do not
illustrate here because the architecture changes are changing the
behavior of the thread as well. We add new states and new state
transitions in the behavioral annex of the threads sdcThr and
sdmThr after the second and third iterations. In the fourth check,
the LTL formula is satisfied with an execution trace (Figure 7).

SD SDC HPC/SDM

Sensor2

Sensor3

sdThr sdcThr sdmThr

sd_pa_blood_edp1
sdc_pa_blood_edp1 hpc_pa_blood_edp1

sdm_blood_strg
DI

Figure 7 Last State of the Execution Trace
In the last state of the execution trace, the DI data instance is
stored and the bloodStored state is reached. Therefore, the
architecture satisfies the new requirement.

6. RELATED WORK
Feng and Maletic [4] address the impact of architecture changes
within the same architecture, but do not take into account
requirements changes. Tang et al. [17] introduce an approach to
capture casual relations between architectural elements and
decisions using probabilities. These relations enable architects to
identify impacted elements in architecture based on probability
theory. However, this approach does not propose any change. Han
[13] introduces an approach for change propagation based on
dependencies of software artifacts. The approach is applied to
identify the impact of design changes in design and source code.

Slicing techniques are employed to understand dependencies
using independent slices of the program [5]. Slicing is based on
data and control flows and limit change propagation by
identifying the scopes of changes. Architectural slicing [20]
determines one slice of architecture for proposing changes. It
answers the question of ‘If a change is made to a component c,
what other components might be affected by c?’, while we address
the question of ‘If a change is made to a requirement r, which
components might be affected by r and what are the proposed
changes for impacted components?’.

In our previous work [11] [14], we proposed a change impact
analysis approach which propagates requirements changes to
other requirements by using requirements relations [6] [8] [9]. We
also proposed another approach [12] to propagate requirements
changes to architecture but it heavily relies on the types of
requirements relations.

7. CONCLUSIONS
In this paper, we presented a rule-based approach that proposes
changes for architecture given in AADL. The proposed changes
are guidelines for the architect in the manual design activity. The
approach is based on verification of functional requirements using
Maude, a formal language based on rewriting logic. Our approach
has some limitations and assumptions. The architecture change
types may not be generalized for other ADLs. We do not consider
changes such as adding new systems, processes or threads which
may cause infinite number of solutions for changed requirements.
Analyzing counter example is limited to the behavioral semantics
of AADL in Maude. It is assumed there is a potential next state
after the last state of the counter example. It is possible the last
state might be the final state where no transition is fired further.

Acknowledgments
Financial support was provided by NWO (www.nwo.nl) and the
National Research Fund, Luxembourg (FNR/P10/03).

8. REFERENCES
[1] http://www.sei.cmu.edu/reports/06tn011.pdf.

[2] L. C. Briand, Y. Labiche, and S. He. Automating Regression Test
Selection based on UML Designs. Information and Software
Technology, 51(1):16-30, 2009.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J.
Meseguer, and C. Talcott. All about Maude - A High-Performance
Logical Framework. LNCS, 4350, 2007.

[4] T. Feng and J. I. Maletic. Applying Dynamic Change Impact
Analysis in Component-based Architecture Design. SNPD’06, 43-
48, 2006.

[5] K. B. Gallagher and J. R. Lyle. Using Program Slicing in Software
Maintenance. IEEE Transactions on Software Engineering,
17(8):751-761, 1991.

[6] A. Goknil, I. Kurtev, and K. van den Berg. A Metamodeling
Approach for Reasoning about Requirements. ECMDA-FA’08, 310-
325, 2008.

[7] A. Goknil, I. Kurtev, and K. van den Berg. Tool Support for
Generation and Validation of Traces between Requirements and
Architecture. ECMFA-TW’10, 39-46, 2010.

[8] A. Goknil, I. Kurtev, K. van den Berg, and J.-W. Veldhuis.
Semantics of Trace Relations in Requirements Models for
Consistency Checking and Inferencing. Software and System
Modeling, 10(1):31-54, 2011.

[9] A. Goknil, I. Kurtev, and J.V. Millo. A Metamodeling Approach for
Reasoning on Multiple Requirements Models. EDOC’13, 159-166,
2013.

[10] A. Goknil, I. Kurtev, and K. van den Berg. Generation and
Validation of Traces between Requirements and Architecture based
on Formal Trace Semantics. Journal of Systems and Software,
88:112-137, 2014.

[11] A. Goknil, I. Kurtev, and K. van den Berg. Change Impact Analysis
for Requirements: A Metamodeling Approach. Information and
Software Technology, 56(8):950-972, 2014.

[12] A. Goknil, I. Kurtev, and K. van den Berg. A Rule-Based Change
Impact Analysis Approach in Software Architecture for
Requirements Changes. arXiv preprint arXiv:1608.02757, 2016.

[13] J. Han. Supporting Impact Analysis and Change Propagation in
Software Engineering Environments. STEP'97, 172-182, 1997.

[14] D. ten Hove, A. Goknil, I. Kurtev, K. van den Berg, and K. de
Goede. Change Impact Analysis for SysML Requirements Models
based on Semantics of Trace Relations. ECMDA-TW’09, 17-28,
2009.

[15] T. Mens and T. D’Hondt. Automating Support for Software
Evolution in UML. Automated Software Engineering, 7:39-59,
2000.

[16] T. Mens, J. Magee, and B. Rumpe. Evolving Software Architecture
Descriptions of Critical Systems. Computer, 43:42-48, 2010.

[17] A. Tang, Y. Jin, J. Han, and A. Nicholson. Predicting Change
Impact in Architecture Design with Bayesian Belief Networks.
WICSA’05, 67-76, 2005.

[18] http://people.svv.lu/goknil/architecture/SupplementaryMaterialA.pdf

[19] P. C. Ölveczky, A. Boronat, and J. Mesequer. Formal Semantics and
Analysis of Behavioral AADL Models in Real-Time Maude.
FMOODS/FORTE’10, 47-62, 2010.

[20] J. Zhao, H. Yang, L. Xiang, and B. Xu. Change Impact Analysis to
Support Architectural Evolution. Journal of Software Maintenance:
Research and Practice, 14(5):317-333, 2002.

