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Abstract

@ A mathematical fullerene is a three dimensional convex
simple polytope with all 2-faces being pentagons and
hexagons.

@ In this case the number ps of pentagons is 12.
@ The number pg of hexagons can be arbitrary except for 1.

@ The number of combinatorial types of fullerenes grows
rapidly as a function of pg .

@ At that moment the problem of classification of fullerenes is
well-known and is vital due to the applications in chemistry,
physics, biology and nanotechnology.
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Thanks to toric topology, we can assign to each fullerene P its
moment-angle manifold Zp. The cohomology ring H*(Zp) is a
combinatorial invariant of the fullerene P.

In our talk we shall focus upon results on the rings H*(Zp) and
their applications based on geometric interpretation of
cohomology classes and their products. The multigrading in the
ring H x (Zp), coming from the construction of Zp, plays an
important role here.
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Convex polytopes

A convex polytope P is a bounded set of the form

P={xeR": ax+b>0i=1,... . m}

Let this representation be irredundant, that is deletion of any
inequality changes the set. Then each hyperplane
Hi={x e R": aix+ b; = 0} defines a facet F; = PN H,.
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Simple polytopes

An n-polytope is simple if any its vertex is contained in exactly n
facets.

500

3 of 5 Platonic solids are simple.
7 of 13 Archimedean solids are simple.
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Flag polytopes

A simple polytope is called flag if any set of pairwise
intersecting facets Fj , ..., F; : Fi, N\ Fj # @ has a nonempty
intersection Fi, N ---N F;, # .

Flag polytope Non-flag polytope
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Non-flag 3-polytopes

Simple 3-polytope P is not flag if and only if either P = A3, or P
contains a 3-belt: collection of facets (F;, Fj, Fx) with
FinFi,FinFk,FknFi # @,and F;N FN Fy = @.

A

If we remove the 3-belt from the surface of a polytope, we
obtain two parts W; and W,, homeomorphic to disks.
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Euler’'s formula for simple 3-polytopes

Let px be a number of k-gonal 2-faces of a 3-polytope.
For any simple 3-polytope P

3ps +2ps+ps =12+ > (k — 6)pk (+)

k>7

Corollary

@ Ifpx =0 fork # 5,6, then ps = 12.
@ There is no simple 3-polytopes with all faces hexagons.

fo :Z(Zpk -2) fi :S(Zpk -2) h= Zpk
K K P
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Eberhard’s theorem

Theorem (Eberhard, 1891)

For every sequence (px|3 < k # 6) of nonnegative integers
satisfying (*), there exist values of pg such that there is a simple
3-polytope P® with px = px(P?) for all k > 3.

9/38



"Eberhard’s theorem for flag polytopes"

Theorem (E,14)

For every sequence (px|4 < k # 6) of nonnegative integers
satisfying 2p4 + ps = 12 + >, s(k — 6)px, there exists integer
ps and a flag simple 3-polytope P with px = px(P?) for all

k> 4.

Idea of the proof:

Cutting off of all edges of

a simple polytope P without triangles
gives a flag polytope P

with pi(P) = {pk(P) £H(P), k=6
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Buckminsterfullerene

Fullerene Cgg Truncated icosahedron
with a Kekule structure

Carbon atoms, closed in hexatomic rings with single and
double bonds alternately.

(an fi, f2) = (60790732)? (p57p6) = (12120)
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Fullerenes

Fullerenes were discovered by chemists-theorists Robert Curl,
Harold Kroto, and Richard Smalley in 1985 (Nobel Prize 1996).

They were named after
Richard Buckminster Fuller
— a noted american
architectural modeler.

= Are also called buckyballs
Fuller’s Biosphere
USA Pavillion, Expo-67

Montreal, Canada
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Fullerenes

A fullerene is a simple 3-polytope with all 2-facets pentagons
and hexagons. J

Fullerene Cgg Truncated icosahedron

For any fullerene ps = 12,
fo=2(10+ps), f=3(10+p5), fp=(10+pg)+2

There exist fullerenes with any pg # 1.
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Fullerenes as flag polytopes

Theorem (E,15)
Any fullerene is a flag polytope.

The proof is based on the following result about fullerenes.

Let the 3-belt (F;, Fj, Fx) divide the surface of a fullerene P into
two parts Wi and W, and W; does not contain 3-belts. Then P
contains one of the following fragments

D0 o) )

(1,1,1) (1,2,2) (2,2,2) (1,2,3)

This is impossible since each fragment contains triangle or

quadrangle.
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Schlegel diagrams of fullerenes

Dodecahedron Barrel
ps =0 Ps =2
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Endo-Kroto construction

Starting from Barrel and applying a sequence of the
Endo-Kroto constructions it is possible to obtain a fullerene with
arbitrary ps = k, k > 2.

The Endo-Kroto construction is a (2, 6)-truncation.
(2,6)-truncati 16/38



Number of combinatorial types of fullerenes

Let F(ps) be the number of combinatorial types of fullerenes
with given ps. In is known that F(ps) = O(pg).

There is an effective algorithm of combinatorial enumeration of
fullerenes using supercomputer (Brinkman, Dress, 1997).

ps 10](1]2[3[4[5[6]7]8]... 75
F(os) |10 |1 [1]2[3[6]|6]15]... | 46.088.148
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IPR-fullerenes

Definition
IPR-fullerene (Isolated Pentagon Rule) is a fullerene having no
two pentagons with common edge.

Let P be some IPR-fullerene. Then pg > 20. IPR-fullerene with
ps = 20 is combinatorially equivalent to Buckminsterfullerene
Ceo-

The number Fipr(ps) of combinatorial types of IPR-fullerenes
also grows rapidly as a function of pg.

ps |20 21|22 |23 |24 25|26 |27 |28 ... 97
Fipr | 1 0Oj]0|0|O0]1 1 112 |...36.173.081
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Construction of IPR-fullerenes

The Endo-Kroto construction can not give the IPR-fullerene.

The operations of simultanious truncation of all edges of a
fullerene P gives an IPR-fullerene P with

ps(P) = pe(P) + fi(P).

For the dodecahedron the corresponding /PR-fullerene Cgy has
80 vertices and is highly symmetric.
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Hamiltonian cycles

A Hamiltonian cycle is a cycle in graph that passes through any
vertex one and only one time. J

Theorem (Kardos, 2014)
The edge graph of any fullerene has a hamiltonian cycle.
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Colorings of fullerenes

Any hamiltonian cycle defines a 4-coloring. J

The cycle divides the surface of a fullerene into two disks.
The dual graph of each disk is a tree, therefore each disk can
be colored in two colors.

Any 4-coloring defines a characteristic function by the rule

-§-0-0--0
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Toric topology

Canonical correspondence

Simple polytope P moment-angle complex Zp
dmP =n — dmZp=m+n
number of facets = m canonical T™-action
Combinatorics of P «— Topology of Zp

23/38



Moment-angle complex

Let L(P) be the face lattice of P and {Fq,..., Fn} —the set
of facets.

zp= U IT 0?x [] § cbD?x--xDj

FelL(P)\{s}i: FiDF j: FiBF

is @ moment-angle complex of a simple polytope P.

Zp has a structure of (m + n)-dimensional smooth manifold and
is also called moment-angle manifold.
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Stanley-Reisner ring of a simple polytope

Let{F,...,Fn} be the set of facets of a simple polytope P.
Then a Stanley-Reisner ring over Q is defined as

Q[P] =Q[V4,..., Vm]/(Vi, ... vj, =0, if F,N---NFj = ).

@ The Stanley-Reisner ring of a flag polytope is quadratic:
the relations have only the form v;v; =0: FN F; = @.

@ Two polytopes are combinatorially equivalent if and only if
their Stanley-Reisner rings are isomorphic.
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Multigraded complex

Let

R*(P) = Alut,. .., um] © Q[P]/(uvi, V}),
mdegu; = (—1,2{/}),mdegv,- = (072{I})7 duj = v;,dv; =0

be a multigraded differential algebra.

Theorem (Buchstaber-Panov)

We have an isomorphism

HIR*(P),. d] = Torly,, , (QIP].Q) = H*(Zp, Q)

Moreover, this isomorphism defines the structure of a
multigraded algebras in Tor and H*(Zp, Q).
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Cohomology of moment-angle manifold

Let P, = |J F; for a subset w C [m)].

iEw

Theorem (Buchstaber—Panov)

There are the isomorphisms:

ZF’) @ Hl |w]|— 1 oo )

wC[m]

Set . o
IBfI,Zw — dim H|w|7lf1 (Pwy Q)

where H='(2,Q) =
A multigraded Poincare duality implies

B—i,Zu _ ﬁ—(m—n—i),z([m]\w)‘
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Cohomology ring

Theorem (Buchstaber—Panov)
There is the ring isomorphism

H'(Zp)~ P H'(P.)

wC[m]

where the ring structure on the right hand side is given by the
canonical maps

HSS ISP, ) @ HEWeT(P,, ) — HiEleimke=t (R, )

for w1 Nwo = @ and zero otherwise.
The canonical maps are given by the isomorphisms:

HK=I=1(P,) ~ HK=I¥I(P, P,).
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Let P be a simple-polytope
H3(2p) ~ €P H°(P.),

|w[=2

H*(2p) ~ P H(P.),

jw]=3

H(2p) ~ P H'(P.)+ P H(P.).

jw|=3 w|=4

He(2p) ~ €P H'(P.)+ €D H(P.).

|w|=4 |w|=5
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3-polytopes

For a 3-polytope P # A3 nonzero Betti numbers are
50,2@ _ 5—(m—n),2[m] -1
lei,Zw — dim ﬁ/o(Pw, Q) _ Bf(mefi),2([m]\w) — dim ﬁl1 (P[m]\o.n Q),
lwl=i+1,i=1,....m—4

For |w| = i + 1 the number =2 1 1 is equal to the number of
connected components of the set P, C P.

Define g% = 3 p=h2w,
|wl=j

_ 1 —3)(m—4) .
gt = M) g (mo8md), )
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Let P be a simple 3-polytope. By a k-belt we call a cyclic
sequence of 2-faces (F; Fi ) such that F;, N F;, ...,

oo
Fi._, N Fi, Fi, N Fj, # @, and all other intersections are empty.

=18 js equal to the number of 3-belts.

There is a bijection (F;, Fj, Fx) «— [u;v;vk] between 3-belts and
elements of an additive basis in H~=16.
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4-belts

Let P be a simple 3-polytope without 3-belts, that is =16 = 0.
Then 5—28 s equal to the number of 4-belts.

There is a bijection (F;, Fj, Fx, F) <— [uju;vk V)] between
4-belts and elements of an additive basis in H=28.
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Relations between Betti numbers

For any simple polytope P

> (1)t

iz

2 2n __
ho + byt +"'+hntn_ (1_t2)m—n )

where hg + hyt + -+ hpt" = (t = 1)"+ (= 1)1+ 4+ .

Corollary

Set h = m — 3. For a simple 3-polytope P # A3 with m facets

(1—)"(1 + ht? + ht* + 1°) =

h
187144 4 Z(_1)J'—1(5—(f—1)72/ — gU=2)2) 24
j=3
_ 4\h—1 p—(h—1),2(h+1) j2(h+1) __1\h42(h+3)
(1) 2D 4 ()hEHD s




° /3_1’4 _ h(h2—1).

0 326 _pg-16_ (h2—1%(h—3);

o 538 _ 328 — (h+1)h(h8—2)(h—5)
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Fullerenes

For a fullerene P
@ 716 = 0 — the number of 3-belts.
@ 3728 = 0 — the number of 4-belts.

The product map H3(2p) ® H3(Zp) — H®(Zp) is trivial.
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5-belts of fullerenes

For a fullerene P we have 5319 = 12 + k is the number of
5-belts. If kK > 0, then the fullerene consists of two
dodecahedral caps and k hexagonal belts between them.
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Set of pentagons

Let P be a fullerene and w* = {i, F— pentagon}. For
convenience let w* = {1,...,12}.

Betti numbers 5~"2%, w C w* or w C [m] \ w*, are important
combinatorial invariants of fullerenes.

o g2 — g—(m-14)2(im\w")
@ P is an IPR-fullerene <= p~112v" =11,
@ For the dodecahedron and the barrel 3~112“" = 0.
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