developer\Vorks.

Intro to graph databases, Part 1: Graph databases and
the CRUD operations

Lauren Schaefer February 22, 2017

If you're not familiar with graph databases, using one might sound a bit daunting. Anyone who
has taken a course on graph theory can probably attest that the subject is a bit complex. But
don’t let your graph theory experience (or lack thereof) keep you away from graph databases.
In fact, when you use a fully-managed graph database-as-a-service, you get all of the benefits
of graph databases without the complexity. This is part one of the two-part tutorial series Intro to
Graph Databases.

View more content in this series

To view this video, The CRUD operations , please access the online version of the article. If this
article is in the developerWorks archives, the video is no longer accessible.

If you're not familiar with graph databases, using one might sound a bit daunting. Anyone who
has taken a course on graph theory can probably attest that the subject is a bit complex. But don't
let your graph theory experience (or lack thereof) keep you away from graph databases. In fact,
when you use a fully managed graph database-as-a-service, you get all of the benefits of graph
databases without the complexity.

So what are the benefits I'm alluding to? Graph databases allow you to model your data and
the relationships between your data just as they exist in real life; you don't have to abstract the
data into tables and use a combination of keys and joins to represent relationships. Plus, graph
databases allow you to easily traverse your graph (follow the connections between your data)
without doing expensive joins to bring your data together.

Apache TinkerPop is a popular open source graph computing framework. Users of TinkerPop
utilize the Gremlin graph traversal language to interact with their graphs. Creating a graph using
TinkerPop requires a lot of setup, so we'll use IBM Graph (you can think of it as TinkerPop-as-a-
service) to quickly and easily create our graph. IBM Graph is an easy-to-use, fully managed graph
database-as-a-service that enables enterprise applications and is built on TinkerPop.

In this tutorial, you'll discover the answers to common questions about graph databases, such
as what they are and why you should care about them. Then you'll learn how to use the Gremlin

© Copyright IBM Corporation 2017 Trademarks
Intro to graph databases, Part 1: Graph databases and the CRUD Page 1 of 15
operations

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
https://developer.ibm.com/author/ljhaywar
https://www.ibm.com/developerworks/library/?series_title_by=intro+to+graph+databases
https://tinkerpop.apache.org/
http://tinkerpop.apache.org/gremlin.html
https://www.ibm.com/us-en/marketplace/graph

developerWorks® ibm.com/developerWorks/

graph traversal language to perform the CRUD (Create, Read, Update, and Delete) operations by
exploring the code for the Lauren's Lovely Landscapes app. You'll then implement a new feature
that allows end users to view their orders. Stay tuned for Part 2, where you'll get to explore one of
the most popular use cases of graph databases: recommendation engines.

The basics of graph databases
If you're new to graph databases, you probably have a few questions about them:

* What are graph databases?
* How do | model my data in a graph database?
* What are some common use cases for graph databases?

The video "Should | care about graph databases" answers those questions and more. So, sit back,
relax, and press play.

To view this video, Should | care about graph databases? , please access the online version of
the article. If this article is in the developerWorks archives, the video is no longer accessible.

About the app

In this tutorial, you work with a sample online store called Lauren's Lovely Landscapes, which
allows you to browse and purchase prints. The <for developers> page has information about how
the app was built and has links to so you can insert and delete sample data.

Note: This tutorial uses version 2 of Lauren's Lovely Landscapes. If you have an older copy of it
from another tutorial, please get the new version.

Intro to graph databases, Part 1: Graph databases and the CRUD Page 2 of 15
operations

ibm.com/developerWorks/ developerWorks®

Lauren's Lovely Landscapes

Lauren’s Lovely Landscapes

Lauren's Lovely Landscapes is a collection of some of her favorite landscapes. The site has recently

been updated to allow you to purchase prints online.

Please check back often to see if we have sales!

Recommended for you

Japan Antarctica Alaska

All prints
Israel Kenya Las Vegas
I———)

Run the app
Browse the code

Deploy to IBM Bluemix
What you need to get started

Before you begin, you need to register at Bluemix. You'll also need the latest version of one of the
following browsers:

e Chrome

Firefox

Internet Explorer
e Safari

Intro to graph databases, Part 1: Graph databases and the CRUD Page 3 of 15
operations

http://laurenslovelylandscapegraph.mybluemix.net?cm_sp=dw-bluemix-_-cl-graph-database-1_-article
https://git.ng.bluemix.net/IBM_Graph_Samples/Laurens.Lovely.Landscapes.IBMGraph
https://bluemix.net/deploy?repository=https://git.ng.bluemix.net/IBM_Graph_Samples/Laurens.Lovely.Landscapes.IBMGraph

developerWorks® ibm.com/developerWorks/

Deploy the app

To complete the tutorial, you'll want your own copy of the code to edit and deploy. The easiest way
to do this without installing anything on your machine is to deploy the app to Bluemix. For more
information, see the video Deploy an IBM Graph app to Bluemix.

To deploy the app:

1. Click the following button:
Deploy to Bluemix

. If you are not already authenticated at Bluemix, you might be prompted to do so.

. Click Deploy when the button enables. Bluemix will load the code into a Git repo, create an
IBM Graph instance that your app will use, and deploy the app to Bluemix.

. Click the Delivery Pipeline tile so you can watch the app deploy.

. After the Deploy Stage has passed, return to the Toolchain.

. Click View app.

. The home page shows that no prints are currently available for sale. Click <for developers>
and then Insert the sample data. It might take a minute or two for the data to insert.

8. When the app indicates the sample data has been created, click Lauren's Lovely

Landscapes in the top navigation bar.
9. Notice the prints listed on the home page. Your app is successfully deployed!

w N

~N o o1 b~

Take a few minutes to explore the app. Register as a new user and order a print. Navigate to the
<for developers> page to see the schema diagram as well as the data stored in the graph.

Explore the code and existing CRUD operations

In this section, you'll explore the code behind Lauren's Lovely Landscapes to see how the app
performs the CRUD (Create, Read, Update, and Delete) operations. As you'll see below, the app
POSTs queries to the Gremlin API using the Gremlin graph traversal language to tell Graph what
to create, read, update, and delete.

Bonus: To see how the app uses the Graph APIs to create the schema and indexes, watch Create
and Traverse an IBM Graph Database.

Open the code

When you deployed the app to Bluemix, a copy of the Lauren's Lovely Landscapes code was
automatically put in a project for you. In this section, you'll open the code in the Bluemix web IDE
S0 you can browse the code in the sections below:

1. Navigate to Bluemix.net.

2. Log in (if you are not already authenticated).

3. On the dashboard for your apps, locate the row with the Lauren's Lovely Landscapes app and
click it.
Hint: Be sure to click the name of your app and not the route.

4. The app page opens in Bluemix.

5. Scroll down until you see the Continuous delivery tile.

Intro to graph databases, Part 1: Graph databases and the CRUD Page 4 of 15
operations

https://www.youtube.com/watch?v=x0LHRZiGL8A&list=PLzpeuWUENMK0pcQ2z5jDlhB54ACZ0dkI5&index=4
https://bluemix.net/deploy?repository=https://git.ng.bluemix.net/IBM_Graph_Samples/Laurens.Lovely.Landscapes.IBMGraph
http://tinkerpop.apache.org/gremlin.html
https://www.youtube.com/watch?v=cN8thqBV0HU&list=PLzpeuWUENMK0pcQ2z5jDlhB54ACZ0dkI5&index=3
https://www.youtube.com/watch?v=cN8thqBV0HU&list=PLzpeuWUENMK0pcQ2z5jDlhB54ACZ0dkI5&index=3

ibm.com/developerWorks/ developerWorks®

6. Click the View toolchain button.
7. Click the Eclipse Orion Web IDE tile. The web IDE opens with your project's code.

Session API

To make requests to the Graph API, you need to authenticate. One option is to send your
credentials with every request. A better, faster option is to use the session API to generate a
unique session token to use in later requests as your form of authentication.

Lauren's Lovely Landscapes uses the latter option of generating a unique session token. Let's
explore:

1. In the file navigation pane of the web IDE, click constants.py to open it.

2. Note that the code between lines 23 and 31 accesses the credentials stored in
VCAP_SERVICES to acquire the apiURL, username, and password from Bluemix. These
credentials are used later to authenticate and get your session token.

Hint: if you choose to deploy your app locally instead of on Bluemix, follow the instructions in
the code around line 11 to manually set the API_URL, USERNAME, and PASSWORD.

. In the file navigation pane of the web IDE, click graph.py to open it.

4. In graph.py, locate the updateToken() function around line 400. This function makes a

request to the Session API, sending over the username and password that were acquired

in constants.py. The response from the session API includes the unique token needed for
authentication in later requests to the Graph API. The function adds the token to the headers.
Note that this is the only function that uses constants.USERNAME and constants.PASSWORD. All
other calls use the unique session token.

5. While still in graphy.py, locate the post() function around line 11 and the get() function
around line 19. These functions handle GET and POST requests to the Graph API. Note that
if these functions receive a 401 error response (because the token expires) or a 403 error
response (because the credentials have been invalidated), the functions automatically makes
a request to update the token.

6. Remaining in graphy.py, locate the getAllPrints() function around line 27. This function gets
all of the prints stored in the graph. Note that this function (as do all of the other functions in
this file that make GET requests to the Graph API) calls the post() function we just explored.
The getAllPrints() function doesn't bother with authentication or headers; it simply focuses on
the API call and the response.

w

For more details on the Session API, see the IBM Graph Documentation.

Create

You now understand how the API calls authenticate using a unique session token. Time for the fun
stuff: The CRUD operations, starting with create. The following instructions guide you through how
the app creates a new vertex in the graph when a user registers. For more information, see the
video Create data elements in IBM Graph.

1. Observe the schema diagram below. To handle user registration, create a new user vertex
with the following properties: firstName, lastName, username, and email.

Intro to graph databases, Part 1: Graph databases and the CRUD Page 5 of 15
operations

https://ibm-graph-docs.ng.bluemix.net/api.html
https://www.youtube.com/watch?v=WHQCWk0lHW4&list=PLzpeuWUENMK0pcQ2z5jDlhB54ACZ0dkI5&index=5

developerWorks® ibm.com/developerWorks/

label: buys

label: user datetime: String

firstName: String addressi: $tring
lastName: String

address2: String

username: String city: String
email: String state: String
Zip: Infeger

paymentMethod: String

MULTI

2. Next, open the Graph Query Editor for your graph instance in a new browser tab or window:
a. Navigate to Bluemix.net.
b. On the dashboard, scroll down to the All Services section and click
LaurensLovelyLandscapesSample-Graph.
c. On the Manage tab (open by default), click Open. The Graph Query Editor opens for
your graph instance.

3. By default, the g graph is selected. Switch to the landscapes_graph where your data
is stored by clicking the down arrow beside g in the top navigation menu and clicking
landscapes_graph.

% 1BM Graph
LaurensLovelyLandscapesSample-Graph
landscapes_graph
Samples Learn the Interface @ New Graph

4. To create a new user, write a Gremlin query that includes sample data for each of the
properties shown in the schema diagram: label, firstName, lastName, username, and
email. Including a property type with an associated value user makes it possible to search for
vertexes with type user. In the Query Execution Box, type the following Gremlin query:
def gt = graph.traversal();
gt.addVv(label, 'user', 'firstName', 'Lauren',6 'lastName', 'Schaefer', 'username',
'lauren', 'email', 'lauren@example.com', 'type', 'user');

5. Click the Submit Query button (®).

6. The results of the query open in a new box. Explore the JSON results. Note that a new vertex
has been created using the properties we indicated in the query.

7. Now that you have a working query that creates a new user vertex, explore the code. In the
file navigation pane of the web IDE you left open in another browser tab or window, click
graph.py to open it.

Intro to graph databases, Part 1: Graph databases and the CRUD Page 6 of 15

operations

ibm.com/developerWorks/

developerWorks®

(o]

. In graph.py, locate the createUser() function around line 258.

9. The function begins by calling the doesUserExist() function to check if a user with the given
username already exists. The function returns an error that is displayed to the user if the
username they requested is already taken.

10. If the username is available, the function continues and creates a new dictionary that contains
a Gremlin query. The query is based on the one we wrote above in step 4; the only difference
is that instead of using sample data for the properties firstName, lastName, username, and
email, the code uses dynamic input based on the arguments passed in to the function.

11. After the dictionary containing the query is created, the function is ready to call the Graph
API. Around line 278, the function makes a new POST request to /gremlin and sends the
dictionary containing the Gremlin query as part of the request.

12. Around line 280, the function checks to see if the request was successful (200 response

code) and the user vertex was created. If the request was not successful, the function raises

an error.

For more information on the Gremlin API, see the IBM Graph Documentation.

Read

In this section, you'll explore the read operation. The following instructions guide you through how
the app reads a user vertex when displaying a user's profile information. For more information, see
the video Read data elements in IBM Graph.

1. Let's begin by observing the schema diagram. To display a user's profile information, you
need to read a user vertex with its properties.

label: buys

datetime: String label: print

address1: String name: String

address2: String description: String
city: String price: Float
state: String imgPath: String
zZip: Integer

paymentMethod: String

label: user
firstName: String

lastName: String
username: String
emdil: String

MULTI

2. Open your browser tab or window that has the Graph Query Editor (instructions for how to do
this are in Create > Step 2.) Ensure the landscapes_graph is selected (see Create > Step 3
for instructions on how to do this.)

3. Write a Gremlin query to read a user vertex with the label user and the username "jason." To
do this, in the Query Execution Box, type the following Gremlin query:
def gt = graph.traversal();
gt.V().hasLabel("user").has("username", "jason");

4. Click the Submit Query button (®).

Intro to graph databases, Part 1: Graph databases and the CRUD Page 7 of 15

operations

https://ibm-graph-docs.ng.bluemix.net/api.html#gremlin-apis
https://www.youtube.com/watch?v=Dx2C_A5EICc&index=6&list=PLzpeuWUENMK0pcQ2z5jDlhB54ACZ0dkI5

developerWorks® ibm.com/developerWorks/

\l

10.

. The results of the query open in a new box below. Explore the JSON results. Note that the

results are returned as a set of length one. This is because only one vertex has the username
"jason."

. Now that you have a working query that reads a user vertex, explore the code. In the file

navigation pane of the web IDE you left open in another browser tab or window, open
graph.py.

. In graph.py, locate the getUser() function around line 204.
. The function begins by creating a new dictionary that contains a Gremlin query. The query is

based on the one you wrote in step 3 above; the only difference is that instead of querying
for username "jason," the code uses dynamic input based on the username passed in to the
function.

. After the dictionary containing the query is created, the function is ready to call the Graph

API. Around line 208, the function makes a new POST request to /gremlin and sends the
dictionary containing the Gremlin query as part of the request.

Around line 209, the function checks to see if the request was successful (200 response
code). Then the function starts processing the results. The JSON results shown in the query
editor are found by accessing json.loads(response.content)['result']['data']. The
results are a set of vertexes, so the function checks that the length of the results is greater
than 0. Because only one vertex should be returned when a particular username is queried,
the function sets user to results[0]. If everything was successful, the user vertex with its
properties is returned. Otherwise, the function raises an error.

Update

Next, you'll explore the update operation. The following instructions walk you through how the app
updates a user vertex when a user makes changes to his profile information. For more information,
watch the Update data elements in IBM Graph video.

1.

The schema diagram is shown below. To edit a user's profile information, update the
properties stored in a user vertex.

label: buys

label: user dc:‘re’rime.: String label: print
firstName: String address1: String name: String
lastName: String address2: $tring description: String

username: String city: String price: Float

email: String ST‘GT‘T: f‘rring imgPath: String
Zip: Integer

paymentMethod: String

MULTI

2. Open your browser tab or window that has the Graph Query Editor (instructions for how to do

so are in Create > Step 2.) Ensure the landscapes_graph is selected (instructions for how to
do so are in Create > Step 3.)

Intro to graph databases, Part 1: Graph databases and the CRUD Page 8 of 15
operations

https://www.youtube.com/watch?v=ryR6b6XpkVQ&index=7&list=PLzpeuWUENMK0pcQ2z5jDlhB54ACZ0dkI5

ibm.com/developerWorks/ developerWorks®

[20F S8

\l

10.

. Let's write a Gremlin query to update a user vertex. We'll query for the vertex with label user

and the username "jason" and update that vertex with new property values. In the Query
Execution Box, input the following Gremlin query:

def gt = graph.traversal();

gt.V().hasLabel("user").has("username", "jason").property('firstName',
'Jasonupdate').property('lastName', 'Schaeferupdate').property('email',
'jasonupdate@example.com');

. Click the Submit Query button (®).
. The results of the query open in a new box below. Explore the JSON results. Note that the

"Jason" vertex now has the property values we used in the query.

. Now that you have a working query that updates a user vertex, explore the code. In the

file navigation pane of the web IDE you left open in another browser tab or window, open
graph.py.

. In graph.py, locate the updateUser() function around line 219.
. The function begins by creating a new dictionary that contains a Gremlin query. The query is

based on the one you wrote above in step 3 with a few differences: instead of querying for
username "jason" and updating the properties with sample data, the code uses dynamic input
based on the arguments passed in to the function.

. After the dictionary containing the query is created, the function is ready to call the Graph

API. Around line 228, the function makes a new POST request to /gremlin and sends the
dictionary containing the Gremlin query as part of the request.

Around line 229, the function checks to see if the request was successful (200 response
code) and the user vertex was updated. If the request was not successful, the function raises
an error.

Delete

Finally, let's explore the delete operation. The following instructions guide you through how the app
deletes all of the edges and vertexes in the graph. For more information, see the video Delete data
elements in IBM Graph.

1.

Let's begin by observing the schema diagram. To delete all of the vertexes and edges in the
graph, you'll need to delete all of the buys edges as well as the user and print vertexes.

label: buys

label: user dc:‘re’rime.: String label: print
firstName: String address| ; String name: String
lastName: String address2: $tring description: String

username: String city: String price: Float

email: String ST‘GT‘T: f‘rring imgPath: String
Zip: Integer

paymentMethod: String

MULTI

Intro to graph databases, Part 1: Graph databases and the CRUD Page 9 of 15
operations

https://www.youtube.com/watch?v=sowbww8if_8&index=8&list=PLzpeuWUENMK0pcQ2z5jDlhB54ACZ0dkI5
https://www.youtube.com/watch?v=sowbww8if_8&index=8&list=PLzpeuWUENMK0pcQ2z5jDlhB54ACZ0dkI5

developerWorks® ibm.com/developerWorks/

[20F S8

\‘

10.

. Open your browser tab or window that has the Graph Query Editor (instructions for how to do

so are in Create > Step 2.) Ensure the landscapes_graph is selected (instructions for how to
do so are in Create > Step 3.)

. Write a Gremlin query to delete all of the edges and vertexes. Query all of the edges of type

buys and drop them. Then query all of the vertexes of type print or user and drop them. In
the Query Execution Box, input the following Gremlin query:

def g = graph.traversal();

g.E().has('type', 'buys').drop();

g.V().has('type', within('print', 'user')).drop();

. Click the Submit Query button (®).
. The results of the query open in a new box below. Note that an empty list is displayed as the

query has dropped all of our vertexes and edges.
Hint: If you want to interact with your copy of the sample app, return to the <for developers>
page and insert the sample data.

. Now that you have a working query that deletes all of the edges and vertexes, let's explore

the code. In the file navigation pane of the web IDE you left open in another browser tab or
window, click graph.py to open it.

. In graph.py, locate the dropGraph() function around line 441.
. The function begins by creating a new dictionary that contains a Gremlin query. The query is

based on the one we wrote above in step 3.

. After the dictionary containing the query is created, the function is ready to call the Graph

API. Around line 447, the function makes a new POST request to /gremlin and sends the
dictionary containing the Gremlin query as part of the request.

Around line 448, the function checks to see if the request was successful (200 response
code) and the edges and vertexes were deleted. If the request was not successful, the
function raises an error.

Implement a read operation

Now that you know the basics of how to perform the CRUD operations using Gremlin, it's time to
code. In this section, you'll update the user profile page to display the user's orders:

1.

Start by observing the schema diagram. To view the orders for a user, you'll need to
start with the user vertex for the authenticated user and then traverse the graph to read
property values stored in the buys edge (datetime, addressl, address2, city, state,

Intro to graph databases, Part 1: Graph databases and the CRUD Page 10 of 15
operations

ibm.com/developerWorks/ developerWorks®

zip, and payment method) and the associated print vertex (hame and imgPath).

label: buys

label: user dc:‘re’rime.: String label: print
firstName: String address1: String name: String
lastName: String address2: $tring description: String

username: String city: String price: Float

state: String
Zip: Infeger
paymentMethod: String

emdil: String imgPath: String

MULTI

2. Open your browser tab or window that has the Graph Query Editor (instructions for how to do
so are in Create > Step 2.) Ensure the landscapes_graph is selected (instructions for how to
do so are in Create > Step 3.)

3. You'll need to write a Gremlin query to read all of the information about a given user's orders.
To do this, start by querying for the vertex with label user and the username "jason.”" Name
this vertex "buyer.” Then traverse out along the buys edge to find all of the print vertexes that
the user has bought. Next, search for all of the in edges that connect to the buyer vertex (if
you fail to check that the vertex is the buyer vertex, the query will return all connected edges
regardless of who bought the print). Finally, use the path step so you can view the history of
the traversal that includes the user vertex, the buys edge, and the print vertex (if you don't
use the path step, the results will only contain the final user vertex). In the Query Execution
Box, type the following Gremlin query:
def gt = graph.traversal();
gt.V().hasLabel("user").has("username", "jason").as('buyer')

.out("buys")
.inE("buys").outV().as('buyer2').where('buyer',eq('buyer2'))
.path();

4. Click the Submit Query button (®).

5. The results of the query open in a new box. From the diagram on the right, you can see the
user has bought three prints. The JSON results are displayed on the left. Each JSON object
contains the information for one order. The objects property contains the set of information
we care about: the user vertex, the print vertex, the buys edge, and a duplicate user vertex
the traversal found because it started and ended by searching for a user vertex.

Hint: If no results are returned, be sure you inserted the sample data on the <for
developers> page.

6. Now that you have confirmed the query works, let's code. In the file navigation pane of the
web IDE you left open in another browser tab or window, open graph.py.

7. Beneath the getuser () function around line 217, paste the following code:

def getUserOrders(username):
gremlin = {
"gremlin": "def gt = graph.traversal();" +
"gt.V().hasLabel(\"user\").has(\"username\", \"" + username + "\").as(\"buyer\")" +
".out(\"buys\")" +

Intro to graph databases, Part 1: Graph databases and the CRUD Page 11 of 15
operations

developerWorks® ibm.com/developerWorks/

".inE(\"buys\")" +
".outV().as(\"buyer2\").where(\"buyer\",eq(\"buyer2\"))" +

n .path()ll
}
response = post(constants.API_URL + '/' + constants.GRAPH_ID + '/gremlin', json.dumps(gremlin))
if (response.status_code == 200):

results = json.loads(response.content)['result']['data']
orders = []
if len(results) > 0:
print 'Found orders for username %s: %s.' % (username, results)

for result in results:
order = {}
for object in result['objects']:

if object['label']=="'user':
continue

if object['label']=="'buys':
order['date'] = object['properties']['date']
order['firstName'] = object['properties']['firstName']
order['lastName'] object['properties']['lastName']
order['addressi'] object['properties']['addressi']
order['address2'] object['properties']['address2']
order['city'] = object['properties']['city']
order['state'] = object['properties']['state']
order['zip'] = object['properties']['zip']
order['paymentMethod'] = object['properties']['paymentMethod']
continue

if object['label']=="print':
order['printName'] = object['properties']['name'][0]['value']
order['imgPath'] = object['properties']['imgPath'][0]['value']
continue

orders.append(order)
return orders

raise ValueError('Unable to find orders for user with username %s' % username)

Note: Spacing is very important when programming in Python. Be sure you use spaces to
appropriately indent the code.

Let's examine what this function does. First, the code creates a dictionary that holds the Gremlin
query. This query is similar to the one used in step 3 above, except instead of querying for the
username "jason," the code uses dynamic input based on the argument passed in to the function.
Second, the code includes the query in a POST request to the Gremlin API. Third, the code
processes the results. If the response is 200, the query was successful. The JSON results just as
we saw in the query editor can be found by accessing json.loads(response.content)['result']
['data'], so the code stores them in results. The code creates a new list, named orders, where
all of the information that will be displayed to the end user about their orders is stored. Then the
code starts looping through each object in each result. The code checks the label of each object
(user, buys, or print) and then stores the appropriate properties in orders. Finally, if everything
goes well, the code returns orders. If not, the code raises a ValueError.

8. Now that the back-end code is done, you need to get this order information to the front end. In
the left navigation pane in the web IDE, click wsgi.py to open it.

9. Locate the getProfile() function around line 189. This function is called whenever a user
accesses the profile page. The last line of the function returns the template for the profile

Intro to graph databases, Part 1: Graph databases and the CRUD Page 12 of 15
operations

ibm.com/developerWorks/ developerWorks®

page. Update the arguments that are sent to bottle.template() so that the orders are
included:

return bottle.template('profile', username = username, userInfo =
graph.getUser(username), orders = graph.getUserOrders(username))

Hint: Be sure the spacing before return remains the same.

10. Now that the profile template has access to the orders, you need to update it to display the
orders. In the left navigation pane in the web IDE, expand the views directory and click
profile.tpl to open it.

11. After the closing tag of the form but before the line to include the footer around line 54, paste
the following code:

<h2>Your Orders</h2>
% if len(orders) <= 0:
You have not placed any orders.
% else:
% for order in orders:
<hr>
<div class="container">
<div class="row">
<div class="span6">
<h3>0rder date:</h3>
{{order['date']}}

<h3>Shipping address:</h3>
{{order['firstName']}} {{order['lastName']}}

{{order['address1']}}

% if len(order['address2']) > 0:
{{order['address2']}}

% end

{{order['city']}}, {{order['state']}} {{order['zip']}}

<h3>Payment method:</h3>
{{order['paymentMethod']}}
</div>

<div class="span4">

<h3>Print:</h3>

{{order['printName']}}

</div>

</div>
</div>

% end
% end

Let's examine what this code does. The code begins by creating a second-level heading titled
Your Orders. The code then checks to see if the user has any orders. If the user does not have
any orders, the code displays an appropriate message to the user. If the user has orders, the code
loops through them. For each order, it creates a new container and row that is split into two divs.
The left div displays information about the order and the right div displays information about the
print.

12. You have finished implementing our code! Before you celebrate, let's test it by deploying
the app. Open manifest.yml. On line 11, replace LaurensLovelyLandscapesSample-
${random-word} with the host for your app. For example, if the url for your app

Intro to graph databases, Part 1: Graph databases and the CRUD Page 13 of 15
operations

developerWorks® ibm.com/developerWorks/

13.

14.
15.

16.

17.
18.
19.

is https://laurenslovelylandscapessample-cuneal-freesheet.mybluemix.net/, type
laurenslovelylandscapessample-cuneal-freesheet as your host.

In the toolbar at the top of the page, click Create new launch configuration and then click
the button to create a new launch configuration (=).

Click Save.

In the toolbar at the top of the web IDE, click the Deploy the App from the Workspace button
(). The deploy can take a minute or two. When the app has finished deploying, a green
status dot appears beside your app's name in the toolbar. ey STV EEL BT S

When the app finishes deploying, click the Open the Deployed App button (&) in the toolbar at
the top of the web IDE. Your deployed version of Lauren's Lovely Landscapes opens.

In your deployed app, sign in with username "jason” (if not already authenticated).

Click Edit Profile.

Observe the new Your Orders section you just implemented. Now it's time to celebrate!

What's next?

Before we get ahead of ourselves, let's reflect on all that you learned and did in this tutorial. You
began by learning about graph databases and their common use cases. Then you deployed
your own copy of the Lauren's Lovely Landscapes app to Bluemix and learned how you can use
Graph's Session API to generate a unique session token for authentication. Next, you explored

how

to perform each of the CRUD operations using Gremlin and the Graph APIs. Finally, you

implemented a new feature to allow users to view their orders by leveraging the read operation.
You even got to see your new feature running live on Bluemix.

Now that you know the basics, you're ready for the exciting stuff: Recommendation engines.
Continue to Part 2, where you'll learn about the existing recommendation engine and how to build
your own.

Intro to graph databases, Part 1: Graph databases and the CRUD Page 14 of 15
operations

http://www.ibm.com/developerworks/library/cl-graph-database-2/index.html

ibm.com/developerWorks/ developerWorks®

Related topics

* Intro to IBM Bluemix DevOps Services

* IBM Graph — From Zero to Insights

* How can | try out graph databases?

* IBM Graph Documentation

* IBM Graph Learning Center

* The New Builders Ep. 12: Of Graphs and Gremlins — Graph Database 101
* The New Builders Ep. 28: Tinkering with a Graph Database Service

© Copyright IBM Corporation 2017
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

Intro to graph databases, Part 1: Graph databases and the CRUD Page 15 of 15
operations

https://www.ibm.com/developerworks/cloud/library/cl-intro1-app/
https://www.youtube.com/watch?v=ZQbYSEaUrTo&t=2s&list=PLzpeuWUENMK0pcQ2z5jDlhB54ACZ0dkI5&index=1
https://www.youtube.com/watch?v=tvo3X61FeRM
https://ibm-graph-docs.ng.bluemix.net
https://developer.ibm.com/clouddataservices/docs/graph/
https://developer.ibm.com/tv/ibm-graph/
https://developer.ibm.com/tv/graph-database/
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	The basics of graph databases
	About the app

	What you need to get started
	Deploy the app

	Explore the code and existing CRUD operations
	Implement a read operation
	What's next?
	Trademarks

