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Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due
to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred
when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To
overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This
paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable
the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show
that techniques such as foreground zooming with background clutter removal and foreground edge detection with background
reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and
zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that
the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will
provide effective solutions for the further development of visual prosthesis.

1. Introduction

Globally, around 45 million people suffer from blindness
caused due to eye diseases or uncorrected refractive errors.
Although much progress has been made to rectify visual
impairments, there is still no effective treatment for blindness
[1]. In recent years, implantable electronic devices (i.e., visual
prosthesis) have been proposed as a viable solution to restore
partial vision for the blind [2].Many visual prosthetic systems
such as the “Argus II” and the “Alpha IMS” have received
clinical approval in the US and Europe. Visual prosthesis,
often known as bionic eye, captures scenes using a video
camera and then converts the information into low resolution
electronic streams which stimulate the electrodes implanted
in the vision processing center of the brain.Themicrocurrent
stimulator generates electrical stimulation which is trans-
mitted to the optic nerve. This excites neurons to generate
phosphenes.The generation of these phosphenes in the visual
cortex can be used to restore vision and give the blind the
ability to recognize objects. Currently, due to technical limi-
tations, the number of arrays in the stimulation electrodes is

still very limited. The current electrode number of the Argus
II retinal implant is 60 (10 ∗ 6). This number is expected to
rise to about 1000 electrodes in the upcoming versions [3].
The Alpha IMS has 1500 electrodes [4]. Compared with the
number of about 130 million sensing cells and 1.3 million
ganglion cells in the normal human visual system, the limited
number of electrodes can only elicit visual perceptions with
low resolution.

To overcome the limited visual perception, researchers
have tried to optimize the image presentation to deliver
the effective visual information in the simulated prosthetic
vision. Research groups have evaluated different approaches
to improve the performance of the methods to optimize
the visual information presentation. Boyle et al. [5] adopted
two traditional processing methods (inverse contrast and
edge detection) and two image presentation techniques
(distance mapping and importance mapping) to evaluate
the subject perceptions under simulated prosthetic vision
with different resolutions and gray scales. Van Rheede et
al. [6] proposed three image presentation methods (Full-
Field Presentation, Region of Interest (ROI), and Fish Eye)
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based on retinal prosthetic vision. Results showed that the
Region of Interest and fish eye methods increased the visual
acuity of the prosthetic device user to produce favorable
results during the static observation tasks. The Full-Field
Presentation method performs better in visual tasks that
need external environmental information. Zhao et al. [7]
studied the minimum information requirement of simulated
prosthetic vision aimed at solving the task of object and scene
recognition. Lu et al. [8] proposed the projection and nearest
neighbor search methods to optimize the presentation of
Chinese characters and paragraphs. Results showed that the
two optimized strategies increased the recognition of Chinese
characters and the user’s ability to read. Jung et al. [9] adopted
an active confocal imaging system based on the light-field
technology. The system was able to help prosthetic users
focus on the object of interest while suppressing interfer-
ence from background clutter. Wang et al. [10] proposed
two image presentation strategies based on the background
subtraction technique to segment moving objects from daily
scenes to optimize the presentation in simulated prosthetic
vision. Results from their research demonstrated that the
adopted image processing strategies increased the recog-
nition and response accuracy in low resolution. Parikh
et al. [11] proposed image processing strategies based on
improved Itti saliency detection model, respectively. Their
results demonstrated that the saliency map can provide clues
for searching and performing tasks for users with visual
prosthesis. Wang et al. [12] and Li et al. [13] proposed
two image processing strategies based on improved Itti and
GBVS model to optimize the presentation in simulated
prosthetic vision, respectively. Their results demonstrated
that the use of the saliency segmentation method and image
processing strategies can automatically extract and enhance
foreground objects and significantly improve object recog-
nition performance towards recipients with a high-density
implant.

In terms of image processing strategy based on the
saliency detection, most of the studies use the biologically
plausible saliency visual model to extract the foreground
objects. These sophisticated methods have low accuracy
and high complexity. This leads to the segmentation being
more complex (using “GrabCut” segmentation). Li et al. [14]
proposed a real-time image processing strategy based on a
novel bottom-up saliency detection algorithm. Their results
demonstrated the effectiveness of adopting the novel saliency
detection algorithm to improve the processing efficiency of
strategy and enhance foreground object in a scene.Therefore,
in this paper, to enhance the perception of salient objects in
general dynamic scenes and improve the strategy processing
efficiency, we proposed a saliency detection model based on
the manifold ranking with an adaptive-threshold segmenta-
tion method and two image optimization strategies based on
the saliency detectionmodel.We perform experiments to test
the effectiveness of the optimization strategies and evaluate
the perception of daily scenes. The results demonstrated that
the adopted saliency detection model has the advantage in
terms of accuracy and speed over other methods, and our
proposed strategies are able to improve the perception in daily
life for the recognition of objects.

2. Image Processing Strategies Based on
Salient Object Detection Model

The image processing stage in visual prosthesis aims to
set the resolution of original image corresponding to the
number of stimulating electrodes and is called Lowering
Resolution with Gaussian Dot (LRG). The limited number
of electrodes in visual prosthesis can lead to huge loss of
information when presenting the daily scenes. This severely
restricts the ability of prosthetic implant to recognize objects
in daily life. Increasing the contrast between the foreground
region and the background region in real-life scenes can
optimize the visual information presentation in simulated
vision. Therefore, automatically detecting the main objects
and precisely separating the objects from the scenes are
needed first. In this paper, we define salient object as the
main object and segment it as foreground. In Figure 1, we
applied a salient object detection model for foreground
extraction and combine it with a segmentation method for
mask generation of salient objects. Furthermore, we proposed
two optimized processing strategies to optimize the visual
information presentation in simulated vision.They are called
“Foreground Edge Detection and Background Reduction
(FEBR)” and “ForegroundZoom and EdgeDetection (FZE).”
Finally, the processed images are presented in the simulated
vision after the process of LRG.

2.1. SalientObjectDetection. Theextraction of theROI region
is based on the saliency detection technique. The saliency
detection models are based on the visual attention mecha-
nism and are used to extract the salient features to generate
the saliency map. Common models such as the Itti and the
GBVS are widely used in the field of visual prosthesis [12, 13].
However, the saliency map detected by the common model
is discrete region [15, 16]. This makes the segmentation more
complex. To address this limitation, we applied a two-stage
salient object detection model based on manifold ranking.
This model makes full use of the intrinsic manifold structure
of the images to uniformly highlight the target and effectively
compress the background [17]. Meanwhile, the model carries
out a single inversematrix operation and takes the super-pixel
as the basic processing unit. This allows the model to gain in
terms of accuracy and speed over other models.

The salient object detection model is based on the
manifold ranking. The manifold ranking method proposed
by Zhou et al. uses the intrinsic manifold structure of a data
for graph labeling [18]. Let 𝑋 = {𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑛} ∈ 𝑅𝑚×𝑛
be a dataset which consists of the queries and the data needs
to be ranked. Let 𝑓 : 𝑥 → 𝑅𝑛 be a ranking function, where
each 𝑓𝑖 is the ranking value of 𝑋𝑖. This can be seen as a
vector 𝑓 = [𝑓1, . . . , 𝑓𝑛]𝑇. Let 𝑦 = [𝑦1, . . . , 𝑦𝑛] be an indicator
vector. We have 𝑦𝑖 = 1 if 𝑋𝑖 is query; otherwise 𝑦𝑖 = 0.
A graph model 𝐺(𝑉, 𝐸) is defined on the dataset, where the
nodes 𝑉 correspond to the dataset 𝑋 and an affinity matrix𝑊 = [𝑤𝑖𝑗]𝑚×𝑛 weighted the edges 𝐸. Given the graph 𝐺, the
degree matrix is 𝐷 = diag{𝑑11, . . . , 𝑑𝑛𝑛}, where 𝑑 = ∑𝑗 𝑤𝑖𝑗.
The ranking function can be computed as

𝑓∗ = (1 − 𝛼) (𝐷 − 𝛼𝑊)−1 𝑦, (1)
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Figure 1: Schematic diagram of the two image processing strategies.

where 𝐷 is the degree matrix, 𝑊 is the affinity matrix, 𝑦 is
the indictor vector, and 𝛼 is the parameter which controls the
initial ranking value and the neighborhood propagation for
the final ranking value.

In this model, the images are segmented into superpixels
firstly by SLIC [19]. The saliency detection is as a manifold
ranking problem and the saliency is measured by the ranking
value of superpixels. Then, building a graph 𝐺(𝑉, 𝐸), the
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Figure 2: Diagram of the main step in the salient object detection model: (a) original image, (b) superpixels, (c) saliency map in the first
stage, and (d) final saliency map.

affinity matrix 𝑊 and degree matrix 𝐷 can be computed.
After that, a two-stage scheme is adopted in thismodel. In the
first stage, this model uses the nodes on each side of images as
labeled background queries based on boundary prior. Once
the labeled queries are given, we can get the indictor vector𝑦 and compute the nodes saliency value by (1). We can get
the four saliency maps using nodes of the top, bottom, left,
and right side as queries by (2). The four saliency maps are
fused to generate the saliency map 𝑆(𝑖) in the first stage by
(3). In the second stage, binary segmentation is applied on
the saliency map 𝑆(𝑖) and the foreground nodes set as salient
queries.The saliency of each node is computed by (1) and the
final map 𝑆𝑓(𝑖) is computed by (4). Figure 2 shows the results
of the main step in the saliency detection model

𝑆𝑖 (𝑖) = 1 − 𝑓∗ (𝑖) , (2)

where 𝑓∗(𝑖) is the normalized ranking vector 𝑓∗
𝑆 (𝑖) = 𝑆T (𝑖) × 𝑆D (𝑖) × 𝑆L (𝑖) × 𝑆R (𝑖) , (3)

where 𝑆T(𝑖) is the saliency map using nodes on top boundary
as queries, 𝑆D(𝑖) is the down-side saliency map, 𝑆L(𝑖) is the
left-side saliencymap, and 𝑆R(𝑖) is the right-side saliencymap

𝑆𝑓 (𝑖) = 𝑓∗ (𝑖) , (4)

where 𝑓∗(𝑖) is the normalized ranking vector of 𝑓∗.
2.2. Image Segmentation. The salient object detection model
based on the manifold ranking outperforms other models

in detecting salient objects. However, due to the presence of
illumination and complex background, incorrectly classified
pixels may be generated. Using the single-threshold in the
saliency map segmentation cannot obtain the precise binary
mask of objects. This reduces the accuracy of foreground
extraction and affects the perception of the main objects for
the prosthetic wearers. Thus, in this paper, we introduced a
dual-threshold andmultiregion connectivity analysismethod
for the saliency map segmentation. Compared with the
single-threshold method, the new method improves the
accuracy of the segmented objects [20]. The method first
uses a dual-threshold to segment the saliency maps and
then performs a connectivity analysis. Then, a morphology
is adopted to eliminate small regions and isolated pixels.
The main steps of the improved method are summarized as
Algorithm 1.

2.3. Edge Detection. For the edge detection step, a multiscale
Sobel operator is adopted to extract edge feature. Sobel
operator is a kind of first-order differential edge detection
operator. It is performed by extracting the gradient of the
image.The gradient magnitude and direction reflect the edge
strength and direction. The first-order differential operator
with the scale 𝜎 is used to extract the image gradient ∇𝑓. The
image gradient is defined as

∇𝑓 = [𝐺𝑥𝐺𝑦] =
[[[
[

𝜕𝑓𝜕𝑥𝜕𝑓𝜕𝑦
]]]
]
, (5)
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(1) Count and rank the pixel values 𝑃𝑖 in the saliency maps.(2)The higher threshold 𝑇ℎ is set as the pixel value in the 70% place of the ranked
pixels. The lower threshold 𝑇𝑙 is set at the 40% of the higher threshold value.(3) If 𝑃𝑖 > 𝑇ℎ, the pixels are set as the strong target. If 𝑇ℎ > 𝑃𝑖 > 𝑇𝑙, the pixels are set as
the weak target.(4)When there is a connected region between the weak target pixel and the strong
target pixel, the weak target pixel is added to the strong target set. Until all the weak
targets have been traversed, the strong target region contains the final segmentation
results.

Algorithm 1: The main steps of the image segmentation algorithm.

where 𝐺𝑥 is image horizontal gradient and 𝐺𝑦 is the vertical
gradient.Themagnitude and direction of gradient are defined
as (6). The edge is obtained by the comparison between the
gradient magnitude and the set threshold

∇𝑓 = mag (∇𝑓) = [𝐺𝑥2 + 𝐺𝑦2]1/2 ,
𝛼 = arctan(𝐺𝑥𝐺𝑦) .

(6)

The edge is obtained by the comparison between the gradi-
ent magnitude and the set threshold. However, some local
changes of the image cannot be detected in a Sobel operator
with single scale. Small scale operators can locate the edge
with more accuracy, but it is sensitive to noise. Large scale
operators are the opposite. In order to solve the problems,
this paper presents a multiscale Sobel operator to detect the
edge features. It computes the edge magnitude with Sobel
operators at different scales. The final edge magnitude is
the geometric magnitude mean at different scales. The edge
magnitudes mappings are ∇𝑓𝑁 at 𝑘 scales (𝑁𝑘 = 3, 7); the
proposed multiscale edge strength is shown in

∇𝑓 = (∏
𝑘

∇𝑓𝑁𝑘)
1/𝑘 . (7)

We set the scale 𝑘 = 2, the size of Sobel operator 𝑁𝑘 = 3, 7,
and the original image is with white Gaussian white noise.
Figure 3 shows the results of edge detection with different
scales. In Figures 3(b) and 3(d), the result of multiscale edge
detection contains less spurious edges and texture features;
this means that the multiscale method has good noise
robustness. In Figures 3(c) and 3(d), multiscale method can
detect more accurate edges and the edge detection accuracy
is better. In summary, the proposed edge detection method
has better performance.

2.4. “FEBR” Processing Strategy. The “FEBR” processing
strategy is used to enhance the contrast between the main
object and the background under simulated prosthetic vision
with low resolution. The “FEBR” processing strategy is able
to increase the object recognition rate. For the foreground
image 𝑓F(𝑥, 𝑦), edge detection is carried out to enhance
the contour information. In this paper, as shown in (8), we
applied a multiscale edge detection technique as described

in Section 2.3 for the foreground image. For the background
image 𝑓B(𝑥, 𝑦), as shown in (9), the gray values are linearly
reduced to its half, so that the background gray values
are set to the range of 0–127. Finally, the edge detection
foreground 𝑔F(𝑥, 𝑦) and reduced background 𝑔B(𝑥, 𝑦) are
fused as 𝑔(𝑥, 𝑦), as shown in (10)

𝑔F (𝑥, 𝑦) = 𝐸 [𝑓F (𝑥, 𝑦)] , (8)

𝑔B (𝑥, 𝑦) = 𝛼𝑓B (𝑥, 𝑦) = 𝑓B (𝑥, 𝑦)2 , (9)

𝑔 (𝑥, 𝑦) = 𝑔F (𝑥, 𝑦) + 𝑔B (𝑥, 𝑦) . (10)

2.5. “FZE” Processing Strategy. The “FZE” processing strategy
is used to detect and enhance the edge feature of the
foreground objects to increase the recognition rate. Before
performing edge detection, we add a zoom step to increase
the size of the target and make it occupy the entire visual
field.The zoom step takes theminimum sized box containing
the foreground pixels as the zoom window. Then, the zoom
window is cropped to the size of the final presented image. In
Figure 4, an image sample “traffic signs” is used to illustrate
the main step of FZE processing strategy. It shows that the
details in the zoomed image are clearer and the contour is
more significant.

2.6. PhospheneModel. To simulate the real visual perception,
this paper uses a phosphene model based on a Gaussian
distribution [21]. The image is divided into regions with
fixed size and pixels in the regions are combined. The mean
gray value of the pixels in the region is used as the central
luminance value of the Gaussian points. The Gaussian curve
is the luminance distribution of simulated phosphenes. This
model is described in

𝐼 (𝑥, 𝑦) = 𝐴 (𝑢𝑥, 𝑢𝑦) ∙ 𝐺 (𝑥, 𝑦) , (11)

where 𝐴(𝑢𝑥, 𝑢𝑦) is the gray value of the stimulated pixels and𝐺(𝑥, 𝑦) represents the Gaussian distribution function, as is
shown in

𝐺 (𝑥, 𝑦) = 12𝜋𝜎2 𝑒−((𝑥−𝑢𝑥)
2+(𝑥−𝑢𝑦)

2)/2𝜎2 . (12)

The images processed by the phosphene model corre-
spond to the actual electrode array of visual prosthesis.
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Table 1: Average time taken to compute saliency map for images in MSRA-1000 database.

Method IT GB FT CA RC CB Ours
Time (s) 0.246 1.614 0.102 38.896 0.154 2.146 0.091
Code type MATLAB MATLAB C++ MATLAB C++ MATLAB MATLAB

(a) (b)

(c) (d)

Figure 3: Results of edge detection under different scales. (a) Image with white Gaussian noise, (b) Sobel edge detection with scale𝑁𝑘 = 3,
(c) Sobel edge detection with scale𝑁𝑘 = 7, and (d) fused edge detection with multiscales.

This process is called “Lowering Resolution with Gaussian
(LRG) dots.” After LRG pixelization, the images processed by
“FEBR” and “FZE” were converted to 6 different phosphene
resolutions. Figure 5 shows the image processed by “FEBR”
and “FZE” after LRG with the resolution 32 ∗ 32.
3. Psychological Experiment and
Analysis of Results

3.1. Results of Salient Object Detection Model. This paper
adopts a two-stage saliency detection scheme based on the
manifold ranking. It makes full use of the image’s intrinsic
manifold structure, which can be effectively used to highlight
the target uniformly as well as compressing the background.

In order to illustrate the advantages of themodel, we compare
this algorithm with other saliency detection algorithms such
as IT, GB, FT, CA, RC, and CB [15, 16, 20, 22–24]. Figure 6
shows the saliency map detected by the different algorithms.
From the analysis of the data, we can conclude that the
saliency map detected by the manifold ranking model can
highlight the target object evenly andmaintain a goodbound-
ary. Figure 4 shows the three indexes of precision, recall, and𝐹-measure computed under the MSRA-1000 image database.
The relation of the three indexes is shown in (13), where 𝛽 =0.3. In Figure 7, it demonstrates that the saliency detection
model we adopted has the highest precision, recall, and 𝐹-
measure. In Table 1, we compare the average time taken by
eachmethod on Intel Core 2.8GHzmachinewith 2GBRAM.
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Figure 4: Flowchart of the FZE processing strategy.
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Figure 5: Results under different strategies after LRG: (a) original image, (b) image processed after LRG without optimization, (c) image
processed after LRG under the strategy FZE, and (d) image processed after LRG under the strategy FEBR.
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Original image Ground-truth IT GB CA FT RC CB Ours

Figure 6: Comparison of different saliency detection algorithms.
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Figure 7: Comparison of different saliency detection algorithms.

It showed that our method has taken the lowest average time
and is sufficient for real-time applications.The results showed
that our method can produce superior saliency map with the
real-time compared with other algorithms

𝐹-measure = (1 + 𝛽2) precision × recall
𝛽2 precision + recall

. (13)

3.2. Results of the Saliency Map Segmentation. The salient
object mask is segmented using the adaptive double-
thresholdmethod. In order to evaluate the performance of the
segmentation method, we compare the mask data of salient
object with the ground-truth. In Figure 8, some incorrect
pixels contained in the salient object mask that segmented

by traditional segmentation method. Compared with the
traditional salient object mask, in our method the incorrect
pixels are rectified using the adaptive double-threshold seg-
mentation method. This improved segmentation method is
useful for rectifying some incorrect classified pixels, but it
cannot correct every mistaken pixel. In the final segment
mask, compared with the ground-truth we are still left with
some incorrect pixels and regions.

3.3. Psychological Experiment. In order to verify the recogni-
tion rate of the objects in real-life scenes using the processing
strategies proposed in this paper, we designed a psychophys-
ical experiment for visual prosthesis. The materials used in
the experiment were images selected from our daily life and
were essential in our daily life. The visual field was 20 that
simulates the prosthesis device.The resolution of every image
was normalized to 320 ∗ 320. In order to avoid the influence
of resolutions, the visual field of the main object in the image
covered the angle of 12–14∘. The subjects who participated
in the experiment were 16 volunteers chosen from Xi’an
University of Technology. They (8 males and 8 females) were
aged from 20 to 25 years. They were all with normal or
corrected visual acuity. The experiment was performed in
accordance with the Declaration of Helsinki.

Subjects were seated 60 cm in front of a 21-inche LCD
monitor (Lenovo INC, Beijing, 1280 ∗ 1024 resolution,
26 diagonal visual field). The images were randomly dis-
played on the center of the monitor. The experimental
process was controlled by the psychological toolbox software
“PsychToolbox-3” [25]. Before the start of the experiment, the
subjects were provided with a list of the experimental objects
which would be shown to them. This helped the subjects
familiarize themselves with the upcoming objects and the
experimental protocol. During the experiment, the images
were divided into two groups (“FZE” and “FEBR”). Each
group of images was randomly presented to the participants.
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Table 2: Results of the object recognition rate under different resolutions.

Strategy Resolution8 ∗ 8 16 ∗ 16 24 ∗ 24 32 ∗ 32 48 ∗ 48 64 ∗ 64
FZE 0.00 ± 0.00 35.46 ± 2.59 64.13 ± 2.58 83.29 ± 2.38 92.45 ± 1.83 96.32 ± 1.12
FEBR 0.00 ± 0.00 13.57 ± 2.13 54.14 ± 2.23 81.39 ± 2.42 90.26 ± 2.19 95.56 ± 1.09

Original image Ground-truth

Segmentation mask with
single threshold

Segmentation mask with
our method

(a)

Original image Ground-truth

Segmentation mask with
single threshold

Segmentation mask with
our method

(b)

Figure 8: Comparison of different saliency segmentation method: (a) example image “nail clippers” and (b) example image “dust bin.”

The recognition score (RS) was used to quantify the
recognition results. If the subjects were able to correctly
recognize the objects and give the right name, RS was set
to 2. If the subjects could not correctly name the object and
they could describe the shape or specific features of objects,
RS was set to 1. Otherwise, the RS was set to 0. As shown
in (14), the values of RS were normalized to the recognition
accuracy (RA) under different processing strategies. The
Statistical Product and Service Solutions (SPSS) forWindows
(SPSS Inc.) software is used to perform statistical analysis.
The results are expressed in the form of mean ± SEM
(standard error of mean). A two-factor analysis of variance
(ANOVA) was adopted as the metric to evaluate the effect
of statistical significance of the resolution and the image
processing strategies

RA = RS2 × 100%. (14)

3.4. Results of the Object Recognition. In this experiment, the
accuracy of the object recognition task was evaluated under 6
different resolutions. Table 2 and Figure 9 show the RA scores
with two processing strategies under different resolutions.

The image resolution has a statistically significant effect
on the RA scores (𝐹 = 189.112, 𝑃 < 0.05) for the task of
object recognition. The RA scores were close to 0 when the
resolution was 8 ∗ 8. When the resolution was increased to16 ∗ 16, noticeable differences were shown in two processing
strategies (𝐹 = 93.664, 𝑃 < 0.05). When the resolution
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Figure 9: Comparison of the object recognition rate under different
resolutions (∗𝑃 < 0.05, ∗∗𝑃 < 0.01).

increased to 24 ∗ 24, a great increase in the recognition
accuracy was observed. A relatively slow increase in the
recognition accuracy from 80% to 96% was observed when
the resolution was increased from 32 ∗ 32 to 64 ∗ 64. On the
whole, the FEBR strategy demonstrated higher recognition
accuracy compared with the FZE strategy.
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4. Discussion

Introduction of a certain image processing technique is
considered to be an effective method to optimize the pre-
sentation of the visual information in visual prosthesis. Some
basic image processing methods such as edge detection and
contrast enhancement have been applied to some retinal
prosthesis systems. In this paper, we demonstrate that the
introduction of a saliency detectionmodel based onmanifold
ranking and a segmentation technique based on the multi-
threshold and connectivity analysis have significant effects
on the segmentation of main objects in daily scenes. Two
processing strategies are proposed to optimize the image
presentation. These strategies can help extract and present
the main information from real-life scenes and help a blind
person successfully complete the tasks of perception and
recognition of objects in a given scene.Through psychophysi-
cal experiments, we show that the proposed image processing
methods can significantly improve the ability of a person’s
object location and recognition.

4.1. Effect of Salient Object Extraction. Automatic detection
and extraction of main objects in a scene are a key step in the
processing strategy. The proposed saliency detection model
and the segmentation technique have the ability to segment
objects in 60 experimentalmaterials with an accuracy of 90%.

The validity of the object segmentation will affect further
processing for object enhancement and the performance
of the task of perceiving and recognizing of objects for
prosthetic users. The recognition performance in the two
processing strategies is analyzed to show that segmentation
significantly affects the recognition rate. Segmentation closer
to the real scene improves the accuracy of the object recog-
nition. This makes it very clear that our proposed method
cannot be similar to the function of human eyes which can
extract complete objects from complex scenes. The objects
extracted using our proposed method will always either miss
some part of the content or contain some unnecessary back-
ground information. According to prosthesis research, edge
information has a significant influence on the recognition
of objects. If the edge information of the extracted object is
not well preserved, the final recognition performance will be
relatively poor.

Themost important factor affecting the accuracy of object
extraction is the generation of the saliency map. It is also
a technical challenge in the research area of saliency region
segmentation. The main objects are not marked by adequate
salient points in poorly segmented materials. Although the
computational model based on manifold ranking provides
huge benefit for saliency extraction, some objects in the
image cannot get enough large area of interest. More efficient
saliency models, ROI definitions, and segmentationmethods
need to be adopted in future research to achieve more
accurate objects extraction from the daily scenes.

4.2. Effect of Image Processing Strategy. Obtaining objects
from real-life scenarios can be used to enhance the presenta-
tion of the objects to the blind people. Edge information is an
important object feature and is the main factor which affects

the performance of object recognition during low resolution.
To enhance the foreground information, the presentation
strategy uses foreground zooming and keeps the edge infor-
mation. Experimental results in simulated prosthetic vision
show that foreground zooming and edge detection can
effectively improve the recognition accuracy of subjects in
the good segmentation. Although the individual recognition
results are not good in poor segmentation, they do not affect
the overall performance of the image recognition task. Due
to the zoomed foreground, this approach presents more edge
detail information to the user than the direct edge detection
approach. We report that the foreground zooming strategy
in this study has the highest recognition results. Based
on this, in the current stage of retinal prosthesis systems
with less than 1000 electrodes, foreground zooming is more
suitable for visual presentation. By enhancing the foreground
information, not only will the number of correctly named
objects be greatly improved, but also the subjects can describe
the objects in the images more accurately. Although the two
processing methods remove certain background informa-
tion, they also reduce the influence of scene illumination to
highlight the main information in the scene. This is highly
significant to obtain better visual task performance under
limited visual perceptions.

The results of different image analyses show that different
subjects have different recognition abilities. With the same
segmentation, objects with simple shape are relatively hard
to recognize. But the subjects are able to accurately describe
the image after enhanced expression. The recognition rate
of the objects with complex contour information is much
higher than objects with simple shape. Zhao et al. [7]
made similar observations during their experiment. In this
study, we suggest that this is mainly due to the lack of
features contributing to the recognition. We also suggest that
regional features should be enhanced to make up for this
phenomenon. This study also shows that the edge contour
information is very important for object recognition in low
resolution.

4.3. Effect of Image Resolution. The results demonstrate that
the recognition accuracy is significantly affected by the
resolution. When the resolution increased from 16 ∗ 16 to24 ∗ 24, the RA scores increase greatly and reach values
higher than 50%. When the resolution reaches 32 ∗ 32, it
performs well for the task of object recognition without any
prior information. We can therefore conclude that higher
resolutions images have positive effects on the task of visual
recognition. But we also observed that increasing the resolu-
tion cannot compensate for the huge information loss caused
by pixelization.

4.4. Effect of Phosphene Model. In this paper, we simulate
the visual percepts with the phosphene model with Gaus-
sian distributions. In fact, current visual percepts provided
by visual prosthesis contain multiple factors that would
influence recognition, including distortion, dropout, and
shape irregularity. Insights from psychological experiments
and theoretical considerations suggest that the interaction
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between implant electronics and the underlying neurophys-
iology of the retina will result in spatiotemporal distortions
that include visual “comets” in epiretinal prostheses and
motion streaks in optogenetic devices [26]. Nanduri et al.
[27] demonstrated that a significant change will be caused
in size and shape of phosphenes with the increasing stim-
ulation amplitude. The perpetual distortions lead to a lack
of retinotopic correspondence between the stimulation site
and the perceived location of the phosphenes in visual space
[28–30]. Lu et al. [31] showed that the recognition linearly
decreased with an increase of distortion level, meaning that
the distortion had a serious impact on the object recogni-
tion. From another perspective, the results indicated that
recognition accuracy could be improved for prosthesis wears
by distortion correction. These factors will be considered in
future studies for more realistic practices.

5. Conclusion

In this paper, different visual information processing strate-
gies were explored to optimize the presentation of visual
information under simulated prosthetic vision. The saliency
detectionmodel is introduced to detect salient objects in real-
life scenes. A multithreshold method is proposed to improve
the foreground segmentation. Two processing strategies are
carried out to optimize the presentation of visual informa-
tion. Experimental results demonstrate that the two strategies
significantly improve the visual perception and recognition
rate of objects under low resolution. This work can be used
to help blind people to significantly improve their ability to
adapt to the surrounding environment.
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