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By a graph X = (V,E) we mean a finite set V of ver-
tices and a set E of pairs of these vertices called
edges. In words, an expander is a highly connected
sparse graph X. It is this apparently contradictory
feature of being both highly connected and at the
same time sparse that on the one hand makes the
existence of such graphs counterintuitive and on the
other hand makes them so useful. Their uses in pure
mathematics include, for example, in combinatorics
the explicit construction of graphs with large girth
(this being the length of the shortest nonback-
tracking closed circuit) and large chromatic num-
ber (this being the least number of colors needed
to paint the vertices so that adjacent vertices have
distinct colors), and in functional analysis the

construction of finitely gener-
ated groups which cannot be
embedded uniformly in a
Hilbert space (Gromov) and re-
lated counterexamples to the
Baum-Connes conjectures for
group actions. However, it is in
applications in theoretical
computer science where ex-
panders have had their major
impact. Among their applica-
tions are the design of explicit
superefficient communication
networks, constructions of
error-correcting codes with
very efficient encoding and de-
coding algorithms, deran-
domization of random algo-

rithms, and analysis of
algorithms in computational
group theory (see for example
[R-V-W] and the references
therein).

The formal definition of the most basic expander
is as follows: Let k ≥ 2 be an integer, and let X
be a k-regular graph (that is, each vertex v ∈ V
has exactly k neighbors). The Cheeger constant h
of X is defined to be

h(X) = min
∅ ⊂ F ⊂ V
�= �=

|∂F|
min(|F|, |V\F|) ,

where ∂F is the set of edges running from F to its
complement V\F and |∂F| is its cardinality. X is also
called an [n, k, h] expander where |X| = n. Note that
h > 0 if and only if X is connected. Also, if |F| ≤ n

2,
then |∂F| ≥ h|F|, so that if h is not small, then
every such subset F has many neighbors outside F
(hence the name expander). By expanders we really
have in mind a sequence of such [n, k, h] ’s with k
and ε0 > 0 fixed, h ≥ ε0, and n →∞. It is easy to
see that for this to happen k must be at least 3,
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This Ramanujan graph has 80 vertices,which is close to the largest known planar
Ramanujan graph of 84 vertices. Its girth is 5, its expansion constant 1/4 (as

indicated by the shaded circle), and λ1 has been calculated by A. Gamburd to be
2.81811… It may be constructed by shrinking pentagons on a dodecahedron.
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which we assume henceforth. That h ≥ ε0 > 0 en-
sures that the graphs are highly connected, while
k being fixed (and |E| = kn

2 ) ensures that they are
sparse.

It is perhaps surprising that expanders exist. The
first proof of their existence by Pinsker is based on
counting arguments. Consider the probability space
of all Xn,k’s (that is, k-regular graphs on nmarked
vertices) where each such Xn,k is chosen with equal
probability. Then for k ≥ 3 there is ε(k) > 0 such
that the probability that h(Xn,k) ≥ ε tends to 1 as
n →∞.

For applications one wants explicit construc-
tions. A useful means to achieve this is the following
spectral method. Given an X = Xn,k, let A be the
n× n symmetric matrix whose rows and columns
are indexed by the vertices v ∈ V and for which the
v,w entry is 1 if v is joined to w , and 0 otherwise.
The vector (1,1, . . . ,1) is an eigenvector of A with
eigenvalue k . The eigenvalues of A are real and lie
in the interval [−k, k]. Let λ1(X) denote the next-
to-largest eigenvalue of A after k. The following in-
equalities, which are the discrete analogues of in-
equalities of Cheeger and Buser in differential
geometry, relate h(X) to the gap between λ1(X)
and k and are due to Tanner, Alon, and Milman:

k− λ1(X)
2

≤ h(X) ≤
√

2k(k− λ1(X)).

Thus Xn,k is an expanding family if and only if it
has a uniform lower bound on the spectral gap, and
the larger the gap the better the expansion. Using
this and quotients of explicit infinite discrete
groups which enjoy Kazhadan’s property T (which
is the property that the trivial representation is iso-
lated in the space of all unitary representations),
Margulis gave the first examples of explicit ex-
panders. There is a limit as to how big the spectral
gap can possibly be (Alon-Boppana): For k fixed

liminf
n→∞ λ1(Xn,k) ≥ 2

√
k− 1.

The liminf is taken over all Xn,k’s. An Xn,k (or rather
a sequence of such Xn,k’s with n →∞, k fixed) is
called a Ramanujan graph if λ1(Xn,k) ≤ 2

√
k− 1. In

view of the above, such a graph is optimal, at least
as far as the spectral gap measure of expansion is
concerned. It is a pleasant fact that if k = q + 1
with q a prime power, then Ramanujan graphs
exist. The constructions are in terms of very explicit
descriptions as Cayley graphs of PGL(2,Fq)
[L-P-S], [M] (Cayley graphs are those whose vertex
sets are the elements of a group G and whose
edges correspond to g → gg1 with g1 in a set of gen-
erators). For k not of this form it is an interesting
question as to whether Ramanujan graphs exist. 
J. Friedman has recently shown that for k fixed and
ε > 0 the probability that λ1(Xn,k) ≤ 2

√
k− 1 + ε

tends to 1 as n →∞. So the random graph is 

asymptotically Ramanujan. Some very interesting
numerical experimentation (T. Novikoff,
http://www.math.nyu.edu/Courses/V63.0393/,
honors math lab, projects) indicates that the prob-
ability that the random graph is Ramanujan is
slightly bigger than 0.5, corresponding to the skew-
ness in the Tracy-Widom distribution in random
matrix theory (specifically the “Gaussian Orthog-
onal Ensemble”).

In [R-V-W] it is shown how one may use their
novel “zig-zag graph product” (a notion related to
the semidirect product of groups when the graphs
are Cayley graphs) to give new explicit construc-
tions of expanders. Their construction of the fam-
ily is inductive, with the zig-zag product being
used at each step. It has the extra flexibility that
allows them to construct explicit expanders that ex-
pand small sets almost optimally (they call these
“lossless expanders”). This extra twist turns out to
be very useful in a number of applications, and this
feature cannot be deduced from a spectral gap
analysis.
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