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1. Introduction

The termword deafnesgKussmaul, 1877) denotes the inability to procasditory
speech input. The disorder is frequently obsermedinical aphasic syndromes, in
which it is part of complex impairments that al$i@et reading comprehension,
speech, and writing (e.g., Wernicke’s aphasia). IMmore rarely, selective

difficulties processing auditory verbal stimuli arleserved in the absence of
significant damage to the processing of visual &eskimuli. In these cases, the scope
of the auditory input disorder varies. In few patg it is restricted to speech input
processing (Albert & Bear, 1974; Coslett, Brash&areilman, 1984). The terrpure
word deafnesPWD) applies to these cases. More frequentlytiérals to
environmental noises, voices and music (e.g., PsranHagoort, Maassen, & Crul,
1991a; Semenza et al. 2012b; Slevc and Shell 201 8)ese latter cases, the term
auditory agnosidor generalized auditory agnogi& preferred (Engelien et al., 1995;
Fujii et al., 1990; Godefroy et al., 1995; MotomuYamadori, Mori & Tamaru, 1986;
Pan, Luo & Tsieh, 2004; Suh et al., 2012). (Theestarm, however, has been used to
denote also selective damage to non-verbal audit@gessing, as in Taniwaki,

Tagawa, Sato & lino, 2000).

In its literal meaning, the terpure word deafnesgenotes individuals with selective
damage to speech input processing and iné&acting comprehension, speech and
writing. Such cases are very rare (e.g., Takahetsdli 1992; Yaqub, Gascon, Al-
Nosha, & Whitaker, 1988), and in most cases thel lahs been applied to subjects
who, in addition to disproportionate damage to eurgli(as opposed to visual) verbal

input processing, and regardless of the scopeecdtiditory disorder, also suffer from



a variety of associated output deficits. In somigepés, the impairment is very mild
(e.g., LeGros Clark & Russell, 1938; Spreen, Be&dfincham, 1965; Barraquer-
Bordas, Pefia-Casanova & Pons-lrazazabal, 1980{iMi&82). More frequently,
obvious but not severe damage to writing and speedéscribed (e.g., Mott, 1907;
Marshall, Rappaport & Garcia-Bufiuel, 1985; Praamstiagoort, Massen & Crul,

1991; Miceli et al., 2008).

Selective disorders of auditory processing have lbegorted mostly in adults
following a stroke (for a review, see Simons & LamkRalph, 1999) and
occasionally in other neurological conditions, sashencephalitis (Arias et al., 1995;
Goldstein, 1974), primary progressive aphasia (Kit&oma, Sato, Homma, & Tsulji,
1998), multiple sclerosis (Tabira, Tsuji, NagashimNakajima, & Kuroiwa, 1981),
head trauma (Franklin, 1989), mitochondrial encéphgopathy (Miceli et al.,

2008), central pontine myelinolysis (Garde & Cow2§00) and Creutzfeldt-Jakob
disease (Tobias, Mann, Bone, de Silva, & lIronsid®®4). It has also been
documented in children with Landau-Kleffner diseé3aynes, Kegl, Brentari,

Kussmaul, & Poizner, 1998) and brain tumor (Pam,kK&Hsieh, 2004).

We report a case of pure word deafness (PWD) tlatfed a left temporal stroke.
Our subject suffers from a selective impairmenawditory speech processing. Her
recognition of environmental noises, voices andimigsspared, and reading
comprehension, speech and writing are preservedli¥¢ass our case in the context
of previous reports of subjects with selective impants of central auditory input

processing, and discuss the neural and functicass lof her disorder.

! The terminology used to refer to selective distsaé auditory processing is
inconsistent and controversial. Since a discussidhis issue is beyond the scope of
this manuscript, the interested reader is refeiwdtle reviews by Buchman, Garron,
Trost-Cardamone, Wichter, & Schwartz (1986) andd@isn& Lambon-Ralph (1999).



1.1. Selective disorders of auditory processingtduglateral lesions

The most frequent cause of selective auditory @msiog disorders is bilateral damage
to the temporal lobe (Geschwind, 1965; Poeppell28imons & Ralph, 1999). In
most patients, cortical damage is reported (I&heda, Ohkoshi, Mizusawa, & Shaji,
1995; Kazui, Naritomi, Sawada, Inoue, & Okuda, 1,99@rshall, Rappaport, &
Garcia-Bunuel, 1985; Praamstra, Hagoort, Maassebrug, 1991a; Tanaka,
Yamadori, & Mori, 1987). Lesion size in these casagyes from extensive disruption
of temporal, parietal and/or frontal regions (Dd&laa, Spinnler, & Vallar, 1979;
Ernest, Monroe, & Yarnell, 1977; Semenza et allL20to circumscribed damage to
primary auditory cortices (Déjérine & Sérieux, 18®iceli et al., 2008). In fewer
instances, lesions are entirely subcortical anecathe medial geniculate nucleus
(case 2 in Hayashi & Hayashi, 2007b; Motomura et18I86), the putamen
(Taniwaki, Tagawa, Sato, & lino, 2000), or midbratructures (Hoistad & Hain;
Jani, Laureno, Mark, & Brewer, 1991; Johkura, Matsto, Komiyama, Hasegawa,
& Kuroiwa, 1998; Meyer, Kral, & Zentner, 1996; Maegi Charette, Morse, & Baran,

2004; Pan et al., 2004; Vitte et al., 2002).

In bilateral cases, selective auditory processiagrders vary in severity, duration
and scope, depending on lesion size and site. Ts¢ severely impaired patients
present with so-callecortical deafnessin the face of normal or very mildly impaired
peripheral hearing, these subjects do not reaatidiitory stimuli and behave as if
they were deaf, even though they may erraticalkpawledge sounds (e.g. Garde &
Cowey, 2000; for a similar case and a review, s¥aehiza et al., 2012). Cortical

deafness frequently constitutes the presenting symp cases with acute onset



(e.q., stroke), but is rarely permanent (Barra®d@mdas, Pefia-Casanova, & Pons-
Irazazabal, 1980). More often it evolves, over aalde period of time, towards a less
severe auditory processing impairment (e.g. Add&osenberger, Winter, & Zollner,
1977; Michel, Peronnet, & Schott, 1980). In lesgese forms, patients react to
auditory stimuli but cannot process them accuratalynost cases verbal and non-
verbal sounds are affected (e.g., Auerbach, Alldakser, Alexander, & Albert,

1982; Ishii et al., 1995; Kazui et al., 1990; Matlet al., 1985), but occasional
reports of selective loss of speech input procesaie on record (Albert & Bear,
1974; Dalla Pria et al., 1979; Jones & Dinolt, 19%anshepolsky, Kelley, &
Waggener, 1973; Miceli et al., 2008; Shivashang8agshikala, Nagaraja, Jayakumar,

& Ratnavalli, 2001).

Since they typically suffer from extensive bilatdesions, subjects with persistent
selective auditory processing disorders usually sigfer from mild, associated

language deficits (Ernest et al., 1977; Mott, 19@¥En though language skills are
reported as being essentially spared in occasaasas (Chocholle, Chedru, Botte,

Chain, & Lhermitte, 1975; Le Gros Clark & Russé&®38).

In bilateral cases, selective disorders of auditopyt processing are ascribed to
direct damage to both auditory cortices (Auerbad.e1982; Déjérine & Sérieux,
1897; Miceli et al., 2008). In the case of subaaitiesions, they are attributed to
white matter damage preventing auditory input fre@aching primary and/or
associative auditory cortices and from there, laigguareas in the left hemisphere
(Patient 2 in Hayashi & Hayashi, 2007a; Motomuralgt1986; Taniwaki et al.,
2000). The mechanisms underlying poor auditory tigpacessing in the event of

bilateral damage are schematically representedgur& 1, left panel.



The observation that most cases occur following@ardamage to both hemispheres,
and the bilateral organization of the ascendingtandprojections (i.e. acoustic
information from one ear is projected to both leftd right primary auditory cortices)
have been considered as sufficiently significannfiodels of bilateral, domain-

general organization of the primary auditory cortex

These hypotheses assume that early acoustic mpubcessed by both auditory
cortices, but that an early, domain-general conutal asymmetry exists between
the two hemispheres, either because the left hémisps better equipped for the
processing of fast temporal changes and the ragtégdectral processing (Zatorre,
Belin, & Penhune, 2002), or because it is betteoared for acoustic sampling over
very short intervals, and the right for sampling@olonger intervals (Hickok &
Poeppel, 2007). On both accounts, the left hemrspseoetter suited for verbal input
processing because, as compared to non-verbal sogpekch is characterized by
faster spectral changes and requires samplingsbweter intervals. In support of the
proposed asymmetrical processing, hemisphericrdiffees were observed at the
macroanatomical level (Penhune, Zatorre, MacDorg&aldyans, 1996; v. Economo
& Horn, 1930); at the microanatomical level (Huts2003; Morosan et al., 2001;
Seldon, 1981); and in neuroimaging studies (Wagial., 2009; Zatorre et al., 2002)

— but, see Binder et al. (2000); Hickok & Poepj2€l(07) for contrasting evidence.

Both the spectro-temporal and the differential damggypothesis assume
that the levels of acoustic processing that feealanguage-specific (phonological)
representations are represented bilaterally. Toexethey easily account for the
behavioral features of bilateral PWD. They accomateadases showing generalized
disruption of auditory processing — when damageigre, all sources of auditory

input are affected (Adams et al., 1977; Earnestnfde, & Yarnell, 1977; Gazzaniga



et al., 1973; Lambert, Eustache, Lechevalier, R&3&ader, 1989; Marshall et al.,
1985; Miceli, 1982; Michel et al., 1980; Oppenheir&eNewcombe, 1978; Rosati et
al., 1982), as well as the disproportionate impaitrof speech processing observed
in some instances — recognition of incoming speeghires flawless processing of
fast temporal transitions, much more than neededdo-verbal sounds (Albert &
Bear, 1974; Auerbach et al., 1982; Miceli et a0Q&, Tallal & Newcombe, 1978).
They also accommodate the greater impairment cdammt vs vowel processing
frequently observed in PWD, as vowels are longdrranstly differ spectrally
(formant frequency), whereas consonants mostlgidiéimporally (formant
transitions) (Young, 2008). However, because tlssyme a quantitative rather than a
gualitative asymmetry, they also predict that PWWbuwdd occur following bilateral
damage — unilateral PWD should be exceptional amderiously compromise speech

perception (Hickok & Poeppel, 2007; Poeppel, 2001).

1.2. Selective disorders of auditory processing fiblliow unilateral lesions: a

disconnection syndrome?

Even though bilateral temporal damage is by fair thest frequent cause, cortical
acoustic disorders have also been described follp@aisingle, left temporal lesion
(usually a stroke). Speech was selectively affectesthme cases (Coslett, Brashear,
& Heilman, 1984; Hayashi & Hayashi, 2007b; Hemp&ilStengel, 1940; Nagafuchi
& Suzuki, 1993; Wang, Peach, Xu, Schneck, & Mag600), whereas both speech
and non-speech sounds were disrupted in othersGazganiga et al., 1973; Pasquier

etal., 1991; Suh et al., 2012).

In accounting for unilateral cases, a disconneati@ehanism has been proposed.



Lichtheim (1885) was first to attribute word deafagCase V) to the disconnection
of Wernicke’s area from both primary acoustic am@$, which would prevent
acoustic input from reaching intact left-hemisphegions critical for speech
comprehension. A few years later, Liepmann pubtighe first autopsy report of a
patient in whom a left temporal hemorrhage intetedoth the left acoustic
radiation and transcallosal connections from tgbktrhemisphere (Liepman, 1898;
Liepmann & Storch, 1902). In support of the disaaetion mechanism, Goldstein
(1974) reviewed seven cases with unilateral lesatrautopsy, originally described
by van Gehuchten & Goris (1901); Liepmann (1913)subject initially seen by
Wernicke; P6tzl (1919); Henschen (1920); Schustdiagerka (1926); Henneberg
(1926); Kleist (1934). The disconnection hypoth&ss maintained also by
Geschwind (1965) who, like Lichtheim and Liepmaattributed PWD to
strategically located temporal lesions that intetiipsilesional fibers connecting
Heschl’s gyrus to Wernicke’s area in the postesiguerior temporal gyrus, as well as
transcallosal fibers connecting these areas to tighit-hemisphere homologues. The
behavioral effect of such unilateral lesions wabddindistinguishable from that of
bilateral temporal damage: in either case, acouspiat from both hemispheres would
not reach language-specific areas in the left heineiee. These mechanisms are

schematized in Figure 1, right panel.

This account has been implicitly accepted in modateral cases. Since the early
autopsy reports, however, evidence of anatomicalotinection has been scarce. In
several patients, unilateral damage was assumely €mi the basis of clinical history
(Albert & Bear, 1974; Gazzaniga et al., 1973; SaffriMarin, & Yeni-Komshian,
1976a). These reports have no localizing valuspase cases whose clinical history

was consistent with a single stroke turned outateelbilateral neuroradiological



damage (e.g., Hayashi & Hayashi, 2007b).

In the absence of clear anatomical data, in seusikdteral cases the main argument
for disconnection relies on behavioral evidencenfdichotic listening tasks. In
healthy volunteers, simultaneous presentation ofpmiing verbal stimuli to both ears
(syllables, short words/non-words or digits) tyflicaesults in more accurate reports
of items delivered to the right, than to the left éHugdahl et al., 2003; Kimura,
1961) — the so-called Right-Ear Advantage (REA) €ffect has been attributed to
the facts that: a. each temporal lobe receivessticonput from both ears, but
crossed acoustic pathways prevail over uncrossttavags, and b. language-
dominant structures prevail functionally over hoagaus right-hemisphere structures
when speech stimuli must be processed. As a coasequin a dichotic listening
condition right-ear stimuli gain privileged accésseft-hemisphere areas critical for

speech processing (Kimura, 2011).

Consistent with the disconnection hypothesis, somiateral cases showed a reversal
of the REA (also called “left ear advantage” ogti ear suppression”) due to
extinction of stimuli presented to the right eag(gAlbert & Bear, 1974; Saffran,
Marin, & Yeni-Komshian, 1976; Stefanatos et al.020Wolmetz, Poeppel & Rapp,
2010, personal communication). This performancélpravas taken as behavioral
evidence of damaged right ear-left hemisphere pagbwand intact processing along
pathways connecting the left ear to the right atousrtex. In other words, an index
of functional disconnection was considered as exiddor_anatomical disconnection,

in the absence of conclusive anatomical evidence.

There is a problem with this view. On a strong \@r®f disconnection, two regions

A and B are “disconnected” when they are intact @athage is restricted to the fiber



pathways that link them. Under these circumstan&es)d B maintain their
functional specialization, except for the aspelatd tepend on their interconnections
(Catani & Mesulam, 2008). In most unilateral PWRBe&s however, damage involves
cortical and subcortical left temporal regions (eWolmetz, Poeppel, & Rapp, 2010;
Slevc, Martin, Hamilton, & Joanisse, 2011; StefasatGershkoff, & Madigan, 2005).
In the presence of damage to grey and white mattismot clear if cortical damage,
disconnection, or both cause PWD. In a subject miéissive, left-lateralized damage
to primary and associative acoustic cortices andWlke’s area but spared
transcallosal fibers, cortical damage was consalasethe more likely cause of PWD
(Slevc et al., 2011). Cases whose lesions are stensiwith disconnection as defined
earlier do exist, but are extremely rare (Liepmé&btorch, 1902; Schuster &
Taterka, 1926; Takahashi et al., 1992). Furtherptbese latter reports do not
provide data showing functional disconnection. Hemspeech processing in the left

hemisphere via residual intra- and inter-hemisghesnnections cannot be ruled out.

The present report focuses on a case of PWD cdnyskedt temporal ischemia.
Structural neuroimaging techniques were used tongcuct brain damage, and to
correlate the patient’s behavior to the neural sates Damage to primary and
associative acoustic cortices in the left templmiaé¢ was analyzed by an automatic
parcellation technique (Destrieux et al., 2010j tields measures of cortical
thickness and gyral volume. Damage to intrahemispla@d transcallosal
connections was studied by means of virtual digsetechniques based on diffusion
tractography and spherical deconvolution modeldl'@egua et al., 2007). Detailed
lesion reconstruction in unilateral PWD cases witldence of functional

disconnection can help establish if complete anaiaindisconnection is needed to



cause the disorder, and evaluate the relativeofatertical damage and of damage to
subcortical pathways in its pathogenesis. It can abntribute to the current debate

on the role of the left and right hemisphere initug input processing.

2. Neuropsychological Case Report

FO is a right-handed, native Italian, who suffeaedschemic stroke at age 38. She
owns a degree in accounting (13 years of educatam) holds a secretarial job in a
public company. She never complained of acoussiorders prior to her stroke. At
onset, FO felt as if she “had gone deaf”, and pelceived “garbled speech”.
Relatives reported fluent but “paragrammatic” speeith neologisms and paraphasic
(mostly phonemic) errors. In the following weeksbective hearing loss subsided,
and FO complained only of mild right hypoacousise&h difficulties also cleared
progressively. When she was assessed at 5 mordhemget, articulation was intact
during spontaneous narrative but speech rate wlased by long pauses. Errors
consisted of infrequent, self-corrected phonemreylaasias and paragrammatisms

(Supplementary material).

At the time of this study (3 years post-onset) jattive hearing loss had receded, but
FO still complained of problems with acoustic coetpgnsion. She reported that after
the stroke, she had started answering phone gapisitting the phone to her left ear
(instead of the right ear), due to poor right-eanuestic comprehension. She found
telephone conversations difficult, and had seveoblpms understanding surnames

and numbers. Speech comprehension benefited fpprediding.

Normal acoustic brainstem response (ABR), pure tartdometry and structural MRI

ruled out brainstem damage and peripheral heapsg) On speech audiometry tests,

10



FO reported a lower percentage of correct wordso@#), especially in the right ear,

compared to healthy subjects (95-100%) (see alppl8nentary materials).

2.1 Neuropsychological profile: Pure Word Deafness

Three years post-onset, FO completed a computebakery for aphasia (Miceli,
Laudanna, & Capasso, 2004). Tasks explored subdkxexical, semantic and
grammatical skills. During acoustic tasks, FO wasallowed to see the examiner’s

mouth (for details on neuropsychological testireggg Supplementary material).

FO flawlessly and without hesitation discriminafeda same-different task) and
identified vowels (by matching a spoken CV syllatdene of five written
alternatives, consisting of the same stop consonéaft /e/, /i/, /o/, /ul). Further
testing of vowel processing was therefore deempdrluous. In a same-different
task using minimal pairs of auditorily-presentetuna CV syllables (stop + /a/), she
fared very poorly (error rate: 26/60, or 41.7%; e 50%). Her performance was
less impaired when one syllable of the pair wasemeed in writing (error rate: 11/60,
or 18%; chance: 50%). In both tasks, 100 cogniiwglimpaired participants never
made more than 1/60 errors (1.7%). Less impaireidmeance in acoustic/visual
syllable matching than in acoustic syllable diseaniation is likely to result from the
fact that in the former task the visually-preserggithble is shown 1 s before the
acoustic syllable is pronounced, and remains iw wietil the participant responds,

whereas in the latter the two syllables are preseobnsecutively, at a 1- sec interval.

All tasks that required acoustic word processingavwpaired, while tasks of
comparable difficulty and structure, but using et words or pictures, were spared.

FO flawlessly discriminated auditorily-presenteti@t words from semantic,

11



phonologically unrelated foils (0/10 errors), bubguced 3/10 errors when asked to
distinguish the target from a phonemic foil (10@mal controls made no phonemic
errors on this task)No errors on semantic or orthographic foils ocediin the
corresponding written task. Performance on sentpratare matching was markedly
poor for acoustic stimuli but normal for visualnstili. Repetition and writing-to-
dictation were severely impaired, both for wordsqerate: 31.1% and 19.6%,
respectively) and for nonwords (error rate: 69.4% @0%, respectively). Regardless
of task and stimulus type, errors were segmentalgted to the target. By contrast,
reading aloud and delayed copy were normal (na®oo word reading and on

delayed copy of words and nonwords; 1/46 errorsomword reading, or 2.2%).

Speech prosody and articulation were normal. Ougast fluent and phonemic
approximations were no longer present in spontamepaech and picture description
tasks. Connected narratives (daily life activitiegye grammatically correct.
Compared to a sample of 20 cognitively unimpaingdgjects (Miceli, Silveri, Romani
& Caramazza, 1989), speech rate (86 words per mjimds mildly reduced, due to
pauses, false starts and repairs, but Mean Leridtitt@rance (7.64 words) was in the

low normal range. Correct subordinate sentences m@duced in all narratives.

In spoken naming, FO made phonemic errors to 2i6#uk (3.8%), and produced
1/52 (1.9%) visual/semantic error. In written nagjishe produced 2/44 (4.5%)

spelling errors and 3/44 (6.8%) visual/semantiorstr

The ability to process environmental sounds, masit voices was tested in several

tasks (Supplementary Material). FO, who reportednterest in music, was asked to

2 FO did not make errors in a similar task usingmmBince differences between
nouns and verbs were not present in picture namegatives, and transcoding tasks,
and since the two word/picture matching tasks va€elrainistered on separate days,
the discrepancy is likely to reflect fluctuatiomsperformance accuracy.

12



verify environmental sound/picture pairs, to naime musical instrument producing a
note, to name famous melodies, to establish if melodies were the same or
different, and to name celebrities and singers frin@ir voices. Each task was
completed also by 20 healthy, age- and educatiackmad controls. Statistical
comparisons were carried out according to Crawtrdowell (1998). In all tasks,

FO’s performance was indistinguishable from thathehlthy volunteers (t values

ranging between 1.694 and 0.436; p values rangihgden .107 and .668).

2.2 Dichotic Listening Test

Three CV syllables (/ba/, /da/, /ga/) recorded lbgraale speaker were used. Each
stimulus consisted of two different syllables, pr@ed simultaneously via
headphones, one to each ear. Nine syllable panms prepared, each corresponding to
a combination of different target syllables; eattimglus was presented 10 times, for
a total of 90 randomized trials. FO was instrudteceport the syllables she had just
heard. Twenty cognitively unimpaired subjects (@méle; mean age: 25.6; SD=3.5;
mean years of education: 16.9; SD=1.6) completed#ime task. Healthy subjects
showed a clear REA, as in previous studies (foemeyvsee Hugdahl et al., 2003). By

contrast, FO presented an almost complete righsugapression (Figure 2).

3 We tried to carry out an in-depth analysis of i processing in our subject, but
failed. FO refused to complete tasks using semigfitt syllables, as they “did not
sound human” (the same comment was offered by ahkeaithy volunteers). We
administered a duality threshold task, in ordeestablish the minimum interval at
which FO perceived two clicks (square waves) asrsg@. Intervals ranged from 2 to
6ms. FO almost always reported hearing one clicksuRs from 10 matched
volunteers were heterogeneous — 6/10 showed thectg threshold (between 3-
4ms), 2/10 always perceived two clicks, and 2/1Gagk perceived one click. Based
on these results, it is not possible to excludé B would have perceived only one
click even before her stroke (hence, to establisbtixer her post-stroke performance
was normal or impaired relative to her premorbidlsk

13



Responses to right-ear and left-ear syllables aks@ considered separately. FO
reported correctly fewer syllables presented taitji® ear than controls (t=-7.567
p<0.001), but a comparable number of left-ear bigls (t=0.773 p=0.449). Excellent
performance on stimuli presented to the left eay heve been facilitated by the fact

that in this task FO was asked to choose withimallsset of alternatives (n=3).

3. Summary of Behavioral Tasks

FO presented with a very pure form of word deafn§pgech input processing was
damaged, whereas reading, writing and speech \pared Processing of
environmental sounds, voices and music was witbmimal limits. As in previous
unilateral PWD cases (Albert & Bear, 1974; Saffedml., 1976a; Stefanatos et al.,
2005; Wolmetz et al., personal communication), akedREA reversal was

observed in dichotic listening.

Even though REA reversal has been considered asitional hallmark, anatomical
disconnection has not been clearly demonstrated/o in subjects showing this
behavioral profile. In some reports, no detaildasion site and extension are
provided (Albert & Bear, 1974; Saffran et al., 1976 others, cortical damage is
documented, but information on white matter damagmt available (Stefanatos et

al., 2005; Wolmetz et al., 2010).

In the present study, careful anatomical investgadf the lesion was carried out to

clarify the potential role of cortical and subcoda damage in FO’s PWD.

4. Neuroimaging I nvestigation
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4.1. MRI Data acquisition

Data were acquired on a 4T Bruker MedSpec scangsgry an eight channel receive
head coil. For the structural analysis, T1-weighdath at a resolution of 1x1x1 mm
were acquired. For tractography analyses, 30 diffus/eighted volumes and 5
volumes with no diffusion gradient applied were @ioed at a resolution of 2x2x2
mmusing a twice-refocused 2D SE-EPI sequence. THesthh weighting was equal

to a b-value of 1000 s/nfm

4.2. T1-weighted images

T1-weighted images of the patient are shown in fleigu We expected left
hemisphere regions involved in acoustic input psst® to be damaged (as very
schematically represented in Figure 1, right pa@ettical damage). In agreement
with this prediction, atrophy and abnormal cortigatl subcortical intensity were
evident in the left superior temporal gyrus, thpesior temporal sulcus, the posterior
insula and lower part of the posterior supramatgigeus and angular gyrus. The
damage affected only limited parts of the regiasted above. For example,
abnormalities of Heschl's gyrus were evident fa lteral portion whereas the
medial one was relatively intact. The polar tempooatex, most of the middle
temporal gyrus and medial geniculate nuclei wetacin No lesions were found in the

right hemisphere.

To obtain a quantitative estimate of cortical damadl data were processed in
Freesurfer (http://surfer.nmr.mgh.harvard.edu/sier 6.0.0. The brain was
registered to Talaraich space (Lancaster et 80QR8kull-stripped, and an estimate

of the gray/white boundary was constructed. Stasisinaps were generated using
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FreeSurfer Group Descriptor (FSGD) File Format fuar 1). Results were obtained
with an FWHM (full-width/half max) of 10 mm. The daal surfaces of the left and
right hemisphere were analyzed separately. The gapsrated by this analysis show
the distribution op values for pairwise comparisons between patietitrealthy
controls. The cerebral cortex was then parcellated33 cortical regions per
hemisphere (Desikan-Killiany atlas), labels forayegions of interest were created,
and mean cortical thickness calculated for eachta Dbtained for FO were compared

to those of 35 healthy age- and gender-matchedatent

The results of the quantitative cortical morphomeinalysis in FO are shown in
Figure 4. Gyri on the left show diffuse corticainthing when compared to the
corresponding structures on the right (Figure ag automatic segmentation of the
cortical thickness was patrticularly difficult fdrdse left-hemisphere regions where a
clear boundary between cortical and white mattes mat distinguishable due to the
lesion. Since this limitation may lead to inaccahaiestimate left cortical thickness,
absolute values of gyral volume in our subjectase reported, as the two measures
together reflect more precisely the extent of daan&gsults confirmed the reduction
of cortical thickness and gyral volume in FO’s leéimisphere, due to post-stroke
atrophy (Table 1). Reduced thickness and volume wbserved in the lateral and
superior aspects of the left superior temporal gymcluding the planum polare and
planum temporale, the transverse temporal (Hegahyus, and the posterior insula.
A statistical map of the comparison of corticatkmess in FO and controls (Figure
4b) shows that the cortical thinning in the leftrhgphere was unevenly distributed
along the superior temporal gyrus (mostly in ther portion anterior to the
Heschl’s gyrus and planum polare) and in the pmstersula, extending to portions

of the angular and supramarginal gyri. In a contéxdiffuse thinning, a
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circumscribed area of increased cortical thickivess visible in the posterior portion
of the middle temporal gyrifsPatches of cortical thinning were present on the

longitudinal frontal gyri and inferior temporal gg.

4.3 Diffusion Tractography

Data were corrected for eddy current distortion sugject motion using ExploreDTI

(http://www.exploredti.com) (Leemans & Jones, 20@ijfusion-weighted data were
then processed using spherical deconvolution (88)'Acqua et al., 2007,
Dell’Acqua et al., 2010), a multi-fiber based mqdethose multi-peak shaped
function provides information on the number of idist fiber directions, their
orientation, and their weight in each voxel. Thesrits the reconstruction of multiple
fiber components within a single voxel, allowingpartially resolve fiber crossing,
which has been previously demonstrated to represpriblem for the reconstruction
of the acoustic radiation (Behrens, Berg, Jbabdshworth, & Woolrich, 2007).
Whole brain SD tractography was performed in Stackr(Dell’Acqua et al., 2010),
selecting every brain voxel with at least one fibaentation as a seed voxel. A
modified version of the FACT (Fiber Assignment bgrfinuous Tracking) algorithm
was used (Dell’Acqua, Simmons, Williams, & Cat&@i12). Streamlines were halted
when a voxel without fiber orientation was reacbegvhen the curvature between

two steps exceeded a threshold of 60°.

Virtual dissections of the white matter tracts weeeformed in TrackVis (http://

trackvis.org) using a multiple-ROI approach (Cat&rihiebaut de Schotten, 2008).

* The meaning of this observation is uncertainoltld correspond to an absolute
increase of cortical thickness in this area, a tess marked thinning in comparison
to neighboring areas.
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Figure 5 shows the tractography reconstructiongperéd in FO. Dissection of the
thalamic-temporal radiationgvas performed using a large sphere placed ardwnd t
medial geniculate nucleus (MGN) and a second Ré@udrby hand on a coronal slice
in the posterior temporal lobe. Theoustic radiationsvere separated from the other
thalamic-temporal radiations using a third ROI tecain the Heschl’s gyrus. In the
right hemisphere an additional sphere placed allb@egourse of the acoustic
radiations was necessary to visualize the entineseoof its streamlinednter-
temporal transcallosal tractwere dissected using coronal ROIs placed in the
posterior temporal lobe of each hemisphere. Tleastlines of théemporal
longitudinal fasciculusa tract connecting different regions of the siggeand middle
temporal gyri were reconstructed using one ROlqido the white matter of each
temporal lobe (Forkel and Catani, in press). ffaamic-occipital radiationswhich
include the optic radiations and the splenium, vedse reconstructed for comparison
with the temporal tracts (Catani, Jones, Donat&fyche, 2003; Catani & Thiebaut
de Schotten, 2008; Menjot De Champfleur et al. 320%ang et al., 2012). Fibers
passing through these ROIs were reconstructedee timensions and visualized
using stream-tubes. Volume and hindrance modutaiedtational anisotropy
(HMOA) (Dell’'Acqua et al., 2013) were extracted fmach tract to compare
hemispheric asymmetry as an indication of the éxdéwhite matter damage in the

left hemisphere.

As in the case of the cortical involvement, we etpé to find damage to the white
matter pathways that connect cortical areas inebimespeech input processing (very
schematically represented in Figure 1, right pamgider Subcortical damage).
Intrahemispheric connections should be affectee (#zoustic radiation joining

Heschl's gyrus to the posterior Superior Temporahus, and the longitudinal
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temporal fasciculus that connects the portionsupesor temporal gyrus), as well as
the left-hemisphere terminations of transcallossthways (the fiber tracts reaching
the primary and associative acoustic cortices enléift superior temporal gyrus from
the corresponding right-hemisphere cortices — ribtg in our case subcortical
damage would not be as deeply located as in Figubait would correspond to the
subcortical extension of cortical damage). FiguresHbws the results for each
individual tract in both hemispheres. The left #mic-temporal radiations showed
reduced volume (2.777ml) and HMOA (0.0874) compaedhe right hemisphere
(volume 6.544ml; HMOA 0.0934). Within the thalanmewtporal connections,
projections from the medial geniculate to the Hé&schyrus (acoustic radiations)
were dissected as a single bundle in the left ha@mei® and as a two-segment bundle
in the right hemisphere. This difference may beatesl to degeneration of callosal
fibres in the left hemisphere and to the consedyemacilitated tracking of the
acoustic pathways through regions of crossing. Deghis difference, which may
lead to an underestimation of the volume and HM@Ahie right hemisphere, clear
asymmetry in favour of the right hemisphere waslent (Figure 5, upper row). In
comparison, tract specific measurements of theathigloccipital radiations were
symmetrical for both volume (left 13.4ml; right 1&l) and HMOA (left 0.1328;

right 0.1325).

Asymmetry was also noticed for themporal longitudinal fasciculysespecially for
the segment running along the superior temporalgwhich showed reduced volume
(2.384ml) and HMOA (0.0694) compared to its rigleinfologue (3.016ml; HMOA
0.0764). Smaller differences were noticed for theeasnlines of the temporal
longitudinal fasciculus running through the midtdenporal gyrus (volume left 7.088

vs volume right 8.064; HMOA left 0.0865 vs HMOA hig 0.08796). Temporal
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connections of the corpus callosum were also asynoaky distributed with

significantly fewer streamlines reaching the lefnporal lobe.

5. Discussion

In this case report we present detailed MRI analydea unilateral stroke lesion
associated with PWD. Damage was documented fordmtital (mainly to Heschl's
and superior temporal gyrus) and white matter &imat-temporal projections
including acoustic radiations, callosal connectiand intralobar temporal tracts)
temporal regions of a network dedicated to speeahd processing. White matter
damage was only partial and therefore incompatilile the pure disconnection
mechanism historically proposed to explain PWDnilateral lesion. Similarly,

cortical damage spared significant portions of HEs@nd superior temporal gyrus.

The fact that in most cases Pure Word Deafness (RH8aused by bilateral
temporal lesions has been considered as crucid¢eee in favor of the hypothesis
that speech sounds are bilaterally processed ihuhean brain. However, there is
also accumulating evidence of permanent PWD ireptiwith unilateral, left
temporal damage. In these latter cases, PWD in ofiasidered as a disconnection
syndrome (Geschwind, 1965). On this view, a stra#dly located cortico-subcortical
(or, entirely subcortical) damage would sever imdraispheric connections between
primary and associative acoustic areas, as wéthascallosal connections between
primary acoustic areas, and between so-called \8lezis area and its right-
hemisphere homologue (Figure 1). Speech processintd be disrupted by the
disconnection of Wernicke’s area from regions iwedl in earlier, lower-level

language processes in both hemispheres.
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We reported on cortical damage and impaired wha#en connectivity in a subject
who developed PWD following a left temporal lesitmFO, reading, writing and

speech were normal, and acoustic processing ovadyal input was spared.

6.1. Is disconnection the cause of FO's pure weafrtess?

From the behavioral standpoint, the marked REAnsaten dichotic listening is
consistent with functional disconnection. From éimatomical perspective, however,
an account based entirely on disconnection iseralle (at least, not in the strong
version advocated by Mesulam & Catani, 2008), asadge to both cortical and
subcortical structures was incomplete. Damageddeth superior temporal gyrus
affected large portions of Heschl's gyrus and eaéehto the superior portions of the
suprmarginal and angular gyrus, and to the postpadions of the insula. However,
it was incomplete. Part of Heschl’'s gyrus was spared damage to the posterior
portion of the superior temporal gyrus was obvibusuneven. As for white matter
structures, the vascular lesion partially disruptechhemispheric white matter
pathways connecting primary and associative auddogas in the superior temporal
gyrus, and transcallosal fibers connecting lesidatehemisphere regions with

intact, homologous right-hemisphere regions.

In FO, then, functional disconnection may be dueambined cortical and
subcortical damage, in the absence of a complet®arcal disconnection. Damage
to the left primary auditory cortex and partialatisnection of the latter from the left
posterior superior temporal gyrus would disruptcessing of verbal stimuli in the
left hemisphere (hence, the REA reversal). Paspating of the left posterior

superior temporal gyrus and of its transcallosaheztions with homologous right-
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hemisphere regions could still allow speech soamddyzed in the right hemisphere
to reach residual functional areas in left auditasgociative cortices. Consistent with
this possibility, in the dichotic listening task Fdentified the same number of
syllables presented to the left ear as controlsveryday conversation, auditory
processing in this patient could be affected bgusdamage in the posterior superior
temporal gyrus per se, or by the fact that thisigyeceives input from the right
hemisphere in an abnormal time frame. The samesoniéar mechanism may be at

work in most unilateral PWD cases with unilateedt temporal lesion.

This does not mean thabana fideanatomical disconnection cannot cause unilateral
PWD. To yield PWD, a disconnection as defined bta@ia& Mesulam (2008) should
result from strictly subcortical damage to the heftnispher® The lesion should

spare cortical structures, while at the same tirmidting on one hand the left
acoustic radiation or the connections between timgpy auditory cortex and the
posterior superior temporal gyrus, and on the afetranscallosal fibers that
connect those cortices with their right hemisphemologues. Unfortunately, reports
potentially consistent with this account are exaaglg rare (Liepmann & Storch,
1902; Schuster & Taterka, 1926; Takahashi et 882}, and do not provide sufficient

information on anatomical and functional disconimatt

6.2. Unilateral PWD and asymmetric processing alitauy input

Current theories assume that acoustic stimulielegyed symmetrically to auditory

cortices (for review, Brugge et al., 2103) whetegraearly stage already, they are

® Different considerations may apply to lesions etffeg neural structures further downstream
in the auditory pathways, such as the midbraimembedial geniculate nucleus. In this study,
only damage at the hemispheric level is considered.
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computed in parallel but asymmetrically. On theespo-temporal model of
lateralization” (Zatorre et al., 2002) and the ‘i@asyetrical sampling in time”
hypothesis (Hickok & Poeppel, 2007a; Poeppel, Eneyddickok, & Pylkkanen,
2012; Poeppel, 2001, 2003) the processing abilitiese left hemisphere (analysis of
fast temporal changes over very short time windaws)better suited for speech
analysis than those of the right hemisphere (spleatralysis over long time
windows). These hypotheses successfully predictrgéined auditory processing
deficits (Godefroy et al., 1995; Ishii et al., 199&zui et al., 1990; Lambert et al.,
1989; Marshall et al., 1985; Miceli, 1982; Motomuataal., 1986; Oppenheimer &
Newcombe, 1978; Praamstra et al., 1991; Tanakia, 4987) and selective speech
input disorders (Auerbach et al., 1982; Micelilet2008; Yaqub, Gascon, Al-Nosha,
& Whitaker, 1988) following bitemporal lesions. halso accommodate greater
difficulties with stop consonants than with vowalsd other consonants, reported in

PWD (Miceli, 1982; Miceli et al., 2008; Saffranadt, 1976b; Wang et al., 2000).

On both views, though, left/right asymmetries avendin-general and quantitative,
rather than language-specific and qualitative. &foee, bilateral damage is deemed
necessary to yield PWD. Unilateral cases are thiooighs exceptions (Poeppel, 2001;
Hickok & Poeppel, 2007), as in unilateral lesions tight hemisphere should still
guarantee accurate processing of speech soundy.efaorts of unilateral PWD (see
Introduction) militate against this view. Our patiés a case in point. On both the
Hickok & Poeppel (2007) and the Zatorre et al. @0fccount, the lesion profile
documented in FO (Heschl’'s gyrus was partially sgan the left hemisphere and
intact in the right) predicts essentially normateph input processing. That even

partial damage to the left Heschl's gyrus yieldggeemanent PWD argues for a
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specific role of the left temporal lobe in speecbaessing.

The fact that PWD can result from unilateral lesieould be reconciled with the
hypothesis of quantitative and domain-independentispheric differences by
assuming that speech processing is disruptedimeadependent prephonemic,
language non-specific stage in some cases, antimmé-andependent phonemic,
language-specific stage in others (Auerbach el1882). The former deficit would
yield generalized input processing deficits; theela a selective disruption of speech
input. Another way to reconcile the same contmm$tyiassuming that the degree of
right-left asymmetry varies across subjects. Ueritdamage would yield PWD only
when the asymmetry is extreme (i.e., in subjectghom the analysis of spectral
change and/or the rapid sampling in time are figfizlateralized). This possibility
receives some support from rare cases where aygitocessing disorders followed
right temporal lesions, affecting only environméstaunds (Fujii et al., 1990; Spreen,
Benton, & Fincham, 1965) or music (in a crossedasfhsubject - Roberts,

Sandercock, & Ghadiali, 1987).

FO does not allow strong arguments on these isguidlse behavioral level, she

shows a stark dissociation between performanceeach tasks (always impaired)
and on non-speech tasks (always indistinguishabie that of healthy volunteers).
Even though fine-grained tests tapping the ahititprocess subtle auditory cues in

the context of synthetic speech and non-speeclhdspas in Stefanatos et al. (2005)

6 Note that in unilateral PWD, a complete anatomilistonnection mechanism
would be compatible with model that assume a b#di@ganization of speech sound
processing. A left temporal damage completely miging intrahemispheric and
transcallosal connections to Wernicke’s area wpunéent low-level auditory input
from both the right and the left hemisphere fromcteng the left hemisphere regions
specialized for word comprehension. However, sugteahanism has never been
demonstrated, and was clearly ruled out in ourestibj
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or Slevc et al. (2011), could not be administeestilence from FO adds to that of
other published cases showing that PWD can resurt feft temporal lobe lesions.
Even though its underlying cause(s) remains elusnase reports are too numerous
to be considered merely as exceptions to a ‘bdhtlamage’ rule. Together with
studies showing the effect of left (but not righ€misphere damage on phoneme
discrimination/identification tasks (Blumstein, G, Zurif, & Caramazza, 1977;
Caplan, Gow, & Makris, 1995; Miceli, Caltagironeai@otti, & Payer-Rigo, 1978)
they suggest that, whatever the elementary basisroputational asymmetries,
speech is processed asymmetrically in the tempaivak, and left hemisphere

damage is key in the disorders of speech inputgssing.

6.3. The recovery of speech output deficits in FO

Improvement from severe, widespread language tefizimilder, selective disorders
of auditory processing is not uncommon in PWD (eMptomura et al., 1986; Slevc
et al., 2011). Recovery was obvious also in FO3 Aears post-onset, language
disorders had evolved from severe speech produatidrcomprehension deficits into
a very pure form of PWD. In this context, the alegeaf phonemic errors in narrative
speech is particularly interesting. FO producedhrecors in spontaneous speech and
repetition, in the acute/subacute stage. At 3 ypass-onset, though, phonemic errors
occurred in repetition, but not in connected speé@csimilar profile was reported in
Hemphill & Stengel’s controversial case (1940), anthe subjects described by
Yaqub et al., (1988) and Szirmai, Falsang and G2003). In all these cases,
phonologically related errors persisted in a thsk tequires auditory processing

(repetition), but were missing in a purely out@ghk (spontaneous speech). This
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observation favors the hypothesis that input anguiyphonological processes are at
least partly distinct.

In FO, behavioral changes co-occurred with extensiedifications of cortical
thickness and connectivity in the left hemisphérehe face of a very circumscribed
ischemia, neuroimaging showed cortical and sulrartiamage affecting large-scale
neural networks, and extending well beyond the &ardf direct ischemic damage.
From the behavioral standpoint, she showed a RE&rsal in dichotic listening and
reported the same number of left-ear syllablesoasrals and, anecdotally, after her
stroke she started using the left ear as the peefeource of acoustic input. These
observations are compatible with the possibiligttim our subject the right

hemisphere plays a crucial role in post-stroke cp@eocessing.

An involvement of right-hemisphere mechanisms gowery is consistent with data
from two additional cases. In a PET study (Engedieal., 1995) a patient with PWD
showed bilateral activation in sound categorizatasks that activated only left
hemisphere regions in healthy controls. In casg3levc et al., 2011), acute
Wernicke’s aphasia had evolved into PWD with normiatten comprehension and
essentially normal speech, reading and writing yga8's post-onset. In this subject,
processing of non-speech stimuli improved followangemediation program, and
fMRI showed atypical right supramarginal gyrus @ation in auditory language tasks
(Martin, Hamilton, & Slevc, 2010). Evidence fromhegsia also suggests a role for the
right hemisphere. In a recent study, better regowears observed in subjects with

strongly represented right AF (Forkel et al., 2014)

Even though her condition improved, however, FO siifers from auditory
processing disorders. In everyday life, she repmotginuing difficulty with

unfamiliar words and surnames, and exploits comgdeng strategies (e.qg. lip
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reading) to facilitate speech comprehension. Imédrtesting, she is not able to
discriminate words differing for subtle phonolodicantrasts, and fares significantly
more poorly when repeating non-words (25/36 inair@9.4%) than words (14/45
incorrect, 31.1%). Overall, results demonstrate ttha right hemisphere, even though
it may contribute to recovery from language disesdeannot guarantee proficient

speech input processing when critical left hemisplhegions are damaged.

7. Conclusions

FO developed PWD following a circumscribed left paral lesion. Right-ear
suppression in a dichotic listening task is coesistwith functional disconnection, but
only incomplete anatomical disconnection was docueste Neuroimaging data
showed partial damage to left temporal cortex artdanscallosal inter-temporal
connections. Functional disconnection in this pateuld therefore result from a
combination of cortical and white matter damage'skfata confirm that PWD can
result from left unilateral temporal damage, anthptm an asymmetric functional
role of the primary auditory cortex. At 3 years posset, language difficulties had
essentially recovered, except for speech inputgesing. This suggests that the left
posterior superior temporal gyrus is necessarad@quate processing of speech
sounds, even though the right hemisphere may stippditory input processing and
compensate for other language impairments. Intihenic stage, a very
circumscribed left hemisphere lesion resulted duoed cortical thickness in large-

scale neural networks in the damaged left hemigpher
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Figure Captions:

Figure 1. Schematic representation of lesion profiles undeglyure word deafness
(PWD). The thalamus (TH), the superior temporalgyiSTG), Heschl’s transverse
temporal gyrus (HG) and the main white matter catioes involved in PWD are
shown.L eft panel: Possible cortical and subcortical lesion siteBWID due to
bilateral damage. Cortical lesions (panel A) ineothie grey matter of STG and HG.
Subcortical lesions (panel B) most often affectabditory system at the level of the
medial geniculate nucleus (less frequently, putaimiliamage has been reported).
Combined cortical damage to one hemisphere andsidad damage to the other is
also possibleRight panel: Possible lesion sites in PWD due to unilaterahage.
When the lesion is restricted to the cortex (p#&)etdamage affects left HG and STG.
In subcortical lesions (panel B), damage interrumtsitemporal and transcallosal
connections, disconnecting left-hemisphere langaagas from auditory inputs.
Combined cortical and subcortical damage is thet fineguent occurrence, and may

be the case in the subject reported here.

Figure 2. Dichotic Listening results. Number of syllables presented to the right
and/or left ear and reported correctly by FO amddbntrol group. The responses of
the control group show the typical Right-Ear Adeayg (REA); those of the patient
show the reverse pattern, with an almost totahekitn of stimuli presented to the

right ear.
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Figure 3. Axial, coronal, and sagittal view of T1-weightddustural scans of FO’s
brain. Red arrows indicate the lesion in the leftnisphere. Abnormal cortical
intensity and gyral atrophy is evident in the pmmtof the superior temporal gyrus
(stg) between the Heschl's gryus (hg) and the teaipmle, a smaller region in the

posterior middle temporal gyrus (mtg) and in thetpoor insula (ins).

Figure 4. A: Cortical thickness and gyral volume of areas kmoavbe involved in
auditory input processing were reconstructed it betmporal lobes in FO. The green
lines outline the cortical extent of the intacthtigHeschl’s gyrus; the red lines outline
the corresponding regions in the damaged left hamei® (see also Table B).
Statistical map of the comparison of cortical timeks in FO and in 35 matched
healthy controls. Cluster-wise statistical sigrafice was calculated via 10,000 Monte

Carlo simulations implemented in FSDG (P < 0.001).

Figure5. SD-based tractography reconstruction of the amotediation (AR), the
optic radiation (OR) and the transcallosal fiber&0O’s left hemisphere. A 3D
reconstruction of the lesion is also shown (in r&blors are chosen arbitrarilé:

From left to right: reconstruction of AR (green)R@ight blue) and lesion volume
shown on axial map; reconstructed tracts superiegpos axial density maps of FO's
brain as displayed in FSLView (z-coordinates afgext-specific); lateral and frontal
views of AR and OR at their stemming point. ORtsténom the lateral geniculate
body of the thalamus (LGN), more laterally than @#hich originates from the
medial geniculate nucleus, MGNB: From left to right: virtual reconstruction of

transcallosal fibers shown on coronal map in frowew; anatomy of the
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reconstructed tracts superimposed on axial denmstys of FO’s brain as displayed in
FSLView (z-coordinates are subject-specific); togwof the fibers as they reach
auditory and association areas in each hemispRirers connecting the two auditory

cortices are in red; fibers connecting posterisoasmtion areas are in yellow.
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Table 1. Cortical thickness and gyral volumein areas involved in auditory input processing.
Numbers report measures of cortical thickness (a) and gyral volume (b) in the left and in the right
hemisphere of FO. Cortical and gyral parcellation are based on Destrieux et a., 2010; terminology
is based on Duvernoy, 1991.

a)
cortical thickness cortical thickness

GYRUS (mn) GYRUS (mn)
Ih G temp sup-G T transv 2,06 rh_G temp sup-G T_transv 2,477
Ih G temp sup-Lateral 2,41 rh_G_temp_sup-Latera 2,604
Ih_G_temp_sup-Plan_polar 2,897 rh_G_temp_sup-Plan_polar 3,091
Ih G temp sup-Plan tempo 1,866 rh_G_temp_sup-Plan tempo 2,501
Ih S circular_insula_inf 2,026 rh_S circular_insula inf 2,624
Ih S circular_insula sup 2,269 rh_S circular_insula sup 2,379
Ih S tempora_sup 1,94 rh_S temporal_sup 2,265
Ih S tempora_transverse 2,064 rh_S temporal_transverse 2,677
b)

GYRUS volume (mm’) | GYRUS volume (mn)
Ih G temp sup-G T transv 539 rh_ G temp sup-G T_transv 1011
Ih G temp sup-Lateral 2276 rh_G _temp_sup-Latera 4532
Ih G temp sup-Plan polar 1090 rh_G_temp_sup-Plan polar 1753
Ih G temp supPlan_tempo 511 rh_G_temp_supPlan_tempo 1539
Ih S circular_insula inf 1273 rh S circular_insula inf 2099
Ih S circular_insula sup 1890 rh_S circular_insula sup 2080
Ih S tempora_sup 4568 rh_S temporal_sup 9851
Ih S temporal_transverse 184 rh_S tempora_transverse 394




ACCEPTED MANUSCRIPT

Bilateral Damage Unilateral Damage

Cortical Damage Subcortical Damage Cortical Damage Subcortical Damage

M Corpus Callosum Temporal [ Acoustic radiation M HG-STG fibers M Lesion
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