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1 IntroductionIn computer vision, edge detection is a process which attempts to capture the signi�cant prop-erties of objects in the image. These properties include discontinuities in the photometrical,geometrical and physical characteristics of objects. Such information give rise to variations inthe grey level image; the most commonly used variations are discontinuities (step edges), localextrema (line edges), and 2D features formed where at least two edges meet (junctions).The purpose of edge detection is to localize these variations and to identify the physicalphenomena which produce them. Edge detection must be e�cient and reliable because thevalidity, e�ciency and possibility of the completion of subsequent processing stages rely on it.To ful�ll this requirement, edge detection provides all signi�cant information about the image.For this purpose, image derivatives are computed. However, di�erentiation of an image is anill-posed problem; image derivatives are sensitive to various sources of noise, i.e., electronic,semantic, and discretization/quanti�cation e�ects. To regularize the di�erentiation, the imagemust be smoothed. However, there are undesirable e�ects associated with smoothing, i.e., lossof information and displacement of prominent structures in the image plane. Furthermore, theproperties of commonly-used di�erentiation operators are di�erent and therefore they generatedi�erent edges. It is di�cult to design a general edge detection algorithm which performs wellin many contexts and captures the requirements of subsequent processing stages. Consequently,over the history of digital image processing a variety of edge detectors have been devised whichdi�er in their purpose (i.e., the photometrical and geometrical properties of edges which theyare able to extract) and their mathematical and algorithmic properties.This paper describes the characteristics of edges, the properties of detectors, the methodol-ogy of edge detection, the mutual inuence between them and the main idea behind the majoredge detection techniques. In the next section, we will give a de�nition of edges and relatedphysical phenomena. Section 3 is devoted to the properties of edge detectors. In section 4,we analyze the inuence of image characteristics and the properties of an edge detector on itsperformance. Finally, we briey describe existing edge detectors and their implementation insection 5.2 Edge De�nitionPhysical edges provide important visual information since they correspond to discontinuities inthe physical, photometrical and geometrical properties of scene objects. The principal physicaledges correspond to signi�cant variations in the reectance, illumination, orientation, and depthof scene surfaces. Since image intensity is often proportional to scene radiance, physical edgesare represented in the image by changes in the intensity function. The most common types ofimage intensity variations are steps, lines and junctions.3



Steps are by far the most common type of edge encountered. This type of edge results fromvarious phenomena: for example when one object hides another, or when there is a shadow ona surface. It generally occurs between two regions having almost constant, but di�erent, greylevels.The step edge is the point at which the grey level discontinuity occurs. In real images, stepedges are localized at the inection points of the image. In fact, the image formation processinvolves the convolution of the camera point-spread function with the edge pro�le corruptedby noise which produces a smooth function (see Fig 1.a and b). Consequently, step edges arelocalized as positive maxima or negative minima of the �rst-order derivative (Fig. 1.c) or aszero-crossings of the second-order derivative (Fig. 1.d). In 2D, the �rst derivative is de�ned bythe gradient operator and the second derivative is approached by the Laplacian or by the secondderivative along the gradient direction. This step edge de�nition does not include the spatialdistribution of edges. It is more realistic to consider a step edge as a combination of severalinection points. The most commonly used edge model is the double step edge (two inectionpoints in the vicinity of each other). There are two types of double edges: the pulse (Fig. 1.e)and the staircase (Fig. 1.f). As we shall see below, the distinction between these two models ismotivated by the fact that they produce di�erent edge information when Laplacian detectorsare used.
a. b. c. d.

e. f.Figure 1: Step edge pro�le. a) Ideal step edge, b) Smoothed step edge corrupted by noise, c)and d) First and second-order derivatives of the smoothed step edge (noise-free), e) Pulse, f)staircase.Lines result from mutual illumination between objects that are in contact or from thinobjects placed against a background. The pro�le of lines is given in Figure 2.a. Lines correspond4



to local extrema of the image. They are localized as zero-crossings of the �rst derivative, orlocal maxima of the Laplacian, or local maxima of the grey level variance of the smoothedimage. This type of edge is successfully used in remote sensing images for instance to detectroads and rivers [29].In the scene, a physical corner or physical junction is formed when at least two physicaledges meet. There are additional circumstances that may create corners in the image, forexample illumination e�ects or the presence of occlusions e.g., a T-junction is created if onephysical edge occludes another (see Fig. 2.b). In what follows we will use the terms \junction"and \corner" synonymously. In the image, a junction is a 2D-feature. It will be sharp and isde�ned as the point where two or more edges (which can be of di�erent types) meet. There areseveral junction models: T, L, Y, X. The junction can be localized in various ways: e.g., a pointwith high curvature, or a point with great variation in gradient direction, or a zero-crossing ofthe Laplacian with high curvature or near an elliptic extremum.The term \edge", as commonly used, encompasses all types of edges, but the majority ofexisting edge detection algorithms are adapted to step edges, which are the most common.Other types of edges are given in [87].
a. Grey Level = B Grey Level = C

Grey Level = A

b.Figure 2: a) Line pro�le, b) T-Junction pro�le.3 Properties of Edge DetectorsAn edge detector accepts discrete, digitized images as input and produces an edge map asoutput. The edge map of some detectors includes explicit information about the position andstrength of edges, their orientation, and the scale. The example in Figure 3 includes positioninformation only.During the history of image processing, a variety of edge detectors have been devised whichdi�er in their purpose (the photometrical and geometrical properties of the edge) and in theirmathematical and algorithmical properties. From the point of view of integration of an edgedetector into a computer vision system there are two classes of detectors. The �rst includesdetectors which do not use a priori knowledge about the scene and the edge to be detected. This5



a. b.Figure 3: a) Original image, b) Position information provided by an edge detector.class of \autonomous" detectors is inuenced neither by other components of the vision systemnor by contextual information. These detectors are exible in the sense that they are not limitedto speci�c images. However, they are based on local processing; the process of labeling an edgeis based only on its neighboring pixels. The second class of detectors are contextual, in the sensethat they are guided by the results of other components of the system or by a priori knowledgeabout the edge or the structure of the scene. It follows that they perform only in a precisecontext. Few contextual detectors have been proposed. If we consider the knowledge used bythe detectors, it is clear that autonomous detectors are appropriate for general-purpose visionsystems. However, contextual detectors are adapted to speci�c applications where processedimages always include the same objects.Conceptually, the most commonly proposed schemes for edge detection (both autonomousand contextual detectors) include three operations: di�erentiation, smoothing and labeling.Di�erentiation consists in evaluating the desired derivatives of the image. Smoothing consistsin reducing noise in the image and regularizing the numerical di�erentiation. Labeling involveslocalizing edges and increasing the signal-to-noise ratio of the edge image by suppressing falseedges. Labeling is the last operation to be run. However, as will be shown below, the orderin which di�erentiation and smoothing are run depends on their properties. Smoothing anddi�erentiation of an image are realized only by �ltering the image with the di�erentiation of thesmoothing �lter. In this regards, the terms �lter and detector are often used synonymously [67,41, 8, 21, 124]. The performance of these three operations is related. In fact, smoothingregularizes the di�erentiation and the speci�cation of the false edge suppression step dependson the performance of the two other operations. If the smoothing step reduces noise withoutloss of information, false edge suppression is easy to accomplish.The speci�cation of an edge detector in terms of three operations is incomplete. In fact, anedge detector includes neither the precise context in which it can be successfully used nor thescale computation. It is necessary to de�ne a methodology of edge detection to make explicit6



how to choose the scale (Multi-scale) and how to select an edge detector (multi-detector) fora target application. In what follows, we will present the three operations, the multi-detectorand the multi-scale approaches in more details. The reader can �nd a study of smoothing �ltersand di�erentiation operators used in edge detection in the paper of Torre and Poggio [114].3.1 Smoothing of the ImageIt should be recalled that smoothing has a positive e�ect to reduce noise and to ensure robustedge detection; and a negative e�ect, information loss. Clearly, we have a fundamental trade-o� here between loss of information and noise reduction. The ultimate goal is to �nd optimaldetectors that ensure a favorable compromise between noise reduction and edge conservation.Regularization theory is the formalization, as an optimization problem, of the search for anoptimal �lter. In fact, image di�erentiation, like many other problems in early computationalvision, is ill-posed in the sense that the existence, uniqueness, and stability of a solution cannotbe guaranteed in the absence of additional constraints. Poggio [86] suggests that the class ofadmissible solutions to an ill-posed problem is restricted by imposing additional constraints.Usually, these constraints concern the appropriate compromise between noise reduction andedge conservation. For example, in standard Tikhonov's regularization, a problem is renderedwell-posed by restricting the acceptable solutions to the space of smooth functions. In theedge detection context, Poggio and Torre [85, 86] show that regularizing di�erentiation canbe accomplished by convolution of the image with the cubic spline (or its derivatives), witharea controlled by a regularization parameter. The regularization parameter determines thecompromise between noise elimination and the preservation of image structure. In �lteringterminology, the regularization parameter is called the scale. In addition to the cubic spline,two other regularization �lters have been proposed in [86], the Green function and the Gaussian,whose respective impulse responses are:r(x) = �2p2e��jxj(cos(�jxjp2 ) + sin(�jxjp2 )) (1)g(x) = 1p2��e� x22�2 (2)where � > 0 and � > 0. Although these �lters ensure a compromise between noise elimina-tion and the preservation of image structure, we are faced with the problem of choosing theregularization parameter. This is important since judicious selection of this parameter reducesinformation loss. This problem will be presented below (cf. 3.4).The attributes of a smoothing �lter that inuence the performance of the edge detector areits linearity, the duration of its impulse response, and its invariance to rotation. Non-linear�ltering has been proven to be more successful than linear �ltering because it removes certain7



kinds of noise better (e.g., impulse noise) while preserving edge information [84]. However,in this section we will focus on linear �ltering because it is more common in edge detection.The duration of the impulse response characterizes the support of the �lter in the spatial orfrequential domain. For instance, in edge detection, three kinds of linear low-pass �lters havebeen used: band-limited �lters, support-limited �lters and �lters with minimal uncertainty.The invariance to rotation property ensures that the e�ect of smoothing is the same regardlessof edge orientation.A su�cient condition for a function or operator (functional) to be rotationally invariant isthat its polar form depends only on the radial distance � = px2 + y2 and not on its directiontan(�) = y=x. Formally, a function f(x; y) is said to be invariant to rotation (we may alsocall it a radial or rotationally symmetric function) i� for all �, f(x; y) = f(X; Y ), whereX = xcos(�) + ysin(�) and Y = �xsin(�) + ycos(�). For example, the Gaussian is invariantto rotation, whereas the 2D version of the �lter de�ned in (eq. 1) is not. This property willbe examined in more detail in section 4.2. Other information on this topic can be foundin [6, 15, 125, 129].3.2 Image Di�erentiationIt should be recalled that the purpose of edge detection is to localize variations of the imagegrey level and to identify the physical phenomena which produced them. Di�erentiation is thecomputation of the necessary derivatives to localize these edges. the di�erentiation operator ischaracterized by its order, its invariance to rotation and its linearity.The order of the di�erentiation operator is de�ned by the order of its partial derivatives.An operator Ox;y is invariant to rotation i� OX;Y = ROx;y, where R is the rotation matrix.Ox;y is linear i� for all positive scalars � and � and for all functions f(x; y) and g(x; y), wehave Ox;y(�f(x; y) + �g(x; y)) = �Ox;y(f(x; y)) + �Ox;y(g(x; y)). The most commonly usedoperators are the gradient, the Laplacian and the second-order directional derivative. As wewill show, the properties of the operator to be used are determined by the characteristics ofthe image and the subsequent use of edges.The gradient is a �rst-order operator de�ned as the vector ( @@x ; @@y ). The modulus and thedirection of the gradient are de�ned by:j ~gradj = s( @@x)2 + ( @@y )2 and  = arctg @@y= @@x! (3)The gradient direction is perpendicular to the edge orientation. In many proposed schemes,the gradient direction is used to localize edges. The gradient modulus operator is non-linearand invariant to rotation. It is only computed by using derivatives in x and y. In a noisyimage, the use of several directional derivatives may be useful for increasing the signal-to-noise8



ratio. From a computational viewpoint, according to the steering theorem [32], derivativesof the image in any direction can be expressed as the weighted sum of the derivatives of theimage in particular directions. It should be noted that due to the computational ine�ciencyof the square-root operation required in (eq. 3), the gradient modulus is often calculated usingone of two other metrics: j @@x j + j @@y j and max(j @@x j; j @@y j). While these can be calculated moree�ciently, it is pointed out in [66] that in the case of a step edge the accuracy of the estimatedgradient modulus is reduced.The second-order operators are de�ned in terms of @2=@x2, @2=@x@y and @2=@y2. Thecommonly used operators in edge detection are the Laplacian and the second-order directionalderivative along the gradient direction. These operators are de�ned by:r = @2@x2 + @2@y2 and @2@~n2 = @2@x2 cos2( ) + @2@x@y sin( )cos( ) + @2@y2 sin2( ) (4)where ~n is the gradient direction. The Laplacian operator is linear and rotationally symmetric,whereas the second directional derivative is neither linear nor invariant to rotation.Let us now examine the order in which smoothing and di�erentiation are performed. Theappropriate sequence of these operations depends on the linearity of the di�erentiation opera-tor [114, 122]. Linear operators are associative and commutative with convolution. Formally,for I(x; y) and f(x; y), two L2 functions di�erentiable according to the linear operator Ox;y, wehave the following result:Ox;y(I(x; y) � f(x; y)) = Ox;y(I(x; y)) � f(x; y) = I(x; y) � Ox;y(f(x; y)) (5)Consequently, the order in which smoothing and di�erentiation are performed is immaterial,since they are commutative. Non-linear operators are neither associative nor commutative withconvolution. The regularization requirement (cf. 3.1) implies in this case that smoothing mustprecede the di�erentiation operation.3.3 Edge LabelingEdge labeling involves localizing edges and increasing signal-to-noise ratio by suppressing falseedges. The localization procedure depends on the di�erentiation operator used. In the earlygradient detectors, edges were localized by thresholding the gradient modulus. The edges whichresulted from this method where not �liform and consequently a skeletization operation wasrequired. An improvement has been achieved by the use of the non-maximum suppressionalgorithm. The basic idea is to extract local maxima of the gradient modulus. An e�cientalgorithm has been proposed in [7] which �nds the local maxima along the direction of thegradient vector. That is, if we consider the image plane as real, then a given pixel is a local9



maximum if the gradient modulus at this pixel is greater than the gradient modulus of twoneighboring points situated at the same distance on either side of the given pixel along thegradient direction. For second-order detectors the localization of zero-crossings is as follows:the output of a second-order detector at a given pixel is compared with neighbor pixels to theleft and below it. If these three pixels do not have the same signs, there is a zero-crossing.However, it is shown in [108] that the use of more than the two principal directions (horizontaland vertical) improves the localization, especially for certain junction models (e.g., L-junction).Another well-known scheme is described in [44]. The output image is inspected to see whetherit matches one of eleven allowable zero-crossing predicates.The elimination of false edges increases the signal-to-noise ratio of the di�erentiation andsmoothing operations. In spite of the importance of the cleaning operation, little works havebeen done on this subject. While it may be true that the behavior of this operation dependson the performance of smoothing and di�erentiation and that these operations are more andmore robust, false edges do not originate only from noise. As explained below, there are otherphenomena that give rise to false edges. The rule commonly used to classify edges as true orfalse is that the plausibility value of true (resp. false) edges is above (resp. below) a giventhreshold. The threshold is the minimum acceptable plausibility value. Due to uctuationof the plausibility measure, edges resulting from such a binary decision rule are broken. Sothis rule has been improved by using the hysteresis algorithm [8] to take into account edgecontinuity. Two thresholds are used; a given edge (e.g., an ordered list of edge points) is trueif the plausibility value of every edge point on the list is above a low threshold and at least oneis above a high threshold. Otherwise, the edge is false.Speci�cation of the cleaning process depends on the di�erentiation operator used. When thegradient di�erentiation operator is used, the plausibility measure is the gradient modulus. Falsemaxima originate from noise and can be eliminated using one of the above-mentioned rules.One problem of image cleaning concerns the choice of the plausibility measure when a second-order di�erentiation operator is used. Many authors [100, 13] use the gradient modulus as aplausibility measure. However, it is well known that an authentic zero-crossing can correspondto a weak gradient modulus (i.e., saddle point). Other authors [67, 41, 108, 109, 127] suggest theuse of the slope of the edge as a plausibility measure. However, computation of the slope requiresthe computation of third-order derivatives and hence it is noise-sensitive. False zero-crossingshave at least two causes and require the use of an appropriate thresholding method [12, 13, 108,109, 127]. The �rst class of false edges is well known: originating from noise, they are called\noised edges". The noise results from both the image acquisition system and the nature of thescene under consideration (i.e., texture). In many images, this type of false edge usually has alow gradient modulus and can be discarded using an algorithm such as hysteresis. The secondclass of false edges, called \phantom edges", arise from certain edge models (e.g, staircase).10



Intuitively, they are zero-crossings of the second derivative which correspond to the positiveminima or negative maxima of the �rst derivative of the staircase (see Figs. 4 and 5). It ispointed out in [13] that for the case of white, normally-distributed random signals, the phantomedges are fewer (by a factor of nine) and weaker (by a factor of about three) than the authenticedges. In practice, however there may be phantom edges whose gradient magnitude is greaterthan that of some authentic edges. In addition, a phantom edge usually forms a continuouscurve which extends an authentic curved edge. Therefore, the use of edge continuity as acriterion to clean an image is not appropriate, since it implies the non-suppression of phantomedges. Phantom edges as minima of the gradient magnitude are the only edge points whichverify the following condition. Let I(x; y) be the input image and f(x; y) the smoothing �lter.An edge (x0; y0) is false if and only if:@2(I � f)0~n(x0; y0)@x2 @2(I � f)0~n(x0; y0)@y2 � (@2(I � f)0~n(x0; y0)@x@y )2 > 0 and @2(I � f)0~n)(x0; y0)@x2 > 0(6)where (I � f)0~n(x; y) is the �rst derivative of (I � f)(x; y) taken along the direction of thegradient. Given the original image and the corresponding zero-crossings, the cleaning algorithmconsists of two steps [13, 108, 109, 127]: 1) Elimination of phantom edges by using the conditiongiven in (eq. 6), 2) Elimination of noisy edges by using the hysteresis algorithm (or any otherthresholding algorithm).
a. b. c.Figure 4: a) The pro�le of the staircase edge, b) Two maxima and one minimum of the �rstderivative of the smoothed staircase, c) Three zero-crossings of the second derivative of thesmoothed staircase.Another aspect of the elimination of false edges concerns threshold computation. Usually,a threshold value is found using a trial-and-error process and is used for all edges of an im-age. However, it is pointed out in [18, 111, 127, 128] that the threshold is a function of edgecharacteristics, properties of the smoothing �lter, and properties of the di�erentiation operator.Consequently, it is not easy to �nd a single threshold value for a given image. An automaticrule to compute the threshold for the Laplacian of Gaussian detector has been proposed in [18].This rule is empirical, no justi�cation has been given and it has been tested only on synthetic11



data. We have proposed in [108, 109, 111, 127] a cleaning rule for multi-scale edge detectionbased on the behavior of the ideal step edge in scale space. The threshold is found at a high scaleand propagated automatically to ideal step edges obtained at lower scales. Improvements ofthis algorithm are proposed in [128] for use with any smoothing �lter, di�erentiation operator,and edge model.

a. b. c.

d. e.Figure 5: a) Zero-crossings of the Laplacian of Gaussian with � = 1, b) False edges causedby noise, c) Zero-crossings without false edges due to noise, d) False edges generated by thestaircase of the image 5.c, e) Zero-crossings without false edges due to staircase or noise.3.4 Multi-Detector and Multi-Scale ApproachesIn general, an edge detector includes neither the precise context (i.e, characteristics of theimage) in which it can be successfully used nor the scale computation rule. For instance, certaindetectors are commonly viewed as a convolution operation (fs � I)(x; y) where I is the image,fs the �lter and s the scale. In computer vision, we are often confronted with the problemof selecting an appropriate edge detector. Usually, the approach used consists of arbitrarilychoosing a detector and using it to �nd all the edges in the images being processed in the targetapplication. The scale is often �xed by trial-and-error experiments and reused for all images.It is obvious that this approach does not lead to correct results. In fact, one detector running12



at one scale does not yield all edges of the image [126]. It is more suitable to focus on edgesby using several detectors that di�er in their scales, mathematical properties and goals. Theunderlying problems are multiple ; various knowledge and know-how about image formationand processing techniques are required to arrive at an e�ective approach. Matsuyama [68]pointed out the problems frequently encountered in designing image analysis systems. A smallstep in this direction has been accomplished by using multiple detectors and multiple scalesas described in [38, 126]. Hasegawa et al. [38] have implemented the IMPRESS system thatis able to choose the appropriate detector to �nd a given edge. It involves applying all thedetectors and retaining the one which generates the result most similar to the reference edge.Ziou and Koukam [126] have implemented the SED system which is able to automatically selectedge detectors and their scales to extract a given edge. To avoid a combinatorial approach, theselection criteria combine several sources of information such as edge characteristics, detectorproperties, the mutual inuence between edges and detectors, and the e�ective results of therun detectors.Multi-scale edge detection is a particular solution to this problem since it is limited to theuse of single edge detector with multiple scales. Let us consider the gradient of the Gaussian.For a small scale, this detector is rather noise-sensitive; some extracted edges are twistedand broken but the �ne details of intensity changes are obtained; for a large scale, coarseintensity changes are obtained but some edges have a large delocalization error (see Fig. 6). Itis di�cult to �nd a single scale which leads to an optimal detector for all edges in an image.As suggested by Rosenfeld and Turson [94] as well as Marr and Hildreth [67], we can obtaina description of an image at di�erent scales by applying an edge detector at di�erent scalesand combining the recovered edge information. This is called the multi-scale approach. Letus examine the order in which smoothing and di�erentiation can be performed. We previously(cf. 3.1) gave a response for this question in the case of a detector which runs at one scale.In the case of multi-scale edge detection the order in which these operations run is slightlydi�erent. Traditionally, in multi-scale edge detection schemes, images are smoothed at severalscales after di�erentiation. Let us consider two requirements of multi-scale edge detection:regularization and nice scaling behavior. The regularization requirement implies the followingorder: smoothing, di�erentiation and successive smoothing at di�erent scales. Nice scalingbehavior means that edges are not created as the scale increases; in general this requirementdoes not hold for non-linear operators [121, 122]. Many schemes for multi-scale edge detectionhave been proposed [118, 4, 82, 64, 127]. The use of this approach involves two problems:(1) the number of scales of an edge detector which can be used for a given image and theway in which those scales are selected, (2) the way in which the edge information recovered atdi�erent scales can be e�ciently combined. It should be recalled that the scale is related to theregularization parameter (cf. 3.1). 13



a. b. c.Figure 6: a) Original image, b) and c) Gradient Maxima obtained at � = 1 and � = 4,respectively.As we just have seen, an edge detector is usually run at di�erent scales; s1; s1 + �s; s1 +2�s; � � � ; s2. When �s is negative, this means that coarse edges are extracted before �ne edges,thus the appellation coarse-to-�ne strategy; whereas positive �s corresponds to �ne-to-coarsestrategy. The choice of s1, s2, and �s depends on the image characteristics, the properties ofthe detector used and the subsequent use of edges. But also �s must be chosen so that themovement of edges obtained at consecutive scales in scale space will be small, thus makingit easier to combine them. In his study, Bergholm [4] suggests �s = 0:5 in the gradient ofGaussian case. This manner of choosing scales lacks e�ciency since the scale is increased ordecreased by the same amount (i.e., �s) at each run of the detector. However, certain edgesare invariant in scale space and do not need to be processed at each scale. This redundancyproblem can be circumvented if it is possible to predict the scales that causes an edge to change.Various schemes for the automatic estimation of scales have been proposed [45, 34, 65, 52, 27].The integration of these schemes in multi-scale edge detection schemes seems to be promising.The Edge combination process involves identically labeling, with minimum error, edgesobtained at di�erent scales which originated from the same physical phenomena. The similaredges are combined to form a single image, to which are added all edges which are not matched.The resulting image is more complete and includes edges with minimal redundancy. Generally,the labeling process is not an easy one, edge combination can be made easier if the detectorused has nice properties in scale space: no edges are created as the scale increases. Whenthis property is ful�lled all edges appear at the �ner scale and therefore edges can be trackedin scale space; for instance in �ne-to-coarse tracking edges that disappear never reappear. Inother words, this property provides a means of relating the descriptions at di�erent scales toone another and allows the characterization of edges behavior in scale space. This behavior isan additional source of knowledge which can be used in combining edges and selecting scales.Theoretical studies [122, 3, 121] show that in one dimension, with the second derivative, theGaussian �lter is the only �lter in a broad class which never creates zero-crossings as the scale14



increases. In two dimensions, this property is ful�lled by the Laplacian of Gaussian. It shouldbe noted that in practice the consequences of the nice behavior property are not clear. Thenice behavior of an edge detector also depends on the normalization constant that reducesapproximation errors [104, 31, 44]. For example, certain authors [41, 44] consider the Laplacianof Gaussian as K(1� �2�2 )e� �22�2 , where K is the normalization factor and �2 = x2+y2. The valueof the constant K is chosen so that the detector has a certain behavior in scale space, the sumof the discrete �lter coe�cients is zero and they are represented to the desired number of bits.Recently, Williams and Shah [119] suggest the use of the normalized version of the Gaussian;for a one-dimensional �rst-order derivative, this means that the area between the curve andthe x-axis is in two parts; that for x < 0 is above the axis, while that for x > 0 is below. Thetotal area of both regions under the curve is constant and equal to one. The normalized versionof the Gaussian ensures that the gradient magnitude of the edges increases and decreases as afunction of edge pro�le and edge interaction. For instance, if the edge is an ideal step, its �rstderivative does not depend on the scale.Witkin [120] was one of the �rst to explicitly propose a description of a one-dimensionalsignal by its zero-crossings across scales. The signal is smoothed by a Gaussian �lter usingvarious scales and the zeros of the second derivative are located (see Fig. 7). In this description,called scale space, each zero-crossing is represented by its location at a �ne scale and the scaleat which it disappears. Witkin's description has allowed the study of the behavior of edgemodels as a function of the scale [119, 118, 4, 82, 30, 60, 87, 63, 127] and thus the use of theknowledge resulting from these studies to design edge combination algorithms. Canny [7, 8] hasproposed a �ne-to-coarse combination strategy of edges resulting from the use of his detectors atdi�erent scales. The combination process, called feature synthesis, involves using its detectorto mark edges at a �ne scale. From these edges, the large gradient output is synthesizedand compared to the actual detector output. Additional edges are marked only if the largedetector has signi�cantly greater response than that predicted from the synthetic response.This combination process picks up �ne details of the image and provides a smearing edges.Bergholm [4] proposes an algorithm, called edge focusing, for combining edge information,moving from a coarse to a �ne scale. Canny's detector is run at decreasing scales in the vicinityof the recovered edges and the combination process consists of re�ning the previously recoverededges by the current ones. A drawback of Bergholm's algorithm is that some edges (i.e., theblurred ones) present a juggling phenomenon at small scales. Improvements of Bergholm'sscheme have been proposed by Williams and Shah [118]. These authors consider Canny'sdetector and a general double edge model with di�erent steps. They study the behavior ofthese edges in scale space and provide an equation for the movement of edges as a functionof the scale. This equation describes the position of an edge at a given scale and can thus beused in the edge linking process. The schemes of Bergholm and Williams et al. are based on15



reasoning in scale space. They result from a thorough study of the behavior of edge models(step edge, double edge, corner edge, and box edge) in scale space. Lacroix [56], on other hand,uses a �ne-to-coarse analysis to avoid this problem. However, the resulting edges have a largedelocalization error at high scales. To avoid these problems Lindeberg [62] proposes labelingedges when they have a maximum gradient magnitude in scale space. All of these schemes usethe gradient of the Gaussian. As mentioned above, only the Laplacian of Gaussian has the nicebehavior. Lu and Jain [63, 64] consider di�erent types of step edges and derive thirty-�ve rulesdescribing the behavior of zero-crossings of the Laplacian of Gaussian in scale space. Theserules allow multi-scale reasoning for the automatic selection of scales, edge localization, edgefusion, correction of edge location, and elimination of false edges. Tabbone and Ziou [127, 111]use neither the coarse-to-�ne nor the �ne-to-coarse strategy to combine edge information. Thestarting point for image description is the behavior of four step edge models (ideal, blurred,pulse, and staircase) in scale space. It is shown that, for these models, use of two scales (highand low) leads to a complete, correct description of the image in terms of zero-crossings. Theauthors propose rules for the combination of zero-crossings obtained at two scales: step anddouble edges are recovered at a low scale and blurred edges at a high scale. The smoothing�lter used in this scheme is not the Gaussian and therefore the nice behavior is not ful�lled.

Figure 7: One-dimensional signal smoothed at di�erent scales and its Scale space representation.4 Mutual Inuence Between Detectors and EdgesSo far, we described the fundamental operations of an edge detector, i.e., smoothing, di�er-entiation and labeling. In this section, we will deal with how image characteristics and theproperties of smoothing and di�erentiation inuence the computed edges. It should be recalledthat an edge detector can be seen as a convolution operation and that it includes neither theprecise context in which it can be successfully used nor the scale computation. The mutual16



inuence relation between edges and detectors makes it possible to specify the context in whichit is meaningful [126]. For example, the choice of a speci�c edge detector for a given imagerequires knowledge of its performance. Thus, this mutual inuence relation leads to a betteruse of edge detectors and resulting in a better performance. In what follows, we will considertwo of the three criteria of Canny as the performance of an edge detector: the signal/noiseratio (non-detection of true edges and detection of false edges) and the delocalization error (thedistance between the location of the true edge and the location of the edge detected). Themultiple response criterion do not concern edges, but only image noise; it is not consideredhere.In the next section, we will present the inuence of an edge detector's properties on thedetected edges. We will discuss the e�ect of image characteristics, particularly subpixel andedge orientation. Finally, we will present the evaluation schemes used to measure the inuencebetween edges and detectors.4.1 Inuence of an Edge DetectorIt should be recalled that we are interested in the properties of the smoothing and di�erentiationoperations. In this section, we will present the inuence of the smoothing �lter, especially thee�ect of its impulse response duration and the inuence of the di�erentiation operator.Let us examine informally the performance of the three kinds of low-pass �lters commonlyused: band-limited �lters, support-limited �lters and �lters with minimal uncertainty. Band-limited �lters are an obvious choice for regularizing di�erentiation, since the simplest way toavoid noise is to �lter out high frequencies that are ampli�ed by di�erentiation. However,their support is theoretically in�nite and they are truncated before their implementation in thespatial domain. Consequently, the properties of the original �lter are not conserved and theresults obtained may not ful�ll the initial speci�cation. Band-limited �lters are localized in thefrequency domain to reduce the range of scales over which intensity changes take place. Anexample of a detector based on this kind of �lter is proposed in [98]. Support-limited �ltersare not good for regularization. Di�erentiation reintroduces as many high frequencies as areremoved by this type of �lter. However, in contrast to band-limited �lters, support-limited�lters can be implemented in the spatial domain without truncation. The properties of theimplemented �lter are similar to those of the original �lter. Support-limited �lters are localizedin the spatial domain (the �ltered image should arise from a smooth average of nearby points).The di�erence-of-boxes �lter [40] is an example of a support-limited �lter. Filters with minimaluncertainty regularize the di�erentiation and they are an optimal compromise between the twoprevious �lters. For example, the Gaussian �lter (eq. 2) provides an optimal trade-o� betweenthese conicting requirements.Now, we will deal with the inuence of the di�erentiation operators. We will examine17



the characteristics of edges produced by commonly-used di�erentiation operators and discussconditions under which these operators give similar edges. The operators considered are thegradient, the Laplacian and the second-order derivative along the direction of the gradient.We will begin by establishing the equivalence of the gradient and the second derivative alongthe gradient direction. The derivative of the gradient magnitude M(x; y) along the gradientdirection ~n is equal to the second-order derivative along the direction of the gradient.@M(x; y)@~n = @2@x2 cos2( ) + @2@x@y sin( )cos( ) + @2@y2 sin2( ) (7)The equivalence between these operators is deduced from this equation. To clarify, wepresent the following example. Let us consider a vertical double edge i(x; y) = erf(x�as ) +erf(x+as ), where a and s are positive real numbers. For sake of simplicity and without loss ofgenerality, we will use the notation i(x) instead of i(x; y), since the variable y in the right-handterm of i(x; y) is not used. The derivatives of this signal at the origin are i0(0) = 4sp�e�a2=s2 ,i00(0) = 0, and i000(0) = 8s5p�e�a2=s2(2a2�s2). The second derivative is zero at the origin. Underthe condition 2a2 > s2, this zero-crossing corresponds to a positive minimum of i0(x). In otherwords, for certain scales (i.e., s < ap2), if the �rst-order derivative is used, no edge shouldbe labeled at the origin. However, if the second derivative is used an edge should be labeledat the origin. Even in a noise-free signal, these two operators give the same edges as outputin the case of an isolated step edge. However, they give di�erent results in the case of severaledges which are close to each other (i.e., double edges). The second derivative gives more edgepoints than the �rst derivative. This di�erence is accentuated in the presence of noise. Weconclude that there is an equivalence between these operators in the case of noise-free isolatedstep edges. However, in practice the equivalence is meaningless.The Laplacian and the second-order derivative along the direction of the gradient are bothsecond-order operators. They are related by:r = @M(x; y)@~n +M(x; y)@�(x; y)@ ~n� (8)where ~n� is the unit vector normal to the gradient direction. The Laplacian is decomposedinto the change of magnitude of the gradient vector along the direction of the gradient andthe change of direction of the gradient vector, multiplied by the gradient magnitude, alongthe direction perpendicular to the gradient. The term @�(x;y)@ ~n� is related to the curvature of theunderlying edge. Curvature is @�(x;y)@s , where s is the arc length. Because ~n� is aligned alongthe edge and closely approximates s, @�(x;y)@ ~n� approximates the curvature. In particular, @�(x;y)@ ~n�is zero only if the underlying edge is straight and theoretically in�nite at the junction points.Given an image I(x; y), the operators r and @M(x;y)@~n are equivalent; that is their zero-crossingscoincide, i� the curvature of the edge is zero, i.e., @�(x;y)@ ~n� = 0. This result is similar to the one18



in [114] and generalizes the result proposed in Marr's paper [67], i.e, rI(0; y) = @2I(0;y)@x2 = 0 i�the image I(0; y) is constant or linear. Furthermore, the zero-crossings of the Laplacian havegeometrical properties. Torre and Poggio [114] show that zero-crossing contours are closedcurves or curves that terminate at the boundary of the image. However, edges obtained withdirectional operators do not have special geometrical properties.Di�erentiation operators have been used to extract junctions. In this context, their per-formance has been studied in [5, 19, 78, 112]. It is shown that the commonly-used curvaturemeasure is suitable for the detection of L-junctions but unpredictable for other junction models.Concerning the Laplacian operator, it is shown in [112] that for linear junction models (i.e., L,X, Y) with in�nite extent and constant illumination (the edges forming the junction are linear,with in�nite extent, and the underlying surfaces of the junction have a constant illumination)the Laplacian of Gaussian is zero at the junction point, while it is not zero for the other models,i.e., linear models with non-constant illumination, non-linear models, and models with �niteextent. In the case of linear models with non-constant illumination, the value of the Laplacianof Gaussian depends on the image intensity variation. For non-linear models the value of theLaplacian of Gaussian depends on the model curvature. For �nite extent linear models withconstant illumination the Laplacian of Gaussian value tends to zero when the area of the modelis large compared to the scale of the Gaussian. It is clear that in many cases, true junctions donot coincide with zeros of the Laplacian of Gaussian. We conclude that approaches that usezero-crossings of the Laplacian of Gaussian are not precise.The performance of the gradient of the Gaussian have also been studied in [19]. The gradientscheme does not produce false edges in the vicinity of T and Y, as with the Laplacian. However,for the Y, T, V, and L linear models with in�nite extent and constant illumination there isno local maximum of the gradient modulus along the direction of the gradient at the junctionpoint. Moreover, the delocalization error of both maxima of the gradient and zeros of theLaplacian is large in the vicinity of the Y, T, V and L junctions (see Fig. 8).4.2 Inuence of Edge CharacteristicsAccording to the de�nition given above, an edge is represented by its geometric and photometriccharacteristics. We are interested in those characteristics that inuence the performance ofan edge detector. The geometric characteristics are position, orientation, and smoothness.The photometric characteristics are an accurate description of the detailed variation of imageintensity in the vicinity of the edge. We will consider two kinds of edge pro�le: the isolatedstep edge and the double edge. Let us assume that the surfaces of the image are linear. Thisis a reasonable assumption if the image is smoothed before edge analysis. The attributes of astep edge are its noise, contrast (the cumulative intensity change that occurs across the edge),steepness (the surface slope within the interval, across the pro�le, in which the bulk of the19
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0 e.Figure 8: a) Y-junction model, b) Y-junction edges obtained as maxima of the gradient, c)Y-junction edges obtained as zero-crossings of the Laplacian, d) L-corner edges obtained asmaxima of the gradient, e) L-corner edges obtained as zero-crossings of the Laplacian.intensity change occurs), and �nally its width (the size of this interval). The attributes of adouble edge are the attributes of each step plus the distance between these two steps. Theinuence of edge characteristics on the performance of detectors has been studied by manyinvestigators [1, 49, 48, 115, 19, 66]. We will give some knowledge which is independent ofa particular detector. We will start with a brief description of the inuence of photometriccharacteristics such as noise, steepness and edge type. Then, we will present the inuence ofgeometric characteristics such as smoothness, subpixel, and orientation.For the inuence of noise, the higher the noise energy, the lower the signal/noise ratio, thegreater the delocalization error is. In the case of a single step edge, the lower the edge steepness,the lower the signal/noise ratio and the greater the delocalization error. The delocalization erroris greater in the case of a double edge because of the mutual inuence between its two steps.It increases with the quotient of the detector scale and the distance between the two steps.With regards to the inuence of form attributes and smoothness, it is pointed out thatdirectional operators are suitable for the extraction of straight edges [7, 114]. However, rota-tionally symmetric operators give smooth edges. For instance, as we mentioned earlier, theLaplacian gives smooth, closed edges.Another important characteristic of edges concerns the discrete nature of the image plane.Deterioration in the performance of an edge detector due to the subpixel (real displacement ofthe edge from the nearest integer location) is as important as deterioration due to noise [66, 48].For example, the delocalization error of Canny [8] and Deriche detectors [21] increases as20



the edge is further away from the integer location (that is, when the subpixel error becomeslarge). Their signal/noise ratio is also a�ected by the subpixel, it decreases when the subpixelincreases [125]. In general, neglecting the discrete nature of the image plane when evaluatingdetectors' performance leads to erroneous results and false conclusions.The inuence of edge orientation is related to the rotation invariance property of an edgedetector. An edge detector is invariant by rotation i� the di�erentiation of the smoothing �lteris invariant by rotation. As an example, the gradient modulus of the Gaussian is invariantby rotation, whereas the gradient modulus of the 2D version of the �lter in (eq. 1) is not. Astudy of the invariance by rotation property and its inuence on the error in edge orientationhas been carried out by Davies [16] for several detectors. He proposes a method of implement-ing a rotationally symmetric detector to reduce the error in edge orientation. By studyingseveral existing detectors, Davies con�rms that for the estimation of edge orientation, di�eren-tial detectors are more accurate than template-matching detectors. Another implementationmethod was proposed by Merron and Brady [71]. They studied the e�ect of the gradient ofthe Gaussian on anisotropy for an ideal step edge. The anisotropy model is identi�ed andused to compute an isotropic gradient estimation. More thorough studies of rotation invariancefor gradient and higher-order derivatives have recently been carried out [58, 59, 15]. Lenz [58]shows that rotation-invariant operators are optimal for a wide variety of edge detection schemesand gives a method to design �lters for feature extraction. Danielsson and Seger [15] measurethe total harmonic distortion generated by spectral analysis of a �lter convolved with a testimage. Lacroix [55] proposes another criterion based on the variation of the estimated edgeorientation, which includes discretization and truncation errors. Rotation invariance also af-fects the variation of the modulus and the error is the estimated gradient vector's direction.In recent papers [125, 129], we have studied the inuence of edge orientation on the gradientvector and the performance (signal-to-noise ratio and delocalization error) of general �rst-orderedge detectors using ( @@x)2 + ( @@y )2 as a di�erentiation operator. We start with the inuence ofthe edge orientation � 2 (0; �=2) on the gradient magnitude M and orientation  :M(�) = q((fx � s�;l)(x; y)j(x;y)=(0;0))2 + ((fy � s�;l)(x; y)j(x;y)=(0;0))2 (9) = atan (fy � s�;l)(x; y)j(x;y)=(0;0)(fx � s�;l)(x; y)j(x;y)=(0;0)! (10)where s�;l(x; y) is an ideal step edge, l the subpixel and f(x; y) the smoothing �lter. Weshow that the gradient magnitude of rotationally symmetric detectors is una�ected by edgeorientation; i.e. M 0(�) = 0. For rotationally dependent detectors, gradient magnitude canbe a�ected by edge orientation; i.e. M 0(�) 6= 0. However, there are rotationally dependentdetectors for which gradient magnitude is una�ected by edge orientation, as is the case of21



rotationally symmetric detectors. Description of the properties of these detectors requires theintroduction of some mathematical concepts which are not given here; the reader is referred topaper [129]. The inuence of edge orientation on the gradient magnitude is symmetric at anedge orientation equal to �=4, possibly with an extremum at this orientation. If the extremumexists, its type (minimum or maximum) is de�ned by the properties of the detector and thecharacteristics of the edge. When the edge crosses the pixel (subpixel l = 0), the estimatededge orientation is accurate for all detectors; i.e., � =  . Otherwise, for rotationally symmetricdetectors the estimated edge orientation is also accurate. For rotationally dependent detectorsestimation of edge orientation may be biased (i.e., � 6=  ), even if the signal is noise-free.However, there are rotationally dependent detectors for which the orientation of the edge isequal to the gradient orientation, as it is for rotationally symmetric detectors.Now we will deal with the inuence of � on the signal-to-noise ratio and the delocalizationerror. The signal-to-noise ratio � of the �rst-order edge detector is the quotient of its responseto the input signal c(x; y; �) and the square root of its mean squared noise response. It is givenby: �2 = ((f 0x � s�;l)(x; y)j(x;y)=(0;0))2 + ((f 0y � s�;l)(x; y)j(x;y)=(0;0))2n20 R+1�1 R +1�1 f 02x (x; y)dydx + n20 R+1�1 R+1�1 f 02y (x; y)dydx (11)We assume that the ideal edge passes through the origin (0; 0) and the detected edge islocated at (x0; y0), where x0 and y0 are independent random variables of zero mean. Thelocalization (�) can be de�ned by the following quantity:� = 1E(x20) + 1E(y20) = ((f 000x � s�;l)(x; y)j(x;y)=(0;0))2n20 R +1�1 R +1�1 f 002x (x; y)dydx + ((f 000y � s�;l(x; y)j(x;y)=(0;0))2n20 R +1�1 R +1�1 f 002y (x; y)dydx (12)where E(x2) is the variance of x. The signal-to-noise ratio of rotationally symmetric de-tectors is una�ected by the orientation of the edge; i.e., �0(�) = 0. However, the localizationcan be a�ected by edge orientation; i.e., �0(�) 6= 0. For rotationally dependent detectors,both signal-to-noise ratio and localization are often a�ected by edge orientation. However,there are rotationally dependent detectors whose signal-to-noise ratio and/or localization areorientation-free.These results show that rotationally symmetric detectors do not necessarily provide isotropicinformation and that rotationally dependent detectors can provide isotropic information. Con-sequently, they call into question the belief that rotationally symmetric operators computeisotropic information and conversely, isotropic information is computed only by rotationallysymmetric operators (see [6]). Furthermore, experimentation has shown that in practice theproperty of invariance to rotation is not preserved, due to tessellation of the image plane andnumerical error approximation. Rotationally dependent detectors are also inuenced by these22



discretization problems and remain highly sensitive to edge orientation. These results do notrule out the use of directionally selective detectors. As we mentioned above, directional detec-tors are suitable for extracting linear edges whenever they give a better performance for suchedges.4.3 Evaluation of DetectorsEdge detectors provide a set of edge pixels which are combined into more elaborate primitives(i.e., chains, straight lines, circles, splines). The performance of a computer vision or imageanalysis system depends on this intermediate representation. An edge detector which performswell in a general context produces primitives from which an object may be found with littlecomputation. An edge detector which introduces errors leads to an ine�cient system. Inspite of major research e�orts in this �eld, edge detectors do not meet the requirements ofmany applications in computational vision. Detectors miss true edges, detect false edges, andthe edge delocalization error is unsatisfactory. These errors depend on image characteristics,detector properties, and implementation methods. Many methods for the analytical study ofthe inuence of other edge characteristics on the performance of detectors have been proposed.The results were summarized in sections 4.1 and 4.2. Here, we will consider experimentalevaluation.Experimental evaluation of the results of an edge detector shows its failures and characterizesits performance. Thus, it makes it possible to distinguish detectors, to re�ne the mutualinuence between characteristics of the detector and those of the image, and can result ina exible detector (by adjusting its parameters to get useful edges). The evaluation processrequires criteria or reference, which describe the characteristics of the edge to be detected. Ifthe criteria are described formally the evaluation is objective; subjective otherwise. Subjectiveevaluation consists of showing the detected edges to a human subject who rates the detector.While this technique is easy, only a few characteristics (e.g., position, contrast, orientation) arevisible to humans. The evaluation is rough since it is di�cult for humans to distinguish betweentwo close grey levels or two close orientations. Judgment by humans depends on experience, thecontext (i.e., the scene) and attachment to the detector used. The human subject does not checkwhether the detector conforms to its initial speci�cations but rather whether perceived edgesare detected. Subjective evaluations are vague and cannot be used to measure the performanceof detectors but only to establish their failure.The goal of objective evaluation is to measure the performance of an edge detector. Severalauthors [1, 88, 49, 115, 46] have proposed performance measures to evaluate the output of edgedetectors. Abdou and Pratt [1, 88] have proposed a measure, called the �gure of merit, whichis a combination of three factors: non-detection of true edges, detection of false edges, and edgedelocalization error. Using this measure it is di�cult to determine the type of error committed23



by the detector. Kitchen and Rosenfeld's measure [49] combines errors that arise due to anedge's thickness and lack of continuity. Venkatesh and Kitchen [115], among others, use fourerror types which reect the major di�culties encountered in edge detection: non-detection oftrue edges, detection of false edges, detection of several edges instead of an edge one pixel wide,and edge delocalization error. All of these measures have been used empirically to quantify thee�ect of edge characteristics such as contrast, noise, slope and width on various edge detectorschemes. The edge attributes to be considered in the evaluation process are of great interest.The test image should be realistic, especially where knowledge and know-how about realisticcamera model are available [51]. It should include di�erent physical phenomena related toedges: multi-models with variable contrast, di�erent models of junctions, blurring, and noise.Subjective and objective evaluations can be used together to evaluate edge detectors. Thiscombination inspired by psychological methods, is based on statistical analysis. For example,Heath et al. [39] propose an evaluation method in the context of object recognition. Edgedetector results are presented to humans who compare di�erent edge detectors. They are in-terpreted using the analysis of variance technique to establish the statistical signi�cance ofobserved di�erences. Two experiments are proposed in the paper. The �rst leads to the auto-matic computation of parameters of the edge detector. For each edge detector a combination ofparameters is chosen and the resulting edges are presented to eight judges. These judges ratethe edge detector on a scale of 1 to 7. A rating of 1 means that edges cannot be coherentlyorganized into an object and 7 means that all edges are relevant for recognizing an object. Fromthe �rst experiment, ratings are analyzed statistically and the best parameters are selected foreach edge detector and for each image. The second experiment concerns comparison betweenedge detectors. Original images and corresponding edges are presented to sixteen judges forrating. The correlation between three factors (edge detector, set of parameters, and image) isanalyzed.To conclude, the results obtained by both experimental and analytical evaluation processeshave clari�ed the mutual inuence between edge characteristics and detector properties. Moregenerally, the knowledge that has been acquired about edge detection should be used in thedesign of edge detectors. Consequently, evaluation methods should be developed with the sameinterest as the smoothing and di�erentiation techniques. We suggest that evaluation methodsshould take into account the subsequent use of edges, the speci�cation of the detector and thecharacteristics of the real image. Recent results obtained by Heath et al. [39] and by Kanungoet al. [46] are a promising step in this direction.
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5 Survey of Edge DetectorsSince the appearance of image processing, the number of edge detectors has increased contin-uously. It is di�cult to make an inventory of the available algorithms. Most existing edgedetectors are autonomous and include the three main steps: smoothing, di�erentiation andlabeling. They di�er in their smoothing �lters, di�erentiation operators, labeling processes,goals, computational complexity and the mathematical models used to derive them. Contex-tual detectors are by far the most rarely used and designed. Their goal is di�erent, as is theknowledge used to extract edges. These detectors are not presented in this paper; however, thereader can �nd a survey in [17, 68]. Similarly, edge detection approaches based on snakes, sta-tistical tools and neural networks are not presented here. Our goal is not to give an exhaustiveinventory of edge detection algorithms. We limit ourselves to edge detection algorithms that �tthe detector properties given in previous sections and that have inuenced our work over therecent years. Other surveys on edge detection may be found in [17, 114, 123, 75].In the next sections, we will present informal detectors for step edges or early detectors,optimal step edge detectors, detectors of line edges and junctions, the use of phase informationto extract both step edges and line edges, and the implementation of edge detectors.5.1 Detection of Step EdgesAs much as thirty years ago, the �rst detectors based on gradient and Laplacian operators wereproposed. These detectors are limited to the di�erentiation operation. For instance, estimationof the gradient vector is based on the use of the following 3� 3 masks:�x = 264 �1 0 1�a 0 a�1 0 1 375 and �y = 264 �1 �a �10 0 01 a 1 375where a is a positive real number (1 in the case of Prewitt's masks [89] and 2 in the case ofSobel's masks [66]). The Prewitt and Sobel masks are well-known operators in edge detection.The intensity image is convolved with each mask to compute the �rst-order partial derivativesat the center of a 3�3 window. For the Laplacian estimation, the following 3�3 mask is used:r = 264 0 1 01 �4 10 1 0 375The masks most often proposed have a �xed 3� 3 size. The performance of these operatorsdeteriorates when the image is noisy since, for example, both Prewitt's and Sobel's masksare derived by assuming that white noise is additive and image surfaces are linear. Rosenfeldand Thurston [94] introduce the smoothing operation to reduce the noise of the image andthus improve image di�erentiation. Smoothing is done by replacing the value of the pixel bythe average computed on a squared window. The drawback of the di�erentiation operators25



mentioned above is that their size and coe�cients are �xed, so they cannot be adapted to agiven image. Therefore, they remain noise-sensitive. Furthermore, these detectors are informal,in the sense that no formal model is used to represent edges or to derive them. Thus, analysisof their performance is based on informal criteria.The problems underlying the use of the smoothing operation concern the choice of theappropriate �lter and its scale. The problem of scale selection has engendered multi-scale edgedetection (Cf. 3.4). It should be recalled that smoothing has a positive e�ect, noise reduction,thus ensuring robust edge detection, and a negative e�ect, loss of information. Clearly, we havea fundamental trade-o� here between information loss and noise reduction. The ultimate goalis to �nd optimal detectors that ensure an acceptable compromise between noise reduction andedge conservation. Each of the optimal detectors proposed in the literature falls into one oftwo categories: parametric �tting and optimal enhancement.Parametric �tting: these techniques involve adjusting the image by an edge model andselecting the edge pixels for which the �tting error is minimal. The di�erentiation problemis thus avoided. To illustrate, we will begin by describing Hueckel's technique [42, 43]. Eachimage pixel is �tted by a two-dimensional step edge in a circular window. The parameters ofthis edge model are the luminance level, the edge orientation and the distance from the center.If the �t is su�ciently accurate, an edge is assumed to exist with the same parameters as theideal edge model. The accuracy of edge �tting is measured in terms of the mean square errorcriterion. Hueckel introduces a polar Fourier expansion and uses the �rst eight coe�cients inthe minimization procedure. Although this approximation simpli�es the computation modelneeded, it a�ects the accuracy of the minimization procedure. Other researchers have beeninterested in parametric �tting techniques for edge detection [43, 106, 23, 74, 76, 77]. Sincethese techniques are a rich description of the image structures, they have the advantage ofproviding all edge attributes such as subpixel position, contrast, blur, width, and intensity level.For instance, in the recent work of Nayar et al. [77], the image intensity is correlated with a givenedge model and all its attributes are computed. To avoid ine�cient computation, the number ofedge attributes is reduced. For example, a 2D step edge, u(x; y) = c1 if xcos(�)+ysin(�)+� � 0and c2 elsewhere, has four parameters, namely, orientation �, subpixel �, and two brightnessvalues c1 and c2. The normalized step edge (u(x;y)�c2)c1�c2 is independent of c1 and c2. The authorsgo further in dimension reduction with little loss of information. Instead of the normalized edge,they use a dimensionless edge parametric manifold obtained from the signi�cant eigenvectorsof the initial edge model. The edge parametric manifold is compared to image pixels. If thedistance between the manifold and an image window is su�ciently small, there is an edge. Theparameters of the manifold are used to estimate the parameters of the initial edge model. Thisscheme is used for the extraction of �ve edge models: step, line, roof, corner, and blob.26



Another technique, di�erent from the preceding has been proposed by Haralick [36, 37]. Itconsists in adjusting the image by a set of given basis functions. The di�erentiation problemis easy to resolve since we are computing derivatives of continuous functions. Step edges occurat pixels having a negatively sloped zero-crossing of the second directional derivative taken inthe direction of the gradient. The image is �tted by a linear combination of discrete bases ofTchebychev's polynomial, of order less than or equal to three. First and second-order derivativesare computed and used to locate edges. It is pointed out in [7] that �tting by this polynomialbases of order less than or equal to three, is equivalent to the use of smoothing with the Gaussian�lter (which is optimal according to regularization requirements).Optimal enhancement: this involves designing edge detectors with desired performance.There are two problems related to optimal edge detection: the de�nition of performance criteriaand the design of a �lter which optimizes these criteria. Usually, the de�nition of performancedepends on detection accurately and delocalization error of edges. The design of optimaldetectors requires the speci�cation of these criteria to give mathematical models, and the useof optimization theory to derive the optimal detector according to these criteria. Speci�cationof these criteria by di�erent authors gives di�erent mathematical models and thus di�erentoptimal detectors.Shanmugam et al. [98] consider the problem of optimizing spatial frequency domain �lterswithin a �nite interval in the vicinity of edge pixels. Using this criterion, authors derive a bandlimited �lter which has a form similar to the Laplacian of Gaussian. Surprisingly, edges arelocated at the extrema of this detector output. Consequently, this detector responds by twoextrema to a single edge pixel. For example, when the 1D smoothed step edge is the erf(x)function, the absolute value of its second derivative (i.e, 4p� jxjexp(�x2)) has two maxima. Incontrast to Shanmugam et al., Marr and Hildreth [67] and later Hildreth [41] have proposed theuse of zero-crossings of the Laplacian of Gaussian. The image is convolved with the Laplacianof the two-dimensional Gaussian and the zero-crossings are labeled. The choice of the Gaussian�lter is motivated by the fact that it represents an optimal compromise between spatial andfrequential resolution. Moreover, the Laplacian of Gaussian can be implemented e�ciently, forexample, as the di�erence of two Gaussians having two close scales, or by computing only twopartial derivatives. Figure 5 presents step edges obtained by the Laplacian of Gaussian.Another optimal edge detector is proposed by Canny [7, 8]. He assumes that edge detectionis to be performed by convolving the image with a �lter, and marking edges at the outputmaxima. He derives an optimal �lter for the extraction of a one-dimensional ideal step edgein the presence of white Gaussian noise. The performance criteria are good detection, goodlocalization, and an unique response to a single edge. According to Canny, this �lter can be ac-curately approximated by the �rst derivative of the Gaussian. To create a two-dimensional edgedetection scheme, the image is convolved with the �rst-order derivatives of the two-dimensional27



Gaussian. Thus, the gradient of the smoothed image is computed and edges are located atthe maxima of the gradient modulus taken in the direction of the gradient. Canny's work hasinspired many researchers [100, 21, 83, 96, 57, 105]. Deriche [21] extended Canny's initial �lterto two dimensions and implemented it using recursive �ltering (cf. 5.5). By using an ideal stepedge and similar performance criteria to those of Canny, Shen and Castan [100, 101] derived anexponential �lter and implemented it using recursive �ltering. In [9, 125, 129] the reader will�nd a theoretical evaluation of Deriche's, Canny's, and Shen and Castan's detectors. Sarkarand Boyer [96, 97, 113] propose an optimal in�nite-response edge detection �lter using an idealstep edge and Canny's criteria. Petrou and Kittler [83] derive another optimal detector usingcriteria similar to those of Canny but a blurred step edge model.All these detectors based on optimal enhancement provide integer location of edges. Addi-tional schemes for the computation of real location of edges can be found in [44, 110, 108, 47].Properties of detectors that reduce the negative e�ect of subpixel are given in [129]. In addi-tion, these detectors consider that a step edge is a local discontinuity of the grey level function.There are many problems with this de�nition. A visual examination of the image shows thatsubjective contours do not correspond to local discontinuities [117]. Another problem is thatthe edge is de�ned as a single point, without consideration of neighboring edges. Moreover,most previously reported e�orts have proposed 1D models of edges and consequently factorssuch that the rotation by invariance property are not considered. A possible improvement inthe de�nition of edge is the use of a 2D multi-model (i.e., multi-step) to include other phe-nomena (e.g., the Laplacian of Gaussian gives a false zero-crossing in response to a staircaseedge model). Recent progress has been achieved in this respect; 1D multi-model edge detectorsare proposed in [10, 81, 99] and a 2D optimal step edge Laplacian detector is proposed in [70].Finally, as we mentioned earlier the step edge is by far the most common. However, there areother local variations of the grey level function (e.g., roof, junction, shoulder) which have ameaning in our world and which can be extracted and used in computer vision systems. Takingthese variations into account leads to a rich description of the world and therefore an improve-ment in computer vision. However, as we will explain below (cf. 5.4 and 3.4) the integration ofthese di�erent variations is a new problem.5.2 Detection of LinesAs mentioned earlier, lines correspond to local extrema of the grey level image and are of greatuse in the identi�cation of image features, such as roads and rivers in remote sensing imagesfor example. Most schemes for the detection of lines are limited to thinning algorithms. Themajority of these algorithms are designed for binary images [2, 11, 103] and a few for greylevel images [26, 95]. The main problem is that they usually yield edges which are not locatedaccurately enough and they do not perform well in complex images such as remote sensing28



images.Haralick [36] proposed an algorithm based on polynomial �tting. The basic idea of thisalgorithm is similar to the author's step edge detection algorithm described earlier. The imageis �tted by a linear combination of discrete bases of Tchebychev's polynomial of order less thanor equal to three. Lines occur at pixels having zero-crossings of the �rst directional derivativetaken in the direction that maximizes the second directional derivative.Giraudon [33] proposed an algorithm for detecting a line at a negative local maximum ofthe second derivative of the image, rather than a zero-crossing of the �rst derivative as in theHaralick case. He estimated the second derivative by convolving the image with the di�erenceof two Gaussians having close scales. The search for a negative maximum is performed alongthe gradient direction. The main problem with Giraudon's detector comes from the use of thegradient since at the peak point, the gradient value is too small to be used.Using a 1D ideal roof model and Canny's criteria, Ziou [124] derives an optimal line detector.In 2D, the image is convolved with two directional �lters operating in the x direction and inthe y direction separately. The resulting images are combined and lines are located in thisimage at the maxima in the direction that maximize the grey level variance. As in the caseof step edge detection [20, 100, 96], this line detector is e�ciently implemented using recursive�ltering. Figure 9 presents line edges obtained by this detector.Koundinya and Chanda [53] have proposed an algorithm-based combinatorial search. Thebasic idea behind this algorithm is to locate lines that maximize an ad hoc con�dence measure.The con�dence measure of a candidate pixel is proportional to the number of pixels in itsvicinity having a di�erent grey level than the candidate pixel. Authors have experimentedthe three strategies for combinatorial search: conventional tracking, best-�rst and depth-�rst.According to the results provided in the paper, the best-�rst strategy seems to provide a morecomplete edge.

a. b.Figure 9: a) Original Image, b) Line edges.29



5.3 Detection of JunctionsJunctions are extremely useful features. They are very helpful in solving correspondence prob-lems in computer vision. Interest in the junction extraction is growing [78, 79, 61, 35, 69, 28,91, 14, 92]. Rangarajan et al. [90] de�ne a junction as the intersection of two linear step edges.Using Canny's criteria, they derive an optimal detector. This detector locates only one junc-tion model (junctions formed by two linear edges symmetric relative to the x axis). To extractjunctions in real images, they consider twelve con�gurations which di�er in the orientation ofthe two linear edges and the angle between them. Consequently, the image is convolved withtwelve di�erent masks and junctions are located at the local maxima of the convolution output.In the tradition of Hueckel, one approach recently proposed by Rohr [92] involves �tting ageneral blurred junction model to the observed image. The author starts with the identi�cationof the edge model (X, T, L, and so on) by computing the number of adjacent regions in a workingwindow. If the �t is su�ciently accurate, a junction edge is assumed to exist with the sameparameters as the blurred junction model. The author has focused much e�ort on studying thebehavior of the blurred junction model, the minimization method for least square �tting, andon selection of the working window since the performance of the algorithm is dependent on thiswindow.Deriche and Giraudon [24] have proposed the extraction of junctions at zero-crossings of theLaplacian of Gaussian of the image. The authors show that a local maximum of the Hessiandeterminant of the smoothed image moves in scale space along a line that passes through theexact position of the central point of the vertex. This property is used by authors to choosejunctions between all zero-crossings of the Laplacian; they retain zero-crossings that occur onthese lines. Instead of using the Hessian, Tabbone [107] shows that the Laplacian of Gaussianof the image presents an elliptic extremum which always lies inside the corner as shown inFig. 10. This extremum moves in scale space along the line that bisects the corner. As above,the junction is a zero-crossing of the Laplacian that occurs on the line that passes through theextremum located at two di�erent scales. Figure 11 presents the junctions detected by thisdetector.Recently, Kohlmann [50] has proposed an e�cient corner detector using the Hilbert trans-form. L, T, and Y junctions are located as maxima of the Hilbert transform of the image. Themain e�ort of the author concerns the e�cient implementation of the Hilbert transform by aseparable 2D �lter.5.4 Local Energy and Phase CongruencySince an image contains many types of edges, consideration of these edge models allows usto iron out many problems in computer vision and image processing. To extract these edges,30
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Figure 11: Junctions extracted at the zero-crossings of the Laplacian of Gaussian.one could for example run, separately, a step detector and line detector, and combine theiroutputs. This process is inadequate since it leads to edge duplication [80, 124, 93]. In fact,a step edge detector locates two neighboring steps in a line as shown in Fig. 12.b. Usually,a line edge detector localizes two neighboring minima (resp. maxima) in a maximum (resp.minimum) of the grey level and also locates one or two neighboring extrema in a step as shownin Figs. 12.c and 12.d.To avoid matching of edges some authors [80, 54, 81, 32, 116, 73] propose to combine theoutputs of a symmetric �lter (i.e., second derivative of the Gaussian) and an anti-symmetric�lter (i.e., �rst derivative of the Gaussian). Gaussian �lters are not the only ones which can beused in these edge detection schemes; quadratic �lters can also be used. Let G and H be theFourier transforms of g and h. Then, g and h are in quadrature if they are Hilbert transformsof each other; namely H(w) = �jG(w)sign(w), where sign(w) is 1 for w > 0, 0 for w = 0 and-1 otherwise. To illustrate, the real and imaginary part of the Fourier transform of a causalfunction form a Hilbert transform pair. It is not easy to justify the use of quadrature pairsof �lters in edge detection. Perhaps their use simpli�es mathematical handling since they areorthogonal. Recently, Ronse [93] has provided additional requirements that must be ful�lledby the quadrature pair �lters to avoid detecting false maxima in scale space and to reduce the31



delocalization error.

a. b. c.

d.Figure 12: a) Original Image, b) Step edges, c) Line edges, d) Line edges on the negative ofthe image.The output of a quadrature pair of �lters is combined to provide energy and phase infor-mation. The energy, or amplitude, is the sum of squares of convolutions of the image witha symmetric �lter and an anti-symmetric �lter. The phase (the arctan of the anti-symmetric�lter output divided the symmetric �lter output) is also used in many proposed schemes forthe extraction and classi�cation of edges [73, 116]. For instance, at the origin the phase ofan ideal step edge smoothed by the Gaussian is �=2, whereas the phase of a delta functionsmoothed by the Gaussian is 0. Perona and Malik [81] locate edges at the energy maxima. Intheir schemes, they use odd and even symmetric directional �lters at di�erent orientations, andthe orientation that maximizes the quadratic output is retained as the edge orientation. Usinga steering theorem, Freeman [32] presents an e�cient implementation method for an oriented�lter in any direction as a linear combination of oriented �lters in particular directions. Thisimplementation method has been used in the detection of lines [25]. Figure 13 presents theoutput of step edge and the output of edge detector based on quadrature pair of �lters.
32



a. b. c.Figure 13: a) Original Image, b) The output of step edge detector, c) The output of an edgedetector based on quadrature pair of �lters.5.5 Implementation of DetectorsThe implementation of an edge detector is a non-trivial problem. Usually, the design of anedge detector is the result of a theoretical analysis and many re�nements are required to geta running program. Many implementation methods have been proposed [102, 31, 104] such asconvolution masks, Fourier transform, hierarchical correlation, and numerical �ltering amongothers. The fundamental question concerns the desirable requirement of an implementationmethod for a given detector. It is obvious that e�ciency is an important criterion since theedge detector must run in a reasonable amount of time. In the case of multi-scale edge de-tection, this requirement also means that increasing the scale must not drastically a�ect thecomputation time. For instance, the convolution mask method is sensitive to scale increases.In addition, the implemented detector must preserve the properties of the detector resultingfrom theoretical analysis. In fact, when edge detection involves a convolution operation of theimage and a continuous �lter the implementation requires sampling of this �lter into its discreteform. Moreover, a cut-o� of an in�nite support �lter is required when it is implemented usingmethods such as convolution masks and Fourier transform. These approximations yield aliasingphenomena and result in loss of information. One can reduce the e�ect of these phenomenaand thus preserve the detector properties by a judicious choice of appropriate procedures forsampling, quantization and the cut-o� of the �lter. These aspects have been considered byinvestigators [104, 31, 44, 102] for the implementation of the Laplacian of Gaussian. Anotherinformation loss problem arises from image border erosion. When convolving an image of sizeN �N with a mask of size M �M , we normally lose 2MN �M2 pixels from the border. Forexample, when the Laplacian of Gaussian is employed with � = 3, M is set at 8 � p2� ' 33and N = 256, causing a 24% loss in image area. The method using an in�nite impulse re-sponse �lter (IIR) has been used to implement step edge detectors [72, 21, 22, 96, 97] and a lineedge detector [124]. This method has multiple advantages. No �lter cut-o� is necessary. The33
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