Toric Topology of Fullerenes

Victor Buchstaber

Steklov Mathematical Institute, Moscow buchstab@mi.ras.ru

Nikolay Erokhovets
 Lomonosov Moscow State University erochovetsn@hotmail.com

Toric Topology in Osaka June, 2015

Abstract

- A mathematical fullerene is a three dimensional convex simple polytope with all 2 -faces being pentagons and hexagons.
- In this case the number p_{5} of pentagons is 12 .
- The number p_{6} of hexagons can be arbitrary except for 1 .
- The number of combinatorial types of fullerenes grows rapidly as a function of p_{6}.
- At that moment the problem of classification of fullerenes is well-known and is vital due to the applications in chemistry, physics, biology and nanotechnology.

Thanks to toric topology, we can assign to each fullerene P its moment-angle manifold \mathcal{Z}_{P}. The cohomology ring $H^{*}\left(\mathcal{Z}_{P}\right)$ is a combinatorial invariant of the fullerene P.

In our talk we shall focus upon results on the rings $H^{*}\left(\mathcal{Z}_{P}\right)$ and their applications based on geometric interpretation of cohomology classes and their products. The multigrading in the ring $H *\left(\mathcal{Z}_{P}\right)$, coming from the construction of \mathcal{Z}_{P}, plays an important role here.

Convex polytopes

A convex polytope P is a bounded set of the form

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{i} \boldsymbol{x}+b_{i} \geqslant 0, i=1, \ldots, m\right\}
$$

Let this representation be irredundant, that is deletion of any inequality changes the set. Then each hyperplane $\mathcal{H}_{i}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{i} \boldsymbol{x}+b_{i}=0\right\}$ defines a facet $F_{i}=P \cap \mathcal{H}_{i}$.

Simple polytopes

An n-polytope is simple if any its vertex is contained in exactly n facets.

3 of 5 Platonic solids are simple.
7 of 13 Archimedean solids are simple.

A simple polytope is called flag if any set of pairwise intersecting facets $F_{i_{1}}, \ldots, F_{i_{k}}: F_{i_{s}} \cap F_{i_{t}} \neq \varnothing$ has a nonempty intersection $F_{i_{1}} \cap \cdots \cap F_{i_{k}} \neq \varnothing$.

Flag polytope

Non-flag polytope

Non-flag 3-polytopes

Simple 3-polytope P is not flag if and only if either $P=\Delta^{3}$, or P contains a 3-belt: collection of facets $\left(F_{i}, F_{j}, F_{k}\right)$ with $F_{i} \cap F_{j}, F_{j} \cap F_{k}, F_{k} \cap F_{i} \neq \varnothing$, and $F_{i} \cap F_{j} \cap F_{k}=\varnothing$.

If we remove the 3-belt from the surface of a polytope, we obtain two parts W_{1} and W_{2}, homeomorphic to disks.

Euler's formula for simple 3-polytopes

Let p_{k} be a number of k-gonal 2-faces of a 3-polytope.
For any simple 3-polytope P

$$
3 p_{3}+2 p_{4}+p_{5}=12+\sum_{k \geqslant 7}(k-6) p_{k}
$$

Corollary

- If $p_{k}=0$ for $k \neq 5,6$, then $p_{5}=12$.
- There is no simple 3-polytopes with all faces hexagons.

$$
f_{0}=2\left(\sum_{k} p_{k}-2\right) \quad f_{1}=3\left(\sum_{k} p_{k}-2\right) \quad f_{2}=\sum_{k} p_{k}
$$

Eberhard's theorem

Theorem (Eberhard, 1891)

For every sequence $\left(p_{k} \mid 3 \leqslant k \neq 6\right)$ of nonnegative integers satisfying (*), there exist values of p_{6} such that there is a simple 3-polytope P^{3} with $p_{k}=p_{k}\left(P^{3}\right)$ for all $k \geqslant 3$.

Theorem (E,14)

For every sequence $\left(p_{k} \mid 4 \leqslant k \neq 6\right)$ of nonnegative integers satisfying $2 p_{4}+p_{5}=12+\sum_{k \geqslant 6}(k-6) p_{k}$, there exists integer p_{6} and a flag simple 3-polytope P^{3} with $p_{k}=p_{k}\left(P^{3}\right)$ for all $k \geqslant 4$.

Idea of the proof:
Cutting off of all edges of a simple polytope P without triangles gives a flag polytope \widehat{P}
with $p_{k}(\widehat{P})= \begin{cases}p_{k}(P), & k \neq 6 \\ p_{k}(P)+f_{1}(P), & k=6\end{cases}$

Buckminsterfullerene

Fullerene C_{60}

Truncated icosahedron with a Kekule structure

Carbon atoms, closed in hexatomic rings with single and double bonds alternately.

$$
\left(f_{0}, f_{1}, f_{2}\right)=(60,90,32), \quad\left(p_{5}, p_{6}\right)=(12,20)
$$

Fullerenes

Fullerenes were discovered by chemists-theorists Robert Curl, Harold Kroto, and Richard Smalley in 1985 (Nobel Prize 1996).

Fuller's Biosphere USA Pavillion, Expo-67

Montreal, Canada Richard Buckminster Fuller

- a noted american architectural modeler.

Are also called buckyballs

A fullerene is a simple 3-polytope with all 2-facets pentagons and hexagons.

Fullerene C_{60}

Truncated icosahedron

For any fullerene $p_{5}=12$,

$$
f_{0}=2\left(10+p_{6}\right), \quad f_{1}=3\left(10+p_{6}\right), \quad f_{2}=\left(10+p_{6}\right)+2
$$

There exist fullerenes with any $p_{6} \neq 1$.

Fullerenes as flag polytopes

Theorem (E,15)

Any fullerene is a flag polytope.
The proof is based on the following result about fullerenes. Let the 3-belt $\left(F_{i}, F_{j}, F_{k}\right)$ divide the surface of a fullerene P into two parts W_{1} and W_{2}, and W_{1} does not contain 3-belts. Then P contains one of the following fragments

$(1,1,1)$

$(1,2,2)$

$(2,2,2)$

$(1,2,3)$

This is impossible since each fragment contains triangle or quadrangle.

Schlegel diagrams of fullerenes

Dodecahedron

$$
p_{6}=0
$$

Barrel
$p_{6}=2$

Starting from Barrel and applying a sequence of the
Endo-Kroto constructions it is possible to obtain a fullerene with arbitrary $p_{6}=k, k \geqslant 2$.
The Endo-Kroto construction is a $(2,6)$-truncation.

Number of combinatorial types of fullerenes

Let $F\left(p_{6}\right)$ be the number of combinatorial types of fullerenes with given p_{6}. In is known that $F\left(p_{6}\right)=O\left(p_{6}^{9}\right)$.

There is an effective algorithm of combinatorial enumeration of fullerenes using supercomputer (Brinkman, Dress, 1997).

p_{6}	0	1	2	3	4	5	6	7	8	\ldots	75
$F\left(p_{6}\right)$	1	0	1	1	2	3	6	6	15	\ldots	46.088 .148

Definition

IPR-fullerene (Isolated Pentagon Rule) is a fullerene having no two pentagons with common edge.

Let P be some IPR-fullerene. Then $p_{6} \geqslant 20$. IPR-fullerene with $p_{6}=20$ is combinatorially equivalent to Buckminsterfullerene C_{60}.

The number $F_{I P R}\left(p_{6}\right)$ of combinatorial types of $I P R$-fullerenes also grows rapidly as a function of p_{6}.

p_{6}	20	21	22	23	24	25	26	27	28	\ldots	97
$F_{I P R}$	1	0	0	0	0	1	1	1	2	\ldots	36.173 .081

Construction of IPR-fullerenes

The Endo-Kroto construction can not give the IPR-fullerene.
The operations of simultanious truncation of all edges of a fullerene P gives an $I P R$-fullerene \widehat{P} with
$p_{6}(\widehat{P})=p_{6}(P)+f_{1}(P)$.
For the dodecahedron the corresponding $I P R$-fullerene C_{80} has 80 vertices and is highly symmetric.

Hamiltonian cycles

A Hamiltonian cycle is a cycle in graph that passes through any vertex one and only one time.

Theorem (Kardos, 2014)

The edge graph of any fullerene has a hamiltonian cycle.

Colorings of fullerenes

Any hamiltonian cycle defines a 4-coloring.
The cycle divides the surface of a fullerene into two disks.
The dual graph of each disk is a tree, therefore each disk can be colored in two colors.

Any 4-coloring defines a characteristic function by the rule

$$
1 \rightarrow\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), 2 \rightarrow\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), 3 \rightarrow\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), 4 \rightarrow\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

4-coloring of dodecahedron

Toric topology

Canonical correspondence

Simple polytope P $\operatorname{dim} P=n$
number of facets $=m$

Combinatorics of P
\longleftrightarrow
moment-angle complex \mathcal{Z}_{P} $\operatorname{dim} \mathcal{Z}_{P}=m+n$
canonical T^{m}-action

Topology of \mathcal{Z}_{P}

Moment-angle complex

Let $L(P)$ be the face lattice of P and $\left\{F_{1}, \ldots, F_{m}\right\}$ - the set of facets.

$$
\mathcal{Z}_{P}=\bigcup_{F \in L(P) \backslash\{\varnothing\}\}} \prod_{i: F_{i} \supset F} D_{i}^{2} \times \prod_{j: F_{j} \not \supset F} S_{j}^{1} \subset D_{1}^{2} \times \cdots \times D_{m}^{2} .
$$

is a moment-angle complex of a simple polytope P.
\mathcal{Z}_{P} has a structure of $(m+n)$-dimensional smooth manifold and is also called moment-angle manifold.

Stanley-Reisner ring of a simple polytope

Let $\left\{F_{1}, \ldots, F_{m}\right\}$ be the set of facets of a simple polytope P.
Then a Stanley-Reisner ring over \mathbb{Q} is defined as

$$
\mathbb{Q}[P]=\mathbb{Q}\left[v_{1}, \ldots, v_{m}\right] /\left(v_{i_{1}} \ldots v_{i_{k}}=0, \text { if } F_{i_{1}} \cap \cdots \cap F_{i_{k}}=\varnothing\right) .
$$

- The Stanley-Reisner ring of a flag polytope is quadratic: the relations have only the form $v_{i} v_{j}=0: F_{i} \cap F_{j}=\varnothing$.
- Two polytopes are combinatorially equivalent if and only if their Stanley-Reisner rings are isomorphic.

Multigraded complex

Let

$$
R^{*}(P)=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Q}[P] /\left(u_{i} v_{i}, v_{i}^{2}\right)
$$

$$
\operatorname{mdeg} u_{i}=(-1,2\{i\}), \operatorname{mdeg} v_{i}=(0,2\{i\}), d u_{i}=v_{i}, d v_{i}=0
$$

be a multigraded differential algebra.

Theorem (Buchstaber-Panov)

We have an isomorphism

$$
H\left[R^{*}(P), d\right] \simeq \operatorname{Tor}_{\mathbb{Q}\left[v_{1}, \ldots, v_{m}\right]}^{*, *}(\mathbb{Q}[P], \mathbb{Q}) \simeq H^{*}\left(\mathcal{Z}_{P}, \mathbb{Q}\right)
$$

Moreover, this isomorphism defines the structure of a multigraded algebras in Tor and $H^{*}\left(\mathcal{Z}_{P}, \mathbb{Q}\right)$.

Cohomology of moment-angle manifold

Let $P_{\omega}=\bigcup_{i \in \omega} F_{i}$ for a subset $\omega \subset[m]$.

Theorem (Buchstaber-Panov)

There are the isomorphisms:

$$
H^{\prime}\left(\mathcal{Z}_{P}, \mathbb{Q}\right) \rightarrow \bigoplus_{\omega \subset[m]} \widetilde{H}^{I-|\omega|-1}\left(P_{\omega}, \mathbb{Q}\right)
$$

Set

$$
\beta^{-i, 2 \omega}=\operatorname{dim} \widetilde{H}^{|\omega|-i-1}\left(P_{\omega}, \mathbb{Q}\right)
$$

where $H^{-1}(\varnothing, \mathbb{Q})=\mathbb{Q}$.
A multigraded Poincare duality implies

$$
\beta^{-i, 2 \omega}=\beta^{-(m-n-i), 2([m] \backslash \omega)} .
$$

Cohomology ring

Theorem (Buchstaber-Panov)

There is the ring isomorphism

$$
H^{*}\left(\mathcal{Z}_{P}\right) \simeq \bigoplus_{\omega \subset[m]} \widetilde{H}^{*}\left(P_{\omega}\right)
$$

where the ring structure on the right hand side is given by the canonical maps

$$
\widetilde{H}^{k-\left|\omega_{1}\right|-1}\left(P_{\omega_{1}}\right) \otimes \widetilde{H}^{I-\left|\omega_{2}\right|-1}\left(P_{\omega_{2}}\right) \rightarrow \widetilde{H}^{k+l-\left|\omega_{1}\right|-\left|\omega_{2}\right|-1}\left(P_{\omega_{1} \cup \omega_{2}}\right)
$$

for $\omega_{1} \cap \omega_{2}=\varnothing$ and zero otherwise.
The canonical maps are given by the isomorphisms:

$$
H^{k-|\omega|-1}\left(P_{\omega}\right) \simeq H^{k-|\omega|}\left(P, P_{\omega}\right)
$$

Examples

Let P be a simple-polytope

$$
\begin{gathered}
H^{3}\left(\mathcal{Z}_{P}\right) \simeq \bigoplus_{|\omega|=2} \widetilde{H}^{0}\left(P_{\omega}\right), \\
H^{4}\left(\mathcal{Z}_{P}\right) \simeq \bigoplus_{|\omega|=3} \widetilde{H}^{0}\left(P_{\omega}\right), \\
H^{5}\left(\mathcal{Z}_{P}\right) \simeq \bigoplus_{|\omega|=3} \widetilde{H}^{1}\left(P_{\omega}\right)+\bigoplus_{|\omega|=4} \widetilde{H}^{0}\left(P_{\omega}\right) . \\
H^{6}\left(\mathcal{Z}_{P}\right) \simeq \bigoplus_{|\omega|=4} \widetilde{H}^{1}\left(P_{\omega}\right)+\bigoplus_{|\omega|=5} \widetilde{H}^{0}\left(P_{\omega}\right) .
\end{gathered}
$$

3-polytopes

For a 3-polytope $P \neq \Delta^{3}$ nonzero Betti numbers are

$$
\begin{gathered}
\beta^{0,2 \varnothing}=\beta^{-(m-n), 2[m]}=1, \\
\beta^{-i, 2 \omega}=\operatorname{dim} \tilde{H}^{0}\left(P_{\omega}, \mathbb{Q}\right)=\beta^{-(m-3-i), 2([m] \backslash \omega)}=\operatorname{dim} \tilde{H}^{1}\left(P_{[m] \backslash \omega}, \mathbb{Q}\right), \\
|\omega|=i+1, i=1, \ldots, m-4
\end{gathered}
$$

For $|\omega|=i+1$ the number $\beta^{-i, 2 \omega}+1$ is equal to the number of connected components of the set $P_{\omega} \subset P$.

Define $\beta^{-i, 2 j}=\sum_{|\omega|=j} \beta^{-i, 2 \omega}$.

$$
\beta^{-1,4}=\frac{m(m-1)}{2}-f_{1}=\frac{(m-3)(m-4)}{2} ;
$$

k-belts

Let P be a simple 3-polytope. By a k-belt we call a cyclic sequence of 2 -faces ($F_{i_{1}}, \ldots, F_{i_{k}}$) such that $F_{i_{1}} \cap F_{i_{2}}, \ldots$, $F_{i_{k-1}} \cap F_{i_{k}}, F_{i_{k}} \cap F_{i_{1}} \neq \varnothing$, and all other intersections are empty.

Theorem

$\beta^{-1,6}$ is equal to the number of 3 -belts.
There is a bijection $\left(F_{i}, F_{j}, F_{k}\right) \longleftrightarrow\left[u_{i} v_{j} v_{k}\right]$ between 3-belts and elements of an additive basis in $H^{-1,6}$.

4-belts

Theorem

Let P be a simple 3-polytope without 3-belts, that is $\beta^{-1,6}=0$. Then $\beta^{-2,8}$ is equal to the number of 4 -belts.

There is a bijection $\left(F_{i}, F_{j}, F_{k}, F_{l}\right) \longleftrightarrow\left[u_{i} u_{j} v_{k} v_{l}\right]$ between 4-belts and elements of an additive basis in $H^{-2,8}$.

Relations between Betti numbers

Theorem

For any simple polytope P

$$
h_{0}+h_{1} t^{2}+\cdots+h_{n} t^{2 n}=\frac{\sum_{-i, 2 j}(-1)^{i} \beta^{-i, 2 j} t^{2 j}}{\left(1-t^{2}\right)^{m-n}}
$$

where $h_{0}+h_{1} t+\cdots+h_{n} t^{n}=(t-1)^{n}+f_{n-1}(t-1)^{n-1}+\cdots+f_{0}$.

Corollary

Set $h=m-3$. For a simple 3-polytope $P \neq \Delta^{3}$ with m facets

$$
\begin{aligned}
& \left(1-t^{2}\right)^{h}\left(1+h t^{2}+h t^{4}+t^{6}\right)= \\
& 1-\beta^{-1,4} t^{4}+\sum_{j=3}^{h}(-1)^{j-1}\left(\beta^{-(j-1), 2 j}-\beta^{-(j-2), 2 j}\right) t^{2 j}+ \\
& \quad(-1)^{h-1} \beta^{-(h-1), 2(h+1)} t^{2(h+1)}+(-1)^{h} t^{2(h+3)}
\end{aligned}
$$

Example

- $\beta^{-1,4}=\frac{h(h-1)}{2}$;
- $\beta^{-2,6}-\beta^{-1,6}=\frac{\left(h^{2}-1\right)(h-3)}{3}$;
- $\beta^{-3,8}-\beta^{-2,8}=\frac{(h+1) h(h-2)(h-5)}{8}$

Fullerenes

Theorem

For a fullerene P

- $\beta^{-1,6}=0$ - the number of 3-belts.
- $\beta^{-2,8}=0$ - the number of 4-belts.

Corollary

The product map $H^{3}\left(\mathcal{Z}_{P}\right) \otimes H^{3}\left(\mathcal{Z}_{P}\right) \rightarrow H^{6}\left(\mathcal{Z}_{P}\right)$ is trivial.

Theorem

For a fullerene P we have $\beta^{-3,10}=12+k$ is the number of 5 -belts. If $k>0$, then the fullerene consists of two dodecahedral caps and k hexagonal belts between them.

Set of pentagons

Let P be a fullerene and $\omega^{*}=\left\{i, F_{i}-\right.$ pentagon $\}$. For convenience let $\omega^{*}=\{1, \ldots, 12\}$.

Betti numbers $\beta^{-i, 2 \omega}, \omega \subset \omega^{*}$ or $\omega \subset[m] \backslash \omega^{*}$, are important combinatorial invariants of fullerenes.

- $\beta^{-11,2 \omega^{*}}=\beta^{-(m-14), 2\left([m] \backslash \omega^{*}\right)}$.
- P is an IPR-fullerene $\Longleftrightarrow \beta^{-11,2 \omega^{*}}=11$.
- For the dodecahedron and the barrel $\beta^{-11,2 \omega^{*}}=0$.
V.M.Buchstaber, T.E.Panov,

Toric Topology
AMS Math. Surveys and monogrpaphs. vol. 204, 2015.518 pp.
V.M.Buchstaber, N. Erokhovets,

Graph-truncations of simple polytopes
Proc. of Steklov Math Inst, MAIK, Moscow, vol. 289, 2015.
M.Deza, M.Dutour Sikiric, M.I.Shtogrin,

Fullerenes and disk-fullerenes
Russian Math. Surveys, 68:4(2013), 665-720.
V.D.Volodin,

Combinatorics of flag simplicial 3-polytopes
Russian Math. Surveys, 70:1(2015); arXiv: 1212.4696.
B. Grünbaum,

Convex polytopes
Graduate texts in Mathematics 221, Springer-Verlag, New York, 2003.

